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Abstract

This paper introduces the concept of stochastic volatdftyolatility in continuous time and,
hence, extends standard stochastic volatility (SV) madefiow for an additional source of random-
ness associated with greater variability in the data. Weudis how stochastic volatility of volatility
can be defined both non—parametrically, where we link it ®ogbadratic variation of the stochas-
tic variance process, and parametrically, where we propssenew SV models which allow for
stochastic volatility of volatility. In addition, we showat volatility of volatility can be estimated by
a novel estimator callepgre—estimated spot variance based realised variance

Keywords: Stochastic volatility; volatility of volatility; non-Gassian Ornstein—Uhlenbeck process; su-
perposition; leverage effect; Lévy processes.

JEL classification: C10, C13, C14, G10.

1 Introduction

Stochastic volatility (SV) models have been widely used irafice in the last decade since they are
particularly suitable for coping with many stylised factsagset returns such as time—varying volatility,
volatility clusters and the leverage effect, i.e. the usuaégative correlation between asset prices and
volatility. This paper extends this line of investigatiopihtroducing an additional source of randomness
representingtochastic volatility of volatility Here we view stochastic volatility of volatility as expses
ing the possibility or fact that there is greater variapiliti.e. more volatility — in the data structure under
study than might initially be surmised. In modelling termistmeans that we consider the initial thinking
as embodied in a (classical) SV model and want to describextra variability by a further source of
randomness.

There are basically two ways of thinking about volatility wadlatility: One way is motivated by
a non—parametric point of view where we measure this extuaceoof randomness by the quadratic
variation of the variance process (QVV, thereafter), whiglanalogous to measuring the variability
of an asset by means of the quadratic variation (QV) of tharitlgnic asset price. An alternative
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way of thinking about stochastic volatility of volatility @uld be by means of parametric models. Both
approaches will be studied in this paper.

The literature on stochastic volatility models comprise$east three branches of research where
stochastic volatility of volatility is mentioned: Firshere are the time series models for realised variance
(RV), i.e. the sum of squared returns, which allow for hegerteous variance, see e.g. Corsi (2004), Corsi
et al. (2008), Bollerslev, Kretschmer, Pigorsch & Tauch&d0Q). In that literature, the authors find that
the variance of realised variance is time varying and possitochastic.They conclude that having a
heterogeneous variance of RV (in addition to non—-Gaussiansan their time series model) results in a
very good forecasting performance of their model for RV.dek there is a new area of research where
the existence of a time—varying variance risk premium ikdihto the existence of stochastic volatility
of volatility, see e.g. Drechsler & Yaron (2008) and Bollevs Tauchen & Zhou (2009). Third, there is
recent research on general inference problems in stochadditility models, see e.g. Mykland & Zhang
(2009), where stochastic volatility of volatility is meatied. In particular, it is a key quantity when it
comes to making inference on tepot volatility Hence, by studying volatility of volatility thoroughly
one can get a better understanding of financial market iifatself.

To the best of our knowledge, the present paper is the firsthwtontains a systematic treatment
of stochastic volatility of volatility models in continusutime. We will proceed as follows. First of all,
we start with a conceptual part, where we define stochastatiMy of volatility both in a parametric
model and non—parametrically. In the parametric contegtstudy two new stochastic volatility models,
which are based on the Barndorff-Nielsen & Shephard (20Gget) (BNS model, thereafter) and which
account for stochastic volatility of volatility. Analytt properties of the resulting model classes are
discussed and we also point out how stochastic volatilityotstility can be used for introducing leverage
type effects in a novel way. Next, we sketch how such modeisbesextended to a multivariate set up.
By generalising the two specific model classes, we then dsfoghastic volatility of volatility more
formally in two generic parametric SV models. In particulare show that an additional source of
randomness can be introduced into SV models either by $patlay temporal scaling of the driving
process.

Next, we study stochastic volatility of volatility non—f@ametrically by means of the quadratic vari-
ation of the squared volatility process and we discuss l&ioaship to parametric models which allow
for stochastic volatility of volatility.

Furthermore, we turn our attention to the question of hovatidly of volatility can be estimated
based on high frequency financial data. In particular, weeldgva methodology for estimating the
guadratic variation of the squared volatility consistety using a novel two time scale approach.

Finally we give an extended outlook on further research tipuesin the context of the new concept
of stochastic volatility of volatility.

2 A brief review on stochastic volatility models

There are basically two classes of asset price models iiténature, which allow for stochastic volatility.
In these, stochastic volatility is introduced either bycsiastic spatial scaling of a semimartingéle=
(St)e=0 or by stochastic temporal scaling. The first approach resalimodels of the typgot 0s—dSs,
whereo = (o5)s>0 IS @ stochastic volatility process, and the latter leadsddets of the types,,, where

T = (7)t>0 IS a stochastic time change. Since the first type of model®vs more widely used in
the literature (see e.g. Barndorff-Nielsen & Shephard 22@007), Jacod (2008), Ait-Sahalia & Jacod
(2009)) and since it has a bigger potential for generatisatd multivariate models, we entirely focus
on that class in order to introduce stochastic variance onee. In particular, we will assume in the
following that the logarithmic asset pridé = (Y;):>o is given by an Itd semimartingale

dY; = atdt + Ut—th + th, (1)

which is defined on a probability spat@, A, (F;):>0,P), wherea = (at)¢>0 is a predictable drift pro-
cesso = (o¢)i>0 IS a predictable stochastic volatility process ahe:= (J;):>0 is the jump component



of the 1td semimartingale. Note that an Itd semimartiegaldefined as a semimartingale whose charac-
teristics are absolutely continuous with respect to theekghe measure (see e.g. Jacod (2008)). So, for
the jump component, we assume that

J = // (5, 2))(Gi(ds, dz) — B(ds, d)) // 5,3) — K(8(s, 2)))fi(ds, dz),

wherev(ds, dx) = dsFs(dz) andd is a predictable map frof? x R, x R onIR such that the predictable
random measuré(w, dz) is the restriction taR \ {0} of the image of the Lebesgue measurefohy
the mapz — d(w,t,z), andp is a Poisson random measure with predictable compensatédso,
k is a continuous truncation function, which is bounded wittmpact support and(z) = = on a
neighbourhood of:.

The variation of financial markets, which is often referred$ squaredolatility, is usually measured
by means of the quadratic variation of the logarithmic ppeecess. In our modelling framework, the
quadratic variation (QV) (denoted by) is given by

Y], = o2 +Z (AJ,)? 2)

0<s<t

whereafJr fo o2ds is the integrated squared stochastic volatility processvemereAJ, = J, — J,_

denotes the jump of at times. Taking the square root of the quadratic variatipfiY]; leads to a
measure of thgolatility of the asset price.

3 Parametric stochastic volatility of volatility

First of all, we study stochastic volatility of volatilitynia parametric model. In order to get a better
understanding of what this new concept comprises, we studgoncrete examples of SV models which
allow for this additional source of randomness first befoesturn to a more formal definition of the new
concept of stochastic volatility of volatility in paramietiSV models.

3.1 \olatility modulated non—Gaussian Ornstein Uhlenbeclkprocesses

In order to define stochastic volatility of volatility in a morete parametric SV model, we choose the
Barndorff-Nielsen & Shephard (2001, 2002) model (BNS mpdeised on a hon—Gaussian Ornstein—
Uhlenbeck process, as a base model, since it has been wikdllyini the finance literature. Note that
non—Gaussian Ornstein Uhlenbeck processes (as well afti¢éimeused CIR process (Cox et al. (1985),
Heston (1993)) have an exponentially declining autocati@h function which contradicts empirical
findings of long memory in volatility. However, by studyingsaperposition of such processes as in
Barndorff-Nielsen & Shephard (2002), one can easily ovarethis problem (see also, Section A.3).

This paper proposes two new classes of stochastic volatilddels which are given byolatility
modulated non—-Gaussian Ornstein Uhlenbeck processes

Model 1: The stochastic volatility process satisfiess? = V; for a stochastic proceds = (Vi)t>o0,
where
dVy = —=AVidt + wyg—dLy; )

(Lt)e>0 is a Lévy subordinator an@y),-., denotes a stationary non—negative stochastic volatility
process, which is assumed to be independerit. of

Model 2: The stochastic volatility processis defined byr? = U, for a process/ = (U;);>o With
AUy = =\Udt + dL+,,; (4)

(L¢)e>0 is a Lévy subordinator; = (7¢):>0 iS @ time change process with stationary increments,
which is independent af.



Remark The processes? andr can be interpreted as tistochastic variability of variangen Model

1 and Model 2, respectively. Clearly, when = 1 or 7, = At, we obtain the well-known BNS model.
Both w andr can be driven by a Brownian motion or (and) a jump process. izegcan think ofw (or
w?) being a CIR process.

Note that SV models satisfying (3), will generally not bejdio the class o&ffine modelgsee e.g.
Duffie et al. (2003), Kallsen (2006)). However, SV modelsséging (4) are affine as soon as the time
change is affine. Such models are analytically tractable hadce, of particular interest for various
applications in financial mathematics.

In the following, we study some properties of the stochastiatility processed” andU. In patrtic-
ular, we derive representation results for the integratechsistic volatility process.

3.2 Properties of Model 1

First, we study the stochastic volatility procdgdefined in (3). From standard arguments, we deduce
the following representation:

t
Vi= Vbﬁ_)‘t +/ e_A(t_s)w)\S_dL)\s.
0

We now define the proced$ = (H;),., by

t A\t
H— / wne_dLys = / ws_dLy,
0 0

which is clearly a semimartingale, but in general not a Lprgcess. In the following we will refer to
H as the background driving volatility modulatedévy proces¢BDVMLP) of V. Then, the stationary
version ofl” can be written as

t
Vt:/ =S gy

wherelL is suitably extended to the negative half line (see Barrddidlsen & Shephard (2001)).

Remark Clearly, L is a Markov process. However, the Markov property is notgmesd under stochas-
tic integration. In particular}/ is no longer a Markov process. However, the bivariate p¢CEsw)
satisfies the Markov property df is itself a Markov process.

Note that we can easily derive an expression for the increm@cess ofl”. In particular, we have for
anyT >0

t+T
Vier = Vi= (e 1) Vi + / e A=)\ ATy,
t

3.2.1 Integrated process

In the finance literature, integrated volatility is regat@es the main object of interest since it essentially
measures the accumulated variance over a certain periode{isually a day). So, this section analyses
main properties of this key quantity in our new modellingniework. In the following, we will use the
notationV* = (V,*);>¢ for the integrated process

t
V= / Vids.
0

First of all, we derive a different representation of thegrated process.



Proposition 1 The integrated process can be written as
t t
Vih=et, )Wy +/ e(t — s, NwyrsdLys = €(t, )V} +/ e(t — s, \)dHs,
0 0

wheree(t, A) = 1 (1 — e~*) and, also, as

At

AR </ wdes+vo—vt> ~ -,
A \ o A

The proof of the above Proposition is straightforward ahdrefore, not given here.

These different representations 6f" are interesting, since they shed some light on the joint be-
haviour of V and V. Recall thatH; = fot wyrsdLys. So clearly,V; and H; have identical jumps
(breaks), they co—break, i.AV; = AH; = wy;AL)y; butV and H are not cointegrated (see Granger
(1981)). Howevery ™ and H are in fact cointegrated since

NV —Hy =Vy— V.

So, roughly, for large\t, A\V,™ will have the same distribution as the BDVMLR;, where the error in
this approximation is a stationary process. Now we can lglesge what kind of influence the stochastic
variance of variance has in the new modelling set up: Whiéddhg-run behaviour of integrated volatil-
ity in the classical BNS model is described by the backgrodrndng Lévy process, our new model
allows for a greater flexibility in the sense that it can allimw processes which have stationary, but not
necessarily independent increments in the long run behiawvitthe integrated variance.

Finally, sinceL is a nonnegative process, the integrated protess bounded below by the quantity
L1- e,

Remark The new SV model (3) is in fact analytically tractable desjiis greater generality compared
to the standard BNS model. In particular, it is possible tdvdethe second order structure of both
V andV* explicitly and we also get a (quasi) explicit expressiontfu corresponding characteristic
functionals. These results are presented in Section AHeimppendix.

3.2.2 Leverage through stochastic volatility of volatility

Next, we focus on the fact that stochastic volatility of vibity can be used for introducing the leverage
effect into stochastic volatility models in a novel way. Tlasually negative) correlation between asset
returns and volatility has been found in many empirical isidsee e.g. Black (1976), Christie (1982)
and Nelson (1991) among others and, more recently, by HalvBhephard (1996), Bouchaud et al.
(2001), Tauchen (2004, 2005), Yu (2005) and Bollerslev .e28I06).

So far, leverage type effects have usually been introdugedirectly correlating the driving pro-
cess of the volatility with the driving process of the assitgs (as e.g. in the Heston (1993) model).
Introducing leverage in the BNS model is slightly more cocgiked since the volatility is driven by a
subordinator and the price is driven by a Brownian motionolttdre inherently independent from each
other (by the Lévy — Khinchine formula). Hence BarndorfeNen & Shephard (2001) suggested to
add a jump component to the asset price, which is given byuberdinator which drives the volatility
multiplied by a (negative) constant. Hence, such a straciissumes linear dependence between asset
price and volatility. However, having an additional randtaotor in the stochastic volatility model, i.e.
the stochastic variance of variance makes it possible todate leverage type effects indirectly and
independently of the fact whether we want to have a jump corapbin the model for the logarithmic
asset price. In order to illustrate this, let us look at a $eample.

Example For simplicity, we just focus on the Brownian semimartirgebmponenf’ = (F;);>¢, which
we define by

dP, = VV,_dW,,
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and for the volatility process we work with the following rmedd

dVy = = AVidt + wyd Ly,
dw? =a(f — w?)dt + ywi Bat,

for parameters\, o, 3,7 > 0 and a Brownian motiorB = (B;)¢>o With d[Byx, W], = pdt, for p €
[—1,1] and all the other quantities defined as above. Clerhas zero mean and an application of 1td’s
formula leads to the following result for higher moments afern € R, n > 2 (provided they exist):

) =" ('8 (-
In particular, we have
Cou(, i) = BE) = A [ BRV)ds + 8(11) [ B (Paor)ds 20,
since

E (Pyuwy,) = E (/Ou Psdwxs> +E (/Ou Ve d[W, wA]5> £ 0.

So, we see that we can have a non—zero correlation betweassbeprice and the volatility, even if the
volatility is jump driven and there are no jumps in the lotfariic asset price.

3.3 Properties of Model 2

Now, we turn our attention to the properties of the SV ModelBere stochastic volatility of volatility
is introduced by a stochastic time change. Clearly, thehststic volatility process defined in (4) can be
represented as

¢
U = Upe ™M +/ e_/\(t_s)dLTAS.
0

Similarly to Model 1, we can define the BDVMLH = (H;);>o by H; = L
version ofU can be written as

Then the stationary

TAt*®

t
U, = / e M=) am,.

3.3.1 Integrated process

Since the integrated process, which is denote@by= (U;");>o, where

t
Ut+ - / US dS,
0

is the key object of interest, we also study its propertiethan framework of Model 2. Similarly as
before, we obtain the following representation result.

Proposition 2 The integrated process can be written as
t t
Ut =e(t,\)Uy + / €(t —s,\)dL,,, = €(t,\)Uy + / e(t —s,\)dHs,
0 0

wheree(t, A) = 1 (1 —e~*) and, also, as

1 1
Ut+ = 2\ (Lryy = Ly + Up = Ut) = X(Ht +Uo — Uy).



The result above follows from a straightforward calculatibence the proof is omitted.

As in Model 1, we get that/* and H are cointegrated and for large, A\U;" will nearly have the
same distribution as the BDVMLPI;. The error in this approximation is again given by a statigna
process. So, also in Model 2 do we get that the stochastianegiof variance influences the long run
behaviour of integrated varianéé™: The limiting process is given by the BDVMLH and not just by
the BDLV L as in the BNS model.

Remark Also Model 2 has nice analytical properties. In particulag can derive its second order
structure and characteristic functionals in (quasi) ekpiorm, see Section A.2.5.
3.3.2 Leverage through stochastic volatility of volatilit

As we have seen in section 3.2.2, stochastic volatility d&tidty can be used for introducing leverage
type effects indirectly into asset price models by allowiogdependence between the driving process of
the volatility of volatility and the driving process of thegarithmic asset price. Clearly, this methodology
works in Model 2, too. E.qg. if we consider a logarithmic ags@te given by a Brownian semimartingale
P = (P;)¢>0, WhereP, = fot Vv Us_dWsy, then the leverage appears in the quantity

CO’U(Pt, Ut) = E(PtUt)
From Itd’s formula, we can easily derive that
d(PtUt) = P_dU; + U;_dP; + d[U, P]t = A\P_U;_dt + Pt_qu—M + Ui_dP; + d[U, P]t

Hence, we obtain

t t
E(PtUt) = —)\/ E(PSUS) ds + E </ PS—dLTAs) :
0 0

E </Ot Ps_dLm> —F <IE (/Ot P,_dL,, T>> = E(Ll)/OtE(PS%)ds,

which is non—zero if we allow for dependence between (theirdyiprocess of)r and the Brownian
motion driving P. In particular, if we specify a parametric model foas the one below, we can compute
the correlation betweef® andU by solving an integral equation.

Here

Example A stochastic volatility model which accounts for stochastriance of variance and leverage
could be defined by

dY; = aydt + \/U;_dW; + d.Jy,
dU; = —\U,dt + dL
dr, = &dt,

d&f = (8 — &)dt + 7&:dBat,

Tt

where all quantities are defined as in the previous exampuléraparticular, where3 and1V are corre-
lated. Note that this model belongs to the clasafihemodels.

3.4 Multivariate models

Next, we study multivariate extensions of stochastic vdatmodels which account for stochastic
volatility of volatility. Here, we entirely restrict our tntion to Ornstein—Uhlenbeck type processes,
and, in particular, to multivariate extensions of (3).



3.4.1 Notation

Before we define the new model, we have to introduce someimotahich we choose along the lines of
Pigorsch & Stelzer (2008). Lét/,,(R) denote the set of real x n dimensional matrices, wherec N.
Then we denote b§,, the subset of symmetric and invertiblex n matrices. Furthermore, we define
o(A) as the spectrum of a matrit € M, (R). Finally we introduce the notation for integration with
respect to a matrix. Let/,, ,(R) denote the set of reak x n dimensional matrices, where,n € N.
Let L = (L;);>0 € M, ,(R) denote a semimartingale and l&t= (A;)i>0 € M,,,(R) andB =
(Bt)e=0 € M, s(R) denote adapted processes which are integrable with respecThenC' = (Cy):>0
with C; = [ A,dL,B, is in M,, ,(R) with elements

n T t
Ct =N [ s

k=11=1

3.4.2 Stochastic integral model

In order to extend Model 1 to the multivariate case, we gdiserghe model proposed by Barndorff-
Nielsen & Stelzer (2007) and Pigorsch & Stelzer (2008) anitewr

AV, = (AVi_ + Vi_ A7) dt + =2 Lz,

where A is ad x d—matrix (ford € N) describing the mean reversion coefficient dnés the driving

matrix subordinator (see Barndorff-Nielsen & Pérez-Ab(2008)), whileZ is a positive definite, sta-

tionary stochastic volatility of volatility matrix. We we =; = Etl/zEtl/2 for the corresponding unique

square root decomposition for positive definite matrigé&, see Barndorff-Nielsen & Stelzer (2007)
and the discussion therein. Also, we assume that the indilakV} is a positive semidefinite matrix.

Proposition 3 Let L be a matrix subordinator witl (max(log(||L1||),0)) < oo) and A € My(R) such
that o(A) C (—o0,0) + iR, and let= denote a positive definite, stationary, matrix-valued Iststic
process, whose components are independent of the comparfdnt Then the stochastic differential
equation of generalised OU type

Vi = (AVi_ + VAT dt + =,%dL,=,"?,

has a unique stationary solution

t
v, = / Alt=9)Z1/2qp, =12 AT (0=5),

— 00

The integrated process can then easily be computed. ALeS; — S, denote an operator such that
X +— AX + XAT. Then

AV, = AV,_dt + =//%dL,=)"?,

and

t t t
Vt—Voz/ st:/ AVsds+/ =1/24L,=12.
0 0 0

So, we have the following result: Under the same assumpésris Proposition 3, we get the following
representation for the integrated multivariate volatiftocess withH; = Ot Ei/ QdLsEi/ 2

t
vﬁ:/ Vids = —A"Y(H, — Vi + Vo) .
0

As in the univariate model, it would also be interesting tedgtsuperpositions of multivariate volatility
modulated non—-Gaussian OU process by extenting recenthydBarndorff-Nielsen & Stelzer (2009).
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3.5 Formal definition of stochastic volatility of volatility in a parametric model

After, we have studied two particular SV models, which allimwstochastic volatility of volatility, we
now turn to a more formal definition of stochastic volatilaf/volatility.

In order to obtain a precise definition of stochastic vatgtivf volatility in a (semi—) parametric set
up, we have to specify a corresponding base model for thbastic volatility process. Here we propose
two generic stochastic volatility models. The first modediigen by the following stochastic differential
equation (SDE):

dof = bydt +w_ f (07_) dZy, (5)

whereb = (b;):>0 is a predictable drift process, possibly describing themregersion of the volatility
processf : Ry — R is a known deterministic function (usually a power/rootdtion), Z = (Z):>¢
is a Lévy process and = (w),~ iS a positive, predictable and stationary semimartingalgch is
independentf Z. Furthermore, we always work under additional regularitnditions which ensure
thato? > 0 (e.g. wherv? is a generalised non—-Gaussian Ornstein—Uhlenbeck procesgeneralised
CIR process satisfying the positivity condition).

Definition 4 In a stochastic volatility model given by (5), we define sklachastic variance of variance
processE = (Z;):>0 by

= =w?, forallt>0.
Remark Generally, we have

2 _(da—g)z ; 21 .21 ! 2 2 \2
wi = f(af_)Q(dth or, equivalently, 0]t — [0%]o —/0 wt_f(fft_) d[Z]t.

This implies that, only in special cases (hamely whgis a standard Brownian motion anfd= 1),
do we have that the quadratic variation of the squared Vlibfgbrocess equals the integrated stochastic
variance of variance up to a constant, [&]; — [0%)o = [} w?dt.

The second class of volatility models is defined by
dof = bdt + f (07) dZ-,, (6)

whereb, f, Z are defined as in (5) and where= (Tt)tzo is a time change process (i.e. an increasing,
right—continuous semimartingale witlj = 0), which has stationary increments andridependenbf
Z.

Definition 5 In a stochastic volatility model given by (6), we define stehastic variance of variance
processE = (Z)>0 by

[1]

t = Ti, forall ¢ > 0.
Remark In general, we have in a model of type (6) that
(do?)*
f(o2)”

In the special case, whefi is a Brownian motion and’ = 1, we get[o?]; — [0%]p = 7, i.e. the
stochastic variance of variance is given by the quadratiatian.

= (dZ,,)* or, equivalently dlo”); = f (62.)* (dZ,,)* .



Note that the quadratic variation of the time changed pcesresponds to the time changed quadratic
variation of the original process if the time change is alt&dy continuous.

We have seen that stochastic volatility of volatility canifeoduced either by stochastic spatial or
by stochastic temporal scaling of the Lévy process whialedrthe volatility process. The first approach
implies introducing the multiplicative componentand the latter implies introducing the time change
in the volatility model. While the first class of models as dedl in (5) does generally not belong to the
class of affine models, the second class of SV models, givéG)bgan be placed into an affine form if
the time change process is chosen from the affine class oégses. Clearly, one will have to specify
concrete parametric models forandr (as given in the examples above), if one wants to refer toea tru
parametricmodel for stochastic variance of variance.

4 Non—parametric stochastic volatility of volatility

In this section we study stochastic volatility of volatilifrom a non—parametric point of view. In order
to define this new concept, we proceed as follows. Rathermaking with a concrete SV model, we
only assume that the logarithmic asset price is given by@sadmimartingale.

Definition 6 Letthe logarithmic asset price be given by equation (1). quredratic variation of variance
(QVV) is defined as the quadratic variation of the squaredtsistic volatility process, i.e[gz] .

The QVV can be seen as a non— or semi—parametric definitioar@nce of variance, which is in line
with the approach of viewing the quadratic variation of thgdrithmic asset price as a measure of the
stochastic variance. If the QVV is in fact stochastic, wewitas non—parametric stochastic variance of
variance.

Note that the parametric and the non—parametric definitfostachastic variance of variance are
closely linked to each other, but they are generally not Hraes In particular, we have seen that the
quadratic variation ob? is strongly related to the (integrated) parametric stohasriance of vari-
ance, given byw? andr. However, QVV only equals (integrated) parametric vareaotvariance if the
volatility defined by (5) or (6) is driven by a standard Broamimotion (rather than a jump process) and
if f=1.

5 Estimating the quadratic variation of the variance proces

After we have studied the concept of stochastic volatilityvalatility in detail, we now turn to the
guestion of how we can actually measure it. Here, we willlgdiacus on non—parametric (stochastic)
variance of variance, i.e. on QV\V.

Estimating stochastic volatility based on high frequenbgesvations has been studied extensively
in the last decade and, in that context, a quantity catatised variancesee e.g. Andersen et al. (2001)
and Barndorff-Nielsen & Shephard (2002), and its exterstmve been in the research focus. Following
this stream of literature, let us assume that we observeogaithmic asset price = (Y;);>o given by
(1) at timesid,, fori = 0,1,...,|T/d,], for someT > 0 and where),, > 0 andd,, — 0 asn — oo.
The realised variance (RV) is then defined as the sum of sduatarns over a time interval, ¢] for
0<t<T,ie.

[t/dn]
RV =RV (Y,6,) = > (67Y)?,

i=1

whered'Y = Yis5, — Y(;_1)s,, denotes théth return/increment of”. From standard arguments, we get
that

RV XL v],, asn — oo,
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where the convergence is uniform on compacts in probalfilitp) (see Protter (2004)) anl] is the
guadratic variation of” given by (2). The concept of realised variance has sequigribeen extended

to realised multipower variation (Barndorff-Nielsen & $iard (2006), Barndorff-Nielsen et al. (2006),
Jacod (2008),Veraart (2009)) and truncated realised neiéMancini (2001, 2006), Jacod (2008)) in
order to construct estimators which are robust towards guamu estimate the continuous part of the
guadratic variation only. Further generalisations anateel concepts have been introduced to make such
estimators robust to market microstructure noise. Howelier aspect is beyond the scope of this paper
and we just refer to Bandi & Russell (2008), Zhang et al. (30Bfansen & Lunde (2006), Jacod et al.
(2009), Barndorff-Nielsen et al. (208®) and the references therein for details on that issue.

The concept of realised variance and its generalisationgisa be used for constructing estimators
of the spot variancer? rather than the accumulated, i.e. integrated, quadratitility o—t2+. If one
computes a suitable realised multipower variation statmter a local window and scales the resulting
statistic appropriately, as described below, one canyedsiive a spot volatility estimator. This property
plays a key role in constructing an estimator for the QVV.duotf the idea we introduce for estimating
the quadratic variation of the squared volatility processgésed on three steps: First, we will construct a
time series of spot variance estimators, where the spaneagiestimators are based on high frequency
data, computed on a fine time scale of lengjth> 0 and where),, — 0 asn — oco. Next, we introduce a
second, sparser time scale of length, whereA,, = O (63) for a constant” > 0. Finally, we compute
the realised variance of the increments of the spot variastienators on that sparser time scale. For
an appropriate choice @f, this will result in a consistent estimator of QVV. In thel@ling, we will
call such estimatorpre—estimated spot—variance based realised varigi@RV). Clearly, rather than
computing the RV on that second, sparser time scale, ond et&td compute other types of (truncated)
realised (multi-) power variation, depending on what kifidiederlying structure one assumes #dr.

5.1 Estimating the quadratic variation of the squared volatlity when we observe the
squared volatility

If we hypothetically assume that we observe the volatilitggesss?, which is a semimartingale, over
a time interval[0, 7] at timesiA,, for¢ = 1,...,|T/A,| (for someA,, > 0 such thatA,, — 0, as
n — 00), then we can deduce from standard arguments that

[t/An]
RV™(0? Ay) = Z (A?az)z 2 6%, as n — oo,
i=1

whereAlo? = o7, — U(2z—1)An fori=0,1,...,t/A,].
However, since volatility is unobservable, we have to repldne squared volatility above by a con-
sistent spot variance estimator, which will be describeithénfollowing section.

5.2 Estimating spot variance

We will estimate the quadratic variation of the stochastiGance by the realised variang;" (o2, A,,),
whereo? is replaced by a spot variance estimator. However, this walks when we estimate spot
volatility on a finer time scale than the one we use for conmgutie realised variance.

Recall, that we denote by, > 0 the mesh size of the fine time scale, at which we observe the
logarithmic asset pric®. Here,d,, — 0 asn — oo. Next, we construct a second time scale, which is
more sparse and which has mesh glze In particular, we define

A, =0(), foro<C <1

E.g. we could choosd,, = [6¢~1]4,,, where|- | denotes the floor function.

In the literature, we find various consistent estimatorspaft ¥ariance. Such estimators are con-
structed by choosing any of the well-known consistent esttons of integrated variance and then using
a locally averaged version of them. In particular, all thesgmators are computed over a local window
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of size K,,0,,, where we requird{,, — oo, satisfyings,, — 0 and K6, — 0 ast — oo. Therefore, we
choose a sequence of integers

K, =0p (), for —1<B<0.

Let s € [0,¢]. In the absence of jumps and noise in the price process, apanege can be consistently
estimated byocally averaged realised variancee.

[s/0n ] +Kn

. 1
D DR G O
2Knon i=|s/6n|— K,

In the absence of noise, but in the presence of jutopsally averaged realised bipower variatidhee &
Mykland (2008), Veraart (2009)) arldcally averaged truncated realised varian@it-Sahalia & Jacod
(2009)) provide consistent estimates of spot variance.fif$tds defined by

Ls/énJ"‘K'n

o 1 n n
UE:EBV = 2K. 5 Z ‘52 Y’ ‘52‘4—1}/‘ :
P = |s/6n | —Kn

and the latter is for some> 0 ande € (0, 3) given by

|8/0n]+Kn

1

~2 TRV _ Z 2

Js,n - 2K 6 (@ny) ]I{’5?Y’<c5;}' (7)
nE 5 /6n |~ Kn '

If we allow for both jumps and noise in the price process, weataose locally averaged modulated
realised bipower variation as in Jacod et al. (2009), Pa&gdisVetter (2008). Under some regularity
conditions, many spot variance estimators satisfy a delitné theorem which allows us to read off
the rate of convergence easily. Details on the specific fatervergence for a variety of spot variance
estimators are given in Bandi & Reno (2008).

5.3 Main consistency result

The following proposition contains the main result of thecton. It basically says that the realised
variance evaluated over a sparse time grid based on edtirgptd variances over a fine time grid is a
consistent estimator of the quadratic variation of the sggli@olatility process.

We will prove the consistency of our estimator for two venpiontant classes of stochastic volatility
processes: for Brownian motion and for pure jump Lévy-airigtochastic volatility models. To be more
precise, we formulate the following assumptions.

Assumption (V1) The stochastic variance? (or the stochastic volatilityr) is given by a Brownian
semimartingale defined by

do? = bdt + ydB;,

whereb = (b;):>0 andy = (y¢)¢>0 are cadlag and square—integrable &hd= (B;):>o is a standard
Brownian motion (possibly correlated witfy).

Assumption (V2) The stochastic varianeg’ is given by
do? = bdt + ydLy,

whereb = (b;);> is cadlag and square—integrable dne- (L;);>o is a Lévy subordinator.
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Definition 7 Let 52 (6,,) denote the one—sided locally average truncated realisetnee estimator
based on a time grid of length, > 0, defined by

Ls/bn]

&2 (6n)s = K. 5 Z (5?Y)2 ][{|5;LY‘<C5§L}7
" j=18/0n)—Kn

for s € [0,T],¢ > 0,0 < € < 1/2. We choose a sequentk,,),cy such thatk,, = O (67) for some
—1 < B < 0. That ensures that

K, — o0 and K,6, — 0, asn — oo.

Proposition 8 Let Y denote the logarithmic asset price defined in (1), which weeole over a time
interval [0, 7] for someT" > 0 at timesid,, fori = 0,1,...,|T/d,]|. The corresponding high frequency
returns ofY” are denote by;'Y = Yis5, — Y{(;_1)5,. Leto = (0¢)i>0 be a stochastic volatility process
which satisfies either assumption (V1) or assumption (V2L5E (6,) denote the spot variance esti-
mator satisfying Definition 7. Assume that the BlumenthateGr index of.J is strictly smaller than
min{1, 41}, wheree is chosen as in Definition 7. Lét,, = O (6$) denote the mesh of a sparser time
grid, where0 < C < 1. Furthermore, we have the following assumptions:

e If the volatility process satisfies assumption (V1), we assthat

1 B
—§<B<O, and O<C<—§.

o If the volatility process satisfies assumption (V2), we amsthat

2 B
———— < B<O, and 0<C<——,
2+« 2
for somea > 1, which is also strictly greater than the Blumenthal-Getaaitex of the driving
Lévy process af?.

Then, the pre—estimated spot variance based realisedneeiaatisfies:

RV, (6%(8,), An) —— [02];, as n — oo.

Proof The proof is given in the Appendix (Section C). O

So, we can conclude that the pre—estimated spot varianed bealised variance is a consistent estimator
of the quadratic variation of the stochastic variance.

6 Concluding remarks

6.1 Summary

This paper contains a systematic treatment of a new concejaintinuous time financial econometrics:
stochastic variance of variance. This concept is of relezdn various areas of finance as described
above, such as volatility forecasting, modelling of a tina@yng variance risk premium, modelling of
leverage type effects and inference on spot volatility. \&eehseen that stochastic variance of variance
can be studied both from the perspective of a parametric S¥emavhere it is essentially given by an
additional stochastic temporal or spatial scalar of theimlgiprocess of the SV, or from a non—parametric
perspective, where it is defined as the quadratic variaticdheostochastic variance process (QVV).
As concrete cases of parametric SV models which allow foehetstic volatility of volatility, we

propose two new models given by volatility modulated none€agan Ornstein—Uhlenbeck processes. A
detailed study of such processes is provided and we alsossigxtensions to multivariate models.
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In order to estimate QVV consistently, we propose to use thealled pre—estimated spot—variance
based realised variance, which is based on a novel two tiadle samework. This approach is potentially
applicable to wider fields in finance, e.g. we could think oplgimg tests for jumps or estimating the
activity of a driving jump component not just to asset priggag but to estimated spot variance time
series and hence deduce further information on the vaagitiocess.

6.2 Discussion

After having introduced the new concept of stochastic Valabf volatility, we would like to point out
some topics for future research.

6.2.1 Remarks on the definition of parametric variance of vaiance

First of all, there is the issue whether we want to allowdependenceetween the parametric variance
of variance, given by the processe$ andr, respectively, and the driving proce&sof the volatility
process. In this paper, we have restricted our attentiohdacése of independence in order to make
it easier to understand the concept of introducing an amtditi source of randomness to a stochastic
volatility model. But extensions to allow for dependence eearly possible.

Next, there is the question of allowing forulti—factorstochastic volatility models and also fiang
memoryin the volatility. The generic stochastic volatility modedefined in (5) and (6) are only one
factor models and generally do not allow for long memory. Ange approach for extending such
models is to study auperpositionof such generic stochastic volatility models, as e.g. suldln the
OU context in Barndorff-Nielsen & Shephard (2001, 2002)rglarff-Nielsen & Stelzer (2009) and in
Section A.3 in the Appendix.

6.2.2 Remarks on estimating the processesand

So far, we have seen how QVV can be estimated consistentlysibg the new estimator proposed in
this paper. However, it might also be interesting to estinhé processes or 7 directly, provided we
believe that such a model assumption is realistic. If thesggistochastic volatility process is driven
by a Brownian motion, then the quadratic variatiorréfequals the integrated? or 7. Clearly, in such a
framework, the estimation technique we have introducetisygaper works well (at least theoretically).
Note that such models fer’> have been widely used in the literature. E.g. there are mergnt papers
where the volatility itself is modelled as a Brownian semitimgale (e.g. Barndorff-Nielsen et al. (2006),
Kinnebrock & Podolskij (2008), Mykland & Zhang (2009), Jdd@008)).

However, if the SV model is assumed to be driven by a jump m®Rdben the quadratic variation of
o2 contains both the jumps and the stochastic variance ofnaiprocess. In order to estimate stochastic
variance of variance in such a set up, one has to extend theeckaariance to a (scaled) truncated
realised power variation in order to get rid of the jumps. doctf this problem is related to making
inference on a process = (d;);>¢ when we observe a proceg’s: (}Nﬁ)tzo with Y, = fot Gs_dLg in
discrete time, wherd = (Et)tZO is a purely discontinuous Lévy process. Under the assomphiat
the driving Levy process is stable and thagnd L are independent, this has been studied by Woerner
(2003). Recent work by Jacod & Protter (1998), Jacod (20087 Rtouches upon more general cases.
However, the problem of making inference ®whenY is driven by an arbitrary purely discontinuous
Lévy processes has — to the best of our knowledge — not béeadsyet.

6.2.3 Remarks on model estimation

Next, we want to comment on model estimation. In particula,are interested in the case when the
stochastic volatility model is given by Model 1 or 2, i.e. whee have a non—Gaussian OU process
which allows for stochastic variance of variance. It turis that despite the additional source of ran-
domness, Model 1 and Model 2 are still analytically tractalti is, in particular, possible to compute the
conditional and unconditional moments of the volatilityppess and also moments of the price process
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explicitly. Since these computations are fairly lengthg @nly present them in the Appendix (Section
A). Based on these results, model parameters can be editmatesing a quasi-maximum likelihood
estimation or the generalised method of moments. An impheatien of these estimation techniques
and empirical work will be left for future research.

6.3 Remarks on option pricing in the presence of stochasticariance of variance

Also, we would like to comment briefly on the use of stochagtidance of variance models for option
pricing. Nicolato & Venardos (2003) studied in detail howiop pricing can be done when the stochastic
volatility process is, under the risk neutral probabilitgasure, given by a non—Gaussian Ornstein Uh-
lenbeck process. Can we use similar methods when we acamart &dditional source of randomness in
BNS type models? One widely used technique for option pyitrthe use of transform—based methods
(see e.g. Nicolato & Venardos (2003)), where the price ofrdrect is expressed in terms of an integral
transform of the Laplace exponent of the underlying pricecpss. We have provided formulas for the
characteristic function in Model 1 for boti andV * (see Proposition 17 and Proposition 19 in the ap-
pendix), which are essential for deriving the characterfsinction of the price process. However, due to
the additional source of randomness in form of stochasti@nae of variance, it is difficult to evaluate
these characteristic functions explicitly. For practiapplications, it might therefore be necessary to use
numerical methods to evaluate option prices in a stochaatiance of variance set up.

6.3.1 Remarks on the relationship between stochastic van&e of variance and leverage type ef-
fects

Finally, we comment on the relationship between stochastimance of variance and leverage type ef-
fects. We have seen in Sections 3.2.2 and 3.3.2 that stachastance of variance can be used for
introducing leverage type effects into stochastic vatgtinodels in a novel way. In particular, it is
possible to obtain atochasticquadratic covariation between the asset price and the esdjwatatility
processY, o], which can be expressed in terms of the stochastic variaheariance and which can
be regarded as a stochastic leverage type effect. Alteemgtsuch a structure can also be obtained by
randomising the correlation between the driving procesthefasset price and the driving process of
the stochastic volatility process, as discussed in Ve&aferaart (2009). From a conceptual point of
view, the concept of stochastic volatility of volatility @early different from the concept of stochastic
correlation or stochastic leverage. However, how one caentiingle these two effects in practice is an
interesting question for future research.
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APPENDIX

A Cumulants and moments

Throughout this section we only present the results of thiewa cumulants and characteristic function-
als and omit the rather lengthy proofs since they consistraightforward computations.

A.1 Conditional and unconditional moments ofV and '+
In order to get a better understanding of the new volatilityalatility model, we derive various condi-
tional and unconditional moments of the processeendU .

A.1.1 Notation

In order to simplify the exposition, we fix the following ntitan. We denote by:; = x;(X;) theith
cumulant ofX; for ¢ € N. In particular, we writes; := %l{i(L)\) = k;(Ly) for a Lévy procesd.

Remark In order to ensure that our model (3) is uniquely identifie@, ave to set the variance (or
the mean) ofL; to a fixed value. Otherwise one could always multiphby a constant and scale
approximately, which results in an identification problefor convenience, we will later seb (L) =
Var(Ly) = 1.

Furthermore, we will writey(h) = Cov(w, wi41,) for the covariance function af. We will carry out
all computations for a general stationary volatility prege, which is independent of the subordinator
L. However, for some illustrating examples, we will somesnmapose the following condition:
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Assumption (C) on the covariance function ofv: The covariance function af is given by
Y(h) = Cov (wy,wirn) = Cexp(—ah),

for constants”, o > 0. In particular, this assumption is satisfied wheis an Ornstein—Uhlenbeck (OU)
process or a Constant Elasticity of Variance (CEV) process.

A.1.2 Moments ofVV conditional on V}
First of all, we derive the mean, variance and autocovagarié’, conditional on the initial valu&j.

Proposition 9 LetV be a solution to (3). Then the conditional mean, variance @nariance are given
by

E (Vi Vo) = e MVp + #1(L1)E(wp) (1 - e_/\t) ,
1 At
Var (VD) = graLE (68) (1= ) + () [ 2 (70 =) a,
Cov (Vi Viun)| V) = %KQ(LQ)E (@) (1 -2 e
At
+rf(Ly)e / (7 = 20 ) 5 (y)dy
0

t+h u
+ /\Zﬁf(Ll)e_ZM_)‘h/ / 62)‘“_>‘x7(/\x)dxdu
t u—t

Cor (V, Vign)| Vo) = e (1 + mAzﬁ%(Ll)e 2)‘t/t L_t ePu=A 7(Am)dmdu> .
Corollary 10 Under condition (C) the variance and the covariance singylif

Var (Vi| Vo) = %mg(Ll)E (w%) (1 — 6_2)\t>

2
K1(L1)C _ —2X o, —A(1+a)t
d-a?) <1 a+ (1+a)e 2e > ,

Cov ((Vi, Vign)| Vo) = e M (Var (Vi Vo)

_|_

C
2.2 “M(1+a) _ g _ ~Ma(t+h)—h+t) | —Ah(a—1)
+A /<;1(L1)a2_1 (e l1—e +e )>

A.1.3 Moments ofV conditional on w

Next, we compute the moments Bf, when we condition o. Clearly, if w was deterministic, these
results would also hold unconditionally.

Proposition 11 The conditional mean, variance and covariance are given by

t
E (Vi|w) = /\ml(Ll)/ e M)y ds,

t
Var (Vi w) = )\ﬁz(Ll)e_z)‘t/ w3 ds,

—00

t
Cov (Vi, Vign|w) = A/42(L1)€_Ah€_m/ w3, du,

— 00

Cor (Vy, Vigp|w) = e M
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A.1.4 Unconditional moments

Finally, we compute the unconditional mean, variance andriance of the generalised non-Gaussian
Ornstein Uhlenbeck proce$s.

Proposition 12 Let V' be the stationary solution to (3). Then:
E (V,) = #1(L1)E(07),

V(IT (VZ) = %K/Q(Ll)E (wg) + /{%(Ll) /OOO e_y/y(y)dy,

1
Cov (Vi Vi) = e (5@<L1>E ()

00 0 h
+r3(Ly) </0 e Yy(y)dy + )\2/ /0 AUFs)ny(N]s — u|)dsdu>> :

Corollary 13 Under assumption (C), the results above simplify to

E (V;) = k1(L1)E(wo),

1 Cﬁz(Ll)
Var (V) = 5/{2(L1)E (w%) + 114_70[,
1 _ k3 (L1)C [ _, _
Cov (Vi, Vign) = 5%2(L1)E (wd) e + % <e M e Ah) .

A.1.5 Cumulants of the integrated process
First, we study the mean and the variance, conditional oimttial value V.

Proposition 14 The conditional mean and variance of the integrated proegsgiven by:

E (V) = 5 (1-e7™) (% = i (La)E (w0)) + ma (LR (w0) 1,

Var (V" Vo) = ka(L1)E () % (—%e_w +2e M 4+ At — g)
t ot As
+ 2/{%(L1)/ / e_>\(u—8) / <e—y _ e—2>\8+y) ’y(y)dyduds
0 Js 0

t t s T
+2/\2/~£%(L1)/ / e_’\(“+s)/ / 2Ny (\y)dydaduds.
0 Js u Jr—u

Finally, we compute the mean, variance and covariance ointiegrated process, which are given as
follows.

Proposition 15 Assume that” satisfies (3). Let
1
G(h) == G(h, A\ k1,7() = Cov(Vi, Viip) — 5/<;2(L1)E (wd) e
Then:
E (Vt+) = lil(Ll)E (u)o) t,
t t
Var(V") = ko(L1)E (wg) % (e_M -1+ )\t) + 2/ / G(u — s)duds,
0 Js

1 1
Cov (Vi",VE,) = ska(L1)E (wp) 2 <e_>‘(t+h) +e M e M 14 2)\75)

2
t ptth

+// G(u — s)duds.
0 Ji
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A.2 Characteristic functions and functionals

In this section, we turn our attention to characteristiocfionals and functions df andV +. Recall that
we are assuming independenceloindw throughout this section.

A.2.1 Characteristic function of V

We start by computing the characteristic functiori/Qfconditional on the initial valu&, and the volatil-
ity processw.

Proposition 16 The conditional characteristic function &f is given by:

At
E(exp(i6V})|Vh,ws, 0 < s < At) = exp (z’@e_’\tvo) exp </ Yy (He_’\tesws) ds) )
0

where)(+) is the characteristic exponent éf

Clearly, the conditional cumulant function is then given by

At
log (E(exp(i6V;)|Vo,ws, 0 < s < At)) = ife MV} +/ Yz (96_)‘tesws> ds.
0

A.2.2 Characteristic functional

Next, we study more general characteristic functionals. /e an arbitrary function. We defineV; =
JYf(s)dVsandf eV = [ f(s)dVi.

Proposition 17 The characteristic functional is given by
E (exp (if @ V)| Vo, wys, 0 < s < 1)
= exp <—z‘)\V0 /Otf(ac)e_’\xdx> exp </Ot Uy, <<f(s) - )\/Om_sf(w + s)e"”dw) w,\s> ds> ,
and when we take — oo in the formula above, we immediately get that
E (exp (if @ V)|V, wrs, s > 0)

= exp (—WO /0 h f(ac)e‘”dw) exp < /0 h Ur << f(s) =\ /0 b flx+ s)e—de> w>\3> ds> .

So, in particular, forf (z) = 6, we can easily derive the characteristic functioryof

Corollary 18 From integrating outv, we get

E (ex (if # V)| ) = exp (~iVo [ t fla)e )

E <eXp (/Ot L <<f(s) ~ OH flo + s)e—*fdx> w>\8> ds>> .

A.2.3 Characteristic function of V+

Proposition 19 The characteristic function of the integrated process \&giby
t
E (exp <19/ Vudu> V0>
0
0 At 0
=9 <exp <— (1— exp(—/\t))>> E <eXp </ U (— <1 - e_()‘t_s)) wsd8>>> ,
A 0 A

whereg is the characteristic function df;.
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A.2.4 Cumulant functional
Let f denote ararbitrary function.

Proposition 20 The conditional cumulant functional is given by

log < <exp <zf /t V;d8> ‘ (w5)3207‘/0>>
=iV /0 h f(t)e Mdt + /0 b U, <a§s /0 b f(t—l—s)e‘”dt) ds.

Unconditionally onw, we have
t
<eXp (zf / Vsd8> VO>
= exp (z‘Vb/ f(t)e_’\tdt> exp </ Yr, <w,\s/ ft+ s)e_’\tdt> ds> .
0 0 0

Example Again, in the special casg(t) = 6, we obtain the characteristic function

(exp <zf / t vsds> (@) ss0- V0> — exp <VO§> exp ( e <wks§> ds> |

A.2.5 Characteristic functionals for Model 2

Just for comparison, we present the corresponding resultdddel 2, i.e. the non—Gaussian Ornstein—
Uhlenbeck process which is driven by a time—changed Lébpglinator. Recall that Model 2 is given
by

dU; = AUt + dLy(y,

whereX > 0 and wherel, = (L;);>0 andt = (7;)+>0 denote independent (Lévy ) subordinators. Then

t t
U, = Upe ™™ + / e M=VAL, ) = / e MTAL, .
0 —00

Let f denote an arbitrary function. By applying Fubini’'s theoreme obtain
f.Ut :/ f dUt —)\/ f Utdt+/ f dL )\t
A / e M F(E)dt + —A / £(t) / NANSAL o dt + / F(OAL
0 0

0

VA /0 T oM (t)dt + /0 h (&S / M F(t)dt + f(s)> AL, ).

Remark Revuz & Yor (2001, p. 9, Proposition ): Let be of finite variation and: a continuous
nondecreasing function dn, b]. For any nonnegative function f dn(a), u(b)], we have

F(u(s))dA(u(s)) = /[ oy 01

[a,b]

In the following, we assume thatis strictly non-decreasing and continuquesg.

t
Tt:/ ngS.
0
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Then, the inverse function=! exists andr(7—!(z)) = x and7~!(7(x)) = 2. Then, we have

Foll = —\p /O T e ()t + /O h (&TWW / T e+ f(%T_l(T(/\S)))> AL, )

Lr-1(r(s))

_ > — At > %T’l(u) * -t l -1
/\UO/O ’ f(t)dt+/0 <e /%Tl(u)e f(t)dt+f<>\7 (u)>>dLu.

Let ¢ denote the characteristic exponentfThen we have

E (exp(if o Uy)|Uy, T)

= exp <—MU0 /000 e_Mf(t)dt> exp (/000¢ (eTl(“) /;Tol(u) e Mft)dt + f <§7“1(u)>> du) :

ForU;” = [} U,ds, we get

/ J®) /0 N e Mf(t)dt + /0 h f(#) /0 t e MTAL, gy dt

=Up / e M f(t)dt + e M f(t)dtedL, ys
0
))

o

oo o0

—)\tf( )dt T (T()\s))dL 0s)

Iy
/O /irl (t(As

)
:L@Ame*%@mp+
(t)

= U / e M f(t)dt + / / e M f(t)dte” WdL,.
0 0 Lr=1(u)

A

Hence, we get

E (exp(f ° U+)|U0,T)

= exp <iU0 /OOO e‘”f(t)dt) exp </OOO¢ </1001( )e‘”f(t)dt) eTl(“)du> )

A.3 Superposition of generalised OU processes

Finally, we will address the aspect of allowing for long meynm the volatility process. Clearly, also
the generalised non-Gaussian Ornstein—Uhlenbeck prbessan exponentially fast decaying autocor-
relation function and is therefore unable to capture longnory. However, as in Barndorff-Nielsen
& Shephard (2001, 2002), we can consider a superpositioh ©fN generalised Ornstein—Uhlenbeck
processed’” = (V,7),,, which we define by

J J
V=3 w Vi w200 3w =1,
i=1 j=1

th(J) _ —)\(j)Vt(j)dt + v(j) dL( 7)

NORBGR j=1...,J

for A\U) > 0; the stochastic volatility process$’) is assumed to be nonnegative, stationary and indepen-
dent of the Lévy subordinatos\?), for j = 1,...,.J. For simplicity, we will assume that the() are
independent.

Remark Note that if we want to allow for correlation betweef) and the Brownian motiofi¥ in
the asset price (1) for at least opes {1,...,J}, we cannot assume that thfegeneralised Ornstein—
Uhlenbeck processes in the superposition are independéig. will obviously make computations in
such a framework slightly more difficult than under the ineleglence assumption.
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B Proofs of the results from Section A

B.1 (Conditional) moments ofV/

Proof of Proposition 9 The conditional mean in given by

t
E (V;| Vo) =E <voe—”+ / e M7 wyod L
0

V0> = e MV + k1 (L1)E(wo) (1 — e_)‘t> .
Next, we compute the conditional second moment. From fthisiula, we obtain

t
V2 -V :2/ VeedVi + [V = —2/\/ V2 ds+2/ V_w,\SdLAS+/ w3 d[L]xs.
0 0
So, we deduce that the conditional second momenit” afatisfied the following first order ordinary
differential equation:

d
dt

Note here that the joint moment &f andw is given by

t
E (Viwx| Vo) =E <W>\t <V0€_’\t +/ 6_A(t_s)w>\s—dL>\s>
0

E (V2| Vo) = —2XE (V| Vo) + 2Xk1(L1)E (Viwxe| Vo) + Ak (L2)E (wg) -

5

t
= Voe ME (wo) + )\m(Ll)/ e M=) (Wxtwys) ds
0

t
= Voe ME (wo) + )\m(Ll)/ e M=)y (Nt — 5))ds
0

+ Ar1(Ly) (E (wo))2 /Ot e Mt=8)gg

= Voe ME (wo) + Ak (L) /Ot e M)y (N (t — 5))ds
+ (L) (B (w0))? (1= )

Therefore, we obtain the following ODE:
B (V2| Vo) +22E (V[ Vo) = a(t).

where

q(t) = Aka(Lo)E (wg) + 2Ak1(Ly) <V0€_ME (wo) + Ak1(L1) /Ot e My (A(t — 5))ds
+ ra(L) (B (w0))? (1= e7)).
From solving the differential equation, we get
E (V2| Vo) = e~ 2 <V02 +/Ot e”sq(s)ds>
— M2y 1/42(L2)E (@) (1= ™) 4 200 (L) VOE (w) (7 — ™)
+ 222 (Ly) / / 2\ A0y (A (5 — 1) )duds

+ R (L) (B (w0)? (1 - 267 + 7).
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Also note that from change of variables with= s — u, u = s — , du = —dxz and the Fubini theorem,
we get

/ / “+8 A(s — u))duds —/ / A(2s—2) ~y(Ax)dxds —/ / A(2s—2) ~y(Ax)dsdz
1
—A\x 2)\s 22Xt 2>\x
= AL / del‘—/ L) — dx
/0 1) [ 05 (e )

1 At 3
= 2—)\2/0 v(y) <€2M v — ey) dy.

Altogether, we obtain the following expression for the dtindal variance

1 B M B B
Var (H11%) = gra(la)8 () (1= ) 46300 [ 200 (¢ =2 ay
0
Finally, we compute the conditional covariation. Clearly,
Cov (Vi, Virn| Vo) = E (V[ Vo) +E (Vi(Visn — V)| Vo) — E (Vi| Vo) E (Visn| Vo) -

The only still unknown quantity i€ (V;(Vien — V4)| Vo). Note that
t
Vi(Vian = Vi) = ViVoe ™ (e = 1) + 4 / N (M 1) wydLn,
0
t+h
+V; / e M d Ly
t

t+h
t

Hence

t+h
Cov (Vi, Veyn| Vo) = e M'E (V2| Vo) + E <m / e MHh=8) )\ (d Ly
t

‘)

—E (Vi Vo) E (Vign| Vo). (8)

So we only have to compute the second term on the right haed$iequation (8).

t+h
E <‘/t/ e_A(H_h_S)w)\de)\s ‘/0>
t

¢ t+h

= V()H,l(Ll)E (u)o) e M (1 - 6_)\h) +E </ e_A(t_u)w)\udL)\u/ e—)\(t—i-h—s)w)\de)\s
0 ¢

= Vora (LB (wo) ™ (1= ™) 4 k3(L1) (B (w))? (1 e7) (1- ™)

t+h gt
+ Mk3(Ly) / / e ANFh=9) =M= (X (4, — ))duds.
t 0

‘)

Note that

t+h  pt t+h pu
/t /0 ANy (N(u — 5))dsdu :/t / te)‘@“_z)y()\m)dmdu.

Altogether, we obtain the following
Cov (‘/;57 ‘/'t+h| VYO)

1
= e_2)‘te_)‘hV02 + 5%&2(L2)E (wg) (1 — e_zM> e M+ 2k1(L1)WE (wo) (e_M — e_zM> e M
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+2X%k3(Ly) // TAHU) 5 (N (s — u))dudse M
+ KH(L1) (B (w0))” (1= 267 4 e72M) e

+ Vo1 (L1)E (wo) e~ (1 - e_)‘h> + k2(Ly) (E (wp))? (1 - e_M) (1 - e_>‘h>
t+h t
25%(L1)/t /0 e_A(tJrh_s)e_)‘(t_“)’y()\(u — 5))dsdu
_ 6—2)\t—>\hV02 — k1(L1)E (wo) Vo (e—)\t (1 _ e—)\(t—i-h) 1 e At+h) (1 _ e—At))
— k3(L1) (E (w0))” (1= e) (1 - e7X05M)

_ %,{2([,2)1[2 (wg) (1 —2)\t) e 4 g (L Je —\h /At <e_y B e_2>\t+y> v(y)dy

+)\2 —2)\t Ah /t+h/ 2)\u Ax )\IL’)dI’d'LL
t

Proof of Proposition 11 We work with the following representation of:

t
v — / e Ny, ALy

—00

Then,

t

E (Vi|w) = /\/11([/1)/ e M=)y ds.

— 00

Note that forn € N

n n & n n—
AV = v = v vy - v = 3 () vt
k=1

From Itd’s formula, we get

t
V;n_‘/on:n/ V'Sn_—ld‘/s_‘_ Z (A‘/Sn_n‘/sn__lA‘/s)
0

0<s<t

t ¢ n
- —)\n/ Vids + n/ VI \wnedLas + Y Y (Z) (AV) vk
0 0

O<s<t k=2
t t n n
=) " d VI wned Ly AV)F vk,
w [ s [ Vit HZ(,ﬁ) ST (A
k=2 0<s<t
Hence
d _
pr E (V*|w) = —AnE (V*|w) + nAki(L1)E (V" lw)\t‘ w)

T Z < )A“k (L1)E (Wlftvtn_k ]w) ;
t

E (V| w) = ¢ {E o)+ [ g(u)emdu} ,
0
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where

g(u) = nAky(L1)E (Vu"_lw)\u‘ w) + Y <Z> Aeg(Ly)E (wljuVu"_k‘ w)
k=2

3

n

k‘) Aeg(L1)E (Vu"_k‘ w) Wk,

= nAe1(L)E (Vi w) wae + >
k=2
So, for the conditional second moment, we get

t
E (Vf‘w) = 2)\2R%(L1)6_2M/ eA“wM/

- —00

u ¢
eMwygdsdu + AHQ(L1)6_2M/ ezxuwiudu-

The conditional variance is hence given by
t
Var (Vijw) = A/{Q(Ll)e_ZAt/ 22 du.

Finally, we compute the conditional covariance.
E (ViVesn|w) = E (V7 |w) + E (Ve(Vian — Vo)l w).

Note that

¢ t+h
Vieh = Vi = (G_Ah - 1) / e M=)y d Ly +/ e M=)y dLys,
t

—00

hence, we deduce that

t t+h
E (V;Vign|w) = e ME (VP |w) + E ( / e A=Wy d Ly / e MHh=5) ) dLys
t

— 00

‘)

t t+h
= Azm%(Ll)e_’\he_z)‘t/ e’\“w,\udu/ eMwysds
(o]

- —00

t
+)\I{2(L1)6_)\h€_2)\t/ w2 du.

—0o0
Hence the covariance is given by

t
Cov (Vi, Vigp|w) = )\ﬁg(Ll)e_Ahe_”‘t/ eP? du.

— 00

Proof of Proposition 12 The result for the mean follows immediately from Proposit®bfort — oo.
Also, we carry out very similar computations as before ineorid compute the (co—)variance. For the
variance, we get

E (V2) = e 2V (E (V&) + /Ot e (2E (Vy—wxu) A1 (L1) + Aka(L1)E (wiu))> du.

Note that

t
E(Viwx) =E </ e_A(t_s)w)\s—w)\tdL)\s>

—00

— A1 (L) /_ ; e A=) <y(>\(t — )+ (E (wo))2) ds
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= Ar1(L1) /_t e M=) y(A(t — s))ds + k1 (L) (B (wo))?

and
E (V) = %@(M)E (wg) + 2A%K3(L1) / / AETVE (W) i) duds.
Hence,
B (v7) = 200 [ [ O = s+ (L) (B )
+ %Hz(Ll)E (w) .
and

1
Var(Vy) = 5/12(L1)E (wo) + 2\%K3 _2>‘t/ / eNuts)y — s))dsdu.
Finally, an application of Fubini’s theorem leads to
1 2 2 > —y
Var(Vi) = gra(LOE (wF) +#5(L1) | € ¥3(y)dy.
0

For the covariance, we have

E(ViVirn) = E (V) + E(Vi(Vign — m

t+h
1 _
= gra(L)E (wp) e + w1(L1) (E (Vt ))

t pu t  ptth
+ A2K2(Ly)e e <2/ / AUy (Nu — s))dsdu + / / MUy (A (s — u))dsdu)
—00 J —00 —oo Jit
t  ptth
= %Hg(Ll)E (w?) e M 4 w3 (Ly) (E (‘/;2))2 + N2k3(Ly)e e 2M / / AUty (N|s — ul)dsdu

Hence, we deduce that

Cov(Vy, Vign)
) t+h
—e M <§ﬁ2(L1)E (wo) + A2k3(L _2)‘t/ / A y(Als — u|)dsdu>

— M (%Iig(Ll)E (@3) + K2(L) (/0 ey (y)dy + \2e 2”/ /+h Aus) ()\|S—u|)dsdu>>.

SinceV is stationary, the expression above simplifies to

CO’U(V;‘A V;f-l-h)

= oM (L ()E (b2) + X2R3(0) M) (s — u))dsdu
2
— M <%/{2(L1)E(w0)+/{1(L1) (/0 e (y )dy+>\2/ / Hus) ()\|s—u|)dsdu>>

O
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B.2 (Conditional) moments of/+

Proof of Proposition 1 Recall that
t
dV, = —A\Vidt + wyd Ly, and Vi = Voe M+ / e M=)y dLys.
0

Therefore we obtain for(t,\) = 1 (1 — e~*):

t t t
/ d‘/s:‘/;t—%:—/\/ Vsds+/ wxsdL g,
0 0 0
t 1 t
/ Vids = - <V0 v+ / wAdeAs>
0 )\ 0
— l _ At ! = A(t—s)
=3 <(1 e )Vo+/0 (1 e )wASdLAS

t
=e(t,\)V +/ €(t — s, N)warsdL)s.
0

Proof of Proposition 14 The conditional mean in given by

E (V| Vo) = ! (1 - G_At> Vo + %E (/t (1 - e_A(t_s)) w)\deAs>
0

(1 - e_)‘t> Vo + k1(L1)E (wp) % <e_>‘t + At — 1)

e ol Rl

-5 (1 . e_)‘t> (Vo — k1(L1)E (wo)) + k1 (L1)E (wo) t.

Next, we compute the second moment. Note that

t t s t s
(V)2 :2/ Vv 4+ [Vt = / v/ Vududs:2/ / V.V, duds.
0 0 0 0 JO
Hence, the conditional second moment is given by
9 t s t t
B (%) = [ [ o duds =2 [ [ 5 (0] vo) duds
0 JO 0 Js

t ot
=2 [ [ (Cov (Vo Val Vo) + B (Vi Vo) E (Val o)) s
0 Js
t ot
= ko(L1)E (w]) / / e Mu=s) (1 - 6_2’\5) duds
0 Js
t t As
+2/£%(L1)/ / e_’\(“_s)/ (e_y—6_2>‘s+y) ~v(y)dyduds
0 Js 0
t t s T
+2)\2/<;%(L1)/ / e_)‘(“+s)/ / Moy (\y)dydaduds
0 Js u Jr—u
t ot
2 [ [ B OLVOE (V] Vo) duds
0 Js
1 1 oy Y 3
:I{Q(Ll)E (w%)ﬁ <—§€ 2 t+2€ t+)\t—§>

As
0

t oot
+ 2%%(L1)/ / e A u=s) / (e_y - 6_2/\5+y) ~v(y)dyduds
0 Js

29



t t s T
+2)\2I{%(L1)/ / e_)‘(“JFS)// PN (\y)dydaduds
0 Js u Jr—u
t ot
2 [ [ BB (Vi %) duds.
0 Js

Hence, the conditional variance is given by

Var (V; |‘/0) = IQQ(Ll)E( ) )\12 <—%€_2)‘t +2€—At M — g)

As
+2/<;%(L1)/ / e_’\(“_s)/ <e_y—e_2>‘s+y) v(y)dyduds
+2X%63(Ly) / / Alurts) / / 2Ny (\y)dydaduds.

Proof of Proposition 15 For the mean, we get:

E (V) = /OtE(VS) ds = k1(L1)E (wp) t.

Next, we compute the second moment, by using Fubini’s ttreore

E (Vi) :2/t /tIE(VSVu)duds:2/t /t Cov(X/s,Vu)+(E(%))2) duds
= ria(L1)E (w? / / (u- Sduds+2/ / G(u — s)duds + (k1 (L1)E (wo) 1)?
= ko(L1)E (w%)%(e‘At—l—I—At +2/0 / G(u — s)duds + (r1(L1)E (wo) t)?,
Var (V;") = ka(L1)E (w3) % (e_)‘t —1+>\t) +2 /0 t / t G(u — s)duds.

Finally, we compute the covariance.

Cov (Vt thih)
:E(‘/;f—l—‘/;&ih) (VQ) (Vtih)

t+h
=E </0 Vsds /0 . Vudu> — (k1(L1)E (wo))? (£ + th)
=E (V;’)2 + /t /t+h E (ViVy) duds — (k1(L1)E (wo))? (£2 + th)
0 Jt
1 g t t
— ra(LUE (w8) 15 (e M4 )\t> + 2/0 / G(u — s)duds — (r1(L1)E (wp))2 th
t t+h
+ /0 /t . (%@(Ll)xﬁz (wd) e M=) 4 G(u — s) + (k1 (L1)E (wo))2> duds,

1 o 1 Alt+h A Ah e
= 5@(Ll)ﬂ-z (wg) ¥ (e_ (tHh) fo=M oM 1 4 2)\t> +/0 /t G(u — s)duds.
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B.3 Characteristic functionals

Proof or Proposition 16

E(exp(i0V)| Vo, ws, 0 < s < At)

= exp (i@e"\tVO) E (exp <i96_>‘t /M eswdes>
0
o (0035) e ([ (30 ).
0

we, 0 <5< )\t)>

Proof of Proposition 17 From Fubini’s theorem, we get:
T T T
foVip— / FOAV; = =\ / F6)Vidt + / F(tJondLa
0 0 0
T t T
= - / f(t) <Voe‘“+ / e‘w‘s)wxsdms) dt + / f(B)wnd Ly
0 0

— / F(tyeNdt - / ( / f()e e S>dt> wedLy, + / F(t)wrdLy
" / F(t)e =t — A / ( / t+s>e—”dt> wasdLs + / f(D)ondLy,
0
T—s
:_wo/ f(t)e‘”dt—/\/ (—Xf(s)—|—</ f(t+s)e—”dt>>%dms.
0 0 0

Hence, the characteristic functional is given by

E (exp (if @ V)| Vo, wxs,0 < s <T)

=E <eXp (i/OTf(t)th> ‘ Vo,was, 0 < s < T>
= exp <—z‘)\V0 /0 ' f(t)e—”dt> :
E <exp <—i)\ /OT <—§f(s) + (/(]T_Sf(t + s)e"\tdt>> wAdeAs> ‘ Wrs, 0 < s < t>
= exp <—z'/\V0 /0 ' f(t)a”dt) exp ( /0 ' oL << f(s) =\ /0 - ft+ S)e"\tdt> w>\8> ds> .

Proof of Proposition 19 Note that we can write

t Y M (1 _ o—(At—s)
/ Vsdsszr/ uwdes
0 0 A

A
E <exp (w / t Vudu> ‘ v0>
= exp <29AV° (1- exp(—)\t))> E <exp (% /OM (11— e deL8>>
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— exp <29AV° (1- exp(—/\t))> E <IE <eXp (? /OM (1 - e—W—S>) wdes> ‘ we,0< 5 < At>>
— exp <29¥ (1- exp(—)\t))> E <exp (/OM b1 <§ (1 - e—W—S>> w5> ds>> ,

wherey(u) is the characteristic exponent bf. So, we get
t
E (exp <’L9/ Vudu> V0>
0
0 At 0
= — — — _ _ —()\t—s)
<;5<exp <)\(1 exp( At))))E(exp </0 UL, <)\ (1 e )wsds>>>,

whereg is the characteristic function &f,.

Proof of Proposition 20 We obtain from Fubini's theorem:
t [e%¢) o] t
fovi=re [vas= ["omiar= [ s <voe-” + e—W—%sdms) dt
0 0 0 0

o] o] t
= VO/ f(t)e_)‘tdt—i—/ f(t)e_)‘t/ eMwysdLysdt
0 0 0

= VO/OO f(t)e Mdt + /OO </OO f(t)e_)‘(t_s)dt> wWisdL s
0 0 s

=W /OO ft)e Mat + /OO (/OO flt+ s)a‘”dt) wirsdL s
0 0 0

Therefore, the conditional characteristic functionalta integrated process is given by

E <exp <¢f./0t Vsds> (ws)sszo>
= exp <z’VO /OOO f(t)e_)‘tdt> :
E <exp <z /OOO </OOO f(t+ s)e_)‘tdt> w,\deAS> ‘ (WS)szo>V(J>
= exp <1'V0 /OOO f(t)e—”dt> exp (/OOO Vi, <MS /OOO ft+ s)e_)‘tdt> ds) .

So, the conditional cumulant functional is given by

t
log <IE <eXp <z’f ./0 Vsd.9> ‘ (Ws) 40 5 V0>>
=iV /000 f(t)e Mdt + /OOO i, (w,\s /OOO ft+ s)e_’\tdt> ds.
g

C Proof of the consistency

Proof of Proposition 8: We know from Mancini (2006), Jacod (2008) that the truncatsdised vari-
ance is a consistent estimator of integrated variance:
[t/6n ] t
> (1Y) Ijony|<ess) ch/ ozds, asn — oo,
7 —_ n 0

i=1
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for ¢ > 0 ande € (0,1/2), where the convergence is uniform on compacts in probgffilitp). Then we
choosek,, such thatkK,, — oo andK,,9,, — 0 asn — oo and

1 [iAn/0n ] )
5> (0n)in, = =< > (6;Y)" Igisny|<ess -
nen j:LiAn/énJ_Kn

We know from Mancini (2006), Ait-Sahalia & Jacod (2009)tttize above locally averaged truncated
realised variance is a consistent estimator of the spoamneei In fact, it approximates the integral
5 I k.5 o2dx. And we know that fors € [0, 77,

1
K6,

S
27, G5 2
/ oydr = o, asn — oo. (9)
s—Kndn

Clearly, the rate at which the convergence in (9) happensrabpcrucially on the degree of smoothness
of the stochastic variancg’.

We obtain from standard arguments ti#it; (o2, A,,) — [0%];, asn — oo, where the convergence
is uniformly on compacts in probability. Hence, it only remsato show that

[t/An]
NP = RV, (52(80), An) = RVi (0%, 8) = 7 ((A7152(0))" = (A70%)°)
i=1

converges to 0 in probability as— oo. Foralli € {0,1, ..., [t/A,]}, we can write
((A182(80))" = (A70%)7) = (A15%(80) — Afo?) (AT2(3,) + Afo?).
The first term in this product satisfies

Af = AT (0n) = AT0? = (2 (0n)ia, — 0%a,) = (F20n)a-an — 0By, ) -
and the second term is given by
Bl := A'G%(5,) + Al'o? = 2A%0% + A7,

andNy = Z}Zf“ A? B!, Clearly,

[t/An]
t
NS s B s s (|| s a.
1€{0,1,...,|t/An ]} i1 i€{0,1,...,|t/An |} n ] i€{0,1,....[t/An]}
Now, we proceed by proving that the following two equalitresd:

1
sup |4} = op(1), (10)
i€{0,1,...,[t/An]} P
sup |Bj'| = Op(1), (11)
i€{0,1,...,[t/An ]}

which implies thatN]* = op(1). Actually, sinceB? = 2A%s? + A" ando is cadlag, (11) follows
immediately from (10). So, it remains to prove that (10) sol@learly, we can write

421 < [32(6n)ia, — 0a, | + [7200) 6180 — oEoia,

)

which are terms of the same stochastic order. So, it will figcgnt to prove the uniform convergence
for just one of those terms. Note that for ang {0, 1, ..., |t/A, ]}, we have

2 2 2 1 i 2 1 i 2 2
52(0n)in, — 0 = (6%(00)ia, — d d — o2y ).
7 ( n)ZAn O-ZA" <J ( n)ZA” Kn(sn /iAn_K7L6n O-x x) + <K77/577/ /’L 7L_Kn(5n O-x ! JZA”)
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From Jacod (2008, Theorem 2.4 (iii) and Theorem 2.10), weleduce that

1 [ 1

~2 2

sup 0 (0n)in, — / de:ﬂ> =0Op < > ,
ie{O,l,...,Lt/Aﬂ}( (0r) Knbn Jin, -K,s, VE,

if Jacod (2008, Assumption (k)) holds fors < 45-1. So basically, that means that the Blumenthal—
Getoor index ofJ has to be strictly smaller tha#s-1, wheree is chosen as in Definition 7. For the
second term, we get

1 1Ap
sup ‘ / aid:ﬂ — UZ-ZAH <
i€{0,t/An |} | KnOn Jin, — K.,

sup sup |0§, - O‘?An‘ =: A}
i€{0,. [t/ An )} {2€[iA—K b, ilAn]}

In order for the central limit theorem to hold, we need to derestrictions o3 andC to ensure that

\/K_nA? - Oa.s.(an)7 (12)

for a sequencéw, ), Which converges to 0 as — oo. Then, we have

I 1
~2 2
sup 0 (0n)in, — oydx| =Op < > ,
i€{0,1,..,[t/6n]} (0n) Knon Jin, K5, VK,
and
sup sup |02 — O'ZA ! =0 < an > .
(€40, [t/ An |} 2E[AR—Kndnie] A\ VK,
Finally, we have to impose further restrictions on the paatansB, C to ensure that both
1 1
_ =o(1 13
300 (=) o), 13)
and
. 1 Qan -
and A_nAt = Anoa_s, <\/K_n> =o(1). (14)
Remark Note that condition (14) is weaker than condition (12), sigd,, grows faster taxo thanAin:
VEn B/2—C\ _ B
An_o@l )_m for = < C.

which is always satisfied fa' > 0 and B < 0. Hence, we will only impose conditions (12), (13) in the
following.

Now, we study the cases where the volatility model satisfsssi@mption (V1) or assumption (V2) sepa-
rately.

Case 1:0? satisfies assumption (V1)

Now, we assume (V1). |.éo? = bydt+v,dB;, for cadlag, square—integrable procedses(b;)i>o, (V¢)i>0
and a standard Brownian motidh = (B,);>o. (If we assume that rather thars? is a Brownian semi-
martingale, the proof is analogous after applying the meduevtheorem.)

Let x > 0 denote a constant, which might change from line to line thhowt the proof. Sincgand
~ are bounded, we deduce from Lévy’s modulus of continuity #we Dubins-Schwarz theorem (Protter
(2004)) for a new Brownian motioB = (B;);> that

2 2
sup sup |% — o} An|
i€{l,...,[t/An ]} 2E€[iIAR—Knbn,iAn)
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= sup sup
i€{1,es [t/ AR ]} 2€[IAR—Kpbn,iAy]

iAn iAp
/ bsds + / Ysd B

1Ap B
/x bods + Bian s,

= sup sup
i€ {1, [t/ D |} 2€[iAn— 0 i An]

L N

< sup sup |b2 | Kpdp + K sup sup ‘B,-An_x
i€ {1, [t/ D |} 2€[iAn— 0 i An] i€ {1, [t/ D |} 2€[i A — Kb ilAn]

= 005.(Kndn) + Ous. (V280 10g((Kn8) 1) ) -

In order to simplify this further, we usd,, = O(6%) for someC > 0 and K,, = O(62) for some

—1 < B < 0. Furthermore, note thaim,_.g 7”1‘2(1/9”) = 0ifandonly if 0 < £ < 1/2. So, we
formulate the following sufficient conditions for our cost&ncy result:

(i) Condition (12) is satisfied if/ K, v/ K,.6, log((K,6,)~1) = o(1), which is equivalent to

5B+ 10g (5, (B B2 1 1
\/ g(fm ):0(1)<:> —/<—<:> B>—-

(55“) B/ B+1 2 2

and if

VE Kb, =0(1), & 08B+ — 1),  3/2B+1>0,< B>-2/3.

(i) Condition (13) is satisfied if

1 B
AV o) e 6B —p(1)e —(C+B/2)>0& C< -5
and if
K0, -
A =o(l), & 6BH1-C — (1), B+1-C>0,& C<B+1.

So, altogether, we get the following restrictions BrandC':
1
—§<B<0, and 0<C<——.

Case 2:0? satisfies assumption (V2)

Now, we turn our attention to jump driven stochastic voiigtinodels. Clearly, the degree of smoothness
of o2 in the spot volatility estimation will not be the same as ie Brownian motion case. So we cannot
work with Lévy ’s modulus of continuity. We assume that (MB)Ids, i.e.do? = bydt + ydL,, for
cadlag processds= (b;);>0, (71¢):>0 and a Lévy subordinatak = (L;):>o possibly with drift, which

we denote by, and with Lévy measure. We know from Pruitt (1981), thaim sup, wpoflif;'“ =0
a.s. fora > 3, whereg = inf{« : limsup,_,y z*h(z) = 0}, and

h(z) :/ ydu(y)—l—iz/ yzalu(y)+l lNJ—I-/ yy22 —/ i 5dv(y)| -
{lyl>a} % J{jy|<a} r {lyl<ay 1 +Y {lyl>ay L+ Y

So, § is essentially the Blumenthal-Getoor index/af SinceL is a subordinator, its increments are
always positive and, hence, the following inequality holds

2 2
sup sup |O’x—0'iAn‘.
iE{l,...,\_t/AnJ} xe[iAn_Kn(SnviAn}
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< sup sup |62 | Kpdpn + sup |7zl sup sup |Lin, — L]
i€ {1, [t/ D |} 2€[iAn— Kb iAn] 2€[0,t]  i€{l,r|t/An]} 2€[iAn—Kndn,iAn]

= 0g.5.(Kndpn) + 0q.s. ((Knén)l/o‘) , fora > g.

So, we formulate the following sufficient conditions for aansistency result:

(i) Condition (12) is satisfied if/ K, (Knén)l/a = o(1) which is equivalent to

§B/24B/atl]a — h(1) & B/2+4+ B/a+1/a>0< B>—2ia,
and if
VEn (Kpbn) = o(1), < §B/2H(BH) — (1), & B> —2/3.

(i) Condition (13) is satisfied if

1 B
AV o(l)y& 4, o(l) & (C+B/2)>0& (C< 5
and if
KZé" =o(1), & 0BH1I-C — 5(1), & C<B+1.

So, if the volatility process satisfies assumption (V2), wsuane forw > max {1, 3} that

2 B
——— < B <O, and 0<C<——.
24+« 2
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