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Abstract

This paper introduces the concept of stochastic volatilityof volatility in continuous time and,
hence, extends standard stochastic volatility (SV) modelsto allow for an additional source of random-
ness associated with greater variability in the data. We discuss how stochastic volatility of volatility
can be defined both non–parametrically, where we link it to the quadratic variation of the stochas-
tic variance process, and parametrically, where we proposetwo new SV models which allow for
stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated by
a novel estimator calledpre–estimated spot variance based realised variance.

Keywords: Stochastic volatility; volatility of volatility; non-Gaussian Ornstein–Uhlenbeck process; su-
perposition; leverage effect; Lévy processes.

JEL classification: C10, C13, C14, G10.

1 Introduction

Stochastic volatility (SV) models have been widely used in finance in the last decade since they are
particularly suitable for coping with many stylised facts of asset returns such as time–varying volatility,
volatility clusters and the leverage effect, i.e. the usually negative correlation between asset prices and
volatility. This paper extends this line of investigation by introducing an additional source of randomness
representingstochastic volatility of volatility. Here we view stochastic volatility of volatility as express-
ing the possibility or fact that there is greater variability – i.e. more volatility – in the data structure under
study than might initially be surmised. In modelling terms this means that we consider the initial thinking
as embodied in a (classical) SV model and want to describe theextra variability by a further source of
randomness.

There are basically two ways of thinking about volatility ofvolatility: One way is motivated by
a non–parametric point of view where we measure this extra source of randomness by the quadratic
variation of the variance process (QVV, thereafter), whichis analogous to measuring the variability
of an asset by means of the quadratic variation (QV) of the logarithmic asset price. An alternative

∗Financial support by the Center for Research in EconometricAnalysis of Time Series, CREATES, funded by the Danish
National Research Foundation is gratefully acknowledged.
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way of thinking about stochastic volatility of volatility would be by means of parametric models. Both
approaches will be studied in this paper.

The literature on stochastic volatility models comprises at least three branches of research where
stochastic volatility of volatility is mentioned: First, there are the time series models for realised variance
(RV), i.e. the sum of squared returns, which allow for heterogeneous variance, see e.g. Corsi (2004), Corsi
et al. (2008), Bollerslev, Kretschmer, Pigorsch & Tauchen (2009). In that literature, the authors find that
the variance of realised variance is time varying and possibly stochastic.They conclude that having a
heterogeneous variance of RV (in addition to non–Gaussian errors in their time series model) results in a
very good forecasting performance of their model for RV. Second, there is a new area of research where
the existence of a time–varying variance risk premium is linked to the existence of stochastic volatility
of volatility, see e.g. Drechsler & Yaron (2008) and Bollerslev, Tauchen & Zhou (2009). Third, there is
recent research on general inference problems in stochastic volatility models, see e.g. Mykland & Zhang
(2009), where stochastic volatility of volatility is mentioned. In particular, it is a key quantity when it
comes to making inference on thespot volatility. Hence, by studying volatility of volatility thoroughly
one can get a better understanding of financial market volatility itself.

To the best of our knowledge, the present paper is the first which contains a systematic treatment
of stochastic volatility of volatility models in continuous time. We will proceed as follows. First of all,
we start with a conceptual part, where we define stochastic volatility of volatility both in a parametric
model and non–parametrically. In the parametric context, we study two new stochastic volatility models,
which are based on the Barndorff-Nielsen & Shephard (2001) model, (BNS model, thereafter) and which
account for stochastic volatility of volatility. Analytical properties of the resulting model classes are
discussed and we also point out how stochastic volatility ofvolatility can be used for introducing leverage
type effects in a novel way. Next, we sketch how such models can be extended to a multivariate set up.
By generalising the two specific model classes, we then definestochastic volatility of volatility more
formally in two generic parametric SV models. In particular, we show that an additional source of
randomness can be introduced into SV models either by spatial or by temporal scaling of the driving
process.

Next, we study stochastic volatility of volatility non–parametrically by means of the quadratic vari-
ation of the squared volatility process and we discuss its relationship to parametric models which allow
for stochastic volatility of volatility.

Furthermore, we turn our attention to the question of how volatility of volatility can be estimated
based on high frequency financial data. In particular, we develop a methodology for estimating the
quadratic variation of the squared volatility consistently by using a novel two time scale approach.

Finally we give an extended outlook on further research questions in the context of the new concept
of stochastic volatility of volatility.

2 A brief review on stochastic volatility models

There are basically two classes of asset price models in the literature, which allow for stochastic volatility.
In these, stochastic volatility is introduced either by stochastic spatial scaling of a semimartingaleS =
(St)t≥0 or by stochastic temporal scaling. The first approach results in models of the type

∫ t
0 σs−dSs,

whereσ = (σs)s≥0 is a stochastic volatility process, and the latter leads to models of the typeSτt , where
τ = (τt)t≥0 is a stochastic time change. Since the first type of models is now more widely used in
the literature (see e.g. Barndorff-Nielsen & Shephard (2002, 2007), Jacod (2008), Aı̈t-Sahalia & Jacod
(2009)) and since it has a bigger potential for generalisation to multivariate models, we entirely focus
on that class in order to introduce stochastic variance of variance. In particular, we will assume in the
following that the logarithmic asset priceY = (Yt)t≥0 is given by an Itô semimartingale

dYt = atdt + σt−dWt + dJt, (1)

which is defined on a probability space(Ω,A, (Ft)t≥0,P), wherea = (at)t≥0 is a predictable drift pro-
cess,σ = (σt)t≥0 is a predictable stochastic volatility process andJ = (Jt)t≥0 is the jump component
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of the Itô semimartingale. Note that an Itô semimartingale is defined as a semimartingale whose charac-
teristics are absolutely continuous with respect to the Lebesgue measure (see e.g. Jacod (2008)). So, for
the jump component, we assume that

Jt =

∫ t

0

∫

R

κ(δ(s, x))(µ̃(ds, dx) − ν̃(ds, dx)) +

∫ t

0

∫

R

(δ(s, x) − κ(δ(s, x)))µ̃(ds, dx),

whereν(ds, dx) = dsFs(dx) andδ is a predictable map fromΩ×R+×R onR such that the predictable
random measureFs(ω, dx) is the restriction toR \ {0} of the image of the Lebesgue measure onR by
the mapx 7→ δ(ω, t, x), and µ̃ is a Poisson random measure with predictable compensatorν̃. Also,
κ is a continuous truncation function, which is bounded with compact support andκ(x) = x on a
neighbourhood ofx.

The variation of financial markets, which is often referred to as squaredvolatility, is usually measured
by means of the quadratic variation of the logarithmic priceprocess. In our modelling framework, the
quadratic variation (QV) (denoted by[·]) is given by

[Y ]t = σ2+
t +

∑

0≤s≤t

(∆Js)
2 , (2)

whereσ2+
t =

∫ t
0 σ

2
sds is the integrated squared stochastic volatility process and where∆Js = Js − Js−

denotes the jump ofJ at time s. Taking the square root of the quadratic variation
√

[Y ]t leads to a
measure of thevolatility of the asset price.

3 Parametric stochastic volatility of volatility

First of all, we study stochastic volatility of volatility in a parametric model. In order to get a better
understanding of what this new concept comprises, we study two concrete examples of SV models which
allow for this additional source of randomness first before we turn to a more formal definition of the new
concept of stochastic volatility of volatility in parametric SV models.

3.1 Volatility modulated non–Gaussian Ornstein Uhlenbeckprocesses

In order to define stochastic volatility of volatility in a concrete parametric SV model, we choose the
Barndorff-Nielsen & Shephard (2001, 2002) model (BNS model), based on a non–Gaussian Ornstein–
Uhlenbeck process, as a base model, since it has been widely used in the finance literature. Note that
non–Gaussian Ornstein Uhlenbeck processes (as well as the often used CIR process (Cox et al. (1985),
Heston (1993)) have an exponentially declining autocorrelation function which contradicts empirical
findings of long memory in volatility. However, by studying asuperposition of such processes as in
Barndorff-Nielsen & Shephard (2002), one can easily overcome this problem (see also, Section A.3).

This paper proposes two new classes of stochastic volatility models which are given byvolatility
modulated non–Gaussian Ornstein Uhlenbeck processes.

Model 1: The stochastic volatility processσ satisfiesσ2
t = Vt for a stochastic processV = (Vt)t≥0,

where
dVt = −λVtdt+ ωλt−dLλt; (3)

(Lt)t≥0 is a Lévy subordinator and(ωt)t≥0 denotes a stationary non–negative stochastic volatility
process, which is assumed to be independent ofL.

Model 2: The stochastic volatility processσ is defined byσ2
t = Ut for a processU = (Ut)t≥0 with

dUt = −λUtdt + dLτλt
; (4)

(Lt)t≥0 is a Lévy subordinator,τ = (τt)t≥0 is a time change process with stationary increments,
which is independent ofL.
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Remark The processesω2 andτ can be interpreted as thestochastic variability of variance, in Model
1 and Model 2, respectively. Clearly, whenωt ≡ 1 or τλt = λt, we obtain the well-known BNS model.
Bothω andτ can be driven by a Brownian motion or (and) a jump process. E.g. we can think ofω (or
ω2) being a CIR process.

Note that SV models satisfying (3), will generally not belong to the class ofaffine models(see e.g.
Duffie et al. (2003), Kallsen (2006)). However, SV models satisfying (4) are affine as soon as the time
change is affine. Such models are analytically tractable and, hence, of particular interest for various
applications in financial mathematics.

In the following, we study some properties of the stochasticvolatility processesV andU . In partic-
ular, we derive representation results for the integrated stochastic volatility process.

3.2 Properties of Model 1

First, we study the stochastic volatility processV defined in (3). From standard arguments, we deduce
the following representation:

Vt = V0e
−λt +

∫ t

0
e−λ(t−s)ωλs−dLλs.

We now define the processH = (Ht)t≥0 by

Ht =

∫ t

0
ωλs−dLλs =

∫ λt

0
ωs−dLs,

which is clearly a semimartingale, but in general not a Lévyprocess. In the following we will refer to
H as the background driving volatility modulated Lévy process(BDVMLP) of V . Then, the stationary
version ofV can be written as

Vt =

∫ t

−∞
e−λ(t−s)dHs,

whereL is suitably extended to the negative half line (see Barndorff-Nielsen & Shephard (2001)).

Remark Clearly,L is a Markov process. However, the Markov property is not preserved under stochas-
tic integration. In particular,V is no longer a Markov process. However, the bivariate process (V, ω)
satisfies the Markov property ifω is itself a Markov process.

Note that we can easily derive an expression for the increment process ofV . In particular, we have for
anyT ≥ 0

Vt+T − Vt =
(
e−λT − 1

)
Vt +

∫ t+T

t
e−λ(t+T−s)ωλsdLλs.

3.2.1 Integrated process

In the finance literature, integrated volatility is regarded as the main object of interest since it essentially
measures the accumulated variance over a certain period of time (usually a day). So, this section analyses
main properties of this key quantity in our new modelling framework. In the following, we will use the
notationV + = (V +

t )t≥0 for the integrated process

V +
t =

∫ t

0
Vsds.

First of all, we derive a different representation of the integrated process.
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Proposition 1 The integrated process can be written as

V +
t = ǫ(t, λ)V0 +

∫ t

0
ǫ(t− s, λ)ωλsdLλs = ǫ(t, λ)V0 +

∫ t

0
ǫ(t− s, λ)dHs,

whereǫ(t, λ) = 1
λ

(
1 − e−λt

)
and, also, as

V +
t =

1

λ

(∫ λt

0
ωsdLs + V0 − Vt

)
=

1

λ
(Ht + V0 − Vt) .

The proof of the above Proposition is straightforward and, therefore, not given here.
These different representations ofV + are interesting, since they shed some light on the joint be-

haviour ofV andV +. Recall thatHt =
∫ t
0 ωλsdLλs. So clearly,Vt andHt have identical jumps

(breaks), they co–break, i.e.∆Vt = ∆Ht = ωλt∆Lλt; but V andH are not cointegrated (see Granger
(1981)). However,V + andH are in fact cointegrated since

λV +
t −Ht = V0 − Vt.

So, roughly, for largeλt, λV +
t will have the same distribution as the BDVMLPHt, where the error in

this approximation is a stationary process. Now we can clearly see what kind of influence the stochastic
variance of variance has in the new modelling set up: While the long–run behaviour of integrated volatil-
ity in the classical BNS model is described by the backgrounddriving Lévy process, our new model
allows for a greater flexibility in the sense that it can allowfor processes which have stationary, but not
necessarily independent increments in the long run behaviour of the integrated variance.

Finally, sinceL is a nonnegative process, the integrated processV + is bounded below by the quantity
1
λ

(
1 − e−λt

)
V0.

Remark The new SV model (3) is in fact analytically tractable despite its greater generality compared
to the standard BNS model. In particular, it is possible to derive the second order structure of both
V andV + explicitly and we also get a (quasi) explicit expression forthe corresponding characteristic
functionals. These results are presented in Section A.1 in the appendix.

3.2.2 Leverage through stochastic volatility of volatility

Next, we focus on the fact that stochastic volatility of volatility can be used for introducing the leverage
effect into stochastic volatility models in a novel way. The(usually negative) correlation between asset
returns and volatility has been found in many empirical studies, see e.g. Black (1976), Christie (1982)
and Nelson (1991) among others and, more recently, by Harvey& Shephard (1996), Bouchaud et al.
(2001), Tauchen (2004, 2005), Yu (2005) and Bollerslev et al. (2006).

So far, leverage type effects have usually been introduced by directly correlating the driving pro-
cess of the volatility with the driving process of the asset prices (as e.g. in the Heston (1993) model).
Introducing leverage in the BNS model is slightly more complicated since the volatility is driven by a
subordinator and the price is driven by a Brownian motion which are inherently independent from each
other (by the Lévy – Khinchine formula). Hence Barndorff-Nielsen & Shephard (2001) suggested to
add a jump component to the asset price, which is given by the subordinator which drives the volatility
multiplied by a (negative) constant. Hence, such a structure assumes linear dependence between asset
price and volatility. However, having an additional randomfactor in the stochastic volatility model, i.e.
the stochastic variance of variance makes it possible to introduce leverage type effects indirectly and
independently of the fact whether we want to have a jump component in the model for the logarithmic
asset price. In order to illustrate this, let us look at a small example.

Example For simplicity, we just focus on the Brownian semimartingale componentP = (Pt)t≥0, which
we define by

dPt =
√
V t−dWt,
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and for the volatility process we work with the following model

dVt = −λVtdt+ ωλtdLλt,

dω2
t = α(β − ω2

t )dt + γωtBαt,

for parametersλ, α, β, γ > 0 and a Brownian motionB = (Bt)t≥0 with d[Bαλ,W ]t = ρ̃dt, for ρ̃ ∈
[−1, 1] and all the other quantities defined as above. ClearlyP has zero mean and an application of Itô’s
formula leads to the following result for higher moments of ordern ∈ R, n ≥ 2 (provided they exist):

E (Pn
t ) =

n(n− 1)

2

∫ t

0
E
(
Pn−2

s Vs

)
ds.

In particular, we have

Cov(Pt, Vt) = E(PtVt) = −λ
∫ t

0
E(PsVs)ds + λE(L1)

∫ t

0
E (Psωλs) ds 6≡ 0,

since

E (Puωλu) = E

(∫ u

0
Psdωλs

)
+ E

(∫ u

0

√
Vs−d[W,ωλ]s

)
6≡ 0.

So, we see that we can have a non–zero correlation between theasset price and the volatility, even if the
volatility is jump driven and there are no jumps in the logarithmic asset price.

3.3 Properties of Model 2

Now, we turn our attention to the properties of the SV Model 2,where stochastic volatility of volatility
is introduced by a stochastic time change. Clearly, the stochastic volatility process defined in (4) can be
represented as

Ut = U0e
−λt +

∫ t

0
e−λ(t−s)dLτλs

.

Similarly to Model 1, we can define the BDVMLPH = (Ht)t≥0 by Ht = Lτλt
. Then the stationary

version ofU can be written as

Ut =

∫ t

−∞
e−λ(t−s)dHs.

3.3.1 Integrated process

Since the integrated process, which is denoted byU+ = (U+
t )t≥0, where

U+
t =

∫ t

0
Usds,

is the key object of interest, we also study its properties inthe framework of Model 2. Similarly as
before, we obtain the following representation result.

Proposition 2 The integrated process can be written as

U+
t = ǫ(t, λ)U0 +

∫ t

0
ǫ(t− s, λ)dLτλs

= ǫ(t, λ)U0 +

∫ t

0
ǫ(t− s, λ)dHs,

whereǫ(t, λ) = 1
λ

(
1 − e−λt

)
and, also, as

U+
t =

1

λ
(Lτλt

− Lτ0 + U0 − Ut) =
1

λ
(Ht + U0 − Ut).
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The result above follows from a straightforward calculation, hence the proof is omitted.
As in Model 1, we get thatU+ andH are cointegrated and for largeλt, λU+

t will nearly have the
same distribution as the BDVMLPHt. The error in this approximation is again given by a stationary
process. So, also in Model 2 do we get that the stochastic variance of variance influences the long run
behaviour of integrated varianceU+: The limiting process is given by the BDVMLPH and not just by
the BDLVL as in the BNS model.

Remark Also Model 2 has nice analytical properties. In particular,we can derive its second order
structure and characteristic functionals in (quasi) explicit form, see Section A.2.5.

3.3.2 Leverage through stochastic volatility of volatility

As we have seen in section 3.2.2, stochastic volatility of volatility can be used for introducing leverage
type effects indirectly into asset price models by allowingfor dependence between the driving process of
the volatility of volatility and the driving process of the logarithmic asset price. Clearly, this methodology
works in Model 2, too. E.g. if we consider a logarithmic assetprice given by a Brownian semimartingale
P = (Pt)t≥0, wherePt =

∫ t
0

√
Us−dWs, then the leverage appears in the quantity

Cov(Pt, Ut) = E(PtUt).

From Itô’s formula, we can easily derive that

d(PtUt) = Pt−dUt + Ut−dPt + d[U,P ]t = −λPt−Ut−dt+ Pt−dLτλt
+ Ut−dPt + d[U,P ]t.

Hence, we obtain

E(PtUt) = −λ
∫ t

0
E (PsUs) ds+ E

(∫ t

0
Ps−dLτλs

)
.

Here

E

(∫ t

0
Ps−dLτλs

)
= E

(
E

(∫ t

0
Ps−dLτλs

∣∣∣∣ τ
))

= E(L1)

∫ t

0
E (Psτλs) ds,

which is non–zero if we allow for dependence between (the driving process of)τ and the Brownian
motion drivingP . In particular, if we specify a parametric model forτ as the one below, we can compute
the correlation betweenP andU by solving an integral equation.

Example A stochastic volatility model which accounts for stochastic variance of variance and leverage
could be defined by

dYt = atdt+
√
Ut−dWt + dJt,

dUt = −λUtdt+ dLτλt
,

dτt = ξtdt,

dξ2t = α(β − ξ2t )dt + γξtdBαt,

where all quantities are defined as in the previous example and in particular, whereB andW are corre-
lated. Note that this model belongs to the class ofaffinemodels.

3.4 Multivariate models

Next, we study multivariate extensions of stochastic volatility models which account for stochastic
volatility of volatility. Here, we entirely restrict our attention to Ornstein–Uhlenbeck type processes,
and, in particular, to multivariate extensions of (3).
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3.4.1 Notation

Before we define the new model, we have to introduce some notation which we choose along the lines of
Pigorsch & Stelzer (2008). LetMn(R) denote the set of realn× n dimensional matrices, wheren ∈ N.
Then we denote bySn the subset of symmetric and invertiblen × n matrices. Furthermore, we define
σ(A) as the spectrum of a matrixA ∈ Mn(R). Finally we introduce the notation for integration with
respect to a matrix. LetMm,n(R) denote the set of realm × n dimensional matrices, wherem,n ∈ N.
Let L = (Lt)t≥0 ∈ Mn,r(R) denote a semimartingale and letA = (At)t≥0 ∈ Mm,n(R) andB =
(Bt)t≥0 ∈Mr,s(R) denote adapted processes which are integrable with respecttoL. ThenC = (Ct)t≥0

with Ct =
∫ t
0 AudLuBu is inMm,s(R) with elements

Cij,t =

n∑

k=1

r∑

l=1

∫ t

0
Aik,uBlj,udLkl,u.

3.4.2 Stochastic integral model

In order to extend Model 1 to the multivariate case, we generalise the model proposed by Barndorff-
Nielsen & Stelzer (2007) and Pigorsch & Stelzer (2008) and write

dVt =
(
AVt− + Vt−A

T
)
dt+ Ξ

1/2
t− dLtΞ

1/2
t− ,

whereA is ad × d–matrix (for d ∈ N) describing the mean reversion coefficient andL is the driving
matrix subordinator (see Barndorff-Nielsen & Pérez-Abreu (2008)), whileΞ is a positive definite, sta-
tionary stochastic volatility of volatility matrix. We write Ξt = Ξ

1/2
t Ξ

1/2
t for the corresponding unique

square root decomposition for positive definite matricesΞ1/2, see Barndorff-Nielsen & Stelzer (2007)
and the discussion therein. Also, we assume that the initialvalueV0 is a positive semidefinite matrix.

Proposition 3 LetL be a matrix subordinator withE(max(log(||L1||), 0)) <∞) andA ∈Md(R) such
that σ(A) ⊂ (−∞, 0) + iR, and letΞ denote a positive definite, stationary, matrix-valued stochastic
process, whose components are independent of the components ofL. Then the stochastic differential
equation of generalised OU type

dVt =
(
AVt− + Vt−A

T
)
dt+ Ξ

1/2
t dLtΞ

1/2
t ,

has a unique stationary solution

Vt =

∫ t

−∞
eA(t−s)Ξ

1/2
t dLsΞ

1/2
t eA

T (t−s).

The integrated process can then easily be computed. LetA : Ss → Sd denote an operator such that
X 7→ AX +XAT . Then

dVt = AVt−dt + Ξ
1/2
t dLtΞ

1/2
t ,

and

Vt − V0 =

∫ t

0
dVs =

∫ t

0
AVsds+

∫ t

0
Ξ1/2

s dLsΞ
1/2
s .

So, we have the following result: Under the same assumptionsas in Proposition 3, we get the following
representation for the integrated multivariate volatility process withHt =

∫ t
0 Ξ

1/2
s dLsΞ

1/2
s :

V +
t =

∫ t

0
Vsds = −A−1 (Ht − Vt + V0) .

As in the univariate model, it would also be interesting to study superpositions of multivariate volatility
modulated non–Gaussian OU process by extenting recent workby Barndorff-Nielsen & Stelzer (2009).
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3.5 Formal definition of stochastic volatility of volatilit y in a parametric model

After, we have studied two particular SV models, which allowfor stochastic volatility of volatility, we
now turn to a more formal definition of stochastic volatilityof volatility.

In order to obtain a precise definition of stochastic volatility of volatility in a (semi–) parametric set
up, we have to specify a corresponding base model for the stochastic volatility process. Here we propose
two generic stochastic volatility models. The first model isgiven by the following stochastic differential
equation (SDE):

dσ2
t = btdt+ ωt−f

(
σ2

t−

)
dZt, (5)

whereb = (bt)t≥0 is a predictable drift process, possibly describing the mean reversion of the volatility
process,f : R+ → R+ is a known deterministic function (usually a power/root function),Z = (Z)t≥0

is a Lévy process andω = (ωt)t≥0 is a positive, predictable and stationary semimartingale,which is
independentof Z. Furthermore, we always work under additional regularity conditions which ensure
thatσ2 > 0 (e.g. whenσ2 is a generalised non–Gaussian Ornstein–Uhlenbeck processor a generalised
CIR process satisfying the positivity condition).

Definition 4 In a stochastic volatility model given by (5), we define thestochastic variance of variance
processΞ = (Ξt)t≥0 by

Ξt = ω2
t , for all t ≥ 0.

Remark Generally, we have

ω2
t− =

(
dσ2

t

)2

f
(
σ2

t−

)2
(dZt)

2
or, equivalently, [σ2]t − [σ2]0 =

∫ t

0
ω2

t−f
(
σ2

t−

)2
d[Z]t.

This implies that, only in special cases (namely whenZ is a standard Brownian motion andf ≡ 1),
do we have that the quadratic variation of the squared volatility process equals the integrated stochastic
variance of variance up to a constant, i.e.[σ2]t − [σ2]0 =

∫ t
0 ω

2
t dt.

The second class of volatility models is defined by

dσ2
t = btdt + f

(
σ2

t−

)
dZτt , (6)

whereb, f, Z are defined as in (5) and whereτ = (τt)t≥0 is a time change process (i.e. an increasing,
right–continuous semimartingale withτ0 = 0), which has stationary increments and isindependentof
Z.

Definition 5 In a stochastic volatility model given by (6), we define thestochastic variance of variance
processΞ = (Ξt)t≥0 by

Ξt = τt, for all t ≥ 0.

Remark In general, we have in a model of type (6) that

(
dσ2

t

)2

f
(
σ2

t−

)2 = (dZτt)
2 or, equivalently, d[σ2]t = f

(
σ2

t−

)2
(dZτt)

2 .

In the special case, whenZ is a Brownian motion andf ≡ 1, we get[σ2]t − [σ2]0 = τt, i.e. the
stochastic variance of variance is given by the quadratic variation.
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Note that the quadratic variation of the time changed process corresponds to the time changed quadratic
variation of the original process if the time change is absolutely continuous.

We have seen that stochastic volatility of volatility can beintroduced either by stochastic spatial or
by stochastic temporal scaling of the Lévy process which drives the volatility process. The first approach
implies introducing the multiplicative componentω and the latter implies introducing the time changeτ
in the volatility model. While the first class of models as defined in (5) does generally not belong to the
class of affine models, the second class of SV models, given by(6), can be placed into an affine form if
the time change process is chosen from the affine class of processes. Clearly, one will have to specify
concrete parametric models forω andτ (as given in the examples above), if one wants to refer to a true
parametricmodel for stochastic variance of variance.

4 Non–parametric stochastic volatility of volatility

In this section we study stochastic volatility of volatility from a non–parametric point of view. In order
to define this new concept, we proceed as follows. Rather thanworking with a concrete SV model, we
only assume that the logarithmic asset price is given by an Itô semimartingale.

Definition 6 Let the logarithmic asset price be given by equation (1). Thequadratic variation of variance
(QVV) is defined as the quadratic variation of the squared stochastic volatility process, i.e.

[
σ2
]
.

The QVV can be seen as a non– or semi–parametric definition of variance of variance, which is in line
with the approach of viewing the quadratic variation of the logarithmic asset price as a measure of the
stochastic variance. If the QVV is in fact stochastic, we view it as non–parametric stochastic variance of
variance.

Note that the parametric and the non–parametric definition of stochastic variance of variance are
closely linked to each other, but they are generally not the same. In particular, we have seen that the
quadratic variation ofσ2 is strongly related to the (integrated) parametric stochastic variance of vari-
ance, given byω2 andτ . However, QVV only equals (integrated) parametric variance of variance if the
volatility defined by (5) or (6) is driven by a standard Brownian motion (rather than a jump process) and
if f ≡ 1.

5 Estimating the quadratic variation of the variance process

After we have studied the concept of stochastic volatility of volatility in detail, we now turn to the
question of how we can actually measure it. Here, we will solely focus on non–parametric (stochastic)
variance of variance, i.e. on QVV.

Estimating stochastic volatility based on high frequency observations has been studied extensively
in the last decade and, in that context, a quantity calledrealised variance, see e.g. Andersen et al. (2001)
and Barndorff-Nielsen & Shephard (2002), and its extensions have been in the research focus. Following
this stream of literature, let us assume that we observe the logarithmic asset priceY = (Yt)t≥0 given by
(1) at timesiδn for i = 0, 1, . . . , ⌊T/δn⌋, for someT > 0 and whereδn > 0 andδn → 0 asn → ∞.
The realised variance (RV) is then defined as the sum of squared returns over a time interval[0, t] for
0 ≤ t ≤ T , i.e.

RV n
t = RV n

t (Y, δn) =

⌊t/δn⌋∑

i=1

(δn
i Y )2 ,

whereδn
i Y = Yiδn − Y(i−1)δn

, denotes theith return/increment ofY . From standard arguments, we get
that

RV n
t

ucp−→ [Y ]t, asn→ ∞,
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where the convergence is uniform on compacts in probability(ucp) (see Protter (2004)) and[Y ] is the
quadratic variation ofY given by (2). The concept of realised variance has sequentially been extended
to realised multipower variation (Barndorff-Nielsen & Shephard (2006), Barndorff-Nielsen et al. (2006),
Jacod (2008),Veraart (2009)) and truncated realised variance (Mancini (2001, 2006), Jacod (2008)) in
order to construct estimators which are robust towards jumps and estimate the continuous part of the
quadratic variation only. Further generalisations and related concepts have been introduced to make such
estimators robust to market microstructure noise. However, this aspect is beyond the scope of this paper
and we just refer to Bandi & Russell (2008), Zhang et al. (2005), Hansen & Lunde (2006), Jacod et al.
(2009), Barndorff-Nielsen et al. (2008a,b) and the references therein for details on that issue.

The concept of realised variance and its generalisations can also be used for constructing estimators
of the spot varianceσ2

t rather than the accumulated, i.e. integrated, quadratic volatility σ2+
t . If one

computes a suitable realised multipower variation statistic over a local window and scales the resulting
statistic appropriately, as described below, one can easily derive a spot volatility estimator. This property
plays a key role in constructing an estimator for the QVV. In fact, the idea we introduce for estimating
the quadratic variation of the squared volatility process is based on three steps: First, we will construct a
time series of spot variance estimators, where the spot variance estimators are based on high frequency
data, computed on a fine time scale of lengthδn > 0 and whereδn → 0 asn→ ∞. Next, we introduce a
second, sparser time scale of length∆n, where∆n = O

(
δC
n

)
for a constantC > 0. Finally, we compute

the realised variance of the increments of the spot varianceestimators on that sparser time scale. For
an appropriate choice ofC, this will result in a consistent estimator of QVV. In the following, we will
call such estimatorspre–estimated spot–variance based realised variance(PSRV). Clearly, rather than
computing the RV on that second, sparser time scale, one could also compute other types of (truncated)
realised (multi-) power variation, depending on what kind of underlying structure one assumes forσ2.

5.1 Estimating the quadratic variation of the squared volatility when we observe the
squared volatility

If we hypothetically assume that we observe the volatility processσ2, which is a semimartingale, over
a time interval[0, T ] at timesi∆n for i = 1, . . . , ⌊T/∆n⌋ (for some∆n > 0 such that∆n → 0, as
n→ ∞), then we can deduce from standard arguments that

RV n
t (σ2,∆n) =

⌊t/∆n⌋∑

i=1

(
∆n

i σ
2
)2 ucp−→ [σ2]t, as n→ ∞,

where∆n
i σ

2 = σ2
i∆n

− σ2
(i−1)∆n

for i = 0, 1, . . . , ⌊t/∆n⌋.
However, since volatility is unobservable, we have to replace the squared volatility above by a con-

sistent spot variance estimator, which will be described inthe following section.

5.2 Estimating spot variance

We will estimate the quadratic variation of the stochastic variance by the realised varianceRV n
t (σ2,∆n),

whereσ2 is replaced by a spot variance estimator. However, this onlyworks when we estimate spot
volatility on a finer time scale than the one we use for computing the realised variance.

Recall, that we denote byδn > 0 the mesh size of the fine time scale, at which we observe the
logarithmic asset priceY . Here,δn → 0 asn → ∞. Next, we construct a second time scale, which is
more sparse and which has mesh size∆n. In particular, we define

∆n = O
(
δC
n

)
, for 0 < C < 1.

E.g. we could choose∆n = ⌊δC−1
n ⌋δn, where⌊·⌋ denotes the floor function.

In the literature, we find various consistent estimators of spot variance. Such estimators are con-
structed by choosing any of the well-known consistent estimators of integrated variance and then using
a locally averaged version of them. In particular, all theseestimators are computed over a local window

11



of sizeKnδn, where we requireKn → ∞, satisfyingδn → 0 andKnδn → 0 ast → ∞. Therefore, we
choose a sequence of integers

Kn = OP

(
δB
n

)
, for − 1 < B < 0.

Let s ∈ [0, t]. In the absence of jumps and noise in the price process, spot variance can be consistently
estimated bylocally averaged realised variance, i.e.

σ̂2,RV
s,n =

1

2Knδn

⌊s/δn⌋+Kn∑

i=⌊s/δn⌋−Kn

(δn
i Y )2 .

In the absence of noise, but in the presence of jumps,locally averaged realised bipower variation(Lee &
Mykland (2008), Veraart (2009)) andlocally averaged truncated realised variance(Aı̈t-Sahalia & Jacod
(2009)) provide consistent estimates of spot variance. Thefirst is defined by

σ̂2,RBV
s,n =

1

2Knδn

⌊s/δn⌋+Kn∑

i=⌊s/δn⌋−Kn

|δn
i Y |

∣∣δn
i+1Y

∣∣ .

and the latter is for somec > 0 andǫ ∈
(
0, 1

2

)
given by

σ̂2,TRV
s,n =

1

2Knδn

⌊s/δn⌋+Kn∑

i=⌊s/δn⌋−Kn

(δn
i Y )2 1I{|δn

i Y |<cδǫ
n}
. (7)

If we allow for both jumps and noise in the price process, we can choose locally averaged modulated
realised bipower variation as in Jacod et al. (2009), Podolskij & Vetter (2008). Under some regularity
conditions, many spot variance estimators satisfy a central limit theorem which allows us to read off
the rate of convergence easily. Details on the specific rate of convergence for a variety of spot variance
estimators are given in Bandi & Renò (2008).

5.3 Main consistency result

The following proposition contains the main result of this section. It basically says that the realised
variance evaluated over a sparse time grid based on estimated spot variances over a fine time grid is a
consistent estimator of the quadratic variation of the squared volatility process.

We will prove the consistency of our estimator for two very important classes of stochastic volatility
processes: for Brownian motion and for pure jump Lévy–driven stochastic volatility models. To be more
precise, we formulate the following assumptions.

Assumption (V1) The stochastic varianceσ2 (or the stochastic volatilityσ) is given by a Brownian
semimartingale defined by

dσ2
t = btdt+ γtdBt,

whereb = (bt)t≥0 andγ = (γt)t≥0 are càdlàg and square–integrable andB = (Bt)t≥0 is a standard
Brownian motion (possibly correlated withW ).

Assumption (V2) The stochastic varianceσ2 is given by

dσ2
t = btdt+ γtdLt,

whereb = (bt)t≥0 is càdlàg and square–integrable andL = (Lt)t≥0 is a Lévy subordinator.
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Definition 7 Let σ̂2 (δn) denote the one–sided locally average truncated realised variance estimator
based on a time grid of lengthδn > 0, defined by

σ̂2 (δn)s =
1

Knδn

⌊s/δn⌋∑

j=⌊s/δn⌋−Kn

(δn
i Y )2 1I{|δn

i Y |<cδǫ
n}
,

for s ∈ [0, T ], c > 0, 0 < ǫ < 1/2. We choose a sequence(Kn)n∈N such thatKn = O
(
δB
n

)
for some

−1 < B < 0. That ensures that

Kn → ∞ and Knδn → 0, asn→ ∞.

Proposition 8 Let Y denote the logarithmic asset price defined in (1), which we observe over a time
interval [0, T ] for someT > 0 at timesiδn for i = 0, 1, . . . , ⌊T/δn⌋. The corresponding high frequency
returns ofY are denote byδn

i Y = Yiδn − Y(i−1)δn
. Letσ = (σt)t≥0 be a stochastic volatility process

which satisfies either assumption (V1) or assumption (V2). Let σ̂2 (δn) denote the spot variance esti-
mator satisfying Definition 7. Assume that the Blumenthal–Getoor index ofJ is strictly smaller than
min{1, 4ǫ−1

2ǫ }, whereǫ is chosen as in Definition 7. Let∆n = O
(
δC
n

)
denote the mesh of a sparser time

grid, where0 < C < 1. Furthermore, we have the following assumptions:

• If the volatility process satisfies assumption (V1), we assume that

−1

2
< B < 0, and 0 < C < −B

2
.

• If the volatility process satisfies assumption (V2), we assume that

− 2

2 + α
< B < 0, and 0 < C < −B

2
,

for someα > 1, which is also strictly greater than the Blumenthal–Getoorindex of the driving
Lévy process ofσ2.

Then, the pre–estimated spot variance based realised variance satisfies:

RVt(σ̂
2(δn),∆n)

P−→ [σ2]t, as n→ ∞.

Proof The proof is given in the Appendix (Section C). �

So, we can conclude that the pre–estimated spot variance based realised variance is a consistent estimator
of the quadratic variation of the stochastic variance.

6 Concluding remarks

6.1 Summary

This paper contains a systematic treatment of a new concept in continuous time financial econometrics:
stochastic variance of variance. This concept is of relevance in various areas of finance as described
above, such as volatility forecasting, modelling of a time varying variance risk premium, modelling of
leverage type effects and inference on spot volatility. We have seen that stochastic variance of variance
can be studied both from the perspective of a parametric SV model, where it is essentially given by an
additional stochastic temporal or spatial scalar of the driving process of the SV, or from a non–parametric
perspective, where it is defined as the quadratic variation of the stochastic variance process (QVV).

As concrete cases of parametric SV models which allow for stochastic volatility of volatility, we
propose two new models given by volatility modulated non–Gaussian Ornstein–Uhlenbeck processes. A
detailed study of such processes is provided and we also discuss extensions to multivariate models.
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In order to estimate QVV consistently, we propose to use the so–called pre–estimated spot–variance
based realised variance, which is based on a novel two time scale framework. This approach is potentially
applicable to wider fields in finance, e.g. we could think of applying tests for jumps or estimating the
activity of a driving jump component not just to asset price data, but to estimated spot variance time
series and hence deduce further information on the volatility process.

6.2 Discussion

After having introduced the new concept of stochastic volatility of volatility, we would like to point out
some topics for future research.

6.2.1 Remarks on the definition of parametric variance of variance

First of all, there is the issue whether we want to allow fordependencebetween the parametric variance
of variance, given by the processesω2 andτ , respectively, and the driving processZ of the volatility
process. In this paper, we have restricted our attention to the case of independence in order to make
it easier to understand the concept of introducing an additional source of randomness to a stochastic
volatility model. But extensions to allow for dependence are clearly possible.

Next, there is the question of allowing formulti–factorstochastic volatility models and also forlong
memoryin the volatility. The generic stochastic volatility models defined in (5) and (6) are only one
factor models and generally do not allow for long memory. An simple approach for extending such
models is to study asuperpositionof such generic stochastic volatility models, as e.g. studied in the
OU context in Barndorff-Nielsen & Shephard (2001, 2002), Barndorff-Nielsen & Stelzer (2009) and in
Section A.3 in the Appendix.

6.2.2 Remarks on estimating the processesω and τ

So far, we have seen how QVV can be estimated consistently by using the new estimator proposed in
this paper. However, it might also be interesting to estimate the processesω or τ directly, provided we
believe that such a model assumption is realistic. If the squared stochastic volatility processσ2 is driven
by a Brownian motion, then the quadratic variation ofσ2 equals the integratedω2 or τ . Clearly, in such a
framework, the estimation technique we have introduced in this paper works well (at least theoretically).
Note that such models forσ2 have been widely used in the literature. E.g. there are many recent papers
where the volatility itself is modelled as a Brownian semimartingale (e.g. Barndorff-Nielsen et al. (2006),
Kinnebrock & Podolskij (2008), Mykland & Zhang (2009), Jacod (2008)).

However, if the SV model is assumed to be driven by a jump process, then the quadratic variation of
σ2 contains both the jumps and the stochastic variance of variance process. In order to estimate stochastic
variance of variance in such a set up, one has to extend the realised variance to a (scaled) truncated
realised power variation in order to get rid of the jumps. In fact, this problem is related to making
inference on a process̃σ = (σ̃t)t≥0 when we observe a process̃Y = (Ỹt)t≥0 with Ỹt =

∫ t
0 σ̃s−dL̃s in

discrete time, wherẽL = (L̃t)t≥0 is a purely discontinuous Lévy process. Under the assumption that
the driving Levy process is stable and thatσ̃ andL̃ are independent, this has been studied by Woerner
(2003). Recent work by Jacod & Protter (1998), Jacod (2004, 2007) touches upon more general cases.
However, the problem of making inference onσ̃ whenỸ is driven by an arbitrary purely discontinuous
Lévy processes has – to the best of our knowledge – not been solved yet.

6.2.3 Remarks on model estimation

Next, we want to comment on model estimation. In particular,we are interested in the case when the
stochastic volatility model is given by Model 1 or 2, i.e. when we have a non–Gaussian OU process
which allows for stochastic variance of variance. It turns out that despite the additional source of ran-
domness, Model 1 and Model 2 are still analytically tractable. It is, in particular, possible to compute the
conditional and unconditional moments of the volatility process and also moments of the price process
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explicitly. Since these computations are fairly lengthy, we only present them in the Appendix (Section
A). Based on these results, model parameters can be estimated by using a quasi–maximum likelihood
estimation or the generalised method of moments. An implementation of these estimation techniques
and empirical work will be left for future research.

6.3 Remarks on option pricing in the presence of stochastic variance of variance

Also, we would like to comment briefly on the use of stochasticvariance of variance models for option
pricing. Nicolato & Venardos (2003) studied in detail how option pricing can be done when the stochastic
volatility process is, under the risk neutral probability measure, given by a non–Gaussian Ornstein Uh-
lenbeck process. Can we use similar methods when we account for an additional source of randomness in
BNS type models? One widely used technique for option pricing is the use of transform–based methods
(see e.g. Nicolato & Venardos (2003)), where the price of a contract is expressed in terms of an integral
transform of the Laplace exponent of the underlying price process. We have provided formulas for the
characteristic function in Model 1 for bothV andV + (see Proposition 17 and Proposition 19 in the ap-
pendix), which are essential for deriving the characteristic function of the price process. However, due to
the additional source of randomness in form of stochastic variance of variance, it is difficult to evaluate
these characteristic functions explicitly. For practicalapplications, it might therefore be necessary to use
numerical methods to evaluate option prices in a stochasticvariance of variance set up.

6.3.1 Remarks on the relationship between stochastic variance of variance and leverage type ef-
fects

Finally, we comment on the relationship between stochasticvariance of variance and leverage type ef-
fects. We have seen in Sections 3.2.2 and 3.3.2 that stochastic variance of variance can be used for
introducing leverage type effects into stochastic volatility models in a novel way. In particular, it is
possible to obtain astochasticquadratic covariation between the asset price and the squared volatility
process[Y, σ2], which can be expressed in terms of the stochastic variance of variance and which can
be regarded as a stochastic leverage type effect. Alternatively, such a structure can also be obtained by
randomising the correlation between the driving process ofthe asset price and the driving process of
the stochastic volatility process, as discussed in Veraart& Veraart (2009). From a conceptual point of
view, the concept of stochastic volatility of volatility isclearly different from the concept of stochastic
correlation or stochastic leverage. However, how one can disentangle these two effects in practice is an
interesting question for future research.
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APPENDIX

A Cumulants and moments

Throughout this section we only present the results of the various cumulants and characteristic function-
als and omit the rather lengthy proofs since they consist of straightforward computations.

A.1 Conditional and unconditional moments ofV and V
+

In order to get a better understanding of the new volatility of volatility model, we derive various condi-
tional and unconditional moments of the processesV andU .

A.1.1 Notation

In order to simplify the exposition, we fix the following notation. We denote byκi = κi(X1) the ith
cumulant ofX1 for i ∈ N. In particular, we writeκi := 1

λκi(Lλ) = κi(L1) for a Lévy processL.

Remark In order to ensure that our model (3) is uniquely identified, we have to set the variance (or
the mean) ofL1 to a fixed value. Otherwise one could always multiplyω by a constant and scaleL
approximately, which results in an identification problem.For convenience, we will later setκ2(L1) =
V ar(L1) = 1.

Furthermore, we will writeγ(h) = Cov(ωt, ωt+h) for the covariance function ofω. We will carry out
all computations for a general stationary volatility processω, which is independent of the subordinator
L. However, for some illustrating examples, we will sometimes impose the following condition:
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Assumption (C) on the covariance function ofω: The covariance function ofω is given by

γ(h) = Cov (ωt, ωt+h) = C exp(−αh),

for constantsC,α > 0. In particular, this assumption is satisfied whenω is an Ornstein–Uhlenbeck (OU)
process or a Constant Elasticity of Variance (CEV) process.

A.1.2 Moments ofV conditional on V0

First of all, we derive the mean, variance and autocovariance ofV , conditional on the initial valueV0.

Proposition 9 LetV be a solution to (3). Then the conditional mean, variance andcovariance are given
by

E (Vt|V0) = e−λtV0 + κ1(L1)E(ω0)
(
1 − e−λt

)
,

V ar (Vt|V0) =
1

2
κ2(L1)E

(
ω2

0

) (
1 − e−2λt

)
+ κ2

1(L1)

∫ λt

0
γ(y)

(
e−y − e−2λt+y

)
dy,

Cov ((Vt, Vt+h)|V0) =
1

2
κ2(L2)E

(
ω2

0

) (
1 − e−2λt

)
e−λh

+ κ2
1(L1)e

−λh

∫ λt

0

(
e−y − e−2λt+y

)
γ(y)dy

+ λ2κ2
1(L1)e

−2λt−λh

∫ t+h

t

∫ u

u−t
e2λu−λxγ(λx)dxdu

Cor ((Vt, Vt+h)|V0) = e−λh

(
1 +

1

V ar(Vt|V0)
λ2κ2

1(L1)e
−2λt

∫ t+h

t

∫ u

u−t
e2λu−λxγ(λx)dxdu

)
.

Corollary 10 Under condition (C) the variance and the covariance simplify to

V ar (Vt|V0) =
1

2
κ2(L1)E

(
ω2

0

) (
1 − e−2λt

)

+
κ2

1(L1)C

(1 − α2)

(
1 − α+ (1 + α)e−2λt − 2e−λ(1+α)t

)
,

Cov ((Vt, Vt+h)|V0) = e−λh (V ar (Vt|V0)

+λ2κ2
1(L1)

C

α2 − 1

(
e−λt(1+α) − 1 − e−λ(α(t+h)−h+t) + e−λh(α−1)

))
.

A.1.3 Moments ofV conditional on ω

Next, we compute the moments ofV , when we condition onω. Clearly, if ω was deterministic, these
results would also hold unconditionally.

Proposition 11 The conditional mean, variance and covariance are given by

E (Vt|ω) = λκ1(L1)

∫ t

−∞
e−λ(t−s)ωλsds,

V ar (Vt|ω) = λκ2(L1)e
−2λt

∫ t

−∞
e2λsω2

λsds,

Cov (Vt, Vt+h|ω) = λκ2(L1)e
−λhe−2λt

∫ t

−∞
e2λuω2

λudu,

Cor (Vt, Vt+h|ω) = e−λh.

19



A.1.4 Unconditional moments

Finally, we compute the unconditional mean, variance and covariance of the generalised non-Gaussian
Ornstein Uhlenbeck processV .

Proposition 12 LetV be the stationary solution to (3). Then:

E (Vt) = κ1(L1)E(σ2
0),

V ar (Vt) =
1

2
κ2(L1)E

(
ω2

0

)
+ κ2

1(L1)

∫ ∞

0
e−yγ(y)dy,

Cov (Vt, Vt+h) = e−λh

(
1

2
κ2(L1)E

(
ω2

0

)

+κ2
1(L1)

(∫ ∞

0
e−yγ(y)dy + λ2

∫ 0

−∞

∫ h

0
eλ(u+s)γ(λ|s − u|)dsdu

))
.

Corollary 13 Under assumption (C), the results above simplify to

E (Vt) = κ1(L1)E(ω0),

V ar (Vt) =
1

2
κ2(L1)E

(
ω2

0

)
+
Cκ2

1(L1)

1 + α
,

Cov (Vt, Vt+h) =
1

2
κ2(L1)E

(
ω2

0

)
e−λh +

κ2
1(L1)C

1 − α2

(
e−αλh − αe−λh

)
.

A.1.5 Cumulants of the integrated process

First, we study the mean and the variance, conditional on theinitial valueV0.

Proposition 14 The conditional mean and variance of the integrated processare given by:

E
(
V +

t

∣∣V0

)
=

1

λ

(
1 − e−λt

)
(V0 − κ1(L1)E (ω0)) + κ1(L1)E (ω0) t,

V ar
(
V +

t

∣∣V0

)
= κ2(L1)E

(
ω2

0

) 1

λ2

(
−1

2
e−2λt + 2e−λt + λt− 3

2

)

+ 2κ2
1(L1)

∫ t

0

∫ t

s
e−λ(u−s)

∫ λs

0

(
e−y − e−2λs+y

)
γ(y)dyduds

+ 2λ2κ2
1(L1)

∫ t

0

∫ t

s
e−λ(u+s)

∫ s

u

∫ x

x−u
e2λx−λyγ(λy)dydxduds.

Finally, we compute the mean, variance and covariance of theintegrated process, which are given as
follows.

Proposition 15 Assume thatY satisfies (3). Let

G(h) := G(h, λ, κ1, γ(·)) = Cov(Vt, Vt+h) − 1

2
κ2(L1)E

(
ω2

0

)
e−λh.

Then:

E
(
V +

t

)
= κ1(L1)E (ω0) t,

V ar(V +
t ) = κ2(L1)E

(
ω2

0

) 1

λ2

(
e−λt − 1 + λt

)
+ 2

∫ t

0

∫ t

s
G(u− s)duds,

Cov
(
V +

t , V +
t+h

)
=

1

2
κ2(L1)E

(
ω2

0

) 1

λ2

(
e−λ(t+h) + e−λt − e−λh − 1 + 2λt

)

+

∫ t

0

∫ t+h

t
G(u− s)duds.
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A.2 Characteristic functions and functionals

In this section, we turn our attention to characteristic functionals and functions ofV andV +. Recall that
we are assuming independence ofL andω throughout this section.

A.2.1 Characteristic function of V

We start by computing the characteristic function ofV , conditional on the initial valueV0 and the volatil-
ity processω.

Proposition 16 The conditional characteristic function ofV is given by:

E(exp(iθVt)|V0, ωs, 0 ≤ s ≤ λt) = exp
(
iθe−λtV0

)
exp

(∫ λt

0
ψZ

(
θe−λtesωs

)
ds

)
,

whereψ(·) is the characteristic exponent ofL.

Clearly, the conditional cumulant function is then given by

log (E(exp(iθVt)|V0, ωs, 0 ≤ s ≤ λt)) = iθe−λtV0 +

∫ λt

0
ψZ

(
θe−λtesωs

)
ds.

A.2.2 Characteristic functional

Next, we study more general characteristic functionals. Let f be an arbitrary function. We definef •Vt =∫ t
0 f(s)dVs andf • V =

∫∞
0 f(s)dVs.

Proposition 17 The characteristic functional is given by

E (exp (if • Vt)|V0, ωλs, 0 ≤ s ≤ t)

= exp

(
−iλV0

∫ t

0
f(x)e−λxdx

)
exp

(∫ t

0
ψL

((
f(s) − λ

∫ x−s

0
f(x+ s)e−λxdx

)
ωλs

)
ds

)
,

and when we taket→ ∞ in the formula above, we immediately get that

E (exp (if • V )|V0, ωλs, s ≥ 0)

= exp

(
−iλV0

∫ ∞

0
f(x)e−λxdx

)
exp

(∫ ∞

0
ψL

((
f(s)− λ

∫ ∞

0
f(x+ s)e−λxdx

)
ωλs

)
ds

)
.

So, in particular, forf(x) = θ, we can easily derive the characteristic function ofY .

Corollary 18 From integrating outω, we get

E (exp (if • Vt)|V0) = exp

(
−iλV0

∫ t

0
f(x)e−λxdx

)

E

(
exp

(∫ t

0
ψL

((
f(s) − λ

∫ t−s

0
f(x+ s)e−λxdx

)
ωλs

)
ds

))
.

A.2.3 Characteristic function of V +

Proposition 19 The characteristic function of the integrated process is given by

E

(
exp

(
iθ

∫ t

0
Vudu

)∣∣∣∣V0

)

= φ

(
exp

(
θ

λ
(1 − exp(−λt))

))
E

(
exp

(∫ λt

0
ψL

(
θ

λ

(
1 − e−(λt−s)

)
ωsds

)))
,

whereφ is the characteristic function ofV0.
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A.2.4 Cumulant functional

Let f denote anarbitrary function.

Proposition 20 The conditional cumulant functional is given by

log

(
E

(
exp

(
if •

∫ t

0
Vsds

)∣∣∣∣ (ωs)s≥0 , V0

))

= iV0

∫ ∞

0
f(t)e−λtdt +

∫ ∞

0
ψLλ

(
σ2

λs

∫ ∞

0
f(t+ s)e−λtdt

)
ds.

Unconditionally onω, we have

E

(
exp

(
if •

∫ t

0
Vsds

)∣∣∣∣V0

)

= exp

(
iV0

∫ ∞

0
f(t)e−λtdt

)
exp

(∫ ∞

0
ψLλ

(
ωλs

∫ ∞

0
f(t+ s)e−λtdt

)
ds

)
.

Example Again, in the special casef(t) = θ, we obtain the characteristic function

E

(
exp

(
if •

∫ t

0
Vsds

)∣∣∣∣ (ωs)s≥0 , V0

)
= exp

(
iV0

θ

λ

)
exp

(∫ ∞

0
ψLλ

(
ωλs

θ

λ

)
ds

)
.

A.2.5 Characteristic functionals for Model 2

Just for comparison, we present the corresponding results for Model 2, i.e. the non–Gaussian Ornstein–
Uhlenbeck process which is driven by a time–changed Lévy subordinator. Recall that Model 2 is given
by

dUt = −λUtdt + dLτ(λt),

whereλ > 0 and whereL = (Lt)t≥0 andτ = (τt)t≥0 denote independent (Lévy ) subordinators. Then

Ut = U0e
−λt +

∫ t

0
e−λ(t−s)dLτ(λs) =

∫ t

−∞
e−λ(t−s)dLτ(λs).

Let f denote an arbitrary function. By applying Fubini’s theorem, we obtain

f • Ut =

∫ ∞

0
f(t)dUt = −λ

∫ ∞

0
f(t)Utdt+

∫ ∞

0
f(t)dLτ(λt)

= −λU0

∫ ∞

0
e−λtf(t)dt+ −λ

∫ ∞

0
f(t)

∫ t

0
e−λteλsdLτ(λs)dt +

∫ ∞

0
f(t)dLτ(λt)

= −λU0

∫ ∞

0
e−λtf(t)dt+

∫ ∞

0

(
eλs

∫ ∞

s
e−λtf(t)dt+ f(s)

)
dLτ(λs).

Remark Revuz & Yor (2001, p. 9, Proposition ): LetA be of finite variation andu a continuous
nondecreasing function on[a, b]. For any nonnegative function f on[u(a), u(b)], we have

∫

[a,b]
f(u(s))dA(u(s)) =

∫

[u(a),u(b)]
f(t)dAt.

In the following, we assume thatτ is strictly non-decreasing and continuous, e.g.

τt =

∫ t

0
ξsds.
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Then, the inverse functionτ−1 exists andτ(τ−1(x)) = x andτ−1(τ(x)) = x. Then, we have

f • Ut = −λU0

∫ ∞

0
e−λtf(t)dt+

∫ ∞

0

(
e

1
λ

τ−1(τ(λs))

∫ ∞

1
λ

τ−1(τ(s))
e−λtf(t)dt+ f(

1

λ
τ−1(τ(λs)))

)
dLτ(λs)

= −λU0

∫ ∞

0
e−λtf(t)dt+

∫ ∞

0

(
e

1
λ

τ−1(u)

∫ ∞

1
λ

τ−1(u)
e−λtf(t)dt + f

(
1

λ
τ−1(u)

))
dLu.

Letψ denote the characteristic exponent ofZ. Then we have

E (exp(if • Ut)|U0, τ)

= exp

(
−λiU0

∫ ∞

0
e−λtf(t)dt

)
exp

(∫ ∞

0
ψ

(
eτ

−1(u)

∫ ∞

1
λ

τ−1(u)
e−λtf(t)dt+ f

(
1

λ
τ−1(u)

))
du

)
.

ForU+
t =

∫ t
0 Usds, we get

f • U+ =

∫ ∞

0
f(t)U(t)dt = U0

∫ ∞

0
e−λtf(t)dt +

∫ ∞

0
f(t)

∫ t

0
e−λ(t−s)dLτ(λs)dt

= U0

∫ ∞

0
e−λtf(t)dt+

∫ ∞

0

∫ ∞

s
e−λtf(t)dteλsdLτ(λs)

= U0

∫ ∞

0
e−λtf(t)dt+

∫ ∞

0

∫ ∞

1
λ

τ−1(τ(λs))
e−λtf(t)dteτ

−1(τ(λs))dLτ(λs)

= U0

∫ ∞

0
e−λtf(t)dt+

∫ ∞

0

∫ ∞

1
λ

τ−1(u)
e−λtf(t)dteτ

−1(u)dLu.

Hence, we get

E
(
exp(f • U+)|U0, τ

)

= exp

(
iU0

∫ ∞

0
e−λtf(t)dt

)
exp

(∫ ∞

0
ψ

(∫ ∞

1
λ

τ−1(u)
e−λtf(t)dt

)
eτ

−1(u)du

)
.

A.3 Superposition of generalised OU processes

Finally, we will address the aspect of allowing for long memory in the volatility process. Clearly, also
the generalised non-Gaussian Ornstein–Uhlenbeck processhas an exponentially fast decaying autocor-
relation function and is therefore unable to capture long memory. However, as in Barndorff-Nielsen
& Shephard (2001, 2002), we can consider a superposition ofJ ∈ N generalised Ornstein–Uhlenbeck
processesV J =

(
V J

t

)
t≥0

, which we define by

V J
t =

J∑

i=1

wjV
(j)
t , wj ≥ 0,

J∑

j=1

wj = 1,

dV
(j)
t = −λ(j)V

(j)
t dt+ v

(j)

λ(j)t
dL

(j)

λ(j)t
, j = 1, . . . , J.

for λ(j) > 0; the stochastic volatility processv(j) is assumed to be nonnegative, stationary and indepen-
dent of the Lévy subordinatorsL(j), for j = 1, . . . , J . For simplicity, we will assume that theL(j) are
independent.

Remark Note that if we want to allow for correlation betweenv(j) and the Brownian motionW in
the asset price (1) for at least onej ∈ {1, . . . , J}, we cannot assume that theJ generalised Ornstein–
Uhlenbeck processes in the superposition are independent.This will obviously make computations in
such a framework slightly more difficult than under the independence assumption.
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B Proofs of the results from Section A

B.1 (Conditional) moments ofV

Proof of Proposition 9 The conditional mean in given by

E (Vt|V0) = E

(
V0e

−λt +

∫ t

0
e−λ(t−s)ωλsdLλs

∣∣∣∣V0

)
= e−λtV0 + κ1(L1)E(ω0)

(
1 − e−λt

)
.

Next, we compute the conditional second moment. From Itô’sformula, we obtain

V 2
t − V 2

0 = 2

∫ t

0
Vs−dVs + [V ]t = −2λ

∫ t

0
V 2

s−ds+ 2

∫ t

0
Vs−ωλsdLλs +

∫ t

0
ω2

λsd[L]λs.

So, we deduce that the conditional second moment ofV satisfied the following first order ordinary
differential equation:

d

dt
E
(
V 2

t

∣∣V0

)
= −2λE

(
V 2

t

∣∣V0

)
+ 2λκ1(L1)E (Vtωλt|V0) + λκ2(L2)E

(
ω2

0

)
.

Note here that the joint moment ofV andω is given by

E (Vtωλt|V0) = E

(
ωλt

(
V0e

−λt +

∫ t

0
e−λ(t−s)ωλs−dLλs

)∣∣∣∣V0

)

= V0e
−λt

E (ω0) + λκ1(L1)

∫ t

0
e−λ(t−s)

E (ωλtωλs) ds

= V0e
−λt

E (ω0) + λκ1(L1)

∫ t

0
e−λ(t−s)γ(λ(t− s))ds

+ λκ1(L1) (E (ω0))
2
∫ t

0
e−λ(t−s)ds

= V0e
−λt

E (ω0) + λκ1(L1)

∫ t

0
e−λ(t−s)γ(λ(t− s))ds

+ κ1(L1) (E (ω0))
2
(
1 − e−λt

)
.

Therefore, we obtain the following ODE:

d

dt
E
(
V 2

t

∣∣V0

)
+ 2λE

(
V 2

t

∣∣V0

)
= q(t),

where

q(t) = λκ2(L2)E
(
ω2

0

)
+ 2λκ1(L1)

(
V0e

−λt
E (ω0) + λκ1(L1)

∫ t

0
e−λ(t−s)γ(λ(t− s))ds

+ κ1(L1) (E (ω0))
2
(
1 − e−λt

))
.

From solving the differential equation, we get

E
(
V 2

t

∣∣V0

)
= e−2λt

(
V 2

0 +

∫ t

0
e2λsq(s)ds

)

= e−2λtV 2
0 +

1

2
κ2(L2)E

(
ω2

0

) (
1 − e−2λt

)
+ 2κ1(L1)V0E (ω0)

(
e−λt − e−2λt

)

+ 2λ2κ2
1(L1)

∫ t

0

∫ s

0
e−2λteλ(s+u)γ(λ(s − u))duds

+ κ2
1(L1) (E (ω0))

2
(
1 − 2e−λt + e−2λt

)
.
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Also note that from change of variables withx = s− u, u = s− x, du = −dx and the Fubini theorem,
we get

∫ t

0

∫ s

0
eλ(u+s)γ(λ(s − u))duds =

∫ t

0

∫ s

0
eλ(2s−x)γ(λx)dxds =

∫ t

0

∫ t

x
eλ(2s−x)γ(λx)dsdx

=

∫ t

0
e−λxγ(λx)

∫ t

x
e2λsdsdx =

∫ t

0
e−λxγ(λx)

1

2λ

(
e2λt − e2λx

)
dx

=
1

2λ2

∫ λt

0
γ(y)

(
e2λt−y − ey

)
dy.

Altogether, we obtain the following expression for the conditional variance

V ar (Vt|V0) =
1

2
κ2(L2)E

(
ω2

0

) (
1 − e−2λt

)
+ κ2

1(L1)

∫ λt

0
γ(y)

(
e−y − e−2λt+y

)
dy.

Finally, we compute the conditional covariation. Clearly,

Cov (Vt, Vt+h|V0) = E
(
V 2

t

∣∣V0

)
+ E (Vt(Vt+h − Vt)|V0) − E (Vt|V0) E (Vt+h|V0) .

The only still unknown quantity isE (Vt(Vt+h − Vt)|V0). Note that

Vt(Vt+h − Vt) = VtV0e
−λt
(
e−λh − 1

)
+ Vt

∫ t

0
e−λ(t−s)

(
e−λh − 1

)
ωλsdLλs

+ Vt

∫ t+h

t
e−λ(t+h−s)ωλsdLλs

=
(
e−λh − 1

)
V 2

t + Vt

∫ t+h

t
e−λ(t+h−s)ωλsdLλs.

Hence

Cov (Vt, Vt+h|V0) = e−λh
E
(
V 2

t

∣∣V0

)
+ E

(
Vt

∫ t+h

t
e−λ(t+h−s)ωλsdLλs

∣∣∣∣V0

)

− E (Vt|V0) E (Vt+h|V0) . (8)

So we only have to compute the second term on the right hand side of equation (8).

E

(
Vt

∫ t+h

t
e−λ(t+h−s)ωλsdLλs

∣∣∣∣V0

)

= V0κ1(L1)E (ω0) e
−λt
(
1 − e−λh

)
+ E

(∫ t

0
e−λ(t−u)ωλudLλu

∫ t+h

t
e−λ(t+h−s)ωλsdLλs

∣∣∣∣V0

)

= V0κ1(L1)E (ω0) e
−λt
(
1 − e−λh

)
+ κ2

1(L1) (E (ω0))
2
(
1 − e−λt

)(
1 − e−λh

)

+ λ2κ2
1(L1)

∫ t+h

t

∫ t

0
e−λ(t+h−s)e−λ(t−u)γ(λ(u− s))duds.

Note that
∫ t+h

t

∫ t

0
eλ(u+s)γ(λ(u− s))dsdu =

∫ t+h

t

∫ u

u−t
eλ(2u−x)γ(λx)dxdu.

Altogether, we obtain the following

Cov (Vt, Vt+h|V0)

= e−2λte−λhV 2
0 +

1

2
κ2(L2)E

(
ω2

0

) (
1 − e−2λt

)
e−λh + 2κ1(L1)V0E (ω0)

(
e−λt − e−2λt

)
e−λh
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+ 2λ2κ2
1(L1)

∫ t

0

∫ s

0
e−2λteλ(s+u)γ(λ(s − u))dudse−λh

+ κ2
1(L1) (E (ω0))

2
(
1 − 2e−λt + e−2λt

)
e−λh

+ V0κ1(L1)E (ω0) e
−λt
(
1 − e−λh

)
+ κ2

1(L1) (E (ω0))
2
(
1 − e−λt

)(
1 − e−λh

)

+ λ2κ2
1(L1)

∫ t+h

t

∫ t

0
e−λ(t+h−s)e−λ(t−u)γ(λ(u− s))dsdu

− e−2λt−λhV 2
0 − κ1(L1)E (ω0)V0

(
e−λt

(
1 − e−λ(t+h

)
+ e−λ(t+h)

(
1 − e−λt

))

− κ2
1(L1) (E (ω0))

2
(
1 − e−λt

)(
1 − e−λ(t+h)

)

=
1

2
κ2(L2)E

(
ω2

0

) (
1 − e−2λt

)
e−λh + κ2

1(L1)e
−λh

∫ λt

0

(
e−y − e−2λt+y

)
γ(y)dy

+ λ2κ2
1(L1)e

−2λt−λh

∫ t+h

t

∫ u

u−t
e2λu−λxγ(λx)dxdu.

�

Proof of Proposition 11 We work with the following representation ofV :

Vt =

∫ t

−∞
e−λ(t−s)ωλsdLλs.

Then,

E (Vt|ω) = λκ1(L1)

∫ t

−∞
e−λ(t−s)ωλsds.

Note that forn ∈ N

∆V n
t = V n

t − V n
t− = (∆Vt + Vt−)n − V n

t− =

n∑

k=1

(
n

k

)
(∆Vt)

k V n−k
t− .

From Itô’s formula, we get

V n
t − V n

0 = n

∫ t

0
V n−1

s− dVs +
∑

0<s≤t

(
∆V n

s − nV n−1
s− ∆Vs

)

= −λn
∫ t

0
V n

s−ds+ n

∫ t

0
V n−1

s− ωλsdLλs +
∑

0<s≤t

n∑

k=2

(
n

k

)
(∆Vs)

k V n−k
s−

= −λn
∫ t

0
V n

s−ds+ n

∫ t

0
V n−1

s− ωλsdLλs +

n∑

k=2

(
n

k

) ∑

0<s≤t

(∆Vs)
k V n−k

s− .

Hence

d

dt
E (V n

t |ω) = −λnE (V n
t |ω) + nλκ1(L1)E

(
V n−1

t ωλt

∣∣ω
)

+
n∑

k=2

(
n

k

)
λκk(L1)E

(
ωk

λtV
n−k
t |ω

)
,

E (V n
t |ω) = e−λnt

{
E (V n

0 |ω) +

∫ t

0
g(u)eλnudu

}
,
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where

g(u) = nλκ1(L1)E
(
V n−1

u ωλu

∣∣ω
)

+

n∑

k=2

(
n

k

)
λκk(L1)E

(
ωk

λuV
n−k
u

∣∣∣ω
)

= nλκ1(L1)E
(
V n−1

u

∣∣ω
)
ωλu +

n∑

k=2

(
n

k

)
λκk(L1)E

(
V n−k

u

∣∣∣ω
)
ωk

λu.

So, for the conditional second moment, we get

E
(
V 2

t

∣∣ω
)

= 2λ2κ2
1(L1)e

−2λt

∫ t

−∞
eλuωλu

∫ u

−∞
eλsωλsdsdu+ λκ2(L1)e

−2λt

∫ t

−∞
e2λuω2

λudu.

The conditional variance is hence given by

V ar (Vt|ω) = λκ2(L1)e
−2λt

∫ t

−∞
e2λuω2

λudu.

Finally, we compute the conditional covariance.

E (VtVt+h|ω) = E
(
V 2

t

∣∣ω
)

+ E (Vt(Vt+h − Vt)|ω) .

Note that

Vt+h − Vt =
(
e−λh − 1

) ∫ t

−∞
e−λ(t−s)ωλsdLλs +

∫ t+h

t
e−λ(t+h−s)ωλsdLλs,

hence, we deduce that

E (VtVt+h|ω) = e−λh
E
(
V 2

t

∣∣ω
)

+ E

(∫ t

−∞
e−λ(t−u)ωλudLλu

∫ t+h

t
e−λ(t+h−s)ωλsdLλs

∣∣∣∣ω
)

= λ2κ2
1(L1)e

−λhe−2λt

∫ t

−∞
eλuωλudu

∫ t+h

−∞
eλsωλsds

+ λκ2(L1)e
−λhe−2λt

∫ t

−∞
e2λuω2

λudu.

Hence the covariance is given by

Cov (Vt, Vt+h|ω) = λκ2(L1)e
−λhe−2λt

∫ t

−∞
e2λuω2

λudu.

�

Proof of Proposition 12 The result for the mean follows immediately from Proposition 9 for t → ∞.
Also, we carry out very similar computations as before in order to compute the (co–)variance. For the
variance, we get

E
(
V 2

t

)
= e−2λt

(
E
(
V 2

0

)
+

∫ t

0
e2λu

(
2E (Vu−ωλu)λκ1(L1) + λκ2(L1)E

(
ω2

λu

)))
du.

Note that

E (Vtωλt) = E

(∫ t

−∞
e−λ(t−s)ωλs−ωλtdLλs

)

= λκ1(L1)

∫ t

−∞
e−λ(t−s)

(
γ(λ(t− s)) + (E (ω0))

2
)
ds
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= λκ1(L1)

∫ t

−∞
e−λ(t−s)γ(λ(t− s))ds + κ1(L1) (E (ω0))

2 ,

and

E
(
V 2

0

)
=

1

2
κ2(L1)E

(
ω2

0

)
+ 2λ2κ2

1(L1)

∫ 0

−∞

∫ u

−∞
eλ(s+u)

E (ωλsωλu) duds.

Hence,

E
(
V 2

t

)
= 2λ2κ2

1(L1)e
−2λt

∫ t

−∞

∫ u

−∞
eλ(u+s)γ(λ(u− s))dsdu+ κ2

1(L1) (E (ω0))
2

+
1

2
κ2(L1)E

(
ω2

0

)
,

and

V ar(Vt) =
1

2
κ2(L1)E

(
ω2

0

)
+ 2λ2κ2

1(L1)e
−2λt

∫ t

−∞

∫ u

−∞
eλ(u+s)γ(λ(u− s))dsdu.

Finally, an application of Fubini’s theorem leads to

V ar(Vt) =
1

2
κ2(L1)E

(
ω2

0

)
+ κ2

1(L1)

∫ ∞

0
e−yγ(y)dy.

For the covariance, we have

E (VtVt+h) = E
(
V 2

t

)
+ E (Vt(Vt+h − Vt))

= e−λh
E
(
V 2

t

)
+ e−2λte−λhλ2κ2

1(L1)

∫ t

−∞

∫ t+h

t
eλ(u+s)

E (ωλsωλu) dsdu

=
1

2
κ2(L1)E

(
ω2

0

)
e−λh + κ2

1(L1)
(
E
(
V 2

t

))2

+ λ2κ2
1(L1)e

−λhe−2λt

(
2

∫ t

−∞

∫ u

−∞
eλ(u+s)γ(λ(u− s))dsdu+

∫ t

−∞

∫ t+h

t
eλ(u+s)γ(λ(s − u))dsdu

)

=
1

2
κ2(L1)E

(
ω2

0

)
e−λh + κ2

1(L1)
(
E
(
V 2

t

))2
+ λ2κ2

1(L1)e
−λhe−2λt

∫ t

−∞

∫ t+h

−∞
eλ(u+s)γ(λ|s − u|)dsdu

Hence, we deduce that

Cov(Vt, Vt+h)

= e−λh

(
1

2
κ2(L1)E

(
ω2

0

)
+ λ2κ2

1(L1)e
−2λt

∫ t

−∞

∫ t+h

−∞
eλ(u+s)γ(λ|s − u|)dsdu

)

= e−λh

(
1

2
κ2(L1)E

(
ω2

0

)
+ κ2

1(L1)

(∫ ∞

0
e−yγ(y)dy + λ2e−2λt

∫ t

−∞

∫ t+h

t
eλ(u+s)γ(λ|s− u|)dsdu

))
.

SinceV is stationary, the expression above simplifies to

Cov(Vt, Vt+h)

= e−λh

(
1

2
κ2(L1)E

(
ω2

0

)
+ λ2κ2

1(L1)

∫ 0

−∞

∫ h

−∞
eλ(u+s)γ(λ|s − u|)dsdu

)

= e−λh

(
1

2
κ2(L1)E

(
ω2

0

)
+ κ2

1(L1)

(∫ ∞

0
e−yγ(y)dy + λ2

∫ 0

−∞

∫ h

0
eλ(u+s)γ(λ|s − u|)dsdu

))
.

�
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B.2 (Conditional) moments ofV +

Proof of Proposition 1 Recall that

dVt = −λVtdt + ωλtdLλt, and Vt = V0e
−λt +

∫ t

0
e−λ(t−s)ωλsdLλs.

Therefore we obtain forǫ(t, λ) = 1
λ

(
1 − e−λt

)
:

∫ t

0
dVs = Vt − V0 = −λ

∫ t

0
Vsds+

∫ t

0
ωλsdLλs,

∫ t

0
Vsds =

1

λ

(
V0 − Vt +

∫ t

0
ωλsdLλs

)

=
1

λ

((
1 − e−λt

)
V0 +

∫ t

0

(
1 − e−λ(t−s)

)
ωλsdLλs

)

= ǫ(t, λ)V0 +

∫ t

0
ǫ(t− s, λ)ωλsdLλs.

�

Proof of Proposition 14 The conditional mean in given by

E
(
V +

t

∣∣V0

)
=

1

λ

(
1 − e−λt

)
V0 +

1

λ
E

(∫ t

0

(
1 − e−λ(t−s)

)
ωλsdLλs

)

=
1

λ

(
1 − e−λt

)
V0 + κ1(L1)E (ω0)

1

λ

(
e−λt + λt− 1

)

=
1

λ

(
1 − e−λt

)
(V0 − κ1(L1)E (ω0)) + κ1(L1)E (ω0) t.

Next, we compute the second moment. Note that

(
V +

t

)2
= 2

∫ t

0
V +

s−dV
+
s + [V +]t = 2

∫ t

0
Vs

∫ s

0
Vududs = 2

∫ t

0

∫ s

0
VsVududs.

Hence, the conditional second moment is given by

E

((
V +

t

)2∣∣∣V0

)
=

∫ t

0

∫ s

0
E (VsVu|V0) duds = 2

∫ t

0

∫ t

s
E (VsVu|V0) duds

= 2

∫ t

0

∫ t

s
(Cov (Vs, Vu|V0) + E (Vs|V0) E (Vu|V0)) duds

= κ2(L1)E
(
ω2

0

) ∫ t

0

∫ t

s
e−λ(u−s)

(
1 − e−2λs

)
duds

+ 2κ2
1(L1)

∫ t

0

∫ t

s
e−λ(u−s)

∫ λs

0

(
e−y − e−2λs+y

)
γ(y)dyduds

+ 2λ2κ2
1(L1)

∫ t

0

∫ t

s
e−λ(u+s)

∫ s

u

∫ x

x−u
e2λx−λyγ(λy)dydxduds

+ 2

∫ t

0

∫ t

s
E (Vs|V0) E (Vu|V0) duds

= κ2(L1)E
(
ω2

0

) 1

λ2

(
−1

2
e−2λt + 2e−λt + λt− 3

2

)

+ 2κ2
1(L1)

∫ t

0

∫ t

s
e−λ(u−s)

∫ λs

0

(
e−y − e−2λs+y

)
γ(y)dyduds
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+ 2λ2κ2
1(L1)

∫ t

0

∫ t

s
e−λ(u+s)

∫ s

u

∫ x

x−u
e2λx−λyγ(λy)dydxduds

+ 2

∫ t

0

∫ t

s
E (Vs|V0) E (Vu|V0) duds.

Hence, the conditional variance is given by

V ar
(
V +

t

∣∣V0

)
= κ2(L1)E

(
ω2

0

) 1

λ2

(
−1

2
e−2λt + 2e−λt + λt− 3

2

)

+ 2κ2
1(L1)

∫ t

0

∫ t

s
e−λ(u−s)

∫ λs

0

(
e−y − e−2λs+y

)
γ(y)dyduds

+ 2λ2κ2
1(L1)

∫ t

0

∫ t

s
e−λ(u+s)

∫ s

u

∫ x

x−u
e2λx−λyγ(λy)dydxduds.

�

Proof of Proposition 15 For the mean, we get:

E
(
V +

t

)
=

∫ t

0
E (Vs) ds = κ1(L1)E (ω0) t.

Next, we compute the second moment, by using Fubini’s theorem.

E
(
V +

t

)2
= 2

∫ t

0

∫ t

s
E (VsVu) duds = 2

∫ t

0

∫ t

s

(
Cov(Vs, Vu) + (E (V0))

2
)
duds

= κ2(L1)E
(
ω2

0

) ∫ t

0

∫ t

s
e−λ(u−s)duds + 2

∫ t

0

∫ t

s
G(u − s)duds + (κ1(L1)E (ω0) t)

2

= κ2(L1)E
(
ω2

0

) 1

λ2

(
e−λt − 1 + λt

)
+ 2

∫ t

0

∫ t

s
G(u− s)duds+ (κ1(L1)E (ω0) t)

2 ,

V ar
(
V +

t

)
= κ2(L1)E

(
ω2

0

) 1

λ2

(
e−λt − 1 + λt

)
+ 2

∫ t

0

∫ t

s
G(u− s)duds.

Finally, we compute the covariance.

Cov
(
V +

t , V
+
t+h

)

= E
(
V +

t V
+
t+h

)
− E

(
V +

t

)
E
(
V +

t+h

)

= E

(∫ t

0
Vsds

∫ t+h

0
Vudu

)
− (κ1(L1)E (ω0))

2 (t2 + th)

= E
(
V +

t

)2
+

∫ t

0

∫ t+h

t
E (VsVu) duds− (κ1(L1)E (ω0))

2 (t2 + th)

= κ2(L1)E
(
ω2

0

) 1

λ2

(
e−λt − 1 + λt

)
+ 2

∫ t

0

∫ t

s
G(u− s)duds − (κ1(L1)E (ω0))

2 th

+

∫ t

0

∫ t+h

t

(
1

2
κ2(L1)E

(
ω2

0

)
e−λ(u−s) +G(u− s) + (κ1(L1)E (ω0))

2

)
duds,

=
1

2
κ2(L1)E

(
ω2

0

) 1

λ2

(
e−λ(t+h) + e−λt − e−λh − 1 + 2λt

)
+

∫ t

0

∫ t+h

t
G(u− s)duds.

�
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B.3 Characteristic functionals

Proof or Proposition 16

E(exp(iθVt)|V0, ωs, 0 ≤ s ≤ λt)

= exp
(
iθe−λtV0

)
E

(
exp

(
iθe−λt

∫ λt

0
esωsdLs

)∣∣∣∣ |V0, ωs, 0 ≤ s ≤ λt)

)

= exp
(
iθe−λtV0

)
exp

(∫ λt

0
ψL

(
θe−λtesωs

)
ds

)
.

�

Proof of Proposition 17 From Fubini’s theorem, we get:

f • VT =

∫ T

0
f(t)dVt = −λ

∫ T

0
f(t)Vtdt +

∫ T

0
f(t)ωλtdLλt

= −λ
∫ T

0
f(t)

(
V0e

−λt +

∫ t

0
e−λ(t−s)ωλsdLλs

)
dt +

∫ T

0
f(t)ωλtdLλt

= −λV0

∫ T

0
f(t)e−λtdt − λ

∫ T

0

(∫ T

s
f(t)e−λ(t−s)dt

)
ωλsdLλs +

∫ T

0
f(t)ωλtdLλt

= −λV0

∫ T

0
f(t)e−λtdt − λ

∫ T

0

(∫ T−s

0
f(t+ s)e−λtdt

)
ωλsdLλs +

∫ T

0
f(t)ωλtdLλt

= −λV0

∫ T

0
f(t)e−λtdt − λ

∫ T

0

(
− 1

λ
f(s) +

(∫ T−s

0
f(t+ s)e−λtdt

))
ωλsdLλs.

Hence, the characteristic functional is given by

E (exp (if • VT )|V0, ωλs, 0 ≤ s ≤ T )

= E

(
exp

(
i

∫ T

0
f(t)dVt

)∣∣∣∣V0, ωλs, 0 ≤ s ≤ T

)

= exp

(
−iλV0

∫ T

0
f(t)e−λtdt

)
·

E

(
exp

(
−iλ

∫ T

0

(
− 1

λ
f(s) +

(∫ T−s

0
f(t+ s)e−λtdt

))
ωλsdLλs

)∣∣∣∣ωλs, 0 ≤ s ≤ t

)

= exp

(
−iλV0

∫ T

0
f(t)e−λtdt

)
exp

(∫ T

0
ψL

((
f(s) − λ

∫ T−s

0
f(t+ s)e−λtdt

)
ωλs

)
ds

)
.

�

Proof of Proposition 19 Note that we can write

∫ t

0
Vsds =

(
1 − e−λt

)
V0

λ
+

∫ λt

0

(
1 − e−(λt−s)

)

λ
ωsdLs

E

(
exp

(
iθ

∫ t

0
Vudu

)∣∣∣∣V0

)

= exp

(
iθV0

λ
(1 − exp(−λt))

)
E

(
exp

(
iθ

λ

∫ λt

0

(
1 − e−(λt−s)

)
ωsdLs

))
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= exp

(
iθV0

λ
(1 − exp(−λt))

)
E

(
E

(
exp

(
iθ

λ

∫ λt

0

(
1 − e−(λt−s)

)
ωsdLs

)∣∣∣∣ωs, 0 ≤ s ≤ λt

))

= exp

(
iθV0

λ
(1 − exp(−λt))

)
E

(
exp

(∫ λt

0
ψL

(
θ

λ

(
1 − e−(λt−s)

)
ωs

)
ds

))
,

whereψ(u) is the characteristic exponent ofLλ. So, we get

E

(
exp

(
iθ

∫ t

0
Vudu

)∣∣∣∣V0

)

= φ

(
exp

(
θ

λ
(1 − exp(−λt))

))
E

(
exp

(∫ λt

0
ψL

(
θ

λ

(
1 − e−(λt−s)

)
ωsds

)))
,

whereφ is the characteristic function ofV0.
�

Proof of Proposition 20 We obtain from Fubini’s theorem:

f • V +
t = f •

∫ t

0
Vsds =

∫ ∞

0
f(t)Vtdt =

∫ ∞

0
f(t)

(
V0e

−λt +

∫ t

0
e−λ(t−s)ωλsdLλs

)
dt

= V0

∫ ∞

0
f(t)e−λtdt+

∫ ∞

0
f(t)e−λt

∫ t

0
eλsωλsdLλsdt

= V0

∫ ∞

0
f(t)e−λtdt+

∫ ∞

0

(∫ ∞

s
f(t)e−λ(t−s)dt

)
ωλsdLλs

= V0

∫ ∞

0
f(t)e−λtdt+

∫ ∞

0

(∫ ∞

0
f(t+ s)e−λtdt

)
ωλsdLλs.

Therefore, the conditional characteristic functional of the integrated process is given by

E

(
exp

(
if •

∫ t

0
Vsds

)∣∣∣∣ (ωs)s≥0 , V0

)

= exp

(
iV0

∫ ∞

0
f(t)e−λtdt

)
·

E

(
exp

(
i

∫ ∞

0

(∫ ∞

0
f(t+ s)e−λtdt

)
ωλsdLλs

)∣∣∣∣ (ωs)s≥0 , V0

)

= exp

(
iV0

∫ ∞

0
f(t)e−λtdt

)
exp

(∫ ∞

0
ψLλ

(
ωλs

∫ ∞

0
f(t+ s)e−λtdt

)
ds

)
.

So, the conditional cumulant functional is given by

log

(
E

(
exp

(
if •

∫ t

0
Vsds

)∣∣∣∣ (ωs)s≥0 , V0

))

= iV0

∫ ∞

0
f(t)e−λtdt+

∫ ∞

0
ψLλ

(
ωλs

∫ ∞

0
f(t+ s)e−λtdt

)
ds.

�

C Proof of the consistency

Proof of Proposition 8: We know from Mancini (2006), Jacod (2008) that the truncatedrealised vari-
ance is a consistent estimator of integrated variance:

⌊t/δn⌋∑

i=1

(δn
i Y )2 I{|δn

i Y |≤cδǫ
n}

ucp→
∫ t

0
σ2

sds, asn→ ∞,
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for c > 0 andǫ ∈ (0, 1/2), where the convergence is uniform on compacts in probability (ucp). Then we
chooseKn such thatKn → ∞ andKnδn → 0 asn→ ∞ and

σ̂2 (δn)i∆n
=

1

Knδn

⌊i∆n/δn⌋∑

j=⌊i∆n/δn⌋−Kn

(δn
i Y )2 I{|δn

i Y |≤cδǫ
n}
.

We know from Mancini (2006), Aı̈t-Sahalia & Jacod (2009) that the above locally averaged truncated
realised variance is a consistent estimator of the spot variance. In fact, it approximates the integral

1
Knδn

∫ s
s−Knδn

σ2
xdx. And we know that fors ∈ [0, T ],

1

Knδn

∫ s

s−Knδn

σ2
xdx

a.s.→ σ2
s , asn→ ∞. (9)

Clearly, the rate at which the convergence in (9) happens depends crucially on the degree of smoothness
of the stochastic varianceσ2.

We obtain from standard arguments thatRVt

(
σ2,∆n

)
→ [σ2]t, asn → ∞, where the convergence

is uniformly on compacts in probability. Hence, it only remains to show that

Nn
t := RVt

(
σ̂2(δn),∆n

)
−RVt

(
σ2,∆n

)
=

⌊t/∆n⌋∑

i=1

((
∆n

i σ̂
2(δn)

)2 −
(
∆n

i σ
2
)2)

converges to 0 in probability asn→ ∞. For all i ∈ {0, 1, . . . , ⌊t/∆n⌋}, we can write
((

∆n
i σ̂

2(δn)
)2 −

(
∆n

i σ
2
)2)

=
(
∆n

i σ̂
2(δn) − ∆n

i σ
2
) (

∆n
i σ̂

2(δn) + ∆n
i σ

2
)
.

The first term in this product satisfies

An
i := ∆n

i σ̂
2(δn) − ∆n

i σ
2 =

(
σ̂2(δn)i∆n − σ2

i∆n

)
−
(
σ̂2(δn)(i−1)∆n

− σ2
(i−1)∆n

)
,

and the second term is given by

Bn
i := ∆n

i σ̂
2(δn) + ∆n

i σ
2 = 2∆n

i σ
2 +An

i ,

andNn
t =

∑⌊t/∆n⌋
i=1 An

i B
n
i . Clearly,

|Nn
t | ≤ sup

i∈{0,1,...,⌊t/∆n⌋}
|Bn

i |
⌊t/∆n⌋∑

i=1

|An
i | ≤ sup

i∈{0,1,...,⌊t/∆n⌋}
|Bn

i |
⌊
t

∆n

⌋
sup

i∈{0,1,...,⌊t/∆n⌋}
|An

i | .

Now, we proceed by proving that the following two equalitieshold:

sup
i∈{0,1,...,⌊t/∆n⌋}

1

∆n
|An

i | = oP (1), (10)

sup
i∈{0,1,...,⌊t/∆n⌋}

|Bn
i | = OP (1), (11)

which implies thatNn
t = oP (1). Actually, sinceBn

i = 2∆n
i σ

2 + An
i andσ is càdlàg, (11) follows

immediately from (10). So, it remains to prove that (10) holds. Clearly, we can write

|An
i | ≤

∣∣σ̂2(δn)i∆n − σ2
i∆n

∣∣+
∣∣∣σ̂2(δn)(i−1)∆n

− σ2
(i−1)∆n

∣∣∣ ,

which are terms of the same stochastic order. So, it will be sufficient to prove the uniform convergence
for just one of those terms. Note that for anyi ∈ {0, 1, . . . , ⌊t/∆n⌋}, we have

σ̂2(δn)i∆n − σ2
i∆n

=

(
σ̂2(δn)i∆n − 1

Knδn

∫ i∆n

i∆n−Knδn

σ2
xdx

)
+

(
1

Knδn

∫ i∆n

i∆n−Knδn

σ2
xdx− σ2

i∆n

)
.
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From Jacod (2008, Theorem 2.4 (iii) and Theorem 2.10), we candeduce that

sup
i∈{0,1,...,⌊t/∆n⌋}

(
σ̂2(δn)i∆n − 1

Knδn

∫ i∆n

i∆n−Knδn

σ2
xdx

)
= OP

(
1√
Kn

)
,

if Jacod (2008, Assumption (L-s)) holds fors ≤ 4ǫ−1
2ǫ . So basically, that means that the Blumenthal–

Getoor index ofJ has to be strictly smaller than4ǫ−1
2ǫ , whereǫ is chosen as in Definition 7. For the

second term, we get

sup
i∈{0,...,⌊t/∆n⌋}

∣∣∣∣
1

Knδn

∫ i∆n

i∆n−Knδn

σ2
xdx− σ2

i∆n

∣∣∣∣ ≤ sup
i∈{0,...,⌊t/∆n⌋}

sup
{x∈[i∆n−Knδn,i∆n]}

∣∣σ2
x − σ2

i∆n

∣∣ =: An
t .

In order for the central limit theorem to hold, we need to derive restrictions onB andC to ensure that
√
KnAn

t = oa.s.(αn), (12)

for a sequence(αn)n∈N which converges to 0 asn→ ∞. Then, we have

sup
i∈{0,1,...,⌊t/δn⌋}

∣∣∣∣σ̂
2(δn)i∆n − 1

Knδn

∫ i∆n

i∆n−Knδn

σ2
xdx

∣∣∣∣ = OP

(
1√
Kn

)
,

and

sup
i∈{0,...,⌊t/∆n⌋}

sup
x∈[i∆n−Knδn,i∆n]

∣∣σ2
x − σ2

i∆n

∣∣ = oa.s.

(
αn√
Kn

)
.

Finally, we have to impose further restrictions on the parametersB,C to ensure that both

1

∆n
OP

(
1√
Kn

)
= o(1), (13)

and

and
1

∆n
An

t =
1

∆n
oa.s.

(
αn√
Kn

)
= o(1). (14)

Remark Note that condition (14) is weaker than condition (12), since
√
Kn grows faster to∞ than 1

∆n
:

√
Kn

∆n
= O

(
δB/2−C
n

)
= ∞, for

B

2
< C,

which is always satisfied forC > 0 andB < 0. Hence, we will only impose conditions (12), (13) in the
following.

Now, we study the cases where the volatility model satisfies assumption (V1) or assumption (V2) sepa-
rately.

Case 1:σ2 satisfies assumption (V1)

Now, we assume (V1). I.e.dσ2
t = btdt+γtdBt, for càdlàg, square–integrable processesb = (bt)t≥0, (γt)t≥0

and a standard Brownian motionB = (Bt)t≥0. (If we assume thatσ rather thanσ2 is a Brownian semi-
martingale, the proof is analogous after applying the mean value theorem.)

Let κ > 0 denote a constant, which might change from line to line throughout the proof. Sinceb and
γ are bounded, we deduce from Lévy’s modulus of continuity and the Dubins-Schwarz theorem (Protter
(2004)) for a new Brownian motioñB = (B̃t)t≥0 that

sup
i∈{1,...,⌊t/∆n⌋}

sup
x∈[i∆n−Knδn,i∆n]

∣∣σ2
x − σ2

i∆n

∣∣
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= sup
i∈{1,...,⌊t/∆n⌋}

sup
x∈[i∆n−Knδn,i∆n]

∣∣∣∣
∫ i∆n

x
bsds +

∫ i∆n

x
γsdBs

∣∣∣∣

= sup
i∈{1,...,⌊t/∆n⌋}

sup
x∈[i∆n−Knδn,i∆n]

∣∣∣∣
∫ i∆n

x
bsds + B̃∫ i∆n

x γ2
s ds

∣∣∣∣
L
≤ sup

i∈{1,...,⌊t/∆n⌋}
sup

x∈[i∆n−Knδn,i∆n]
|bx|Knδn + κ sup

i∈{1,...,⌊t/∆n⌋}
sup

x∈[i∆n−Knδn,i∆n]

∣∣∣B̃i∆n−x

∣∣∣

= oa.s.(Knδn) +Oa.s.

(√
2(Knδn) log((Knδn)−1)

)
.

In order to simplify this further, we use∆n = O(δC
n ) for someC > 0 andKn = O(δB

n ) for some

−1 < B < 0. Furthermore, note thatlimx→0

√
x log(1/x)

xξ = 0 if and only if 0 < ξ < 1/2. So, we
formulate the following sufficient conditions for our consistency result:

(i) Condition (12) is satisfied if
√
Kn

√
Knδn log((Knδn)−1) = o(1), which is equivalent to

√
δB+1
n log(δ

−(B+1)
n )

(
δB+1
n

)−B/2
B+1

= o(1) ⇔ −B/2
B + 1

<
1

2
⇔ B > −1

2
,

and if
√
KnKnδn = o(1), ⇔ δB/2+B+1

n = o(1), ⇔ 3/2B + 1 > 0,⇔ B > −2/3.

(ii) Condition (13) is satisfied if

1

∆n

√
Kn

= o(1) ⇔ δ−(C+B/2)
n = o(1) ⇔ −(C +B/2) > 0 ⇔ C < −B

2
,

and if

Knδn
∆n

= o(1), ⇔ δB+1−C
n = o(1), ⇔ B + 1 − C > 0,⇔ C < B + 1.

So, altogether, we get the following restrictions onB andC:

−1

2
< B < 0, and 0 < C < −B

2
.

Case 2:σ2 satisfies assumption (V2)

Now, we turn our attention to jump driven stochastic volatility models. Clearly, the degree of smoothness
of σ2 in the spot volatility estimation will not be the same as in the Brownian motion case. So we cannot
work with Lévy ’s modulus of continuity. We assume that (V2)holds, i.e.dσ2

t = btdt + γtdLt, for
càdlàg processesb = (bt)t≥0, (γt)t≥0 and a Lévy subordinatorL = (Lt)t≥0 possibly with drift, which

we denote bỹb, and with Lévy measureν. We know from Pruitt (1981), thatlim supt→0
sup0≤s≤t |Ls|

t1/α = 0
a.s. forα > β, whereβ = inf{α : lim supx→0 x

αh(x) = 0}, and

h(x) =

∫

{|y|>x}
ydν(y) +

1

x2

∫

{|y|≤x}
y2dν(y) +

1

x

∣∣∣∣∣b̃+

∫

{|y|≤x}

yy2

1 + y2
−
∫

{|y|>x}

y

1 + y2
dν(y)

∣∣∣∣∣ .

So, β is essentially the Blumenthal–Getoor index ofL. SinceL is a subordinator, its increments are
always positive and, hence, the following inequality holds.

sup
i∈{1,...,⌊t/∆n⌋}

sup
x∈[i∆n−Knδn,i∆n]

∣∣σ2
x − σ2

i∆n

∣∣ .
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≤ sup
i∈{1,...,⌊t/∆n⌋}

sup
x∈[i∆n−Knδn,i∆n]

|bx|Knδn + sup
x∈[0,t]

|γx| sup
i∈{1,...,⌊t/∆n⌋}

sup
x∈[i∆n−Knδn,i∆n]

|Li∆n − Lx|

= oa.s.(Knδn) + oa.s.

(
(Knδn)1/α

)
, for α > β.

So, we formulate the following sufficient conditions for ourconsistency result:

(i) Condition (12) is satisfied if
√
Kn (Knδn)1/α = o(1) which is equivalent to

δB/2+B/α+1/α
n = o(1) ⇔ B/2 +B/α+ 1/α > 0 ⇔ B > − 2

2 + α
,

and if
√
Kn (Knδn) = o(1), ⇔ δB/2+(B+1)

n = o(1), ⇔ B > −2/3.

(ii) Condition (13) is satisfied if

1

∆n

√
Kn

= o(1) ⇔ δ−(C+B/2)
n = o(1) ⇔ −(C +B/2) > 0 ⇔ C < −B

2
,

and if

Knδn
∆n

= o(1),⇔ δB+1−C
n = o(1),⇔ C < B + 1.

So, if the volatility process satisfies assumption (V2), we assume forα > max {1, β} that

− 2

2 + α
< B < 0, and 0 < C < −B

2
.
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