
School of Economics and Management 
Aarhus University 

Bartholins Allé 10, Building 1322, DK-8000 Aarhus C 
Denmark 

 
 

  
 
 

 
 

 
 
 
 

 
 

CREATES Research Paper 2009-30 
 
 
 
 

Long Memory and Tail dependence 
in Trading Volume and Volatility 

 
 

Eduardo Rossi and Paolo Santucci de Magistris  

 



Long Memory and Tail dependence in Trading

Volume and Volatility †

Eduardo Rossi ‡ Paolo Santucci de Magistris §

July 13, 2009

Abstract

This paper investigates long-run dependencies of volatility and volume, sup-

posing that are driven by the same informative process. Log-realized volatility

and log-volume are characterized by upper and lower tail dependence, where

the positive tail dependence is mainly due to the jump component. The possi-

bility that volume and volatility are driven by a common fractionally integrated

stochastic trend, as the Mixture Distribution Hypothesis prescribes, is rejected.

We model the two series with a bivariate Fractionally Integrated VAR speci-

fication. The joint density is parameterized by means of with different copula

functions, which provide flexibility in modeling the dependence in the extremes

and are computationally convenient. Finally, we present a simulation exercise

to validate the model.
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1 Introduction

An extensive empirical literature has focused, during the last decades, on the tem-

poral dependencies between volume and volatility on financial markets. The inves-

tigation of the volatility-volume relationship has important implications in terms

of microstructure of financial markets. Numerous empirical investigations find a

positive and strong contemporaneous correlation between both absolute returns

and volume. One explanation for the positive price volatility-volume correlation is

provided by the sequential information model, see Copeland (1975). In this model,

the information is disseminated to only one trader at time and intermediate equi-

libria occur prior than the final equilibrium. Sequential information imply that

there is a positive correlation between price volatility and trading volume in a se-

quential manner. In the simplest version of the Mixture Distribution Hypothesis

(MDH, hereafter), see Clark (1973) and Epps and Epps (1976), price volatility and

volume should be positively correlated because the joint dependence on a common

underlying variable, that is interpreted as the rate of information flow. Accord-

ing to this theory, the dynamics of volume and volatility are driven by a common

and contemporaneous informative process and both bad news and good news are

accompanied by above average volume and volatility. However, this informative

process is unobservable.

Given the leptokurtic distribution of daily returns the MDH implies that data are

generated by a conditional stochastic process with variance parameter that varies

over time. In particular, MDH helps to explain the high degree of positive correla-

tion between volume and volatility (see Karpoff (1987)).

The literature on MDH can be classified in two groups. The first one focuses on es-

timation of the model parameters and latent variables to evaluate the goodness of

fit with respect to real data.1 The second one concentrates on the properties of the

1See the approach presented in Andersen (1996) and Liesenfeld (2001).
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observed series, relying on an observable measure of volatility, see Bollerslev and

Jubinski (1999) and Luu and Martens (2003). In the Bollerslev and Jubinski (1999)

version of MDH, volume and volatility are supposed to be driven by an informative

common process with long memory, while the short run dynamics are not necessar-

ily the same. The authors interpret the MDH as a long run phenomenon in which

the information arrival process is persistent. The main purpose of this paper is

to model the relationship between volume and volatility where both are supposed

to be driven by an unobserved long memory process (as in Bollerslev and Jubinski

(1999)). To this end we use the realized volatility (as in Luu and Martens (2003)),

computed from the intraday squared returns, which is a consistent estimator of

the true daily integrated volatility. The results of the Nielsen and Shimotsu (2007)

test support the idea that the two variables share the same order of long-range

dependence. However, if this finding is supportive of the theory of MDH, at least

in the version of Bollerslev and Jubinski (1999), it is not enough. In fact, if the two

series were driven by the same long memory latent process, we would expect that

there exists a linear combination that dampens the long run dependence. Thus

we investigate the possibility that volume and realized volatility are fractionally

cointegrated. The evidence of the Nielsen and Shimotsu (2007) test for fractional

cointegration does not support this conclusion. This suggests that we can model

the relationship between the logarithm of realized volatility and volume by a long

memory bivariate model, that is a Fractionally Integrated VAR (FIVAR), which ex-

cludes the possibility of fractional cointegration.

One element that is important for the modeling of the long-run dependencies of

volume and volatility is the tail dependence. The estimates of tail dependence of

the filtered series suggest that a careful treatment of this aspect is needed. This

naturally calls for a suitable choice of the joint distribution. We adopt different
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copulae functions to characterize the multivariate distribution function. Copulae

provide a flexible tool to model dependence when only marginal distributions are

known, but also allow for different tail dependencies.

A simulation exercise is carried out in order to evaluate the ability of the bivari-

ate FIVAR model, with different copulae specifications, to account for some sample

statistics. The benchmark model is a bivariate extension of the Heterogeneous Au-

toregressive (HAR) model introduced by Corsi (2009). The results are in favor of

the FIVAR specification coupled with a joint density modeled as a mixture of cop-

ulae densities. The evidence from the estimation and simulation results highlight

the ability of the FIVAR to account for the common long memory pattern that is

observed in the data.

This paper is organized as follows. Section 2 briefly reviews the theoretical frame-

work besides the concept of realized volatility and its decomposition. In Section 3 a

brief description of the data appears. Section 4 investigates the long memory prop-

erty of volatility and volume. In Section 5 tail dependence analysis is carried out.

Section 6 sets up the model for volume and volatility. Section 7 presents the cop-

ulae modeling, while Section 8 reports the estimation results. Section 9 describes

the simulation study for the validation of the model, and Section 10 concludes.

2 Realized variation and its decomposition

Let assume that the log-price, pt, follows a continuous-time semimartingale pro-

cess,

pt =

∫ t

0

µsds+

∫ t

0

σsdWs +

Q(s)∑

j=1

k(sj), (1)

where the mean process µt is continuous and of finite variation, σt > 0 denotes, as

usual, the cad-lag instantaneous volatility. Q(t) is a counting process that takes

value 1 if a jump occurs at t, while k(t) refers to its magnitude. The quadratic
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variation process is given by

[p]t = p lim

tj<t∑

j=1

(ptj − ptj−1
)2 =

∫ t

0

σ2
sds+

Q(s)∑

j=1

k2(sj) = IVt +

Q(s)∑

j=1

k2(sj), (2)

where the integrated volatility, for day t, is defined as the integral of the spot

volatility

IVt =

∫ t

t−1

σ2
sds. (3)

When the jumps are present, the quadratic variation is equal to the sum of inte-

grated volatility plus the jumps. The quadratic variation can be estimated by the

sum of the intraday squared returns, r2
tj

, i.e. the realized volatility,

RVt =
M∑

j=1

(ptj − ptj−1
)2 =

M∑

j=1

r2
tj

t = 1, ..., T (4)

where M is the number of intraday observations. The realized volatility converges

to the integrated volatility plus the jump component.

However, prices sampled at high frequency are affected by the so called microstruc-

ture bias and the estimation of integrated volatility becomes imprecise. This fact

has been analyzed and solved in different ways (see Ait-Sahalia and A. Mykland

(2003), Hansen and Lunde (2006) and Bandi and Russell (2006)). The simplest way

to deal with this problem is sampling at lower frequencies (for example 5 minutes

as in Corsi et al. (2005) or Bollerslev et al. (2009)).

Barndorff-Nielsen and Shephard (2004), have shown that RV allows for a direct

nonparametric decomposition of the total price variation into its two separate com-

ponents: a continuous part, called Bipower Variation (BPV), and a discontinuous

one, the Jumps. Incorporating a measure of jumps is important because, as it has

been noted by Huang and Tauchen (2003), their relative contribution to the total

5



price variability is about 7%. The BPV is defined as

BPVt =
π

2

M∑

j=2

|rt,j||rt,j−1| t = 1, ..., T (5)

and converges to IVt as M diverges.

Corsi et al. (2008) show that the apparent puzzle found in Andersen et al. (2007),

where the jumps seem to not have forecast ability for the future volatility is due

to a measurement bias, introduced by the bipower variation in finite samples. In

fact, suppose rt,j contains a jump. In the case of bipower variation, it will multi-

ply two adjacent returns, rt,j−1 and rt,j+1. As M increases, both these returns will

vanish and bipower variation will converge to integrated continuous volatility. But

when M is finite, these returns will not vanish, causing a positive bias which will

be larger as rt,j increases. This consideration suggests that the bias of bipower

variation will be extremely large in case of consecutive jumps. This causes a posi-

tive bias when the bipower variation is used to account for the continuous part of

volatility, in particular when two jumps occur in the same daily trajectory.

Mancini (2007) proposes an alternative method for identifying the continuous part

of realized volatility based on the following truncation:

TRVt =
M∑

j=1

r2
t,j · I(|rt,j| < θ), (6)

where θ is a threshold function. This method will throw out more returns as jumps

during a high volatility period than during a low volatility period.

Corsi et al. (2008) provide an alternative estimator of the continuous part of volatil-

ity, the Corrected Threshold Bipower Variation, hence after CTBPV , that is

CTBPVt =
π

2

M∑

j=2

Z1(rt,j, θj)Z1(rt,j−1, θj−1) t = 1, ..., T (7)
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where Z1(rt,j, θj) is a special function equal to |rt,j| when rt,j < θj, and equal to

1.094
√
θj when rt,j ≥ θj, and θj is the threshold that is a multiple of local variance,

V̂j, that is chosen according to an iterative procedure, so that

θj = cθ · V̂j.

The residual jump component is then calculated as the difference between the re-

alized volatility and the CTBPV

Jt = RVt − CTBPVt t = 1, ..., T. (8)

3 Data

Our data set consists of 5-minutes IBM transaction prices from January 1, 1995

through December 31, 2003. Returns, ri,t, over five minutes interval are then cal-

culated, and realized volatility is obtained as the sum of 81 intraday squared re-

turns over five minutes intervals. Daily volume are given by the sum of intraday

volume.2

The series consists of 2267 daily observations. BPVt and Jt are obtained as in for-

mulas (5) and (8). As it is apparent from Figure 1. the logarithm of volume and

realized volatility are clustered. There is no graphical evidence of the presence of

a strong time trend. However, we fit a quadratic trend and consider for the sub-

sequent analysis the detrended series.3 The Box-Pierce portmanteau test statistic

(in Table 1) shows that volatility and volume are highly autocorrelated, while re-

2The total number of observations is 183627. The raw data are the tick-by-tick prices and volume

on IBM relative to the open market (from 9:30 am to 4:15 pm). Using the method of previous tick,

the series of prices over a grid of five minutes have been created, as well the volume, as the sum

of the number of transactions since the last interval. Week-end and festivity are excluded from the

database to avoid seasonality effects.
3In the rest of the paper, we refer to log RVt, log BPVt, log CTBPVt and log Vt as the detrended

versions of the corresponding measures. These are obtained simply regressing log-volatilities and

log-volume on a constant, a time trend and a squared time trend.
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turns and Jt are much less persistent. Moreover, the continuous part of volatility

(logCTBPV ) is more persistent than realized volatility, since the jumps, which is

the non persistent component, has been disentangled.

4 The MDH as a Long Memory Relationship

There is accordance in the literature (Andersen et al. (2003), Corsi et al. (2005) and

Bollerslev et al. (2009)) on some stylized facts:

• the distribution of realized volatility is asymmetric and leptokurtic, but the

density of logarithm of the series is nearly Gaussian.

• both volatility and volume seems to be long memory. This means that the

effect of a shock decays slowly. This fact is in contrast with an ARMA repre-

sentation (which implies an exponential decay) or a unit root process.

Long memory is defined in terms of decay rates of long-lag autocorrelations, or in

the frequency domain in terms of rates of explosion of low frequency spectra. A

long-lag autocorrelation definition of long memory is

γ(τ) = cγτ
2d−1 τ → ∞,

where cγ > 0, τ is the lag and d is the long memory parameter. It is evident that

the autocorrelations of long memory processes decay with a hyperbolic rate and

they are not summable. An alternative, although not equivalent, definition of long

range dependence can be given by using the spectral density f(λ) of the process:

lim
λ→0+

f(λ)

cf |λ|−2d
= 1 0 < cf <∞.
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The spectral density f(λ) has a pole and behaves like a constant cf times λ−2d at

the origin. If |d| ∈ (0, 1/2) the process is stationary. In particular, if d ∈ (0, 1/2),

it presents long memory; instead, if d ∈ (−1/2, 0) the process is antipersitent

with short memory. A popular approach to the modeling of long memory is repre-

sented by the ARFIMA class introduced by Granger and Joyeux (1980) and Hosk-

ing (1981). They generalize the class of ARIMA models by allowing a fractional

degree of differencing.

Lieberman and Phillips (2008) provides an analytical explanation for the evidence

of long memory in the series of realized volatility. In fact, the autocovariance struc-

ture of the realized volatility estimator depends on those of the intraday returns.

Then, even if the intraday increments are short memory, the sampling scheme ren-

ders the RV to be long memory. This suggest that the latent information arrival

process, that is approximated by the realized volatility, should also have long mem-

ory, since it is the sum of independent intraday information arrivals.

Bollerslev and Jubinski (1999) investigate the nature of the common aggregate

latent information-arrival process, postulated by the MDH. They assume that this

common latent process is characterized by long-range persistence. They test the

equality of fractional integration degree of absolute returns for each of the 100

individual shares in the Standard and Poor’s 100 composite index and the corre-

sponding volume, finding, in general, a common long-run hyperbolic decay rate.

Luu and Martens (2003) extend previous analysis considering the realized volatil-

ity as a proxy of the volatility of IBM and modeling volume and volatility using a

VAR, finding bidirectional Granger causality. Fleming and Kirby (2006), examine

the long-run relationship between volatility and volume in a bivariate Fractional

VAR, that is a VAR on the fractionally differenced series. Their results indicate

that volume and realized volatility generally display the same degree of fractional

integration, suggesting that the main source of time variation is found in their long
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memory property, while, differently from Luu and Martens (2003), a minor role is

attributable to the VAR components.

Nevertheless, the equality of the fractional integration orders does not imply the

validity of the MDH theory. In fact, if the MDH theory were verified, there should

exist a common stochastic trend, that is the latent information arrival process with

long memory, that drives the dynamics of both volatility and volume through time.

Hence, the analysis of the validity of the MDH should be carried out investigating

the degree of fractional cointegration of volume and volatility. In the next section,

we shortly present the definition of fractional cointegration and we test for the

MDH theory in the case of IBM data.

4.1 Fractional cointegration analysis

According to the definition in Granger (1986), two (or more) I(d) series are fraction-

ally cointegrated if there exists a linear combination that is I(de), with de < d. Thus

the errors are of lower order of fractional integration than the levels. This means

that the series share fractionally integrated stochastic trends of different orders

(I(d) and I(de)), and a linear combination eliminates the largest. More precisely,

suppose that zt is a vector (p× 1) of observables, where the i-th element zit ∼ I(di),

with di > 0, i = 1, . . . , p, we say that they are fractionally cointegrated if there

exists a vector α 6= 0

et = α′zt ≡ I(de) 0 ≤ de < min
1≤i≤p

di.

This is possible if and only if di = dj, some i 6= j; a necessary condition for α to be

a cointegrating vector is that its i-th component be equal to zero if di > dj for all

i 6= j. When d1 = . . . = dp = d it is usual to write zt ≡ CI(d, b), b = d− de. A typical
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situation is when zt = (x′t, yt) ∈ I(d) and et ∈ I(de) with d > de ≥ 0 in the model

yt = β′xt + et. (9)

Cointegration is commonly thought of as a stationary relation between nonstation-

ary variables

di ≥
1

2
∀i and de <

1

2
.

But another possibility, which is relevant to the present analysis, is represented

by 0 ≤ di <
1
2
∀i, i.e. zt and et are stationary. Thus the case where d > 0, de ≥ 0

and d+de ≤ 1/2 is called stationary fractional cointegration. The main drawback of

fully specified parametric models is that they provide inconsistent estimators of the

long-run parameters if the model is not correctly specified. The MDH prescribes

full cointegration between volatility and volume, in the sense that b = d or de =

0. Since the presence or absence of fractional cointegration is not known when

testing for the equality of the fractional integration orders in a regression model,

we rely on a testing procedure for H0 : dlog RV = dlog V that is informative in both

circumstances. Robinson and Yajima (2002) discuss a semi-parametric procedure

for determining the cointegration rank, focusing on stationary series, i.e. d < 1/2.

Nielsen and Shimotsu (2007) extend the analysis of Robinson and Yajima (2002),

in order to consider cointegration for both stationary and non-stationary variables.

In particular, they apply the exact local Whittle analysis, and estimate the rank

of spectral cointegration of the dth differenced process around the origin. The test

statistic for the equality of integration orders in the bivariate case is

T̂ = m(Sd̂)′
(
S

1

4
D̂−1(Ĝ⊙ Ĝ)D̂−1S ′ + h(T )2

)−1

(Sd̂), (10)

where ⊙ denotes the Hadamard product, S = [1,−1]′, h(T ) = log(T )−k for k > 0 ,

D = diag(G11, G22), while Ĝ = 1
m

∑m
j=1Re(Ij) is a consistent estimator of G = fǫ(0)
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(see Nielsen and Shimotsu (2007) for more details). The vector of estimates d̂ =

(d̂log RV , d̂log V ) is obtained with the univariate exact Whittle estimator developed

by Shimotsu and Phillips (2005), that makes no assumptions on the presence of

cointegration and is consistent in both cases.

If the variables are not cointegrated, that is the cointegration rank r is zero, T̂ →

χ2
1, while if r ≥ 1, T̂ → 0. A significantly large value of T̂ , with respect to χ2

1, can be

taken as an evidence against the equality of the integration orders.

Moreover, the estimation of the cointegration rank r is obtained by calculating the

eigenvalues of the estimated matrix Ĝ. Table 2 shows the results of the Nielsen and

Shimotsu (2007) fractional cointegration analysis, with two different choices for the

bandwidths, md, used in the estimation of d, and mL used in the estimation of L(u).

The null hypothesis that r = 0 cannot be rejected. This finding reinforces our belief

against the idea of MDH theory as a long memory relationship. The estimated

long memory parameters (dlog RV , dlog V ) are in the stationary region. Moreover the

T̂ statistic takes values 1.048 and 1.9716 which, in case of absence of cointegration,

implies, as in Bollerslev and Jubinski (1999), the acceptance of the null hypothesis

(we refer to the 95% critical value of a χ2
1 that is 3.841), i.e the equality of the

fractional differencing parameters.

5 Tail Dependence

Once the series of daily volatility and volume are obtained from intradaily data,

it would be interesting to investigate the kind of dependence between the two se-

ries. The Pearson correlation measure only applies to observations that are not

far out in the tails. The MDH does not provide an explanation for possible posi-

tive or negative upper/lower tail dependence. Nevertheless, the exploration of the

extremal dependence structure, between volume and volatility, becomes fundamen-
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tal for identifying and modeling their joint-tail dependence. Following Poon et al.

(2004), we consider χ as a measure of asymptotic dependence between volatility

and volume, which assumes value 1 for asymptotically dependent variables. χ is

estimated with the Hill estimator, that is a non parametric measure of the degree

of tail dependence,

̂̄χ =
2

nu

(
nu∑

j=1

log
(zj

u

))
− 1, (11)

where nu is the number of observation over the threshold u. zj is the j-th order

statistic from Z = min(S, T ), where S and T are the unit Frchet marginals of logRV

and log V ,

S = −1/ logF (logRV ) T = −1/ logF (log V ) (12)

and F (·) is the univariate empirical distribution function. The variance of ̂̄χ is

given by:

V ar[χ̂] =
(χ̂+ 1)

nu

.

If there is evidence that χ̂ < 1, χ̂+1.96
√
V ar[χ̂] < 1 then we can infer that the vari-

ables are asymptotically independent. Only if there is no significant evidence to

reject χ̄ = 1, we consider the degree of tail dependence, χ ∈ (0, 1), that is estimated

by

χ̂ =
u · nu

T
(13)

with variance,

V ar[χ̂] =
u2nu(T − nu)

T 3
.

The parameter χ measures the degree of upper tail dependence, that is the prob-

ability of observing a large value of volatility given a large realization of volume.

The analysis of the lower tail dependence is symmetric to the right tail, since the

data are multiplied by −1. Figures 2(a) and 2(b) report the calculated degree of

tail dependence, ̂̄χ, between the series of volatility (including bipower variation,
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threshold realized volatility and corrected threshold-bipower variation) and log V ,

for different choices of the threshold u. We repeat the tail dependence analysis on

the filtered series, that is (1 − L)dRV logRV , (1 − L)dV log V , where the parameter d

is estimated with the exact Whittle estimator, see Figure 2(c) and 2(d). Choosing a

threshold u equal to 2.5% of observations, so that nu = 57, the log V and logRV show

left tail dependence, the same is true for the filtered series. For what concerns the

right tail dependence, logRV and logBPV show positive dependence with log V , in

particular when the series are fractionally differenced. From the standard error

expression is clear that decreasing u we increase the estimate uncertainty. The es-

timated degree of right tail dependence between logBPV and log V , χ̂, is positive,

χ̂ = 0.3306, with 2.5% of observations on the right tail. logRV present a significant

level of asymptotic upper and lower tail dependence with respect to log-volume.

The estimated χ̂ is equal to 0.3622 and 0.2904, with 2.5% of observations respec-

tively on right and left tail, when considering the fractionally differenced series.

Interestingly, we don’t find the same evidence for the for the logCTBPV . In fact,

even if for nu = 57 it shows asymptotic right tail dependence, the confidence band

for the Hill estimator between logCTBPV and log V does not contain the value 1

in most cases. Moreover, the log TRV does not show right tail dependence, while

behaves exactly as the logRV on the left tail. The χ̂ in this case is positive and

equal to 0.3245 and to 0.2904 when the series is fractionally differenced.

Figures 2(a) and 2(b) highlight three important features that characterize the

relationship between volatility and volume.

• First, log-realized volatility and log-volume display positive upper and lower

tail dependence. This means that, given an extreme positive value of volume,

there is a positive probability (0.3989) to observe very high volatility the same

day. There is also evidence of positive left tail dependence, i.e. when the

trades are few, volatility and volume are asymptotically positively correlated.
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• Second, the positive upper tail dependence is mainly due to the contribution

of jumps to the realized volatility. In fact, logCTBPV , that is the continu-

ous part of realized volatility, and log V are asymptotically independent. This

highlights the importance of a good estimation of the jump component of real-

ized volatility. As noted by Corsi et al. (2008), the bipower variation underes-

timates the jump component, in particular in case of two consecutive jumps in

the intradaily returns. Moreover, the log TRV well describes the continuous

component of realized volatility when positive jumps occur, while seems to be

unable to account for jumps with negative sign, that determine the level of

left tail dependence.

• Third, the positive lower and upper tail dependence is not due to the long

memory component. The positive tail dependence is still present after the

fractional differencing.

6 The Model

Given the results of the fractional cointegration and tail dependence analysis, it is

interesting to study the long run dependence of the two series and their interde-

pendencies in a multivariate framework defined as a system of two equations:

Φ(L)D(L)Xt = ǫt (14)

D(L) =




(1 − L)drv 0

0 (1 − L)dv




where Xt = (logRVt, log Vt)
′
, Φ(L) = I2−Φ1L− ...−ΦpL

p, ǫt = (ǫ1t, ǫ2t)
′, with E(ǫt) = 0

and V ar(ǫt) = Σ. This model is a Fractionally Integrated VAR (FIVAR).

Sowell (1989) develops an exact maximum likelihood procedure for the FIVAR es-
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timation, with K series, based on the assumption that X = (X1·, ..., XK·)
′, where

Xk· = (Xk1, . . . , XkT ), is a stationary multivariate Gaussian process. The uncondi-

tional Gaussian log-likelihood function is given by

logL(ϕ|X) = −
T

2
log(2π) −

1

2
log(|Γ(ϕ)|) −

1

2
X ′Γ(ϕ)−1X

where Γ(ϕ) = Cov(X) is the KT ×KT matrix of the autocovariance of X, that de-

pends on the vector of model’s parameters ϕ. Sowell (1989) proposes an algorithm

for computing the autocovariances of a FIVAR process, where Cov(Xi,t, Xj,t−s) are

evaluated using the hypergeometric function, which has no closed form and is slow

to compute. Following Bertelli and Caporin (2002), Sela and Hurvic (2008) propose

to approximate the likelihood function writing the autocovariances as an infinite

convolution between the covariances of an ARFIMA(0,dk,0) and the infinite MA(∞)

representation of a VAR process.

In this paper, we model the dependence structure between the volatility and vol-

ume in terms of copula function, deriving the likelihood from the infinite AR rep-

resentation of the long memory processes. This means that, instead of modeling

the autocovariance matrix for the entire sample path and then compute the Gaus-

sian likelihood as in Sowell (1989), we maximize the conditional maximum like-

lihood function that considers a truncation of the infinite AR representation of a

fractional process (see Beran (1994)). This estimation method allows for a flexible

choice of the marginal distributions, where the instantaneous dependence struc-

ture between volatility and volume is determined by the choice of a copula func-

tion.

Following Beran (1994) and Palma (2007), both series are filtered by long memory,

under the hypothesis that presample values are equal to zero. The infinite autore-

gressive representation of a fractional process, that is the best linear prediction of
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Xt, is expanded to

(1 − L)diXi,t =
t−1∑

j=0

πi,jXi,t−j ≡ Z̃i,t i = 1, . . . , K

where π0 = 1, π1 = −d, πj = 1
j
πj−1(j − 1 − d) for j ≥ 2. The model (14) can be

rewritten as

Φ(L)Z̃t = ǫt t = 1, . . . , T.

Now we can compute the log-likelihood function for observation t as

logL(ϕ|Z̃t) = −
1

2
log(2π) −

1

2
log(|Σ|) −

1

2
Z̃ ′

tΣ
−1Z̃t.

As noted by Beran (1994), the infinite autoregressive representation is not re-

stricted to the case where the endogenous variables are stationary, but it can be

extended to any d > −1
2
. The approximate conditional maximum likelihood estima-

tor is therefore defined for any stationary and non stationary fractional process.

7 Copula Modeling and Marginals Estimation

We assume that the ǫt have a joint distribution ǫt ∼ G (ǫt;ψ), with G(.) continuous

density function. The vector ψ = (ϕ, ν) contains the parameters of the conditional

mean, variances and covariance (ϕ) and the nuisance parameters (ν). We specify

the joint multivariate density by means of a copula function density. The copula

theory provides an easy way to deal with the (otherwise) complex multivariate

modeling. The essential idea of the copula approach is that a joint distribution

can be factorized into the marginals and a dependence function called copula. The

joint distribution G (ǫ1,t, ǫ2,t;ψ) can be expressed as follows, thanks to the so-called
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Sklar’s theorem (1959):

(ǫ1,t, ǫ2,t)
′ ∼ G (ǫ1,t, ǫ2,t;ψ) = C (F1,t(ǫ1,t; δ1), F2,t(ǫ2,t; δ2); γ) (15)

that is the joint distribution G(.) of a vector of innovations ǫt is the copula C ( · ; γ)

of the cumulative distribution functions of the innovations marginals F1,t(ǫ1,t; δ1)

F2,t(ǫ2,t; δ2), where γ, δ1, δ2 are the copula and marginals parameters, respectively.

The copula couples the marginal distributions together in order to form a joint dis-

tribution. The dependence relationship is entirely determined by the copula, while

scaling and shape (mean, standard deviation, skewness, and kurtosis) are deter-

mined by the marginals (see Sklar (1959), Joe (1997) and Nelsen (1999)). Copulae

can therefore be used to obtain more realistic multivariate densities than the tradi-

tional joint normal one, which is simply the product of a normal copula and normal

marginals. Marginals can be entirely general, e.g. Skewed Student’s t marginals.4

Let Θ = (δ1, δ2; γ) be the parameters vector to be estimated, where δi, i = 1, 2 are the

parameters of the marginal distribution Fi and γ is the vector of the copula param-

eters. It follows from (15) that the log-likelihood function for the joint conditional

distribution G is by

l(Θ) =
T∑

t=1

log(c(F1(ǫ1,t; δ1), F2(ǫ2,t; δ2); γ)) +
T∑

t=1

2∑

i=1

log fi(ǫi,t; δi,t). (16)

where c is the copula density, whereas fi are the marginals densities. Hence,

the log-likelihood of the joint distribution is just the sum of the log-likelihoods

of the margins and the log-likelihood of the copula. Standard ML estimates may

be obtained by maximizing the above expression with respect to the parameters

(δ1, δ2; γ). In practice this can involve a large numerical optimization problem with

many parameters which can be difficult to solve. However, given the partitioning

4Appendix A reports the alternative copula functions used in the estimation of model 14.
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of the parameter vector into separate parameters for each margin and parame-

ters for the copula, one may use (16) to break up the optimization problem into

several small optimizations, each with fewer parameters. This multi-step proce-

dure is known as the method of Inference Functions for Margins (IFM), see Joe

and Xu (1996) and Joe (1997). According to the IFM method, the parameters of

the marginal distributions are estimated separately from the parameters of the

copula. Joe (1997) compares the efficiency of the IFM method relative to full maxi-

mum likelihood for a number of multivariate models and finds the IFM method to

be highly efficient. Therefore, we think it is safe to use the IFM method and benefit

from the huge reduction in complexity it implies for the numerical optimization.

We then compute the marginal log-likelihoods, under the hypothesis that ǫ1,t and

ǫ2,t are the skew-t distributed (see Azzalini and Capitanio (2003)). Skew-t distribu-

tion corresponds to the transformation

ǫi = µi + Zi/
√
Vi i = RV, V

where Z ∼ SkewN(0, σ2
i , ξi) and Vi ∼ χ2

νi
/νi. Finally, the log-likelihood functions

of the FIVAR are obtained according to the IFM method described above, for each

choice of the copula function. Appendix B reports the log likelihood functions for

each copula specification.

8 Estimation Results

The maximum likelihood estimates of dlog RV and dlog V are always close to the semi-

parametric estimates obtained with the exact local Whittle estimator. The R2 are

about 30% for both log-volume and log-volatility. The estimated parameters, φij,

turn out to be statistically significant in the equation of the realized volatility,

meaning that lagged filtered log-volume give some information on the actual fil-
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tered realized log-volatility. This indicates that, once the long memory of the series

is accounted for, volume leads volatility. However, this finding contrasts the results

in Luu and Martens (2003) that ascertain, in a VAR framework, a bidirectional

Granger causality from realized volatility to volume and in the other way round5.

The parameters ξRV and ξV capture the positive skewness of the two series, in par-

ticular of realized volatility. The copula estimates show a positive dependence: if

we compute a common dependence measure - such as the Kendall’s tau - by using

the parameters’ estimates, it ranges from 0.3477 obtained with the Clayton copula

up to 0.4316 with the Normal copula. The three copulae differ on the degree of tail

dependence, that is dependence in the extremes: the Gumbel estimates are char-

acterized by a strong upper tail dependence (0.4956), whereas the t-copula presents

a lower value (0.1456). Clayton copula shows a strong lower tail dependence equal

to 0.5289. The tail dependence coefficient is zero for the normal copula by construc-

tion. In a recent large scale simulation study, Fantazzini (2008) found that if the

true marginals show positive skewness, then using symmetric marginals causes

the Clayton parameter αc to be positively biased, thus overestimating the tail de-

pendence coefficient.

These results are in accordance with the findings of the preliminary non paramet-

ric analysis which highlights positive upper and lower tail dependence. In particu-

lar, the tail dependence value associated with the t-copula model is very close to the

one obtained with the Hill’s estimator. Besides, Kole et al. (2007) by using a new

goodness-of-fit testing procedure, found that the Gaussian copula underestimates

the probability of joint extreme downward movements, while the survival Gumbel

copula overestimates this risk, and they provide evidence in favor of the Student’s

t-copula.

5The Granger causality test, given a VAR(1) model for our series, results in the acceptance of

causality in both directions at 5% of significance. This results is robust to different choices of the

lags of the VAR.
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Table 6 reports the results of the goodness of fit tests conducted on the pseudo se-

ries of the residuals of model in (14). All the tests highlight the fact that the Clay-

ton copula is not a good choice for accounting the tail dependence between volatility

and volume. This result is not surprising, since, as noted before the source of tail

dependence are the jumps that affect the dependence on the right tail. On the

other hand, there is a mixed evidence in favor of all the other copula specifica-

tions. In particular, when the Rosenblatt transform is applied to the marginals, we

notice that the Gumbel copula reports the best result in terms of goodness-of-fit.

The results of the copula goodness-of-fit tests in table suggest that a mixture of

copulae could improve the fit, since it allows for asymmetric tail dependence. We

consider two mixtures: the Clayton copula and its survivor function, CMC, and the

Gumbel copula and its survivor function, CMG.6 Table 4 shows that λ, the mixing

parameter, is lower than 0.5 in both cases. This confirms a strong asymmetric tail

dependence, since the dependence on the right tail between volatility and volume

is higher than that on the left tail, reinforcing the impression that the t-copula

performs poorly since it does not allow for asymmetric tail dependencies.

9 Model Simulations

So far, we have discussed the model estimation results in terms of goodness of fit

and their interpretations in the copula framework. Now, by means of simulations,

we evaluate the ability of each specification to account for the sample characteris-

tics of the observed data (see Table 6(a) and 6(b)). As a benchmark provision, we

adopt a bivariate extension of the Heterogeneous Autoregressive (HAR) model, in-

troduced by Corsi (2009). This simple model emphasizes the idea of heterogeneity

among different investors on the financial markets. For this reason, Corsi (2009)

suggests that the volatility depends on the past daily, weekly and monthly real-

6More details on mixture of copula are presented in Appendix A.

21



izations. We also include the volume, so that the extended bivariate HAR model

is

log Vt = ω1 + δ11 logRVt−1 + δ12 logRV W
t−1 + δ13 logRV M

t−1 + ψ11 log Vt−1

+ψ12 log V W
t−1 + ψ13 log V M

t−1 + η1t

logRVt = ω2 + δ21 logRVt−1 + δ22 logRV W
t−1 + δ23 logRV M

t−1 + ψ21 log Vt−1

+ψ22 log V W
t−1 + ψ23 log V M

t−1 + η2t

where logRV W
t−1 = 1

5

∑5
i=1 logRVt−i and logRV M

t−1 = 1
22

∑22
i=1 logRVt−i, while (η1t, η2t)

′

is distributed as a bivariate normal with zero mean and variance and covariance

matrix, Γ, and is estimated by maximum likelihood.

The simulation exercise is based on the generation of model innovations according

to the different copula specifications. 4267 observations from the FIVAR specifica-

tion are generated by our Monte Carlo exercise for each copula function, keeping

only the last 2267 observations corresponding to the sample size of our data. The

first 2000 simulated observations serve as a burn-in period. We also generate se-

ries from the Gaussian HAR introduced above. Then, we repeat this simulation

exercise 1000 times, in order to obtain 1000 daily sample paths for the logarith-

mic volume and volatility. From the 1000 simulated path, we calculate the model-

implied sample distribution for the respective descriptive statistics. Table 6(a) and

6(b) report the descriptive statistics of logRV and log V , respectively, and the 95%

simulated confidence intervals. We also report actual quantiles and simulated con-

fidence interval.

For what concerns the log-realized volatility, nearly all of the sample statistics lie

within the simulated confidence bands obtained with FIVAR coupled with copula

densities. Moreover, for all copula models, the simulated confidence intervals in-

clude the sample skewness. The same is not true for the HAR model. Notice that
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the confidence intervals from the simulation of a bivariate HAR contain neither

the upper nor the lower empirical quantiles. The results are better off in the case

of log V . Table 6(c) reports the confidence interval of for the Hill’s estimator of the

tail dependence, computed from the simulated series. It is evident that neither

the Gaussian HAR nor the Normal copula are able to account for the tail depen-

dence of the data. In fact, the 95% confidence interval of the χ̄ estimator does not

contain the value 1. On the other hand, Clayton and Gumbel copula explain the

positive tail dependence respectively on the left and right tail. In fact, the value

1 is contained in the confidence interval of χ̄, and the observed values of the tail

dependence are included in the confidence interval of χ. It is worth noticing, the

simulated data from the t-copula model do not mimic the degree of tail dependence

of the observed series, and this could be explained by the fact that the estimated

t-copula has a lower tail dependence. This finding is in accordance with the results

of the goodness-of-fit tests for the t-copula. The results of the simulations from the

model with mixtures of copulae are completely different. In Table 7(a), 7(b) the

95% confidence intervals obtained by simulation contains the sample statistics for

both series. Even more interestingly it is the fact that the intervals obtained for

χ (Table 7(c)), with the mixture of Clayton, contain the value of 1 for both tails,

and the same occurs for χ. This confirms that the model with Clayton mixture is

able to reproduce left tail dependence and right tail dependence. We also explore

the dynamic implications of the models, in terms of ability to account for the hy-

perbolic rate of decay of the autocorrelation functions. Figure 3 plots the sample

autocorrelations and the corresponding simulated 95% confidence bands.7 Our bi-

variate long memory models, for logRVt and log Vt, reproduce the highly significant

and very slowly decaying of the sample autocorrelations over longer multi-month

lags. These results show how our bivariate FIVAR well describes the dynamics of

7Figure 3 displays the simulated ACF confidence bands relative to the Clayton copula. The

conclusion are the same with respect to alternative copula specifications.

23



both volumes and volatility. In fact, the long memory bivariate model is able to re-

produce both the sample statistics and the long run dynamics of the observed data

in particular when the joint distribution is described by a mixed copula function.

10 Conclusions

This paper has focused on the relation between volatility and volume. Thanks to

the recent developments on high-frequency based realized volatility, the former can

be estimated rather precisely from the high frequency returns. We disentangle the

realized volatility in a continuous and jump component, showing that volume are

highly correlated with the continuous part of volatility and that jumps are much

less persistent than bipower variation and volume. We also show that there exist a

strong upper and lower tail dependence between the volatility and volume that is

due to the presence of jumps. We don’t provide a specific model for jumps, but we

investigate the long memory property of realized volatility and volume, showing

that the two series have the same degree of fractional integration but they do not

appear to be fractionally cointegrated, in the sense that a linear combination of

them does not reduce the degree of fractional integration. This finding is not sup-

portive of the presence of a common stochastic long memory informative process

for both volume and volatility as in the MDH version of Bollerslev and Jubinski

(1999). Given the results of the fractional cointegration analysis, we propose and

estimate a bivariate FIVAR model for the volume and realized volatility. However,

the tail dependence makes the Gaussian assumption inadequate and calls for dif-

ferent hypotheses about the joint multivariate density. To this end we model the

joint density by means of copulae functions. This has also the advantage of simpli-

fying the computation of the log-likelihood function, which is for the FIVAR model

computationally intensive. The whole system is estimated with an efficient full in-
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formation maximum likelihood technique adopting different copulae, which in turn

imply different tail dependencies. We also provide evidence that the FIVAR model

coupled with a mixture of copulae is able to account for the long run dynamics of

both volatility and volume, and this is also confirmed by a simulation exercise.
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A Copula Functions

The class of elliptical distributions allows to model multivariate extreme events

and forms of non-normal dependencies. Elliptical copulae are simply the copulae

of elliptical distributions (see Fang et al. (1990) for a detailed treatment of elliptical

distributions).

1. The probability density function of the Gaussian copula is:

c(Φ(x1),Φ(x2)) =
1

|R|1/2
exp

(
−

1

2
ζ ′(R−1 − I)ζ

)
(17)

where ζ = (Φ−1(u1), . . . ,Φ
−1(un))

′
is the vector of univariate normal inverse

distribution functions, ui = Φ (xi), while R is the correlation matrix.

2. The density of the copula of the Student’s t-Copula, and its density function

is:

c(Tνc
(x1),Tνc

(x2)) = |R|−1/2 Γ
(

νc+2
2

)

Γ
(

νc

2

)
[

Γ
(

νc

2

)

Γ
(

νc+1
2

)
]2
(
1 + ζ′Σ−1ζ

νc

)− νc+2

2

2∏
i=1

(
1 +

ζ2
i

νc

)− νc+1

2

(18)

where ui = Tνc
(xi) and Tνc

(xi) is the univariate Student’s t cdf, ζ = (T−1
νc

(u1), T
−1
νc

(u2))
′

is the vector of univariate inverse distribution functions, νc are the degrees of

freedom, and R is the correlation matrix.

The Student’s t-copula generates symmetric tail dependence, i.e. lower and upper

tail dependence are equal, while the normal copula generates zero tail dependence,

instead.

An alternative to the elliptical copulae is the class of Archimedean copulae.

Archimedean copulae provide analytical tractability and a large spectrum of dif-
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ferent dependence measures. The Gumbel copula:

C(u1, u2) = exp
{
−
[
(− log u1)

θ + (− log u2)
θ
] 1

θ

}
(19)

where θ > 1 is the copula parameter, whereas the density is given by

c(u1, u2) = C(u1, u2) · u
−1
1 u−1

2

[
(− log u1)

θ + (− log u2)
θ
]−2+2/θ

[log u1 log u2]
θ−1 ×

{
1 + (θ − 1)[(− log u1)

θ + (− log u2)
θ]−

1

θ

}

The degree of upper tail dependence for the Gumbel copula is equal to 2 − 2
1

θ . This

is a measure of dependence between random variables in the extreme upper joint

tails. Broadly speaking, we can say that the upper tail dependence measures the

probability of an extremely large positive realization in one covariate, given that

we have observed a large positive realization in another.

We also use the Clayton (or Cook Johnson) copula, which corresponds to copula B4

in Joe (1997):

C(u1, u2) = max



(

2∑

i=1

u−αc

i − 1

)−1/αc

, 0




when the copula parameter αc > 0 the copula simplifies to

C(u1, u2) = (u−αc

1 + u−αc

2 − 1)−1/αc (20)

whereas the density is given by

c(u1, u2) = (1 + αc)(u1u2)
−αc−1

(
2∑

i=1

u−αc

i − 1

)− 1

αc
−2

.

It has positive lower tail dependence. This is a measure of dependence between

random variables in the extreme lower joint tails. The Clayton copula implies a

degree of tail dependence equal to 2(−1/αc). See Joe (1997) and Cherubini et al.
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(2005) for more details.

Since a convex linear combinations of copula functions is a copula, see Nelsen

(1999), we combine the Gumbel copula, CG(.) , and the Clayton copula, CC(.), in

the following way

CMG(u1, u2) = λCG(v1, v2; θl) + (1 − λ)CG(u1, u2; θr) (21)

CMC(u1, u2) = λCC(u1, u2;αl) + (1 − λ)CC(v1, v2;αr) (22)

in order to account for the possible presence of asymmetries between left and right

tail dependence.

The parameter 0 < λ < 1 is the mixing parameter while θl 6= θr, or αl 6= αr,

reflects the possible asymmetries in the left and right tail dependence. The vectors

v1 = 1 − u1 and v2 = 1 − u2 are the reciprocal of the transformed series u1 and u2.

B Log-likelihood Functions

The log-likelihood functions for each copula density are:

• NORMAL COPULA (NCOP):

lt(Θ) =
2∑

i=1

log




2

σi

tνi

(
ǫi − µi

σi

; 1, νi

)
+ Tνi


αi

ǫi − µi

σi

√√√√
νi + 1

(
ǫi−µi

σi

)2

+ νi

, 1, νi + 1







+

(
−

1

2
(1 − ρ2)−1(ǫ21,t + ǫ22,t − 2ρǫ1,tǫ2,t) ·

1

2
(ǫ21,t + ǫ22,t)

)

where tνi
(., 1, ν) and Tνi

(., 1, ν) are respectively the pdf and cdf of the t dis-

tribution with ν degrees of freedom and scale equal to 1. The parameter α

measures the degree of skewness, while µ and σ are the location and scale

parameters respectively.
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• CLAYTON COPULA (CCOP):

lt(Θ) =
2∑

i=1

log




2

σi

tνi

(
ǫi − µi

σi

; 1, νi

)
+ Tνi


αi

ǫi − µi

σi

√√√√
νi + 1

(
ǫi−µi

σi

)2

+ νi

, 1, νi + 1







+ log
(
(1 + αc)(u1,tu2,t)

−αc−1(u−αc

1,t + u−αc

2,t − 1)−(2+α−1
c )
)

• T-COPULA (TCOP):

lt(Θ) =
2∑

i=1

log




2

σi

tνi

(
ǫi − µi

σi

; 1, νi

)
+ Tνi


αi

ǫi − µi

σi

√√√√
νi + 1

(
ǫi−µi

σi

)2

+ νi

, 1, νi + 1







+ log

(
Γ
(

νc+2
2

)
Γ
(

νc

2

)

Γ
(

νc+1
2

)2 · |R|−
1

2

(
1 +

ζ ′tR
−1ζt
νc

)− νc+2

2

)

+
2∑

i=1

log

(
1 +

ζ2
it

νc

)( νc+1

2 )

• GUMBEL COPULA (GCOP):

lt(Θ) =
2∑

i=1

log




2

σi

tνi

(
ǫi − µi

σi

; 1, νi

)
+ Tνi


αi

ǫi − µi

σi

√√√√
νi + 1

(
ǫi−µi

σi

)2

+ νi

, 1, νi + 1







+ log
(
C(u1, u2) · u

−1
1 u−1

2

[
(− log u1)

θ + (− log u2)
θ
]−2+2/θ

[log u1 log u2]
θ−1
)

+ log
{

1 + (θ − 1)[(− log u1)
θ + (− log u2)

θ]−
1

θ

}
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ρ1 ρ5 ρ10 ρ40 BP (5) BP (10) BP (40)
rt -0.0158 -0.0425 0.0242 0.0199 5.94 12.49 54.74

logRVt 0.5638 0.3633 0.2826 0.0891 2260.1a 3318.3a 5756.1a

logBPVt 0.5870 0.3856 0.3083 0.1053 2482.6a 3673.2a 6370.7a

log TV Rt 0.5800 0.3799 0.2994 0.0962 2411.9a 3594.0a 6305.8a

logCTBPVt 0.5875 0.4035 0.3369 0.1482 2633.7a 4006.3a 7643.6a

Jt 0.0628 0.0116 -0.0033 -0.0101 13.56b 15.19 27.83

log Vt 0.6108 0.2879 0.2221 0.0608 2023.6a 2591.2a 3684.0a

Table 1: Table reports the sample autocorrelation function (ρj), the Box-Pierce Port-

manteau test statistic (BP ) for 5, 10 and 40 lags of log-realized volatility (logRVt),

log-bipower variation (logBPVt), log-threshold realized volatility (log TRVt), log cor-

rected threshold bipower variation (logCTBPVt), jump component (Jt) and log-

volume (log Vt). a,b and c stands for 1%, 5% and 10% significance level of the BP
test.

(a) log RVt (b) log Vt

Figure 1: Log-Realized volatility and Log-Volumes
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(a) Nielsen and Shimotsu (2007) test

md = T 0.5 = 48 md = T 0.6 = 103

drv 0.4314 0.4391
(0.0721) (0.0492)

dv 0.3317 0.3476
(0.0721) (0.0492)

T̂ 1.048 1.9716

(b) Cointegration rank test

mL = T 0.4 = 22 mL = T 0.5 = 48

δ1 0.0152 0.0106
δ2 0.0613 0.0557

L(u) v(T ) = m−0.45
L v(T ) = m−0.35

L

md = 48,mL = 22
L(0) −1.4918 −1.3109
L(1) −1.3287 −1.2383
r̂ 0 0

L(u) v(T ) = m−0.45
L v(T ) = m−0.35

L

md = 103,mL = 48
L(0) −1.6463 −1.4802
L(1) −1.4737 −1.3906
r̂ 0 0

Table 2: Panel (a): Fractional integration estimation with exact local Whittle es-

timator (standard error in parenthesis). The T̂ test statistic is calculated with

h(T ) = log(T ). Panel (b): Fractional cointegration estimation. The Table re-

ports the estimated eigenvalues (δi) and the value of the function L(u) for different

choices of m and mL.
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(a) (b)

(c) (d)

Figure 2: Panel (a) and (b) plot the Hill estimator, with the confidence bands, for left and right tails. Panel (c) and (d)

reports the Hill estimator, with confidence bands, for left and right tails dependence between fractionally differenced

series. The four figures in each Panel plot the Hill estimates for tail dependence between the log V and logRV (upper

left), logBPV (upper right), log TRV (lower left), and logCTBPV (lower right). X-axis measures nu = 20, ..., 200
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Unfiltered Filtered

Right Tail Right Tail

ρ χ̄ s.e. χ s.e. ρ χ̄ s.e. χ s.e.

logRV 0.6247 0.6700 0.2212 0.3622 0.04737 0.6143 0.7136 0.2269 0.4000 0.0523

logBPV 0.6243 0.7655 0.2338 0.3306 0.0432 0.6015 0.7684 0.2342 0.3858 0.0505

log TV R 0.6121 0.3682 0.1812 – – 0.4203 0.6037 0.1862 – –

logCTBPV 0.5876 0.6253 0.2153 0.2810 0.03675 0.5682 0.6069 0.2128 0.3206 0.0419

Left Tail Left Tail

ρ χ̄ s.e. χ s.e. ρ χ̄ s.e. χ s.e.

logRV 0.6247 0.6961 0.2246 0.3245 0.0424 0.6143 0.9023 0.2519 0.2904 0.0380

logBPV 0.6243 0.2960 0.1716 – – 0.6015 0.4181 0.1878 – –

log TRV 0.6121 0.6954 0.2245 0.3245 0.0424 0.6037 0.9280 0.2553 0.2904 0.0380

logCTBPV 0.5876 0.3395 0.1776 – – 0.5682 0.5048 0.1993 – –

Table 3: Tail Dependence Analysis. The Table reports the degree of positive and negative tail dependence, measured

by the Hill estimator, of three different estimators of log-volatility, logRV ,logBPV and logCTBPV , with log-volume,

log Vt, for unfiltered and filtered series (1−L)dyt. The parameter d is estimated with exact local Whittle estimator with

a bandwidth equal to 200. The Table also reports the Pearson’s ρ. The threshold, u, is chosen in order to leave on the

right (left) the 2.5% of the observations.
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NORM NCOP TCOP GCOP CCOP CMC CMG

dRV 0.4044a 0.3932a 0.3911a 0.3966a 0.3895a 0.3926a 0.3936a

dV 0.3765a 0.3740a 0.3825a 0.3782a 0.3822a 0.3765a 0.3806a

φ11 −0.0965a −0.1195a −0.0981a −0.1097a −0.0799a −0.0968a −0.1013a

φ12 0.1845a 0.1575a 0.1581a 0.1731a 0.1282a 0.1576a 0.1605a

φ21 0.0249 0.0037 0.0064 0.0043 0.0199 0.0010 0.0018
φ22 0.1138a 0.1014a 0.1006a 0.1175a 0.0864a 0.1014a 0.1017a

θ −− −− −− 1.6975a −− −− −−
αc −− −− −− −− 1.0661a −− −−
ν −− −− 9.7145a −− −− −− −−
ρ 0.6265 0.6273a 0.6263 −− −− −− −−
αl −− −− −− −− −− 1.4088a −−
αr −− −− −− −− −− 1.2429a −−
θl −− −− −− −− −− −− 1.8185a

θr −− −− −− −− −− −− 1.6783a

λ −− −− −− −− −− 0.3182a 0.2669a

νRV −− 5.5261a 5.6359a 6.9277a 5.8399a 6.2298a 7.1068a

νV −− 4.5594a 4.5979a 5.1350a 5.4566a 4.4122a 4.6001a

µRV −− −0.3543 −0.3202 −0.4287a −0.7027 −0.4097a −0.4108a

µV −− −0.1651 −0.1322 −0.2002a −0.0481 −0.1410a −0.1520a

σRV −− 0.5273 0.5168 0.5947 0.4952 0.5746a 0.5896a

σV −− 0.2763 0.2685 0.3051 0.2675 0.2668a 0.2737a

ξRV −− 1.0071 0.8793 1.3595a 0.1987 1.2894a 1.2723a

ξV −− 0.7802 0.5781 1.0068a 0.5900 0.6151a 0.6849a

P (QP
15 > q) 0.3059 0.1759 0.2042 0.1959 0.1469 0.0663 0.0751

P (QLM
15 > q) 0.2977 0.1808 0.2274 0.2111 0.1794 0.1751 0.1992

Table 4: System Estimates with different copulae densities. a,b and c stands for 1%, 5% and 10% significance level of

the corresponding t-ratio test. P (QP
15 > q) and P (QLM

15 > q) are the p-values of, respectively, the Portmanteau test by

Lutkepohl (2005) and the Breush Godfrey LM-test for autocorrelation of the residuals. NORM stands for the bivariate

gaussian case, CCOP is the Clayton copula case, GCOP is the Gumbel copula case, NCOP is the normal copula case,

while TCOP is the t-copula case. CMC and GMC are mixture of Clayton and Gumbel copulae and are described in

Appendix A.
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Copula Kendall’s Tau Tail Dependence

NCOP 2
π
· arcsin(ρ) 0.4316 0 0

TCOP 2
π
· arcsin(ρ) 0.4308 2tν+1

(
−
√

ν+1
√

1−ρ√
1+ρ

)
0.1456

GCOP 1 − 1/θ 0.4108 2 − 21/θ 0.4956

CCOP αc/(αc + 2) 0.3477 2(−1/αc) 0.5219

Table 5: Kendall’s Tau and Tail Dependence measure.

TΞ TD SB SΞ SD

NCOP 0.9401 1.0917∗ 0.4035 0.0900 0.0756∗

TCOP 0.8864 1.0666∗ 0.5269 0.0802 0.1048∗

GCOP 0.7617∗ 0.7623 0.5256 0.0513∗ 0.0648

CCOP 2.4144∗ 2.3225∗ 1.5325∗ 1.0699∗ 0.6234∗

Table 6: Goodness-of-fit tests for alternative copula specifications: the p-values are

calculated according to a bootstrap procedure. The asterisk stands for the rejection

of H0 at the 5% significance level. TΞ and SΞ are the Kolmogorov-Smirnov and

Cramer-von Mises transform, respectively, of the difference between the estimated

and the empirical copula. TD, SD and SB are the Kolmogorov-Smirnov and two

Cramer-von Mises transforms, respectively, of the difference between the estimated

and the empirical copula when applying the Rosemblatt transform (see Breymann

et al. (2003) and Genest et al. (2007)).
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(a) Simulated intervals for log RVt statistics

Clayton Gumbel Normal T-copula HAR

Statistics log RVt 95% Intervals 95% Intervals 95% Intervals 95% Intervals 95% Intervals

Mean 0 -0.0867 0.2169 -0.0674 0.2513 -0.2024 0.1736 -0.1423 0.1912 -0.1472 0.1055

Std.Dev 0.7169 0.6752 0.7822 0.6784 0.7875 0.6458 0.7811 0.6718 0.7925 0.6701 0.7446

Skewness 0.6516 0.0400 0.7097 0.3172 0.8600 0.1369 1.0610 0.1638 0.9705 -0.1315 0.1280

Excess kurtosis 1.6067 0.6820 4.7980 0.6103 4.3392 0.6331 7.4001 0.6956 6.2785 -0.1900 0.2074

q0.01 -1.4604 -1.8351 -1.3772 -1.6753 -1.2619 -1.8915 -1.3451 -1.8484 -1.3695 -0.7160 -0.6161

q0.05 -1.0587 -1.2406 -0.8876 -1.1883 -0.8403 -1.3076 -0.9013 -1.2846 -0.8963 -0.6053 -0.4727

q0.10 -0.8413 -0.9716 -0.6545 -0.9483 -0.6184 -1.0522 -0.6842 -1.0330 -0.6705 -1.0438 -0.7053

q0.50 -0.054 -0.1087 0.1944 -0.1093 0.2021 -0.2113 0.1291 -0.1759 0.1552 -0.0572 0.0568

q0.90 0.9332 0.7876 1.1431 0.8283 1.2015 0.6562 1.0890 0.7273 1.1254 0.4715 0.3409

q0.95 1.2805 1.0746 1.4036 1.1391 1.5529 0.9539 1.4286 1.0256 1.4634 0.6169 0.7589

q0.99 1.9777 1.6975 2.2756 1.8038 2.4019 1.6368 2.3112 1.7110 2.3073 0.8856 1.0704

(b) Simulated intervals for log Vt statistics

Clayton Gumbel Normal T-copula HAR

Statistics log Vt 95% Intervals 95% Intervals 95% Intervals 95% Intervals 95% Intervals

Mean 0 -0.0932 0.1135 -0.0512 0.1411 -0.0795 0.1562 -0.0940 0.1220 -0.0583 0.0548

Std.Dev 0.4198 0.4235 0.4990 0.4116 0.4831 0.4193 0.5124 0.4307 0.5256 0.3995 0.4411

Skewness 0.2235 -0.2806 0.3986 0.2044 0.8964 -0.0324 1.2914 -0.0152 1.1953 -0.1182 0.1253

Excess kurtosis 1.1686 0.3700 3.7918 0.6194 5.3000 0.8348 10.255 0.8003 10.830 0.1996 0.2020

q0.01 -0.9953 -1.2710 -0.9349 -1.0738 -0.7886 -1.2032 -0.8214 -1.2369 -0.9002 -1.8489 -1.5002

q0.05 -0.6438 -0.8606 -0.6026 -0.7532 -0.5192 -0.8045 -0.5301 -0.8421 -0.5876 -1.3288 -1.0475

q0.10 -0.488 -0.6720 -0.4435 -0.5941 -0.3877 -0.6319 -0.3873 -0.6604 -0.4348 -1.0606 -0.7972

q0.50 -0.0153 -0.0997 0.1081 -0.0755 0.1155 -0.0900 0.1284 -0.1050 0.1033 -0.1526 0.1064

q0.90 0.527 0.4611 0.6993 0.4888 0.7125 0.4715 0.7378 0.4608 0.7163 0.7498 1.0218

q0.95 0.716 0.6320 0.8868 0.6686 0.9181 0.6556 0.9711 0.6499 0.9354 0.9959 1.2900

q0.99 1.106 0.9826 1.3390 1.0694 1.4250 1.0899 1.5681 1.0758 1.5157 1.4528 1.8123

(c) Simulated intervals for the Hill’s estimator

Clayton Gumbel Normal T-copula HAR

Tail Dependence 95% Intervals 95% Intervals 95% Intervals 95% Intervals 95% Intervals

χ̄left 0.6700 -0.0793 0.4545 0.4323 1.0456 0.1867 0.8393 0.2238 0.9029 0.2074 0.7875

χleft 0.3622 – – 0.2904 0.5151 – – – – – –

χ̄right 0.6961 0.3918 1.1096 0.0982 0.7055 0.1895 0.8825 0.2331 0.8762 0.1876 0.7874

χright 0.3245 0.2810 0.4917 – – – – – – – –

Table 7: Table reports the simulated sample statistics and Hill’s estimators of logRVt and log Vt for alternative copula

functions.
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(a) Simulated intervals for log RVt statistics with mixtures of copulae

logRVt

Mixture Clayton Mixture Gumbel

Statistics logRVt 95% Intervals 95% Intervals

Mean 0 -0.0930 0.2141 -0.1395 0.2307

Std.Dev 0.7169 0.6591 0.7605 0.6573 0.7496

Skewness 0.6515 0.2919 0.7791 0.2274 0.7571

Excess kurtosis 1.6067 0.5507 3.5993 0.4148 3.3281

q0.01 -1.4604 -1.6527 -1.2996 -1.7096 -1.2664

q0.05 -1.0587 -1.2083 -0.6136 -1.2436 -0.8483

q0.10 -0.8413 -0.9348 -0.6327 -1.0082 -0.6306

q0.50 -0.054 -0.1371 0.1538 -0.1657 0.1974

q0.90 0.9332 0.7543 1.1333 0.7353 1.1393

q0.95 1.2805 1.0552 1.4798 1.0358 1.4712

q0.99 1.9777 1.7124 2.2787 1.6398 2.2294

(b) Simulated intervals for log Vt statistics with mixtures of copulae

log Vt

Mixture Clayton Mixture Gumbel

Statistics log Vt 95% Intervals 95% Intervals

Mean 0 -0.1183 0.0680 -0.0893 0.1287

Std.Dev 0.4198 0.4231 0.5028 0.4346 0.5190

Skewness 0.2235 0.02663 1.0960 0.1287 1.2627

Excess kurtosis 1.1686 0.8972 5.3009 0.9086 5.3097

q0.01 -0.9953 -1.1932 -0.9110 -1.1520 -0.8707

q0.05 -0.6438 -0.8340 -0.6136 -0.7811 -0.5819

q0.10 -0.4880 -0.6718 -0.4640 -0.6323 -0.4177

q0.50 -0.0153 -0.1380 0.0541 -0.1046 0.1012

q0.90 0.5270 0.4184 0.6932 0.4671 0.7221

q0.95 0.7160 0.5900 0.9059 0.6687 0.9373

q0.99 1.1060 1.0373 1.4201 1.1130 1.5712

(c) Simulated intervals for the Hill’s Estimator

Mixture Clayton Mixture Gumbel

Statistics 95% Intervals 95% Intervals

χ̄left 0.6700 -0.0167 1.1063 0.0849 1.0907

χleft 0.3622 0.1944 0.5354 0.2338 0.4999

χ̄right 0.6961 0.0379 1.0030 0.0980 0.9248

χright 0.3245 0.2207 0.4744 – –

Table 8: Table reports the simulated sample statistics of logRVt (a) and log Vt (b)

with the mixture of copula specifications. Panel (c) reports the simulation intervals

for the Hill’s estimator. 42



Figure 3: Simulated ACF confidence intervals of volatility and volumes.
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