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Abstract

We show that the compensation for rare events accounts for a large fraction of the
equity and variance risk premia in the S&P 500 market index. The probability of rare
events vary significantly over time, increasing in periods of high market volatility, but
the risk premium for tail events cannot solely be explained by the level of the volatil-
ity. Our empirical investigations are essentially model-free. We estimate the expected
values of the tails under the statistical probability measure from “medium” size jumps
in high-frequency intraday prices and an extreme value theory approximation for the
corresponding jump tail density. Our estimates for the risk-neutral expectations are
based on short maturity out-of-the money options and new model-free option implied
variation measures explicitly designed to separate the tail probabilities. At a general
level, our results suggest that any satisfactory equilibrium based asset pricing model
must be able to generate large and time-varying compensations for fears of disasters.
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1 Introduction

“So what are policymakers to do? First and foremost, reduce uncertainty. Do so by removing
tail risks, and the perception of tail risks.”

Olivier Blanchard, chief economist, IMF, The Economist, January 31, 2009

The lack of investor confidence is frequently singled out as one of the main culprits be-
hind the massive losses in market values in the advent of the Fall 2008 financial crises. At
the same time, the portrayal in the financial news media of different doomsday scenarios in
which the stock market would decline even further have become increasingly more common-
place. Motivated by these observations, we provide a new theoretical framework for better
understanding the way in which the market prices and perceives tail risks. Our estimates
rely on the use of actual high-frequency intraday data and short maturity out-of-the-money
options. Our empirical results based on data for the S&P 500 index spanning the period from
1990 until mid-2007 show that the market generally incorporates the possible occurrence of
rare disasters in the way in which it prices risky payoffs, and that the fear of such events
accounts for a surprisingly large fraction of the historically observed equity and variance risk
premia. Extending our results through the end of 2008 we document an even larger role of
investor fears during the recent financial market crises. As such, our findings support the
above conjecture that removing the perception of tail risk should help restore asset values.

The idea that rare disasters, or tail events, may help explain the equity premium and
other empirical puzzles in asset pricing finance dates back at least to Rietz (1988). While
the original work by Rietz (1988) was based on a peso type explanation and probabilities of
severe events that exceed those materialized in sample, more recent work by Barro (2006)
and Barro and Ursua (2008) have argued that when calibrated to international data, actual
disaster events do appear frequent enough to meaningfully impact the size of the equity
premium. Further building on these ideas, Gabaix (2008) and Wachter (2008) have recently
shown that explicitly incorporating time-varying risks of rare disasters in otherwise standard
equilibrium based asset pricing models may help explain both the equity premium and the
apparent excess volatility of aggregate market returns.1

In contrast to these studies, which extrapolate the impact of rare disasters from equilib-
rium based pricing models and auxiliary assumptions about the likelihood of disasters, we
rely on actual sample realizations from U.S. futures and options markets and new statistical
tools to back out the objective expectations of tail events and the market’s pricing thereof.
In particular, building on new extreme value theory in Bollerslev and Todorov (2009), we
use the relatively frequent “medium” size jumps in high-frequency intraday returns in the
construction of reliable estimates for the expected interdaily tail events under the statistical
probability measure, thereby explicitly avoiding peso type explanations. Similarly, our esti-
mates for the market risk-neutral expectations are based on actual short maturity out-of-the

1In a related context, Bianchi (2008) shows how incorporating agents’ expectations of rare disasters may
also help explain cross-sectional variation in asset returns, while Burnside et al. (2008) and Farhi et al. (2009)
argue that peso type problems and disaster risk premia may similarly help justify part of the historically
large excess returns to carry trades in the foreign exchange market.
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money options and the model-free variation measures originally analyzed in Carr and Wu
(2003) further developed here to recover the complete risk-neutral tail jump density.

Our empirical results suggest that on average close to five percent of the equity pre-
mium may be attributed to the compensation for rare disaster events. Related option-based
estimates for the part of the equity premium due to compensation for jump risk have pre-
viously been reported in the literature by Broadie et al. (2007), Eraker (2004), Pan (2002),
and Santa-Clara and Yan (2009) among others. However, these earlier studies are all based
on fairly tightly parameterized jump-diffusion models and restrictive assumptions about the
shapes and dependencies in the tails.2 Counter to these assumptions, our new non-parametric
model-free approach reveals a series of intriguing dynamic dependencies in the tail proba-
bilities, including time-varying jump intensities and a tendency for fatter tails in periods of
high overall volatility.3 At the same time, our results also suggest that the risk premium for
tail events cannot solely be explained by the level of the volatility.

In parallel to the equity premium, formally defined by the difference between the statisti-
cal and risk-neutral expectation of the aggregate market returns, the variance risk premium
is naturally defined as the difference between the statistical and risk-neutral expectation of
the corresponding forward variance. The variance risk premium is generally found to be
rather large and highly statistically significant. Several recent studies have sought to explain
this phenomenon and how the variance premium correlates with the returns; see, e.g., Bak-
shi and Kapadia (2003), Bakshi and Madan (2006), Bollerslev et al. (2009), Carr and Wu
(2009), Drechsler and Yaron (2008), Eraker (2008), and Todorov (2009).

The variance risk premium essentially reflects two types of risks: changes in the invest-
ment opportunity set, as manifest by slowly varying stochastic volatility, and the possibility
of rare disasters. Taking our analysis one step further, we show that on average more than
half of the historically observed variance risk premium is directly attributable to disaster
risk, or differences in the jump tails of the risk-neutral and objective distributions. More-
over, while the left and right tails in the statistical distribution are close to symmetric, the
contribution to the overall risk-neutral variation coming from the left tail associated with
dramatic market declines is several times larger than the variation attributable to the right
tail. Our model-free separation of the two types of risk embodied in the variance risk pre-
mium thus lends further credence to the common use of the term “investor’s fear gauge” as
a moniker for the VIX volatility index; see, e.g., Whaley (1993, 2008).4

At a more general level, our results hold the promise of a better understanding of the
economics behind the historically large average equity and variance risk premia observed in

2Anderson et al. (2003) and Broadie et al. (2007) both forcefully argue from very different perspectives
that misspecified parametric models can result in highly misleading estimates for the risk premia. Similarly,
Martin (2008) explicitly cautions about inference related to the impact of rare disasters that are overly
sensitive to specific parametric modeling assumptions and higher order cumulants.

3Christoffersen et al. (2009) have also recently emphasized the importance of allowing for time-varying
jump intensities when modeling S&P 500 returns and options. The discrete-time GARCH model estimates
for individual stocks in Maheu and McCurdy (2004) also support the notion of time-varying jump intensities.

4The new model-free VIX volatility index is explicitly designed to mimic the risk-neutral expected one-
month-ahead variation of the S&P 500 market index.
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the data. Most previous equilibrium based explanations put forth in the literature have effec-
tively treated the two risk premia in isolation, relying on different mechanisms for mapping
the dynamics of the underlying macroeconomic fundamentals into asset prices. Instead, our
analysis shows that high-frequency aggregate market and derivative prices in combination
contain sufficient information to jointly identify both premia in an essentially model-free
manner, and that the two premia share a common important source of variation - the fear of
rear events. As such, any satisfactory equilibrium based asset pricing model must be able to
generate large and time-varying compensations for the possible occurrence of rare disasters.

The plan for the rest of the paper is as follows. We begin in the next section with a
discussion of the basic setup and assumptions, along with the relevant formal definitions of
the equity and variance risk premia. Section 3 outlines the procedures that we use for sep-
arating jumps and continuous price variation under the risk-neutral distribution. Section 4
details the methods that we use for the comparable separation under the statistical measure.
Section 5 discusses the data and our initial empirical results. Our main empirical findings
related to the tail risks and the risk premia are given in Section 6, including an account of the
measures during the recent financial crises. Section 7 reports on various robustness checks
related to the dependencies in the tail measures. Section 8 concludes. Most of the technical
proofs are deferred to the Appendix, as are some of the details concerning our handling of
the options and intraday data, the empirical implementation of the rank robustness tests,
and the reduced-form modeling procedure underlying our integrated volatility forecasts.

2 Risk Premia and Jumps

The continuous-time no-arbitrage framework that underly our empirical investigations is
extremely general and essentially model-free. It includes all parametric models previously
analyzed and estimated in the literature as special cases. We begin with a discussion of the
basic setup and notation.

2.1 Setup and Assumptions

To set up the notation, let Ft denote the futures price for the aggregate market portfolio
expiring at some undetermined future date. Also, let the corresponding logarithmic price
be denoted by ft ≡ log (Ft). The absence of arbitrage, implies that the futures price should
be a semimartingale. Restricting this just slightly by assuming an Itô semimartingale along
with jumps of finite variation, the dynamics of the futures price may be expressed as,5

dFt

Ft

= αtdt + σtdWt +

∫

R
(ex − 1) µ̃(dt, dx), (2.1)

where αt and σt denote locally bounded, but otherwise unspecified drift and instantaneous
volatility processes, respectively, Wt is a standard Brownian motion. The last term accounts

5All continuous-time models hitherto used in the literature are Itô semimartingales. The assumption of
finite variation for the jumps is inconsequential and for expositional purposes only. The “big” jumps are
always of finite activity; i.e., only a finite number over any finite time interval.
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for any jumps, or discontinuities, in the price process through the so-called compensated
jump measure µ̃(dt, dx) ≡ µ(dt, dx)−νPt (dx)dt, where µ(dt, dx) is a simple counting measure
for the jumps and νPt (dx)dt denotes the intensity of the jumps.6 This is a completely general
specification, and aside from the implicit weak integrability conditions required for the exis-
tence of some of the expressions discussed below, we do not make any further assumptions
about the properties of the jumps, or the form of the stochastic volatility process.

The market dynamics described by the statistical P measure in equation (2.1) involve
two distinct types of risks: the diffusive and jump risk components Wt and µ̃, respectively.
The diffusive risk invariably shrinks toward zero over small time intervals. The jumps, on
the other hand, always pose a non-trivial risk.

In order to better understand the impact and pricing of these separate risk components,
it is instructive to consider the total variation associated with the market price. Specifically,
let QVt denote the quadratic variation of the log-price process over the [t, T ] time-interval,

QVt ≡
∫ T

t

σ2
sds +

∫ T

t

∫

R
x2µ(ds, dx). (2.2)

The first term on the right-hand-side represents the variation attributable to the continuous-
time stochastic volatility process σs; i.e., the variation due to “small” price moves. The
second term measures the variation due to jumps; i.e., “large” price moves. These risks are
fundamentally different and present different challenges from a risk management perspective.
While diffusive risks can be hedged/managed by continuously rebalancing a portfolio exposed
to those risks, the locally unpredictable nature of jumps means that such a simple strategy
will not work when the investor faces jump risk. Therefore, these two types of risks may
also demand different compensation, as manifest in the form of different contributions to the
aggregate equity and variance risk premia.

2.2 Equity and Variance Risk Premia

The equity risk premium represents the compensation directly associated with the uncer-
tainty about the future price level. The variance risk premium refers to the compensation
for the risk associated with temporal changes in the variation of the price level.7

In particular, let Q denote the risk-neutral distribution associated with the general dy-
namics in equation (2.1). The equity and variance risk premia are then formally defined
by,8

ERPt ≡ 1

T − t

(
EPt

(
FT − Ft

Ft

)
− EQt

(
FT − Ft

Ft

))
, (2.3)

6Intuitively, this renders the “demeaned” sum of the jumps
∫
R(e

x − 1)µ̃(dt, dx) a martingale.
7Investors desire to hedge against intertemporal shifts in riskiness has led to the recent advent of many new

financial instruments with their payoffs directly tied to various notions of realized price variation. Especially
prominent among these are variance swap, or forward, contracts on future realized variances.

8From here on we will suppress the dependence on the horizon T for notational convenience.
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and

V RPt ≡ 1

T − t

(
EPt

(
QV[t,T ]

)− EQt
(
QV[t,T ]

))
, (2.4)

corresponding to the expected excess return on the market and the expected payoff on
a (long) variance swap on the market portfolio, respectively. Empirically, of course, the
corresponding sample equity risk premium is generally positive and historically “large”,
while the sample variance risk premium as defined above is on average negative and equally
“large” and puzzling.9 Which distributional features account for these well-documented
differences in the P and Q expectations?

Let νQt (dx)dt denote the compensator, or intensity, for the jumps under Q. Also, let
λt denote the drift that turns Wt into a Brownian motion under Q; i.e., WQ

t = Wt +∫ t

0
λsds. Standard asset pricing theory implies that all futures (and forward) contracts must

be martingales under the risk-neutral Q measure; see, e.g., Duffie (2001). The drift term for
the futures price in the P distribution in equation (2.1) must therefore satisfy,

αt = λtσt +

∫

R
(ex − 1) νPt (dx)−

∫

R
(ex − 1) νQt (dx). (2.5)

This general expression directly manifests the compensation that is required by investors to
accept the different types of equity price related risks.

Utilizing this result, the wedge between the P and Q expectations of the time t to T
returns and the equity risk premium are naturally decomposed as,

ERPt = ERP c
t + ERP d

t , (2.6)

where

ERP c
t ≡ 1

T − t
EPt

(∫ T

t

Fs

Ft
λsσsds

)
, (2.7)

and

ERP d
t ≡ 1

T − t
EPt

(∫ T

t

∫

R

Fs

Ft
(ex − 1) νPs (dx)ds−

∫ T

t

∫

R

Fs

Ft
(ex − 1) νQs (dx)ds

)
, (2.8)

and each of the two terms represent the unique contribution to the premium coming from
diffusive and jump risk, respectively.

9The equity premium puzzle and the failure of standard consumption-based asset pricing models to
explain the sample ERPt is arguably one of the most studied issues in academic finance over the past two
decades; see, e.g., the discussion in Campbell and Cochrane (1999) and Bansal and Yaron (2004) and the
many references therein. Representative agent equilibrium models involving time-separable utility also rule
out priced volatility risk and corresponding hedging demands, and in turn imply that V RPt = 0. Recent
rational equilibrium based pricing models designed to help explain the positive variance risk premium by
incorporating jumps and/or time varying volatility-of-volatility in the consumption growth process of the
representative agent include Bollerslev et al. (2009), Drechsler and Yaron (2008) and Eraker (2008).
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Similarly, the variance risk premium may be expressed as,

V RPt = V RP c
t + V RP d

t , (2.9)

where

V RP c
t =

1
T − t

(
EPt

(∫ T

t
σ2

sds

)
− EQt

(∫ T

t
σ2

sds

))
, (2.10)

and

V RP d
t =

1
T − t

(
EPt

(∫ T

t

∫

R
x2νPs (dx)ds

)
− EQt

(∫ T

t

∫

R
x2νQs (dx)ds

))
, (2.11)

represent the diffusive and jump risk components, respectively. As equations (2.10)-(2.11)
reveal, due to the presence of jumps we might have variance risk even with i.i.d. returns!10

The jump risk links directly the equity and variance risk premium. By contrast, the
price of diffusive price risk does not enter the variance risk premium. Previous attempts
in the literature at trying to separately identify and estimate the risk premia due to jumps
have been based on explicit and somewhat restrictive parametric models, in turn resulting in
different and sometimes conflicting numerical findings; see, e.g., the discussion in chapter 15
of Singleton (2006). Meanwhile, as equations (2.6) and (2.9) make clear, the compensation
for jumps will generally affect the equity and variance risk premia in distinctly different, and
statistically identifiable, ways from the way in which the diffusive risk component affect the
premia.

In particular, using actual high-frequency data and short maturity options it is possible
to non-parametrically estimate,11

ERPt(k) =
1

T − t

(
EPt

(∫ T

t

∫

|x|>k
(ex − 1) νPs (dx)ds

)
− EQt

(∫ T

t

∫

|x|>k
(ex − 1) νQs (dx)ds

))
,

(2.12)

and

V RPt(k) =
1

T − t

(
EPt

(∫ T

t

∫

|x|>k
x2νPs (dx)ds

)
− EQt

(∫ T

t

∫

|x|>k
x2νQs (dx)ds

))
, (2.13)

10In addition, one can further separate V RP c
t into two components - diffusive and jump-type changes in

the stochastic volatility. We do not make this separation for two reasons. First, in this paper our focus is
on separating the fears of disasters from the premia attached to changes in the investment opportunity set.
The type of changes underlying the evolution of σt clearly do not affect such separation. Second, to identify
such a decomposition of V RP c

t , we obviously need some parametric assumptions and this is exactly what
we try to avoid in this paper. Parametric evidence from Broadie et al. (2007) indicates most of V RP c

t is
coming from compensation for jump moves in σt, while Todorov (2009) finds that the data is not sufficiently
informative to make the separation in a semiparametric setting.

11The integrands in equations (2.8) and (2.12) obviously differ by Fs/Ft. Alternatively, we could have
defined the equity risk premium in terms of logarithmic returns, in which case Fs/Ft will not appear in
equation (2.8) either. However, in that case the basic definition would involve convexity adjustment terms.
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where k > 0 refers to the threshold that separates “big” from “small” jumps.12 Comparing
these estimates with the corresponding estimates for ERPt with V RPt, we may therefore
gauge the importance of fears and rare events in explaining the equity and variance risk
premia from directly observable financial data quite generally. We begin our discussion of
the empirical procedures with the way in which we quantify the risk-neutral Q distribution
and relevant expectations.

3 Risk-Neutral Measures

There is long history of using options prices to infer market expectations and correspond-
ing options implied volatilities. Traditionally, these estimates have been based on specific
assumptions about the underlying P distribution and the pricing of systematic risk(s). How-
ever, as emphasized in the literature more recently, the risk-neutral expectation of the,
normalized by the horizon T − t, total quadratic variation of the price process in equation
(2.2),

QV Q
t ≡ 1

T − t
EQt

(∫ T

t

σ2
sds

)
+

1

T − t
EQt

(∫ T

t

∫

R
x2µ(ds, dx)

)
, (3.1)

may be estimated in a completely model-free manner by a portfolio of options with different
strikes; see, e.g., Bakshi and Madan (2000), Britten-Jones and Neuberger (2000) and Carr
and Wu (2009).13 Meanwhile, as the expression in equation (3.1) makes clear, and in parallel
to the discussion above, the quadratic variation under Q is naturally decomposed into the
expected variation associated with diffusive, or “small” price moves, and discontinuous, or
“big” price moves. Building on these insights, we show below how options prices may be
used in estimating these two separate parts of the risk-neutral distribution in an essentially
model-free fashion.14

3.1 Jumps and Tails

Our estimates for the jump risk perceived by investors are based on close-to-maturity deep
out-of-the-money options. The idea of using deep out-of-the-money options to more effec-

12The practical choice of k is discussed further in Appendix 9.1 below.
13This also mirrors the way in which the CBOE now calculates the VIX volatility index for the S&P

500. The approximation used by the CBOE formally differs from the expression in equation (3.1) by
1

T−tE
Q
t

(∫ T

t

∫
R 2

(
ex − 1− x− x2

2

)
µ(ds, dx)

)
; for further discussion of the approximation errors involved

in this calculation see the white paper on the CBOE website, as well as Carr and Wu (2009) and Jiang and
Tian (2005, 2007).

14Previous attempts at non-parametrically estimating the risk-neutral distribution implied by options
prices include Aı̈t-Sahalia and Lo (1998, 2000), Bakshi and Madan (2000) and Rosenberg and Engle (2002)
among others. Aı̈t-Sahalia et al. (2001) in particular have previously sought to quantify the amount of
additional jump risk needed to make the P tails comparable to the options implied Q tails, by calibrating
the jump frequency to match the estimated skewness (or kurtosis) of the state price density. To the best of
our knowledge, however, none of these studies have sought to estimate the portion of the two risk premia
that are directly attributable to the tails of the distribution and the fears of jumps.
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tively isolate jump risk has previously been used in the estimation of specific parametric
affine jump-diffusion stochastic volatility models by Bakshi et al. (1997), Bates (1996, 2000),
Pan (2002) and Eraker (2004) among others, while Pan and Liu (2003) and Pan et al. (2003)
have considered similar fully parametric approaches in the context of hedging portfolio jump
risks.15 In contrast to these studies, our estimates for the jump risk premia are entirely
non-parametric.

In particular, building on the ideas in Carr and Wu (2003), who used the different rate of
decay of the diffusive and jump risk for options with various levels of moneyness as a way to
test for jumps, we rely on short-maturity options to actually identify the compensation for
jump risk. Intuitively, short-maturity out-of-the-money options will remain worthless unless
a rare event, or a “big” jump, occurs before expiration. As such, this allows us to infer the
relevant risk-neutral expectations through appropriately scaled option prices.

Specifically, let Ct(K) and Pt(K) denote the price of a call option, respectively put option,
with a strike of K recorded at time t expiring at some future date, T . It follows that for
T ↓ t and K > Ft− ≡ lim

s↑t,s<t
Fs,

er(t,T ]Ct(K) ≈
∫ T

t

EQt
(∫

R
1{Fs−<K}(Fs−ex −K)+νQs (dx)

)
ds, (3.2)

while for K < Ft−,

er(t,T ]Pt(K) ≈
∫ T

t

EQt
(∫

R
1{Fs−>K}(K − Fs−ex)+νQs (dx)

)
ds, (3.3)

where x+ ≡ max{0, x}. Importantly, the expressions on the right-hand sides of (3.2) and
(3.3) involve only the jump measure. Over short time intervals changes in the price due to
the continuous component are invariable small relative to the possible impact of “big” jumps,
and the diffusive part may simply be ignored. Moreover, for T ↓ t there will be at most
one “big” jump. The right-hand sides of equations (3.2) and (3.3) represent the conditional
expected values of the two different option payoffs under these approximations. The payoffs
will be zero if no “big” jump occurred and otherwise equal to the difference between the
price after the jump and the strike price of the option.

Going one step further, the expressions in equations (3.2) and (3.3) may be used in the
construction of the following model-free risk-neutral jump tails,

RTQt (k) ≡ 1

T − t

∫ T

t

∫

R

(
ex − ek

)+ EQt (νQs (dx))ds ≈ er(t,T ]Ct(K)

(T − t)Ft−
, (3.4)

and

LTQt (k) ≡ 1

T − t

∫ T

t

∫

R

(
ek − ex

)+ EQt (νQs (dx))ds ≈ er(t,T ]Pt(K)

(T − t)Ft−
, (3.5)

15The recent exotic so-called gap options, or gap risk swaps, are explicitly designed to hedge against gap
events, or jumps, that is a one-day large price move in the underlying; see Cont and Tankov (2009) and
Tankov (2009) for further discussion and theoretical analysis.
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where k ≡ ln( K
Ft−

) denotes the log-moneyness. Unlike the variance replicating portfolio used

in the construction of the VIX index and the approximation to QV Q
t in equation (3.1), which

holds true for any value of T , the approximations for RTQt (k) and LTQt (k) in equations (3.4)
and (3.5) depend on T ↓ t.

In practice, of course, we invariably work with close-to-maturity options and a finite
horizon T − t, so the effect of the diffusive volatility might be non-trivial. At the same time,
the deeper out-of-the-money the options are, the less important the diffusive component.
Appendix 9.1 contains a more detailed discussion of the specific criteria that we use in
selecting the options underlying our approximations to the two Q tail measures. As further
discussed in that appendix, simulation results designed to mimic our empirical procedures
suggest that the error involved in approximating LTQt through equation (3.5) is in fact quite
trivial, while the estimation error for RTQt in equation (3.4) tend to be somewhat larger.
Intuitively, investors primarily fear “big” negative price moves, making the downside jumps
in the risk-neutral distribution more pronounced and easier to separate from the diffusive
component.

Although the RTQt (k) and LTQt (k) measures are related to the tail jump density, they
do not directly correspond to risk-neutral expectations required in the calculation of the
ERPt(k) and V RPt(k) jump premia. In order to get at these and the risk-neutral tail
density we rely on an additional essentially model-free Extreme Value Theory (EVT) type
approximation.16 This approximation allows us to easily extrapolate the tail behavior from
the estimates of RTQt (k) and LTQt (k) for a range of different values of k. The only additional
assumption required for these calculations concerns the format of the risk-neutral jump
density,

νQt (dx) =
(
ϕ+

t 1{x>0} + ϕ−t 1{x<0}
)× νQ(x)dx, (3.6)

where the unspecified ϕ±t stochastic processes allow for temporal variation in the jump
arrivals and νQ(x) denotes any valid Lévy density. This is a very weak assumption on the
general form of the tails, merely restricting the time-variation to be the same across different
jump sizes. This assumption is trivially satisfied by all of the previously estimated parametric
jump-diffusion models referred to above, most of which restrict ϕ±t ≡ 1. Further technical
details concerning these calculations are deferred to Appendix 9.4.

The ERPt(k) and V RPt(k) measures, of course, also depend on the jump tails in the
statistical distribution. We next discuss the high-frequency realized variation measures and
reduced form forecasting models that we rely on in estimating these.

4 Objective Measures

Our estimates of the relevant expectations under the objective, or statistical, probability
measure P are based on high-frequency intraday data and corresponding realized variation

16For a general discussion of Extreme Value Theory see, e.g., Embrechts et al. (2001), along with McNeil
and Frey (2000) for one of the first empirical applications to financial data with time-varying conditional
heteroskedasicity.
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measures for the diffusive and dis-continuous components of the total variation in equation
(2.2). In addition, we rely on the new EVT-based approximations and nonparametric reduced
form modeling procedures for translating the ex-post measurements into forward looking P
counterparts to the QV Q

t , RTQt , and LTQt expectations defined above. We begin with a
discussion of the high-frequency based realized variation measures and corresponding fill-in
asymptotic theory.

4.1 Realized Jumps and Volatility

For ease of notation, we normalize the unit time-interval to represent a day, where by con-
vention the day starts with the close of trading on the previous day. The resulting daily
[t, t + 1] time interval is naturally broken into the [t, t + πt] overnight time period and the
[t + πt, t + 1] active part of the trading day. The opening time of the market t + πt is
obviously fixed in calendar time. Conceptually, however, it is useful to treat {πt}t=1,2,... as
a latent discrete-time stochastic process that implicitly defines the proportion of the total
day t variation due to the overnight price change. With n equally spaced high-frequency
price observations, this leaves us with a total of n − 1 intraday returns for day t + 1 each
spanning a time interval of length ∆n,t ≡ 1−πt

n
, say ∆n,t

i f ≡ ft+πt+i∆n,t − ft+πt+(i−1)∆n,t for
i = 1, ..., n− 1.17

The realized variation for day t, denoted RVt, is simply defined as the summation of the
squared high-frequency returns over the active part of the trading day. The realized variation
measure was formally introduced into the economics and finance literatures by Andersen
and Bollerslev (1998), Andersen et al. (2002), and Barndorff-Nielsen and Shephard (2001).
The key insight behind the realized variation concept stems from the basic result that for
increasingly finer sampled returns, or n ↑ ∞, RVt consistently estimates the total ex-post
variation of the price process. Formally,

RVt ≡
n−1∑
i=1

(
∆n,t

i f
)2 P−→

∫ t+1

t+πt

σ2
sds +

∫ t+1

t+πt

∫

R
x2µ(ds, dx), (4.1)

where the right-hand-side equals the quadratic variation of the price over the [t + πt, t + 1]
time interval, as defined by the corresponding increment to the total variation in equation
(2.2).

As discussed above, the quadratic variation obviously consists of two distinct components:
the variation due to the continuous sample price path and the variation coming from jumps.
It is possible to separately estimate these two components by decomposing the summation
of the squared returns into separate summations of the “small” and “large” price changes,

17Even though it is useful to conceptually treat the sampling times (t + πt, t + πt + ∆n,t, ..., t + 1) as
stochastic, they are obviously fixed in calendar time. As discussed further in the Appendix, all we need from
a formal theoretical perspective is for the value of πt to be (conditionally) independent of the ft logarithmic
price process.
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respectively. In particular, it follows that for the continuous variation

CVt ≡
n−1∑
i=1

(∆n,t
i f)21{|∆n,t

i f |≤α∆$
n,t}

P−→
∫ t+1

t+πt

σ2
sds, (4.2)

while for the jump variation

JVt ≡
n−1∑
i=1

(∆n,t
i f)21{|∆n,t

i f |>α∆$
n,t}

P−→
∫ t+1

t+πt

∫

R
x2µ(ds, dx), (4.3)

where α > 0 and $ ∈ (0, 0.5) denote positive constants.18 These measures for the continuous
and jump variation were first proposed by Mancini (2001, 2006). They are based on the
intuitive idea that over short time intervals, the continuous component of the price will be
normally distributed with variance proportional to the length of the time interval. Thus, if
the high-frequency price increment exceeds a certain threshold, it must be associated with
a jump in the price.

Building on this same idea, the JVt jump component may be further split into the vari-
ation coming from positive, or right tail, jumps,

RJVt ≡
n−1∑
i=1

|∆n,t
i f |21{∆n,t

i f>α∆$
n,t}

P−→
∫ t+1

t+πt

∫

R
x21{x>0}µ(ds, dx), (4.4)

and negative, or left tail, jumps

LJVt ≡
n−1∑
i=1

|∆n,t
i f |21{∆n,t

i f<−α∆$
n,t}

P−→
∫ t+1

t+πt

∫

R
x21{x<0}µ(ds, dx). (4.5)

It follows, of course, by definition that RVt = CVt + RJVt + LJVt.
19

The different ex-post variation measures discussed above all pertain to the actual realized
price process. In contrast, the options implied diffusive and jump tail measures discussed in
Section 3 provide ex-ante estimates of the risk-neutral expectations of the relevant sources of
risks. We next discuss our translation of the actual realized risks into comparable measures
of objective, or statistical, ex-ante expectations of these risks.

4.2 Expected Jumps and Tails

The most challenging problem in quantifying the statistical expectations in the equity and
variance risk premia in equations (2.6) and (2.9), respectively, concerns the P equivalent
to the previously discussed RTQt (k) and LTQt (k) risk-neutral tail measures, say RT Pt (k) and

18The actual choice of α and $, together with our normalization to account for the strong intraday pattern
in the volatility, are discussed in Appendix 9.2.

19All of the consistency results above may be strengthened to Central Limit Theorems utilizing the results
in Jacod (2008).
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LT Pt (k), respectively. These measures pertain to the truly “big” jumps. However, these types
of tail events are invariably rare, and possibly even non existent, over a limited calendar time
span. This is akin to a Peso type problem, and as such straightforward estimation of the
tail expectations based on sample averages will generally not give rise to reliable estimates.
Instead, we rely on EVT and the more frequent “medium” sized jumps implicit in the high-
frequency intraday data to meaningfully extrapolate the behavior of the “large” jumps, and
more precisely estimate the extreme parts of the tails.

A completely general nonparametric approach allowing jumps of different sizes to exhibit
arbitrary temporal variation is not practically feasible. However, instead of relying on an
explicit parametric model, we merely restrict the temporal variation in the jump intensity
to be a linear function of the stochastic volatility,20

νPt (dx) =
(
α−0 1{x<0} + α+

0 1{x>0} + (α−1 1{x<0} + α+
1 1{x>0})σ

2
t

)
νP(x)dx, (4.6)

where νP(x) is a valid Lévy density, and α±0 and α±1 are nonnegative free parameters. This is a
very flexible specification, and we provide direct support for its empirical validity in Section 7.
Virtually all parametric models hitherto estimated in the literature have been based on
simplified versions of this νPt (dx) measure, typically restricting α±1 = 0. Importantly, the
more general specification in equation (4.6) explicitly allows for time-varying jump intensities
as a function of the latent volatility process σ2

t .
21 It also allows for the import of the constant

and time-varying intensities to differ across positive and negative jumps.
Compared to conventional fully parametric procedures previously used for estimating the

expected impact of jumps, our approach is much more flexible and has the distinct advantage
of not relying on a tight connection between the jumps of all different sizes. Indeed, as
discussed further below the statistical properties of the “small” and “large” jumps seem
to differ quite dramatically, as indirectly evidenced by the markedly different estimates for
the tails obtained across competing parametric specifications that utilize all of the jumps,
“small” and “large”, for the tail estimation.

Using the flexible assumption about the form of the temporal dependencies in the jump
intensity in equation (4.6), the equivalents to the RTQt (k) and LTQt (k) measures under the
statistical distribution, may generally be expressed as

RT Pt (k) =
1

T − t

(
α+

0 + α+
1 EPt

(∫ T

t

σ2
sds

)) ∫

R
(ex − ek)+νP(x)dx, (4.7)

and

LT Pt (k) =
1

T − t

(
α−0 + α−1 EPt

(∫ T

t

σ2
sds

)) ∫

R
(ek − ex)+νP(x)dx. (4.8)

20This parallels the weaker assumption for the risk-neutral jump intensity in equation (3.6). Extensions to
allow for nonlinear functions of the volatility or other directly observable state variable are straightforward
to implement.

21Note that σ2
t can, and as the data suggests it does, depend on past realized price jumps so that α±1 > 0

imply so-called “self-affecting” jumps; see e.g., Todorov (2009).
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Thus, in order to estimate RT Pt (k) and LT Pt (k), and in turn QV P
t , we only need to quantify

the integrals with respect to the Lévy density νP(x), as well as the conditional expectation

of the integrated volatility EPt
(∫ T

t
σ2

sds
)
.

Our estimates of the integrals with respect to νP(x) are again based on the “medium”
sized jumps coupled with EVT for meaningfully extrapolating the behavior of the tails. The
separation of the jump intensity into the constant and time-varying part, i.e., α±0 and α±1 ,
respectively, is effectively achieved through the correlation between the occurrence of jumps
and past volatility, as measured directly by the realized continuous variation CVt in equation
(4.2). A more detailed description of the relevant calculations are given in Appendix 9.4.

Our estimates for the expected integrated volatility and the time-varying parts of RT Pt ,
LT Pt and QV P

t , are based on relatively simple reduced form time series modeling procedures.
From a statistical perspective, this is a much easier problem than that of directly estimating
the tails as we have plenty of reliable data and previous empirical insights to go by. In par-
ticular, it is well established that integrated volatility is a stationary, but highly persistent,
process; see, e.g., Bollerslev et al. (2009) and the reduced form model estimates reported
therein. It has also previously been documented that jumps in the price tend to be accom-
panied by jumps in the spot volatility σt, and that negative and positive jumps impact the
volatility differently; i.e., a leverage effect through jumps. In order to accommodate all of
these non-linear dependencies in the construction of our estimates for the expected inte-
grated volatility, we formulate a Vector Autoregression (VAR) of order 22, or one month, for
the four-dimensional vector consisting of CVt, and the additional three state variables RJVt,
LJVt, and the squared overnight returns (ft−ft+πt)

2. To keep the model tractable, we follow
the HAR-RV modeling approach of Corsi (2009) and Andersen et al. (2007) and restrict all
but the daily, weekly, and monthly lags, or lag 1, 5, and 22, respectively, to be equal to zero.

The forecasts for EPt
(∫ T

t
σ2

sds
)

is then simply obtained by recursively iterating the VAR

to the relevant horizon. Altogether, this provides a particular convenient and parsimonious
approach for capturing the salient dynamic dependencies in the integrated volatility process
and corresponding forecasts. Further details concerning the model estimates and forecast
construction are given in Appendix 9.5.

Before turning to a discussion of the actual empirical results related to the P and Q tail
measures and risk premia estimates, we briefly discuss the data underlying our findings.

5 Data and Preliminary Estimates

5.1 High-Frequency Data and Statistical Measures

Our high-frequency data for the S&P 500 futures was obtained from Tick Data Inc., and
spans the period from January, 1990 to December, 2008. The prices are recorded at five-
minute intervals, with the first price for the day at 8: 35 (CST) until the last price at 15: 15.
All-in-all, this leaves us with a total of 81 intraday price observations for each of the 4, 751
trading days in the sample.
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Time series plots of the corresponding daily realized variation measures in annualized
percentage form, following the definitions in Section 4, are given in Figure 1. All of the
measures exhibit obvious volatility clustering effects, with a noticeable increase toward the
end of the sample and the Fall 2008 financial market crises.
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Figure 1: Realized Measures.

The realized variation measures in turn form the basis for our nonparametric estimates
of the statistical expectations of the total quadratic variation and the left and right tail
measures, QV P

t , LT Pt and RT Pt . We will not discuss the details of the estimation results
here, instead referring to the Appendix and the actual estimates reported in Tables 6 and 8.
Nonetheless, it is instructive to highlight a few of the key empirical findings.

Directly in line with the discussion in the previous section, the stochastic volatility ap-
pears to be a highly persistent process. Not only is high volatility predicted by high lagged
volatility, negative “realized” jumps also significantly impact future volatility. In contrast
to the strong own dynamic dependencies in the volatility, the effect of negative jumps is
relatively short-lived, however. Meanwhile, our results also indicate that positive jumps
do not affect future volatility. These findings are consistent with the empirical results in
Barndorff-Nielsen et al. (2009) and Todorov and Tauchen (2008). They also support a two-
factor stochastic volatility model, as in, e.g., Todorov (2009), in which one of the factors is
highly persistent, in effect capturing intertemporal shifts in the investment opportunity set,
while the other factor is short lived and mainly triggered by (negative) jumps.
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Our estimation results also point to the existence of non-trivial temporal variation in
the tail jump intensities, as manifest by the highly statistically significant estimates for α±1 .
At the same time, the right and left jump tails behave quite similar under the statistical
distribution with almost identical tail decays.

Taken as a whole, our empirical results related to the different P measures indicate much
more complicated dependencies than those captured by the specific parametric stochastic
volatility models hitherto estimated in the literature. As such, the results further under-
score the advantage of the more flexible nonparametric approach adopted here for truly
understanding the behavior of the risk premia.

5.2 Options Data and Risk-Neutral Measures

Our options data are obtained from OptionMetrics. The data consists of closing bid and
ask quotes for all S&P 500 options traded on the CBOE. The data spans the period from
January 1996 till the end of December 2008, for a total of 3, 237 trading days. To avoid
obvious inconsistencies and problems with the price quotes, we apply the same filters used
by Carr and Wu (2003, 2009) for “cleaning” the data.

The estimates for the two tail measures RTQt (k) and LTQt (k) are based on the closest to
maturity options for day t with at least eight calendar days to expiration.22 More specifically,
we first calculate Black-Scholes implied volatilities for all out-of-the-money options with
moneyness k using linear interpolation of options that bracket the targeted strike.23 From
these implied volatilities we then compute an out-of-the money option price with moneyness
k, and in turn the RTQt (k) and LTQt (k) measures as described in Section 3.1 above.

Our calculation of the implied total variance measure QV Q
t , mirrors the approach used

by the CBOE in their calculation of the VIX index, as described in the white paper available
on the CBOE website. There are two differences, however, between our construction of QV Q

t

and the calculation of the VIX index. First, we rely on trading, or business, time, while the
VIX index is constructed using a calendar time convention. Second, for compatibility with
the tail measures RTQt (k) and LTQt (k), we use the same closest to maturity options in the
calculation of QV Q

t , whereas the VIX is based on linear interpolation of options that bracket
a one-month maturity.

The three resulting risk-neutral variation measures are plotted in Figure 2. All of the
measures are reported in annualized percentage form. Here and throughout the rest of the
analysis, the moneyness for the left and right tails are fixed at 0.9 and 1.1, respectively. As
is immediately evident from the figure, the magnitude of the left tail measure substantially
exceeds that of the right tail. This, of course, merely reflects the well-known fact that out-
of-the-money puts tend to be significantly “overpriced” when assessed by standard pricing
models; see, e.g., the discussion in Bates (2009), Bondarenko (2003), Broadie et al. (2009),
and Foresi and Wu (2005). Also, all of the three risk-neutral variation measures clearly vary

22The options expire always on a Saturday and the settlement is at the opening of the preceding Friday.
Thus an option with 8 calendar days has effectively 4 trading days to its expiration. The median time-to-
expiration of the options in our sample is 14 working days.

23These are taken directly from OptionMetrics and are based on the corresponding mid quotes.
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Figure 2: Implied Measures.

over time, reaching unprecedented levels in Fall 2008. We will study these dynamic patterns,
and how they relate to the dependencies in CVt, more closely in Section 7 below.24

6 Tail Fears and Risk Premia

We begin our discussion of the equity and variance risk premia and the relationship between
the P and Q measures in Table 1 with a direct comparison of the average intensity for big
jumps under the different measures. In an effort to focus on “normal” times and prevent
our estimates of the risk premia and investor fears to be unduely influenced by the recent
financial market crises, we explicitly exclude the July 2007 through December 2008 part of
the sample from the estimation.

As is immediately evident from Table 1, the estimated frequencies for the occurrences of
large jumps are orders of magnitude smaller than the implied jump intensities under the risk-
neutral measure. This is consistent with the aforemention earlier empirical evidence reported
in Aı̈t-Sahalia et al. (2001); see their Section 3.5. Since we explicitly rely on the actual, and
frequently occurring, “medium-sized” jumps and EVT for meaningfully uncovering the P

24Using the nonparametric EVT-based approximations for the jump tails, detailed in Appendix 9.4, the
corresponding estimation results reported in Table 7 confirm that the magnitude of the left tail far exceed
that of the right. It also exhibits slightly stronger dynamic dependencies. This asymmetry in the tails under
Q contrasts with the previously discussed approximate symmetric tail behavior under P.
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jump tails, this marked difference cannot easily be “explained” by a standard Peso type
problem and a non-representative sample. The table also reveal a strong sense of investor
fears, as manifest by the much larger intensities for the left jump tails under Q and the
willingness to protect against negative jumps. For instance, the estimated risk-neutral jump
intensity for negative jumps less than −20% is more than twelve times larger than that for
positive jumps in excess of 20%, and the difference is highly statistically significant. The
differences in the left and right P jump tails, on the other hand, are not nearly as dramatic
and statistically insignificant.

Table 1: Mean Jump Intensities

Jump Size Under Q Under P
> 7.5% 0.5551 (0.0443) 0.0098 (0.0142)
> 10% 0.2026 (0.0206) 0.0050 (0.0083)
> 20% 0.0069 (0.0014) 0.0010 (0.0022)

< −7.5% 0.9888 (0.0525) 0.0036 (0.0048)
< −10% 0.5640 (0.0346) 0.0017 (0.0026)
< −20% 0.0862 (0.0084) 0.0002 (0.0005)

Note: The jump intensities are reported in annualized units. The jump sizes are in percentage changes in the
price level. The estimates under Q are based on options data from January 1996 through June 2007, while
the estimates under P rely on high-frequency futures data from January 1990 through June 2007. Standard
errors for the estimates are reported in parentheses. Further details concerning the estimation procedures
are provided in Appendix 9.1 and 9.4.

Although the option implied risk-neutral intensities for positive jumps are much smaller
than the intensities for negative jumps, they are still much higher than the estimated intensi-
ties for positive jumps under the statistical measure. This contrasts with previous estimates
from parametric models, which typically imply trivial and even negative premia for positive
jumps. Most of these findings, however, have been based on tightly parameterized models
that constrain the overall jump intensity, i.e., the intensity for jumps of any size, to be the
same under the risk-neutral and statistical measures. Thus, if negative jumps are priced, in
the sense that their risk-neutral intensity exceeds their statistical counterpart, this automat-
ically implies that positive jumps will carry no or even a negative risk premium. Meanwhile,
our nonparametric approach, which doesn’t restrict the shape and relation between the P
and Q jumps, suggest that the large positive jumps do in fact carry a premia, albeit of a
much smaller magnitude.25 This is also reminiscent of the U-shape pattern in the projection
of the pricing kernel on the space of market returns previously documented in Aı̈t-Sahalia
and Lo (2000) and Rosenberg and Engle (2002), among others, a possible explanation of

25As discussed further in Section 6.2 below, the temporal variation in the jump intensities means that
positive jumps may indeed carry risk premia.
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which is provided by the heterogenous agents framework discussed in Bakshi and Panayotov
(2009).

Figure 3: Equity and Variance Risk Premia due to “Big” Jumps.

Turning next to the actual risk premia, we plot in Figure 3 the components of the equity
and variance risk premia that are due to investors fears of rare events; i.e., ERP (k) and
V RP (k), respectively. As mentioned before, we explicitly exclude the last eighteen months
of the sample in the estimation of the volatility forecasting model and different tail measures,
so that the premia in the shaded parts of the figure, coinciding with the advent of the recent
financial market crises, are based on the “in-sample” estimates with data through June 2007
only. Also, for ease of interpretation, both of the premia are reported at a monthly frequency
based on 22-day moving averages of the corresponding daily estimates.26

26The time-to-expiration of the options used in the calculation of the risk premia changes systematically
over the month, inducing a monthly periodicity in the day-by-day estimates. To illustrate, consider the
popular jump-diffusion model of Duffie et al. (2000). For simplicity, suppose there is only a single continuous
volatility factor. Let κP and θP denote the mean-reversion parameter and the mean of σ2

t under P, with the
corresponding parameters under Q denoted by κQ and θQ. The unconditional mean of the risk premium may
then be expressed as K0 +K1(θP−θQ)(1−e−κQ(T−t))(κQ(T − t))−1, where the two constants K0 and K1 are
determined by the risk-premia parameters. This expected premium obviously depends on the horizon and
the relative import of the continuous stochastic volatility component, in turn inducing a monthly periodicity
in the options implied daily measures.
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There are obvious similarities in the general dynamic dependencies in the two jump risk
premia, with many of the peaks in ERP (k) coinciding with the troughs in V RP (k). At
the same time, there are also a number of important differences in the way in which the
compensation for the tail events manifest themselves in the two premia. We begin with a
more detailed discussion of the equity jump risk premium depicted in the top panel.

6.1 Equity Jump Risk Premium

Most of the peaks in the equity jump risk premium are readily associated with specific
economic events. In particular, the October 1997 “mini-crash” and the August-September
1998 turmoil associated with the Russian default and the LTCM debacle both resulted in
sharp, but relatively short-lived, increases in the required compensation for tail risks. A
similar, albeit much smaller, increase is observed in connection with the September 11, 2001,
attacks. Interestingly, the magnitude of the equity jump risk premium in October 2008 is
about the same as the premium observed in August-September 1998.

To better understand where this compensation for tail risk is coming from, it is instruc-
tive to decompose the total jump risk premium into the parts associated with negative and
positive jumps, say ERP+

t (k) and ERP−
t (k), respectively. This decomposition, depicted in

Figure 4, shows that although the behavior of the two tails are clearly related, the contri-
butions to the overall risk premium are far from symmetric. Most noticeably, the October
1997 “mini-crash” seems to be associated with an increased fear among investors of addi-
tional sharp market declines and a corresponding peak in ERP−

t (k), while there is hardly
any effect on ERP+

t (k). Similarly, the August-September 1998 market turmoil had a much
bigger impact on ERP−

t (k) than it did on ERP+
t (k). Conversely, the dramatic stock market

declines observed in July and September 2002 in connection with the burst of the dot-com
“bubble” resulted in peaks and troughs in both ERP+

t (k) and ERP−
t (k), with less of a dis-

cernable impact on the total jump risk premium ERPt(k). Likewise, the March 2003 start of
the Second Gulf War is hardly visible in ERPt(k), but clearly influenced both ERP+

t (k) and
ERP−

t (k). Most dramatic, however, the sharp increase in ERPt(k) associated with the Fall
2008 financial crises masks even larger offsetting changes in ERP+

t (k) and ERP−
t (k) that

dwarf the separate jump risk premia observed during the rest of the sample. As such, this
directly underscores the popular notion that investors really didn’t know what the “right”
price was at the time.

Looking at the typical sample values, again excluding the July 2007-December 2008 part
of the sample, the median of the estimated equity risk premia due to fears of rare events
equals 5.2%.27 This is quite high, and compared to the prototypical estimate of 8% for the
equity risk premia in postwar U.S. data (see, e.g. Cochrane (2005)), our results imply that
fears of rare events account for roughly two-thirds of the total expected excess return. These
numbers contrast with the estimation results reported in Broadie et al. (2007), which imply
a mean ERPt(k) of 1.85%, and the estimates in Eraker (2004), which imply a premium for
rare events of only 0.65%. Both of these studies, of course, are based on a specific parametric

27Including the more recent period the median increases to 5.6%.
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Figure 4: Decomposition of Equity Jump Premia.

model, whereas our results are essentially model-free and nonparametric.28

At a more general level, our findings suggest that excluding fears and tail events, the
magnitude of the equity risk premium is quite compatible with the implications from stan-
dard consumption-based asset pricing models with “reasonable” levels of risk aversion.29 Of
course, this raises the question of why investors price tail risk so high? Recent pricing models
that pay special attention to tail risks include Pan et al. (2005) and Bates (2008), the work
by Bansal and Shaliastovich (2009) and Shaliastovich (2009) based on the concept of confi-
dence risk, and Drechsler (2009) who emphasizes the role of time-varying model uncertainty
in amplifying the impact of jumps.

Further corroborating these ideas, we show next that fears of rare events account for an
even larger fraction of the historically “large” and difficult to explain variance risk premium.

28The numbers reported in the text are based on the estimates in Broadie et al. (2007) and Eraker (2004)
for a stochastic volatility model with correlated jumps, referred to in the literature as a SVCJ type model,
in which the parametric form of the jumps effectively implies an exponential decay.

29Conversely, Nieto and Rubio (2008) rely on the volatility of stochastic discount factors from standard
consumption-based asset pricing models to back out model implicit notions of economic (recession) fears.
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6.2 Variance Jump Risk Premium

The general dynamic dependencies in the jump variance risk premium depicted in the second
panel in Figure 3 fairly closely mirror those of the jump equity premium in the first panel.
Similarly, decomposing V RPt(k) into the parts associated with negative and positive jumps,
say V RP+

t (k) and V RP−
t (k), respectively, reveal a rather close coherence between the two

tail measures. With the notable exception of the aforemention October 1997 “mini-crash”
and the August-September 1998 Russian default and LTCM debacle, most of the spikes
coincide between the two time series plotted in Figure 5. The magnitude of V RP−

t (k), of
course, typically exceeds that of V RP+

t (k) by a factor of 2-4.30

Figure 5: Decomposition of Variance Jump Premia.

Do these findings of large tail risk premia imply a special treatment, or compensation,
for rare events? If “large”, i.e., jump-related, risks were treated the same as “small”, i.e.,
diffusive, risks, what would be the magnitudes of the tail risk premia?

To begin answering these questions, it is instructive to further decompose the variance

30This is also in line with the recent empirical findings in Andersen and Bondarenko (2009) related to
their up and down implied variance measures.
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jump tail premia. In particular, from the formal definition of V RP+
t (k), it follows that

V RP+
t (k) =

1

T − t

(
EPt

∫ T

t

∫

x>k

x2dsνPs (dx)− EQt
∫ T

t

∫

x>k

x2dsνPs (dx)

)

+
1

T − t
EQt

(∫ T

t

∫

x>k

x2dsνPs (dx)−
∫ T

t

∫

x>k

x2dsνQs (dx)

)
,

(6.1)

with a similar decomposition available for V RP−
t (k). The first term on the right-hand-side

reflects the compensation for time-varying jump intensity risk. This part of the tail variance
risk premia will be present if and only if the conditional dependencies in the jumps do in fact
vary over time. It mirrors the compensation demanded by investors for the continuous part
of the quadratic variation, i.e., V RP c

t (k). As such it is naturally associated with investor’s
willingness to hedge against changes in the investment opportunity set.31 For Lévy type
jumps, this part of the variance jump risk premium will be identically equal to zero.

More generally, for the jump intensity process in equation (4.6), the relevant difference
between the P and Q expectations may be written as,

EPt
∫ T

t

∫

x>k
x2dsνPs (dx)− EQt

∫ T

t

∫

x>k
x2dsνPs (dx)

= α+
1

∫

x>k
νP(x)dx

(
EPt

∫ T

t
σ2

sds− EQt
∫ T

t
σ2

sds

)
.

(6.2)

The format of this expression further highlights the similarity of the first component on
the right-hand-side in the expression for V RP+

t (k) in equation (6.1) with the continuous
component V RP c

t in equation (2.10). In contrast, the second term on the right-hand-side in
equation (6.1) involves the wedge between the risk-neutral and objective jump intensities.
But, this difference is evaluated under the same probability measure, and as such it is
effectively purged of the premia due to temporal variation in the jump intensities. If jumps
were treated as diffusive risks, then this component should be zero, since the predictable
quadratic variation of the continuous price does not change when changing the measure
from P to Q.

The high-frequency based estimation results discussed in the previous section suggest
the existence of significant temporal variation in the tail jump intensities. Part of the tail
risk premia will therefore be coming from the first term in equation (6.1). However, our
estimation results also suggest that the left and right tails behave quite similarly under P,

31In more technical terms, the quadratic variation of the log-price process may be split into its predictable
component and a residual martingale component solely due to jumps,

QVt =
∫ T

t

σ2
sds +

∫ T

t

∫

R
x2dsνPs (dx) +

∫ T

t

∫

R
x2µ̃(ds, dx) ≡ 〈fs, fs〉(t,T ] +

∫ T

t

∫

R
x2µ̃(ds, dx),

where 〈fs, fs〉(t,T ] denotes the predictable quadratic variation; see, e.g., Jacod and Shiryaev (2003). The
pricing of the first term, 〈fs, fs〉(t,T ], is naturally associated with changes in the investment opportunity set,
while the pricing of the martingale part reflect any “special” treatment of jump risk.
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Figure 6: Investor Fears.

so that in particular

α+
1

∫

x>k

νP(x)dx ≈ α−1

∫

x<−k

νP(x)dx.

Combining this approximation with equation (6.2) and the comparable expression for the
left tail measure, it follows that the difference V RP−

t (k)− V RP+
t (k) will be largely void of

the risk premia due to temporal variation in the jump intensities. Consequently, V RP−
t (k)−

V RP+
t (k) may be interpreted as a direct model-free measure of investor fears, or “crash-o-

phobia”.32

The corresponding plot in Figure 6 shows that the sharpest increase in investor fears
over the sample did indeed occur during the recent financial crises. However, the Russian
default and LTCM collapse in August-September 1998 resulted in a spike in the fear index
almost 2/3 the size. Slightly less dramatic increases are manifest in connection with the
October 1997 ”mini-crash”, September 11, 2001, and the summer of 2002 and the burst of
the dot-com “bubble”. The figure also reveals systematically low investor fears from 2003
through mid-2007, corresponding to the general run-up in market values.

Meanwhile, the average sample values reported in Table 2 confirm that much of the
variance risk premium does indeed come from “crash-o-phobia”, or special compensation
for tail risks. Excluding the post July 2007 crises period, the average sample variance risk

32Rubinstein (1994) first attributed the smirk like pattern in post October 1987 Black-Scholes implied
volatilities for the aggregate market portfolio when plotted against the degree of moneyness as evidence of
“crash-o-phobia”; see also Foresi and Wu (2005) for more recent related international empirical evidence.
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premium equals E(V RPt) = 0.030. Of that total premium E(V RP+
t (k))/E(V RPt) = 10.0%

may be attributed to compensation for right tail risks, while E(V RP−
t (k))/E(V RPt) = 59.8%

comes from left tail risks. In other words, our results suggest that roughly half of the variance
risk premium is due to investor fears, as opposed to more standard rational based pricing
arguments.

Table 2: Variance Risk Decomposition

Under Q
E

(
1

T−t

∫ T

t

∫
x>ln 1.1

x2EQt νQs (dx)ds
)

0.0032 (0.0004)

E
(

1
T−t

∫ T

t

∫
x<ln 0.9

x2EQt νQs (dx)ds
)

0.0180 (0.0015)

E(QV Q
t ) 0.0576 (0.0056)

Under P
E

(
1

T−t

∫ T

t

∫
x>ln 1.1

x2EPt νPs (dx)ds
)

0.000196 (0.000483)

E
(

1
T−t

∫ T

t

∫
x<ln 0.9

x2EPt νPs (dx)ds
)

0.000062 (0.000115)

E(QV P
t ) 0.0276 (0.0031)

Note: The estimates are reported in annualized form, with standard errors in parentheses. The estimates
under Q are based on options data from January 1996 through June 2007, while the estimates under P rely
on high-frequency futures data from January 1990 through June 2007. Details concerning the estimation
procedure are provided in Appendix 9.4.

Comparing these numbers to the implications from from the aforementioned paramet-
ric model estimates reported in the literature, the study by Broadie et al. (2007) im-
ply that E(V RPt(k))/E(V RPt) = 24.4%, while the results in Eraker (2004) suggest that
E(V RPt(k))/E(V RPt) = 20.0%.33 These numbers obviously differ quite dramatically from
the 10.0% + 59.8% = 69.8% obtained with our nonparametric approach. Importantly, how-
ever, these and other leading studies have all constrained the wedge between the risk-neutral
and statistical jump distributions to a negative shift in the mean jump size;34 see, e.g.,
the discussion in Singleton (2006) of these and other related studies, most of which further
restrict the analysis to constant jump intensities. The results reported here indicate that
the difference in the jump behavior under the two probability measures is much more com-
plex than that, and that time-varying jump intensities play an especially important role for
properly understanding and extracting the fear component.

In the next section we further corroborate this idea through a series of robustness checks

33These numbers are calculated on the basis of the specific parameter estimates for the SVCJ models
reported in the two studies, with the horizon fixed at 14 days, corresponding to the median time-to-expiration
of the options used in our analysis, along with k = 10%.

34Broadie et al. (2007) also consider changing the variance of the jumps.
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pertaining to the general assumptions concerning the tail dependencies underlying our em-
pirical results and inference procedures.

7 Robustness Checks

Our approach for estimating the risk premia and the contributions from the tails are essen-
tially model-free, the only parametric assumptions relating to the form of the time-varying
jump intensities. We begin with a discussion of the P jump intensities underlying our esti-
mation of the RT Pt (k) and LT Pt (k) tail measures.

The relevant assumption in equation (4.6) restricts the intensities for the positive and
negative jumps to be affine functions, possibly with different coefficients, of the latent instan-
taneous volatility σ2

t . This therefore implies that the left and right realized jump variances,∫ t+1

t+πt

∫
x>0

x2µ(ds, dx) and
∫ t+1

t+πt

∫
x<0

x2µ(ds, dx), only depend upon the past through the tem-
poral variation in the integrated stochastic volatility. Consequently,

Cov
(∫ t+1

t+πt

∫

x>0

x2µ(ds, dx),
∫ t

t−1+πt

σ2
sds

)
= K1Cov

(∫ t+1

t+πt

σ2
sds,

∫ t

t−1+πt

σ2
sds

)
,

and,

Cov
(∫ t+1

t+πt

∫

x>0

x2µ(ds, dx),
∫ t

t−1+πt

∫

x>0

x2µ(ds, dx)
)

=

K1Cov
(∫ t+1

t+πt

σ2
sds,

∫ t

t−1+πt

∫

x>0

x2µ(ds, dx)
)

,

where K1 = (α+
1 )2

∫
x>0

x2νP(x)dx. Now, defining the vector

Zt ≡
(∫ t+1

t+πt

σ2
sds,

∫ t+1

t+πt

∫

x>0

x2µ(ds, dx),

∫ t+1

t+πt

∫

x<0

x2µ(ds, dx)

)′
,

it follows that the autocovariance matrix for Zt should be of reduced rank.35 We state this
testable implication in the following proposition.

Proposition 1 If σ2
t is a covariance stationary and ergodic process, and

∫
R x2νP(x)dx< ∞.

The assumption in equation (4.6) implies that rank (Cov(Zt,Zt−1)) = 1.

In practice, of course, the vector Zt is not directly observable. However, as discussed in
Section 4.1 above, it may be accurately estimated by (CVt, RJVt, LJVt). Even so, this vector
will invariable contain some estimation error, which will render the resulting autocovariance
matrix of full rank even if Cov(Zt,Zt−1) is not. Hence, in order to formally test whether
the deviations from reduced rank in the actually observed sample autocovariance matrices
for (CVt, RJVt, LJVt) and subsets thereof are statistically significant, we rely on the test
developed by Gill and Lewbel (1992). Further details concerning the implementation of the
test are given in Appendix 9.3.

35The possibility of jumps in σ2
t means that the covariance matrix of Zt will not necessarily be of reduced

rank.
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Table 3: Rank Tests for Affine P Jump Intensities

Autocovariance Matrix Test Stat. d p-value

(CVt, RJVt, LJVt) 3.7937 2 0.1500
(CVt, RJVt) 1.2616 1 0.2613
(CVt, LJVt) 0.2590 1 0.6108
(RJVt, LJVt) 3.5299 1 0.0603

Note: The table reports the results of the Gill and Lewbel (1992) rank test, as detailed in Appendix 9.3. The
realized variation measures are based on high-frequency futures data from January 1990 through December
2008. The test has a limiting χ2

d distribution under the null hypothesis that the autocovariance matrix has
reduced rank one. The calculation of the asymptotic variance for the autocovariance matrices are based on
a Parzen kernel with a lag-length of 70.

None of the resulting test statistics reported in Table 3 reject the reduced rank hypothesis.
These test are based on the realized variation measures over the full sample underlying the
different risk premia estimates depicted in the figures, but very similar results are obtained
for the January 1990 through June 2007 sample actually used in the tail estimation.36 As
such, the results uniformly support the affine restriction in equation (4.6) related to the
actual jump intensities.

In contrast to the affine dependencies for the P jump intensities underlying our estimates
of the statistical tail measures, our estimates for the risk-neutral tail measures rely on the
less restrictive condition in equation (3.6). This assumption merely restricts the temporal
variation to be the same across different jump sizes, and as such it is trivially satisfied by
all parametric models hitherto estimated in the literature. This level of generality for the
Q jump measures may be particularly important to properly accommodate the seemingly
complex dynamic dependencies in investor fears.

In order to more formally investigate this hypothesis, suppose that the Q jump intensities
satisfied the analogous affine dependencies assumed for the P jump measure,

νQt (dx) =
(
α+Q

0 1{x>0} + α−Q0 1{x<0} + (α+Q
1 1{x>0} + α−Q1 1{x<0})σ

2
t

)
νQ(x)dx, (7.1)

where νQ(x) denotes a valid Lévy density, and α±Q0 and α±Q1 are nonnegative constants.37 In
parallel to the definition of Zt in Proposition 1 above, define the vector Yt ≡ (RTQt (k), LTQt (k), QV Q

t )′.
If (7.1) holds true, RTQt (k), LTQt (k) and QV Q

t should all be linear functions of the risk-

neutral expected integrated volatility EQt
(∫ T

t
σ2

sds
)
. Consequently, the covariance matrix,

and equivalently the lag-one autocovariance matrix, for Yt should be of reduced rank one. If

36We also implemented the same set of tests with all of the variables replaced by their square-roots; i.e.,(
CV

1/2
t , RJV

1/2
t , LJV

1/2
t

)
. All of these tests strongly rejected the reduced rank hypothesis, highlighting

the power of the procedure. Further details of these results are available upon request.
37This assumption, together with equation (4.6), in turn imply that the temporal variation in all risk

premia would be spanned by the level of the stochastic volatility.
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(7.1) doesn’t hold, QV Q
t may still depend linearly on the integrated volatility EQt

(∫ T

t
σ2

sds
)
.

However, in this situation additional time-varying factors will typically affect Yt, so that
rank (Var(Yt)) ≡ rank (Cov(Yt,Yt−1)) > 1. The following testable proposition summarizes
this implication.

Proposition 2 If Yt is a covariance stationary and ergodic process, and
∫
|x|>ε

exνQ(x)dx <

∞ for some ε > 0. The assumption in equation (7.1) implies that rank (Cov(Yt,Yt−1)) = 1.

The results from the rank tests for the Q tail measures are reported in Table 4. As seen
from the table, all of the tests clearly reject the affine structure for the risk-neutral jump
intensities. While the tests reported in the table are based on the full sample, including the
date through December 2008, very similar results are obtained when excluding the July 2007
through December 2008 part of the sample. This, of course, contrasts with the comparable
test results for the P jump intensities in Table 3.

Table 4: Rank Tests for Affine Q Jump Intensities

Autocovariance Matrix Test Stat. d p-value

(QV Q
t , RTQt , LTQt ) 65.8861 2 0.0000

(QV Q
t , RTQt ) 29.3789 1 0.0000

(QV Q
t , LTQt ) 31.7486 1 0.0000

(RTQt , LTQt ) 12.4262 1 0.0000

Note: See Table 3. The variation measures are based on options data from January 1996 through December
2008.

Taken as a whole, the robustness tests in Tables 3 and 4 all support the key minimal
assumptions underlying our nonparametric inference procedures. At the same time, the
results also suggest the existence of much more complex dynamic dependencies in the risk-
neutral jump tails than hitherto entertained in the literature, and ones that cannot simply
be spanned by the level of the stochastic volatility. As such, this caution against the dangers
of falsely restricting the form of the tails to be the same across the P and Q distributions
when trying to understand investor fears, or notions of “crash-o-phobia”, embedded in the
market prices.

8 Conclusion

The recent market turmoil has spurred a renewed interest in the study and economic impact
of rare disaster type events.38 Most of these studies resort to peso type explanations for the

38Barro (2009), for instance, argues that the welfare cost of uncertainty and crash fears can be extremely
high, and that society as a whole may be willing to forgo almost twenty percent of GDP to eliminate rare
disasters.
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occurrence of rare events along with specific parametric modeling assumptions for conducting
the statistical inference. In contrast, the new methodologies developed here are essentially
model-free and nonparametric, relying on high-frequency data and extreme value theory for
effectively measuring the actual tail events, together with a rich set of options for uncovering
the pricing of the tail events.

Allowing the data to “speak for themselves,” our empirical findings suggest that much of
the historically large equity and variance risk premia may indeed be ascribed to compensation
for tail events and are not well described by traditional mean-variance type frameworks.
Excluding the part of the risk premia directly attributable to tail events, the average equity
and variance premia observed in the data are both in line with the general implications from
standard equilibrium based asset pricing models with reasonable preference parameters. Our
decomposition of the variance risk premia further suggests that investors fears, or “crash-
o-phobia”, play a crucial role in explaining the overall magnitude of the tail risk premia.
At the same time, the perception of tail risks appear to vary quite substantially over time,
which may help explain some of the recent sharp movements in market valuations.
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9 Appendix

9.1 Estimation of Jump Measures from Options Data

Using the Meyer-Ito formula (Protter (2004), Theorem 70) for the payoff function of out-
of-the-money calls, together with the fact that futures prices are martingales under the
risk-neutral measure, we can write for K > Ft− and T ↓ t (this result was first derived in
Carr and Wu (2003) in the proof of their Theorem 1),

er(t,T ]Ct(K) ∼
∫ T

t
EQt

(∫

R

[
1{Fs−<K}(Fs−ex −K)+ + 1{Fs−>K}(K − Fs−ex)+

]
νQs (dx)

)
ds

∼ (T − t)Ft−RTQt (k), (9.1)

where f(x) ∼ g(x) is to be interpreted as limx→0
f(x)
g(x)

= 1, and RTQt (k) is formally defined

in equation (3.4). A similar result holds for close-to-maturity out-of-the-money puts.
To gauge the magnitude of the approximation errors in equation (9.1) and the comparable

equation for the puts in empirical realistic situations with feasible times-to-maturity and
levels of moneyness, we simulate data from Merton’s jump-diffusion model. Following Carr
and Wu (2003), we fix the interest rate at 5%, the continuous volatility at 14%, the jump
intensity at 2, the mean log jump size at −5%, and the volatility of the log jump size at
13%.39 The results from the Monte-Carlo simulations are reported in Table 5.

Table 5: Risk-Neutral Tail Estimation

Moneyness Time to Maturity in Days
5 10 15 20

Left Tail
k = ln(0.9250) 1.0007 1.0057 1.0192 1.0354
k = ln(0.9125) 1.0043 1.0088 1.0169 1.0283
k = ln(0.9000) 1.0084 1.0161 1.0244 1.0344

Right Tail
k = ln(1.0750) 1.0433 1.1348 1.2953 1.4735
k = ln(1.0875) 1.0469 1.1083 1.2159 1.3557
k = ln(1.1000) 1.0519 1.1069 1.1857 1.2941

Note: The table reports the estimates for the er(t,T ]Pt(K)/TFt−LTQt (k) and er(t,T ]Ct(K)/TFt−RTQt (k) ratios
based on simulated data from the Merton jump-diffusion model with the parameter configurations discussed
in the text.

As expected, the approximations work best overall for closest-to-maturity and deepest
out-of-the-money options. Meanwhile, the left tail is always recovered very accurately, even

39All of the parameters are reported in annualized units. The only difference from Carr and Wu (2003) is
the reduction in the mean log-jump size from −10% to −5% to more closely resemble the sample averages
observed in our data.
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for relatively long-lived and close-to-the-money options. The right jump tail approximation
contains somewhat larger errors, especially for longer maturities, or larger T − t, and closer
to at-the-money, or k close to 0, options. The risk-neutral jump distribution is skewed to
the left, making the left jump tail far more dominant and easier to disentangle. All-in-all,
however, the results are generally supportive of the approximations that we use for estimating
LTQt (k) and RTQt (k).

9.2 Estimation of Realized Measures from High-Frequency Data

This appendix provides further details on the computation of the truncation levels that we
use in the estimation of CVt, RJVt and LJVt in equations (4.2)-(4.5). Theoretically, any
α > 0 and $ ∈ (0, 0.5) will work. In the actual estimation, however, we fix $ = 0.49. Our
choice of α is a bit more involved and takes into account that volatility changes across days
and also has a strong diurnal pattern over the trading day.

To account for the latter feature we estimate nonparametrically a time-of-day factor
TODi, i=1,2,...,n,

TODi = NOIi

∑N
t=1(f(t−1+πt)+i∆n,t

− f(t−1+πt)+(i−1)∆n,t
)21{|f(t−1+πt)+i∆n,t

−f(t−1+πt)+(i−1)∆n,t
|≤α∆0.49

n }
∑N

t=1

∑M
i=1(f(t−1+πt)+i∆n,t

− f(t−1+πt)+(i−1)∆n,t
)2

,

(9.2)

where

NOIi =

∑N
t=1

∑n−1
i=1 1{|f(t−1+πt)+i∆n,t

−f(t−1+πt)+(i−1)∆n,t
|≤α∆0.49

n }
∑N

t=1 1{|f(t−1+πt)+i∆n,t
−f(t−1+πt)+(i−1)∆n,t

|≤α∆0.49
n }

,

α = 3
√

π

2

√√√√ 1
N

N∑

t=1

n−1∑

i=2

|f(t−1+πt)+i∆n,t
− f(t−1+πt)+(i−1)∆n,t

||f(t−1+πt)+(i−1)∆n,t
− f(t−1+πt)+(i−2)∆n,t

|,

and ∆n ≡ 1
n
. The truncation level α is based on the average volatility in the sample, as

measured by the so-called bipower variation measure defined in Barndorff-Nielsen and Shep-
hard (2004). Consequently α ≈

√
(1− E(πt))E(σ2

t ). The NOIi factor puts the numerator
and denominator in equation (9.2) in the same units. It is approximately equal to n − 1.
This calculation of TODi implicitly assumes that πt and σ2

t are both stationary and ergodic
processes. The resulting TODi estimates are plotted in Figure 7. The figure shows the pre-
viously well-documented U-shape in the average volatility over NYSE trading hours, with
separate end effects for the futures before and after the cash market opens; see the discussion
in Andersen and Bollerslev (1997) pertaining to a very similar looking picture for an earlier
sample period.

To account for the time-varying volatility across days, we use the estimated continuous
volatility for the previous day (for the first day in the sample we use α). Putting all of the
pieces together, the time-varying threshold used in our calculations of CVt, RJVt and LJVt

may be expressed as αt,i = 3
√

CVt−1 × TODi ×∆0.49
n .
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Figure 7: Time-of-Day Factor.

9.3 Rank Test

We sketch here the basic calculations required for the rank test that we use to test the
implications of Propositions 1 and 2. We refer to Gill and Lewbel (1992) for the full details.
Let A denote a general p× p matrix. The hypothesis of interest may then be expressed as,

H0 : rank(A) ≡ r vs. H1 : rank(A) > r, r < p,

where we have an asymptotically normally distributed estimator of A, say

√
Nvec(Â− A)

L−→ N (0, V ).

Also, let V̂ denote a consistent estimator of V . The rank test is based on LDU (lower-
diagonal-upper triangular) decomposition with complete pivoting; i.e., the elements of the
diagonal matrix are decreasing in absolute value. To this end we write the matrices associated
with this decomposition as

P̂ ÂQ̂ = L̂D̂Û ,

where

L̂ =

(
L̂11 0
L̂21 Ip−r

)
D̂ =

(
D̂1 0
0 D̂2

)
Û =

(
Û11 Û12

0 Û22

)

and P̂ and Q̂ are permutation matrixes, L̂11, Û11 and Û22 are unit lower triangular, and in
addition

Ĥ = [−L̂−1
22 L̂21L̂

−1
11 L̂−1

22 0] K̂ =

(
−Û−1

11 Û12Û
−1
22

Û−1
22

)
.
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Further, let Ξi denote the (p − r) × (p − r) matrix with ones along the i-th diagonal and
zeros everywhere else, and define

Ξ =




Ξ1
...
Ξn


 ,

and

Ŵ = Ξ′(K̂ ′ ⊗ Ĥ)(Q̂′ ⊗ P̂ )V̂ (Q̂⊗ P̂ ′)(K̂ ⊗ Ĥ ′)Ξ.

Finally, let d̂2 = diag(D̂2). The rank test is then given by

Nd̂′2Ŵ
−1d̂2

appr∼ χ2
p−r.

9.4 Estimation of Jump Tails

We start with some general remarks that apply for both the P and Q distributions, and then
subsequently specialize the discussion to the statistical and risk-neutral jump tail estimation.
For ease of notation, we will suppress the dependence on P and Q in the Lévy densities νP(x)
and νQ(x) in this initial discussion.

To begin, define ψ+(x) = ex − 1 for x ∈ R+ and ψ−(x) = e−x for x ∈ R−. ψ+(x) maps
R+ into R+, and ψ−(x) maps R− into (1, +∞). Both mappings are one-to-one. Further,

denote ν+
ψ (y) = ν(ln(y+1))

y+1
for y ∈ (0,∞) and ν−ψ (y) = ν(− ln y)

y
. It follows then for every

measurable set A in (0,∞) that
∫

(0,∞)
1{x∈A}ν

+
ψ (x)dx =

∫
R+

1{ex−1∈A}ν(x)dx. Similarly, for

every measurable set A in (1,∞), we have that
∫
(1,∞)

1{x∈A}ν
−
ψ (x)dx =

∫
R− 1{e−x∈A}ν(x)dx.

Finally, denote the tail jump measures

ν±ψ (x) =

∫ ∞

x

ν±ψ (u)du, (9.3)

with x > 0 for ν+
ψ (x), and x > 1 for ν−ψ (x).

Our estimation of the jump tails is nonparametric, and based on the assumption that
the tail Lévy densities ν−ψ and ν+

ψ belong to the domain of attraction of an extreme value
distribution; see, e.g., the general discussion in Embrechts et al. (2001), along with the
recent empirical analysis related to extreme market moves in Bakshi et al. (2009). This is a
vary wide class of jump measures, and it includes most parametric specifications that have
previously been used in the literature. This assumption in turn implies that ν±ψ = x−pL(x)
for some p and slowly varying at infinity function L(x); i.e., a function with the property that

lim
x→∞

L(tx)
L(x)

= 1 for every t > 0. This, of course, does not pin down the tail Lévy measure itself,

as the function L(x) is unknown. However, under additional mild technical assumptions on
the function L(x), see, e.g., Smith (1987), we have that

1− ν±ψ (u + x)

ν±ψ (x)

appr∼ G(u; σ±, ξ±), u > 0, x > 0, (9.4)
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where

G(u; σ±, ξ±) =

{
1− (1 + ξ±u/σ±)

−1/ξ±
, ξ± 6= 0, σ± > 0

1− e−u/σ± , ξ± = 0, σ± > 0
(9.5)

G(u; σ±, ξ±) is the cdf of a generalized Pareto distribution. In what follows we assume
that the approximation in (9.4) is exact when x is large enough; see the formal proofs in
Bollerslev and Todorov (2009) for further details concerning the approximation error and
the exact conditions under which the error is asymptotically negligible.

Before we turn to our discussion of the estimation of the parameters for the generalized
Pareto distribution approximation to the tail Lévy densities for the statistical and risk-
neutral distributions, we present several integrals with respect to the Lévy density ν(x) that
appear in ERPt(k), V RPt(k), RT Pt (k), LT Pt (k), RTQt (k) and LTQt (k). In particular, assuming
that the approximation in (9.4) holds, it follows that for k > 0 and some tr+ < ek − 1,

∫

x>k
(ex − 1) ν(x)dx =

(
ek − 1

)
ν+

ψ (ek − 1) +
∫

R

(
ex − ek

)+
ν(x)dx,

∫

R

(
ex − ek

)+
ν(x)dx =

∫

(0,∞)
(x− ek + 1)+ν+

ψ (x)dx =
∫ ∞

ek−1
ν+

ψ (x)dx

= ν+
ψ (tr+)

∫ ∞

ek−1

(
1−

(
1−

ν+
ψ (x)

ν+
ψ (tr+)

))
dx

= ν+
ψ (tr+)

(
σ+

1− ξ+

)(
1 +

ξ+

σ+
(ek − 1− tr+)

)1−1/ξ+

,

∫

x>k
(ex − 1− x)ν(x)dx =

∫

x>ek−1
(x− ln(x + 1))ν+

ψ (x)dx

= ν+
ψ (ek − 1)(ek − 1− k) + ν+

ψ (tr+)
σ+

1− ξ+

(
1 +

ξ+

σ+
(ek − 1− tr+)

)1−1/ξ+

−
ν+

ψ (tr+)(σ+)1/ξ+
ξ+

(ekξ+)1/ξ+ 2F1

(
1
ξ+

;
1
ξ+

; 1 +
1
ξ+

;
ξ+

σ+ (tr+ + 1)− 1
ξ+

σ+ ek

)
,

∫

x>k
x2ν(x)dx = k2ν+

ψ (ek − 1) + 2
∫

x>ek−1

ln(x + 1)
x + 1

ν+
ψ (x)dx = k2ν+

ψ (ek − 1) + 2ν−ψ (tr−)×K1,

K1 = e−k/ξ+
ξ+

(
ξ+

σ+

)−1/ξ+ [
ξ+

3F2

(
1
ξ+

,
1
ξ+

,
1
ξ+

; 1 +
1
ξ+

, 1 +
1
ξ+

;
ξ+

σ+ (tr+ + 1)− 1

ek ξ+

σ+

)

+ k2F1

(
1
ξ+

,
1
ξ+

, 1 +
1
ξ+

;
ξ+

σ+ (tr+ + 1)− 1

ek ξ+

σ+

)]
,

where 3F2( , , ; , ; ) and 2F1( , , ; ) are the hypergeometric functions. The above integrals
are all well defined provided that

∫
x>ε

xν+
ψ (x)dx < ∞ for some ε > 0, i.e. ξ+ < 1. Similar

calculations for k < 0 and 1 < tr− < e−k yield,
∫

x<k
(ex − 1) ν(x)dx =

(
ek − 1

)
ν−ψ (e−k)−

∫

R

(
ek − ex

)+
ν(x)dx,
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∫

R

(
ek − ex

)+
ν(x)dx =

∫

(0,∞)

(
ek − 1

x

)+

ν−ψ (x)dx =
∫ ∞

e−k

ν−ψ (x)

x2
dx

= ν−ψ
(
tr−

) (
ξ−

ξ− + 1

) (
ek

)1+1/ξ−
(

ξ−

σ−

)−1/ξ−

× 2F1

(
1 +

1
ξ−

;
1
ξ−

; 2 +
1
ξ−

;−1− tr− ξ−
σ−

e−k ξ−
σ−

)
,

∫

x<k
(ex − 1− x)ν(x)dx =

∫

x>e−k

(
1
x
− 1 + lnx

)
ν−ψ (x)dx

= ν−ψ (e−k)(ek − 1− k) + ν−ψ
(
tr−

) (
ek σ−

ξ−

)1/ξ−

ξ− ×K2,

K2 = 2F1

(
1
ξ−

,
1
ξ−

, 1 +
1
ξ−

;
tr− ξ−

σ− − 1

e−k ξ−
σ−

)
− ek

ξ− + 12F1

(
1 +

1
ξ−

;
1
ξ−

; 2 +
1
ξ−

;
tr− ξ−

σ− − 1

e−k ξ−
σ−

)
,

∫

x<k
x2ν(x)dx = k2ν−ψ (e−k) + 2

∫

x>e−k

ln(x)
x

ν−ψ (x)dx = k2ν−ψ (e−k) + 2ν−ψ (tr−)×K3,

K3 = ek/ξ−ξ−
(

ξ−

σ−

)−1/ξ− [
ξ−3F2

(
1
ξ−

,
1
ξ−

,
1
ξ−

; 1 +
1
ξ−

, 1 +
1
ξ−

;
ξ−
σ− tr− − 1

e−k ξ−
σ−

)

− k2F1

(
1
ξ−

,
1
ξ−

, 1 +
1
ξ−

;
ξ−
σ− tr− − 1

e−k ξ−
σ−

)]
.

9.4.1 Estimation of P Jump Tails

Throughout this subsection we will assume that the P Lévy measure satisfies equation (4.6).
The resulting parameter vector that we seek to estimate is therefore

θ ≡
(
σ±, ξ±, α±0 ν±ψ (tr±), α±1 ν±ψ (tr±), π

)
,

where π ≡ E(πt). We base our estimation on the scores associated with the log-likelihood
function of the generalized Pareto distribution,

φ±1 (u) = − 1
σ±

+
ξ±u

(σ±)2

(
1 +

1
ξ±

)(
1 +

ξ±u

σ±

)−1

,

φ±2 (u) =
1

(ξ±)2
ln

(
1 +

ξ±u

σ±

)
− u

σ±

(
1 +

1
ξ±

)(
1 +

ξ±u

σ±

)−1

.

Following Bollerslev and Todorov (2009), this naturally give rise to the following set of
estimating equations,

E
(∫ t+1

t+πt

∫

R
φ±i (ψ±(x)− tr±)1{ψ±(x)>tr±}µ(ds, dx)

)
= 0, i = 1, 2,
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E
(∫ t+1

t+πt

∫

R
1{ψ±(x)>tr±}µ(ds, dx)− (1− π)α±0 ν±ψ (tr±)− α±1 ν±ψ (tr±)

∫ t+1

t+πt

σ2
sds

)
= 0,

E
((∫ t+1

t+πt

∫

R
1{ψ±(x)>tr±}µ(ds, dx)− (1− π)α±0 ν±ψ (tr±)− α±1 ν±ψ (tr±)

∫ t+1

t+πt

σ2
sds

) ∫ t

t−1+πt

σ2
sds

)
= 0,

(1− π)E (ft+πt − ft)
2 − πE

(∫ t+1

t+πt

σ2
s +

∫ t+1

t+πt

∫

R
x2µ(ds, dx)

)
= 0.

In order to operationalize these equations, we substitute all of the expectations with their
sample analogues constructed from the high-frequency data,

1
N

N∑

t=1

n−1∑

j=1

φ±i
(
ψ±(∆n,t

j p)− tr±
)

1{ψ±(∆n,t
j p)>tr±} = 0, i = 1, 2,

1
N

N∑

t=1

n−1∑

j=1

1{ψ±(∆n,t
j p)>tr±} − (1− π)α±0 ν±ψ (tr±)− α±1 ν±ψ (tr±)CVt = 0,

1
N

N∑

t=2




n−1∑

j=1

1{ψ+(∆n,t
j p)>tr+} − (1− π)α±0 ν±ψ (tr±)− α±1 ν±ψ (tr±)CVt


CVt−1 = 0,

(1− π)
1
N

N∑

t=1

(pt+πt − pt)
2 − π

1
N

N∑

t=1

RVt = 0.

The only remaining issue relates to the choice of tr±. On the one hand, high thresholds
are preferred so that the asymptotic extreme value approximation in (9.4) works best. On
the other hand, we need sufficiently many jumps above the thresholds to make the estimation
reliable. Faced with this tradeoff, we set the values for tr± so that they correspond to jumps
in the log-prices of 0.6%. In the sample we have 229 such jumps; 127 of them negative and
102 of them positive. This choice for tr± exceed the maximum threshold value for αt,i used
in the construction of CVt and JVt, so that the continuous component in the price will have
negligible effect in our estimation.

Table 6: Estimates for P Tail Parameters

Left Tail Right Tail
Parameter Estimate St.error Parameter Estimate St.error

ξ−P 0.3865 0.1050 ξ+
P 0.4361 0.1558

100σ−P 0.1709 0.0222 100σ+
P 0.1740 0.0272

α−0 νP−ψ (tr−) 0.0084 0.0030 α+
0 νP+ψ (tr+) 0.0002 0.0021

α−1 νP−ψ (tr−) 0.0333 0.0050 α+
1 νP+ψ (tr+) 0.0361 0.0041

Note: tr− = e−0.006 ≈ 0.994 and tr+ = e0.006 − 1 ≈ 0.006. The estimates are based on high-frequency
futures data from January 1990 through June 2007.
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The results from the estimation are reported in Table 6. As discussed in the main text,
the P tails are clearly time-varying, but otherwise appear close to symmetric. Not reported
in the table, our estimate for π ≡ E(πt) equal to 0.2076(0.0448) implies that on average
roughly nineteen percent of the total variation is due to changes in the price during non-
trading hours.

9.4.2 Estimation of Q Jump Tails

Our estimation of the jump tail probabilities under Q only requires the weak separability
condition for the time dependence and jump sizes implicit in the Lévy density in equation
(3.6). The parameter vector that we seek to estimate is

θ ≡
(
σ±Q , ξ±Q , α±QνQ±ψ (tr±)

)
.

From the calculations at the beginning of this section, we have that for 0 < tr+ ≤ ek − 1,

E
(
RTQt (k)

)
= α+

QνQ+
ψ (tr+)

σ+
Q

1− ξ+
Q

(
1 +

ξ+
Q

σ+
Q

(ek − 1− tr+)

)1−1/ξ+
Q

,

while for 1 < tr− ≤ e−k,

E
(
LTQt (k)

)
= α−QνQ−ψ

(
tr−

) ξ−Q
ξ−Q + 1

(
ek

)1+1/ξ−Q
(

ξ−Q
σ−Q

)−1/ξ−Q

×2F1


1 +

1
ξ−Q

;
1
ξ−Q

; 2 +
1
ξ−Q

;
tr−

ξ−Q
σ−Q
− 1

e−k
ξ−Q
σ−Q


 ,

where α+
Q ≡ E

(
1

T−t
EQt

(∫ T

t
ϕ+

s ds
))

and α−Q ≡ E
(

1
T−t
EQt

(∫ T

t
ϕ−s ds

))
.

Now replacing the unconditional risk-neural expectations of the jump tail measures with
the sample analogues of RTQt (k) and LTQt (k) for three different levels of moneyness for
each of the tails results in an exactly identified GMM estimator. The levels of moneyness
that we use in the estimation are K

Ft−
= 0.9250, 0.9125, and 0.9000 for the left tail, and

K
Ft−

= 1.0750, 1.0875 and 1.1000 for the right tail. These levels of moneyness are sufficiently
“deep” in the tails to guarantee that the effect of the diffusive price component in measuring
LTQt (k) and RTQt (k) is minimal, and that the extreme value asymptotic distribution provides
a good approximation to the tail jump probabilities. The truncation levels are fixed at
tr− = 1

1−0.075
for the left tail and tr+ = 0.075 for the right tail. This corresponds directly to

the moneyness for the closest-to-the-money options used in the estimation.
The results from the estimation are reported in Table 7. Not only is the left tail under

the Q distribution at a higher level, it also decays at a slower rate. Although not directly
comparable, the standard errors for the Q tail parameters are much smaller than the ones
for the P tail parameters reported in Table 6. This is quite intuitive as our estimation
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Table 7: Estimates for Q Tail Parameters

Left Tail Right Tail
Parameter Estimate St.error Parameter Estimate St.error

ξ−Q 0.2581 0.02816 ξ+
Q 0.0793 0.0147

σ−Q 0.0497 0.0021 σ+
Q 0.0238 0.0010

α−QνQ−ψ

(
1

1−0.075

)
0.9888 0.0525 α+

QνQ+
ψ (0.075) 0.5551 0.0443

Note: The estimates are based on options data from January 1996 through June 2007.

for the risk-neutral distribution are based on expectations for the “large” jumps, while the
estimates for the statistical distribution rely on actual realizations of “large” jumps in the
high-frequency data for inferring the relevant expectations, thus inducing an extra layer of
estimation error uncertainty.

9.5 Estimation of Expected Integrated Volatility

Our estimation of Et

(∫ T

t
σ2

sds
)

is based on the following restricted 22-order Vector Autore-

gression,

Xt = A0 + A1Xt−1 + A5

5∑

i=1

Xt−i/5 + A22

22∑

i=1

Xt−i/22 + εt, (9.6)

for the four-dimensional vector

Xt ≡
(
CVt RJVt LJVt (pt+πt − pt)2

)′
.

The multi-period expected integrated volatility is calculated from the sum of the relevant
forecasts for the first element in Xt, which in turn are easily constructed by recursive linear
projections using the Kalman filter.

The resulting parameter estimates for the VAR are reported in Table 8. Not surprisingly,
the estimates for the (1, 1) elements in the A1, A5 and A22 matrices point to the existence
of strong own persistence in the continuous volatility component. The estimates also reveal
significant asymmetries in the dynamic dependencies between the continuous volatility and
the tails and the overnight returns, underscoring the importance of including these variables
in the construction of the integrated volatility forecasts.
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Table 8: Estimation Results for the restricted VAR(22) model in (9.6)

A′
0 0.0368 (0.0190) 0.0010 (0.0216) 0.0430 (0.0188) -0.0153 (0.0456)

A1

0.6956 (0.0316) -0.0728 (0.0324) 0.2022 (0.0380) -0.0618 (0.0146)
-0.0449 (0.0360) -0.0348 (0.0369) 0.1145 (0.0432) -0.0299 (0.0167)
-0.0028 (0.0313) -0.0175 (0.0321) 0.0367 (0.0376) -0.0211 (0.0145)
0.0831 (0.0758) -0.0250 (0.0778) 0.1788 (0.0910) -0.0613 (0.0351)

A5

0.0672 (0.0462) 0.0325 (0.0841) -0.0974 (0.0947) 0.0709 (0.0341)
0.0734 (0.0525) -0.0515 (0.0957) 0.0018 (0.1077) 0.0532 (0.0388)

-0.0001 (0.0457) 0.0018 (0.0833) 0.0063 (0.0938) 0.0512 (0.0338)
0.2325 (0.1107) 0.0495 (0.2016) -0.1477 (0.2270) 0.2938 (0.0818)

A22

0.1669 (0.0464) -0.2100 (0.1786) 0.0962 (0.1857) 0.0285 (0.0606)
0.0399 (0.0528) -0.2202 (0.2031) 0.3187 (0.2113) 0.0353 (0.0689)
0.0308 (0.0460) -0.0964 (0.1769) 0.1724 (0.1840) 0.0386 (0.0600)

-0.0097 (0.1113) -0.0355 (0.4280) 0.6235 (0.4452) -0.1462 (0.1452)

Note: The realized variation measures underlying the estimates are based on high-frequency futures data
from January 1990 through June 2007. Standard errors are reported in parentheses.
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