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Abstract

We analyse the properties of the conventional Gaussian-based co-integrating
rank tests of Johansen (1996) in the case where the vector of series under test
is driven by globally stationary, conditionally heteroskedastic (martingale di¤er-
ence) innovations. We �rst demonstrate that the limiting null distributions of the
rank statistics coincide with those derived by previous authors who assume either
i.i.d. or (strict and covariance) stationary martingale di¤erence innovations. We
then propose wild bootstrap implementations of the co-integrating rank tests and
demonstrate that the associated bootstrap rank statistics replicate the �rst-order
asymptotic null distributions of the rank statistics. We show the same is also true
of the corresponding rank tests based on the i.i.d. bootstrap of Swensen (2006).
The wild bootstrap, however, has the important property that, unlike the i.i.d.
bootstrap, it preserves in the re-sampled data the pattern of heteroskedasticity
present in the original shocks. Consistent with this, numerical evidence sug-
gests that, relative to tests based on the asymptotic critical values or the i.i.d.
bootstrap, the wild bootstrap rank tests perform very well in small samples un-
der a variety of conditionally heteroskedastic innovation processes. An empirical
application to the term structure of interest rates is given.
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tional heteroskedasticity; i.i.d. bootstrap; wild bootstrap.
J.E.L. Classi�cations: C30, C32.

�Correspondence to: Robert Taylor, School of Economics, University of Nottingham, Nottingham,
NG7 2RD, U.K. E-mail : robert.taylor@nottingham.ac.uk

1



1 Introduction

In a recent paper, Gonçalves and Kilian (2004) argue that �... the failure of the i.i.d.
assumption is well-documented in empirical �nance ... many monthly macroeconomic
variables also exhibit evidence of conditional heteroskedasticity.�(2004,p.92); see Sec-
tion 2 of Gonçalves and Kilian (2004) for detailed discussion and empirical evidence on
this point. Gonçalves and Kilian (2004,2007) show that, so far as inference in station-
ary univariate autoregressive models is concerned, standard residual-based bootstraps
based on an i.i.d. re-sampling scheme are invalid under conditional heteroskedastic-
ity. They demonstrate that in such cases inference based on the wild bootstrap is
asymptotically valid and delivers substantial improvements over both residual-based
i.i.d. bootstrap tests and standard tests based on asymptotic critical values. Xu (2008)
has recently shown that Gonçalves and Kilian�s (2004) residual wild bootstrap is also
valid in the presence of innovations with non-stationary volatility. Cavaliere and Taylor
(2008) show that analogous properties also hold when using wild bootstrap methods
in the context of the univariate unit root testing problem.
The trace and maximum eigenvalue co-integrating rank tests of Johansen (1996) are

derived under the assumption of Gaussian i.i.d. innovations. In an important Monte
Carlo study, Lee and Tse (1996) numerically examine the performance of the rank
tests in the presence of GARCH errors. They �nd that (for the case of non-integrated
GARCH errors) the rank tests show a tendency to over-reject the null hypothesis of
no co-integration but that this is ameliorated, other things being equal, as the sam-
ple size is increased. These �ndings are consistent with Rahbek, Hansen and Dennis
(2002) [RHD] who demonstrate that the assumption required on the innovations can
be considerably weakened to that of a (strict and second-order) stationary and er-
godic vector martingale di¤erence sequence (with constant unconditional variance and
satisfying certain mild regularity conditions) without altering the asymptotic null dis-
tributions of the rank statistics. In this paper we �rst show that these limiting null
distributions remain valid in the less restrictive case of globally stationary, conditionally
heteroskedastic shocks satisfying certain moment conditions. Moreover, we show that
the pseudo maximum likelihood [PML] estimator of the error correction model which
assumes Gaussian i.i.d. disturbances remains consistent under these weaker conditions.
Although, the standard rank tests based on asymptotic critical values therefore re-

main asymptotically valid in the presence of conditionally heteroskedastic shocks, the
construction of these tests does not utilise sample information relating to any condi-
tional heteroskedasticity present. Given this result, and the observation of Gonçalves
and Kilian (2004) that conditional heteroskedasticity is a relatively common occurrence
in macroeconomic and �nancial time series, it is clearly important and practically rel-
evant to also consider bootstrap testing procedures in the multivariate time series
setting which are asymptotically valid in the presence of conditional heteroskedastic-
ity. We therefore develop bootstrap versions of the standard co-integrating rank tests.
Our approach builds on the residual-based bootstrap co-integrating rank tests of van
Giersbergen (1996), Harris and Judge (1998), Mantalos and Shukur (2001), Trenkler
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(2009) and, most notably, Swensen (2006), all of which assume that the innovations
are independent and identically distributed (i.i.d.).
Our proposed bootstrap tests are based on the wild bootstrap re-sampling scheme,

since, unlike the other bootstrap schemes noted above, this replicates in the re-sampled
data the pattern of heteroskedasticity present in the original shocks. The wild bootstrap
scheme we use has also been considered in the co-integration rank testing scenario by
Cavaliere, Rahbek and Taylor (2007) [CRT] in the fundamentally di¤erent scenario
where the innovations display globally non-stationary volatility; that is, cases where
the unconditional variance of the innovation vector varies over time in a systematic
fashion. CRT demonstrate that in such cases, under the assumption of an absence of
any conditional heteroskedasticity, the conventional co-integrating rank statistics do
not have the same form as given in Johansen (1996), rather they depend on nuisance
parameters relating to the underlying volatility process. They demonstrate, however,
that the wild bootstrap rank statistics can replicate this limit distribution, to �rst
order. Consequently, although the wild bootstrap algorithm we use here is the same
as that in CRT, it is being used in the context of a quite di¤erent statistical model.
We show that wild bootstrap co-integrating rank statistics replicate the �rst-order

asymptotic null distributions of the rank statistics, such that the corresponding boot-
strap tests are asymptotically valid, in the presence of conditionally heteroskedastic
innovations. The same is shown to be true of the corresponding i.i.d. bootstrap tests
of Swensen (2006). It is not our aim in this paper to establish that the wild bootstrap
provides a superior approximation to the conventional asymptotic approximation or to
the i.i.d. bootstrap approximation. Rather we detail a less restrictive set of conditions
than is adopted in the extant literature under which both the asymptotic test and both
the wild and i.i.d. bootstrap approaches are asymptotically valid. However, since the
wild bootstrap incorporates sample information on the conditional heteroskedasticity
where present, one might anticipate that the wild bootstrap would provide a superior
approximation to that provided by the asymptotic and i.i.d. bootstrap approximations
which do not incorporate such sample information. Simulation evidence for a variety
of conditionally heteroskedastic innovation models is supportive of this view. Taken
together, the results in this paper coupled with those in CRT demonstrate that the wild
bootstrap is a very powerful and useful tool, able to handle time-dependent behaviour
in both the conditional and unconditional variance of the innovations. The question
of whether there are conditions under which the wild bootstrap approach will provide
asymptotic re�nements is left for future research.
The paper is organized as follows. Section 2 outlines our reference co-integrated

conditionally heteroskedastic VAR model, while section 3 establishes the large sam-
ple behaviour of the standard rank statistics and the MLE of the parameters from
this model. Our wild bootstrap-based approach, which also incorporates a sieve pro-
cedure using the (consistently) estimated coe¢ cient matrices from the co-integrated
VAR model, is outlined in Section 4. The �rst-order asymptotic validity of both this
approach and that based on the i.i.d. re-sampling bootstrap rank tests of Swensen
(2006) are demonstrated. In Section 5, the �nite sample properties of the tests are
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explored through Monte Carlo methods and compared with the standard asymptotic
tests and with the i.i.d. bootstrap tests, for a variety of conditionally heteroskedastic
error processes. In section 6 we apply our tests to bond market data from several major
economies. Section 7 concludes. All proofs are contained in the Appendix.
In the following �w!� denotes weak convergence, �p!� convergence in probability,

and �w!p�weak convergence in probability (Giné and Zinn, 1990; Hansen, 1996), in
each case as the sample size diverges to positive in�nity; I(�) denotes the indicator
function and �x := y�(�x =: y�) indicates that x is de�ned by y (y is de�ned by x);
b�c denotes the integer part of its argument. The space spanned by the columns of
any m� n matrix A is denoted as col(A); if A is of full column rank n < m, then A?
denotes anm�(m� n) matrix of full column rank satisfying A0?A = 0. For any square
matrix, A, jAj is used to denote the determinant of A, kAk the norm kAk2 := tr fA0Ag,
where tr fAg denotes the trace of A, and � (A) its spectral radius (that is, the maximal
modulus of the eigenvalues of A). For any vector, x, kxk denotes the usual Euclidean
norm, kxk := (x0x)1=2.

2 The Conditionally Heteroskedastic Co-integration
Model

We consider the following VAR(k) model in error correction format:

�Xt = �Xt�1 +	Ut + �Dt + "t, t = 1; :::; T (2.1)

where: Xt and "t are p � 1, Ut :=
�
�X 0

t�1; :::;�X
0
t�k+1

�0
is p (k � 1) � 1 and 	 :=

(�1; :::;�k�1), where f�igk�1i=1 are p � p lag coe¢ cient matrices and the impact matrix
� := ��0 where � and � are full column p � r matrices, r � p. The term Dt collects
all deterministic components, and in this paper we focus on the leading case of a linear
trend, Dt := (1; t)0, with associated coe¢ cients � := (�01; �

0
2)
0. The initial values,

X0 :=
�
X 0
0; :::; X

0
�k+1

�0
, are taken to be �xed.

Throughout the paper the process in (2.1) is assumed to satisfy the following as-
sumptions.

Assumption 1: (a) All of the characteristic roots associated with (2.1), that is the
solutions to the characteristic equation A (z) := (1� z) Ip � ��0z � �1z (1� z) �
� � � � �k�1zk�1 (1� z) = 0, lie either outside the unit circle or are equal to unity;
(b) det (�0?��?) 6= 0, with � := Ip � �1 � � � � � �k�1.
Assumption 2: The innovations f"tg form a martingale di¤erence sequence with
respect to the �ltration Ft; where Ft�1 � Ft for t = :::;�1; 0; 1; 2; :::, satisfying: (i) the
global homoskedasticity condition:

1

T

TX
t=1

E ("t"
0
tjFt�1)

p! � > 0; (2.2)
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and (ii) E k"tk4 � K <1.

Remark 2.1. While Assumption 1 is standard in the co-integration testing literature,
Assumption 2 is not. Assumption 2 implies that "t is a serially uncorrelated, potentially
conditionally heteroskedastic process. This contrasts with the assumption that "t is
i.i.d. as made in Johansen (1996) and Swensen (2006). Moreover, and in contrast to
RHD, condition (i) of Assumption 2 imposes neither strict nor second-order stationarity
on "t, but rather imposes a so-called global stationarity or global homoskedasticity
condition; see e.g. Davidson (1994,pp.454-455). In particular, this condition allows the
conditional (and, hence,1 unconditional) variance of "t to change over time, provided
that it is asymptotically stable over all possible �xed fractions of the data; that is,
provided

1

T (s0 � s)

bTs0cX
t=bTsc+1

E ("t"
0
tjFt�1)

p! � (2.3)

for all s0 < s 2 [0; 1]. This framework therefore allows for, among other things, stable
(G)ARCHmodels with initial values that are not drawn from the invariant distribution,
and models which exhibit seasonal heteroskedasticity. An example of the latter is given
by the case where "t satis�es E ("t"0tjFt�1) = E ("t"0t) =

PS
i=1�

(i)dit, t = 1; :::; T , where
the dit, i = 1; :::; S, are standard seasonal dummies (S being the number of seasons)
which is clearly not a covariance stationary process (unless �(1) = � � � = �(S)) but
is nonetheless globally homoskedastic because condition (2.3) holds. Notice, however,
that (2.3) is not in general satis�ed in the non-stationary volatility setting of CRT,
where the right member of (2.3) depends on s0; s.

Remark 2.2. Under Assumption 2, a multivariate functional central limit theorem
[FCLT] as in Brown (1971, Theorem 3) applies to "t; viz,

1p
T

bT �cX
t=1

"t
w! W (�) , (2.4)

whereW is a Brownian motion with covariance matrix �, the latter de�ned as in (2.2).
This result follows from Assumption 2(i) and since the �nite fourth order moment
requirement in Assumption 2(ii) implies the Lindeberg-type condition

T�1�Tt=1E
�
k"tk2 � I

n
k"tk > �

p
T
o���Ft�1� p! 0 .

Assumption 2 also ensures that conditions (5) and (6) in Hannan and Heyde (1972,
Theorem 1) hold, implying that for any linear process st of the form st :=

P1
i=0 �i"t�i

with
P1

i=0 k�ik < 1, the empirical average, T�1
PT

i=1 si, and empirical autocovari-
ances, T�1

PT
t=1 sts

0
t+k, converge in probability to zero and

P1
i=0 �i��

0
i+k, respectively.

1Speci�cally, the condition in (2.2) coupled with the assumption of �nite fourth order moments
implies that the unconditional variances of "t, t = 1; :::; T , satisfy lim

T!1
T�1

PT
t=1 E ("t"

0
t) = �.
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Remark 2.3. The conditions in Assumption 2 ensure that a FCLT applies to the MDS,
f"tg, and that the product moments converge, as detailed in Remark 2.2. Both the
convergence in (2.2) and the convergence of the product moments would also be implied
by assuming geometric ergodicity of the f"tg sequence, since the law of large numbers
applies to functions of geometrically ergodic processes; see Jensen and Rahbek (2007)
for details. Geometric ergodicity is satis�ed for a rich class of (G)ARCH processes; see,
for example, the discussion in Kristensen and Rahbek (2005, 2009) and the references
therein.

For unknown parameters �, �, 	, �, and when � and � are p � r matrices, not
necessarily of full rank, (2.1) denotes our conditionally heteroskedastic co-integrated
VAR model, which we denote as H(r). The model may then be written in the compact
form

Z0t = ��
�0Z1t + �Z2t + "t (2.5)

with Z0t := �Xt, and the remaining terms de�ned according to the following three
leading cases for the deterministic terms (see, e.g., Johansen, 1996, p.81):

(i) �Dt = 0 in (2.1), which implies that Z1t := Xt�1, Z2t := Ut, �
� = � and � = 	

(no deterministic components);

(ii) �Dt = �1 = ��
0
1 in (2.1), which implies that Z1t := (X

0
t�1; 1)

0, Z2t := Ut, �
� =

(�0; �01)
0 and � = 	 (restricted constant);

(iii) �Dt = �1 + �2t with �2 = ��02 in (2.1), which implies that Z1t := (X 0
t�1; t)

0,
Z2t := (U

0
t ; 1)

0, �� = (�0; �02)
0 and � = (	; �1) (restricted linear trend).

3 Pseudo LR Tests

As is standard, let Mij := T
�1PT

t=1 ZitZ
0
jt, i; j = 0; 1; 2, with Zit de�ned as in (2.5),

and let Sij := Mij:2 := Mij �Mi2M
�1
22 M2j, i; j = 0; 1. Under the auxiliary assumption

of i.i.d. Gaussian disturbances, the pseudo Gaussian likelihood function depends on the
vector �PML := (�; �;	; �;�), with �Dt satisfying one of the three cases considered
at the end of the previous section (throughout we also apply the usual norming or
identi�cation as in Johansen, 1996, section 13.2). We denote the corresponding PML

estimator as �̂
PML

:= (�̂; �̂; 	̂; �̂; �̂). Write the maximized (pseudo) log-likelihood
under H (r), say ` (r), as

` (r) = �T
2
log jS00j �

T

2

rX
i=1

log
�
1� �̂i

�
(3.1)

where �̂1 > : : : > �̂p, solve the eigenvalue problem���S11 � S10S�100 S01�� = 0: (3.2)
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The pseudo LR (PLR) test for H(r) vs H(p) then rejects for large value of the statistic

Qr := �2 (` (r)� ` (p)) = �T
pX

i=r+1

log
�
1� �̂i

�
: (3.3)

We now demonstrate the validity of the following theorem concerning the limiting
null distribution of the Qr statistic under conditional heteroskedasticity of the form
speci�ed in Assumption 2. To keep the presentation simple we consider, for the present,
the case of no deterministics in the model and in the estimation (so that �̂ is omitted

from the de�nition of �̂
PML

above). This will be subsequently relaxed in Remark 2.5.

Theorem 1 Let fXtg be generated as in (2.1) under Assumptions 1 and 2, with � = 0.
Then, under the hypothesis H(r),

Qr
w! tr(QB) =: Qr;1 (3.4)

where

QB :=

Z 1

0

(dB(u))B(u)0
�Z 1

0

B(u)B(u)0du

��1 Z 1

0

B(u)(dB(u))0 (3.5)

with B(�) a (p� r)-variate standard Brownian motion.

Remark 3.1. The representation for the limiting null distribution of Qr given in (3.4)
coincides with that given in Johansen (1996) for the case of independent Gaussian
innovations and in RHD for covariance stationary martingale di¤erence innovations.

Remark 3.2. The result in Theorem 1 can be generalized to cover the two addi-
tional cases for the deterministic component considered just below (2.5). It is an
entirely straightforward extension of the result in Theorem 1 to establish that in
such a case the asymptotic null distribution of Qr is given by (3.4) but now with
QB := tr(

R
(dB(u))F (u)0

�R
F (u)F (u)0

��1 � R F (u)(dB(u))0), where B is as de�ned in
Theorem 1, and F is a function of B whose precise form depends on the deterministic
term. More speci�cally, decomposing B as B := (B01; B2)

0, where B2 is one-dimensional
and using the notation ajb := a(�)�

R
a(s)b(s)0ds(

R
b(s)b(s)0ds)�1b(�) to denote the pro-

jection residuals of a onto b:

(i) if �Dt = 0 in (2.1), then F := B, as in Theorem 1;

(ii) if �Dt = ��
0
1 in (2.1), then F := (B

0; 1)0;

(iii) if �Dt = �1 + ��
0
2t in (2.1), then F := (B

0; uj1)0.

Remark 3.3. The preceding discussion extends to the so-called maximum eigenvalue
test; that is, a PLR test based for H(r) vs H(r+1). As is well known, this test rejects
for large values of the statistic Qr;max := �2 (` (r)� ` (r + 1)) = �T log(1� �̂r+1), see,
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for example, Equation (6.19) of Johansen (1996). It then follows trivially from the
preceding results that the null asymptotic distribution of Qr;max corresponds to the
distribution of the maximum eigenvalue of the real symmetric random matrix QB.

Remark 3.4. As in Johansen (1996), under H(r), the r largest eigenvalues solving
(3.2), �̂1; : : : ; �̂r, converge in probability to positive numbers, while T �̂r+1; : : : ; T �̂p are
of Op(1). Consequently, the PLR test based on either Qr or Qr;max will be consistent at
rate Op(T ) if the true co-integration rank is, say, r0 > r. This implies, therefore, that
the sequential approach to determining the co-integration rank2 outlined in Johansen
(1996) will still lead to the selection of the correct co-integrating rank with probability
(1��) in large samples, as in the i.i.d. Gaussian case. The same results also hold under
cases (ii) and (iii) of Remark 3.2.

We conclude this section by demonstrating that even though based on a mis-
speci�ed model3 the PML estimator, �̂

PML
, is consistent. This will turn out to be

a key property needed to establish the validity of the bootstrap PLR tests we propose
in section 4.

Theorem 2 Under the conditions of Theorem 1, T 1=2(�̂� �) p! 0. Moreover, �̂
p! �,

	̂
p! 	, and �̂

p! �.

Remark 3.5. Theorem 2 shows that in the presence of conditional heteroskedasticity
of the form speci�ed in Assumption 2, the PML estimators of �; �, � and 	 remain
consistent. Under cases (ii) and (iii) of Remark 3.2 it can additionally be shown that
�̂, the PML estimator of �, also remains consistent.

4 Bootstrap PLR Tests

In section 4.1 we �rst outline our wild bootstrap algorithm. Subsequently in section 4.2
we show that because, as was shown in the previous section, we can still consistently
estimate �; �; � and 	 in the presence of conditional heteroskedasticity, (asymptoti-
cally) pivotal null p-values can be obtained using wild bootstrap re-sampling methods,
regardless of whether conditional heteroskedasticity is present or not in the shocks. In
section 4.3 we then demonstrate that the i.i.d. bootstrap rank tests of Swensen (2006)
share the same large sample properties as the wild bootstrap.
The re-sampling algorithm discussed in section 4.1 draws on the wild bootstrap

literature (see, inter alia, Wu, 1986; Liu, 1988; Mammen, 1993). In the context of the
present problem, we focus our primary attention on the wild bootstrap scheme because,
unlike the i.i.d. residual re-sampling schemes used for other bootstrap co-integration

2This procedure starts with r = 0 and sequentially raises r by one until for r = r̂ the test statistic
Qr̂ (or Qr̂;max) does not exceed the � level critical value for the test.

3The likelihood being used in (3.1) is not the correct likelihood for the model in (2.5), unless
"t � NIID(0;�).
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tests proposed in the literature; see, e.g., Swensen (2006) and, in the univariate (p = 1)
case, Inoue and Kilian (2002), Paparoditis and Politis (2003), Park (2003), the wild
bootstrap replicates the pattern of heteroskedasticity present in the original shocks,
and, hence, preserves the temporal ordering in the conditional heteroskedasticity. The
wild bootstrap might therefore be expected to deliver improved �nite sample size prop-
erties relative to the standard and i.i.d. bootstrap rank tests in the presence of con-
ditional heteroskedasticity. The simulation results presented in section 5 support this
conjecture.

4.1 The Wild Bootstrap Algorithm

Let us start by considering the problem of testing the null hypothesis H(r) against
H(p), r < p. Swensen (2006, section 2) discusses at length a way of implementing
a bootstrap version of the well known trace test in this case. Here we extend his
approach by modifying his re-sampling scheme in order to account the presence of
conditional heteroskedasticity by means of the wild bootstrap. Implementation of the
wild bootstrap requires us only to estimate the VAR(k) model under H(p) (i.e., the
unrestricted VAR) and under H(r).
Let 	̂ := (�̂1; :::; �̂k�1) denote the (unrestricted) PML estimate of 	 from the

model under H(p); the corresponding unrestricted residuals are denoted by "̂t, t =
1; :::; T . In addition, let �̂; �̂ denote the (restricted) PML estimates of �,� under the
null hypothesis H (r). The bootstrap algorithm we consider in this section requires
that the roots of the equation jÂ� (z) j = 0 are either one or are outside the unit circle,
where

Â� (z) := (1� z) Ip � �̂�̂
0
z � �̂1 (1� z) z � :::� �̂k�1 (1� z) zk�1 ;

moreover, we also require that j�̂0?�̂�̂?j 6= 0, (�̂ := Ip � �̂1 � ::: � �̂k�1). While the
latter condition is always satis�ed in practice, if the former condition is not met, then
the bootstrap algorithm cannot be implemented, because the bootstrap samples may
become explosive; cf. Swensen (2006, Remark 1). However, in such cases any estimated
root which has modulus greater than unity could be shrunk to have modulus strictly
less than unity; cf. Burridge and Taylor (2001,p.73).

The following steps constitute our wild bootstrap algorithm, which coincides with
Algorithm 1 of CRT. We outline the procedure for the trace statistic, Q(r). The
maximum eigenvalue statistic, Qr;max for H(r) vs H(r + 1) can be bootstrapped in
the same way, replacing Qbr with Q

b
r;max := �2

�
`b (r)� `b (r + 1)

�
in Steps 3 and 4 of

Algorithm 1.

Algorithm 1 (Wild Bootstrap Co-integration Test)

Step 1: Generate T bootstrap residuals "bt, t = 1; :::; T , according to the device

"bt := "̂twt (4.1)
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where fwtgTt=1 denotes an independent N(0; 1) scalar sequence;
Step 2: Construct the bootstrap sample recursively from

�Xb
t := �̂�̂

0
Xb
t�1 + �̂1�X

b
t�1 + :::+ �̂k�1�X

b
t�k+1 + "

b
t ; t = 1; :::; T; (4.2)

with initial values, Xb
t := 0, t = �k + 1; :::; 0.

Step 3: Using the bootstrap sample, fXb
t g, obtain the bootstrap test statistic, Qbr :=

�2
�
`b (r)� `b (p)

�
, where `b(r) and `b(p) denote the bootstrap analogues of `(r) and

`(p), respectively;

Step 4: Bootstrap p-values are then computed as, pbr;T := 1�Gbr;T (Qr), where Gbr;T (�)
denotes the conditional (on the original data) cumulative distribution function (cdf) of
Qbr.

Remark 4.1. The key feature of the wild bootstrap is Step 1, where the bootstrap
shocks, "bt , in (4.1) are generated by multiplying the residuals "̂t by a scalar IID(0,1)
sequence. This allows the bootstrap shocks to replicate the pattern of heteroskedas-
ticity present in the original shocks since, conditionally on "̂t, "bt is independent over
time with zero mean and variance matrix "̂t"̂

0
t. Also, conditionally on the data, the

bootstrap partial sum T�1=2
PbTuc

i=1 "
b
t = T

�1=2PbTuc
i=1 "̂twt has mean zero, independent

increments and variance T�1
PbTuc

t=1 "̂t"̂
0
t = u� + op (1), � the average conditional vari-

ance; cf. Remark 2.1. Finally notice that, due to the normality assumption on wt, the
bootstrap partial sum is (conditionally on the original data) exact Gaussian4.

Remark 4.2. Observe that, due to the (exact) invariance of Qr with respect to �,
we need not add an estimate of the estimated deterministic component, �Dt, to the
right member of (4.2) as is done in, for example, Swensen (2006). Moreover, since Qr
is similar (exact similar under cases (ii) and (iii) of Remark 3.2 and asymptotically
similar under case (i)) with respect to the initial values we may set these to zero in our
recursive scheme. As an alternative to (4.2) one could use the recursion

�Xb
t := �̂�̂

0
Xb
t�1 + �̂1�X

b
t�1 + :::+ �̂k�1�X

b
t�k+1 + �̂Dt + "

b
t , t = 1; :::; T

with initial values, Xb
t := Xt, t = �k + 1; :::; 0. In the restricted trend case, �̂ :=

(�̂01; �̂
0
2)
0 with �̂1 and �̂2 the PML estimates of �1 and �2 obtained from the model

estimated under H(r) and H(p), respectively, while in the restricted constant case �̂ :=
�̂1, with �̂1 the PML estimates of �1 obtained from the model estimated under H(r);
cf. Swensen (2006). In unreported Monte Carlo simulations we found no discernible

4As discussed in Remark 4.3 of CRT, we also investigated whether improved small sample accuracy
could be obtained by replacing the Gaussian distribution used for generating the pseudo-data in (4.1)
by an asymmetric distribution. Like CRT we found no discernible di¤erences between the �nite
sample properties of the bootstrap rank tests based on the Gaussian distribution, Mammen�s (1993)
two-point distribution or the Rademacher distribution, also consistent with evidence reported in Table
5 of Gonçalves and Kilian (2004,p.105).
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di¤erences between the �nite sample properties of these two approaches and so we have
adopted the simpler of the two.

Remark 4.3. As detailed in Remark 4.4 of CRT, the unknown cdf, Gbr;T (�), required
in Step 4 of Algorithm 1 can approximated through numerical simulation. This is done
by generating N (conditionally) independent bootstrap statistics, Qbn:r, n = 1; :::; N ,
and then computing the p-value as ~pbr;T := N

�1PN
n=1 I

�
Qbn:r > Qr

�
, and is such that

~pbr;T
a:s:! pbr;T as N !1. For further discussion of the wild bootstrap procedure outlined

in Algorithm 1 we refer the reader to the discussion given in Section 4.1 of CRT.

4.2 Asymptotic Theory for the Wild Bootstrap

The asymptotic validity of the wild bootstrap method outlined in Algorithm 1 under
conditional heteroskedasticity is now established in Theorem 3. In order to keep our
presentation simple, we demonstrate our result for the case of no deterministic variables.
The equivalence of the �rst-order limiting null distributions of the Qbr and Qr statistics
can also be shown to hold for cases (ii) and (iii) of Remark 3.2. Again this is a
straightforward extension of the results in Theorem 3 and is omitted in the interests
of brevity.

Theorem 3 Let the conditions of Theorem 1 hold. Then, under the null hypothesis
H(r), Qbr

w!p Qr;1. Moreover, pbr;T
w! U [0; 1].

Remark 4.4. A comparison of the result for Qbr in Theorem 3 with that given for
Qr in Theorem 1 demonstrates the usefulness of the wild bootstrap: as the number
of observations increases, the wild bootstrapped statistic has the same �rst-order null
distribution as the original test statistic. Consequently, the bootstrap p-values are
(asymptotically) uniformly distributed under the null hypothesis, leading to tests with
(asymptotically) correct size in the presence of conditional heteroskedasticity of the
form given in Assumption 2.

Remark 4.5. It can be shown that the sequential procedure of Johansen (1996),
see footnote 1, employed using the wild bootstrap Qbr, r = 0; :::; p � 1, test statistics
is consistent in the sense that it correctly selects the true co-integrating rank with
probability (1� �) in large samples (� denoting the nominal signi�cance level used in
each test in the procedure) in the presence of conditional heteroskedasticity satisfying
Assumption 2. The same can also be shown to be the case for the corresponding
sequential procedure based on the i.i.d. boostrap approach of Swensen (2006). See
the accompanying working paper, Cavaliere et al. (2009), for further details on this
together with Monte Carlo simulation evidence into the �nite sample performance of
the sequential procedures based on the asymptotic and bootstrap tests under a variety
of conditionally heteroskedastic models.
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Remark 4.6. Given the results in Theorem 3, it follows straightforwardly that the
limiting null distribution of the bootstrap maximum eigenvalue statistic, Qbr;max, coin-
cides with that given in Remark 3.3, so that again our wild bootstrap procedure will
deliver (asymptotically) correctly sized maximum eigenvalue co-integration tests under
the conditions of Theorem 3. The results of Remark 4.5 also apply for the sequential
procedure based on the bootstrap maximum eigenvalue statistic.

4.3 Swensen�s i.i.d. Bootstrap

The i.i.d. bootstrap method outlined in Swensen (2006) follows the same steps as the
wild bootstrap method outlined above in section 4.1, except that Step 1 of Algorithm
1 is replaced by the following:

Step 1: Generate T bootstrap residuals "st , t = 1; :::; T , as independent draws with
replacement from the centred residuals f"̂t � T�1

PT
i=1 "̂igTt=1.

The algorithm for the i.i.d. bootstrap rank tests then continues exactly as in Algorithm
1, but using the centred5 i.i.d. bootstrap residuals, "st , in place of the wild bootstrap
residuals, "bt . We denote the resulting i.i.d. bootstrap rank statistic by Q

s
r and the

associated i.i.d. bootstrap p-value as psr;T . The same conditions on the roots of the
equation jÂ� (z) j = 0 as were required for the wild bootstrap must also hold here, as
must the condition that j�̂0?�̂�̂?j 6= 0. Again any estimated root with modulus greater
than unity may again be shrunk to have modulus strictly less than unity.
Under the (homoskedastic) assumption that "t � i:i:d:(0;�) with �nite fourth mo-

ments, Swensen (2006) demonstrates that the i.i.d. bootstrap rank statistic Qsr repli-
cates the �rst-order asymptotic null distribution of the standard trace statistic, Qr of
(3.3). In Theorem 4 we now establish that the i.i.d. bootstrap method of Swensen
(2006) remains asymptotically valid under the weaker conditionally heteroskedastic
conditions placed on the innovations in this paper. This result is demonstrated for
the case of no deterministic variables. The equivalence of the �rst-order limiting null
distributions of the Qsr and Qr statistics under cases (ii) and (iii) of Remark 3.2 is again
a straightforward extension of the results in Theorem 4.

Theorem 4 Let the conditions of Theorem 1 hold. Then, under the null hypothesis
H(r), Qsr

w!p Qr;1. Moreover, psr;T
w! U [0; 1].

Remark 4.7. As discussed at the end of Section 4.1, the cdf of Qsr used in Step 4
of the bootstrap algorithm can again be approximated through numerical simulation.
Moreover, an i.i.d. bootstrap analogue of the maximum eigenvalue statistic can also be
obtained in an obvious way. Again it follows immediately from the results in Theorem
4 that this statistic has the same limiting null distribution as that given for Qr;max in
Remark 3.3.

5Notice that if the estimated unrestricted VAR contains a constant, then T�1
PT

t=1 "̂t = 0 and,
hence, the residuals would not need to be centred prior to re-sampling.

12



5 Finite Sample Simulations

In this section we use Monte Carlo simulation methods to compare the �nite sample
size and power properties of the PLR co-integration rank test of Johansen (1996) with
its wild bootstrap version proposed in Section 4 together with the corresponding i.i.d.
bootstrap test of Swensen (2006). The simulation model we consider generalises that
used by previous authors in that we are allowing for conditional heteroskedasticity in
the innovation process driving the VAR model.6

In sections 5.1, and 5.2 we follow Johansen (2002) and Swensen (2006), and consider
as our simulation DGP an I(1), possibly co-integrated, VAR(1) process of dimension
p. We allow the dimension of the VAR process to vary over p = 2; :::; 5, and consider
both the case of no co-integration (r = 0) [section 5.1], and of a single co-integrating
vector (r = 1) [section 5.2]. In section 5.3 we will subsequently report results for r = 0
in a VAR(2) model, thereby also investigating the �nite sample impact of higher-order
serial correlation.
The DGP considered in section 5.1 is the multivariate martingale process,

�Xt = "t; t = 1; :::; T (5.1)

initialised at X0 = 0, while a generalisation of this DGP to the non-co-integrated
VAR(2) case is detailed in section 5.3. In section 5.2, we report results for the co-
integrated VAR(1) model

�Xt = ��
0Xt�1 + "t; t = 1; :::; T

where � and � are p � 1 vectors; following Johansen (2002) and Swensen (2006), we
consider the parameter combinations, � := (1; 0; :::; 0)0 and � := (a1; a2; 0; :::; 0)

0. This
leads to the model

�X1;t = a1X1;t�1 + "1;t

�X2;t = a2X1;t�1 + "2;t (5.2)

�Xi;t = "i;t, i = 3; :::; p:

In our reported simulations we set a1 = a2 = �0:4, as in Swensen (2006, Table 2). The
initial value of the stationary component in (5.2), X1;0, is drawn from the corresponding
invariant distribution, while the remaining components are initialised at zero.

6Complementary results, comparing the properties of the sequential approach of Johansen (1996)
when applied using the asymptotic PLR test and the two bootstrap analogue methods are reported
in the accompanying working paper, Cavaliere et al. (2009). These results show that a sequential
method based on wild bootstrap PLR tests works well under conditional heteroskedasticity when
r = 0, avoiding a strong tendency to over-estimate the co-integrating rank displayed by the analogous
procedures based on the i.i.d. bootstrap PLR and asymptotic PLR tests. The simulations in Cavaliere
et al. (2009) also highlight the encouraging result that the wild bootstrap Qb0 test does not lose
power against r = 1 relative to the other tests, despite, as will be shown in what follows, displaying
far superior size properties than the other tests in the presence of conditional heteroskedasticity; cf.
Tables 1 and 2.
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In both (5.1) and (5.2), "t := ("1;t; :::; "p;t)0 is a p-dimensional martingale di¤erence
sequence with respect to the �ltration Ft := � ("t; "t�1; :::). Following van der Weide
(2002), we assume that "t may be written as the linear map

"t = �et (5.3)

where � is an invertible p� p matrix which is constant over time, while the p compo-
nents of et := (e1;t; :::; ep;t)0 are independent across i = 1; :::; p. In the case where the
individual components follow a standard GARCH(1; 1) process (as is the case with
Models A and B below), van der Weide (2002) refers to "t as a GO-GARCH(1; 1)
process. Notice that, by de�nition, the PLR statistic does not depend on the matrix
�, as the eigenvalue problem in (3.2) has the same eigenvalues upon re-scaling (as can
be seen by simply pre- and post-multiplying by ��1 in (3.2)). This allows us to set
� = Ip in the simulations, without loss of generality.
Within the context of (5.3) we consider for the individual components of et the

univariate innovation processes and parameter con�gurations used in Section 4 of
Gonçalves and Kilian (2004), to which the reader is referred for further discussion.
These are as follows:

� Model A is a standard GARCH(1; 1) process driven by standard normal innova-
tions of the form eit = h

1=2
it vit, i = 1; :::; p, where vit is i.i.d. N(0; 1), independent

across i, and hit = ! + d0e
2
it�1 + d1hit�1, t = 0; :::; T . Results are reported for

(d0; d1) 2 f(0:5; 0:0); (0:3; 0:65); (0:2; 0:79); (0:05; 0:94)g.

� Model B is the same as Model A except that the vit, i = 1; :::; p, are independent
i.i.d. t5 (normalised to unit variance) variates.

� Model C is the exponential GARCH(1; 1) (EGARCH(1; 1)) model of Nelson
(1991) with eit = h

1=2
it vit; ln(hit) = �0:23 + 0:9 ln(hit�1) + 0:25[jv2it�1j � 0:3vit�1],

with vit � i.i.d. N(0; 1), independent across i = 1; :::; p.

� Model D is the asymmetric GARCH(1; 1) (AGARCH(1; 1)) model of Engle
(1990) with eit = h

1=2
it vit; hit = 0:0216+0:6896hit�1+0:3174[eit�1�0:1108]2, with

vit � i.i.d. N(0; 1), independent across i = 1; :::; p.

� Model E is the GJR � GARCH(1; 1) model of Glosten et al. (1993) with
eit = h

1=2
it vit; hit = 0:005 + 0:7hit�1 + 0:28[jeit�1j � 0:23eit�1]2, with vit � i.i.d.

N(0; 1), independent across i = 1; :::; p.

� Model F is the �rst-order AR stochastic volatility model: eit = vit exp (hit);
hit = �hit�1 + 0:5�it, with (�it; vit) � i.i.d. N(0; diag(�2� ; 1)), independent across
i = 1; :::; p. Results are reported for (�; ��) = f(0:936; 0:424); (0:951; 0:314)g.

The reported simulations were programmed using the rndKMn function of Gauss
7.0. All experiments were conducted using 10; 000 replications. The sample sizes were
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chosen within the set f50; 100; 200g and the number of replications used in the wild
bootstrap algorithm was set to 399. All tests were conducted at the nominal 0:05
signi�cance level. For the reasons outlined on page 12 of RHD, relating to similarity
with respect to initial values (see also Nielsen and Rahbek, 2000), the VAR model
was �tted with a restricted constant (i.e. deterministic case (ii) of Remark 3.2), when
calculating all of the tests. For the standard PLR tests we employed asymptotic critical
values as reported in Table 15.2 of Johansen (1996).
We have shown that the standard PLR Qr test of Johansen (1996), together with

the wild bootstrap Qbr test outlined in section 4.1 and the i.i.d. bootstrap Q
s
r test of

Swensen (2006) are all asymptotically valid under conditional heteroskedastiticy of the
form given in Assumption 2. However, and unlike the wild bootstrap re-sampled data
in (4.1), the i.i.d. re-sampled data will clearly not preserve the temporal ordering in
the conditional heteroskedasticity present in the original data. We would therefore
expect its �nite sample performance to be quite similar to that of the asymptotic tests
and to not perform as well as the wild bootstrap tests in the presence of conditional
heteroskedasticity.

5.1 The Non-Co-Integrated Model (r = 0)

Table 1 reports the �nite sample (empirical) size properties of both the standard PLR
test, Q0, and its wild and i.i.d. bootstrap analogue tests, Qb0 and Q

s
0 respectively, for

H(0) : r = 0 against H(p) : r = p, for p = 2; :::; 5, in the presence of conditional
heteroskedasticity of the types outlined above.

Table 1 about here

Under constant conditional variances (the cases where d0 = d1 = 0 in Models A and
B) it can be seen from the �rst two panels of Table 1 that both the Qb0 and Q

s
0 tests

display �nite sample sizes which are closer to the nominal level than the standard Q0
test based on asymptotic critical values (the wild bootstrap can, however, be a little
undersized); for example, in the case of Model A for p = 5, while the standard PLR
test has size of 8:1% for T = 100, the corresponding wild and i.i.d. bootstrap tests have
size of 4:4% and 4:7% respectively.
It is, however, where the innovation process displays conditional heteroskedasticity

that the bene�ts of the wild bootstrap over the other tests become clear. The results in
Table 1 show that both the Q0 and Qs0 tests can display quite unreliable size properties,
even for samples as large as T = 200, in the presence of conditional heteroskedastic-
ity. In contrast, the size properties of our wild bootstrap PLR test, Qb0, seem largely
satisfactory throughout.
The size distortions seen in the Q0 and Qs0 tests are generally worse, other things

being equal, the higher is the VAR dimension, p. For example, in the case of Model
A with d0 = 0:3, d1 = 0:65 and T = 200, the Q0 and Qs0 have size of 10% and 9.3%,
respectively, for p = 2 rising to 13:9% and 10:9%, respectively, for p = 5. In contrast,
here theQb0 test has size of 5.6% and 5.7% for p = 2 and p = 5, respectively. The precise
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model of conditional heteroskedasticity can also make quite a substantial di¤erence to
the size properties of the tests. For example, comparing the results for Models A and
B, we see that t5 innovations tend to cause rather less size in�ation than is seen for
standard normal innovations. Of all the models considered, it is the autoregressive
stochastic volatility case, Model F, which has the strongest impact on the size of the
tests. The two parameter con�gurations both imply relatively strong serial dependence
in the conditional variance of the innovation process (although in both cases the process
does formally satisfy Assumption 2). Here the standard PLR test, Q0, displays size of
between around 20% to 40% depending on p and the parameter con�guration, while the
i.i.d. bootstrap test, Qs0, performs only slightly better. Although the wild bootstrap
test, Qb0, does also show a degree of over-size under Model F, it still represents an
enormous improvement on the size properties of the other tests. Moreover, what size
distortions there are in the wild bootstrap tests are ameliorated, other things equal, as
the sample size is increased. Notice that this last observation is not the case for the
Q0 and Qs0 tests where the size distortions increase as the sample size increases. Very
signi�cant over-sizing, although not as bad as for Model F, is also seen for the Q0 and
Qs0 tests in each of Models C, D and E. Again here the wild bootstrap test is much
better behaved throughout.

5.2 The Co-Integrated Model (r = 1)

Consider next the results in Table 2 for the empirical sizes of the standard PLR Q1
test and its i.i.d. and wild bootstrap analogues. The results here are very much in line
with those seen in Table 1 with the standard PLR and its i.i.d. bootstrap analogue
test not displaying anything like adequate size control in the presence of conditional
heteroskedasticity. The observed size distortions again worsen, others things being
equal, as p is increased. Again the worst distortions are seen in these tests under
Model F, with serious over-size problems also seen under Models C, D and E. For the
GO � GARCH(1; 1) case (Models A and B) the observed size distortions are again
generally smaller under t5 innovations than N(0; 1) innovations. In contrast to the
standard and i.i.d. bootstrap PLR tests, the wild bootstrap PLR test displays very
good size control throughout, with size only ever exceeding 7% in the case of Model
F, where although still a little over-sized it does, nonetheless, still represent a massive
improvement over the other tests.

Table 2 about here

5.3 The Non-Co-Integrated VAR(2) Model

To conclude this section, and following Johansen (2002, p.1940), we report some ad-
ditional results investigating the �nite sample behaviour under the null hypothesis of
tests for � = 0 in the VAR(2) model:

�Xt = �Xt�1 + �1�Xt�1 + "t; t = 1; :::; T (5.4)
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where �1 = �Ip with �1 < � < 1. This model is an interesting extension of the
conditionally heteroskedastic VAR(1) model considered in sections 5.1 and 5.2 because
it allows for higher-order serial correlation. As regards the innovation term, "t, we
again considered each of Models A-F, reporting results for a subset of the parameter
con�gurations reported for Models A, B and F in sections 5.1 and 5.2.7 A restricted
constant was again included in the estimated model. Finally, we initialized the process
by drawing �X0 from its corresponding invariant distribution.
In Table 3 we consider �rst the case where � = 0:5, which allows for a moderate

degree of higher-order stationary serial correlation in the process. Results are reported
for both the standard PLR test and its wild and i.i.d. bootstrap analogue tests for
H(0) : r = 0 against H(p) : r = p, for p = 2; :::; 5.

Table 3 about here

In general, it can be seen from the results in Table 3 that higher-order stationary
serial correlation tends to in�ate the �nite sample size of the standard PLR test, Q0,
further above its nominal level, relative to the corresponding results for the VAR(1)
case in Table 1. This is true in both the conditionally homoskedastic and conditionally
heteroskedastic cases. Both bootstrap tests also display a degree of �nite sample over-
size. However, the size distortions seen in the bootstrap tests are much smaller than
those observed for the Q0 test, and in general the wild bootstrap Qb0 test displays
smaller size distortions than the i.i.d. bootstrap Qs0 test. To illustrate, for p = 4 in the
i.i.d. innovations case (Model A with d0 = d1 = 0) for a sample of size T = 50 the Q0,
Qb0 and Q

s
0 tests have size of 41.5%, 8.5% and 8.9%, respectively, as compared to 8.7%,

4.3% and 4.8%, respectively, for the VAR(1) case in Table 1. For all three tests the
observed over-sizing is smaller for T = 200 than for T = 50. Indeed, both bootstrap
tests display size close to the nominal level when T = 200. As a second example,
under Model C for p = 5, the Q0, Qb0 and Q

s
0 tests have size of 73%, 12.5% and 15.6%,

respectively, for T = 50 (22.5 %, 6.5% and 10.2%, respectively, for T = 200) compared
with 20%, 7.1% and 10.1%, respectively, (14.7%, 5.7% and 11.2%, respectively) in the
corresponding VAR(1) model.

Table 4 about here

The condition that �1 < � < 1 ensures that the process Xt is I(1) and so does not
violate Assumption 1. However, as � tends towards 1, so Xt will increasingly resemble
an I(2) process for a given (�nite) sample size and, as a consequence, the rejection
probability of the asymptotic test will tend towards to unity, rendering the asymptotic
I(1) critical values inappropriate.8 We can therefore investigate the impact on the

7This was done in the interests of space, the additional results qualitatively adding very little to
what is reported.

8In this case, approaches based on a Bartlett correction tend to also perform badly, primarily
because the correction factor over-corrects, leading to tests with size close to zero. See e.g. Johansen
(2002,p.1941).
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behaviour of the bootstrap tests in this �near I(2)�case by considering the e¤ects of
� = 0:9. These results are reported in Table 4. As would be expected, stationary roots
close to unity cause further oversizing in the standard asymptotic test Q0, relative
to both the corresponding results for the VAR(1) case in Table 1 and to those for
the moderate serially correlated case of Table 3. Although both bootstrap tests are
also signi�cantly oversized, they o¤er a major improvement over the asymptotic test.
Again, the wild bootstrap Qb0 test behaves better than the i.i.d. bootstrap Q

s
0 test. To

illustrate, consider the case of i.i.d. innovations for p = 4. For T = 50, the Q0, Qb0
and Qs0 tests have size of 93.6%, 31.7% and 35.4%, as compared to 8.7%, 4.3% and
4.8%, respectively, for the VAR(1) case in Table 1, and to 73%, 12.5% and 15.6%,
respectively, for the moderate serial correlation case in Table 3. The degree of over-size
ameliorates when the sample size is increased to T = 200, again as would be expected.
However, while the size of the Q0 test for � = 0:9 remains worryingly high in this
case at 46.4%, both bootstrap tests display reasonably decent sizes with that of Qb0 the
better of the two at 11.2%. While undoubtedly not perfect, this is certainly a huge
improvement on the size of the standard Q0 test. As for case of Model C with p = 5,
see the discussion above relating to Table 3, for T = 200 the size of the Q0 test is
75.6%, while that of Qb0 is 17.7%.
Overall, both bootstrap tests deal much better with higher-order serial correlation

than does the standard Q0 test. Moreover, and as with the results in Table 1 for the
VAR(1) case, in the VAR(2) case the results in Tables 3 and 4 show that the wild
bootstrap Qb0 test again displays far more robust �nite sample size properties than
either the Q0 or the Qs0 test in the presence of conditional heteroskedasticity. Indeed,
for the VAR(2) case with � = 0:9 reported in Table 4, the Qb0 test displays almost no
variation in its size properties across the di¤erent models of volatility reported, other
things held equal.

6 Empirical application

In this section we illustrate the methods discussed in this paper with a short application
to the term structure of interest rates; see Campbell and Shiller (1987) for an early
reference. According to traditional theory, aside from a constant or stationary risk
premium, long-term interest rates are an average of current and expected future short
term rates over the life of the investment. Hence, provided interest rates are well
described as I(1) variables, bond rates at di¤erent maturities should be driven by a
single common stochastic trend, with the spreads between rates at di¤erent maturities
being stationary. Although early studies tend to corroborate this view, see, for example,
Hall et al. (1992), more recent research, based on broader sets of maturities, suggests
that yields are better characterised bymore than one common trend, re�ecting possible
non-stationarities in the risk premia and additional risk factors, such as the slope and
curvature of the yield curve; see, e.g., Diebold, Ji and Li (2007) and Giese (2006).
We consider monthly interest rate data from the United States, Canada, the United
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Kingdom, and Japan, taken from the OECD/MEI database. For each country a single
long-run interest rate, Lt, and a variety of short-run rates, Sit, were used in the co-
integration analysis. Speci�cally, these were as follows. United States (1978:1�2002:12):
Lt = government composite bond yield (> 10 years); S1t = federal funds rate; S2t =
prime rate; S3t = rate on certi�cates of deposit; S4t = US dollar in London, 3-month
deposit rate. Canada (1982:6�2002:12): Lt = benchmark bond yield (10 years); S1t =
o¢ cial discount rate; S2t = overnight money market rate; S3t = rate on 90-day deposits.
United Kingdom (1978:1�2002:12): Lt = yield on 10-year government bonds; S1t =
London clearing banks rate; S2t = overnight interbank rate; S3t = rate on 3-month
interbank loans. Japan (1989:1�2002:12): Lt = yield on interest bearing government
bonds (10 years); S1t = o¢ cial discount rate; S2t = un-collateralized overnight rate;
S3t = rate on 90-day certi�cates of deposit.
For each country let Xt := (Lt; S1t; :::; Sp�1;t)

0, where p = 4 for all but the U.S.
where p = 5. As is standard, we �t a VAR model for Xt with restricted intercept; that
is, D2t = 0 and D1t = 1 in (2.5). The VAR was estimated using Gaussian maximum
likelihood under the assumption of constant volatility; cf. Section 2. For each country
the number of lags, k, was estimated using the BIC: for the U.K., Japan and the U.S.
k = 2 was chosen, while for Canada k = 1 obtained. For each country the residuals
from the �tted VAR(k) model were subjected to both single-equation and vector diag-
nostic tests against non-normality, GARCH(1,1), and general heteroskedasticity (using
White�s test both with and without cross-variable terms).9 In the case of the U.K.
and the U.S. all of the single-equation and vector tests rejected at the 1% level. For
Canada this was also the case, except that two of the single equation GARCH(1,1)
were not signi�cant. For Japan, all of the vector tests rejected at the 1% level, as did
all of the single-equation normality tests. However, none of the GARCH(1,1) tests were
signi�cant, while White�s single-equation tests delivered three (two) out of four signif-
icant outcomes at the 1% level when cross-variable terms were (were not) included. In
summary, the interest rate data for all of the countries considered display (to varying
degrees) statistically signi�cant evidence of heteroskedasticity.

Table 4 about here

Table 4 reports the results of the standard, wild and i.i.d. bootstrap co-integration
rank tests for each country. For the standard tests (asymptotic) p-values were computed
as suggested in MacKinnon, Haug and Michelis (1999). For both of the bootstrap
methods the number of bootstrap replications was set to 399.
For each country, the standard sequential procedure detects two co-integrating re-

lations at any conventional signi�cance level, with a third co-integration relation being
signi�cant at the 10% level (with a p-value of 0:08) in the case of the U.S. data. The
same conclusions are drawn using the corresponding procedure based on the i.i.d. boot-
strap tests of Swensen (2006), except that the third co-integrating vector in the case
of the U.S. is deemed insigni�cant at the 10% level (with a p-value of 0.12). In line

9The complete set of diagnostic test results can be obtained from the authors on request.
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with what would be expected from the Monte Carlo simulation results in section 5
for series displaying a signi�cant degree of heteroskedasticity, the wild bootstrap-based
procedure consistently delivers a higher p-value for a given hypothesised co-integrating
rank. For both the U.K. and Canada this does not lead us to a di¤erent conclusion on
the co-integrating rank (of two) as was drawn from the standard and i.i.d. bootstrap
tests. However, for both Japan and the U.S. only one co-integrating vector is uncov-
ered by the wild bootstrap procedure, implying the presence of four common trends
in the �ve-dimensional U.S. system, and three common trends in the four-dimensional
Japanese system.
These results all therefore contradict the traditional view of the expectation hypoth-

esis of the term structure, suggesting the presence of additional risk factors, since the
hypothesis of p�1 stationary relations (p being the number of interest rates considered)
is never accepted, thereby providing further support in favour of recent multi-factor
theories of the term structure; see, for example, Diebold, Ji and Li (2007). It is worth
noting, however, that in the case of the U.S. data the p-value for testing p� 2 against
p� 1 co-integrating relations is 12% using the asymptotic test and 15% using the i.i.d.
bootstrap test. For the wild bootstrap this p-value rises sharply to 62%. The case
of the U.S. data shows the biggest di¤erences between the wild bootstrap procedure
and those based on either the asymptotic test or the i.i.d. bootstrap tests of Swensen
(2006). Given the signi�cant heteroskedasticity found in the U.S. data (indeed the
outcomes of the diagnostic test statistics were consistently much larger for the U.S.
than for the other countries considered) the inferences from the wild bootstrap-based
procedure would appear to be the most reliable.

7 Conclusions

In this paper we have demonstrated that the conventional co-integration rank tests
of Johansen (1996) retain their usual limiting null distributions in the case where the
innovations follow a globally stationary, conditionally heteroskedastic (martingale dif-
ference) process. We have also proposed wild bootstrap-based implementations of the
co-integration rank tests in order to exploit the information in sample on the condi-
tional heteroskedasticity, where present. As with any bootstrap procedure, no tables
of critical values are required as the procedure automatically delivers a p-value for the
hypothesis being tested. Both our proposed wild bootstrap scheme and the i.i.d. boot-
strap scheme of Swensen (2006) were demonstrated to deliver rank statistics which
share the same �rst-order limiting null distributions as the corresponding standard
rank statistic. Monte Carlo evidence presented suggests that the proposed wild boot-
strap co-integrating rank tests perform very well in �nite samples, being considerably
more robust than both the standard PLR tests based on asymptotic critical values
and i.i.d. residual-based bootstrap analogues of the PLR tests, when the innovations
are conditionally heteroskedasticity. That the i.i.d. residual-based bootstrap test is
signi�cantly better sized than the asymptotic test is in line with results established in
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the stationary linear regression case which show that the i.i.d. bootstrap can lead to
asymptotic re�nements even if the heteroskedasticity a¤ecting the original data is not
replicated into the bootstrap shocks (see Liu, 1988).
We conclude with a suggestion for further research. The analysis in this paper has

been conducted under the assumption that the vector of time series under investigation
are each either I(0) or I(1). This rules out the possibility of near-integration amongst
the series, as is considered in, inter alia, Elliott (1998) and Pesavento (2004). An
analysis of the bootstrap (P)LR co-integration rank tests under near-integration is be-
yond the scope of the present paper but would constitute an important and worthwhile
extension of the results presented here. We note that the co-integrating rank selection
procedure outlined in Cheng and Phillips (2008,2009) does consistently estimate the
co-integrating rank under near-integration.
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A Appendix

This section contains the proofs of the main theorems given in the paper. Proofs for
Theorems 1 and 2 are collected in section A.1. The proof of the validity of the wild
bootstrap co-integration test is reported in section A.2, while the corresponding result
for the i.i.d. bootstrap test of Swensen (2006) is detailed in section A.3.

A.1 Proof of Theorems 1 and 2

Under the stated assumptions, the process Xt has the representation below in Lemma
A.1 which is essential for the proofs of Lemmas A.2 and A.3. Lemma A.1 generalises
the usual Granger-type representation in Johansen (1996) in that, rather than being
i:i:d:, the "t sequence is now, by assumption, a (possibly non-stationary) MDS.
Lemmas A.2 and A.3 immediately imply that the proofs of Theorem 11.1 and

Lemma 13.1 in Johansen (1996) hold, establishing Theorem 1 and 2 respectively. �
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Lemma A.1 Under the conditions of Theorem 1,

Xt = C
tX
i=1

"i + St + C0: (A.1)

Here the (p� p)�dimensional matrices C := �? (�0?��?)
�1 �0? and C0 := C(Ip;�	)X0.

De�ne the (r + p(k � 1))-dimensional autoregressive process X�t where X�t := �0Xt

for k = 1; and otherwise, X�t :=
�
X 0
t�;�X

0
t; :::;�X

0
t�k+1

�0
: Then the p-dimensional

process St := (�;	)QX�t, where X�t has the MA(1) representation, X�t = �(L) �t =P1
i=0�

i�t�i: Here �t := (�; Ip; 0; :::; 0)
0 "t and the spectral radius of � is smaller than

one; � (�) < 1. The (r + p(k � 1)) � (r + p(k � 1)) dimensional matrix Q is non-
singular.

Proof: With Xt :=
�
X 0
t; :::; X

0
t�k+1

�0
the system can be written in companion form

as,
�Xt = AB0Xt�1 + et (A.2)

with et := ("0t; 0; :::; 0)
0, X0 �xed and

A :=

0BBBB@
� �1 �2 ::: �k�1
0 Ip 0 ::: 0
0 0 Ip ::: 0
::: ::: ::: ::: :::
0 0 0 ::: Ip

1CCCCA B :=

0BBBB@
� Ip 0 ::: 0
0 �Ip Ip ::: 0
0 0 �Ip ::: 0
::: ::: ::: ::: :::
0 0 0 ::: �Ip

1CCCCA : (A.3)

Note that with X�t := B0Xt, � :=
�
Ir+p(k�1) + B0A

�
; then X�t = �X�t�1 + B0et. By

Assumption 1, � (�) < 1 and X�t has the stated MA(1) representation. Standard
arguments and recursions give,

Xt = C
tX
i=1

ei + St + CX0 (A.4)

where C := B?(A0?B?)�1A0?; and St := A (B0A)�1X�t. As Xt = (Ip; 0; :::; 0)Xt, the
results in Lemma A.1 hold with St = (Ip; 0; :::; 0)St = (�;	)QX�t, Q := (B0A)�1.
Noting that,

A? = (Ip;��1; :::;��k�1)0 �?, B? = (Ip; :::; Ip)0 �?
the various expressions follow by simple algebraic identities. �

Let 
�� := plim
T!1

T�1
PT

t=1 �
0Z1tZ

0
1t�, 
�i := plim

T!1
T�1

PT
t=1 �

0Z1tZ
0
it for i = 0; 2, and


ij := plim
T!1

T�1
PT

t=1 ZitZ
0
jt, i; j = 0; 2. By Lemma A.1, these are well-de�ned as

in�nite sums in terms of exponentially decaying coe¢ cients. E.g., since � (�) < 1;


�0 = �
0 (�;	)Q

1X
i=0

�
�i (�; Ip; 0; :::; 0)

0� (�; Ip; 0; :::; 0)�
i0� (�;	)0 .

In terms of these moment matrices we have the following results.
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Lemma A.2 Under the conditions of Theorem 1, and as T !1,

S00
p! �00, �

0S10
p! ��0 and �

0S11�
p! ��� (A.5)

where �ij = 
ij � 
i2
�122 
2j, i; j = 0; 1; �. Moreover, the following identities hold,

�00 = ���0 + �; �0� = ���� (A.6)

and
��100 � ��100 �(�0��100 �)�1�0��100 = �?(�0?��?)�1�0?: (A.7)

Proof: Consider �0S10 = �0M10 � �0M12M
�1
22 M20. Using Lemma A.1 and the fact

that, by de�nition,

�Xt = ��
0Xt�1 +	Ut + "t = (�;	)X�t�1 + "t; (A.8)

the �rst term equals,

�0M10 =
1

T

TX
t=1

�0Xt�1�X
0
t =

1

T

TX
t=1

�0Xt�1 ((�;	)X�t�1 + "t)0 .

As mentioned in section 2, the strong law of large numbers in Hannan and Heyde
(1972) can be applied by Assumption 2 and the fact that the coe¢ cients �i in the
representation for X�t in are exponentially decreasing by Lemma A.1. We then obtain
directly that:

�0M10
p! 
�0 := �

0 (�;	)Q
1X
i=0

�
�i (�; Ip; 0; :::; 0)

0� (�; Ip; 0; :::; 0)�
i0� (�;	)0 :

Likewise, the terms �0M12, M22 and M20 converge in probability and we conclude that

�0S10
p! ��0 := 
�0 � 
�2
�122 
20 .

Identical arguments lead to the other results in (A.5).

The identities in (A.6) follow by post-multiplying (A.8) by (the transpose of) �0Xt�1;�Xt

and Ut respectively, taking averages and applying the law of large numbers as above,
and solving the resulting system of equations. To prove the identity in (A.7) use the
projection identity

Ip = �
�1
00 �(�

0��100 �)
�1�0 + �?(�

0
?�00�?)

�1�0?�00

and �0?�00 = �
0
?�; see (A.6). �
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Lemma A.3 De�ne the (p� r)-dimensional process,

G(u) := �0?CW (u), (A.9)

where W (�) is a p-dimensional Browian motion with covariance �. Then under the
conditions of Theorem 1, as T !1,

1p
T
�0?XbTuc

w! G(u) (A.10)

�0?S10�? = �
0
?S12�?

w!
Z 1

0

G (s) dW (s)0 �? (A.11)

1

T
�0?S11�?

w!
Z 1

0

G(s)G(s)0ds (A.12)

and furthermore,
p
T�0S10�? =

p
T�0S1"�?

w! Nr�p�r(0;��� 
 �0?��?) (A.13)

�0S11�? 2 Op(1). (A.14)

Proof: The result in (A.10) holds by using the FCLT in Brown (1971) (see the
discussion in Remark 2.2) applied to "t as Lemma A.1 implies directly that �0?XbT �c =

�0?C
PbT �c

1 "t + op(
p
T ). To prove (A.11) note that

�0?S1" = �
0
?M1" � �0?M12M

�1
22 M2"

where M1" := T
�1PT

t=1�Xt"
0
t. Consider �rst �

0
?M1" and use the representation of Xt

given in (A.1) to see that

�0?M1" =
1

T

�
�0?C

XT

t=1
(
Xt�1

i=1
"i)"

0
t + �

0
?

XT

t=1
St�1"

0
t + �

0
?C0

XT

t=1
"0t

�
which by Hansen (1992), the LLN and the fact that "t and "t�1 are uncorrelated, weakly
converges to

R 1
0
G (s) dW (s)0. Next, M"2 := T

�1PT
t=1 "tU

0
t tends to zero in probability

by the law of large numbers. Since �0?M12 2 Op(1) andM22 converges in probability by
the law of large numbers, we conclude that (A.11) holds. The result in (A.12) follows
immediately from (A.10) and the continuous mapping theorem. Finally (A.13) holds
by applying the central limit theorem to the MDS �0Xt�1"

0
t, rewriting S1" as above.�

A.2 Proof of Theorem 3

While our results are new and generalize the results in Swensen (2006), we closely
follow the sequence of arguments in Swensen (2006). As there we use P � to denote
the bootstrap probability and likewise E� to denote expectation under P �. Thus, as
in Swensen (2006, proof of Proposition 1), the weak convergence in probability result
in Theorem 3, Qbr

w!p Qr;1, can be shown to hold by using Lemmas A.6 and A.7
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below. These extend Lemmas A.2 and A.3 in the proof of Theorem 1 to the case of
the wild bootstrap data. Speci�cally, Lemmas A.4, A.5, A.7 and A.6 below extend and
generalize Lemmas 1, S1 and S2 used in Swensen (2006, proof of Proposition 1) for IID
bootstrap shocks.

Establishing thatQbr
w!p Qr;1 impliesGbr;T (�)! Gr;1 (�), uniformly in probability, where

Gr;1 denotes the cumulative distribution function of Qr;1. Then, using the same ar-
guments as in the proof of Theorem 5 in Hansen (2000b), it is entirely straightforward
to prove that pbr;T

w! U [0; 1] given the foregoing results. This completes the proof.

We now move to establishing the intermediate lemmas referred to above, establish-
ing a Granger-type representation and an invariance principle for the bootstrap data,
analogous to those given for the original data in Lemmas A.1 and A.3 respectively.

Lemma A.4 Under the conditions of Theorem 1,

Xb
t = Ĉ

tX
i=1

"bi + T
1=2Rbt

where

Ĉ := (Ip; 0; :::; 0) bB?(bA0?bB?)�1bA0 = �̂?(�̂0?�̂�̂?)�1�̂0?
Rbt := (�̂; 	̂)(bB0bA)�1 t�1X

i=0

�̂i(T�1=2bB0ebt�i)
and where for all � > 0, P �

�
maxt=1;:::;T



Rbt

 > ��! 0 in probability as T !1.

Proof: From the proof of Lemma A.1 with Xbt :=
�
Xb0
t ; :::; X

b0
t�k+1

�0
and Xb0 := 0 we

�nd directly as in (A.4) that Xb
t = (Ip; 0; :::; 0)Xbt has the representation,

Xb
t = Ĉ

tX
i=1

"bi + T
1=2Rbt

where Ĉ and Rbt as as de�ned in Lemma A.1, and where �̂ := (Ipk + bB0bA) and 	̂ :=
(�̂1; :::; �̂k�1). Note that in the de�nition of Rbt the sum is not in�nite as the bootstrap
residuals are de�ned for t � 1 only. The matrices bA and bB are de�ned as A,B of (A.3)
with � and � replaced by the corresponding estimators �̂; �̂, and ebt :=

�
"b0t ; 0; :::; 0

�0
.

The proof is then completed along the same lines as the proof of Lemma A.4 in CRT;
see the accompanying working paper, Cavaliere et al. (2009), for details. �

Lemma A.5 Under the conditions of Theorem 1,

SbT (�) :=
1

T 1=2

bT �cX
t=1

"bt
w!p W (�) .
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Proof: Paralleling arguments made in the proof of Lemma A.5 in CRT, the stated
result follows on establishing pointwise convergence for T�1

PbTuc
t=1 "t"

0
t ! u�, which

indeed follows by the law of large numbers. �

Lemma A.6 Let G (�) be de�ned as in (A.9). Then under the conditions of Theorem
1,

1p
T
�̂
0
?X

b
bTuc

w!p G(u) (A.15)

�̂
0
?S

b
10�? = �̂

0
?S

b
12�?

w!p

Z 1

0

G (s) dW (s)0 �? (A.16)

1
T
�̂
0
?S

b
11�̂?

w!p

Z 1

0

G(s)G(s)0ds (A.17)

and furthermore,
p
T �̂

0
Sb10�̂? =

p
T �̂

0
Sb1"�̂?

w!p Nr�p�r(0;��� 
 �0?��?) (A.18)

�̂
0
Sb11�̂ 2 Op�(1) (A.19)

in probability as T !1.

Proof: Applying Lemma A.4 and Lemma A.5, the results hold as in Lemma S2 of
Swensen (2006). �

Lemma A.7 Under the conditions of Theorem 3,

P �
�

Sb00 � �00

 > ��! 0 (A.20)

P �
�


Sb01�̂ � �0�


 > ��! 0 (A.21)

P �
�


�̂0Sb11�̂ � ���


 > ��! 0 (A.22)

in probability as T !1.

Proof: In the interests of brevity, we only provide a proof of (A.20) here. Proofs of
(A.21) and (A.22) can be obtained on request. Notice that Sb00 =M

b
00�M b

02

�
M b
22

��1
M b
20

where theM b
ij are the product moments in terms of the bootstrap data. Hence, as noted

in Swensen (2006), (A.20) follows by establishing that P �
�

M b � �M



 > �� ! 0,
where

M :=
1

T

TX
t=1

�Xt�X0t, M b :=
1

T

TX
t=1

�Xbt�Xb0t and �M := plim
T!1

M

with Xt :=
�
X 0
t; :::; X

0
t�k+1

�0
and Xbt :=

�
Xb0
t ; :::; X

b0
t�k+1

�0
. By Lemma A.1, X�t =P1

i=0�
i�t�i and, hence, (A.2), implies that

�Xt = A
1X
i=1

�i�1 (�; I; 0; :::; 0)0 "t�i + (I; 0; :::; 0)
0 "t :=

1X
i=0

�i"t�i: (A.23)
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Similarly, �Xbt =
Pt�1

i=0 �̂i"
b
t�i; "

b
t = "̂twt. As previously noted in the proof of Lemma

A.4, for su¢ ciently large T , k�ik ;



�̂i


 < c�i for some generic constant c > 0, 0 < � <

1, uniformly in i. In particular, the coe¢ cients �i and �̂i are exponentially decreasing.

Next recall that �M =
P1

i=0 �i��
0
i; and observe that with �Mb := E�

�
M b
�
,

M b � �M



 � 

M b � �Mb



+ k�Mb � �Mk :

To see that k�Mb � �Mk tends to zero in probability rewrite �rst �Mb as:

�Mb = E�

 
1

T

TX
t=1

 
t�1X
i=0

�̂i"
b
t�i

! 
t�1X
i=0

�̂i"
b
t�i

!0!
=
1

T

TX
t=1

 
t�1X
i=0

�̂i"̂t�i"̂
0
t�i�̂

0
i

!

=
1

T

TX
t=1

 
T�tX
i=0

�̂i"̂t"̂
0
t�̂
0
i

!
=
1

T

TX
t=1

 1X
i=0

�̂i"̂t"̂
0
t�̂
0
i

!
� V1T ;

where V1T := 1
T

PT
t=1

�P1
i=T�t+1 �̂i"̂t"̂

0
t�̂
0
i

�
= op (1) : To see this, use the fact that

�i = A�iB, where A and B are constant matrices, see (A.23), and �̂i = Â�̂iB̂: In

particular, for su¢ ciently large T ,



�̂i


 � c�i, uniformly in i; and the result holds as

E k"tk4 < K <1 and
P1

i=T�t+1 �
T�i ! 0 as T !1. Next, observe that

1

T

TX
t=1

 1X
i=0

�̂i"̂t"̂
0
t�̂
0
i

!
� �M

=

 1X
i=0

�̂i

 
1

T

TX
t=1

"̂t"̂
0
t

!
�̂
0
i �

1X
i=0

�̂i��̂
0
i

!
+

 1X
i=0

�̂i��̂
0
i � �M

!
=: V2T + V3T .

It then follows that, as T !1,

kV2Tk �






1X
i=0

�
�̂i 
 �̂i

�










 1T

TX
t=1

"̂t"̂
0
t � �






 p! 0

by the result that T�1
PT

t=1 "̂t"̂
0
t

p! � (see Theorem 2), and because



P1

i=0

�
�̂i 
 �̂i

�



is of order one. Also,

vec (V3T ) =

 1X
i=0

�
�̂i 
 �̂i

�
�

1X
i=0

(�i 
 �i)
!
vec (�)

p! 0;

using, as above, the fact that �i = A�iB and �̂i = Â�̂iB̂.
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Finally, consider the term


M b � �Mb



. We have
M b =

1

T

TX
t=1

 
t�1X
i=0

�̂i"
b
t�i

! 
t�1X
i=0

�̂i"
b
t�i

!0

=
1

T

TX
t=1

 
t�1X
i=0

�̂i"
b
t�i

�
�̂i"

b
t�i

�0!
+
1

T

TX
t=1

 
t�1X

i;j=0;i6=j

�̂i"
b
t�i"

b0
t�j �̂

0
j

!
=:M b

1 +M
b
2 :

First, notice that

M b
1 � �Mb =

1

T

TX
t=1

 
t�1X
i=0

�̂i"̂t�i"̂
0
t�i�̂

0
i�t�i

!
with �t := (w2t � 1) an i.i.d. process with mean zero and �nite moments of all order.
Now, since

1

T

TX
t=1

 
t�1X
i=0

vec
�
�̂i"̂t�i"̂

0
t�i�̂

0
i�t�i

�!
=
1

T

TX
t=1

 
t�1X
i=0

�t�i

�
�̂i 
 �̂i

�
vec
�
"̂t�i"̂

0
t�i
�!

=
1

T

TX
t=1

�t

T�tX
i=0

�
�̂i 
 �̂i

�
vec ("̂t"̂

0
t) ;

it therefore follows that,

P �

 




 1T
TX
t=1

 
t�1X
i=0

�̂i"̂t�i"̂
0
t�i�̂

0
i�t�i

!




 > �
!
� 1

T 2�2

TX
t=1

E�






�t
T�tX
i=0

�
�̂i 
 �̂i

�
vec ("̂t"̂

0
t)







2

� E (�2t )

T�2

0@ 1
T

TX
t=1







T�tX
i=0

�
�̂i 
 �̂i

�
vec ("̂t"̂

0
t)







2
1A :

Thus, with cT = c+ op (1),

1

T

TX
t=1







 
T�tX
i=0

�̂i 
 �̂i

!
vec ("̂t"̂

0
t)







2

� cT
T

TX
t=1

kvec ("̂t"̂0t)k
2

which converges in probability as "t has bounded fourth order moment. This establishes
the result that M b

1 � �Mb = op (1). It can similarly be shown that M b
2 = op (1), which

completes the proof. �

A.3 Proof of Theorem 4

We proceed as in the proof of Theorem 3. Speci�cally, we establish that the results
in Lemmas A.4, A.5, A.7 and A.6 also hold for the i.i.d. bootstrap. Without causing
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confusion, we now denote by P � the i.i.d. bootstrap probability and likewise E� denotes
expectation under P �. Objects with a superscript s in what follows are understood to
be the i.i.d. bootstrap analogues of the corresponding wild bootstrap quantities with a
superscript b.
Consider �rst the analogue of Lemma A.4.

Lemma A.8 Under the conditions of Theorem 1, the i.i.d. bootstrap data satisfy,

Xs
t = Ĉ

tX
i=1

"si + T
1=2Rst

where for all � > 0, P � (maxt=1;:::;T kR�tk > �)! 0 in probability as T !1.

Proof: The arguments are identical to the proof of Lemma A.4 apart from the �nal
evaluation of P �

�
T�1=2maxt=1;:::;T



"bt

 > �� in the i.i.d. case. Using that under i.i.d.
bootstrap,

E� ("s0t "
s
t)
2
=
1

T

TX
t=1

("̂0t"̂t)
2
;

one �nds,

P �
�
T�1=2 max

t=1;:::;T
k"stk > �

�
� 1

�4T 2

TX
t=1

E� ("s0t "
s
t)
2
=

1

�4T 2

TX
t=1

("̂0t"̂t)
2
= Op

�
1

T

�
p! 0

�

That Lemmas A.5 and A.7 hold for the i.i.d. bootstrap case holds by Lemma S2 of
Swensen (2006). Finally, we need the analogue of Lemma A.7 for the i.i.d. case:

Lemma A.9 For the i.i.d. bootstrap and under the conditions of Theorem 4,

P � (kSs00 � �00k > �)! 0 (A.24)

P �
�


Ss01�̂ � �0�


 > ��! 0 (A.25)

P �
�


�̂0Ss11�̂ � ���


 > ��! 0 (A.26)

in probability as T !1.

Proof: Proceed as in the proof of Lemma A.7 to reach the identical inequality:

kM s � �Mk � kM s � �Msk+ k�Ms � �Mk :
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For evaluation of the last term, re-write �Ms as:

�Ms = E�

 
1

T

TX
t=1

 
t�1X
i=0

�̂i"
s
t�i

! 
t�1X
i=0

�̂i"
s
t�i

!0!
=
1

T

TX
t=1

 
t�1X
i=0

t�1X
j=0
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TX
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�̂i�̂T �̂
0
i

!

where �̂T = 1
T

PT
t=1 "̂t"̂

0
t, and making use of the fact that "

s
t are conditionally indepen-

dent. Re-write again,

�Ms =
1

T

TX
t=1

 
t�1X
i=0

�̂i�̂T �̂
0
i

!
=

1X
i=0

�̂i�̂T �̂
0
i �

1

T

TX
t=1

 1X
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�̂i�̂T �̂
0
i

!
: (A.27)

The last term tends to zero by the arguments in the proof of Lemma A.7 for V1T
p! 0

and using the result that �̂T
p! � by consistency. Likewise, the �rst term in (A.27)

tends in probability to �M as desired. This holds by rewriting it as V2T + V3T , these
objects de�ned analogously as in the proof of Lemma A.7, and using the arguments
there to show that V2T ! 0; while V3T ! � in probability.

Turning to the �nal term kM s � �Msk, we have that

M s =
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T
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. Using the vec(�)

operator and interchanging summation,
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Hence,
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Thus, with cT = c+ op (1),
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Use next that,

E�



vec�"st"s0t � �̂T�


2 = E�tr �"st"s0t � �̂T�2 = 1

T

TX
t=1

tr
�
"̂t"̂

0
t � �̂T

�2
which converges in probability as a result of the assumption that "t has bounded
fourth order moment. This establishes the result that M s

1 � �Ms = op (1). Similarly
M s
2 = op (1), which completes the proof. �
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Table 1: Size of Standard and Bootstrap PLR Tests for Rank = 0 Against Rank = p. True Rank is 0.

p = 2 p = 3 p = 4 p = 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
0.0 0.0 50 6.3 5.7 4.9 7.0 5.1 4.9 8.7 4.3 4.8 12.1 3.7 4.8

100 5.3 4.9 4.6 6.6 5.1 5.5 7.3 5.0 5.1 8.1 4.4 4.7
200 5.3 4.6 4.8 6.1 5.3 5.2 6.5 4.9 4.9 6.9 4.4 4.7

0.5 0.0 50 9.9 7.2 7.9 10.7 6.6 7.8 13.6 6.3 8.5 17.6 6.2 9.1
100 7.3 5.3 6.5 9.8 6.3 7.9 11.2 6.3 8.3 12.6 5.4 8.2
200 6.6 4.8 5.9 8.3 5.3 7.2 8.7 5.2 6.7 9.6 4.3 6.8

0.3 0.65 50 10.2 6.8 8.3 12.6 7.2 9.6 14.8 6.4 9.4 18.1 6.2 9.5
100 9.9 5.6 8.5 12.3 6.5 10.3 13.7 6.2 10.7 14.8 6.3 10.0
200 10.0 5.6 9.3 10.7 5.2 9.5 12.1 5.6 10.0 13.9 5.7 10.9

0.2 0.79 50 9.3 6.6 7.6 11.2 7.1 8.3 13.8 5.9 8.2 16.2 5.5 7.7
100 9.9 5.6 8.7 11.4 6.4 9.8 13.1 6.2 9.9 14.0 5.5 9.2
200 10.8 5.5 10.1 12.2 5.4 11.0 12.8 5.5 10.7 13.5 5.6 10.6

0.05 0.94 50 6.5 5.9 5.2 7.6 5.5 5.2 9.3 4.6 5.3 12.3 4.2 4.9
100 5.8 4.9 5.2 7.0 5.4 5.6 8.1 5.2 5.8 8.8 4.4 4.9
200 6.5 5.1 5.9 7.2 5.1 6.5 7.2 5.0 5.5 7.9 4.9 5.5

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
0.0 0.0 50 6.6 5.2 5.1 8.0 4.9 5.8 9.3 4.4 5.6 12.8 3.6 5.0

100 5.7 4.9 5.0 6.3 4.7 4.9 6.7 4.1 5.0 8.2 4.4 4.8
200 5.5 4.7 5.0 5.8 4.6 4.6 6.3 4.8 4.9 6.5 3.8 4.4

0.5 0.0 50 8.5 6.0 6.8 11.3 6.4 7.9 12.7 5.6 8.2 15.9 4.8 7.4
100 7.3 5.3 6.4 8.4 5.2 6.8 9.5 5.1 6.9 12.0 5.1 7.2
200 6.5 5.0 5.6 6.9 4.7 5.9 8.1 4.9 6.4 8.6 4.3 6.1

0.3 0.65 50 8.7 5.8 7.1 11.0 6.2 7.8 12.6 5.9 7.9 15.8 4.9 7.2
100 7.5 5.1 6.5 9.2 5.5 7.7 10.4 5.5 7.7 12.4 5.6 7.5
200 7.2 5.2 6.6 8.2 5.2 7.1 9.5 5.1 7.4 10.2 4.7 7.2

0.2 0.79 50 8.0 5.6 6.4 10.5 6.0 7.6 11.7 5.2 7.3 14.5 4.7 6.4
100 7.2 5.4 6.2 8.9 5.4 7.3 9.7 5.3 7.3 11.2 5.4 7.2
200 7.1 5.0 6.2 8.3 5.0 7.0 8.7 5.1 7.4 9.7 4.5 6.6

0.05 0.94 50 6.9 5.2 5.3 8.9 5.4 6.2 9.9 4.6 5.9 13.1 3.9 5.2
100 5.9 5.0 5.3 7.1 5.0 5.9 7.4 4.6 5.4 8.9 4.5 5.4
200 5.8 4.7 5.4 6.5 4.6 5.5 7.2 5.1 5.8 7.2 4.0 4.8

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 11.0 7.2 9.2 13.8 7.9 10.5 17.2 7.3 10.6 20.0 7.1 10.1
100 10.3 5.6 9.2 12.9 6.6 10.7 14.6 6.3 11.1 16.8 7.0 11.8
200 9.7 5.3 9.1 11.5 5.9 10.1 13.6 5.4 11.2 14.7 5.7 11.2

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 11.8 6.8 9.9 14.4 7.9 11.1 16.9 7.6 11.3 19.8 6.6 10.3
100 12.7 6.2 11.5 15.0 6.9 13.1 16.6 6.9 13.1 18.7 6.5 13.2
200 13.9 5.6 13.0 17.0 6.0 15.0 17.9 6.3 15.3 20.2 6.4 16.1

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 10.7 6.7 9.0 13.1 7.3 10.1 15.5 6.6 10.1 18.2 6.1 9.5
100 11.1 5.7 10.0 13.0 6.3 11.2 14.9 6.2 11.8 16.1 5.8 11.4
200 12.0 4.9 11.3 14.1 5.7 12.5 16.0 5.6 13.6 16.9 5.4 13.8

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0

0.936 0.424 50 19.3 8.4 16.9 24.5 9.1 19.1 29.3 9.7 20.8 35.0 11.0 22.2
100 21.3 6.8 19.1 26.8 8.5 23.2 32.2 8.7 26.3 35.4 9.5 27.0
200 22.0 6.8 20.1 27.3 7.6 24.6 32.7 7.8 28.1 37.1 7.9 30.8

0.951 0.314 50 16.5 7.1 13.7 20.0 8.2 16.3 24.0 8.4 16.5 28.1 9.0 17.3
100 17.5 6.5 15.6 22.2 7.4 19.2 25.4 7.9 20.8 28.0 8.7 21.5
200 18.6 6.6 17.2 22.8 6.7 20.5 25.9 6.6 22.2 30.5 7.7 24.9



Table 2: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 2, True Rank is 0.

Q-based Qb-based Qs-based
r = 0 1 2 0 1 2 0 1 2

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 93.7 5.5 0.8 94.3 4.6 1.1 95.1 3.9 1.0

100 94.7 5.0 0.4 95.1 4.2 0.6 95.4 4.1 0.5
200 94.7 5.0 0.3 95.4 3.9 0.7 95.2 4.3 0.5

0.5 0.0 50 90.1 9.2 0.7 92.8 6.1 1.1 92.1 6.8 1.1
100 92.7 6.7 0.6 94.7 4.6 0.7 93.5 5.7 0.8
200 93.4 6.0 0.6 95.2 4.1 0.6 94.1 5.2 0.7

0.3 0.7 50 89.8 9.1 1.0 93.2 5.5 1.2 91.7 7.0 1.3
100 90.1 9.1 0.7 94.4 5.0 0.6 91.5 7.4 1.1
200 90.0 9.1 0.9 94.4 4.9 0.7 90.7 7.9 1.4

0.2 0.8 50 90.7 8.3 1.0 93.4 5.4 1.2 92.4 6.4 1.2
100 90.1 9.1 0.9 94.4 4.8 0.8 91.3 7.5 1.3
200 89.2 9.7 1.0 94.5 4.9 0.6 89.9 8.6 1.5

0.1 0.9 50 93.5 5.8 0.7 94.1 4.7 1.3 94.8 4.1 1.2
100 94.2 5.5 0.3 95.1 4.1 0.8 94.8 4.7 0.6
200 93.5 6.1 0.4 94.9 4.5 0.7 94.1 5.1 0.8

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 93.4 6.0 0.6 94.8 4.2 1.1 94.9 4.2 1.0

100 94.3 5.4 0.3 95.1 4.3 0.7 95.0 4.4 0.6
200 94.5 5.0 0.5 95.3 4.1 0.6 95.0 4.2 0.8

0.5 0.0 50 91.5 7.7 0.8 94.0 4.8 1.2 93.2 5.8 1.0
100 92.7 6.9 0.4 94.7 4.6 0.7 93.6 5.6 0.8
200 93.5 6.1 0.5 95.0 4.4 0.6 94.4 4.8 0.8

0.3 0.7 50 91.3 8.0 0.7 94.2 4.7 1.1 92.9 6.1 1.0
100 92.5 7.0 0.5 94.9 4.5 0.6 93.5 5.6 0.9
200 92.8 6.5 0.6 94.8 4.6 0.7 93.4 5.7 0.9

0.2 0.8 50 92.0 7.3 0.8 94.4 4.5 1.1 93.6 5.3 1.1
100 92.8 6.7 0.5 94.6 4.7 0.7 93.8 5.5 0.7
200 92.9 6.5 0.6 95.0 4.4 0.6 93.8 5.5 0.8

0.1 0.9 50 93.1 6.2 0.7 94.8 4.2 1.0 94.7 4.4 0.9
100 94.1 5.5 0.4 95.0 4.4 0.7 94.7 4.5 0.7
200 94.2 5.3 0.5 95.3 4.0 0.7 94.6 4.5 0.8

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 89.0 9.8 1.1 92.8 6.1 1.1 90.8 7.7 1.5
100 89.7 9.4 0.9 94.4 4.9 0.7 90.8 8.0 1.2
200 90.3 9.0 0.8 94.7 4.5 0.7 90.9 7.9 1.2

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 88.2 10.6 1.2 93.2 5.5 1.3 90.1 8.2 1.7
100 87.3 11.7 1.1 93.8 5.4 0.8 88.5 9.8 1.6
200 86.1 12.6 1.3 94.4 4.9 0.7 87.0 11.1 2.0

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 89.3 9.6 1.2 93.3 5.6 1.2 91.0 7.6 1.5
100 88.9 10.1 1.0 94.3 5.1 0.7 90.0 8.8 1.2
200 88.0 10.7 1.3 95.1 4.1 0.8 88.7 9.7 1.6

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 80.7 16.8 2.5 91.6 7.3 1.1 83.1 14.0 2.9
100 78.7 19.0 2.4 93.2 5.9 1.0 80.9 16.4 2.6
200 78.0 19.9 2.1 93.2 6.2 0.6 79.9 17.7 2.4

0.951 0.314 50 83.5 14.4 2.1 92.9 6.0 1.1 86.3 11.4 2.3
100 82.5 15.6 1.9 93.5 5.5 1.0 84.4 13.2 2.3
200 81.4 16.9 1.7 93.4 6.1 0.6 82.8 15.2 2.0



Table 3: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 3, True Rank is 0.

Q-based Qb-based Qs-based
r = 0 1 2 3 0 1 2 3 0 1 2 3

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 93.0 6.1 0.7 0.1 94.9 4.2 0.6 0.3 95.1 4.0 0.7 0.2

100 93.4 6.0 0.6 0.1 94.9 4.4 0.5 0.2 94.5 4.8 0.6 0.1
200 93.9 5.5 0.6 0.0 94.7 4.6 0.5 0.1 94.8 4.5 0.5 0.2

0.5 0.0 50 89.3 9.7 0.9 0.1 93.4 5.6 0.7 0.3 92.2 7.0 0.6 0.2
100 90.2 8.8 0.9 0.1 93.7 5.5 0.6 0.2 92.1 6.9 0.8 0.2
200 91.7 7.5 0.7 0.1 94.7 4.7 0.5 0.1 92.8 6.3 0.6 0.3

0.3 0.65 50 87.4 11.2 1.1 0.3 92.8 5.9 1.1 0.2 90.4 8.1 1.1 0.4
100 87.7 11.1 1.0 0.2 93.5 5.7 0.6 0.3 89.7 8.8 1.1 0.3
200 89.3 9.8 0.8 0.1 94.8 4.6 0.4 0.2 90.5 8.4 0.9 0.2

0.2 0.79 50 88.8 10.0 0.9 0.2 92.9 5.9 0.9 0.3 91.7 7.2 0.8 0.3
100 88.6 10.1 1.1 0.2 93.6 5.4 0.8 0.2 90.2 8.4 1.1 0.3
200 87.8 11.0 1.0 0.2 94.6 4.6 0.6 0.2 89.0 9.5 1.1 0.4

0.05 0.94 50 92.4 6.6 0.8 0.2 94.5 4.5 0.6 0.4 94.8 4.3 0.7 0.2
100 93.0 6.2 0.6 0.2 94.6 4.5 0.6 0.2 94.4 4.9 0.6 0.2
200 92.8 6.6 0.4 0.1 94.9 4.5 0.5 0.2 93.5 5.9 0.4 0.2

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 92.0 7.3 0.6 0.2 95.1 4.2 0.5 0.2 94.2 5.1 0.5 0.3

100 93.7 5.7 0.4 0.1 95.3 4.0 0.5 0.2 95.1 4.2 0.4 0.2
200 94.2 5.2 0.6 0.0 95.4 4.0 0.5 0.1 95.4 4.1 0.5 0.1

0.5 0.0 50 88.7 10.3 0.8 0.1 93.6 5.4 0.8 0.2 92.1 6.8 0.9 0.2
100 91.6 7.7 0.5 0.2 94.8 4.4 0.7 0.2 93.2 6.0 0.7 0.2
200 93.1 6.4 0.5 0.1 95.3 4.2 0.4 0.1 94.1 5.3 0.4 0.2

0.3 0.65 50 89.0 9.9 0.9 0.1 93.8 5.4 0.6 0.2 92.2 6.9 0.7 0.2
100 90.8 8.3 0.7 0.2 94.5 4.6 0.6 0.3 92.3 6.7 0.8 0.3
200 91.8 7.5 0.6 0.1 94.8 4.6 0.4 0.2 92.9 6.2 0.6 0.3

0.2 0.79 50 89.5 9.4 1.0 0.1 94.0 5.2 0.6 0.2 92.4 6.5 0.9 0.3
100 91.1 7.9 0.8 0.2 94.6 4.6 0.6 0.3 92.7 6.2 0.7 0.3
200 91.7 7.6 0.6 0.1 95.0 4.4 0.5 0.2 93.0 6.2 0.5 0.3

0.05 0.94 50 91.1 8.1 0.7 0.1 94.6 4.6 0.5 0.3 93.8 5.4 0.6 0.2
100 92.9 6.5 0.4 0.2 95.0 4.2 0.5 0.3 94.1 5.1 0.4 0.3
200 93.5 6.0 0.5 0.1 95.4 4.1 0.4 0.1 94.5 4.8 0.4 0.2

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 86.2 12.1 1.4 0.3 92.1 6.5 1.0 0.4 89.5 8.9 1.2 0.4
100 87.1 11.6 1.2 0.1 93.4 5.7 0.7 0.2 89.3 9.1 1.4 0.3
200 88.5 10.4 1.0 0.1 94.1 5.4 0.3 0.2 89.9 8.7 1.0 0.4

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 85.6 12.6 1.5 0.3 92.1 6.5 1.1 0.4 88.9 9.4 1.2 0.5
100 85.0 13.3 1.5 0.2 93.1 5.9 0.8 0.2 86.9 11.3 1.4 0.4
200 83.0 15.0 1.8 0.3 94.0 5.2 0.6 0.2 85.0 12.6 1.9 0.5

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 86.9 11.6 1.3 0.2 92.7 6.1 0.9 0.3 89.9 8.5 1.0 0.6
100 87.0 11.7 1.2 0.2 93.7 5.5 0.6 0.1 88.8 9.7 1.2 0.3
200 85.9 12.8 1.2 0.1 94.3 5.1 0.5 0.1 87.5 10.7 1.5 0.3

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ

0.936 0.424 50 75.5 20.7 3.4 0.4 90.9 7.5 1.3 0.3 80.9 15.9 2.6 0.6
100 73.2 22.3 3.8 0.6 91.5 7.4 0.9 0.2 76.8 19.1 3.2 0.8
200 72.7 23.6 3.3 0.4 92.4 6.7 0.7 0.2 75.4 21.4 2.5 0.7

0.951 0.314 50 80.0 17.2 2.4 0.4 91.8 6.7 1.2 0.3 83.7 13.6 2.1 0.6
100 77.8 18.8 3.0 0.5 92.6 6.4 0.9 0.2 80.8 15.9 2.5 0.8
200 77.2 20.0 2.4 0.4 93.3 6.1 0.5 0.1 79.5 17.6 2.3 0.6



Table 4: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 4, True Rank is 0.

Q-based Qb-based Qs-based
r = 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 91.3 7.7 0.9 0.1 0.0 95.7 3.7 0.5 0.1 0.1 95.2 4.1 0.5 0.1 0.0

100 92.7 6.4 0.7 0.2 0.0 95.0 4.2 0.6 0.2 0.0 94.9 4.3 0.6 0.2 0.0
200 93.5 5.9 0.5 0.1 0.0 95.1 4.2 0.5 0.1 0.1 95.1 4.2 0.5 0.1 0.0

0.5 0.0 50 86.4 12.0 1.3 0.2 0.0 93.7 5.4 0.6 0.2 0.2 91.5 7.4 0.8 0.2 0.1
100 88.8 10.0 1.0 0.2 0.0 93.7 5.5 0.4 0.2 0.1 91.7 7.1 0.7 0.3 0.1
200 91.3 8.0 0.6 0.1 0.0 94.8 4.7 0.4 0.1 0.0 93.3 5.9 0.6 0.1 0.0

0.3 0.65 50 85.2 13.1 1.4 0.2 0.0 93.6 5.4 0.7 0.2 0.1 90.6 8.0 1.0 0.3 0.2
100 86.3 12.0 1.5 0.2 0.0 93.8 5.3 0.7 0.2 0.1 89.3 9.2 1.3 0.2 0.1
200 87.9 10.9 1.0 0.2 0.0 94.4 4.9 0.6 0.1 0.0 90.0 8.8 1.0 0.2 0.1

0.2 0.79 50 86.2 12.1 1.4 0.2 0.0 94.1 4.9 0.6 0.3 0.1 91.8 6.9 0.8 0.3 0.1
100 86.9 11.5 1.3 0.2 0.0 93.8 5.3 0.8 0.1 0.0 90.1 8.3 1.2 0.3 0.1
200 87.2 11.4 1.2 0.1 0.1 94.5 4.8 0.6 0.1 0.0 89.3 9.3 1.2 0.1 0.1

0.05 0.94 50 90.7 8.2 1.0 0.1 0.1 95.4 3.9 0.4 0.2 0.1 94.7 4.5 0.5 0.2 0.1
100 91.9 7.3 0.7 0.1 0.0 94.8 4.5 0.4 0.3 0.1 94.2 4.9 0.6 0.2 0.0
200 92.8 6.5 0.6 0.1 0.0 95.0 4.4 0.5 0.1 0.0 94.5 4.8 0.6 0.1 0.0

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 90.7 8.2 0.9 0.2 0.0 95.6 3.6 0.6 0.1 0.1 94.4 4.9 0.5 0.2 0.0

100 93.3 5.8 0.6 0.2 0.1 95.9 3.4 0.5 0.1 0.1 95.0 4.4 0.4 0.2 0.1
200 93.7 5.6 0.6 0.0 0.0 95.2 4.2 0.6 0.0 0.0 95.1 4.2 0.7 0.1 0.0

0.5 0.0 50 87.3 11.2 1.1 0.3 0.0 94.4 4.8 0.6 0.2 0.0 91.8 7.2 0.7 0.2 0.1
100 90.5 8.4 0.9 0.1 0.1 94.9 4.3 0.6 0.1 0.1 93.1 5.9 0.7 0.2 0.1
200 91.9 7.4 0.6 0.1 0.0 95.1 4.4 0.4 0.1 0.1 93.6 5.8 0.4 0.2 0.1

0.3 0.65 50 87.4 10.9 1.4 0.2 0.0 94.1 5.1 0.6 0.1 0.1 92.1 6.8 0.8 0.2 0.1
100 89.6 9.2 0.9 0.1 0.1 94.5 4.6 0.6 0.1 0.1 92.3 6.5 0.8 0.2 0.1
200 90.5 8.6 0.7 0.1 0.0 94.9 4.5 0.5 0.1 0.1 92.6 6.6 0.6 0.1 0.1

0.2 0.79 50 88.3 10.1 1.3 0.2 0.1 94.8 4.5 0.5 0.1 0.1 92.7 6.3 0.7 0.2 0.1
100 90.3 8.6 0.9 0.1 0.1 94.7 4.5 0.6 0.1 0.1 92.7 6.1 0.8 0.2 0.2
200 91.3 7.8 0.6 0.2 0.0 94.9 4.4 0.5 0.1 0.1 92.6 6.5 0.7 0.1 0.1

0.05 0.94 50 90.1 8.8 0.9 0.2 0.0 95.4 3.8 0.6 0.1 0.1 94.1 5.1 0.6 0.2 0.0
100 92.6 6.5 0.7 0.2 0.1 95.4 3.9 0.5 0.1 0.1 94.6 4.5 0.6 0.2 0.1
200 92.8 6.5 0.6 0.0 0.0 94.9 4.5 0.5 0.1 0.0 94.2 5.0 0.7 0.0 0.0

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 82.8 15.1 1.8 0.2 0.0 92.7 6.3 0.8 0.2 0.1 89.4 9.0 1.1 0.4 0.1
100 85.4 12.8 1.6 0.2 0.0 93.7 5.3 0.7 0.2 0.1 88.9 9.4 1.2 0.3 0.1
200 86.4 12.1 1.3 0.2 0.0 94.6 4.6 0.6 0.1 0.0 88.8 9.7 1.2 0.2 0.0

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 83.1 14.6 2.0 0.3 0.0 92.4 6.4 0.8 0.3 0.0 88.7 9.7 1.2 0.3 0.0
100 83.4 14.1 2.1 0.3 0.1 93.1 5.9 0.8 0.1 0.1 86.9 10.9 1.8 0.4 0.1
200 82.1 15.4 2.2 0.2 0.1 93.7 5.4 0.6 0.2 0.0 84.7 13.0 1.9 0.3 0.1

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 84.5 13.6 1.7 0.2 0.0 93.4 5.6 0.8 0.2 0.0 89.9 8.7 1.1 0.2 0.1
100 85.1 13.1 1.4 0.2 0.1 93.8 5.3 0.7 0.1 0.1 88.2 10.1 1.3 0.2 0.1
200 84.0 14.1 1.7 0.1 0.0 94.4 5.0 0.4 0.2 0.0 86.4 11.8 1.6 0.2 0.0

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 70.7 23.9 4.4 0.8 0.2 90.3 8.2 1.1 0.2 0.2 79.2 16.8 2.9 0.7 0.4
100 67.8 26.0 5.2 0.8 0.2 91.3 7.5 0.9 0.2 0.1 73.7 21.3 4.0 0.7 0.3
200 67.3 26.8 5.0 0.8 0.1 92.2 6.9 0.8 0.0 0.0 71.9 23.3 3.9 0.6 0.3

0.951 0.314 50 76.0 20.0 3.4 0.5 0.1 91.6 7.0 1.0 0.2 0.2 83.5 13.7 2.2 0.4 0.2
100 74.6 20.8 3.9 0.4 0.2 92.1 6.7 1.0 0.1 0.1 79.2 16.9 3.1 0.5 0.3
200 74.1 21.1 4.0 0.6 0.1 93.4 5.5 0.8 0.2 0.1 77.8 18.2 3.2 0.6 0.2



Table 5: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 5, True Rank is 0.

Q-based Qb-based Qs-based
r = 0 1 2 3 4, 5 0 1 2 3 4, 5 0 1 2 3 4, 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 87.9 10.6 1.2 0.3 0.1 96.3 3.1 0.4 0.2 0.0 95.2 4.1 0.6 0.1 0.0

100 91.9 7.3 0.6 0.1 0.0 95.6 4.0 0.4 0.0 0.0 95.3 4.3 0.3 0.1 0.0
200 93.1 6.1 0.7 0.1 0.0 95.6 3.7 0.6 0.1 0.0 95.3 4.0 0.5 0.1 0.0

0.5 0.0 50 82.4 15.3 2.0 0.3 0.0 93.8 5.4 0.6 0.2 0.0 90.9 8.3 0.8 0.1 0.0
100 87.4 11.0 1.4 0.1 0.0 94.6 4.7 0.6 0.1 0.1 91.8 7.1 0.8 0.2 0.1
200 90.4 8.8 0.8 0.1 0.0 95.7 3.9 0.4 0.0 0.0 93.2 6.0 0.6 0.1 0.0

0.3 0.65 50 81.9 15.3 2.5 0.2 0.1 93.8 5.2 0.9 0.1 0.1 90.5 8.1 1.2 0.1 0.0
100 85.2 12.8 1.5 0.4 0.1 93.7 5.4 0.6 0.1 0.1 90.0 8.7 0.9 0.3 0.1
200 86.1 12.3 1.4 0.2 0.0 94.3 5.1 0.6 0.1 0.0 89.1 9.5 1.2 0.2 0.1

0.2 0.79 50 83.8 13.8 2.1 0.3 0.1 94.5 4.5 0.8 0.2 0.0 92.3 6.4 1.0 0.3 0.1
100 86.0 12.1 1.5 0.3 0.1 94.5 4.8 0.5 0.1 0.0 90.8 7.9 1.0 0.2 0.1
200 86.5 11.8 1.5 0.2 0.0 94.4 4.8 0.7 0.1 0.0 89.4 9.0 1.3 0.3 0.0

0.05 0.94 50 87.7 10.8 1.2 0.3 0.1 95.8 3.5 0.5 0.2 0.0 95.1 4.1 0.6 0.2 0.0
100 91.2 7.8 0.8 0.1 0.1 95.6 3.8 0.5 0.1 0.0 95.1 4.3 0.6 0.1 0.0
200 92.1 7.1 0.7 0.1 0.0 95.1 4.3 0.5 0.1 0.0 94.5 4.9 0.6 0.1 0.0

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 87.2 11.4 1.1 0.2 0.1 96.4 3.2 0.2 0.1 0.1 95.0 4.5 0.3 0.1 0.1

100 91.8 7.3 0.8 0.1 0.0 95.6 3.9 0.3 0.1 0.0 95.2 4.3 0.4 0.0 0.1
200 93.5 5.9 0.5 0.0 0.0 96.2 3.4 0.3 0.0 0.0 95.6 4.0 0.3 0.0 0.1

0.5 0.0 50 84.1 13.9 1.7 0.2 0.1 95.2 4.0 0.6 0.1 0.1 92.6 6.6 0.7 0.1 0.1
100 88.0 10.6 1.2 0.1 0.0 94.9 4.4 0.5 0.1 0.0 92.8 6.4 0.7 0.1 0.0
200 91.4 7.8 0.7 0.1 0.0 95.7 3.8 0.4 0.1 0.0 93.9 5.4 0.6 0.1 0.0

0.3 0.65 50 84.2 13.8 1.7 0.2 0.1 95.1 4.0 0.6 0.1 0.1 92.8 6.0 1.0 0.1 0.1
100 87.6 11.1 1.1 0.1 0.1 94.4 5.0 0.4 0.1 0.0 92.5 6.6 0.7 0.1 0.1
200 89.8 9.3 1.0 0.0 0.0 95.3 4.2 0.4 0.1 0.0 92.8 6.4 0.7 0.1 0.0

0.2 0.79 50 85.5 12.5 1.6 0.3 0.1 95.3 3.9 0.6 0.1 0.1 93.6 5.3 0.9 0.1 0.1
100 88.8 9.9 1.2 0.1 0.0 94.6 4.8 0.4 0.1 0.1 92.8 6.3 0.7 0.1 0.1
200 90.3 8.7 1.0 0.1 0.0 95.5 4.1 0.4 0.1 0.0 93.4 6.0 0.6 0.1 0.0

0.05 0.94 50 86.9 11.5 1.3 0.2 0.1 96.1 3.4 0.3 0.1 0.1 94.8 4.7 0.4 0.1 0.0
100 91.1 8.0 0.9 0.1 0.0 95.5 3.9 0.5 0.1 0.0 94.6 4.7 0.6 0.1 0.0
200 92.8 6.6 0.6 0.0 0.0 96.0 3.7 0.3 0.1 0.0 95.2 4.3 0.4 0.1 0.0

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 80.0 16.9 2.7 0.3 0.1 92.9 5.9 0.9 0.1 0.1 89.9 8.7 1.1 0.2 0.1
100 83.2 14.7 1.8 0.3 0.1 93.0 5.9 0.9 0.2 0.0 88.2 10.1 1.2 0.4 0.1
200 85.3 13.0 1.6 0.1 0.0 94.3 5.0 0.6 0.1 0.0 88.8 9.9 1.2 0.2 0.0

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 80.2 16.5 2.7 0.5 0.1 93.4 5.4 0.8 0.3 0.1 89.7 8.3 1.6 0.4 0.1
100 81.3 15.9 2.4 0.4 0.1 93.5 5.6 0.7 0.2 0.0 86.8 11.1 1.6 0.4 0.1
200 79.8 17.1 2.8 0.3 0.1 93.6 5.3 0.9 0.1 0.1 83.9 13.3 2.2 0.5 0.1

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 81.8 15.2 2.6 0.4 0.1 93.9 4.9 0.9 0.2 0.1 90.5 7.8 1.4 0.2 0.1
100 83.9 13.9 1.9 0.3 0.1 94.2 5.1 0.6 0.1 0.1 88.6 9.8 1.3 0.2 0.1
200 83.1 14.7 1.8 0.3 0.0 94.6 4.6 0.5 0.1 0.0 86.2 11.7 1.6 0.3 0.1

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 65.0 26.4 6.9 1.3 0.3 89.0 8.9 1.6 0.4 0.1 77.8 17.0 3.9 1.0 0.3
100 64.6 27.8 6.2 1.2 0.2 90.5 7.9 1.2 0.3 0.1 73.0 21.4 4.6 0.8 0.2
200 62.9 28.7 7.0 1.3 0.1 92.1 6.6 1.1 0.2 0.0 69.2 23.9 5.6 1.1 0.2

0.951 0.314 50 71.9 22.0 5.0 1.0 0.2 91.0 7.4 1.2 0.2 0.1 82.7 13.8 2.7 0.6 0.2
100 72.0 22.5 4.5 0.9 0.2 91.3 7.3 1.2 0.2 0.0 78.5 17.6 3.0 0.8 0.2
200 69.5 24.8 4.8 0.8 0.1 92.3 6.7 0.8 0.2 0.0 75.1 20.4 3.5 0.9 0.1



Table 6: Size of Standard and Bootstrap PLR Tests for Rank = 0 Against Rank = p. True Rank is 1.

p = 2 p = 3 p = 4 p = 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
0.0 0.0 50 5.2 5.7 4.9 5.2 4.7 4.1 6.2 4.0 3.7 6.1 2.6 2.8

100 5.8 5.6 5.5 5.9 5.2 5.0 6.9 5.2 5.0 7.3 4.6 4.6
200 5.5 5.6 5.0 5.6 5.0 4.9 5.3 4.5 4.5 6.8 4.6 4.6

0.5 0.0 50 6.3 5.8 5.9 7.6 5.4 6.0 9.0 5.1 5.7 9.0 3.6 4.5
100 6.4 6.0 6.0 7.9 5.5 6.6 8.5 5.2 6.2 10.6 5.8 7.4
200 5.1 4.9 5.0 7.3 5.4 6.5 7.8 5.1 6.1 8.8 4.8 6.5

0.3 0.65 50 6.8 5.9 6.2 7.7 5.5 6.0 9.6 5.1 6.2 9.9 4.0 5.0
100 7.7 5.8 7.4 10.2 5.9 8.2 11.2 6.2 8.6 12.3 5.6 8.6
200 7.5 5.5 7.4 9.4 5.1 8.7 10.5 5.0 8.7 12.7 5.4 9.8

0.2 0.79 50 6.5 5.8 6.1 7.8 5.6 6.1 8.8 4.9 5.2 9.6 4.0 4.4
100 8.0 5.9 7.5 10.1 5.7 8.0 10.6 5.5 8.3 12.1 5.1 8.1
200 7.9 5.4 7.8 10.4 6.0 9.2 11.2 5.3 9.3 12.6 5.4 10.2

0.05 0.94 50 5.2 5.5 5.0 5.8 4.7 4.4 6.2 4.1 3.7 6.5 2.7 2.9
100 6.1 5.6 5.9 6.9 5.1 5.6 7.1 5.3 5.2 7.9 4.8 4.9
200 5.8 5.7 5.7 6.8 5.1 5.7 6.6 4.6 5.4 7.4 4.7 5.4

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
0.0 0.0 50 5.1 6.0 4.6 6.5 5.4 4.7 6.7 4.3 3.9 7.3 2.7 3.3

100 5.6 5.6 5.1 6.4 5.3 5.5 6.7 4.6 4.9 6.8 3.8 4.2
200 4.9 4.6 4.3 5.6 4.6 4.6 6.4 4.6 4.8 6.6 4.1 4.7

0.5 0.0 50 6.2 6.3 5.6 7.8 5.6 6.0 7.8 4.5 5.0 9.9 3.6 4.4
100 6.3 6.2 5.8 6.9 5.2 6.0 8.7 5.4 6.4 9.3 5.0 6.4
200 5.5 4.8 4.9 6.5 5.2 5.5 7.4 4.7 5.9 7.9 4.7 5.6

0.3 0.65 50 6.5 6.4 6.2 7.8 5.7 6.4 8.2 4.5 5.2 9.7 3.4 4.7
100 6.6 5.9 6.1 7.7 5.3 6.5 9.0 5.4 6.7 10.0 4.9 6.4
200 5.9 4.9 5.4 7.2 5.0 6.1 8.3 4.9 6.8 9.0 4.8 6.6

0.2 0.79 50 6.4 6.3 5.9 7.5 5.6 6.0 7.6 4.4 5.0 9.0 3.3 4.3
100 6.5 6.0 6.0 7.7 5.3 6.3 8.8 5.3 6.5 9.3 4.4 6.0
200 5.8 4.5 5.6 7.4 4.9 6.3 8.4 5.0 6.9 9.0 4.7 6.5

0.05 0.94 50 5.7 6.1 5.0 6.7 5.1 5.0 6.4 4.0 4.0 7.7 3.0 3.5
100 6.0 5.5 5.6 6.9 5.4 5.8 7.1 4.9 5.3 7.5 3.8 4.7
200 5.5 4.8 5.0 6.2 4.8 5.0 6.9 5.0 5.6 7.3 4.3 5.2

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
50 7.0 5.9 6.5 8.2 5.8 6.5 10.5 5.4 7.0 11.0 4.0 5.2
100 7.7 5.9 7.2 10.3 6.3 8.8 11.9 5.7 9.0 13.9 6.6 9.6
200 7.6 5.6 7.2 9.7 5.9 8.6 11.3 5.8 9.6 13.3 6.1 10.5

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
50 7.8 6.2 7.2 9.3 5.6 7.5 11.0 5.5 7.3 12.1 4.5 6.2
100 9.8 6.5 9.2 13.2 6.9 11.2 14.0 6.2 11.3 15.7 5.5 11.3
200 10.5 5.9 10.2 14.1 6.3 12.6 15.6 5.7 13.4 17.9 5.9 15.1

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
50 7.5 6.1 6.9 8.9 5.7 6.9 10.6 5.1 6.3 11.0 4.2 5.8
100 9.2 6.2 8.5 11.7 6.5 9.9 12.6 5.9 10.1 13.5 5.5 9.5
200 9.3 5.8 9.1 12.4 6.1 11.5 14.0 5.9 11.9 14.8 5.6 12.2

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1

0.936 0.424 50 10.5 7.0 10.1 15.1 7.1 11.7 19.4 7.8 13.8 21.8 7.6 13.3
100 12.4 6.5 11.6 19.6 7.6 16.9 24.0 8.2 19.6 28.0 8.8 20.8
200 12.0 6.1 11.5 18.9 6.6 17.0 25.5 7.4 21.9 30.3 7.9 25.4

0.951 0.314 50 9.2 6.7 9.0 12.7 7.0 10.5 15.3 6.6 10.6 17.9 6.3 10.7
100 11.3 6.8 10.7 16.9 7.2 14.4 19.8 7.5 16.5 22.7 7.4 16.4
200 10.9 5.5 10.4 16.2 6.1 14.3 21.0 6.5 17.9 25.3 7.1 20.7



Table 7: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 2, True Rank is 1.

Q-based Qb-based Qs-based
r = 0 r = 1 r = 2 r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 9.4 85.4 5.2 14.8 79.5 5.7 12.0 83.1 4.8

100 0.0 94.2 5.8 0.0 94.4 5.6 0.0 94.5 5.5
200 0.0 94.5 5.5 0.0 94.4 5.6 0.0 95.0 5.0

0.5 0.0 50 9.8 83.9 6.3 18.0 76.4 5.6 12.5 81.7 5.8
100 0.0 93.6 6.4 0.3 93.8 6.0 0.0 94.0 6.0
200 0.0 94.9 5.1 0.0 95.1 4.9 0.0 95.0 5.0

0.3 0.65 50 12.5 80.7 6.8 21.2 73.1 5.8 14.7 79.0 6.2
100 0.2 92.0 7.7 1.4 92.8 5.8 0.3 92.3 7.4
200 0.0 92.5 7.5 0.1 94.4 5.5 0.0 92.6 7.4

0.2 0.79 50 14.3 79.3 6.5 22.3 72.0 5.7 17.0 76.9 6.1
100 0.3 91.7 8.0 1.8 92.4 5.9 0.3 92.2 7.5
200 0.0 92.1 7.9 0.1 94.6 5.4 0.0 92.2 7.8

0.05 0.94 50 11.7 83.1 5.2 16.6 77.9 5.5 14.2 80.8 5.0
100 0.0 93.9 6.1 0.2 94.2 5.6 0.0 94.0 5.9
200 0.0 94.2 5.8 0.0 94.3 5.7 0.0 94.3 5.7

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 10.2 84.6 5.1 16.1 78.1 5.9 13.5 81.9 4.6

100 0.0 94.4 5.6 0.1 94.2 5.6 0.0 94.8 5.1
200 0.0 95.1 4.9 0.0 95.4 4.6 0.0 95.7 4.3

0.5 0.0 50 10.4 83.4 6.2 17.9 75.9 6.2 13.7 80.8 5.6
100 0.0 93.7 6.3 0.3 93.6 6.2 0.1 94.1 5.8
200 0.0 94.5 5.5 0.0 95.2 4.8 0.0 95.1 4.9

0.3 0.65 50 11.3 82.2 6.5 19.1 74.6 6.3 14.7 79.1 6.2
100 0.1 93.3 6.6 0.6 93.5 5.9 0.1 93.7 6.1
200 0.0 94.1 5.9 0.0 95.1 4.9 0.0 94.6 5.4

0.2 0.79 50 12.0 81.7 6.4 19.0 74.8 6.2 15.2 78.9 5.9
100 0.1 93.4 6.5 0.6 93.4 6.0 0.2 93.9 6.0
200 0.0 94.2 5.8 0.0 95.5 4.5 0.0 94.4 5.6

0.05 0.94 50 11.4 82.9 5.7 17.3 76.7 6.0 14.4 80.7 5.0
100 0.1 93.9 6.0 0.3 94.2 5.5 0.1 94.3 5.6
200 0.0 94.5 5.5 0.0 95.2 4.8 0.0 95.0 5.0

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 12.2 80.8 7.0 21.7 72.5 5.8 14.8 78.6 6.5
100 0.2 92.1 7.7 1.4 92.7 5.9 0.3 92.5 7.2
200 0.0 92.4 7.6 0.1 94.3 5.6 0.0 92.8 7.2

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 14.7 77.5 7.8 24.5 69.7 5.9 17.3 75.5 7.2
100 0.6 89.7 9.8 3.0 90.5 6.5 0.7 90.1 9.2
200 0.0 89.5 10.5 0.4 93.7 5.9 0.0 89.7 10.2

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 13.5 79.0 7.5 22.7 71.3 6.0 16.2 77.0 6.8
100 0.5 90.3 9.2 2.5 91.3 6.2 0.5 91.0 8.5
200 0.0 90.7 9.3 0.2 94.0 5.8 0.0 90.9 9.1

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 16.0 73.5 10.5 29.5 64.5 6.0 19.3 70.8 9.9
100 1.3 86.3 12.4 8.7 85.0 6.3 1.9 86.5 11.6
200 0.0 88.0 12.0 1.2 92.7 6.0 0.0 88.5 11.5

0.951 0.314 50 15.9 74.9 9.2 27.8 66.2 6.0 18.9 72.3 8.8
100 0.9 87.8 11.3 6.3 87.0 6.7 1.3 88.0 10.7
200 0.0 89.1 10.9 0.7 93.8 5.5 0.0 89.6 10.4



Table 8: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 3, True Rank is 1.

Q-based Qb-based Qs-based
r = 0 1 2 3 0 1 2 3 0 1 2 3

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 28.5 66.3 4.8 0.4 40.3 55.0 3.8 0.9 36.7 59.3 3.4 0.6

100 0.2 93.9 5.5 0.5 0.4 94.3 4.5 0.7 0.3 94.7 4.4 0.6
200 0.0 94.4 5.2 0.4 0.0 95.0 4.5 0.5 0.0 95.1 4.4 0.5

0.5 0.0 50 25.5 66.9 6.8 0.8 39.8 54.9 4.3 1.0 32.4 61.7 5.0 0.9
100 0.8 91.3 7.3 0.6 2.1 92.3 4.7 0.8 1.1 92.4 5.7 0.9
200 0.0 92.7 6.7 0.6 0.0 94.6 4.6 0.8 0.0 93.5 5.7 0.8

0.3 0.65 50 25.9 66.4 6.8 0.8 39.8 54.9 4.3 1.1 31.6 62.5 4.9 1.0
100 1.8 88.0 9.1 1.1 5.1 89.0 5.0 1.0 2.4 89.4 6.9 1.3
200 0.0 90.6 8.6 0.8 0.2 94.7 4.3 0.8 0.0 91.3 7.6 1.2

0.2 0.79 50 27.3 64.9 7.0 0.7 38.8 55.7 4.5 0.9 32.6 61.4 5.2 0.8
100 2.5 87.4 9.0 1.1 6.1 88.3 4.7 0.9 3.1 89.0 6.6 1.3
200 0.0 89.6 9.4 1.0 0.2 93.8 5.1 0.9 0.0 90.8 7.9 1.3

0.05 0.94 50 27.7 66.5 5.3 0.5 37.6 57.9 3.5 1.0 34.2 61.4 3.7 0.7
100 0.8 92.3 6.3 0.6 1.9 93.1 4.3 0.8 1.6 92.9 4.8 0.8
200 0.0 93.2 6.4 0.4 0.0 94.9 4.4 0.7 0.0 94.3 5.1 0.6

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 28.6 64.9 5.9 0.6 40.9 53.8 4.1 1.2 36.8 58.5 3.8 0.9

100 0.5 93.1 5.7 0.7 1.1 93.7 4.2 1.0 0.8 93.7 4.7 0.8
200 0.0 94.4 5.1 0.5 0.0 95.4 4.0 0.7 0.0 95.4 4.1 0.5

0.5 0.0 50 26.6 65.6 7.2 0.5 40.7 53.9 4.3 1.0 34.7 59.3 5.1 0.9
100 0.5 92.6 6.2 0.7 2.0 92.8 4.2 1.1 1.0 93.0 5.0 0.9
200 0.0 93.5 6.0 0.5 0.0 94.8 4.7 0.4 0.0 94.5 5.0 0.5

0.3 0.65 50 27.3 64.8 7.1 0.7 41.0 53.5 4.4 1.1 34.3 59.4 5.2 1.2
100 0.9 91.5 7.0 0.7 2.7 91.9 4.4 1.0 1.2 92.3 5.6 0.9
200 0.0 92.8 6.6 0.6 0.0 95.0 4.3 0.7 0.0 93.9 5.3 0.8

0.2 0.79 50 27.9 64.6 6.8 0.7 40.3 54.4 4.4 1.0 34.9 59.2 4.8 1.1
100 1.0 91.3 7.0 0.7 2.8 91.9 4.4 0.9 1.3 92.3 5.6 0.8
200 0.0 92.6 6.9 0.5 0.0 95.1 4.2 0.6 0.0 93.7 5.7 0.6

0.05 0.94 50 28.5 64.8 6.1 0.6 40.5 54.5 4.0 1.0 36.1 58.9 4.0 0.9
100 0.7 92.4 6.3 0.6 1.7 92.9 4.3 1.2 1.0 93.1 5.0 0.9
200 0.0 93.8 5.7 0.5 0.0 95.2 4.2 0.6 0.0 95.0 4.4 0.6

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 25.0 66.8 7.2 1.0 39.8 54.5 4.5 1.1 31.3 62.2 5.4 1.1
100 1.7 88.0 9.3 1.0 5.4 88.4 5.3 1.0 2.3 88.8 7.7 1.2
200 0.0 90.3 9.0 0.7 0.3 93.8 5.1 0.8 0.0 91.4 7.5 1.1

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 26.6 64.1 8.4 1.0 40.1 54.4 4.6 0.8 31.6 61.0 6.3 1.1
100 3.2 83.6 11.6 1.5 8.9 84.2 5.6 1.3 3.9 84.8 9.4 1.9
200 0.0 85.9 12.5 1.6 0.7 93.0 5.1 1.1 0.0 87.3 10.8 1.9

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 27.0 64.1 7.9 1.0 40.6 53.9 4.5 1.0 31.9 61.2 5.6 1.3
100 2.8 85.5 10.4 1.3 7.9 85.7 5.5 1.0 3.4 86.6 8.2 1.7
200 0.0 87.6 11.1 1.3 0.5 93.3 5.5 0.6 0.0 88.5 10.0 1.5

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
0.936 0.424 50 23.4 61.5 13.1 2.0 42.0 51.4 5.3 1.3 28.7 59.7 9.6 2.1

100 3.7 76.7 17.0 2.6 18.2 74.5 6.2 1.1 5.2 77.9 14.1 2.8
200 0.1 81.0 16.9 2.0 2.3 91.1 5.8 0.8 0.1 82.9 14.6 2.4

0.951 0.314 50 24.9 62.5 11.0 1.7 41.1 52.4 5.1 1.4 29.9 59.7 8.4 2.1
100 3.5 79.6 14.7 2.2 14.7 78.3 5.6 1.4 4.5 81.2 11.8 2.6
200 0.1 83.8 14.7 1.5 1.5 92.4 5.2 0.8 0.1 85.6 12.3 2.0



Table 9: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 4, True Rank is 1.

Q-based Qb-based Qs-based
r = 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 42.5 51.2 5.5 0.7 0.1 60.3 35.7 3.1 0.6 0.3 56.1 40.2 3.0 0.4 0.2

100 2.2 90.9 6.3 0.6 0.0 4.6 90.3 4.3 0.6 0.3 3.6 91.4 4.3 0.5 0.2
200 0.0 94.7 4.8 0.4 0.0 0.0 95.5 3.9 0.5 0.1 0.0 95.5 4.0 0.4 0.1

0.5 0.0 50 36.6 54.3 8.0 0.8 0.3 58.0 37.1 4.1 0.5 0.3 48.5 45.9 4.8 0.5 0.4
100 2.9 88.6 7.5 0.9 0.1 7.4 87.4 4.5 0.6 0.2 4.3 89.4 5.5 0.6 0.1
200 0.0 92.2 7.2 0.5 0.1 0.0 94.8 4.6 0.4 0.1 0.0 93.9 5.4 0.5 0.1

0.3 0.65 50 34.5 55.9 8.4 0.8 0.3 54.6 40.4 4.0 0.5 0.4 45.5 48.3 5.3 0.6 0.3
100 4.9 83.9 9.7 1.3 0.2 12.6 81.1 5.3 0.6 0.3 7.5 84.0 7.2 0.9 0.5
200 0.0 89.5 9.2 1.1 0.2 0.4 94.6 4.3 0.5 0.2 0.0 91.2 7.5 1.0 0.2

0.2 0.79 50 35.7 55.5 7.5 1.0 0.3 51.8 43.4 3.9 0.5 0.3 45.2 49.7 4.2 0.6 0.3
100 6.5 82.9 9.2 1.3 0.2 14.1 80.4 4.6 0.6 0.3 8.9 82.8 6.9 1.1 0.4
200 0.0 88.8 9.9 1.0 0.2 0.4 94.3 4.5 0.6 0.3 0.0 90.7 7.9 1.0 0.4

0.05 0.94 50 39.5 54.3 5.2 0.8 0.1 56.0 39.9 3.3 0.5 0.3 51.0 45.4 2.9 0.4 0.3
100 4.2 88.7 6.1 0.9 0.1 7.5 87.2 4.3 0.8 0.2 6.1 88.7 4.2 0.7 0.3
200 0.0 93.4 5.9 0.7 0.0 0.0 95.4 4.0 0.5 0.2 0.0 94.6 4.6 0.5 0.2

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 43.4 49.9 5.7 0.8 0.1 61.9 34.1 3.1 0.7 0.2 57.0 39.2 3.0 0.8 0.1

100 2.7 90.6 5.9 0.6 0.1 5.9 89.5 3.9 0.5 0.3 4.3 90.8 4.1 0.5 0.2
200 0.0 93.6 5.9 0.4 0.1 0.0 95.4 4.1 0.4 0.1 0.0 95.2 4.1 0.5 0.2

0.5 0.0 50 39.6 52.6 6.8 0.9 0.1 58.8 36.9 3.5 0.8 0.2 51.6 43.4 4.1 0.7 0.2
100 3.0 88.3 7.9 0.7 0.1 8.1 86.5 4.7 0.5 0.3 4.9 88.7 5.6 0.6 0.2
200 0.0 92.6 6.6 0.7 0.0 0.0 95.2 4.2 0.4 0.1 0.0 94.1 5.1 0.6 0.1

0.3 0.65 50 39.6 52.2 7.2 0.8 0.1 58.4 37.2 3.4 0.7 0.3 51.5 43.4 4.1 0.8 0.2
100 3.7 87.2 7.9 0.9 0.2 9.7 84.9 4.5 0.6 0.3 6.0 87.3 5.8 0.7 0.3
200 0.0 91.7 7.6 0.7 0.1 0.0 95.0 4.3 0.5 0.1 0.0 93.2 5.9 0.8 0.2

0.2 0.79 50 40.4 52.1 6.5 0.9 0.2 58.6 37.2 3.2 0.8 0.3 52.3 42.8 4.0 0.7 0.2
100 4.4 86.8 7.5 1.0 0.2 10.0 84.7 4.4 0.7 0.3 6.6 86.9 5.4 0.7 0.3
200 0.0 91.6 7.7 0.6 0.1 0.1 95.0 4.3 0.5 0.1 0.0 93.1 6.3 0.5 0.1

0.05 0.94 50 42.3 51.3 5.4 0.7 0.2 60.1 36.1 2.9 0.6 0.3 54.2 41.8 3.2 0.5 0.3
100 3.9 89.1 6.2 0.7 0.1 7.9 87.2 4.0 0.6 0.3 5.7 88.9 4.5 0.5 0.3
200 0.0 93.1 6.3 0.4 0.2 0.0 95.0 4.3 0.5 0.1 0.0 94.4 4.9 0.4 0.2

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 33.9 55.7 9.0 1.2 0.2 54.2 40.6 4.1 0.7 0.3 44.4 48.6 5.8 0.8 0.4
100 4.9 83.3 10.5 1.3 0.1 13.7 80.6 4.7 0.6 0.4 7.1 83.9 7.6 1.0 0.4
200 0.0 88.7 10.1 1.0 0.2 0.5 93.7 5.0 0.6 0.3 0.0 90.4 8.4 1.0 0.3

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 33.3 55.8 9.3 1.4 0.3 51.6 43.1 4.2 0.9 0.3 42.4 50.4 5.9 1.1 0.3
100 7.4 78.6 12.0 1.7 0.3 18.0 75.8 5.0 0.9 0.4 9.7 79.0 9.3 1.3 0.6
200 0.1 84.4 13.5 1.8 0.2 1.6 92.7 4.7 0.7 0.3 0.1 86.5 11.1 1.8 0.5

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 34.5 54.9 9.2 1.1 0.3 52.4 42.6 3.9 0.7 0.3 43.4 50.3 5.3 0.7 0.3
100 6.7 80.7 10.7 1.5 0.4 16.9 77.2 4.7 0.9 0.3 9.4 80.4 8.2 1.3 0.6
200 0.1 86.0 12.3 1.4 0.3 0.9 93.2 5.0 0.5 0.3 0.1 88.0 10.2 1.3 0.4

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 27.9 52.7 16.1 3.0 0.4 49.6 42.9 6.3 0.9 0.3 36.0 50.2 10.9 2.2 0.6
100 7.9 68.1 20.3 3.2 0.4 26.7 65.4 6.4 1.2 0.3 10.9 69.5 16.2 2.7 0.7
200 0.2 74.2 22.0 2.9 0.6 4.9 87.8 6.5 0.6 0.2 0.4 77.7 18.5 2.6 0.8

0.951 0.314 50 30.0 54.7 12.7 2.2 0.4 49.9 43.7 5.3 0.8 0.3 38.5 51.0 8.4 1.6 0.6
100 7.8 72.4 17.1 2.4 0.4 23.9 68.7 6.2 0.9 0.3 10.5 73.0 14.0 1.7 0.8
200 0.2 78.9 18.1 2.5 0.4 3.0 90.5 5.8 0.6 0.1 0.2 81.9 15.2 2.0 0.7



Table 10: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 5, True Rank is 1.

Q-based Qb-based Qs-based
r = 0 1 2 3 4, 5 0 1 2 3 4, 5 0 1 2 3 4, 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 51.5 42.4 5.3 0.6 0.1 75.4 22.1 2.1 0.2 0.2 71.0 26.3 2.3 0.3 0.1

100 7.2 85.5 6.6 0.6 0.1 15.5 80.0 3.8 0.5 0.2 12.9 82.5 4.0 0.5 0.1
200 0.0 93.2 6.0 0.7 0.1 0.0 95.4 4.0 0.4 0.2 0.0 95.4 4.0 0.5 0.1

0.5 0.0 50 44.7 46.3 7.9 0.9 0.2 71.4 25.0 3.1 0.3 0.2 63.1 32.4 3.8 0.4 0.3
100 7.7 81.7 9.4 1.0 0.2 19.9 74.3 5.0 0.6 0.2 12.8 79.8 6.5 0.7 0.2
200 0.0 91.2 8.0 0.7 0.1 0.0 95.2 4.3 0.3 0.1 0.0 93.5 5.8 0.5 0.1

0.3 0.65 50 41.5 48.6 8.7 1.1 0.1 65.6 30.4 3.4 0.5 0.1 57.4 37.7 4.2 0.6 0.1
100 10.3 77.5 10.5 1.6 0.2 24.6 69.9 4.6 0.7 0.2 15.5 75.8 7.3 1.1 0.3
200 0.0 87.2 11.5 1.1 0.2 1.0 93.6 4.7 0.6 0.1 0.1 90.1 8.5 1.1 0.2

0.2 0.79 50 41.8 48.5 8.4 1.0 0.3 64.0 32.0 3.3 0.5 0.2 56.2 39.3 3.7 0.5 0.2
100 12.2 75.7 10.5 1.3 0.3 25.4 69.5 4.2 0.7 0.2 17.6 74.4 6.8 1.0 0.3
200 0.2 87.2 11.1 1.4 0.2 1.3 93.3 4.8 0.4 0.2 0.3 89.5 8.7 1.2 0.3

0.05 0.94 50 47.6 45.8 5.6 0.7 0.2 70.6 26.7 2.1 0.4 0.2 64.9 32.3 2.4 0.3 0.1
100 10.4 81.7 7.0 0.7 0.1 19.3 75.9 4.0 0.6 0.1 16.1 79.1 4.2 0.5 0.1
200 0.0 92.6 6.7 0.6 0.1 0.1 95.2 4.2 0.4 0.1 0.0 94.6 4.8 0.4 0.2

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 49.8 42.9 6.4 0.8 0.1 74.6 22.7 2.3 0.3 0.1 69.1 27.7 2.8 0.3 0.1

100 7.8 85.4 6.1 0.6 0.1 16.6 79.6 3.5 0.2 0.1 13.5 82.3 3.8 0.4 0.1
200 0.0 93.4 6.0 0.6 0.1 0.0 95.9 3.8 0.3 0.1 0.0 95.3 4.2 0.4 0.1

0.5 0.0 50 43.6 46.5 8.9 0.7 0.2 71.1 25.4 3.0 0.3 0.2 63.1 32.6 3.9 0.3 0.2
100 8.1 82.7 8.2 0.9 0.2 19.5 75.5 4.4 0.5 0.2 13.4 80.2 5.7 0.5 0.2
200 0.0 92.0 7.4 0.5 0.1 0.2 95.1 4.3 0.3 0.1 0.0 94.4 5.1 0.3 0.2

0.3 0.65 50 43.1 47.2 8.8 0.8 0.1 70.6 26.0 2.8 0.3 0.2 61.8 33.6 4.2 0.4 0.1
100 8.7 81.3 9.0 0.9 0.2 20.0 75.1 4.4 0.4 0.1 14.1 79.5 5.7 0.6 0.2
200 0.0 91.0 8.1 0.7 0.2 0.3 94.9 4.2 0.5 0.1 0.0 93.3 5.8 0.7 0.1

0.2 0.79 50 44.0 47.0 8.0 0.8 0.1 70.0 26.8 2.7 0.4 0.1 62.4 33.4 3.7 0.4 0.1
100 8.8 81.9 8.2 1.0 0.1 20.1 75.5 3.9 0.3 0.1 14.8 79.2 5.3 0.6 0.2
200 0.0 91.0 8.2 0.7 0.1 0.2 95.0 4.2 0.5 0.1 0.0 93.4 5.7 0.6 0.2

0.05 0.94 50 47.8 44.5 6.9 0.7 0.1 72.6 24.4 2.5 0.3 0.2 66.3 30.3 2.8 0.4 0.1
100 9.0 83.5 6.8 0.5 0.1 17.9 78.2 3.4 0.3 0.1 14.9 80.4 4.2 0.4 0.1
200 0.0 92.7 6.6 0.7 0.1 0.1 95.6 3.9 0.4 0.0 0.0 94.8 4.5 0.5 0.1

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 39.4 49.6 9.6 1.2 0.2 65.0 31.0 3.3 0.5 0.2 55.5 39.4 4.3 0.6 0.2
100 9.2 76.9 12.1 1.7 0.1 23.9 69.6 5.6 0.8 0.2 14.4 76.0 8.3 1.1 0.3
200 0.1 86.6 11.9 1.2 0.2 0.8 93.2 5.3 0.6 0.2 0.1 89.4 9.2 0.9 0.4

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 38.8 49.1 10.2 1.6 0.3 61.0 34.5 3.4 0.8 0.3 52.7 41.2 5.0 0.9 0.3
100 12.1 72.2 13.6 1.8 0.3 28.0 66.5 4.7 0.6 0.1 17.0 71.7 9.9 1.0 0.3
200 0.2 81.9 15.2 2.4 0.3 3.3 90.8 4.9 0.7 0.3 0.4 84.5 12.5 1.9 0.7

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 39.9 49.1 9.4 1.2 0.4 62.7 33.2 3.4 0.5 0.2 53.9 40.3 4.8 0.7 0.3
100 11.4 75.1 11.7 1.6 0.3 26.3 68.2 4.7 0.6 0.2 16.2 74.3 8.3 0.9 0.3
200 0.2 85.0 12.7 1.8 0.3 2.2 92.2 4.6 0.7 0.2 0.3 87.5 10.4 1.4 0.5

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 28.8 49.4 16.9 3.9 1.0 55.7 37.2 5.6 1.2 0.3 41.0 45.8 10.3 2.2 0.7
100 11.8 60.2 22.7 4.7 0.6 34.3 57.1 7.2 1.2 0.2 16.3 62.9 17.0 2.9 0.8
200 0.5 69.2 25.2 4.5 0.7 8.6 83.5 6.7 0.9 0.3 0.8 73.8 20.8 3.7 0.9

0.951 0.314 50 32.8 49.3 14.3 2.9 0.6 57.6 36.4 4.6 1.1 0.4 45.4 43.9 8.3 1.8 0.5
100 12.3 65.0 18.9 3.2 0.6 32.6 60.1 6.2 0.9 0.2 17.2 66.4 13.4 2.5 0.4
200 0.3 74.4 21.7 2.8 0.7 6.1 86.9 5.8 0.9 0.4 0.8 78.5 17.5 2.5 0.7



Table 11: Size of Standard and Bootstrap PLR Tests for Rank = 0 Against Rank = p.
True Rank is 0. VAR(2) Case.

p = 2 p = 3 p = 4 p = 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
0.0 0.0 50 12.2 7.3 6.8 21.4 6.5 6.9 41.5 8.5 8.9 70.3 9.7 11.5

100 8.9 6.0 6.2 12.5 5.6 5.9 18.9 5.2 5.9 32.0 6.5 7.4
200 7.0 4.9 5.3 8.5 5.2 5.6 10.9 4.8 5.1 15.8 5.2 5.3

0.3 0.65 50 16.3 8.0 10.1 27.0 8.5 11.0 46.2 9.4 11.2 72.2 12.0 14.6
100 12.9 6.7 9.4 17.3 7.1 10.1 25.4 7.0 10.6 38.1 8.6 12.5
200 10.5 5.9 8.8 13.4 5.8 9.4 16.1 5.7 9.4 22.9 6.3 10.8

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
0.0 0.0 50 12.3 6.2 6.7 22.0 6.9 7.6 41.3 7.7 8.7 70.2 10.2 11.1

100 8.4 5.0 5.7 12.2 5.5 6.1 18.7 5.8 6.8 32.3 5.7 6.5
200 7.3 5.4 5.6 8.7 5.1 5.5 10.9 5.2 5.8 16.8 5.9 6.4

0.3 0.65 50 14.3 7.2 8.0 24.6 8.0 9.6 44.7 8.6 10.5 72.4 11.0 12.6
100 10.7 5.6 7.6 14.2 6.1 7.8 22.2 6.3 8.4 35.4 6.6 9.3
200 9.0 5.9 7.4 11.0 5.9 7.5 13.5 5.2 7.3 19.8 6.1 8.1

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 16.4 8.3 10.3 27.7 8.9 11.4 47.4 10.4 12.5 73.0 12.5 15.6
100 13.3 6.7 9.1 18.0 7.0 10.6 25.5 7.6 11.4 39.9 8.5 12.6
200 10.8 5.9 8.6 13.2 6.0 9.2 16.7 6.0 9.4 22.5 6.5 10.2

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 17.9 8.9 11.8 29.8 9.8 12.3 47.6 10.6 13.5 73.1 12.7 15.9
100 16.0 7.3 12.4 21.0 7.8 12.9 29.7 8.0 13.8 42.8 9.3 14.8
200 15.0 6.2 12.5 18.8 6.7 14.4 22.9 6.6 14.6 29.7 7.4 16.2

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 17.0 8.3 10.8 28.5 9.1 11.5 45.9 10.3 13.1 72.5 12.2 15.7
100 14.4 7.0 10.8 19.9 7.4 12.2 27.4 7.4 12.4 40.9 8.2 13.3
200 12.9 6.4 11.1 16.6 6.5 12.6 20.0 6.2 12.5 26.5 6.2 13.0

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0

0.951 0.314 50 21.7 8.8 14.1 33.0 10.6 16.1 52.2 13.4 19.8 76.0 16.5 22.7
100 19.9 8.1 15.8 26.9 8.7 18.0 36.6 9.5 19.2 49.6 11.7 21.3
200 16.9 5.9 13.8 22.6 6.7 16.9 30.2 7.3 20.7 37.2 8.1 21.4



Table 12: Standard and Bootstrap Co-integration Tests: UK, Japan, Canada and the U.S.

Asymptotic Wild Bootstrap I.I.D. Bootstrap
Country Qr Statistics p-values p-values p-values

UK r = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
154.88 67.83 10.65 0.98 0.00 0.00 0.58 0.95 0.00 0.00 0.76 0.98 0.00 0.00 0.60 0.95

Japan r = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
101.86 40.19 10.50 3.68 0.00 0.01 0.59 0.46 0.00 0.20 0.86 0.75 0.00 0.04 0.71 0.51

Canada r = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
248.50 74.65 15.84 6.11 0.00 0.00 0.18 0.18 0.00 0.00 0.33 0.31 0.00 0.00 0.20 0.26

USA r = 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
138.66 60.04 33.32 17.47 3.15 0.00 0.01 0.08 0.12 0.55 0.02 0.36 0.51 0.62 0.90 0.00 0.01 0.12 0.15 0.62
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