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1 Introduction

In recent years, our understanding of asset price dynamidéen significantly enhanced by the increasing avathabili
of intra-day financial tick data in conjunction with the rdmlevelopment and harnessing of the necessary econometric
tools. Realised variance, defined as the sum of squaredpatiad returns, has been a key driver in this literaturg. (e.
Andersen, Bollerslev, Diebold, and Labys, 2001; Barndhiiflsen and Shephard, 2002) as it provides a simple yet
highly efficient way to consistently estimate the quadratidation of a price process. However, when faced with the
realities of high-frequency data, the use of realised waeas limited in two important ways. First, realised vacdars
overly sensitive to an inherent feature of high-frequenatadnamely market microstructure noise. In fact, it dgstro
the consistency of the estimator. Second, realised varianan estimator of the total variation — the sum of diffusive
and jump variation — and consequently cannot distinguisivéxn these two fundamentally different sources of risk. As
emphasized by Ait-Sahalia (2004), the ability to diseglagumps from volatility is key for the valuation of derivags
(e.g. Merton, 1976; Duffie, Pan, and Singleton, 2000), rigasurement and management (e.g. Duffie and Pan, 2001),
as well as asset allocation (e.g. Jarrow and Rosenfeld,; 1984Longstaff, and Pan, 2003). Andersen, Bollerslev, and
Diebold (2007) and Bollerslev, Kretschmer, Pigorsch, aadchen (2009) also point to its importance for the empirical
modeling of asset price dynamics and forecasting of vdjatil

In response, two largely separate strands of literature Banerged. One on jump-robust realised variance measures,
most notably the influential bi-power variation of Barndéfielsen and Shephard (2004) and the threshold estimators
Jacod (2008); Mancini (2004a, 2006). The other on noisesbiealised variance measures, where the main approaches
are based on subsampling (see Zhang, 2006; Zhang, MykladdAid-Sahalia, 2005), kernel-based autocovariance ad-
justments (see Barndorff-Nielsen, Hansen, Lunde, and &rdp2008; Zhou, 1996), and pre-averaging methods (see
Jacod, Li, Mykland, Podolskij, and Vetter, 2007; Podolskid Vetter, 20083. Yet, the jump-robust realised variance
measures are typically not robust to noise and the noisestalealised variance measures are typically not robust to
jumps. The contribution of this paper is to integrate botués: we develop a new quantile-based realised variance
(QRV) measure, which constitutes the first estimator ofgrated variance that, at the same time, highly efficient and
simultaneously robust to jumps and microstructure noise.pvésent a complete asymptotic theory for this class of es-
timators, with central limit theorems that hold up in thegmece of finite activity jumps. In addition to noise and jump
robustness, another appealing feature of our estimathaidttis robust to outliers in the price process. Outliees -
avoidable in high-frequency data (due to, for instanceaydsd trade reporting, recording errors, decimal misplargm

etc.) and are often hard to filter out systematically due &rttandom and irregular nature while the vast quantities of

10Other methods include sparse sampling (e.g. Andersene#l, Diebold, and Labys, 2000; Bandi and Russell, 200@filtering (An-
dersen, Bollerslev, Diebold, and Ebens, 2001; Bollen am#in2002; Hansen, Large, and Lunde, 2008), model-basedctions (e.g. Corsi,
Zumbach, Muller, and Dacorogna, 2001), and wavelet-bassttiods of Fan and Wang (2007). Variations and extensiotieakalised kernel and
subsampling approach can be found in Sun (2006) and Nolt&@&d(2007), respectively.



data make “visual inspection” impractical. In the paper,illuestrate that this feature of our estimator can be cruicial
practical applications.

The work most closely related to ours is by Podolskij and &/ef2008), who combine pre-averaging with the bi-
power variation measure to also obtain a jump- and noisestalmlatility estimator. However, in comparison to QR\&ith
estimator is inefficient and because itis based on bi-poagation it is not robust to outliers and the correspondiegtial
limit theorems are not robust to jumps. The other piece a@fteel work is by Andersen, Dobrev, and Schaumburg (2008),
who develop two jump-robust measures named MinRV and Meld&\Mhey rule out microstructure noise. Interestingly,
we show that their estimators can be nested in our classiofasts and by extension we provide an asymptotic theory
for the MinRV and MedRYV in the presence of microstructuresgoi

The construction of the QRV is based on the fundamentalioakstiip between quantiles and the spread of the normal
distribution. A stylized example provides the key intuitidcor i.i.d. Gaussian data with mean zero and variariceve
know that the 95% quantile equdl$450. Thus, with a measurement of a sample quantile, volatihty loe estimated by
inverting this relationship. Of course, other quantiles ba added to improve the efficiency of the estimator and &g lon
as the selected quantiles are sufficiently far away from xfreme tails we have robustness to outliers. Estimatorsisf t
kind have a long history in the statistics literature: thay de traced back to Pearson (1920) and are further studied by
Mosteller (1946), Eisenberger and Posner (1965), and O{a@ido).

The scope of this paper is, however, more ambitious thaniibeealllustration in that we aim to develop an estimator
of the integrated variance under very weak conditions onutfterlying process, need to deal with microstructure noise
and consider limits where data are sampled at an increaafagver a fixed time window. More formally, |€1’Q/N}ZN:0
denote a time-series of logarithmic asset price obsengtand define returns a8 X = Xin — X(i—1yn- The
basic idea is to split the sample intosmaller blocks each containing returns,DX = (A]k’VX)(i—l)m—i-lgkgim for
i =1,...,nwith N = mn, and then study the behavior of the return quantiles on thises asn grows large. In

particular, we consider & (x 1) vector of quantiles\ = (A1, ..., \;)’ and define the QRV as:
QRVN(m7 Xa Oé) = Oé/QRVN (ma X)7

wherea is a(k x 1) vector of quantile weights, an@RVy (m, \) is a(k x 1) vector withjth entry equal to

N/m
QRVy (m, \;) Z 51’ 7o ford e (12,

Here
gi(m,\) = gim (\/ND:”X> + 912n—/\m+1 (\/NDTX) )

is the realised symmetric squaredquantile, v; (m, A;) is a normalizing constant that measures the expectation of

qi(m, A) under a standard normal, and the functigriz) = z(;, extracts theith order statistic ok = (z1,...,zy,).



It is quite intuitive that QRV as defined above provides cstasit and jump-robust estimates of the integrated variance
asn — oo. As the number of blocks grows, they span an increasinglyt shit@rval so that in the limit and under weak
assumptions on the price process, each block contains abm@fump and volatility within the block is locally constan
In this scenario, the termg(m, \;)/v1 (m, \;) constitutes an estimator of the (scaled) return varianee thei'" block,
which is robust to jumps by the assumption thaf,, = max{\} < 1. Summing across blocks then naturally yields a
consistent estimator for the integrated variance. Fronabiwye, it is also clear that the QRV estimator can be forradlat
based on overlapping blocks. Inthe paper, we show that ssighsampled version of QRV further improves the efficiency
of the estimator. In terms of asymptotic theory, we deriasiiele central limit theorems for QRV, which show that for
fixedm and in the absence of noise, our estimator converges totégraied variance at rafé /2. With microstructure
noise, our (modified) estimator converges at tite!/%. In both cases, this is known to be the fastest possible Ysiée.
carry on to show that for suitable choice of parameters tgenpsotic variance of the QRV is close to the maximum
likelihood bound in either situation. Moreover, all our s@tency and central limit theorems are shown to be robust to
the presence of finite activity jumps.

Implementation of the QRV requires the choice of some “tghjparameters, such as the number of blocks block
lengthm, the quantiles\, and the quantile weights. For given block length and quantiles, we show how to seleet t
guantile weights optimally to minimize the asymptotic wa@ce of QRV. In the special case where — oo, we can
express these optimal weights in a simple way. This provesetoent for the implementation of the QRYV, as it turns
out we can use these asymptotic weights even for finit@ith hardly any loss of efficiency. Similarly, the choiceaf
and )\ can be based on asymptotic efficiency considerations, balseeemphasize that the robustness of QRV in finite
sample is controlled by the joint choice of these parametetbe(1 — A, )m — 1 largest negative and positive returns
are discarded in each block of data. In the paper, we prowtildd guidance on how to chooseand \ based on both
asymptotic theory and practical considerations.

The idea to get rid of jumps through quantiles is similar ifrispo threshold estimators of the integrated variance
(see, e.g., Mancini, 2004b; Jacod, 2008), where returnredisens larger than a pre-determined threshold are rechove
before computing realised variance. However, because thetimators use a global threshold to pre-truncate the data
there is a risk of retaining jumps when the threshold is sethigh or removing an excessive amount of observations
when the threshold does not fully encapsulate the returhggimvolatility episodes. In both cases the estimator wéll b
biased. In contrast, QRV sets a local threshold that adatsaily to the magnitude of the returns observations ifneac
block through the choice of quantiles. As such, it is abledadbust to both small and large jumps even in the presence
of time-varying volatility. Finally, we note that QRV is algelated to the literature on L-statistics (e.g. van demlyaa
1998), and it bears some resemblance to the classical idaenofed mean estimation.

The remainder of this paper is organized as follows. In $ac®, we introduce the QRV estimator and present the

associated asymptotic theory. We also conduct an extessiugdation study to gauge its finite sample performance and



discuss how this compares to other related estimators. diidBe3, we develop a modified version of QRV that remains
consistent and asympotically efficient with microstruetapise. Section 4 contains an empirical application antid®®ec

5 concludes. Proofs and some additional discussion ofaltiee formulations of QRV can be found in the appendix.

2 Quantile-based realised variance measurement

Let X = (Xt)t20 denote the log-price process, defined on a filtered probﬁbﬂjace(Q,J-“, (ft)tzo ,]P’) and adapted
to the filtration(7;),~,. The theory of financial economics states thakifevolves in a frictionless market, then it has
to be of semimartingale form (see Back, 1991). In this papestart from the assumption that is a pure Brownian

semimartingale, i.e. a continuous sample path procesdbtim:
t t
X =Xy +/ a,Ou —I—/ o, dW,, t>0, Q)
0 0

wherea = (), is a predictable locally bounded drift function,= (Ut)tzo is an adapted cadlag volatility process and
W = (W), a standard Brownian motion.

To prove our CLTs, we will work under some stronger assunmgtiono.

Assumption (V) o does not vanish (J and it satisfies the equation:

t t t
at:ao+/ a;du+/ O'/uqu—l-/ v, dB., t>0, (V2)
0 0 0

whered’ = (a;),~q, 0’ = (07),>, andv’ = (v}),~, are adapted adlag, B’ = (B;),~, is a Brownian motion, and

W 1L B’ (hereA 1L B means that A and B are stochastically independent)

This means that has its own Brownian semimartingale structure. Note theeagmce oV in o, which allows for
leverage effects. IfX is a unigue strong solution of a stochastic differential atqun then, under some smoothness
assumptions on the volatility function = o (¢, X;), assumption (¥) (with v, = 0 for all s) is a consequence of Ito’s
formula. Thus, assumption (Yis fulfilled for many financial models and, even though it & a necessary condition,

it simplifies the proofs considerably. A more general treaimincluding the case wherejumps, can be found in
Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Baep(2006). We rule out these technical details here, gs the
are not important to our exposition.

In what follows, we also make use of the concept of stable egance in law.

Definition 1 A sequence of random variabléss, ),,., converges stably in law with limit, defined on an appropriate
extension o(Q,J-', (]'—t)tzo ,IP’), if and only if for everyF-measurable, bounded random varialifeand any bounded,
continuous functiory, the convergencém,, ., E[Y¢g(Z,)] = E[Yg(Z)] holds. We writeZ,, 9 7, if (Zn)nen CON-

verges stably in law t&.



Stable convergence implies weak convergence, or conveggariaw, which can be defined as above by takihg- 1,
see Rényi (1963) or Aldous and Eagleson (1978) for moreldethout the properties of stably converging sequences.
The extension of this concept to stable convergence of psesas discussed in Jacod and Shiryaev (2003, pp. 512-518).
In our context, we need the stable convergence to transfeenmfeasible mixed Gaussian central limit theorems (CLT)
proved below into feasible ones that can be implementedactice.

Central to the theory of semimartingales is the quadrati@tian process, defined as:

[X], = plim Zn: (th‘ - th‘fl)z’

n—oo
=1

for any sequence of partitiotts= ¢ty < t; < ... < t,, = t such thasup, {t;, — t,_1} — 0 asn — oo (see, e.g. Protter,

2004, pp. 66). For the process in Eq. (1), the quadratic Nanigs equal to integrated variance (IV hereafter), i.e.

t
[X]t:/ o2du.
0

As in Andersen and Bollerslev (1998), and many of the subm®gpapers in this area, here the object of econometric

interest is the V.

2.1 The estimator and its properties

From now on, we will work on the unit time interval without bef generality, i.e.t € [0,1]. We assume thak is
observed at equidistant poirtts= i/N, fori = 0,..., N. The increments oK — the continuously compounded returns
— are denoted as:

ANX = Xin — X(i—1)/N 2)

fori = 1,...,N. We further assume thdl = nm, wherem, n are natural numbers. Specifically, we consider

contiguous subintervals or blocks — 1)/n,i/n|, each containingn returns, i.e.

Di"X = (AéVX) (i—1)m+1<k<im’ ©

fori = 1,...,n. The idea of building subintervals is quite natural in therent setting and the mathematical intuition
for this approach is discussed in Mykland (2006). In the gsytic analysis below, we concentrate on the case where
is fixed andn — oo, but also briefly comment on the case wheris fixed andm — oo, andn, m — co.

Define the functiory;, : R™ — R such that

gk () = 2(r), (4)
wherez ;) is thekth order statistic of = (71, ...,z ). Also define the realised (symmetric) squaseduantile on the
it" block as

0:m,N) = G (VNDIX) 4+ 62 i (VNDIX), (5)

5



whereAm is a natural number. Note that the functi@itm, \) is even inX, so its value does not change if we repldce
by —X. Also note that/ N D" X has been normalized to l6&,(1).

We are now in a position to introduce the quantile-basedsehariance (QRV, hereafter):
QRVN(m> Xa O[) = O/QRVN (’I’)’L, X)? (6)

whereX = (A1,..., \) is a(k x 1) vector of quantiles with\; € (1/2,1) for j = 1,..., k, ais a(k x 1) non-negative

weighting vector witha|; = 1, andQ RV (m, \) is a(k x 1) vector with;jth entry equal to

N/m
qi(m
QRVy (m, ;) Z i )
The scaling factor in Eq. (7) is given by:
vy (m,A) = E | (100 2+ Unamsn ) | (8)

for r > 0, whereU| ) is the(Am)-th order statistic of an independent standard normal safdpl};”

We show below that QRV constitutes a consistent and higffilgierfit estimator of the IV under very weak conditions
on X. Moreover, due to its reliance on return quantiles (witk: 1), the QRV is asymptotically robust to finite activity
jumps. This holds even wheén= 1 and the estimator is constructed using only a single paivahtjles. Still, combining
multiple pairs of quantiles as in Eq. (6) improves the efficieof the QRV, and we can explicitly characterize the optima
guantile weights that minimize its asymptotic variance.

Two further remarks are in order. First, while it is possitdeise asymmetric quantiles in Eq. (5), this is suboptimal in
the current setting due to the symmetry of the normal digtioin, and we therefore do not consider this case. Moreover,
wheng;(m, \) is based on asymmetric quantiles, the resulting CLT becanfeasible, because the functigg(m, \)
is not even inX anymore (see Kinnebrock and Podolskij, 2008, for furthecasion). Second, to compute QRYV the
scaling factor, (m, \) is needed. These values can be obtained to any desired ddgreeuracy by straightforward
simulation or numerical integration using the joint dep$iinction of the order statistics:

m! (D(y) — D) (1 — B(y))D(x)) "
F0n—smiry Uomy (€:Y) = Lacy) (m — Am)! ] fzifn —m— 2()(!(m _(fiz)!( .

()9 (y),

for A € (1/2,1), whereg and® are the standard normal density and distribution functions

We now present the main limit results of the QRV.
Theorem 1 For the processX in Eqg. (1), and N = mn with m fixed, asN — oo
QRVN(mv X) Oé) & I‘/v

wherelV = fol o2du.



Proof see Appendix C |

Theorem 2 For the processX in Eq. (1), with condition (V) satisfied andy = mn with m fixed, asN — oo

1
VN (QRVy(m, N, a) — IV) %\ /o(m, X, a / o2dW,
(QRVi( ) ) ( ) ;

where
O(m, X\, a) = /O(m, N)a, 9)

and thek x k matrix ©(m, X) = (©(m, X)), <, IS given by

@(M,X)ij = myl(m7 Ais )‘j) — va(m, Ai)vi (m, )\j)

)

vi(m, \i)vi(m, X))
with
vi(m, Ai, Aj) = El(|Uan | + Un—ma+0) ) (Uanag) I + 10 n—ma; 1)), (10)

and wherell’’ is another Brownian motion defined on an extensiof(dfF, (Ft)i>0 ,IP) with W’ 1L F. Becauser is

independent oft’’, this implies stable convergence to a mixed normal distigiou
VN (QRVN(m,X, a) — IV) ds N (O,G(m,x, a)IQ) ,
wherelQ = fol otdu is the integrated quarticity.
Proof see Appendix C |

Theorem 1 and 2 show that QRV is a consistent estimator ofthenter very weak conditions on the processand
that it converges at ratd ~1/2, the best attainable in this setting. For a given block sizend quantiles\, the weighting

vectora can be chosen optimally to minimize the asymptotic variasfa@RYV, i.e.

1 T
= Li)—l(zz;,)%bﬁ (1)
wherec is a(k x 1) vector of ones. The asymptotic efficiency of QRV is charaoget by the constarttin Eq. (9), which
is equal tod(m, A, a*) = (/O (m, \)¢)~! when optimal weights are used. In Section 2.4, we shall s&e tlakes on
values between 3 and 4 when using a single (pair of) quarienal 0.9 and rapidly approaches the parametric lower
bound of 2 as multiple quantiles are used. Thus, QRV camathai efficiency of the maximum likelihood estimator in
the parametric no-jump version of this problem, while stitaining robustness to jumps, when they do appear in the
price process. In fact, the consistency and CLT of the QR\Wagdfected by the presence of finite activity jumps, as the

following proposition highlights.



Proposition 1 Theorem 1 and 2 remain valid for an extension of the proééas Eq. (1) that incorporates finite activity

jumps, i.e.
q(t)

t t
X =Xo+ / a,0u + / o, dW, + Z Jiy t>0, (12)
0 0 i=1

whereg = (q(t)),>, is a finite activity counting process anid= (Ji)gg are non-zero random variables representing the

jumps inX.

The intuition for this result is clear: withn fixed andN — oo, the number of observations in each block remains constant
but the time interval it spans shrinks so that, in the linigdntains at most one jump with probability one. Combined
with the restriction\ < 1, which ensures we leave out at least the largest negativpa@sitive return when constructing
the QRYV, this naturally implies that the estimator is asystipally immune to finite activity jumps.

To conclude this section, we point out that our quantileedaapproach can also be used to estimate the integrated

guarticity in a similar fashion. In particular, define

QRQN(m, A\, a) = /QRQN(m, ), (13)

whereX = (A1,..., \) is a(k x 1) vector of quantiles with\; € (1/2,1) for j = 1,..., k, ais a(k x 1) non-negative
weighting vector witha|; = 1, andQ RQx(m, \) is a(k x 1) vector with;jth entry equal to:
) o N/
QRQN (X)) = TS 2 (98, (VNDI'X) + gty s (VNDPX)). (14)
with
v (m, A) = E [[Upm)|" + [Un-xms)|'] -
As in Theorem 1 we have consistency farfixed andN — oo, i.e. QRQn(m, A, @) 2, 1Q. This estimator can now be

used to formulate a feasible CLT for QRV as follows:

\/N QRVN(m7 X7 Oéiv) -1V
\/9(771, X7 aiv)QRQN(ma X? aiq)

< N(0,1).

2.2 A subsampling implementation of QRV

The QRV estimator developed above is constructed usingramapreturn quantiles computed over non-overlapping
contiguous intervals of data. In this section, we discussbsampled version of the QRYV, which is still more efficient

than its blocked counterpart. In particular, we define:

QRV3"(m, X, a) = o/ QRV* (m, N), (15)



wherea and\ are as above, an@ RV (m, \) is a(k x 1) vector withjth entry equal to:
1 N—m+1 qsub(m s )

N-m+1 ; vi(m, )’

QRV{* (m, \;) = (16)

and

sub(m A\ =g3. (\/—Dl mX) + g Am+1 (\/—Dl mX)

whereD; ;, X = (AYX), ;v fori > 1.
Because the estimator in Eq. (15) is basically a subsampdesion of the blocked QRV in Eq. (6), it is also
consistent for the IV by Theorem 1. Moreover, by a triangulaquality argument it is clear that subsampling improves

the asymptotic efficiency.

Theorem 3 For the processX in Eq. (1) with condition (V) satisfied and/ = mn with m fixed, asN — oo

VN (QRVJ@“b(m,X, a) — [v) & AN (o, 654 (m, X, a)IQ) , (17)
where
0540 (m, X, a) = /O (m, N)a, (18)
and thek x k matrix 9% (m, \) = (@SUb(m’X)Sl)lgs,lgk is given by
O (m, X);; = %@(mvx)ij'i'yl(m’/\‘ : ) icov( |2 + |Um mAi+1) % |U |2 + |U((:~b mA, +1)|2> )
whereU ") = {U;}m,, U® = (U347 and {U;}71* is an independent standard normal sample. Furthermore, the

convergence in Eq17)is robust to finite activity jumps, i.e. it also holds for thegesses defined in E¢L2).
Proof see Appendix C |

As before, asymptotically optimal weights can be assigoetthé quantiles so as to minimiz&“*(m, X, «). In Section

2.4, we illustrate the efficiency improvement that resuibsrf subsampling.

2.3 QRVwithm —

Up to this point, we have considered the case wheris fixed andn — oo. In this limit, QRV is consistent under
very weak assumptions on the log-pri&e We now briefly discuss the case whene— oo. To get the corresponding
asymptotic results in this limit, much stronger assumgiored to be imposed ok. In particular, whem: is fixed a
sufficient condition for Theorem 1 and 2 to hold is thais constant (this follows directly from classical ordertistiic

results, see for instance David, 1970). In this case, thmpktic constants are as given in the following proposition

9



Proposition 2 We have

vi(A) = rggnoo vi(m, ) = 2¢3,
V1(>\i7>\j) = mlgnoo I/l(m, >\i7>\j) = 4C§\Z_C§\j,
ON); = lim O(m,A);; = lim ©°(m,X);; =2 (1= %)(2A = 1) :
Ly LN H(en)o(en)onon
O\, ) = lim O(m, X, o) = lim 0*®(m,\,a) = 'OV,

with A; < A;, wherec,, and ¢ denote thex-quantile and density function of the standard normal dsttion.
Proof see Appendix C |

These results are interesting for a number of reasonsly-indtenm — oo the asymptotic covariance matié can be
expressed in closed form, and it is identical for the blogkimd subsampling version of the QRV. This, in turn, allows
for fast and easy calculation of optimal quantile weigfits In Section 2.4, we demonstrate that the use of these weights
leads to only a very limited efficiency loss — even for smal- which makes it attractive from a practical point of view.
Secondly, in certain applications the constant volatéiggumption can sometimes be justified (e.g. when sampliag ov
a short horizon or on a suitably deformed time scale), anaglesiblock implementation of QRV (i.en = 1 andm
large) may be preferred purely for the sake of computatisimplicity. Interestingly, we will see in Section 2.4 thaet
efficiency loss associated with using only a single blocknigl§ particularly when combining multiple quantiles. &ily,
the above limit allows us to clarify the relation between @RV and some related estimators that have appeared in the
literature. In particular, withn — oo, n = 1, and constant volatility, QRV corresponds to the estimafdavid (1970),
the only difference being that the latter estimates thedstahdeviation instead of the variance. Also, in Appendix B
we discuss an alternative formulation of QRV based on abseo&iurns. This estimator nests the MinRV and MedRV of
Andersen, Dobrev, and Schaumburg (2008), and we useithe oo limit to show its equivalence to the QRV based on
signed returns introduced above.

As an aside, if we want to relax the constant volatility asgtiom above, it is still possible to let, — oo, but then
we also neech — oo. Moreover, stronger assumptions on the dynamicX aire needed: for consistency we require
condition (V) andm/n — 0, whereas to obtain a CLT we additionally negeds’ and’ to satisfy condition (V) and

m3/n — 0. We then have the following result:
QRVy(m,\, ) 2 rv,

and
VN (QRVn(m, X, a) — IV) % MN (0,6(X,0)1Q) .

A formal proof of these results can be found in a separaterafipe.e. see Christensen, Oomen, and Podolskij (2009).
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Table 1: Asymptotic efficiency of QRV with single and mulgpduantiles

blocked QRV subsampled QRV
AN m 20 40 100 20 40 100 o0
Panel A: single quantile
0.80 4.24 4.29 4.31 3.54 3.73 3.92 4.32
0.85 3.56 3.58 3.59 3.02 3.14 3.27 3.60
0.90 3.10 3.14 3.15 2.67 2.75 2.86 3.16
0.95 2.88 2.99 3.07 2.52 2.62 2.75 3.13
0.98 - - 3.58 - - 3.16 3.88

Panel B: multiple quantiles with optimal Weightgm)
0.80-0.95 2.40 2.41 2.42 2.27 2.29 2.32 2.42
0.80-0.98 - - 2.19 - - 2.13 2.19

Panel C: multiple quantiles with asymptotically optimaliglas a’(koo)
0.80-0.95 2.41 2.41 2.42 2.31 2.32 2.33 2.42
0.80-0.98 - - 2.19 - - 2.14 2.19

Note This table reports the asymptotic efficiency constaiits, X, o) for the blocked QRV and*“?(m, X, «) for the subsampled QRV as
given in Egs. (9) and (18) for different valuesf. The last column reports the limiting valéé), o) as in Proposition 2 (which is the
same for the blocked and subsampled QRV). Panel A reportesudts for a selection of single quantiles. Panels B andr@baee these

quantiles using exact “finitex” optimal weights following Theorems 2 and 3 and asymptdiycaptimal weights following Proposition 2

respectively.

2.4 Implementation and asymptotic efficiency of QRV

Implementing the QRV requires selection of quantiegjuantile weightsy, and block-lengthn. The asymptotic theory
developed above can be used to determine the optimal quargights but, as we will now discuss, it can also be used
to guide the choice ok andm. We will also use the theory to compare the efficiency of QRth®leading alternative
realised variance measures. Section 2.5 will follow up dissussion with simulations investigating QRV’s finite gden
performance and robustness to jumps and outliers.

Table 1 reports the asymptotic efficiency constaf the blocked and subsampled QRV estimator for different
and\. A number of important observations regarding the effigjemied the preferred implementation of the estimator
can be made.

11



Figure 1: Optimal quantile weights and scaling factors fanying block sizen.
Panel A: optimal weights: Panel B: scaling factors;
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Note This figure reports the optimal quantile weight§Panel A) as in Eq. (11) and scaling factess(Panel B) as in Eq. (8) for QRV
using blocking with = {0.80, 0.85, 0.90, 0.95} and varyingm.

First, considering Panels A and B, we see that QRV is a higffilgient estimator particularly when using multiple
guantiles. For instance, when combining the five quantifted in Panel A, QRV has an asymptotic efficiency of around
2.2. This compares favorably to the leading jump-robugidsirer variation measure of Barndorff-Nielsen and Shephard
(2004) for which the corresponding figuresi$/4 + = — 3 ~ 2.61. Moreover, by including additional quantiles in the
construction of QRV we can push its efficiency arbitrarilpsg to 2, so that in the limit it attains the ML efficiency
of realised variance (Jacod, 1994; Jacod and Protter, B#®®dorff-Nielsen and Shephard, 2002) while still retagi
robustness to jumps. Comparing the blocked QRV with theaupted QRV we confirm an efficiency gain associated
with subsampling, albeit the benefit is modest particularyen using multiple quantiles.

Second, comparing Panels B and C, we see that the use ohlimiti — oc” optimal quantile weights following
Proposition 2 instead of exact “finite-’ optimal weights following Theorem 2 and 3 leads to only a giraal deterioration
in efficiency. This is very attractive from a practical vievipt, for it means that we can simply use the limiting closed-
form expression fo® to obtain reliable and near-optimal quantile weights iadtef calculating its exact finite-sample
counterpart for each and eveny and A\ we may consider. As an aside, we point out that the use of asyimgcaling

factorsv, should be avoided as it will induce potentially serious bs&m the estimator even for moderately large

The efficiency gain associated with subsampling can be vebgtantial when we consider higher powers of quantilesjrfstance when
estimating integrated quarticity. Also with microstrueunoise, the efficiency gain is of a factor 2 — 3. Because weSetion 3 immediately with

a subsampled version of our noise robust-estimator thistiexplicitly discussed.
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Figure 1 further illustrates these effects by plotting tpéral quantile weights and scaling factors for differealues of
m.

Third, from Panel A we observe that the choice of quantile maimformed by efficiency considerations. It is quite
intuitive that quantiles close to the mode of the returnriistion are not very informative about the variance of the
process. At the same time, quantiles far into the tail retgowl to be erratic. The optimal choice of quantile balanbiss t
tradeoff to extract the maximum amount of information regyay the spread of the distribution. From Panel A we see
that, depending on the choice waf, the optimal quantile lies in the regi@n90 — 0.95. Of course, withk > 1, quantiles
outside this region may be added to exploit the covariancetsire of the order statistics. On the choice of block lbngt
we see that there are modest efficiency gains to be had byiolgobsmall (it can be shown thdt is monotonically
increasing inm). However, when multiple quantiles are used, the gain isigiete.

From the above discussion it is clear that the asymptotiorthis very helpful in guiding the choice of quantiles and
block length. In particular, we can determine the optimak(aof) quantiles and their weights by maximizing asymptotic
efficiency of the resulting estimator. In addition, the thetdicates a weak preference for choosing a smathnd
the use of subsampling. In practice, there are two other itapbconsiderations in addition to asymptotic efficiency,
namely (i) QRV’s ability to estimate the IV in finite sampledati) QRV’s robustness to jumps and outliers. For QRV
to accurately measure the I¥,is required to be locally constant on each subinterval. Tals® from this viewpoint, a
smallm or equivalently a large is desirable. On the other hand, jump robustness is coedirdl thejoint choice ofm
and ... = max{\}: over a block of lengthn, QRV is robust ta1 — A, )m — 1 positive and negative jumps. These
observations suggest that the optimal choica ahdm should satisfy the following three conditions i) is sufficiently
small to ensure good “locality” of the estimator, (N)includes a quantile in the highly informative tail regiomda(iii)

(1 — M\naz)m is sufficiently large to ensure robustness against jumpsati@rs. Sections 2.5 and 4 will further illustrate

the above using simulations and empirical analysis.

2.5 Finite sample performance and jump robustness

The results so far indicate that the asymptotic efficiencBV is excellent. The simulations below are designed to
gauge the finite sample performance of the estimator. We p#icplar attention to bias, efficiency, and robustness to
jumps and outliers. We also compare the performance of thé tQRecently developed alternative estimators.

To simulate the log-pric&’, we adopt the following model:
dX; = o, dWy, tc [O, 1] s (19)

wherelV is a standard Brownian motion and the dynamics;aire as specified below. The baseline scenario is a constant
volatility Brownian motion (“BM”), i.e.
o2 = 0.0391. (20)
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To assess QRV'’s ability to handle time-varying volatilitye use a Heston-type stochastic volatility (“SV”) model
do? = (0.3141 — 8.036957)dt + 041/0.1827dB;, (21)

where B is another Brownian motion witl 1. 1. To gauge the impact of leverage, we also simulate from Ef) (2
with diWW,dB;, = —0.75dt (“SV-LEV”). Finally, we consider two more variance specé#imns that are both capable of
generating erratic and highly volatile sample paths. Tkt ira model proposed by Ait-Sahalia (1996) that incorgsra

stochastic elasticity of variance and non-linear driftEX8ND”), i.e.

do? = (—0.554 + 21.3207 — 209.30} + 0.0050; %)dt + \/ 0.01707 + 53.970270dB,. (22)

with B 1. W. The second is a two-factor stochastic volatility model\(25-LEV”) analyzed in Chernov, Gallant,
Ghysels, and Tauchen (2003), i.e.

o2 = s-exp(—1.2+0.04f" + 1.5, (23)
dfY = —0.000137fVdt + dBY,
df® = —1.386fPdt + (1 +0.25f?)dB?,
where d/thBt(l) = thdBt(Q) = —0.3dt and sexp denotes a “spliced” exponential function as specified asdusised

in Chernov, Gallant, Ghysels, and Tauchen (2003).

The above stochastic volatility models cover a wide rangayobimic specifications and thus provide a good testing
ground for QRV. The parameter values for the BM, SV, and SB/bdels in Egs. (20-22) are taken from the empirical
study by Bakshi, Ju, and Ou-Yang (2006) whereas the parasnetethe SV2F-LEV model in Eq. (23) are taken from
Huang and Tauchen (2005). It should be noted that while tsegkes typically calibrate the models from daily data to
an annual horizon, here we simulate the processes over ihatenval so that, effectively, we compress a year's worth
of variation into a single day. As a result, we end up simatatiighly erratic volatility paths, which serves to chatien
the QRV estimator to the extreme. As an illustration, seeeParf Figure 2 for a simulated return and variance series.

To study the robustness of QRV, we also simulate from the BMehand add jumps. In particular, we add a fixed
number ofn; Gaussian jumps at random points in the sample with a combimeg variationv; measured as a fraction
of the IV. We consider four scenariog§n,v;} = {1, %}, i.e. one large jump accounting f@n% of total variation,
{ns,v;} = {5,1}, i.e. five medium jumps accounting fa0% of total variation,{ns,v,;} = {10, 1}, i.e. ten small
jumps accounting fo20% of total variation, andn s, v;} = {5, %}, i.e. five large jumps accounting for a third of total
variation. Additionally, we consider a scenario where thiegseries is contaminated by “outliers”. Such spurious an
deviant price observations are commonly encountered m@guency data due to, for instance, delayed trade liegort

misplaced decimal points, data errors, etc. (see Section gofne examples). In our simulations, we position a single
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Figure 2: SV and jump simulation.
Panel A: squared return series from SEV-ND Panel B: priceséom BMJ & BM-outlier
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Note Panel A plots a time-series &f = 1, 000 squared returns simulated from the SEV-ND model over theintgrval. Panel B plots a

time-series ofV = 1, 000 prices simulated from the BM+jump and BM+outlier model otreg unit time interval.

outlier of random size at a random point in the series, enguhat its variation accounts f@0% of total variation. As
an illustration, see Panel B of Figure 2 for a simulated pseges with a jump and outlier added.

To simulate the process in Eq. (19), we use an Euler disat&izscheme and sa&t = 1, 000. QRV is computed as in
Eq. (6) and (15) using four pairs of quantiles= {0.80, 0.85;0.90; 0.95}, asymptotic weights derived from Proposition 2,
and three different choices of block length, namely= {20, 40, 100} or equivalentlyn = {50, 25,10}. For comparison,
we also compute realised variance (RV) in addition to thesemtly proposed jump-robust estimators, i.e. bi-power
variation (BPV) of Barndorff-Nielsen and Shephard (20@4)eshold realised variance (TRV) of Jacod (2008); Mancini
(20044, 2006), and MedRV of Andersen, Dobrev, and SchaugrB008):

N
RVy = ZMXP,
BPVy = Z|ANX||A VX,

TRVy = Z|A£VX|21{\ANX\<CN*U}7 for we (0,1/2),
i=1
MedRVy — i NS medianf|AY x|, AN x|, [N, X ).
6 43inN-2% —1 i+
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Table 2: Performance of QRV with stochastic volatility, josnand outliers

blocked QRV(m, n)

subsampled QRVm, n)

benchmarks

model (20,50)  (40,25) (100, 10) (20,50)  (40,25) (100, 10) RV BPV TRV MedRV
Panel A: “bias” measurdE(ﬁ\/’/IV)

BM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SV 1.00 0.99 0.98 1.00 0.99 0.98 1.00 1.00 1.00 1.00
SV-LEV 1.00 0.99 0.98 1.00 0.99 0.98 1.00 1.00 1.00 1.00
SEV-ND 1.00 0.99 0.99 1.00 0.99 0.98 1.00 1.00 1.00 1.00
SV2F-LEV 1.00 1.00 0.99 1.00 0.99 0.98 1.00 1.00 1.00 1.00
BMJ(n; = 1,v; = 1) 1.00 1.00 1.00 1.00 1.00 1.00 125 1.03 1.01 1.00
BMJ(n; = 5,v; = 1) 1.02 1.02 1.02 1.02 1.02 1.02 125 1.06 1.05 1.02
BMJI(n; = 10,v; = %) 1.04 1.04 1.03 1.04 1.04 1.03 1.25 1.08 1.12 1.03
BMJ(n; = 5,v; = ) 1.03 1.02 1.02 1.03 1.02 1.02 150 1.09 1.05 1.02
BM-outlier 1.01 1.01 1.01 1.01 1.01 1.01 1.25 1.21 1.02 1.33
Panel B: “efficiency” measurear(v N (IV — IV)//IQ)

BM 241 2.42 2.42 2.33 2.38 2.49 2.00 260 2.00 2.96
SV 2.42 241 2.37 2.37 2.51 3.28 2.01 261 201 2.96
SV-LEV 2.40 2.39 2.33 2.36 2.49 3.27 2.02 260 2.02 2.94
SEV-ND 2.37 2.35 2.29 2.33 2.46 3.29 2.00 261 2.00 2.95
SV2F-LEV 2.38 2.36 2.32 2.34 2.51 3.52 1.99 259 1.99 2.93
BMI(n; =1,v5 = %) 2.44 2.44 2.44 2.36 2.40 251 127.74 3.66 2.20 2.99
BMI(n; =5,v5 = %) 3.02 2.54 2.52 2.77 2.49 2.59 27.87 3.80 351 3.29
BMJI(n; = 10,v; = %) 3.16 2.68 2.61 2.90 2.61 2.69 15.53 3.84 4.88 3.41
BMI(n; =5,v5 = %) 4.63 2.60 2.52 3.81 2.52 2.59 104.66 5.24 3.48 4.06
BM-outlier 2.46 2.47 2.46 2.38 2.42 2.53 12722 89.24 2.89 7.23

Note This table reports the bias and efficiency measure for QRd RV, BPV, TRV, and MedRV for comparison) under various magecifications fotN = 1,000. The

bias measure in Panel A is equal to 1 for an unbiased IV estimiihe efficiency measure in Panel B takes on a minimum aitéénvalue of 2 for the MLE.



To implement TRV, we seb = 0.47 andc = 6v/IV, where IV is estimated using BPV. This parameter choice is in
line with Ait-Sahalia and Jacod (2009) and ensures thatirsimulation setup, TRV is unbiased in the absence of jumps
(alternatively, we could have lowereggaining robustness to jumps but introducing a downward brader SV).

Over 100,000 independent simulation runs, we compute as"‘biwasurdE(ﬁ\/’/IV) and an “efficiency” measure
var(\/N(I/‘\/’ — IV)/VIQ), wherelV = {QRVy, RVy, BPVN,TRVy, MedRVy}. If the estimator is unbiased we
expect the bias statistic to be one. Moreover, from the agleasymptotic results we know the efficiency statistic fthou
be 2 for RV and TRV,2.6 for BPV, 3.0 for MedRYV, and aroun@.4 and2.3 for our implementation of the blocked and
subsampled QRYV, respectively.

From the results in Table 2 several interesting patternsrganeFirst consider the scenarios without jumps. With
model BM, all estimators perform as expected. They are geliaand their efficiency measure is close to what the
asymptotic distribution theory predicts, indicating thtaaffords a good approximation to finite sample performance
When introducing stochastic volatility through model S\é find that QRV is biased downwards when few blocks are
selected. However, this bias is small far= 100 / n = 10 and negligible forn = 20 / n = 50. Leverage (SV-LEV)
does not have a noticeable impact on any of the results. UhdeBEV-ND and SV2F-LEV variance specifications,
both generating high volatility-of-volatility, the QRV &®ator still performs well provided that a sufficient numn o
subintervals are selected. With a highly erratic volagtipath, we need to use largeor smallm to ensure good locality
of the estimator in line with the discussion above. Finatynparing the blocked QRYV to the subsampled QRV, we see
that they perform similarly in terms of bias but that the édfncy of the subsampled QRYV deteriorates whemcreases.
The intuition for this is that the subsampling procedurecgsaless weight on the observations in the first and last block
than it places on all other observations. In the asymptotadysis this effect disappears as— oo, but in finite sample
it can adversely affect the efficiency of the estimator,ipakarly in the presence of stochastic volatility. Impartg, the
blocking implementation of QRV does not suffer from this andy thus be preferred in situations wherés relatively
small.

Next, consider the scenarios with jumps. As expected, QRbYysrsuperior robustness to jumps. The small bias
we observe (not exceeding 4% across all scenarios cond)dema be explained by noting that the jumps added to the
process distort the original ordering of the diffusive rag1 This in turn biases the empirical return quantiles used
construct QR\? Importantly, however, this effect is largely independefthe jump size so that QRV maintains excellent

robustness in finite sample. Also, with outliers simulatsddascribed above, we see that QRV is virtually unaffected

%To further clarify intuition for this, consider the followij example. Suppose we have a ranked sequence of diffusivense

{ray,r@),--.,rwm)} from the BM model. WithA = 0.95 we can estimate IV unbiasedly usingsy and s as described above.
Now suppose a positive jump/ is added to, sayrio). If the jump is sufficiently large, the ordered returns sewmee becomes
{ra@y, @), T59),T(61)s - - - » T(m)» T(60) + J} and the “realisedA = 0.95 quantile is nowr ). Thus, as jumps are added to the price process,

the original ordering of returns can be disrupted, leading $mall upward bias in QRV. This bias, however, is only weasdated to the size of the

jump.
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both in terms of bias and in terms of efficiency. Turning to benchmark estimators, it is well known that in the
current setting RV estimates total variation, i.el + v;)I'V, explaining the bias and low efficiency when evaluated
against IV. BPV is asymptotically immune to jumps, but bahée finite sample: for the BMJ model considered here
E(BPVy/IV) =~ 1+2y/njv;/N which can be substantial when jumps become more frequeiatile. Also, with an
outlier in the price series — effectively constituting twamsecutive jumps of opposite sign —the key assumption yidegr

the robustness of BPV and MedRYV is violated leaving bothrestiors severely biased. Finally, TRV’s performance with
large jumps and outliers is comparable to that of QRV, buerietates when jumps become smaller and more frequent.
TRV requires one to specify a uniform threshold for the sawphich makes it sensitive to small jumps if it is set too
high and sensitive to stochastic volatility if it is set t@ov In this respect, a nice feature of QRV is that it effedjiveets

a block specific “threshold” which naturally adapts to thegm#ude of returns through the choice of quantiles.

3 QRV with market microstructure noise

It has long been recognized that market microstructuresfi@ high-frequency data — such a bid-ask bounce and non-
synchronous trading — distort the statistical propertfegstorns (e.g. Epps, 1979; Fisher, 1966; Niederhoffer asiodthe,
1966) and are detrimental to RV as an estimator of the IV, sgge, Zhou (1996). In this section, we develop a modified
version of the QRV that is robust to noise and delivers coesiestimates of the IV.

On a filtered probability spac@ﬂ, F, (ft)tzo ,IP’), we consider the noisy diffusion model
Yi/n = Xin +uiy/n, (24)

fori =0,1,..., N. Here, the “efficient” priceX is a Brownian semimartingale as in Eq. (1). The microstmgchoiseu

is an i.i.d. process, independent®f with

E (ui/N) =0, E <u?/N) = w?.

The proces§” in Eq. (24) is constructed as follows. Suppose fias defined on a filtered probability spa@®, 7, (77) ., , ")
We define a second probability spage', 7', (F});>o, P!), whereQ! denotesRl®!l and F! the product Boreb-field
on Q' Next, letQ be a probability measure di (the marginal law ofu). For anyt > 0, P} = Q andP! denotes the

product@te[o,l]IP’g. The filtered probability spacg?, F, (F;):>0, ), on which we define the process is given as

0=0%xQl, F=F"xF, Fr = Nguy FO X FL,
P=P P

The i.i.d. assumption om is a natural starting point to analyze the noise case anddslwiused in the literature.

Moreover, it has some empirical support at moderate samfilgguencies (see, e.g., Hansen and Lunde, 2006; Diebold
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and Strasser, 2008, for a further discussion of this assamptAs before, the object of econometric interest is thefV
X, with the additional challenge that inference is now basedaisy high-frequency data.

The modified QRV measure we develop below uses pre-averagedwhich gives it robustness to noise. A similar
approach to noise reduction is studied in Podolskij andev¢R008) and applied to the BPV estimator. Although the main
contribution of this paper is the development of QRV as allyigfficient jump- and outlier-robust measure of the 1V, we
point out that the treatment of our estimator in the presefc®ise goes well beyond Podolskij and Vetter (2008). First
the procedure developed here makes much more efficient uke data. Specifically, in a constant volatility settings th
asymptotic variance of QRV can be as lowsaso3w, which is very close to the lower bound of the ML estimator emd
parametric assumptions and substantially more efficiean the estimator used by Podolskij and Vetter (2008), which
has an asymptotic variance of arouttb3w. Second, our asymptotic theory holds under much weakemgs&ns on
the noise distribution. Third, we prove that the CLT of théseecorrected QRYV is robust to finite activity jumps, whish i
something that is not possible for the BPV. Fourth, evenghadhere is no explicit formula available for the conditibna

variance in the CLT, we provide a consistent estimator & ¢juiantity, which permits a feasible CLT.

3.1 Construction of the estimator
Choose a natural numbéf = K (V) with
K =cNY? 4o <N1/4) , (25)

for some constant > 0, and consider a weight functionon [0, 1], which is continuous, piecewise continuously differ-
entiable having a piecewise Lipschitz derivativewith 2(0) = k(1) = 0 and that satlsf|e§O h%(s)ds > 0. A typical
example, that is used in our simulations in Section 3.8(i9 = = A (1 — ).

Define the return-like statistic .
1

h( : )Aﬁl (26)
i=1
and also sep; = [ (I (x))*dz andy, = [ h2(x)dz

Remark 1 In practice, it is better to use the Riemann approximations
j—1 152,
B n__ - 2( J
wl—KZ<< ) <K>> ’ ¢2_K;h(K)
j:

of ¢, and, to improve the finite sample properties, becauygeand 3 are the "true” constants that appear in the

computations.
Next, select a sub-sequence using data observed in theahietV, (i + m(K — 1))/N]:

—N —N .
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and compute
g; (m, \) = gim <N1/4E£VY> + 9 Amt1 (Nl/A‘EZNY) :
The noise-corrected QRV measure (QR\éreafter) is now defined as:
QRVy(m, A, @) = ' QRVy (m, A), (27)

where) anda are as above, and theh element o) RV (m, M) is given by:

N—m(K—1)

Z qg'k (m’ )‘j) ) (28)

=0 Vl(mv/\j)

1

QRVy(m, ;) = (N —m(K — 1)+ 1)

Note that the constardt” controls the stochastic order of the telr_Fé\V, since

aj.V:op< %) Yjvzop< %) (29)

Thus, whenk is chosen as in Eq. (25) the stochastic orders of the quamiitiEq. (29) are balanced (this implies the

best rate of convergence), and under mild conditions we teate
/457N a 2 Y1 o
N / Y] ‘fj/N ~ N <0,CT/120'j/N + 7&) > .
This demonstrates the rationale of the filtering proceduetlying the construction of QRYnamely whileN'/ 4?? is
affected by the noise througl?, it behaves Iike\/N(XZ-/N — X(i—1)/N)-
3.2 Asymptotic properties
Our first result shows the consistency of QR¥fter a proper bias correction).

Theorem 4 Assume thatn is a fixed number anfl (u}) < co. ASN — oo, it holds that

Ll
iy

QRV(m, X, o) — w? 2 Iv.

Proof see Appendix C |

In practice, we can form consistent estimatesfe.g.&% = o& S| Y;/n—Y(;—1),n|* as in Bandi and Russell (2006),

5% = — 4 SN (Vi — Yin)(Yiy — Yii_1y,wv) @s in Oomen (2006a,b), or with the parametric MA(1)-based
maximum likelihood estimator of Ait-Sahalia, Mykland,ceBhang (2005). As a consequence, we have the convergence

()

iy

QRVy(m,\, o) — o2 Borv.

This result is robust to the presence of finite activity jumpiso note that becausg? is a/N-estimator ofw?, it will
not influence the CLT of the slower converging QRV

To prove the CLT, it is useful to introduce some further riotat
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Definition 2 Forz € R, uw € [0,1],1 = 1,...,m and A1, A\, we define the quantity

Fntara O A2) = €0V( 63,1 (8) + 82311 (9): B (1) + G rmir (1)) (30)
whereS = (Sy,...,8,)", T = (Ty,...,T,,)" are centered and jointly normal with
() SiLS;, T;LT;forall i+ j.
(i) var(s;) = var(T;) = cipoa? + Lw? for all .
(i) cov(Siti—1,T;) = cwp(w)z? + Lwy (u)w? for all .
(iv) cov(Siti, T;) = cwp(1 — u)x? + 2wy, (1 — w)w? for all i.
(v) cov(S;,T;) =0forall |i +1—j—1| > 1.

Here the functionu, (u) is defined by
1—u
wn ()= [ b+ oy

When\ = \; = A\ we use the notatioff, ; » ,(A) = finizu(A1, A2).

Notice thath’ (the derivative of:) exists almost everywhere, so the quantify makes sense.

Theorem 5 Assume that is a fixed numbei (u?) < oo, the marginal distributionQ of u is symmetric around and

that condition (V) is satisfied. A8 — oo

¢1 ~2 ds 2
2,00 1V) S M (o SO, ) ),

) Cw%
whereX,, (A1, ..., k) = (Em (A1, ... Ak)si)1<s,i<k IS given by

N4 (QRVﬁ(m,X, @) —

1 m 1 1
YA, Ak)st = / / Fntoru(As, Ar)dtdu.
Vl,m(/\s)yl,m(AZ) lz:; 0 Jo
Furthermore, this convergence is robust to the presenceitd factivity jumps.
Proof see Appendix C |

A couple of points are worth highlighting. First, the ratecohvergence in Theorem 5~1/4, which is known to be
optimal in the noisy diffusion model (Gloter and Jacod, 280). Second, Jacod, Li, Mykland, Podolskij, and Vetter
(2007) show that when the IV is estimated using a “sum-obsegl’ estimator based on filtered data:

N-K

1 N2
- - Y.
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the lowest attainable variance for the cholde) = = A (1 — ) is roughly8.503w assumingr is constant (the variance
of the ML estimator iSc3w). Consequently, the lower bound for the variance of QRValso8.503w (note that for a
suitable choice of parameters the realised kernel of BafiaNielsen, Hansen, Lunde, and Shephard (2008) can aitain
variance of8.00203w). Finally, even though there is no explicit expression fa tonditional variance in the CLT, it is

nonetheless possible to estimate it from the data.

Proposition 3 Assume that is fixed andE (u}) < co. ASN — oo, it holds that

Py (K 1N —3m(K —1) +3) i=m(K—1)—1 vi(m; As) j=i—m(K—1)+1 v(m, A)
2
p
— @2,”()\1, e 7)\k)sl-
Proof see Appendix C |

Using the estimator from Proposition 3, we obtain a feastlld for QRV* in the exact same manner as discussed in
Section 2.1 for QRV.

3.3 Finite sample performance and noise robustness

The simulations below are designed to illustrate the perémce of QRV in the presence of market microstructure noise,
comment on reasonable choice of the pre-averaging windalthvii, and make a comparison to alternative estimators.
For ease of exposition, we mean QR include the bias correction term &2/ (y»c?) throughout the remainder of this
paper. To simulate the “efficient” price process, we use therBodel as in Egs. (19 — 20) and add i.i.d. noise as in Eq.
(24). To ensure our simulation setup is realistic, we basecbaice of parameters on a comprehensive set of summary
statistics of global equity trade data as reported in AppeAdWe set the number of high-frequency return observation
N = {1,000; 10,000} representing typical small-to-mid and large-cap stockee [Evel of microstructure noise is set to
w? = ~2IV/N, wherey? = {0.25;2.50; 10}. From Table 3, we see that this covers average, high, anenesttevels of
noise. Note that the noise is normalized with respect toWhand that the so-called noise ratjo(see Oomen, 2006b)
has a natural interpretation in relation to the bias of thed®E(RV) = IV (1 + 2v?). To implement QRV, we use the
quantiles as before, i.e. = {0.80;0.85;0.90;0.95}, setm = 40, estimate,? as in Oomen (2006b), and vafy between

1 and 25. To provide a benchmark for our results, we competenliti-scale RV (MSRV) of Zhang (2006):

qg j—1
MSRV(9) = -3 m(0), (31)
h=0

Jj=1
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Figure 3: Performance of QR\n the presence of noise.
Panel A: log MSE of QRV with N = 1,000 Panel B: log MSE of QRY with N = 10, 000
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Note This figure plots the (log) MSE of the bias-corrected QRbor sample sizeV = 1,000 (Panel A) andV = 10, 000 (Panel B) and
various levels of microstructure noise The crosses indicate the minimum MSE, and thus identifyofitemal choice ofK". The dashed
horizonal lines indicate the log MSE of MSRV using optimahther of subsamples.

whereq denotes the number of subsamples and

N

S (J,,. J )
Yhg =Y Vigtn = Yingen)’, and a; =(1-1/¢*)"" (q—Qh(J/q) — 2—q;),h/(J/Q)> :
=1

for h(z) = 12(x — 1/2). In the simulations, we use the optimal number of subsampleih can be chosen g$ =
¢*V/N, where
2 4
¢ = argmin {22—50162 + ggc_le(IV +w?/2) + 480_3w4} . (32)

Both MSRV and QRY are consistent for the IV and converge at rate!/4, but the MSRV is not robust to jumps or
outliers. The same is true for the two-scale RV of Zhang, Mgkl and Ait-Sahalia (2005) and the realised kernel of
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)atse the performance of these estimators is very similar in
the current setting, we concentrate on MSRV to conserveespac

Figure 3 plots the log MSE of QRVas a function of for the simulations described above. The dashed horizontal
lines indicate the performance of MSRV. As expected, the Mfiitmizing choice of increases i andN: the optimal
choice of pre-averaging window width balances the noisacatioh it achieves at the cost of efficiency loss. Perhapg mos
importantly, we see that the performance of GR¥comparable to that of MSRV across all scenarios congidéhile
QRV* is only slightly inferior to MSRYV in terms of efficiency, it eoes of course with the benefit of being robust to jumps

and outliers. The empirical application below will furthiustrate this point. Regarding the optimal choicel6fwe can
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make the following observations. Although we have no expéisymptotic guidance available, it is clear that the choic
of window width can be informed by simulations as conductehlin particular, for givev and noise ratioy — the first
guantity is readily available and the second can be estirsttaightforwardly from the data — the optimal value for

can be read off a simulated MSE curve like the one in Figurel8o Aote that the MSE loss function is highly asymmetric
in K, and so a conservative choice of pre-averaging window isigdlg preferred. This also helps to reduce the effects
of price discreteness often encountered in high-frequelatst (see Section 4) and makes the estimator less seneitive t

potential violations of the i.i.d. noise assumption.

4 Empirical illustration

In this section, we apply the QRV estimator to a variety ofiggdata. The aim here is to illustrate the practical imple-
mentation of QRV and highlight some of its empirical propet We use clean low-frequency data over long horizons
as well as noisy high-frequency data over short horizonsfiaddhat in both cases the performance of the QRV is good
compared to RV and its microstructure noise robust couattsp To facilitate the discussion and interpretation af ou

results, we express all estimates as annualized standéedidies throughout this section.

4.1 QRV with “clean” low-frequency data

The use of QRV, like any other RV measure, is not merely lichite high-frequency data over short horizons, but can
also be applied to low-frequency data over longer horizénghe latter case the impact of market microstructure noise
is benign and can be ignored for all practical purposes. feednstance, Schwert (1989) who calculates monthly RVs
using daily data or, more recently, Andersen, Bollersleebbld, and Wu (2006) who study quarterly RVs and realised
betas calculated from daily data.

As our first illustration, we look at daily data for the Dow &srindustrial Average (DJIA) stock index over the sample
period January 1900 through December 2008, i.e. 27,30 dh#ervations spanning more than a cenfuijor each
year in the sample, we estimate the ex-post return variatsamg QRV and RV from these daily data (i.&7 ~ 250).

To implement QRV, we usa = {0.80,0.85,0.90,0.95} with m = 60 and use the subsampling implementation. As
volatility is widely documented to be very persistent, arterdy block length provides sufficient locality. At the sam
time, with (1 — Apax)m — 1 = 2, we are robust to up to four jumps or two outliers per quar®e found, however,
that our results were insensitive to reasonable altematioices of quantiles and block length. Also, the subseirghel
blocked implementation of QRV yield very similar estimates

In Figure 4, we plot the time series of variance estimatesaimePA and a cross plot of RV (on the horizontal axis)

versus QRV (on the vertical axis) in Panel B. We can see tleathttances where QRV deviates substantially from RV all

4Source: Dow Jones Indexes, http://www.djindexes.com/
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Figure 4: QRV with daily Dow Jones Industrial Average indextad
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Note Year-by-year QRV and RV estimates from daily DJIA indexadaver the period January 2, 1900 through December 30, 20R8. Q
is calculated using. = {0.80; 0.85;0.90; 0.95} andm = 60. The estimates are reported as annualized standard devidthe dashed
lines in Panel B mark the region where RV and QRV differ by nmtben 25%.

correspond to years with extreme market movements. Forgeam 1914, the DJIA closed on July 30, 1914 at 71.42
and reopened more than 4 months later on December 14, 19847&t Beflecting a 20% drop in value. In 1929, the start
of the great depressions, the DJIA index fell 13.5% on Ogt@Beanother 11.7% the next day, only to rebound by 12.3%
on October 30. Similarly, in 1987 the stock market crashedra@xperiencing a daily return ef22.6% on October 19
which, even with the RV estimate of 38% for that year, conttd a nine-standard deviation event. All this illustrates
the robustness of QRV to jumps. In the remaining years, th¥ @Rimates are close to those of RV (with a sample
correlation exceeding 0.99) indicating good efficiency ahdence of any systematic biases. As an aside, note that BPV
and MedRYV are not robust to the jump scenario experience@28 With three consecutive large returns.

Over the full 108 year sample period, we calculate an aveaagealized volatility estimate af8.05% for RV and
16.75% for QRV, which suggests that roughlyt% of total variation can be attributed to jumps. If we leave thet three
years discussed above, these figures drag @, and16.5%, respectively, indicating that abo#it; of total variation is
due to jumps. Interestingly, using BPV Andersen, Bollerséand Diebold (2007) estimate the jump contribution toltota
variation at 14.4% using 5 minute S&P500 futures data ovep#riod1990 — 2002, Huang and Tauchen (2005) estimate
the contribution at 7% for 5 minute S&P500 cash data fri97 — 2002 and 4.5% for 5 minute S&P500 futures data
from 1982 — 2002, while Corsi and Reno (2009) estimate the contributiorr@atiad 10% using 5 minute S&P500 futures
data from1990 — 2007. In a related study, Eraker, Johannes, and Polson (2008)atstcontinuous time jump diffusion

models using daily S&P500 index returns over the peti@®D — 1999 and measure the jump contribution between 8.2%
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and 14.7% depending on the model considered. While a dicenparison of these results is difficult (as different data,
sampling frequency, horizon, and econometric techniquesised), it does illustrate that our estimates are plaasibd

in line with the extant literature.

4.2 QRV with “noisy” high-frequency data

Our second illustration is based on noisy high-frequendyp dath volatility computed over short daily horizons. We
study Apple Inc. (AAPL) trade data over the period May 1, 2@@®ugh December 30, 2008, which were extracted
from the NYSE TAQ database. We only include trades from tliragmy exchange (i.e. NASDAQ) and aggregate records
with the same millisecond precision time-stamp into onesolaion using the volume-weighted average trade price. To
illustrate the robustness of QRV to jumps and outliers, wealdilter the data on qualifiers. The final dataset contains a
record of 35,419,565 observations over 672 trading dayayarage of about 52,708 trades per day.

Despite the deep liquidity of AAPL, its trade data are inindsenoisy due to presence of bid-ask spread bounce. This
is confirmed in Panel A of Figure 5, where we find substantiadb@arrelation in returns. Also, with trade data at this
frequency, price discreteness is a concern: from Panel Reevéhsit the vast majority of return observation are eithey ze
or plus/minus one tick, and virtually all observations asslthan 8 ticks in magnitude. For these reasons, it is glearl
inappropriate to apply the standard QRV. Instead, we usaaise-robust QRY. To implement this estimator we use, as
before, four pairs of quantiles = {0.80,0.85,0.90,0.95}, setk = 15, andm = 240. This choice of parameters ensures
substantial robustness to jumps and outliers With- Ap.)m — 1 = 11. Moreover, with an effective block length of
about 30 minutes for an average day (il6.x 240/52708 x 390), the estimator is sufficiently “local” for it to pick up
time variation in volatility. Also, because the data is s&dgn event time, return volatility is homogenized to a &rg
extent and this makes the results very insensitive to theelwdim. Finally, the choice of( is guided by simulations as
in Section 3.3: unreported results show that the optifias around 10 for representative values of AAPL sample size
and noise level (i.,eN =~ 50,000 andvy = 0.5). As mentioned above, a conservative choicdsois advised to account
for price discreteness and other features of the data ntdrempby the BM plus i.i.d. noise model. Besides, given the
large amount of data available here, efficiency is less oflng@m. For these reasons we g&et= 15, but it turns out that
virtually identical results are obtained wifki = 10. The effect of pre-averaging is nicely illustrated in Par@land D of
Figure 5. The pronounced serial correlation observed inreawns is virtually eliminated for the pre-averaged data.
the same time, price discreteness is heavily reduced andétilma distribution is now much closer to Gaussian.

Figure 6 draws a time series (in Panel A) and scatter plotgivePB) of QRV compared to MSRV of Zhang (2008).

5The MSRYV is implemented with an optimal bandwidth as in E®)(@stimated for each day in the sample separatelyis estimated from
the first-order autocovariance of the trade data, whereantMQ estimates are calculated by subsampling the eqoivafi®& minute data in trade
time (i.e. each subsample consists of 79 price observapienday). The average optimal bandwidth is 3.28, with a mimmof 2, a maximum of
9, andg™ = 3 for more than three out of every four days.
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Figure 5: Summary statistics of “noisy” AAPL trade data.

Panel A: autocorrelation of raw returns Panel B: histogréamaw returns
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Note Summary statistics of raw and pre-averaged AAPL trade o\ata period May 1, 2006 through December 30, 2008. Retumas ar

expressed in basis points.

As in the previous illustration, we find a close alignmentwatn the two estimates with a few noticeable exceptions.
We highlight two here. On May 11, 2007 our sample of unfilteredle data contains numerous “out-of-sync” records
as indicated by the qualifier “Z” in the TAQ dataThe time series of highly erratic transaction prices is ldiged in
Panel C of Figure 6, from which it is evident that standardtitity estimators will be heavily distorted. On the raw aat

SNASDAQ Market Data Distribution (2008) describes this dfied as “Sold Out of Sequence is used when a trade is prinegb(ted) out of

sequence and at a time different from the actual transatitran”
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MSRV estimates daily volatility &9.3%, which more than halves t9.2% after removing the spurious observations. In
sharp constrast, QRV gives reliable estimates both on thena cleaned data, i.€0.0% and18.0% respectively. The
second example is October 11, 2007. See Panel D of FiguretBdagrice path: the unfiltered data contains a number
of trades that are seemingly executed at prices well belawrfarket value. Closer inspection of the data reveals that
several — but not all — of these observations were flaggeddoWN&SDAQ as suspicious (using a “yellow flag” indicated
by qualifier “Y”’) or re-opening prints (as indicated by qualifier “O” or “50n the raw data, MSRV estimates volatility
at 4,183.29% which drops t067.88% after removing the spurious data records. QRV, on the otaadhagain enjoys
remarkable robustness to these outliers and estimateilityokst 63.59% on the raw data and &2.90% on the cleaned
data.

Averaging over all days in the sample (excluding October2DD7), we compute a return volatility 67.32% with
MSRV and37.15% with QRV*. In stark contrast to our previous illustration with dailgtd and the studies by Andersen,
Bollerslev, and Diebold (2007); Corsi and Rend (2009)keraJohannes, and Polson (2003); Huang and Tauchen (2005)
amongst others, we now find that less than 1% of total vanatan be attributed to jumps! This is rather surprising
particularly because we are considering here a single ststéad of a well diversified index like the S&P500 and cover
a period that includes the exceptionally turbulent 2008.rédwer, because some of the larger deviations between QRV
and MSRYV in our sample are due to further spurious data poi@gail to identify a single instance, where a true jump in
the price is observed at this frequency. Hence, this rasequestion whether previously identified jumps in the ditere
are in fact actual jumps in the price, which become difficolidentify at ultra-high frequency due to for instance marke
microstructure noise or, on the other hand, whether thegiarply a consequence of (sparse) sampling and vanish when
moving to tick-by-tick event time. We argue the latter andyidie anecdotal evidence, which suggests that price jumps
identified at a low sampling frequency may in fact be burstsadtility. This logic is also what underlies the family
of jump tests developed by Ait-Sahalia and Jacod (2009heha true jumps can only be identified by increasing the
sampling frequency to the limit.

Consider April 24, 2007: an important day for AAPL with the SHropping tax fraud charges against CEO Steve
Job$, and a quarterly earnings announcement to be released oiltveing day. Panel A of Figure 7 plots the intra-day
price path at a conventional minute frequency, and we observe a temporary 2% drop in giréze with an instant
recovery around 13:30. The widely used BPV jump test siatisthighly significant at-6.8 (RV is 41.2% and BPV
32.4%) and unequivocally identifies this day to contain at least jump. Contrast this with Panel B of Figure 7, where
we plot the AAPL share price over the one hour window from B2 13:45 at ultra-high trade frequency. Now, the

largest trade-by-trade move is orfl§.13 at a price of aroun@92 or merely14 basis points. At the same time, more than

"NASDAQ Market Data Distribution (2008) describes this dfied as “Market Centers will have the ability to identify régr trades being

reported during specific events as out of the ordinary by iaglipg a new sale condition code Yellow Flag (“Y”) on each saction reported.”
8See http://www.sec.gov/news/press/2007/2007-70.htm.
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Figure 6: QRV with “noisy” AAPL trade data.
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Note Day-by-day QRV and MSRV estimates from unfiltered ticktlnk trade prices of AAPL over the period May 1, 2006 through
December 30, 2008. QRMs calculated usings = {0.80;0.85;0.90;0.95}, m = 240, and K = 15. MSRV is calculated using the
optimal number of subsamples as in Eq. (32). Estimates aegsed as annualized standard deviation. The thin dastesdn Panel B
mark the region where MSRV and QRYV differ by more than 25%. WI&RV estimate for 2007.10.11 is 4,183.29%, but to presdrge t
scaling of the graph it is capped at 150% (as indicated by ritosv

one-third of the total daily volume was traded in this onerh@indow. On these data the MSRV and QR¥stimates
closely agree at0.4% and29.8% respectively. Taken together, the hypothesis that theseataurst of volatility around
13:30, which is mistakenly identified as a jump at lower frermey, seems the more plausible one. This argument can be

supported further by noting that the New York Stock Exchangeich actively makes markets in AAPL, contractually
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obliges their designated market makers to maintain a falraaderly market which, as highlighted in NYSE Rule 104,
implies “the maintenance of price continuity with reasonable deptiSee Hasbrouck (2007) for further discussion on
this.

The suggestion that price jumps are less common than pdyithought does not in any way negate the importance
of QRV or other jump-robust RV measures. Firstly, QRV is rgthoot only to jumps but also to outliers. As we have
seen above, outliers do occur in high-frequency data andotaiways be filtered out perfectly based on trade qualifiers
(this is particularly true for less recent non-US data). yThee therefore a challenge to the econometrician and here
the value of QRV is indisputable. Secondly, numerous sotemaemain where true price jumps can be observed, for
instance over intra-day auctions, lunch breaks or whemitibreakers or volatility auctions are activatédAlso, the
market maker’s precise obligation changes by exchangeegatdless of this, its influence is not without limit so that
with exceptional news releases or large market orders itigquid market, jumps can of course still occur. Finallymjps
can be commonplace when moving beyond equity markets gesddmn a market maker charged with the obligation to
maintain price continuity. Consider, for example, elextyi markets, where storage is costly, power plants candat
sudden unpredictable swings in demand for energy — ofteeXogenous reasons — can lead to substantial temporary

price spikes (see, e.g., Bessembinder and Lemmon, 200gstafhand Wang, 2004).

5 Concluding remarks

In this paper we develop a new quantile-based realisedneaianeasure that is consistent for the integrated variance
and robust to jumps and outliers. A modified version, basefdreraveraged data, is also introduced and we show that
in the presence of microstructure noise it retains comsigtand attains the best possible convergence rafé df“.
Importantly, our estimator is highly efficient making it thiest estimator of integrated variance in the literature iha

at the same time, efficient, and robust to both jumps, ostléard microstructure noise. From a practical viewpoint,
the estimator is easy to implement and is relatively ingmasio the particular choice of tuning parameters. Extensi

simulations and empirical applications illustrate theedbent performance of our estimator.

9NYSE Rule 104 on the dealings and responsibilities of a deséyl market marker (DMM) state$He function of a member acting as a DMM
on the Floor of the Exchange includes the maintenance, iisas reasonably practicable, of a fair and orderly markettbe Exchange in the
stocks in which he or she is so acting. The maintenance of afa orderly market implies the maintenance of price caritinwith reasonable
depth, to the extent possible consistent with the abiligaoficipants to use reserve orders, and the minimizing efaffiects of temporary disparity
between supply and demand. In connection with the maintenaha fair and orderly market, it is commonly desirable thahember acting as
DMM engage to a reasonable degree under existing circures&in dealings for the DMM'’s own account when lack of priceticwity, lack of

depth, or disparity between supply and demand exists oasomably to be anticipatet(source: http://rules.nyse.com)
0For example, the German trading platform Xetra has daihgidfy auction between 13:00 — 13:17 for the various segn@he Tokyo (Hong

Kong) stock exchange shuts down from 11:00 — 12:30 (12:30:30)4The NYSE uses a circuit breaker where a 10% intra-dayenmothe DJIA

triggers a market wide trading halt of up to one hour.
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Figure 7: Jumps or burst of volatility?
Panel A: price path at 5 minute frequency Panel B: price petitade frequency (12:45 — 13:45)
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Note Panel A plots the price of AAPL on April 24, 2007 at a 5 minuteguency (using last tick interpolation on trade data).ePBrplots
the price at trade frequency from 12:45 to 13:45.

The methodology outlined in this paper can be extended entiows directions. For instance, it is possible to develop a
joint distribution theory for RV and QRYV allowing the consttion of a formal jump test in the spirit of Barndorff-Niels
and Shephard (2006). Also, it is possible to modify QRV todoice jump and noise robust estimates of the integrated
quarticity, a key quantity when making inference aboutgraéed variance and testing for jumps. With these tools
available, it may then be interesting to revisit some of tmpieical work on non-parametric jump tests (e.g. Ait-Seha
and Jacod, 2009; Barndorff-Nielsen and Shephard, 2006st€hsen and Podolskij, 2006; Fan and Wang, 2007; Jiang
and Oomen, 2008; Lee and Mykland, 2008) and, inspired by ypirical findings, reevaluate the role that jumps play
in financial equity price dynamics (e.g. Andersen, Bollersind Diebold, 2007; Eraker, Johannes, and Polson, 2003;
Huang and Tauchen, 2005). Recent work by Ait-Sahalia anddJ&009), Barndorff-Nielsen, Shephard, and Winkel
(2006) and Woerner (2006) has shown that bi-power variatiarot only robust to finite activity jumps (as considered
in this paper) but also to certain infinite activity jump sifieations. An investigation of the properties of QRV in such
a scenario might be of interest and allow for further congmarito alternative jump robust estimators. Finally, in this
paper we maintained the assumption of i.i.d. noise but tlag be relaxed to allow for dependent noise (as studied by,
for instance, Ait-Sahalia, Mykland, and Zhang, 2006; Blarff-Nielsen, Hansen, Lunde, and Shephard, 2008; Jadgpd, L
Mykland, Podolskij, and Vetter, 2007). All the above is wa#lyond the scope of the current paper and will be left for

future research.
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A Summary statistics of trade data

Table 3: Summary statistics of trade data (2008)

# of observationgv noise ratioy

universe Q5 Q50 Q95 Q5 Q50 Q95

Panel A: US

S&P600 157 751 2,417 0.10 0.34 0.73
S&P400 604 1,749 4,710 0.12 0.36 0.76
S&P500 1,477 4,174 12,355 0.14 0.37 0.93
S&P100 2,945 7,338 20,707 0.17 0.40 1.06
DJ30 4,701 9,562 23,686 0.22 0.45 0.97
Panel B: Europe

DJ Stoxx Small 200 158 772 2,225 0.25 0.59 1.15
DJ Stoxx Mid 200 352 1,419 3,689 0.30 0.63 1.16
DJ Stoxx Large 200 999 3,634 11,169 0.34 0.66 1.28
DJ Stoxx50 3,161 6,975 15,860 0.40 0.71 1.40
Panel C: Asia-pacific

S&P ASX200 199 744 2,957 0.30 0.74 1.75
S&P Topix 150 370 1,070 2,639 0.34 1.03 3.59
Hang Seng 465 1,260 4,090 0.39 0.88 2.26
Panel D: Emerging markets (BRIC)
Ibovespa (Brazil) 261 1,130 5,617 0.32 0.66 1.21
DJ Titans 10 (Russia) 543 6,066 22,230 0.58 1.03 1.29
DJ BRIC 50 (India) 726 2,098 4,987 0.16 0.49 0.90
DJ BRIC 50 (China) 1,177 2,328 5,197 0.60 1.17 2.96

Note This table reports the 5th, 50th, and 95th percentile oftlmaber of observations (i.e. number of trades per @déygnd the

noise ratioy? = w?/(IV/N) computed across all names in each universe and all daystavgetiod Jan 2, 2008 through Dec 31,
2008. The index constituents of January 2009 are used.

To motivate the choice of parameters used for the simulatioiBection 3.3, Table 3 reports summary statistics of thebar
of intra-day trade price observations and the level of microstructure noise as measured by themat®? = Nw?/IV (see
Oomen, 2006b) for various stock universes. The data is tikemReuters DataScope Tick History and covers the perindaly 2,

2008 through December 30, 2008. For the US and Europe, tbetios covers small-caps (S&P600, DJ Stoxx Small 200), caips
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(S&P400, DJ Stoxx Mid 200), large-caps (S&P500, S&P100, ExkSLarge 200) and blue-chips (DJ30, DJ Stoxx50). For the
Asia-pacific region and emerging markets, the universesrdavge-caps only. The tick data are filtered on trade candif only
trades from the primary exchange are includednd trades with identical millisecond precision timeaspeare aggregated into one
observation with a volume-weighted average trade pricéthi8 is done to maximize the cleanliness of the data. To admfhe
noise ratio (for each stock and day in the sample), the ntizrcisire noise varianae? is estimated as the negative of the first-order
autocovariance of trade returns following Oomen (2006lme TV is proxied by an ad-hoc implementation of the realidgalrett)
kernel of Barndorff-Nielsen, Hansen, Lunde, and Sheph20a8) with a bandwidth parameter equal to five as suggest&atheral
and Oomen (2008). The summary statistics in Table 3 are cted@gcross all names in the universe and days in the sampkeisTh

justified asN and~ are reasonable stable over the sample period.

B The QRV with absolute returns: an alternative formulation

In the main text, we defined QRV based on signed returns ugimgnetrized quantiles. Here we give an alternative forniomedf
the QRV based on the quantiles of absolute returns and shewvthese specifications are related. We base our expositidheon
subsampled version of the QRV, as it can be linked to some etlienators proposed in the literature, but it should bardleat we
could equally well work with a blocking QRV.

Define
g (i \) = 2 (\/N|Di,mX|) . forae[o,1).

K2
As we are now dealing with absolute returns, there is no neegrnmetrize;****** (i, \). We write

QRV]'\l,bS’SUb (m,x7 a) = a’QRV]'\l,bS’SUb (m, ), (33)

with the jth element of) RV2***“* (1, X) given by:

QRvabs,sub( A ) 1 ]\in qzb&SUb(ma /\J) for \: € [O 1) (34)
m i) = .
YN —m ) e
andj = 1,..., k, wherev?* (m, \) is defined as:
2r
i () = B | (101m) | @)

The consistency and central limit theorems derived for QBSEol on signed returns, extend directly to the case whersevalsolute

returns by replacing,.(m, \) in Eq. (8) withv2%*(m, \) above and; (m, \;, A;) in Eq. (10) with

VS (. i) = E {(|U|(Aim))2(|U|(,\jm))2] . (36)

HFor the US in particular, and Europe to lesser extent, thisessses the average number of trades per day as large ficaofizolume are

executed on competing exchanges and multi-lateral trgulatfprms.
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The corresponding asymptotic constants forithe~ oo limit of Proposition 2 are now:

yP) = lm v (m, ) = d,
Vs (g, Aj) = 77351100 v (m, Ay, \j) = dy,dy,,
A By Ni(1T =X\,
Gabs(A)ij = lim GabS(m7 )\)” _ ( J) ’
! m—o00 : p(d)\l)p(d)\])dA1 d)\j

with \; < \;, whered,, andp denote thev-quantile and density function of the;-distribution. With noise, the results presented
for signed returns also extend to the formulation basedlatespeturns. The only substantive change would be the sporeding
redefinition of Eq. (30), i.e.

ol s Ae) = c0v( g3, (1S1), 93,0, (IT1))-

It is quite intuitive that) RV*> andQ RV"**"" are closely related, when the quantiles are chosexf%is= 2), — 1. While it is
hard to formalize this intuition, in unreported simulatowe find that the performance of these estimators is indistéable. In
them — oo limit, however, we can be more precise and prove their etgrie. Consideh = ) for A € (1/2,1). Then it follows
thatUxm) 2 ¢y asm — oo, wherec, is the \-quantile of N (0, 1). On the other handl/|(2x—1)m) 2 ¢y, and since, > 0 for
A€ (1/2,1), [Uamy| @and|U|(2x—1)m) have the same asymptotic behavior. By symmetry of the nodisgibution, it also holds
that |U - xm+1)| 2 ¢\, and thus(|Uam)| + [Um—xm+1)1)/2 and|U]2x—1)m) also have the same asymptotic behaviour. It now
follows that the expressions for the asymptotic variande@two estimators are identical for — oo, when the quantiles are chosen
this way.

There are, however, two important ways in which the QRV eattimbased on absolute returns is distinguished from itateou
part on signed returns. First, by a suitable choica®f it is possible to discard only a single observation per bl@cl. m = 100
with \?* = 0.99). This allows for the use of observations in the extreme &ilhe cost of losing robustness to outliers. Second, the
estimator based on absolute returns nests the MinRV and Wpdsposed by Andersen, Dobrev, and Schaumburg (2008) agaspe

cases. Specifically, with = 2 and\*** = % we have MinRV and withn = 3 and\*** = % we have MedRV.

C Proofs

In this part of the paper, we state the proofs of the theorawengn the main text. Throughout, we use the approximation

AivX ~ 0'1;1 AiVW

Thus, to prove our asymptotic results we first replACeX with i ANW and then show that the error caused by this approxima-

tion is asymptotically negligible.
Let us fix some notations. We set

gr = \/N(O'%AkNW)

(i—1)ym+1<k<im

and define
w™(N) = G () + G a1 (57

Before we start to prove the main results, we state a simpienha.
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Lemma 1 The functiory, defined in(4) has the following properties:
1. gi is continuous.

2. g is differentiable on the sdtr € R™ | z; # z;,1 <i < j < m}, thatis

1

€

9k (x +ey) — gk ()] = Y= €\ 0,

wherey € R™ and

kx =iwithz; = T(k)-

In the following we assume without loss of generality that, «’, o’ andv’ are bounded (for details see e.g. Section 3 in Barndorff-
Nielsen, Graversen, Jacod, Podolskij, and Shephard, 2BgEover, the constants used in the proofs will all be deddy C'.

Proof of Theorem 1 Here we show the consistency @RV (m, \, ). Sincezl’;:1 a; = 1 itis sufficient to prove Theorem 1 for
A=Xe€ (1/2,1)anda = 1 (i.e. k = 1). In this case we use the notati@RVy (m, \) = QRVx(m, \, «). First, we define:

&= vk ()w!"™™ (),

Note that:

SO

%;E [gf | }‘%} s, /01 o2du. (37)
Now, by setting
=g —E g | Fual, (38)
we get:
B [l i) = 22 Dy,
Therefore, |

1 & .
=D E | | F] Lo
=1

Hence, the assertidi, - fol o2du follows directly from (37). Now, we are left to prove that

QRVn(m,\) — U, 2 0. (39)
Note that ) o
_ I/]:m /\ E n
QRVi(m, ) = Up = == Z;c :
where

¢ = g™ () = wl™™ (N).

2
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Now, we use the decomposition

G =G+ (2),
where(? (k), k = 1,2, are given by

G (1) = G (VNDPX) = 63, (8),

(40)
¢ (2) = 2 amer (VNDIX) = 62y (B0 (41)
In the following, we show that
" S~ gy 2 42
The corresponding result fgf* (2) can be proven similarly. We begin with the following Lemma.
Lemma 2 For z € R™, we define a norjz|| = >"/", |zx|. Then we have
1 n
~ Y E[|VNDPX - 87]2] — 0. (43)
=1
Proof of Lemma 2 The boundedness of the drift functierand||z|[* < m "), |z |? yield

i—1 k
TN

/ |oy — o1 |2du] )
‘L;lJrkl;l n
i
w
/ |au—ml|2du]> .
i—1 n
=

1
mC <l + mE/ low — a[nu]/n|2du> )
n 0
2 is proved by Lebesgue’s theorem.

Becauser is bounded and cadlag (and@p— (. 2 0 with an exception of countably mamye [0, 1)), the assertion of Lemma

m n 1 G
E[H\/NDi X - ||2} < mC <E+N;E

1
—mC<——|—NIE
n

Hence, the left side of (43) is smaller than

Next, we set

ma (€) = sup{|g3,, () = G3m W) | : [lo = yll <€ ||z]] < A}
Foralle € (0,1] andA > 1, we obtain the estimate

¢ (1) < C(ma (@ + ALy ywprx— =)

+ (gim (\/NDQ”X) + Bm (ﬁ?)) (1{\\\/ND;"XH>A} + 1{|Iﬁ?II>A}))

< C | ma(e)

€2

3
| AUVEDPX I (IVNDrX| -+ 1171

A
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The boundedness afandc and Burkholder’s inequality imply that
E[IVNDPX|P| +E[187117) < Gy, (44)

forall p > 0. This means that

n

SRl M0 <mA )+ + 2y S E[IVNDPX —ﬂmﬂ) .

i=1
Becausen 4 (¢) — 0 ase — 0 for every A, we obtain by Lemma 2

n

1
=~ _Elgmi—o, (45)
i=1
by first choosingA large, there small and finallyn large. Then (42) holds and the proof of Theorem 1 is complete. |

Proof of Theorem 2 We proceed with a three-stage proof of Theorem 2. First, weea CLT for the sequendg, = (U},...,UF)
with

= I, ) = vk 0) () )~ E [ul"™ ) | P ]).
=1

More precisely, we show thaf,, 9 MN (O, @(m,X)IQ). Next, we again consider the calse= 1, A = \. The second step is to
define a new sequence:

Ul = ul—,}n(x)\/gznj (qi (m,\) —E {qi (m, ) | }';D ,
=1

and show the result

U —-u,2o.

Finally, in part lll, we prove the convergences:

\@i (Vf,fn(A)E [qi (m, A) | f%] ~E [5; | }'_D 2,
i=1

\/g (z:E G —/Olaidu> 2.0,

Clearly, the afore-mentioned steps imply the assertionhafofem 2.

Proof of part | Notice that:

n

m . p v (m,Aj, N) — v (m, Aj) vi (m, Ar) /1 4
— E |n? P | Fica| = m o du.
. g [ @) | Fer| N ERRTACEY o

foranyl < j,1 < k. Moreover, sincéV < _w andwgn’m) (A;) is an even functional ifi’, we have

E [n?(j)A?W | .7-';} —0, 1<j<k
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Next, letH = (H,),c(, ,; be a bounded martingale ¢, 7, (%), , P), which is orthogonal taV’ (i.e., with quadratic covariation
[W, H] = 0, almost surely). By the Clark’s representation theorera,(egy., Karatzas and Shreve, 1998, Appendix E) we obtain

i

i) =ots [7 ErGaw.

n

for some predictable proces¥'(j). Then,

\/giﬂi s | F] =0,

becausglV, H] = 0. Finally, stable convergence in law follows by Theorem I2&in Jacod and Shiryaev (2003):
— ds J—
Un, = MN (0,0(m,\)IQ),
which completes the proof of part I. O

Proof of part Il We begin by setting

57 = vty 2 (3 m. ) =0l ()
U;—Un:zn:(ziﬁ—]E{dﬂf%D.

i=1

and obtain the identity:

To complete the second step, it suffices that

E [|57'*] — 0.
1=1
We omit the proof of this result, as it be shown by using eyeattte same methods behind the proof of the convergence inir{45)
Theorem 1. O

Proof of part lll It holds that:

\/E(ZE &1 7] _/Olagdu> ~va 3 [ (ot - o)

Exploiting the results of Section 8 (Part 2) in Barndorffeléien, Graversen, Jacod, Podolskij, and Shephard (26a&)li(thatm is
a fixed number), we find that, under condition (V), the coneeg

\/g (zn:]E €| Fea ] - /Olagdu> 20, (46)
i=1

holds. Now, we prove the first convergence of part lll stateava. Under condition (V), we introduce the decomposition

VND'X — B = pi (1) + ' (2),
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wherepu? (1) andu? (2) arem-dimensional vectors with components defined by

i—1 k i—1 k
- tw - tw w
(1 (1)), = VN (au—ag)du—i—vN (/ alds
i1y k-1 n i1y k-1 izl k=1
n N n N n N
u u
n / (ot =) W, + / (v = v ) dBL ),
%Jrk;]l n %Jrk;l n

(1 (2)), = \/N(%ag o, /%H@ (Wu - WH) dw,

n n 1—1 k-1 n
= T~

o / (B~ BLL) ),
i —1 n

n i k
-t~

fork =1,...,m. Moreover, we decompose
Vi N)ai (m, ) = €8 = 07 (1) + 67 (2).
where
07 (1) = i V) (63 (VIDIX) = g3, (87 + 11} (2)
+ 02 s (VEDIX) = G20 s (87 + 122 (2)) ),
07 (2) = Vi ) (93 (B + 1 2)) = 63,0 (B)
0 m (B + 1 (2)) = g (B1) )-

Using the same methods as for the proof of (45) in Theorem Dhvein

JES Rl -0

\/giﬂi [9? (1) | ]—"%} 2.

which implies

Thus, we are left to prove that
m n n ) p
’/E glE [91- (2) | R;l} = 0.

Now we apply Lemma 1 to the terfi# (2) with e = N~'/2 and

mn

x =07,

y=VNup (2).
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Notice that agr does not vanish, we hayg;’), # ("), forall 1 < k < I < m almost surely, and consequently the assumptions of

Lemma 1 are satisfied. Finally, we obtain the stochasticresipa

[ZIE 07 2) | Fea | =207, [Z}ngmﬁ" (uzu)(A ;

+ gmamir (B7) (2 () | Fia| 40, (1),

(m—Am-+1)*
where we recall that\m) = is defined by

(Am)x =k with (3]), = (ﬁzn)()\m) :
Now (W, V) 4_ (W,V)and

m (B (1 (2 12— A Yy (1 (2
Do () (@), Fgmoamn O (@)
is odd in(TW, V'), which implies that
E|gam (B) (1l (2 m—Am 2 1| =0. 49
o (51 (10 2)) | Fgmoamer (B (@) P (49)
Consequently,
S ZE 9" 2) | Fis } 0,
=1
which completes the proof of part 11l and, hence, Theoremlgd$o |

Proof of Proposition 1 Here we show that the CLT in Theorem 2 is robust to the presehfipite activity jumps. We consider a
processX of the type (12). LefX ¢ denote the continuous part &f and set/,, = {1 < ¢ < n| X jumps on the interva[l%, %]}.

Again it is sufficient to assume that= 1 and\ = X € (1/2,1). Now we use the decomposition

VN (QRVy(m,\) —IV) =N (#m > aim,\) - IV) 4+ — Z gi(m, \).

vi(m, A) N 25 VN &
Recall thatX has only finitely many jumps on compact intervals (a.s.)hgosecond sum on the right-hand side is finite. Therefore,
the first term on the right-hand side converges stably toithi dlescribed in Theorem 2 (since this is a statistic based 6). We
need to show that
\/LN%‘("% A) 0
foranyi € J,,. Itis well-known that the probability of having two jumpsthin the interva[%, %] is negligible, so we assume that
X jumps one time at € [, 1] for somei € J,,. Recall thay;(m, \) = g3, (VNDX) + g2,_ .41 (VNDX). Due to (44)
we have thatfA X, = X, — X,)

1 C moel2 D
\/—Nqi(m’ /\)1{\AXS|Z2H\/JVD§”XCH} = \/—N”\/NDi Xl =0,
since on{|AX,| > 2|[VND?X¢||} the jump is contained D7 X )0y or (D" X)(my, Which both do not appear ig;(m, \)
because\ € (1/2,1). On the other hand, we have that

Lo B O(II\/ND;.nxcH?HAXSIQ) |Dr x|
— l m’ m c [— -
\/Nq {|AX,|<2||[VNDIXe||} VN|AX,|?

again due to (44). This completes the proof of Proposition 1. |
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Proof of Theorem 3 In the following we assume that the procegds continuous (the robustness to finite activity jumps isixgho
as in Theorem 2). Here we show the CLT for the subsampledstitaf RV 5> (m, A, ). Note that the summandg®®(m, \,)
(1 < j < k) inthe definition of@ RV$*(m, A, o) are m-dependent (i.@;“ (m, ;) andg;**(m, A;) are correlated fofi — | < m),
which makes the proof more complicated.

We will apply “big blocks & small blocks”-technique to bredkis dependence. More precisely, we will build big blocks of
sizepm, which will be separated by a small block of size This procedure ensures the (conditional) independenbgdilocks,
whereas the small blocks become asymptotically negligilblen we later lep converge to infinity.

For this purpose we require some additional notationst,5e$

a;(p) = i(p+ 1)m, bi(p) = i(p+1)m + pm,

and let4;(p) denote the set of integelraiith a; (p) < I < b;(p) andB;(p) the set of integerbwith b;(p) < < a;+1(p). Furthermore,
let jn (p) denote the largest integgmith b, (p) < N. Notice thatjy (p) = O(N/p). Finally, we setn (p) = (jn(p) +1)(p+ 1)m.
Next, as in the proof of Theorem 2, we define an approximatiai,g,, X by

D, = (U%A;V W)

i1<j<i+m-—1

with [ < 4, and we set
@ (m, ) = g3 (VNDL ) + g amst (VND] ).

We further set
TN = g2 (m, A) — Elgg it (m, \)|F L],
and
w8 Vi 4 € 4ilP)
TV =3 mom ¥ ey I €B0)

—l/l(rln,)\) NTﬁ-N(p)a Jj>in(p)

Finally, we define

bj(p)—1 aji1(p)—1
C(p, 1)5\[ = Z T{V ) ((p, 2)5\] = Z TlN )
l=a;(p) 1=b; (p)
and
Jn(p) Jn(p) N
MM => (0, NEVN=>Y @2y, ceV= > TV
=0 j=0 J=in(p)

Notice that the big blocks are collected i (p)”, the small blocks are contained M(p)" andC(p)" is the sum of the border
terms.
Recall that the quantitie®/ (p)™¥, N (p)™, C(p)" are constructed from the approximations of the true retu@esisequently, we

obtain the decomposition

VN (QRV* (m,\) —IV) = VN (M(@)N + N(p)N + C(p)V) + (), (50)
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wherevyy (p) stands for the approximation error whén ,,, X is replaced byDﬁ_’m (plus the error that is due to the replacement of
1/(N —m+ 1) by 1/N in the definition of’fN, which is obviously asymptotically negligible). Exactlg & Part Il and 111 of the
proof of Theorem 2 we deduce that

lim limsup P(|yn(p)| >€) =0

P00 N—oo
for anye > 0. SinceC(p)" contains a a fixed number of summands (for fixeahdm) and each summand is of ordetNV, we also
obtain

lim limsup P(VN|C(p)™N| > €) = 0.

P—0 N—oco
Now notice that the summands in the definitiondfp)”~ are uncorrelated. Consequently, we obtain
C
IE[ N(p)N 2} <=
IN®TI| < o5
which implies that
lim limsup P(V'N|N(p)V| > €) = 0.

P—x Nooco
We are left to prove the CLT fot/NM (p)V, whereM (p)N = (M (p)Y,..., M (p)Y) and eachM (p)V is associated with; €
(1/2,1). Set

Jin(p)
= Z ((p, 1))

to emphasize the dependence ¢, 1) on\;. Asin Part | of the proof of Theorem 2 we obtain

Jn (p)
NS B )N AW () | Fey] = 0
j=0
Jn (p)
Nl/zz JZAH() |Fa;m] =0,
N

whereAY(p)jV =Y, — Y., forany procesy’, andH is a bounded martingale that is orthogonalko A straightforward
- N N
computation shows that, for any fixeg

Jn(p)
N Z E p’ )gl<(p’ )g 1|‘7:aj(p)] - GSUb(m )‘)ll( )IQ
7=0
with
sub b i B\
0", Dalp) = L (L6(m. Dy
2 — k (k) (k)
kK 2 2 k) |2 k 2

+V1(m, Ai)vi(m, \p) ;(1 pm )COVOU(’”A )| + |U(m mAi+1) % |UmAl "+ |Um m)‘l+1)| ))’

wherelU (9 andU *) are defined in Theorem 3. Now, we deduce by Theorem IX 7.28dadland Shiryaev (2003):
VNM(@p)N %Y, = MN (0,0 (m, X)(p)IQ)
for any fixedp. On the other hand, we have thgt > Y = MN (0,0°“*(m,X)IQ) whenp — oo. This completes the proof of

Theorem 3. [ |
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Proof of Proposition 2 First, recall that/ 2 ¢\ asm — oo. Thus, we immediately obtain the identities
(A =263, r1(Ai, Aj) = 4c§ic§j.

To prove the other identities we derive a joint CLT (tﬁf((fzm), U((fzm)) for Ay > Ay (and both are in the intervél /2,1)). Let ®

denote theV (0, 1)-distribution andp its density. The crucial step is the so-called Bahadur seprition that says:

o /\1 — Fn(C)\l)

U(ffm —Cx = Slen) +O0(m~**logm) a.s.,
1

where
. 1 &
Fn(c)\l) = E Z 1{U¢§CA1}
=1

is the empirical distribution function. Clearly, we also/ba

Ao — F(ex,)® _
gk ey, =227 T\ T a3/ 0em, a.s.,
(A2m) Az b(cx,) ( gm)
where
1 m+k
> k
F(ex,)® = - > e,y
i=1+k

Now we apply the CLT for empirical distribution functionssgume thak /m = .+ o(m='/2) (1 € [0, 1]). We obtain the following
CLT:
i1 Lviger, ) — M
vm %Z%k“ Mooy =(L=mh g )
0 Dok HUi<en,) — (L= 1)A2

m+k
T NUien, ) — HA2

with
(1= \) 0 0 0
. 0 (I =Ml =A1) (T —p)A2(l =) 0
0 (I—mAa(1 = A1) (1= p)A2(1 = A2) 0
0 0 0 pAa(1 = \2)

Next, we apply the\-method for the function:

1 1
Fy.20) = (G @+ ) gy e w))-
Clearly,
EowilE cwilL 0
R

dlexny)  dleny)
and we obtain the CLT (sé?f = D f(uA1, (1 — p)A1, pAe, (1 — p)A2)):

U((g)m) —Cx d /
O % N(0,Df £ (DfY)
Ulxgm) ~ Cx

Vvm
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with

2 e
2 (ca d(cay )d(en
Df X (Df)) = ' e
FE D)) (I—p)A2(1=X1) A2(1—Az)
dlexy)plen,y) $2(cry)

Now apply again the\-method for the functiorf (x, y) = (22, y?):

e, M (1=x) cxgexy, (=) A2(1-X1)
NG Ul =3 ) 4 n [0 Pl o) olens)
U2 =& B PN PO VR I EP%
2m 2 dexg)dleny) % (cxy)

From the latter CLT we deduce that
(I=X1)(2X2 — 1)

’ P(ex)d(erns)en ey

ON)12 =

Finally, recall that

m—1
_ 1 _
sub ot (0) 2 (0) 2 2
O (m iz = - O(m, N1z + 5 Al)yl — ; 1: COV (U ) 12 4 U1y 2 U |2+ 1Oy 2)

m

Clearly

m—1
1 — 1 k
—O(m, A 0 ) — 263, — 1——)—1/2
(m, )12—> s Vl(m, )—> Cx; m;( m)_> /

m

asm — oo. Hence, for the tern®*“*(m, \);» we asymptotically obtain (by replacing agairby k/m):

(1= M) (2% — 1)
¢(C)\1)(]5(C)\2)C>\10)\2 .

@sub(,,n’X)12

Proof of Theorem 4 As in Theorem 1 it is sufficient to consider the 1-dimensiazsek = 1, A = \ € (1/2,

ﬁ*N N1/4{0 i z+(j71)K +E£Yk(j71)K};'n:1 )

and define

W] "™ = B (BN) + g s (B7Y).
First, we state the following Lemma, which is crucial for guoofs (especially for the CLT).
Lemma 3 Assume thaE (u}) < co. Then it holds that
Efuw; "] = vi(m. M(ewo?, + 7-0%) +op(N )
N N

uniformly in.

Proof of Lemma 3 By representation (26) we obtain the (conditional) conearg in distribution

BN F <N, <O, diag(cd@ai + in 01/)20 + —w2)>.
N N

P1 U1
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1). Forl < iwe set

(51)



Denote byP2 the distribution of the left-hand side and fy, the distribution of the right-hand side (ly, we denote the Lebesgue

density of®,,). Now we apply the Edgeworth-expansion result presentédliriri (see Theorem 6.1 and 6.2 therein):

‘/ (Bom + GrrAms AP = @y = NTVAP, 1) = 0, (NTH),

which holds under the conditidf (uf) < oo. The quantityP,, ; is the second order term of the Edgeworth-expansion thaaihas
odd density,, ; that is given by

Pa(@) == D 2D 6u (),
lv|=3

wherev = (14, ..., v,,) is @a nonnegative integer vectdr( = v1 + - - - + v, v = 11! - 1, 1), x,, are constants that depend on the
cumulants of the marginal distribution of the procesandD” = /0" - - - 9/0x;. Sincegs,, + g2, _xm1 IS @n even function,

we deduce that
[ G+ 82 ami)iPa(1) =0

(because,, ; is odd). Thus
Bl " F ] = vilm, N)(eto%, + =)+ op(NTH1),
N 1
which holds uniformly ini because is bounded. This completes the proof of Lemma 3. |

By the same methods as presented in the proof of Theorem &.($e@2)) we conclude that

N—m(K—1)
QRV ) = e =D %7 2w ©2
Moreover, by Lemma 3, the convergence
1 1 N—m(K~1) o e
vi(m, A) ctha(N —m(K — 1)+ 1) ; E[wi( , )|’7:%] SV + 12)21% (53)
holds. In view of (52) and (53) we are left to proving
1 1 Ny «N P «N *(n,m) *(n,m)
NN TR DT X 0w = B ) (54)

=0

Observe that due to the construction®f', the boundedness efandE (u}) < co we obtain the estimate
Elp Nl < O, i gl <m(K - 1), (55)

whereasE[n; V3] = 0 for [i — j| > m(K — 1). Sincem is fixed, we deduce the estimate

N-m(K-1)
1 1 N2 C
; < —
Eﬂul(m,/\) (N —m(K — 1) + 1) ; i ”— K’ (56)
which completes the proof of Theorem 4. |
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Proof of Theorem 5 We assume that the proce&sis continuous (the robustness to finite activity jumps isvahas in Theorem
2) and show the CLT for the noise robust statig§&Vy; (m, A, o). The summands; (m, ;) (1 < j < k) in the definition
of QRV"*(m, X, a) are nowm(K — 1)-dependent, so we have to apply “big blocks & small blocksthinique once again to
break this dependence. More precisely, we will build bigckkof sizepm (K — 1), which will be separated by a small block
of sizem(K — 1) (again this procedure ensures the (conditional) indepmrelef big blocks, whereas the small blocks become
asymptotically negligible when we later Igtconverge to infinity). Quite often we will use the same natasi as in the proof of
Theorem 3 to emphasize the strong parallels between theséspr

First, set

ai(p) =i(p+ 1)m(K — 1), bi(p) = i(p + m(K — 1) + pm(K — 1),

and letA;(p) denote the set of integeiswith a;(p) < I < b;(p) and B;(p) the set of integer$ with b;(p) < I < a;+1(p).
Furthermore, lefjy (p) denote the largest integgrwith b;(p) < N. Notice thatjy(p) = O(v/N/p). Finally, we setin(p) =
(in(p) + 1)(p+ Dym(K - 1).

Next, we define an approximation FTEVY by

Diy = {o L Wik on—1 + Tonya—n Vi
with [ <4, and we set

G51(m,2) = G (NYD) + 62, smia (VD).
We further set

Tﬁfl = qzﬁ,l(ma /\) - E[q;l(mv )‘)lj:l ]’

N

and
1 1 N . .
T N Ly J € AiP)
N _ 1 1 N .
Tj - v1(m,\) C’l/}gNTj,bi(p)’ J € Bz(p)

1 1 N - .
) N Livin(p)r I 2 N (D)

Finally, we define

bi(p)—1 aj+1(p)—1
P )Y = > T, oY= > T,
l=a;(p) 1=b;(p)
and
i (D) in(p) N
MEN =3 ). NV =3 w2y o= Y T
) 7=0 j:in(p)

Notice that the big blocks are collected i (p)”, the small blocks are contained M(p)"¥ andC(p)" is the sum of the border
terms.
Recall that the terma/ (p)™, N(p)¥, C(p)" are constructed from the approximatid_agl. Thus

c;i/lfz - IV) =N (ME)N + NN +C)N) +w(p) (57)

N4 (QRVﬁ(m,X, o) —
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where~yx (p) stands for the approximation error WhE)NY is replaced byﬁfl (plus the error that is due to the replacement of
1/(N —m(K —1) 4+ 1) by 1/N in the definition of ¥, which is obviously asymptotically negligible). Now, therwergence

lim limsup P(|yn(p)] > €) =0,

P— Nooo
for anye > 0, follows through the lines of Part Il and 11l of the proof of @rem 2. In fact, there are two additional difficulties that

has to be shown in a different way. First of all we have to pravaler assumption (V)) that

N—m(K—1)

*(n,m ¢1w2 —
Z E[wi( ' )|‘7:%] - (IV+ 2y = op(NV 1/4)
i=0 2

1 1
vi(m, A) cpa(N —m(K — 1) + 1)

(which is the counterpart of (46)). But the afore-mentiomstimate follows immediately from Lemma 3 and (46). The pthe
difficulty arises when we have to deal with the counterpathefidentity (49), which in this case would involve a noisertdand
have a slightly different form). However, this type of idigpremains true, becauséV, V, u) 4 (W, V,u) since the marginal
distribution ofu is assumed to be symmetric around
SinceC(p)" contains at mostp + 1)m(K — 1) summands and each summand is of oiigey, we also obtain
lim limsup P(NY4|C(p)N| > €) = 0.

P—© N—oo

Now notice that the summands in the definitionofp)” are uncorrelated and each summand is of ofdéN. Consequently, we
obtain

B[N < .

which implies that
lim limsup P(NY4|N(p)N| > €) = 0.

P—X N—oco
We are left to proving the CLT foiN'/%M (p)N, where M (p)N = (M (p)Y,...,M(p)Y) and eachM (p)Y is associated with
N € (1/2,1). Set

Jn(p)

Mp)N = > (1Y

j=0
to emphasize the dependence ¢f, 1)5.\7’[ on\; (we also associafﬁfi(l) with ;).

As in Part | of the proof of Theorem 2 we obtain

Jn(p)
NYES B, DN AW (0 [Foy] = 0

Jj=0

whereAY(p)jy =Ys,wm — Y, forany procesy’. Asin Jacod, Li, Mykland, Podolskij, and Vetter (2007) (¢868)) we have
that

Jn(p)

NS B )3 AH p) 1 Foym] 0
j=0

for any bounded martingal that is orthogonal téV'.
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Now notice that (26) implies the identities
V2R 2 ey (L= -1 VogiaNaN] = Lo, (H 22 N ~

NY2EV T = ewn (2 - )+O(K™), NVE@TY] “un, ( - o+ 0K, il <K-1, (58)
where the functionab(u) is given in Definition 2. Whenyj —i| > K — 1 the above covariances aieAssume now thaf > i with
j=i+({(—-1)(K—-1)+dforsomel <l <mand) <d< K —2,anda.(p) <i,j < b,(p) — 1. Due to the identities in (58) we
obtain

E[T = (p )(ll)Tza (p)(12)|’7:azT(m] fmla’a (p)> 7(Al17)\l2)+0 ( )7

wherefy, 1.2.u(A, A, ) IS given in Definition 2 { < I;,12 < k). This implies that

Jn(p)

N1/2 Z E p7 )]l1C(p7 )]l2|faJ(P):|

7=0

—1 —1 m
p D 2V (M) v (N) -1 / /
T 5 > (1 pm Fmtoeu Ny s Aiy) dtdu = T(p)i, 1

=1
Now, we deduce by Theorem IX 7.28 in Jacod and Shiryaev (2003)

VNM(p)N % Z, = MN (0,T(p))

for any fixedp. On the other hand, we have ti@ —Z=MN (O, w? m(A1y e /\k)) whenp — oco. This completes the proof
of Theorem 5. [

Proof of Proposition 3 Due to the polarization identity it is sufficient to prove Position 3 fork = 1, A = X\ € (1/2,1). Recall

(n,m) .

the definition ofw in (51). As in the proof of Theorem 4 we have that

Vﬁz(m )\) N—-—2m(K-1)+1 i+m(K—1)—1
Cl/l%(K—l)(]lV—?)jn’L(K—l)-i-?)) Z (q:(ma /\) ( Z {q;(mv /\)_qchrm(Kl)(mv)‘)})

i=m(K—1)—1 j=i—m(K—1)+1

i+m(K—1)—1

Ll I R L R Y I )
j=i—m(K—1)+1

Next, a straightforward (but somewhat tedious) calcutasibows that

y’z(m N N—2m(K—1)+1 itm(K—-1)-1
| : Z E [w ™™ E {wr ) ) AN F e
5 — — — i j i+m(K—1) i—m(K—1)+1
cp3(K —1)(N = 3m(K — 1) +3) i=m(K—1)—1 j=i—m(K—1)+1 "

v,
P lm
m,l,o¢,u dtd
T z//flt "

On the other hand, we deduce that

v=2(m, ) N—2m(K—1)+1 itm(K—1)—1

L2 (m, > () S !

2 _ _ _ i 7 H—m(K 1)
3K DN -3m(K-1)+3) _ & P

itm(K—1)—1
—E w;_*(n,m) Z {w;(n,m) o w:f:nmi)( 1)} ‘.7:1 mrc—1) 41 20
j=i—m(K—1)+1
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as in (54). This completes the proof of Proposition 3. |
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