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Abstract

In this paper, we focus on the building of an invariant distribution

function associated to a non-stationary sample. After discussing some

specific problems encountered by non-stationarity inside samples like

the "spurious" long memory effect, we build a sequence of station-

ary processes permitting to define the concept of meta-distribution for

a given non-stationary sample. We use this new approach to discuss

some interesting econometric issues in a non-stationary setting, namely

forecasting and risk management strategy.
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- Cumulants - Estimation. theory.

JEL classification: C32, C51, G12

1 Introduction

During decades time series modelling has focused on stationary linear mod-
els, then on stationary non-linear models. Recently the question of non-
stationarity has arised, and a sudden interest focuses on the modelling of
non-stationary and/or non-linear time series.

∗PSE, Centre d’Economie de la Sorbonne, University Paris1 Panthéon-Sorbonne, MSE,
106 bd de l’Hôpital, 75013 Paris, France. Email: dguegan@univ-paris1.fr, Tel: +33 1 40
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An interesting type of questions has emerged when it has been observed that
stationary non-linear processes exhibited empirical autocorrelation function
with a hyperbolic decreasing rate, although they are characterized by a theo-
retical short memory behavior (exponential decreasing of the autocorrelation
function). This constat has highlighted the fact that the behavior of some
statistical tools under non-stationarity must be questioned. Indeed, the sta-
tistical tools we are using are meaningful only under certain assumptions,
the most crucial one being the stationarity. Hence, the question arises what
the statistical tools are telling us when used on non-stationary data.

Therefore, it has appeared that modelling data sets need to adress almost two
major questions. Is the underlying process stationary and do we use linear
or non-linear modellings? The order in which these questions are adressed is
essential. Indeed, answering to the second question, need before establishing
stationarity.

Thus, defining a correct framework in which we can analyse data sets is fun-
damental before chosing the class of models we will use. First, the nature of
asset prices behavior is necessary to get robust forecasts. Second the knowl-
edge of the probabilistic properties of these asset prices is fundamental to the
formulation of the concept of risks: indeed the measurement of risks depends
heavily on properties of the empirical distribution such as stationarity, long
tailedness, finiteness of the second and higher order moments. Third, various
tests for the empirical validity of financial models and the application of these
models rely on the robustness of statistical tools which can be deficient in
specific context. Fourth, several important pricing models for stock options
and other similar financial instruments usually require explicit estimates of
stock return variances. The usefulness of these models depends largely on the
adequacy and the stationarity of almost the second order moments. Indeed,
to model real data sets using classical stochastic processes imposes that the
data sets verify almost the second order stationarity condition.

We propose here a new methodology considering that it is not always possi-
ble to remove the non-stationarity observed in a data set. We will also show
how different types of non-stationary corrupt the behavior of statistical tools
making confusion in the modelling analysis.

Notion of stationarity includes the notion of weak and strict stationarity.
In most theoretical results (asymptotic theory), we need the process (Yt)t

strictly stationary which means that it is characterized by an invariant mea-
sure (the moments do not depend on time t). Thereby, the stochastic process
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(Yt)t whose a representation can be, ∀t Yt = f(Yt−1, ...)+ εt, has an invariant
measure which is linked to the invariant measure of the noise (εt)t. In case
of a Gaussian noise and f linear then the distribution function of (Yt)t is
Gaussian; saying that it is invariant means that the mean and the variance
are finite and constant (Gaussian distributions are characterized by only the
two first moments).

Since the eighties’, several non-linear models have been introduced and exten-
sively investigated: the SETAR, EXPAR, Bilinear, related GARCH, Markov
switching, breaks and jumps models, among others. All the theory which
concerns these models (existence of a solution, inference, etc.) assumes that
they are (strictly) stationary; the theory is based on stationary unconditional
moments and then on the existence of an invariant measure. We can note
that for nearly all these models this invariant measure is unknown. For in-
stance for GARCH models it is the conditional law which is known as soon
as the residuals distribution is known, and not the unconditional law.

The interest for non stationarity is now a long tradition inside the econome-
trician community. It has been developed around the theory of I(d) processes
through extended Dickey Fuller tests. Recently interesting works have been
published assuming under the alternatives non-linear models. A limitation
of this approach is due to the fact that the specification under the alterna-
tive generally concerns one non-linear feature, due to the complexity of the
testing method. More, to obtain theoretical power for these tests is diffi-
cult, and often done under specific assumptions, Guégan and Pham (1992),
Terasvirta (2003). In another hand, this approach privileges existence of
polynomial trends, which can be interesting to study some economic data
sets, but which is not the more important feature observed in financial data
sets, Bec, Ben Salem and Carrasco (2004), and references therein. Our ap-
proach does not follow the same methodology (testing the non stationarity)
and could be considered as a alternative as hers.

When we observe, some financial data sets given by a sample (Y1, · · · , YT ),
a certain number of features characterize these data like the existence of
clusters, explosions, speudo-seasonalities, existence of several states. These
features are the origin of the non-invariant property of the distribution func-
tion associated to the underlying process, and can provoke misspecification.
Indeed, most of these characteristics make the first four moments of the pro-
cess (Yt)t depending on time. Thus, we are interested to analyse the behavior
of these empirical moments in presence of non stationarity. Then, we will
build sequences of intervals on which these sample moments do not evolve
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with time, in order to define a measure, with invariant properties, permitting
to characterize the whole sample.

The problem of misspecification is crucial in the modelling of time series be-
cause it can be responsable of a lot of disasters if the predictions are false or if
the risks associated with this modelling are underestimated for instance. An
interesting problem has been raised with the famous example of "spurious"
long memory behavior detected in some data sets. We comment this fact now.

A fundamental tool to analyse the time series is the autocovariance function.
In many cases this tool has shown its limitation. For instance, we can use
it to determine the orders of the autoregressive and moving average parts
of linear models, Brockwell and Davis (1988), but this identification proce-
dure fails as soon as we extend the class to the non-linear models: indeed
the autocovariance function of autoregressive models can be similar to the
one of bilinear or Markov switching processes, Granger and Andersen (1978),
Guégan (1987), and Poskitt (1996), and then misspecification arises.

Another interesting point is the following. Many models are known to be
short memory under stationarity conditions: they are the ARMA, GARCH,
Markov switching, Bilinear, Stop break models, among others. These mod-
els, under stationary conditions have a theoretical autocovariance function
γY (t, h) = cov(Yt, Yt+h) which decreases towards zero with an exponential
rate. In another hand, there exists long memory processes including FARMA,
GARMA, FIEGARCH and GIGARCH models whose autocorrelation func-
tion decreases with an hyperbolic rate towards zero. Thus, to discriminate
between these two classes of models a natural tool is the autocovariance
function, and observing a data set (Y1, · · · , YT ), we compute the sample au-
tocovariance function

γ̂Y (h) =
1

T

T−h
∑

t=1

(Yt − Y )(Yt+h − Y ),

where T is the sample size, and Y is the sample mean. We know that the the-
ory concerning stochastic stationary process lies on γY (t, h), assuming that
this statistic does not depend on time t. Now, if the underlying process is
non-stationary, then γY (t, h) and γ̂Y (h) are different concepts, and confusion
arises.

So, recent empirical studies have shown that stochastic processes - which
exhibit an exponential decreasing for γY (t, h) - exhibit a sample autocorrela-
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tion function γ̃Y (h) which has not this property, and the notion of "spurious"
long memory appears. In the previous paper the author (Guégan (2005), and
references therein) investigates this fact in details, exhibing a lot of examples,
discussing different kinds of long memory behaviors and raising many ques-
tions on this purpose. The objective of this paper is to answer few questions.

In the theory all the results are obtained assuming the existence of an in-
variant measure, and it appears that this property fails for specific samples
characterized by particular features. We will analyse in more details this
phenomenon, extending the discussion introduced in two interesting papers,
Mikosch and Starica (2004) and Starica and Granger (2005). We will see that
non-stationarity inside samples create distorsions for the sample autocovari-
ance function, and we will propose another way to avoid the misspecification
coming from this distorsion, considering a local processing for the data. Thus,
another working framework is proposed based on a local methodology.

The local approach that we propose consists in building "homogeneity" in-
tervals (we use the terminology introduced by Starica and Granger (2005)),
in which the data are stationary up to the first four moments. This means
that inside these intervals, the data are characterized by a mean, a vari-
ance, a skewness and a kurtosis which do not depend on time t. In practice,
these first four moments are important and permit to characterize most of
the features of the financial data sets. Then, we will use this sequence of
"homogeneity" intervals, on which processes are characterized by approxi-
matively invariant measure (up to order four), to build a new distribution
function for the whole sample, that we called meta-distribution, based on
the copula’s concept, Nielsen (1999). Thank to this new flexible approach,
we discuss new methodologies to do forecast, and risks management strategy.

Our plan is the following. In section two we discuss the main features
observed inside financial data sets which lead to different kinds of non-
stationarity in samples. In Section three, we specify the behavior of the
sample autocovariance function in presence of non-stationarity in mean or in
volatility. We exhibit examples. Section four is devoted to the construction
of "homogeneity" intervals; it permits to provide the new concept of meta-
distribution and develop its interest for several topics. Section five concludes.
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2 Non-stationary stylized facts

In this Section, we analyse some stylized facts observed in financial data sets
which can provoke non-stationarity. We focus on structural behaviors like
volatility, jumps, explosions and seasonality, and also on specific transfor-
mations like concatenation, aggregation or distortion which are also at the
origin of non-stationarity.

Indeed, the stationary conditions are essential to guarantee the asymptotic
properties of the sample mean, variance and covariances and are different
for each of these estimators. In a non-linear setting, ergodicity is necessary,
it requires that observations sufficiently far apart should be almost uncor-
related. Under all these conditions, the process is globally stationary: this
means that this stationary property remains true on the whole sample. In all
cases this means that inference can be done for such processes and that the
asymptotic theory works. In particular forecasts are available and confidence
intervals can be provided. Thus, it appears necessary that, in practice these
conditions are verified in order to apply the theory developed in that context.

Many features imply that the property of global stationarity fails. Indeed,
existence of volatility imposes that the variance depends on time. In presence
of seasonality the covariance depends on time. The existence of states induces
changes in mean or in variance all along the trajectory. Concatenated or
distorded models cannot have the same probability distribution function on
the whole period. Aggregation is a source of specific features. For some
of the previous situations the higher order moments do not exist implying
that the autocovariance function is not defined. Thus, we need - in terms of
modelling - to specify the framework in which we are going to work. More
precisely:

• Existence of volatility characterized by clusters provokes important
changes around the mean price that we model. A famous way to model
it is to use conditional properties through the ARCH model (Engle,
1982), and related extensions like for instance the APARCH model
introduced by Ding and Granger (1996), using any power of the con-
ditional variance permitting to introduce another kind of non-linearity
inside the modelling. Using related GARCH modellings means that
we work with a conditional approach, but often the observations ex-
hibit non-stationarity in the non-conditional variance which affects the
invariance of the global distribution function.

• A strong cyclical component inside financial data (monthly for in-
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stance or hourly for high frequency data) produces evidence of non-
stationarity, which is not always removed by transformations. Presence
of seasonals indicate that there exist significant correlations between
random variables at present t, and in the past or in the future. This
correlation creates dependence in each subsequence, which implies non-
stationarity on the whole sample. To take into account this feature can
be difficult mainly when the seasonals are not fixed. An approach is
proposed using the k-factor Gegenbauer processes, Gray, Zhang and
Woodward (1989), Guégan (2001). In that case it is the long memory
behavior which is privileged more than the seasonals, and attention
need to be done to the possibly remaining seasonals.

• Specific shocks can produce jumps, and then create different regimes
inside data sets, in means or in variance. These changes affect the in-
variance property of the distribution function of the underlying process.
These behaviors can be modelled in part through Markov switching
models, SETAR or STAR processes, Stop-Break or sign processes. The
stationarity of these models is questionable, and generally we do not
pay attention of the unconditional distribution of these models.

• Distorsion effects are characterized by explosions that cannot be re-
moved from any transformation. Explosions imply that some higher
order moments of the distribution function do not exist. Models with
coefficients close to the non stationary domain can also create this kind
of effect. In that case the global distribution function of the process
loses its invariant property. The juxtaposition of different stationary
linear or non linear processes creates non-stationarity by building. Fi-
nally, to aggregate independent or weakly dependent random variables
can create specific dependence and also non-stationarities, Robinson
(1978) and Granger (1980).

In order to understand the impact of these specific features in a sample, we
focus now on the study of the sample autocovariance function when non-
stationarity is detected in mean or in variance.

3 Sample autocovariance behavior in presence

of non-stationarity

In this section we highlight that γY (t, h) and γ̃Y (h) are different concepts
in presence of non-stationary. We assume that we observe a non-stationary
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sample (Y1, · · · , YT ), corresponding to an underlying process (Yt)t. We con-
sider the sample ACF in situations when structural breaks occur for instance.
The sample autocovariance function is equal to:

γ̃Y (h) =
1

T

T−h
∑

t=1

(Yt − Y )(Yt+h − Y ),

where Y is the sample size. We divide the previous sample in r subsamples
consisting each of distinct stationary ergodic processes with finite second or-
der moments. We denote pj ∈ R+, j = 1, · · · r such that p1+p2+ · · ·+pr = 1.
Here pj is the proportion of observations from the jth subsample in the
full sample. If we define now qj = p1 + p2 + · · · + pj, j = 1, · · · r, then

the whole sample is written as: Y = ((Y
(1)
1 , · · · , Y

(1)
Tq1

), (Y
(2)
Tq1+1, · · · , Y

(2)
Tq2

),

· · · , (Y
(r)
Tqr−1+1, · · · , Y

(r)
Tqr

)), Tqr = T and in the following we denote Y (i) =

(Y
(i)
1 , · · · , Y

(i)
Tqi

), i = 1, · · · r. Thus, the i subsamples come from distinct sta-
tionary ergodic models with finite second moment, and then the resulting
sample is not stationary. Now, to get γ̃Y (h), we compute the sample auto-
covariance on each subsample and then sum it:

Proposition 3.1 Let be r subsamples Y
(i)
1 , · · · , Y

(i)
Tqr

, i = 1, · · · , r, coming

from the sample Y , each subsample corresponding to a distinct stationary

ergodic process with finite second order moments, whose sample covariance

is equal to γ̃Y (i)(h), then

γ̃Y (h) →
r
∑

i=1

piγ̃Y (i)(h) +
∑

1≤i≤j≤r

pipj(EY (j) − EY (i))2, h → ∞. (1)

If the expectations of the subsequences (Y (i))i differ, and because the au-
tocovariances γ̃Y (i)(h) decay to zero exponentially as h → ∞ (due to the
ergodic property of the subsequences), the sample ACF γ̃Y (h) for sufficiently
large h is close to a strictly positive constant given by the second term of the
equation (1). Indeed, the term

∑

1≤i≤j≤r pipj(EY (j) −EY (i))2dominates and
determines the behavior of γ̃Y (h).

Since a long memory process is exclusively determined by the decay pattern
of its autocovariance, then we say that the process (Yt)t has a long memory
behavior. It is this fact ("spurious" long memory) which has been observed
for different simple models with structural breaks or switches in the mean.
In that case, the sample autocovariance of these models γ̃Y (h) does not con-
verge towards zero while the theoretical autocovariance function γY (h) does.
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The latter one is computed under strong stationarity conditions (existence
of an invariant measure) and the former one from a sample which is affected
by non-stationarity (the empirical distribution function is not invariant).

It is exactly this behavior which is observed when we simulate stationary
models like the Markov switching, the stopbreak model, or the SETAR mod-
els, for a complete review Guégan (2005). In order to illustrate the propo-
sition 3.1, we simulate a particular case of model with switches, introduced
by Granger and Terasvirta (1999). It has the following form :

Yt = µ1I(Yt−1 > 0) + µ2I(Yt−1 ≤ 0) + εt, (2)

where I(.) is the indicator function. This model permits to shift from the
mean µ1 to the mean µ2 with respect to the value taken by Yt−1. SETAR pro-
cesses are known to be short memory, but it is also possible to exhibit sample
ACFs which present slow decay, and this slow decay can also be explained
by the second term of the relationship (1). We provide the trajectory and
the autocorrelation function of this model on figure 1. We observe switches
on the trajectory and slow decay of the sample ACF, eventhough this model
is classified as short memory process for the values of parameters used here.

Figure 1: Trajectory and ACF of the Threshold Auto-Regressive model defined by equa-
tion (2) with T = 2000, σ2

ǫ
= 0.2 and µ0 = −µ1 = −1.

In their paper, Granger and Terasvirta (1999), discuss this "spurious" long
memory observed for specific samples steming from the size and the persis-
tence of the shifts in their mean. It corresponds to a specific time spend in
each state whose distribution is not known.

Now if we are interested by volatility modelling, we prefer to analyse the sam-
ple Y δ = (Y δ

1 , Y δ
2 , · · · , Y δ

T ) instead of Y . Then, we build sequences of inter-

vals such that Y δ = ((Y
δ(1)
1 , · · · , Y

δ(1)
Tq1

), · · · , (Y
δ(r)
Tqr−1+1, · · · , Y

δ(r)
Tqr

)), assuming
existence of distinct stationary ergodic process on each of them, then:
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Lemma 3.2 Let be r subsamples (Y
δ(i)
1 ), · · · , (Y

δ(i)
Tqi

), i = 1, · · · , r and δ ∈

R+, coming from the sample Y δ, each subsample corresponding to a station-

ary distinct ergodic process with finite second order moments, whose sample

covariance is equal to γ̃(Y δ(i))(h), then the sample autocorrelation function

γ̃Y δ of the sample Y δ is such that:

γ̃Y δ(h) →
r
∑

i=1

piγ̃(Y δ(i))(h) +
∑

1≤i≤j≤r

pipj(E(Y δ(j))−E(Y δ(i)))2, h → ∞. (3)

Under the property of stationary ergodicity, the ACF of each process has
an exponential decay. Thus, the sample Y δ has its sample ACF γ̃Y δ(h) that
decays quickly for the first lags and then approach positive constants given
by
∑

1≤i≤j≤r pipj(E(Y (j))δ − E(Y (i))δ)2.

This last term explains some long memory effect observed on the ACF of the
series when we analyse them with the sample Y δ. This last term shows how
shifts in the variances (modelled using Y δ could explain long memory effect
inside the sample ACF. Mikosch and Starica (2004) have already illustrate
this kind of behavior using Y 2 and |Y | samples for modelling the variance of
the log returns. Here, we extend their approach in a more general setting.
Great lines for the proof of the proposition 3.1, which can be easily extended
for this lemma is postponed at the end of the paper.

In summary, it appears that samples exhibiting shifts in the mean will pro-
duce kind of long memory behavior which can be explained by the propo-
sition 3.1; if the shifts appear in the variance, the lemma 3.2 can explain
some specific persistence in the data set. Presence of seasonals not removed
by filtering creates some kind of long memory and this behavior is explained
by the first term in (1). Finally in presence of distorsion or explosions the
variance being not defined the use of covariance function has no sense. These
previous results clarify some mis-understandings concerning the existence of
long memory behavior regarding at the sample autocovariance function.

Thus, these simple evidences show that it is not possible to work in em-
pirics using directly the theory. Indeed, it appears fundamental to change
our working assumption, questionning the stationary assumption in prac-
tice, coming back to the assertion of Mandelbrot (1963): "price records do
not "look" stationary, and statistical expressions such as the sample variance
take very different values at different times: this non-stationarity seems to
put a precise statistical model of price change out of the question."
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4 Local stationarity and meta-distribution

In the previous section, we show that the existence of non-stationarity inside
data sets pollute the behaviors of some statistics which are popular in mod-
elling, namely the sample ACF. Thus, it appears interesting to look after
the local properties of a data set and to use them in order to define new
strategies in risk management and forecasting. Here, we are interested to
approximate the non-stationarity data locally by stationary models. Thus,
we build a sequence of models with invariant distributions and we propose a
meta-distribution characterizing the whole sample.

4.1 A new test

Statistical analysis of stock prices variations Y mainly focused on the second
order properties (mean, variance, covariance), but a lot of features can affect
also higher order moments, and mainly the moments of order three and four
which characterize the shewness and the kurtosis of these data sets. Thus,
it seems natural to consider Y as a locally stationary time series: this means
that we can define time intervals of varying size which are "approximately
stationary". This idea is to buid processes whose stationarity is based on
the behavior of the first four orders moments. Hence a qualitative character-
ization of such locally stationary processes could be: on each interval [t1, t2],
the cumulants ck (up to order four, for instance) compute using observations
belonging to this interval may be well approximated by a function depending
only on t2 − t1 as soon as these time points are close enough:

ck(t1, t2) ∼ ck(t2 − t1) if|t2 − t1| < l(k)/2,

and becomes a deterministic function of time t when the lengh between the
time points considered is larger than a certain threshold d(k), measuring
somehow the "‘stationary rate"’ of the time series

ck(t1, t2) ∼ f(t) if|t2 − t1| > d(k)/2.

Following this idea, we introduce a test which permits to carry out the local
stationary behavior of a data set based on the behavior of the first four
sample moments. We compute the cumulants associated to the sample up to
the order k, and the spectral density of cumulant of order k, denoted fck,Y .
We define its estimate by Ick,Y,T . Let be the following statistic:

T̃k(Y ) = sup
λ∈[−π,π]

∣

∣

∣

∣

∣

∫

[−π,π]k−1

(

Ick,Y,T (z)

fck,Y

−
c̃k

ck

)

dz

∣

∣

∣

∣

∣

, (4)
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where c̃k is an estimate of ck. It can be shown that - under the null that the
cumulants of order k are invariant on the subsamples - this statistic T̃k(Y )

converges in distribution to (2π)k−1

ck
B(
∑k−1

j=1 λj), when T → ∞, −π < λ < π,

and B(.) is the Brownian bridge. This result is an extension of a result of
Kluppelberg and Mikosch (1996) and is developed in a companon paper. For
definition of cumulants we refer to Priestley (1981).

Now, following the same idea developed by Starica and Granger (2005),
we can build homogeneity intervals using this test, for k = 1, 2, 3, 4, with
the critical values of the previous statistic. First, we consider a subset
(Ym1 , · · · , Ym2), ∀m1,m2 ∈ N , on which we apply the previous test and we
build confidence intervals. Second, using moving windows, we define another
subset, for some p ∈ N , (Ym2+1, · · · , Ym2+p) on which we apply again the
test and verify if the value of the statistics belongs to the confidence interval
previously built, or not. If it belongs to the previous confidence interval, we
continue with a new subset; if not, we consider (Ym1 , · · · , Ym2+p) as an homo-
geneity interval and analyse the next subset (Xm2+p+1, · · · , Xm2+2p) defining
a new confidence interval, and so on. At the end we obtain a sequence of
intervals on which we can estimate a process stationary, up to four moments.
Thereby, we have determined a sequence of distinct processes, each charac-
terized by an approximately invariant distribution function.

In the following, we use this sequence of "stationary" intervals characterized
by their invariant measures to build a distribution which characteriezs the
whole sample. This last one will be made using the concept of copulas that
we recall briefly.

4.2 The copula concept

Consider a general random vector Z = (X,Y )T and assume that it has
a joint distribution function F (x, y) = P[X ≤ x, Y ≤ y] and that each
random variable X and Y has a continuous marginal distribution function
respectively denoted FX and FY . It has been shown by Sklar (1959) that
every 2-dimensional distribution function F with margins FX and FY can be
written as F (x, y) = C(FX(x), FY (y)) for an unique (because the marginals
are continuous) function C that is known as the copula of F (this result
is also true in the r-dimensional setting). Generally a copula will depend
almost on one parameter, then we denote it Cα and we have the following
relationship:

F (x, y) = Cα

(

FX(x), FY (y)
)

. (5)

12



Here, a copula Cα is a bivariate distribution with uniform marginals and
it has the important property that it does not change under strictly in-
creasing transformations of the random variables X and Y . Moreover, it
makes sense to interpret Cα as the dependence structure of the vector Z. In
the literature, this function has been called "dependence function", "uniform
representation" and "copula". We keep this denomination here, Sklar (1959).

Practically, to get the joint distribution F of the random vector Z = (X,Y )T

given the margins, we have to choose a copula that we apply to these mar-
gins. There exists different families of copulas: the elliptical copulas, the
archimedean copulas, the meta-copulas, etc., Nielsen (1999). In order to
choice the best copula adjusted for a pair of random variables, we need to es-
timate the parameters of the copula and to estimate the copulas. We quickly
review the different methods, and for more details, we refer to Cherubini et
al. (2001), and Caillault and Guégan (2005). Concerning the parameters
of the copulas, we can use the Kendall’s tau because it exists a fairly rela-
tionship between this coefficient and the parameters of the elliptical copulas
and the Arcimedean copulas. A classical maximum likelihood approach is
also possible as soon as the random variables with which we work have been
whitened. To determine the copulas, several criteria can be used, the speudo
loglikelihood, the AIC criteria, or a diagnosis based on the L2 distance:

D2 =
T
∑

m=0

T
∑

n=0

∣

∣

∣
Cα̂

(

F̂X(xm), F̂Y (yn)
)

− F̂ (m/T, n/T )
∣

∣

∣

2

,

where F̂X , and F̂Y correspond to the margins, and F̂ (., .) is the empirical
distribution function associated to the sample. The copula Cα̂ for which we
will get the minimum distance D2 will be chosen as the best approximation
to link F̂X and F̂Y , in that sense.

4.3 A meta distribution

We can use the previous method in a more general setting, and apply it to
our situation. recall that we observe Y1, · · · , YT , and we want to determine
the joint distribution function FY = P [Y1 ≤ y1, · · · , YT ≤ yT ] under invari-
ance assumptions.

On figure 2, we illustrate the previous procedure, which haspermitted to build
a sequence of r homogeneity intervals on which we define stationary processes
caracterized by an invariant distribution function FY (i) , i = 1, · · · , r. On this
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figure, we have identified four homogeneity intervals characterized by changes
in mean or in variance, and we have estimated different distribution func-
tions on each subsample denoted FY (1), FY (2), FY (3), FY (4). We formalize
now this example.
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Figure 2: Example of a sequence of invariant distribution functions

Having built previously stationary margins FY (i) , i = 1, · · · , r on each sub-
sample, we know that it exists an unique copula Cα linking this sequence of
invariant distribution functions, such that:

F (Y1 ≤ y1, · · · , YT ≤ yT ) = Cα(F1(Y
(1)), . . . , Fr(Y

(r))). (6)

The expression (6) provides a new way to characterize the joint distribution
of the sample Y1, · · · , YT using a sequence of invariant distributions. We call
this distribution a meta-distribution and we will see that we can use it for
different purposes.

There exists different ways to built this meta-distribution. Indeed, the ex-
pression (6) provides one approach but we can complexify the building.

1. We can assume that the parameter α of the copula evolves in time,
then (6) becomes:

F (Y1 ≤ y1, · · · , YT ≤ yT ) = Cαt
(F1(Y

(1)), · · · , Fr(Y
(r))). (7)

We get a dynamical copula. It has already been investigated and es-
timated in different papers, Dias and Embretchs (2004), Fermanian
(2005), Caillault and Guégan (2009) and Zhang and Guégan (2009).
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2. We can build a sequence of copulas, with different parameters permit-
ting to link successively two or three margins, in order, for instance, to
have a parameter α which stays constant. In case of two margins, we
get the sequence: Cα12(F1(Y

(1)), F2(Y
(2))), Cα34(F3(Y

(3)), F4(Y
(4))), ..,

Cαr,r−1(Fr−1(Y
(r−1)), Fr(Y

(r))). Then, the-meta distribution will be de-
fined thanks to another copula Cβ. Indeed, we are going to consider
each expression Cαij

(Fi(Y
(i)), Fj(Y

(j))) as a margin, and then Cβ will
link all these margins:

F (Y1 ≤ y1, · · · , YT ≤ yT ) = Cβ(Cα12 , Cα34 , · · · , Cαr,r−1). (8)

An estimation procedure has to be defined for this latter approach,
extending the previous cited works.

3. Now, we can use more than two margins. In case of three margins, we
can use Archimedan copulas under specific restrictions (Nielsen (1999).
Then, we define a copula Cξ linking the margins
Cαijk

(Fi(Y
(i)), Fj(Y

(j)), Fk(Y
(k))).

F (Y1 ≤ y1, · · · , YT ≤ yT ) = Cξ(Cα123 , ....). (9)

4. To work with more than three margins, an interesting approach based
on the vines can be conduced, Aas et al. (2009) and Guégan and
Maugis (2008).

The methodology that we have proposed here permits to give new openings
concerning several econometric issues.

1. To forecast with a non-stationary sample.

• We can use one of the previous linking copulas Cα, Cαt
, Cβ or

Cξ to get a suitable forecast for the process (Yt)t assuming the
knowledge of the whole information set IT = σ(Yt, t < T ). Then,
for instance, we will compute ECα

[Yt+h|IT ].

• We can also decide to forecast using a smaller information set,
based on one or several homogeneity intervals, and then we will as-
sociate the distribution function which corresponds to this choice.

(a) If we consider the last homogeneity interval, then the predic-

tor will be computed using E
F

(r)
Y

[Yt+h|Ir], where Ir = σ(Y
(r)
Tqr−1+1, · · · , Y

(r)
T ),

and F
(r)
Y is the margin which charaterizes this subset.
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(b) If we consider the last two homogeneity intervals, we will com-
pute the expectation using the copula linking the two margins
corresponding to each subsample and the information set will
be the reunion of the two corresponding subsamples. Then
we get ECα

[Yt+h|Ir−1 ∪ Ir], and Cα links F
(r−1)
Y and F

(r)
Y .

(c) If we look at the Figure 2, we can decide to use the inter-
vals 1 and 4 to do forecast. In that case, we will compute:
ECα

[Yt+h|I(1) ∪ I(4)] and Cα will link F
(1)
Y and F

(4)
Y .

We can expect that working with these approaches will provide superior
forecasts.

2. To compute a risk measure. The same discussion as before can be done
to compute for instance the classical Value-at-Risk mesure (V aRα),
which is simply the maximum loss that is exceeded over a specified
period with a level of confidence 1 − α for a given α. For a random
variable Y with distribution FY , it is defined by

FY (V aRα) = Pr[Y ≤ V aRα] = α. (10)

Then, to make this computation, we can decide to work with the dis-
tribution which appears the more appropriate: this means that it could
be one of the previous meta-distrbutions defined in (6), (7), (8) or (9).
For instance, in case of our example (Figure 2), we can decide to use the
two subsamples whose variablility is the more important to compute
the VaR, then the function FY will be the copula permitting to link
FY (2) and FY (3), then in (10), we will use FY = Cα(FY (2), FY (3)).
As soon as we consider copulas of copulas to get this measure, exten-
sions of known works has to be done to estimate it, Fermanian (2005),
Caillault and Guégan, (2005) and Guégan (2009)

3. To determine the unconditional distribution of non-linear models. In-
deed, this appraoch could permit to solve this open problem. In par-
ticular, it is possible to obtain the distribution function of any Markov
switching model, this work being the purpose of a companon paper

5 Conclusion

In this paper, we have discussed deeply the influence of non-stationarity
on the stylized facts observed on the data sets and on specific statistics.
For these statistics, a lack of robustness is observed in presence of non sta-
tionarity, and this work emphasizes the fact that the theoretical concept of
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autocovariance function γY (t, h) and the concept of sample autocovariance
γ̃Y (h) are totally different as soon as some specific features are detected in
the sample. This evidence is illustrated through an example built using a
simple switching process1. It is important to notice that this work does not
concern asymptotic theory but discusses a new working framework to analyse
non-stationary time series.

Then a new methodology is proposed in order to take the non-stationarity
into account, building a sequence of invariant "homogeneity" intervals up
to order four, and considering a new way to associate to a sample a joint
distribution which can be used to computed forecast or risks. This new
methodology opens the routes to solve a certain number of technical unsolved
problems as the computation for instance of the unconditional distribution
of some non-linear processes.

Some extended researches can be also considered, we cite some for illustra-
tions.

• The use of the change point theory could be used to verify the date
at which we determine the beginning of an homogeneity interval. This
could be a nice task. Indeed, most of the works concerning the change
point theory concern detection of breaks in mean or in volatility. These
works have to be reexamined taking into account the fact that breaks
can provoke spurious long memory. Indeed, in that latter case, the use
of the covariance matrix can be a problem in the sense that we cannot
observe change point in the covariance matrix.

• The time spend in each state when we observe breaks is a challeng-
ing problem. We do not consider here the approach done in the ACD
models, we are interested to characterize the distribution function per-
mitting to quantify the time spend in a state. This last random variable
is important in order to characterize the existence of states, and it can
be connected to the creation of the long memory behavior. It is known
that for a Markov switching process, this law is geometric depending
on the transition probabilities. More deep work is necessary to under-
stand its rule in the creation of "spurious" long memory. One way is to
study the behavior of the autocovariance function when, for example,
we assume that the time spend on a regime follows a specific law like
the Poisson law or any classical continous law.

1Other examples can be provided under request.
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• The discussion of models taking into account sharp switches and time
varying parameters. A theory has to be developed to answer to a lot of
questions coming from practitioners. If the model proposed by Hyung
and Franses (2005) appears interesting in that context, because it nests
several related models by imposing certain parameter restrictions (AR,
ARFI, STOPBREAK, models for instance, etc..), more identification
theory concerning this class of models need to be done to understand
how it can permit to give some answers to the problematic developed
in this paper.

• Another approach which can be linked to the previous work concerns
the test theory to detect "spurious" long memory begavior when this
one is created by non-stationarity, some interesting references being
Sibbersten and Kruse (2009), and Ohanassian, Russell and Tsay (2008).
Another way could be, using the previous work approach to adjust an
FI(d) on each interval, and to test the null that d1 = d2 = · · · = dr = d,
where d is the value of the fractional differencing parameter obtained
with the whole sample. Some preliminary empirical discussions on this
approach have been done by Charffedine and Guégan (2008).
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6 Annex 1: Proof of the proposition (3.1)

Let Y = (Y1, Y2, ..., YT ) be a sample size T of a process (Yt)t. We consider
r subsamples consisting of distinct ergodic stationary processes with finite
second moment. Let pj ∈ R+ , j = 1, ..., r such that p1 + p2 + ... + pr = 1.
Hence pj is the proportion of observations from the jth subsample in the
whole sample. We define qj = p1 +p2 + ...+pj , j = 1, ..., r. Thus the sample

is written as Y = (Y
(1)
1 , · · · , Y

(1)
Tq1

, Y
(2)
Tq1+1, · · · , Y

(r)
Tqr−1+1, · · · , Y

(r)
T ). We define

the sample autocovariances of the sequence (Yt)t as follows:

γ̃Y (h) =
1

T

T−h
∑

t=1

(Yt − Y T )(Yt+h − Y T ).

We develop the right hand side of the previous relationship

γ̃Y (h) =
1

T

T−h
∑

t=1

YtYt+h −
Y T

T

T−h
∑

t=1

(Yt + Yt+h) +
1

T

T−h
∑

t=1

Y 2
T .

Let

A =
1

T

T−h
∑

t=1

YtYt+h

and

B = −
Y T

T

T−h
∑

t=1

(Yt + Yt+h) +
1

T

T−h
∑

t=1

Y 2
T .
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Thus γ̃Y (h) = A + B. First, we compute A.

A =
1

T

r
∑

i=1

Tqi−h
∑

t=Tqi−1+1

Y
(i)
t Y

(i)
t+h

+
1

T

r
∑

i=1

[

Tqi+1−h
∑

t=Tqi−h+1

Y
(i)
t Y

(i+1)
t+h + · · · +

Tqr−h
∑

t=Tqr−1−h+1

Y
(i)
t Y

(r)
t+h].

Now, we know that cov(Y
(i)
t , Y

(j)
t ) = 0 for all i 6= j by building, thus

A =
1

T

r
∑

i=1

Tqi−h
∑

t=Tqi−1+1

Y
(i)
t Y

(i)
t+h + O(1).

We develop the term of the right hand of the previous relationship. Thus we
get

1

T

r
∑

i=1

Tqi−h
∑

t=Tqi−1+1

Y
(i)
t Y

(i)
t+h =

r
∑

i=1

pi

1

Tpi

T qi−h
∑

t=Tqi−1+1

Y
(i)
t Y

(i)
t+h

+
r
∑

i=1

piE[Y
(i)
t ]2 −

r
∑

i=1

piE[Y
(i)
t ]2.

Thus

1

T

r
∑

i=1

Tqi−h
∑

t=Tqi−1+1

Y
(i)
t Y

(i)
t+h =

r
∑

i=1

piE[Y
(i)
0 Y

(i)
h ] −

r
∑

i=1

piE[Y
(i)
t ]2 +

r
∑

i=1

piE[Y
(i)
t ]2

=
r
∑

i=1

piγY (i)(h) + E[Y
(i)
t ]2.

And, in probability, A →
∑r

i=1 piγY (i)(h) +
∑r

i=1 piE[Y
(i)
t ]2.

Now we compute B. Using the same remark as before, B can be simplified
and we get:

B = −Y 2
T + O(1).

Or

−Y 2
T = −(

r
∑

i=1

piE[Y
(i)
t ])2 = −

r
∑

i=1

r
∑

j=1

pipjE[Y
(i)
t ]E[Y

(j)
t ]

= −

r
∑

i=1

(piE[Y
(i)
t ])2 − 2

∑

1≤i≤j≤r

pipjE[Y
(i)
t ]E[Y

(j)
t ].
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Moreover pi = p2
i + pi

∑r

j 6=i,j=1 pj. Thus

−Y 2
T = −

r
∑

i=1

pi(E[Y
(i)
t ])2 +

∑

1≤i≤j≤r

pipj(E[Y
(i)
t ] − E[Y

(j)
t ])2.

Then

B → −

r
∑

i=1

pi(E[Y
(i)
t ])2 +

∑

1≤i≤j≤r

pipj(E[Y
(i)
t ] − E[Y

(j)
t ])2.

Now, using expressions found for A and B we get:

A+B =
r
∑

i=1

piγY (i)(h)+
r
∑

i=1

piE[Y
(i)
t ]2−

r
∑

i=1

pi(rE[Y
(i)
t ])2+

∑

1≤i≤j≤

pipj(E[Y
(i)
t ]−E[Y

(j)
t ])2

=
r
∑

i=1

piγY (i)(h) +
∑

1≤i≤j≤r

pipj(E[Y
(i)
t ] − E[Y

(j)
t ])2.

Hence the proposition (3.1).
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