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Abstract

We analyse the properties of the conventional Gaussian-based co-integrating
rank tests of Johansen (1996) in the case where the vector of series under test
is driven by globally stationary, conditionally heteroskedastic (martingale differ-
ence) innovations. We first demonstrate that the limiting null distributions of the
rank statistics coincide with those derived by previous authors who assume either
i.i.d. or (strict and covariance) stationary martingale difference innovations. We
then propose wild bootstrap implementations of the co-integrating rank tests and
demonstrate that the associated bootstrap rank statistics replicate the first-order
asymptotic null distributions of the rank statistics. We show the same is also true
of the corresponding rank tests based on the i.i.d. bootstrap of Swensen (2006).
The wild bootstrap, however, has the important property that, unlike the i.i.d.
bootstrap, it preserves in the re-sampled data the pattern of heteroskedasticity
present in the original shocks. Consistent with this, numerical evidence sug-
gests that, relative to tests based on the asymptotic critical values or the i.i.d.
bootstrap, the wild bootstrap rank tests perform very well in small samples un-
der a variety of conditionally heteroskedastic innovation processes. An empirical
application to the term structure of interest rates is given.
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1 Introduction

In a recent paper, Gongalves and Kilian (2004) argue that “... the failure of the i.i.d.
assumption is well-documented in empirical finance ... many monthly macroeconomic
variables also exhibit evidence of conditional heteroskedasticity.” (2004,p.92); see Sec-
tion 2 of Gongalves and Kilian (2004) for detailed discussion and empirical evidence on
this point. Gongalves and Kilian (2004,2007) show that, so far as inference in station-
ary univariate autoregressive models is concerned, standard residual-based bootstraps
based on an i.i.d. re-sampling scheme are invalid under conditional heteroskedastic-
ity. They demonstrate that in such cases inference based on the wild bootstrap is
asymptotically valid and delivers substantial improvements over both residual-based
i.i.d. bootstrap tests and standard tests based on asymptotic critical values. Xu (2008)
has recently shown that Gongalves and Kilian’s (2004) residual wild bootstrap is also
valid in the presence of innovations with non-stationary volatility. Cavaliere and Taylor
(2008) show that analogous properties also hold when using wild bootstrap methods
in the context of the univariate unit root testing problem.

The trace and maximum eigenvalue co-integrating rank tests of Johansen (1996) are
derived under the assumption of Gaussian i.i.d. innovations. In an important Monte
Carlo study, Lee and Tse (1996) numerically examine the performance of the rank
tests in the presence of GARCH errors. They find that (for the case of non-integrated
GARCH errors) the rank tests show a tendency to over-reject the null hypothesis of
no co-integration but that this is ameliorated, other things being equal, as the sam-
ple size is increased. These findings are consistent with Rahbek, Hansen and Dennis
(2002) [RHD] who demonstrate that the assumption required on the innovations can
be considerably weakened to that of a (strict and second-order) stationary and er-
godic vector martingale difference sequence (with constant unconditional variance and
satisfying certain mild regularity conditions) without altering the asymptotic null dis-
tributions of the rank statistics. In this paper we first show that these limiting null
distributions remain valid in the less restrictive case of globally stationary, conditionally
heteroskedastic shocks satisfying certain moment conditions. Moreover, we show that
the pseudo maximum likelihood [PML] estimator of the error correction model which
assumes Gaussian i.i.d. disturbances remains consistent under these weaker conditions.

Although, the standard rank tests based on asymptotic critical values therefore re-
main asymptotically valid in the presence of conditionally heteroskedastic shocks, the
construction of these tests does not utilise sample information relating to any condi-
tional heteroskedasticity present. Given this result, and the observation of Gongcalves
and Kilian (2004) that conditional heteroskedasticity is a relatively common occurrence
in macroeconomic and financial time series, it is clearly important and practically rel-
evant to also consider bootstrap testing procedures in the multivariate time series
setting which are asymptotically valid in the presence of conditional heteroskedastic-
ity. We therefore develop bootstrap versions of the standard co-integrating rank tests.
Our approach builds on the residual-based bootstrap co-integrating rank tests of van
Giersbergen (1996), Harris and Judge (1998), Mantalos and Shukur (2001), Trenkler



(2009) and, most notably, Swensen (2006), all of which assume that the innovations
are independent and identically distributed (i.i.d.).

Our proposed bootstrap tests are based on the wild bootstrap re-sampling scheme,
since, unlike the other bootstrap schemes noted above, this replicates in the re-sampled
data the pattern of heteroskedasticity present in the original shocks. The wild bootstrap
scheme we use has also been considered in the co-integration rank testing scenario by
Cavaliere, Rahbek and Taylor (2007) [CRT] in the fundamentally different scenario
where the innovations display globally non-stationary volatility; that is, cases where
the unconditional variance of the innovation vector varies over time in a systematic
fashion. CRT demonstrate that in such cases, under the assumption of an absence of
any conditional heteroskedasticity, the conventional co-integrating rank statistics do
not have the same form as given in Johansen (1996), rather they depend on nuisance
parameters relating to the underlying volatility process. They demonstrate, however,
that the wild bootstrap rank statistics can replicate this limit distribution, to first
order. Consequently, although the wild bootstrap algorithm we use here is the same
as that in CRT, it is being used in the context of a quite different statistical model.

We show that wild bootstrap co-integrating rank statistics replicate the first-order
asymptotic null distributions of the rank statistics, such that the corresponding boot-
strap tests are asymptotically valid, in the presence of conditionally heteroskedastic
innovations. The same is shown to be true of the corresponding i.i.d. bootstrap tests
of Swensen (2006). It is not our aim in this paper to establish that the wild bootstrap
provides a superior approximation to the conventional asymptotic approximation or to
the i.i.d. bootstrap approximation. Rather we detail a less restrictive set of conditions
than is adopted in the extant literature under which both the asymptotic test and both
the wild and i.i.d. bootstrap approaches are asymptotically valid. However, since the
wild bootstrap incorporates sample information on the conditional heteroskedasticity
where present, one might anticipate that the wild bootstrap would provide a superior
approximation to that provided by the asymptotic and i.i.d. bootstrap approximations
which do not incorporate such sample information. Simulation evidence for a variety
of conditionally heteroskedastic innovation models is supportive of this view. Taken
together, the results in this paper coupled with those in CRT demonstrate that the wild
bootstrap is a very powerful and useful tool, able to handle time-dependent behaviour
in both the conditional and unconditional variance of the innovations. The question
of whether there are conditions under which the wild bootstrap approach will provide
asymptotic refinements is left for future research.

The paper is organized as follows. Section 2 outlines our reference co-integrated
conditionally heteroskedastic VAR model, while section 3 establishes the large sam-
ple behaviour of the standard rank statistics and the MLE of the parameters from
this model. Our wild bootstrap-based approach, which also incorporates a sieve pro-
cedure using the (consistently) estimated coefficient matrices from the co-integrated
VAR model, is outlined in Section 4. The first-order asymptotic validity of both this
approach and that based on the i.i.d. re-sampling bootstrap rank tests of Swensen
(2006) are demonstrated. In Section 5, the finite sample properties of the tests are



explored through Monte Carlo methods and compared with the standard asymptotic
tests and with the i.i.d. bootstrap tests, for a variety of conditionally heteroskedastic
error processes. In section 6 we apply our tests to bond market data from several major
economies. Section 7 concludes. All proofs are contained in the Appendix.

In the following ‘=’ denotes weak convergence, ‘2>’ convergence in probability,
and ‘gp’ weak convergence in probability (Giné and Zinn, 1990; Hansen, 1996), in
each case as the sample size diverges to positive infinity; I(-) denotes the indicator
function and ‘x := 3’ (‘c =: y’) indicates that x is defined by y (y is defined by x);
|-| denotes the integer part of its argument. The space spanned by the columns of
any m X n matrix A is denoted as col(A); if A is of full column rank n < m, then A
denotes an m x (m — n) matrix of full column rank satisfying A’, A = 0. For any square
matrix, A, | A is used to denote the determinant of A, ||A|| the norm ||A||* := tr {A’A},
where tr { A} denotes the trace of A, and p (A) its spectral radius (that is, the maximal
modulus of the eigenvalues of A). For any vector, z, ||z|| denotes the usual Euclidean
norm, ||z|| := («/z)"?

2 The Conditionally Heteroskedastic Co-integration
Model

We consider the following VAR(k) model in error correction format:
AXt :HXt_1+\IIUt+MDt+€t, t = ]_,...,T (21)

where: X; and ¢; are p x 1, U; := (AXt’_l,...,AXt’ka)/ isp(k—1)x1and ¥ :=
(T'y,...,Tx_1), where {T';}*=} are p x p lag coefficient matrices and the impact matrix
I1 := of8’ where o and 3 are full column p x r matrices, r < p. The term D, collects
all deterministic components, and in this paper we focus on the leading case of a linear
trend, D, := (1,t)’, with associated coefficients p := (u},4)’. The initial values,
X = (Xé7 e XLk+1)’, are taken to be fixed.

Throughout the paper the process in (2.1) is assumed to satisfy the following as-
sumptions.

Assumption 1: (a) All of the characteristic roots associated with (2.1), that is the

solutions to the characteristic equation A(z) = (1—2)I, — af'z — T12(1—2) —
- — Ty 1281 (1 —2) = 0, lie either outside the unit circle or are equal to unity;
(b) det (o, I'3,) #0, with ' :== 1, = I'y —--- — [}_y.

Assumption 2: The innovations {e;} form a martingale difference sequence with
respect to the filtration F;, where F,_1 C F for t = ..., —1,0,1,2, ..., satisfying: (i) the
global homoskedasticity condition:

1 T
ZE €t6t|~7:t 1 —> x> 0 (22)
t:1



and (i) E ||&||* < K < .

Remark 2.1. While Assumption 1 is standard in the co-integration testing literature,
Assumption 2 is not. Assumption 2 implies that ¢, is a serially uncorrelated, potentially
conditionally heteroskedastic process. This contrasts with the assumption that &; is
i.i.d. as made in Johansen (1996) and Swensen (2006). Moreover, and in contrast to
RHD, condition (i) of Assumption 2 imposes neither strict nor second-order stationarity
on &;, but rather imposes a so-called global stationarity or global homoskedasticity
condition; see e.g. Davidson (1994,pp.454-455). In particular, this condition allows the
conditional (and, hence,’ unconditional) variance of ¢; to change over time, provided
that it is asymptotically stable over all possible fixed fractions of the data; that is,
provided

[Ts']
1
—T (3/ — S) E E (E‘:té‘“./ft_l) i b (23)
t=|Ts|+1

for all &' < s € [0,1]. This framework therefore allows for, among other things, stable
(G)ARCH models with initial values that are not drawn from the invariant distribution,
and models which exhibit seasonal heteroskedasticity. An example of the latter is given
by the case where ¢; satisfies E (e:¢}| Fi—1) = E (e:¢}) = Zle YOdy, t =1,..., T, where
the d;, 1 = 1,..., 5, are standard seasonal dummies (S being the number of seasons)
which is clearly not a covariance stationary process (unless X = ... = E(S)) but
is nonetheless globally homoskedastic because condition (2.3) holds. Notice, however,
that (2.3) is not in general satisfied in the non-stationary volatility setting of CRT,
where the right member of (2.3) depends on ¢/, s.

Remark 2.2. Under Assumption 2, a multivariate functional central limit theorem
[FCLT] as in Brown (1971, Theorem 3) applies to &;; viz,

—=> e W), (2.4)

where W is a Brownian motion with covariance matrix 3, the latter defined as in (2.2).
This result follows from Assumption 2(i) and since the finite fourth order moment
requirement in Assumption 2(ii) implies the Lindeberg-type condition

T-'sT E <||g,5||2 - ]1{||gt|| > 5\/7}‘ J—"H) LA

Assumption 2 also ensures that conditions (5) and (6) in Hannan and Heyde (1972,
Theorem 1) hold, implying that for any linear process s; of the form s; := Y > 0,6,
with 32°°, [|6i]l < oo, the empirical average, T-'3." s;, and empirical autocovari-
ances, T~! Zthl S¢Sy, converge in probability to zero and Y oco 0,220 41> Tespectively.

!Specifically, the condition in (2.2) coupled with the assumption of finite fourth order moments
implies that the unconditional variances of ¢;, t = 1, ..., T, satisfy jlilan’l Zthl E (eie}) = X.
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Remark 2.3. The conditions in Assumption 2 ensure that a FCLT applies to the MDS,
{&:}, and that the product moments converge, as detailed in Remark 2.2. Both the
convergence in (2.2) and the convergence of the product moments would also be implied
by assuming geometric ergodicity of the {e;} sequence, since the law of large numbers
applies to functions of geometrically ergodic processes; see Jensen and Rahbek (2007)
for details. Geometric ergodicity is satisfied for a rich class of (G)ARCH processes; see,
for example, the discussion in Kristensen and Rahbek (2005, 2009) and the references
therein.

For unknown parameters «, 3, ¥, u, and when a and 3 are p X r matrices, not
necessarily of full rank, (2.1) denotes our conditionally heteroskedastic co-integrated
VAR model, which we denote as H(r). The model may then be written in the compact
form

th = aﬁ*'ZM + 5ZQt + & (25)

with Zy := AX,, and the remaining terms defined according to the following three
leading cases for the deterministic terms (see, e.g., Johansen, 1996, p.81):

(i) uD; = 0 in (2.1), which implies that Zy; := Xy 1, Zoy :=U;,, "= Fand 6 = ¥
(no deterministic components);

(ii)) uDy = py = apy in (2.1), which implies that Zy; = (X]_,,1), Zoy :== Uy, f° =
(', p}) and 6 = W (restricted constant);

(i) puDy = py + pot with py = aph in (2.1), which implies that 7, = (X[ _,t),
Zo = (U], 1), 8" = (B, ph) and & = (U, 1) (restricted linear trend).

3 Pseudo LR Tests

As is standard, let M;; = T 2th1 ZiwZy, 1, = 0,1,2, with Zj; defined as in (2.5),
and let S;; := M;jo := M;; — MZ-QMQ’;MQ]-, 1,7 = 0,1. Under the auxiliary assumption
of i.i.d. Gaussian disturbances, the pseudo Gaussian likelihood function depends on the
vector 9FME .= (o, B, W, 1, %), with pD; satisfying one of the three cases considered
at the end of the previous section (throughout we also apply the usual norming or
identification as in Johansen, 1996, section 13.2). We denote the corresponding PML
estimator as - (d,B,\iJ,ﬂ, fl) Write the maximized (pseudo) log-likelihood
under H (r), say £ (r), as

00 = — L log S0l — %Zlog (1 - A) (3.1)

-3 '
=1
where A\; > ... > ;\p, solve the eigenvalue problem
P\SH — 31050_01501‘ =0. (32)
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The pseudo LR (PLR) test for H(r) vs H(p) then rejects for large value of the statistic

Qri=—2(((r)— () =-T Y log (1 - A) . (3.3)

i=r+1

We now demonstrate the validity of the following theorem concerning the limiting
null distribution of the (), statistic under conditional heteroskedasticity of the form
specified in Assumption 2. To keep the presentation simple we consider, for the present,
the case of no deterministics in the model and in the estimation (so that f is omitted

from the definition of 9PML above). This will be subsequently relaxed in Remark 2.5.

Theorem 1 Let {X;} be generated as in (2.1) under Assumptions 1 and 2, with pu = 0.
Then, under the hypothesis H(r),

Qr 2 tr(Qp) = Qre (3.4)
where 1 1 L
Op = /O (dB(u))B(u)’ < /0 B(u)B(u)’du) /O B(u)(dB(u)) (3.5)
with B(-) a (p — r)-variate standard Brownian motion.

Remark 3.1. The representation for the limiting null distribution of @), given in (3.4)
coincides with that given in Johansen (1996) for the case of independent Gaussian
innovations and in RHD for covariance stationary martingale difference innovations.

Remark 3.2. The result in Theorem 1 can be generalized to cover the two addi-
tional cases for the deterministic component considered just below (2.5). It is an
entirely straightforward extension of the result in Theorem 1 to establish that in
such a case the asymptotic null distribution of @, is given by (3.4) but now with
Qp = tr([(dB(u))F(u) ([ F(w)F(u)) " x [ F(u)(dB(u))'), where B is as defined in
Theorem 1, and F' is a function of B whose precise form depends on the deterministic
term. More specifically, decomposing B as B := (Bj, Bs)’, where By is one-dimensional
and using the notation a|b := a(-)— [ a(s)b(s)'ds([ b(s)b(s)'ds)~'b(-) to denote the pro-
jection residuals of a onto b:

(i) if uDy = 01in (2.1), then F := B, as in Theorem 1;
(ii) if uDy = apy in (2.1), then F := (B',1)’;
(ili) if uDy = py + apht in (2.1), then F':= (B', ull)".

Remark 3.3. The preceding discussion extends to the so-called maximum eigenvalue
test; that is, a PLR test based for H(r) vs H(r +1). As is well known, this test rejects

~

for large values of the statistic Q) max := =2 (£ (r) — € (r + 1)) = =T 'log(1 — A\,41), see,
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for example, Equation (6.19) of Johansen (1996). It then follows trivially from the
preceding results that the null asymptotic distribution of ) max corresponds to the
distribution of the maximum eigenvalue of the real symmetric random matrix Qg.

Remark 3.4. As in Johansen (1996), under H(r), the r largest eigenvalues solving
(3.2), A1, ..., A\, converge in probability to positive numbers, while T'A,41, ..., T 5\1) are
of O,(1). Consequently, the PLR test based on either @), or @, max Will be consistent at
rate O,(7T) if the true co-integration rank is, say, o > r. This implies, therefore, that
the sequential approach to determining the co-integration rank? outlined in Johansen
(1996) will still lead to the selection of the correct co-integrating rank with probability
(1—=¢) in large samples, as in the i.i.d. Gaussian case. The same results also hold under
cases (ii) and (iii) of Remark 3.2.

We conclude this section by demonstrating that even though based on a mis-

~PML
specified model® the PML estimator, 6 , is consistent. This will turn out to be
a key property needed to establish the validity of the bootstrap PLR tests we propose
in section 4.

Theorem 2 Under the conditions of Theorem 1, Tl/z(B —05) 2, 0. Moreover, & % a,
VAN U, and IS 3}

Remark 3.5. Theorem 2 shows that in the presence of conditional heteroskedasticity
of the form specified in Assumption 2, the PML estimators of «, 3, ¥ and ¥ remain
consistent. Under cases (ii) and (iii) of Remark 3.2 it can additionally be shown that
it, the PML estimator of 1, also remains consistent.

4 Bootstrap PLR Tests

In section 4.1 we first outline our wild bootstrap algorithm. Subsequently in section 4.2
we show that because, as was shown in the previous section, we can still consistently
estimate a, 3, u and ¥ in the presence of conditional heteroskedasticity, (asymptoti-
cally) pivotal null p-values can be obtained using wild bootstrap re-sampling methods,
regardless of whether conditional heteroskedasticity is present or not in the shocks. In
section 4.3 we then demonstrate that the i.i.d. bootstrap rank tests of Swensen (2006)
share the same large sample properties as the wild bootstrap.

The re-sampling algorithm discussed in section 4.1 draws on the wild bootstrap
literature (see, inter alia, Wu, 1986; Liu, 1988; Mammen, 1993). In the context of the
present problem, we focus our primary attention on the wild bootstrap scheme because,
unlike the i.i.d. residual re-sampling schemes used for other bootstrap co-integration

2This procedure starts with r = 0 and sequentially raises 7 by one until for » = # the test statistic
Qi (or Q7 max) does not exceed the £ level critical value for the test.

3The likelihood being used in (3.1) is not the correct likelihood for the model in (2.5), unless
ee ~NIID(0,X).



tests proposed in the literature; see, e.g., Swensen (2006) and, in the univariate (p = 1)
case, Inoue and Kilian (2002), Paparoditis and Politis (2003), Park (2003), the wild
bootstrap replicates the pattern of heteroskedasticity present in the original shocks,
and, hence, preserves the temporal ordering in the conditional heteroskedasticity. The
wild bootstrap might therefore be expected to deliver improved finite sample size prop-
erties relative to the standard and i.i.d. bootstrap rank tests in the presence of con-
ditional heteroskedasticity. The simulation results presented in section 5 support this
conjecture.

4.1 The Wild Bootstrap Algorithm

Let us start by considering the problem of testing the null hypothesis H(r) against
H(p), r < p. Swensen (2006, section 2) discusses at length a way of implementing
a bootstrap version of the well known trace test in this case. Here we extend his
approach by modifying his re-sampling scheme in order to account the presence of
conditional heteroskedasticity by means of the wild bootstrap. Implementation of the
wild bootstrap requires us only to estimate the VAR(k) model under H(p) (i.e., the
unrestricted VAR) and under H (r).

Let U := (I'y,..,Ix_1) denote the (unrestricted) PML estimate of ¥ from the
model under H(p); the corresponding unrestricted residuals are denoted by &;, t =
1,...,T. In addition, let &, 3 denote the (restricted) PML estimates of o, under the
null hypothesis H (). The bootstrap algorithm we consider in this section requires
that the roots of the equation |A* ()| = 0 are either one or are outside the unit circle,
where

~

A =0—2)L,—afz—T1(1—2)z—..—Tp1 (1—2) 251,

moreover, we also require that |&, T3, | # 0, ([ := I, = 'y — ... — Tx_;). While the
latter condition is always satisfied in practice, if the former condition is not met, then
the bootstrap algorithm cannot be implemented, because the bootstrap samples may
become explosive; cf. Swensen (2006, Remark 1). However, in such cases any estimated
root which has modulus greater than unity could be shrunk to have modulus strictly
less than unity; cf. Burridge and Taylor (2001,p.73).

The following steps constitute our wild bootstrap algorithm, which coincides with
Algorithm 1 of CRT. We outline the procedure for the trace statistic, Q(r). The
maximum eigenvalue statistic, @, max for H(r) vs H(r + 1) can be bootstrapped in
the same way, replacing Q° with Q% . == —2 (¢*(r) — {*(r 4+ 1)) in Steps 3 and 4 of
Algorithm 1.

Algorithm 1 (Wild Bootstrap Co-integration Test)

Step 1: Generate T bootstrap residuals €, t = 1,...,T, according to the device

52 = étwt (41)
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where {w;}_, denotes an independent N(0,1) scalar sequence;

Step 2: Construct the bootstrap sample recursively from
AXP = 4B XD+ TIAXD 4 4 T AXD o+l =17, (4.2)

with initial values, X? :=0,t = —k+1,...,0.

Step 3: Using the bootstrap sample, { X'}, obtain the bootstrap test statistic, Q¥ :=
=2 (¢*(r) — €% (p)), where {*(r) and (*(p) denote the bootstrap analogues of {(r) and
U(p), respectively;

Step 4: Bootstrap p-values are then computed as, p?p =1 — G21(Q,), where GP ()
denotes the conditional (on the original data) cumulative distribution function (cdf) of

Q-

Remark 4.1. The key feature of the wild bootstrap is Step 1, where the bootstrap
shocks, €?, in (4.1) are generated by multiplying the residuals &; by a scalar 1ID(0,1)
sequence. This allows the bootstrap shocks to replicate the pattern of heteroskedas-
ticity present in the original shocks since, conditionally on &;, % is independent over
time with zero mean and variance matrix £;;. Also, conditionally on the data, the

bootstrap partial sum T2 317 o0 —

. . _ Tu| ~ a1
increments and variance 71 ST

T-1/2 ngj £,w, has mean zero, independent
_" &8, = uX + 0, (1), X the average conditional vari-
ance; cf. Remark 2.1. Finally notice that, due to the normality assumption on wy, the
bootstrap partial sum is (conditionally on the original data) exact Gaussian®.

Remark 4.2. Observe that, due to the (exact) invariance of @), with respect to p,
we need not add an estimate of the estimated deterministic component, uD;, to the
right member of (4.2) as is done in, for example, Swensen (2006). Moreover, since @,
is similar (exact similar under cases (ii) and (iii) of Remark 3.2 and asymptotically
similar under case (i)) with respect to the initial values we may set these to zero in our
recursive scheme. As an alternative to (4.2) one could use the recursion

AXP = 6B X0 + TWAXD 4+ 4+ TuAXD 4+ D+ t =1, T

with initial values, X? := X;, t = —k + 1,...,0. In the restricted trend case, i :=
(ji}, jib)" with fi; and fi, the PML estimates of z; and u, obtained from the model
estimated under H(r) and H (p), respectively, while in the restricted constant case fi :=
fi;, with fi; the PML estimates of p, obtained from the model estimated under H(r);
cf. Swensen (2006). In unreported Monte Carlo simulations we found no discernible

4 As discussed in Remark 4.3 of CRT, we also investigated whether improved small sample accuracy
could be obtained by replacing the Gaussian distribution used for generating the pseudo-data in (4.1)
by an asymmetric distribution. Like CRT we found no discernible differences between the finite
sample properties of the bootstrap rank tests based on the Gaussian distribution, Mammen’s (1993)
two-point distribution or the Rademacher distribution, also consistent with evidence reported in Table
5 of Gongalves and Kilian (2004,p.105).
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differences between the finite sample properties of these two approaches and so we have
adopted the simpler of the two.

Remark 4.3. As detailed in Remark 4.4 of CRT, the unknown cdf, G% ,.(-), required
in Step 4 of Algorithm 1 can approximated through numerical simulation. This is done
by generating N (conditionally) independent bootstrap statistics, Q°.., n = 1,..., N,
and then computing the p-value as ﬁfﬂp = N1 Zf:[:l I ( b > Qr), and is such that
Py =5 pbpas N — oo. For further discussion of the wild bootstrap procedure outlined
in Algorithm 1 we refer the reader to the discussion given in Section 4.1 of CRT.

4.2 Asymptotic Theory for the Wild Bootstrap

The asymptotic validity of the wild bootstrap method outlined in Algorithm 1 under
conditional heteroskedasticity is now established in Theorem 3. In order to keep our
presentation simple, we demonstrate our result for the case of no deterministic variables.
The equivalence of the first-order limiting null distributions of the Q% and Q, statistics
can also be shown to hold for cases (ii) and (iii) of Remark 3.2. Again this is a
straightforward extension of the results in Theorem 3 and is omitted in the interests
of brevity.

Theorem 3 Let the conditions of Theorem 1 hold. Then, under the null hypothesis
H(r), Q% =, Qroo- Moreover, pb, = U0, 1].

Remark 4.4. A comparison of the result for Q° in Theorem 3 with that given for
@, in Theorem 1 demonstrates the usefulness of the wild bootstrap: as the number
of observations increases, the wild bootstrapped statistic has the same first-order null
distribution as the original test statistic. Consequently, the bootstrap p-values are
(asymptotically) uniformly distributed under the null hypothesis, leading to tests with
(asymptotically) correct size in the presence of conditional heteroskedasticity of the
form given in Assumption 2.

Remark 4.5. It can be shown that the sequential procedure of Johansen (1996),
see footnote 1, employed using the wild bootstrap Q%, r = 0,...,p — 1, test statistics
is consistent in the sense that it correctly selects the true co-integrating rank with
probability (1 — &) in large samples (¢ denoting the nominal significance level used in
each test in the procedure) in the presence of conditional heteroskedasticity satisfying
Assumption 2. The same can also be shown to be the case for the corresponding
sequential procedure based on the i.i.d. boostrap approach of Swensen (2006). See
the accompanying working paper, Cavaliere et al. (2009), for further details on this
together with Monte Carlo simulation evidence into the finite sample performance of
the sequential procedures based on the asymptotic and bootstrap tests under a variety
of conditionally heteroskedastic models.
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Remark 4.6. Given the results in Theorem 3, it follows straightforwardly that the
limiting null distribution of the bootstrap maximum eigenvalue statistic, Q? max, COIN-
cides with that given in Remark 3.3, so that again our wild bootstrap procedure will
deliver (asymptotically) correctly sized maximum eigenvalue co-integration tests under
the conditions of Theorem 3. The results of Remark 4.5 also apply for the sequential

procedure based on the bootstrap maximum eigenvalue statistic.

4.3 Swensen’s i.i.d. Bootstrap

The i.i.d. bootstrap method outlined in Swensen (2006) follows the same steps as the
wild bootstrap method outlined above in section 4.1, except that Step 1 of Algorithm
1 is replaced by the following;:

Step 1: Generate T bootstrap residuals €, t = 1,....,T, as independent draws with
replacement from the centred residuals {&, — T~ Y1 &} .

The algorithm for the i.i.d. bootstrap rank tests then continues exactly as in Algorithm
1, but using the centred® i.i.d. bootstrap residuals, ¢, in place of the wild bootstrap
residuals, 2. We denote the resulting i.i.d. bootstrap rank statistic by @ and the
associated i.i.d. bootstrap p-value as p; . The same conditions on the roots of the

equation |A* (z) | = 0 as were required for the wild bootstrap must also hold here, as
must the condition that |a/, '3, | # 0. Again any estimated root with modulus greater
than unity may again be shrunk to have modulus strictly less than unity.

Under the (homoskedastic) assumption that ¢; ~ i.i.d.(0, X) with finite fourth mo-
ments, Swensen (2006) demonstrates that the i.i.d. bootstrap rank statistic Q¢ repli-
cates the first-order asymptotic null distribution of the standard trace statistic, (), of
(3.3). In Theorem 4 we now establish that the i.i.d. bootstrap method of Swensen
(2006) remains asymptotically valid under the weaker conditionally heteroskedastic
conditions placed on the innovations in this paper. This result is demonstrated for
the case of no deterministic variables. The equivalence of the first-order limiting null
distributions of the Q¢ and @, statistics under cases (ii) and (iii) of Remark 3.2 is again
a straightforward extension of the results in Theorem 4.

Theorem 4 Let the conditions of Theorem 1 hold. Then, under the null hypothesis
H(r), Q: =p Qroo- Moreover, piy = U0, 1].

Remark 4.7. As discussed at the end of Section 4.1, the cdf of Q7 used in Step 4
of the bootstrap algorithm can again be approximated through numerical simulation.
Moreover, an i.i.d. bootstrap analogue of the maximum eigenvalue statistic can also be
obtained in an obvious way. Again it follows immediately from the results in Theorem
4 that this statistic has the same limiting null distribution as that given for @), max in

Remark 3.3.

®Notice that if the estimated unrestricted VAR contains a constant, then 77! 23:1 & = 0 and,
hence, the residuals would not need to be centred prior to re-sampling.
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5 Finite Sample Simulations

In this section we use Monte Carlo simulation methods to compare the finite sample
size and power properties of the PLR co-integration rank test of Johansen (1996) with
its wild bootstrap version proposed in Section 4 together with the corresponding i.i.d.
bootstrap test of Swensen (2006). The simulation model we consider generalises that
used by previous authors in that we are allowing for conditional heteroskedasticity in
the innovation process driving the VAR model.°

In sections 5.1, and 5.2 we follow Johansen (2002) and Swensen (2006), and consider
as our simulation DGP an (1), possibly co-integrated, VAR(1) process of dimension
p. We allow the dimension of the VAR process to vary over p = 2, ..., 5, and consider
both the case of no co-integration (r = 0) [section 5.1], and of a single co-integrating
vector (r = 1) [section 5.2]. In section 5.3 we will subsequently report results for r = 0
in a VAR(2) model, thereby also investigating the finite sample impact of higher-order
serial correlation.

The DGP considered in section 5.1 is the multivariate martingale process,

AXt = &, t = ]_,...,T (51)

initialised at Xy, = 0, while a generalisation of this DGP to the non-co-integrated
VAR(2) case is detailed in section 5.3. In section 5.2, we report results for the co-
integrated VAR(1) model

AXt = Oé/BlXt_l + Et, t = 17 ,T

where « and 3 are p x 1 vectors; following Johansen (2002) and Swensen (2006), we
consider the parameter combinations, 3 := (1,0,...,0)" and « := (a1, as, 0, ...,0)". This
leads to the model

AXiy = o X1 ey

AXyy = aXi—1 + €9y (5.2)
AXi’t = Eity 1= 37 ey P
In our reported simulations we set a; = a; = —0.4, as in Swensen (2006, Table 2). The

initial value of the stationary component in (5.2), X o, is drawn from the corresponding
invariant distribution, while the remaining components are initialised at zero.

6 Complementary results, comparing the properties of the sequential approach of Johansen (1996)
when applied using the asymptotic PLR test and the two bootstrap analogue methods are reported
in the accompanying working paper, Cavaliere et al. (2009). These results show that a sequential
method based on wild bootstrap PLR tests works well under conditional heteroskedasticity when
r = 0, avoiding a strong tendency to over-estimate the co-integrating rank displayed by the analogous
procedures based on the i.i.d. bootstrap PLR and asymptotic PLR tests. The simulations in Cavaliere
et al. (2009) also highlight the encouraging result that the wild bootstrap QY test does not lose
power against 7 = 1 relative to the other tests, despite, as will be shown in what follows, displaying
far superior size properties than the other tests in the presence of conditional heteroskedasticity; cf.
Tables 1 and 2.
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In both (5.1) and (5.2), &, := (€14, ..., €p) IS a p-dimensional martingale difference
sequence with respect to the filtration F; := o (4,41, ...). Following van der Weide
(2002), we assume that ¢; may be written as the linear map

Et = Aet (53)

where A is an invertible p X p matrix which is constant over time, while the p compo-
nents of e, := (e1, ..., e,,) are independent across ¢ = 1,...,p. In the case where the
individual components follow a standard GARCH (1,1) process (as is the case with
Models A and B below), van der Weide (2002) refers to ¢; as a GO-GARCH(1,1)
process. Notice that, by definition, the PLR statistic does not depend on the matrix
A, as the eigenvalue problem in (3.2) has the same eigenvalues upon re-scaling (as can
be seen by simply pre- and post-multiplying by A~! in (3.2)). This allows us to set
A = I, in the simulations, without loss of generality.

Within the context of (5.3) we consider for the individual components of e; the
univariate innovation processes and parameter configurations used in Section 4 of
Gongalves and Kilian (2004), to which the reader is referred for further discussion.
These are as follows:

e Model A is a standard GARCH (1, 1) process driven by standard normal innova-
tions of the form e;; = h;t/Qv,-t, i=1,...,p, where vy is i.i.d. N(0,1), independent
across 4, and hy = w + dope_, + dihy_1, t = 0,...,T. Results are reported for
(do,dy) € {(0.5,0.0),(0.3,0.65), (0.2,0.79), (0.05,0.94)}.

e Model B is the same as Model A except that the v, i = 1, ..., p, are independent
i.i.d. t5 (normalised to unit variance) variates.

e Model C is the exponential GARCH(1,1) (EGARCH (1,1)) model of Nelson
(1991) with ez = h/*vy, In(hy) = —0.23 4+ 0.9In(hy_1) + 0.25[[v3_, | — 0.305_1],
with v ~ i.i.d. N(0,1), independent across i = 1, ..., p.

e Model D is the asymmetric GARCH(1,1) (AGARCH (1,1)) model of Engle
(1990) with e; = h/* vy, hiy = 0.0216+0.6896hs_1 +0.3174[es,_, — 0.1108]2, with
vy ~ 1.i.d. N(0,1), independent across i = 1, ..., p.

e Model E is the GJR — GARCH(1,1) model of Glosten et al. (1993) with
e = hy*vu, by = 0.005 + 0.7hy_1 + 0.28[|es—1| — 0.23e_1]2, with vy ~ i.id.
N(0,1), independent across i = 1, ..., p.

e Model F is the first-order AR stochastic volatility model: e; = vy exp (hy),
hit = Mhg—1 + 0.58,;, with (&, vy) ~ ii.d. N(0,diag(cZ,1)), independent across
i =1,...,p. Results are reported for (A, o) = {(0.936,0.424), (0.951,0.314)}.

The reported simulations were programmed using the rnd KMn function of Gauss
7.0. All experiments were conducted using 10, 000 replications. The sample sizes were
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chosen within the set {50,100,200} and the number of replications used in the wild
bootstrap algorithm was set to 399. All tests were conducted at the nominal 0.05
significance level. For the reasons outlined on page 12 of RHD, relating to similarity
with respect to initial values (see also Nielsen and Rahbek, 2000), the VAR model
was fitted with a restricted constant (i.e. deterministic case (ii) of Remark 3.2), when
calculating all of the tests. For the standard PLR tests we employed asymptotic critical
values as reported in Table 15.2 of Johansen (1996).

We have shown that the standard PLR @, test of Johansen (1996), together with
the wild bootstrap QU test outlined in section 4.1 and the i.i.d. bootstrap Q% test of
Swensen (2006) are all asymptotically valid under conditional heteroskedastiticy of the
form given in Assumption 2. However, and unlike the wild bootstrap re-sampled data
in (4.1), the i.i.d. re-sampled data will clearly not preserve the temporal ordering in
the conditional heteroskedasticity present in the original data. We would therefore
expect its finite sample performance to be quite similar to that of the asymptotic tests
and to not perform as well as the wild bootstrap tests in the presence of conditional
heteroskedasticity.

5.1 The Non-Co-Integrated Model (r = 0)

Table 1 reports the finite sample (empirical) size properties of both the standard PLR
test, Qo, and its wild and i.i.d. bootstrap analogue tests, Qf and Qj respectively, for
H(0) : » = 0 against H(p) : » = p, for p = 2,....5, in the presence of conditional
heteroskedasticity of the types outlined above.

Table 1 about here

Under constant conditional variances (the cases where dy = d; = 0 in Models A and
B) it can be seen from the first two panels of Table 1 that both the Q% and Q; tests
display finite sample sizes which are closer to the nominal level than the standard @)
test based on asymptotic critical values (the wild bootstrap can, however, be a little
undersized); for example, in the case of Model A for p = 5, while the standard PLR
test has size of 8.1% for T' = 100, the corresponding wild and i.i.d. bootstrap tests have
size of 4.4% and 4.7% respectively.

It is, however, where the innovation process displays conditional heteroskedasticity
that the benefits of the wild bootstrap over the other tests become clear. The results in
Table 1 show that both the )y and ) tests can display quite unreliable size properties,
even for samples as large as T' = 200, in the presence of conditional heteroskedastic-
ity. In contrast, the size properties of our wild bootstrap PLR, test, QY, seem largely
satisfactory throughout.

The size distortions seen in the )y and @) tests are generally worse, other things
being equal, the higher is the VAR dimension, p. For example, in the case of Model
A with dy = 0.3, d; = 0.65 and T' = 200, the Qo and @Q§ have size of 10% and 9.3%,
respectively, for p = 2 rising to 13.9% and 10.9%, respectively, for p = 5. In contrast,
here the QY test has size of 5.6% and 5.7% for p = 2 and p = 5, respectively. The precise
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model of conditional heteroskedasticity can also make quite a substantial difference to
the size properties of the tests. For example, comparing the results for Models A and
B, we see that t5 innovations tend to cause rather less size inflation than is seen for
standard normal innovations. Of all the models considered, it is the autoregressive
stochastic volatility case, Model F, which has the strongest impact on the size of the
tests. The two parameter configurations both imply relatively strong serial dependence
in the conditional variance of the innovation process (although in both cases the process
does formally satisfy Assumption 2). Here the standard PLR test, Qq, displays size of
between around 20% to 40% depending on p and the parameter configuration, while the
i.i.d. bootstrap test, @Qf, performs only slightly better. Although the wild bootstrap
test, Qf, does also show a degree of over-size under Model F, it still represents an
enormous improvement on the size properties of the other tests. Moreover, what size
distortions there are in the wild bootstrap tests are ameliorated, other things equal, as
the sample size is increased. Notice that this last observation is not the case for the
Qo and () tests where the size distortions increase as the sample size increases. Very
significant over-sizing, although not as bad as for Model F, is also seen for the )y and
@} tests in each of Models C, D and E. Again here the wild bootstrap test is much
better behaved throughout.

5.2 The Co-Integrated Model (r = 1)

Consider next the results in Table 2 for the empirical sizes of the standard PLR @,
test and its i.i.d. and wild bootstrap analogues. The results here are very much in line
with those seen in Table 1 with the standard PLR and its i.i.d. bootstrap analogue
test not displaying anything like adequate size control in the presence of conditional
heteroskedasticity. The observed size distortions again worsen, others things being
equal, as p is increased. Again the worst distortions are seen in these tests under
Model F, with serious over-size problems also seen under Models C, D and E. For the
GO — GARCH(1,1) case (Models A and B) the observed size distortions are again
generally smaller under t5 innovations than N (0, 1) innovations. In contrast to the
standard and i.i.d. bootstrap PLR tests, the wild bootstrap PLR test displays very
good size control throughout, with size only ever exceeding 7% in the case of Model
F, where although still a little over-sized it does, nonetheless, still represent a massive
improvement over the other tests.

Table 2 about here

5.3 The Non-Co-Integrated VAR(2) Model

To conclude this section, and following Johansen (2002, p.1940), we report some ad-
ditional results investigating the finite sample behaviour under the null hypothesis of
tests for IT = 0 in the VAR(2) model:

AXt = HXt—l + FlAXt—l + Et, t= ]_, ceey T (54)
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where I'y = &1, with —1 < & < 1. This model is an interesting extension of the
conditionally heteroskedastic VAR(1) model considered in sections 5.1 and 5.2 because
it allows for higher-order serial correlation. As regards the innovation term, &;, we
again considered each of Models A-F, reporting results for a subset of the parameter
configurations reported for Models A, B and F in sections 5.1 and 5.2.7 A restricted
constant was again included in the estimated model. Finally, we initialized the process
by drawing A X, from its corresponding invariant distribution.

In Table 3 we consider first the case where ¢ = 0.5, which allows for a moderate
degree of higher-order stationary serial correlation in the process. Results are reported
for both the standard PLR test and its wild and i.i.d. bootstrap analogue tests for
H(0) : r =0 against H(p) : r = p, for p=2,..., 5.

Table 3 about here

In general, it can be seen from the results in Table 3 that higher-order stationary
serial correlation tends to inflate the finite sample size of the standard PLR test, @),
further above its nominal level, relative to the corresponding results for the VAR(1)
case in Table 1. This is true in both the conditionally homoskedastic and conditionally
heteroskedastic cases. Both bootstrap tests also display a degree of finite sample over-
size. However, the size distortions seen in the bootstrap tests are much smaller than
those observed for the y test, and in general the wild bootstrap Q} test displays
smaller size distortions than the i.i.d. bootstrap @ test. To illustrate, for p = 4 in the
i.i.d. innovations case (Model A with dq = d; = 0) for a sample of size T' = 50 the Q,
Q% and Q3 tests have size of 41.5%, 8.5% and 8.9%, respectively, as compared to 8.7%,
4.3% and 4.8%, respectively, for the VAR(1) case in Table 1. For all three tests the
observed over-sizing is smaller for 7" = 200 than for 7" = 50. Indeed, both bootstrap
tests display size close to the nominal level when T = 200. As a second example,
under Model C for p = 5, the Qy, Q% and Q; tests have size of 73%, 12.5% and 15.6%,
respectively, for T'= 50 (22.5 %, 6.5% and 10.2%, respectively, for T'= 200) compared
with 20%, 7.1% and 10.1%, respectively, (14.7%, 5.7% and 11.2%, respectively) in the
corresponding VAR(1) model.

Table 4 about here

The condition that —1 < £ < 1 ensures that the process X; is I(1) and so does not
violate Assumption 1. However, as ¢ tends towards 1, so X; will increasingly resemble
an [(2) process for a given (finite) sample size and, as a consequence, the rejection
probability of the asymptotic test will tend towards to unity, rendering the asymptotic
I(1) critical values inappropriate.® We can therefore investigate the impact on the

"This was done in the interests of space, the additional results qualitatively adding very little to
what is reported.

8In this case, approaches based on a Bartlett correction tend to also perform badly, primarily
because the correction factor over-corrects, leading to tests with size close to zero. See e.g. Johansen
(2002,p.1941).
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behaviour of the bootstrap tests in this ‘near I(2)’ case by considering the effects of
& =0.9. These results are reported in Table 4. As would be expected, stationary roots
close to unity cause further oversizing in the standard asymptotic test ()g, relative
to both the corresponding results for the VAR(1) case in Table 1 and to those for
the moderate serially correlated case of Table 3. Although both bootstrap tests are
also significantly oversized, they offer a major improvement over the asymptotic test.
Again, the wild bootstrap Q} test behaves better than the i.i.d. bootstrap Q3 test. To
illustrate, consider the case of i.i.d. innovations for p = 4. For T' = 50, the Qo, Q}
and @ tests have size of 93.6%, 31.7% and 35.4%, as compared to 8.7%, 4.3% and
4.8%, respectively, for the VAR(1) case in Table 1, and to 73%, 12.5% and 15.6%,
respectively, for the moderate serial correlation case in Table 3. The degree of over-size
ameliorates when the sample size is increased to T" = 200, again as would be expected.
However, while the size of the @y test for £ = 0.9 remains worryingly high in this
case at 46.4%, both bootstrap tests display reasonably decent sizes with that of Q} the
better of the two at 11.2%. While undoubtedly not perfect, this is certainly a huge
improvement on the size of the standard )y test. As for case of Model C with p = 5,
see the discussion above relating to Table 3, for 7' = 200 the size of the )y test is
75.6%, while that of Q} is 17.7%.

Overall, both bootstrap tests deal much better with higher-order serial correlation
than does the standard )y test. Moreover, and as with the results in Table 1 for the
VAR(1) case, in the VAR(2) case the results in Tables 3 and 4 show that the wild
bootstrap QY test again displays far more robust finite sample size properties than
either the )y or the ) test in the presence of conditional heteroskedasticity. Indeed,
for the VAR(2) case with & = 0.9 reported in Table 4, the Q} test displays almost no
variation in its size properties across the different models of volatility reported, other
things held equal.

6 Empirical application

In this section we illustrate the methods discussed in this paper with a short application
to the term structure of interest rates; see Campbell and Shiller (1987) for an early
reference. According to traditional theory, aside from a constant or stationary risk
premium, long-term interest rates are an average of current and expected future short
term rates over the life of the investment. Hence, provided interest rates are well
described as (1) variables, bond rates at different maturities should be driven by a
single common stochastic trend, with the spreads between rates at different maturities
being stationary. Although early studies tend to corroborate this view, see, for example,
Hall et al. (1992), more recent research, based on broader sets of maturities, suggests
that yields are better characterised by more than one common trend, reflecting possible
non-stationarities in the risk premia and additional risk factors, such as the slope and
curvature of the yield curve; see, e.g., Diebold, Ji and Li (2007) and Giese (2006).

We consider monthly interest rate data from the United States, Canada, the United
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Kingdom, and Japan, taken from the OECD/MEI database. For each country a single
long-run interest rate, L;, and a variety of short-run rates, S;, were used in the co-
integration analysis. Specifically, these were as follows. United States (1978:1-2002:12):
L; = government composite bond yield (> 10 years); Sy, = federal funds rate; Sg; =
prime rate; S3; = rate on certificates of deposit; Sy = US dollar in London, 3-month
deposit rate. Canada (1982:6-2002:12): L, = benchmark bond yield (10 years); Sy; =
official discount rate; So; = overnight money market rate; S3; = rate on 90-day deposits.
United Kingdom (1978:1-2002:12): L, = yield on 10-year government bonds; Sy, =
London clearing banks rate; Sy, = overnight interbank rate; S3; = rate on 3-month
interbank loans. Japan (1989:1-2002:12): L; = yield on interest bearing government
bonds (10 years); Sy; = official discount rate; Sy, = un-collateralized overnight rate;
S3; = rate on 90-day certificates of deposit.

For each country let X; := (Ly, S, ..., Sp—1,+)’, where p = 4 for all but the U.S.
where p = 5. As is standard, we fit a VAR model for X; with restricted intercept; that
is, Doy = 0 and Dy; = 1 in (2.5). The VAR was estimated using Gaussian maximum
likelihood under the assumption of constant volatility; cf. Section 2. For each country
the number of lags, k, was estimated using the BIC: for the U.K., Japan and the U.S.
k = 2 was chosen, while for Canada k = 1 obtained. For each country the residuals
from the fitted VAR(k) model were subjected to both single-equation and vector diag-
nostic tests against non-normality, GARCH(1,1), and general heteroskedasticity (using
White’s test both with and without cross-variable terms).? In the case of the U.K.
and the U.S. all of the single-equation and vector tests rejected at the 1% level. For
Canada this was also the case, except that two of the single equation GARCH(1,1)
were not significant. For Japan, all of the vector tests rejected at the 1% level, as did
all of the single-equation normality tests. However, none of the GARCH(1,1) tests were
significant, while White’s single-equation tests delivered three (two) out of four signif-
icant outcomes at the 1% level when cross-variable terms were (were not) included. In
summary, the interest rate data for all of the countries considered display (to varying
degrees) statistically significant evidence of heteroskedasticity.

Table 4 about here

Table 4 reports the results of the standard, wild and i.i.d. bootstrap co-integration
rank tests for each country. For the standard tests (asymptotic) p-values were computed
as suggested in MacKinnon, Haug and Michelis (1999). For both of the bootstrap
methods the number of bootstrap replications was set to 399.

For each country, the standard sequential procedure detects two co-integrating re-
lations at any conventional significance level, with a third co-integration relation being
significant at the 10% level (with a p-value of 0.08) in the case of the U.S. data. The
same conclusions are drawn using the corresponding procedure based on the i.i.d. boot-
strap tests of Swensen (2006), except that the third co-integrating vector in the case
of the U.S. is deemed insignificant at the 10% level (with a p-value of 0.12). In line

9The complete set of diagnostic test results can be obtained from the authors on request.
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with what would be expected from the Monte Carlo simulation results in section 5
for series displaying a significant degree of heteroskedasticity, the wild bootstrap-based
procedure consistently delivers a higher p-value for a given hypothesised co-integrating
rank. For both the U.K. and Canada this does not lead us to a different conclusion on
the co-integrating rank (of two) as was drawn from the standard and i.i.d. bootstrap
tests. However, for both Japan and the U.S. only one co-integrating vector is uncov-
ered by the wild bootstrap procedure, implying the presence of four common trends
in the five-dimensional U.S. system, and three common trends in the four-dimensional
Japanese system.

These results all therefore contradict the traditional view of the expectation hypoth-
esis of the term structure, suggesting the presence of additional risk factors, since the
hypothesis of p—1 stationary relations (p being the number of interest rates considered)
is never accepted, thereby providing further support in favour of recent multi-factor
theories of the term structure; see, for example, Diebold, Ji and Li (2007). It is worth
noting, however, that in the case of the U.S. data the p-value for testing p — 2 against
p — 1 co-integrating relations is 12% using the asymptotic test and 15% using the i.i.d.
bootstrap test. For the wild bootstrap this p-value rises sharply to 62%. The case
of the U.S. data shows the biggest differences between the wild bootstrap procedure
and those based on either the asymptotic test or the i.i.d. bootstrap tests of Swensen
(2006). Given the significant heteroskedasticity found in the U.S. data (indeed the
outcomes of the diagnostic test statistics were consistently much larger for the U.S.
than for the other countries considered) the inferences from the wild bootstrap-based
procedure would appear to be the most reliable.

7 Conclusions

In this paper we have demonstrated that the conventional co-integration rank tests
of Johansen (1996) retain their usual limiting null distributions in the case where the
innovations follow a globally stationary, conditionally heteroskedastic (martingale dif-
ference) process. We have also proposed wild bootstrap-based implementations of the
co-integration rank tests in order to exploit the information in sample on the condi-
tional heteroskedasticity, where present. As with any bootstrap procedure, no tables
of critical values are required as the procedure automatically delivers a p-value for the
hypothesis being tested. Both our proposed wild bootstrap scheme and the i.i.d. boot-
strap scheme of Swensen (2006) were demonstrated to deliver rank statistics which
share the same first-order limiting null distributions as the corresponding standard
rank statistic. Monte Carlo evidence presented suggests that the proposed wild boot-
strap co-integrating rank tests perform very well in finite samples, being considerably
more robust than both the standard PLR tests based on asymptotic critical values
and i.i.d. residual-based bootstrap analogues of the PLR tests, when the innovations
are conditionally heteroskedasticity. That the i.i.d. residual-based bootstrap test is
significantly better sized than the asymptotic test is in line with results established in
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the stationary linear regression case which show that the i.i.d. bootstrap can lead to
asymptotic refinements even if the heteroskedasticity affecting the original data is not
replicated into the bootstrap shocks (see Liu, 1988).

We conclude with a suggestion for further research. The analysis in this paper has
been conducted under the assumption that the vector of time series under investigation
are each either I(0) or I(1). This rules out the possibility of near-integration amongst
the series, as is considered in, inter alia, Elliott (1998) and Pesavento (2004). An
analysis of the bootstrap (P)LR co-integration rank tests under near-integration is be-
yond the scope of the present paper but would constitute an important and worthwhile
extension of the results presented here. We note that the co-integrating rank selection
procedure outlined in Cheng and Phillips (2008,2009) does consistently estimate the
co-integrating rank under near-integration.
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A Appendix

This section contains the proofs of the main theorems given in the paper. Proofs for
Theorems 1 and 2 are collected in section A.1. The proof of the validity of the wild
bootstrap co-integration test is reported in section A.2, while the corresponding result
for the i.i.d. bootstrap test of Swensen (2006) is detailed in section A.3.

A.1 Proof of Theorems 1 and 2

Under the stated assumptions, the process X; has the representation below in Lemma
A.1 which is essential for the proofs of Lemmas A.2 and A.3. Lemma A.1 generalises
the usual Granger-type representation in Johansen (1996) in that, rather than being
i.i.d., the g, sequence is now, by assumption, a (possibly non-stationary) MDS.
Lemmas A.2 and A.3 immediately imply that the proofs of Theorem 11.1 and
Lemma 13.1 in Johansen (1996) hold, establishing Theorem 1 and 2 respectively. O
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Lemma A.1 Under the conditions of Theorem 1,

¢
X, =C> &+ 8 +Co. (A1)
i=1
Here the (p x p) —dimensional matrices C == 3, (o/,TB,) " o/, and Cy := C(I,,, —¥)X,.
Define the (r+ p(k — 1))-dimensional autoregressive process Xg, where Xg = (X,
for k =1, and otherwise, Xg = (X;B,AX;, -"aAXéka)/- Then the p-dimensional
process Sy := (o, V) QXp;, where Xg; has the MA(oo) representation, Xg = ® (L) n, =
S, ®n,_,. Heren, == (B,1,,0,...,0) &, and the spectral radius of ® is smaller than
one; p(®) < 1. The (r+p(k—1)) x (r+p(k—1)) dimensional matriz Q is non-
singular.

Proor: With X, := (X], "'7X£—k+1)/ the system can be written in companion form
as,

Axt = AB/Xt,1 + €t (AQ)
with e, := (&},0,...,0)’, X, fixed and
(0% Fl FQ Fk*l 5 Ip 0 0
0 I, 0 .. 0 0 —, I, .. 0
A= o 0 I, .. 0 B:= 0 o -1, ... O . (A3)
00 0 .. I, 0 0 0 .. —I

Note that with Xg, := B'X;, ® := ([4p4—1) + B'A), then Xg = ®Xg_; + B'e,. By
Assumption 1, p(®) < 1 and Xz has the stated MA(oo) representation. Standard
arguments and recursions give,

t
X, =C> e +8 +CXo (A.4)

i=1

where C := B, (A, B,)"'A", and S, := A (B'A)"'Xz. As X, = (1,,0,...,0)X,, the

results in Lemma A.1 hold with S; = (,,0,...,0)S; = (a, V) QXg, Q : (IB%’A)_l.
Noting that,

A=, Ty, ...~ T11) ar, BL=(,..,1L) 5,
the various expressions follow by simple algebraic identities. ([l

Let Q45 = plim T 'S0, 820, Z0,8, Qi := plim TS 3'2,, 7!, for i = 0,2, and

T—o0 T—oo

Qi = plimT! ZtT:1 ZiwZly, i,j = 0,2. By Lemma A.1, these are well-defined as
T—o0
infinite sums in terms of exponentially decaying coefficients. E.g., since p (®) < 1,

Qg =B (0, 0) QY [®(8,1,,0,...,0) (B,1,,0,...,0) 2] (o, )"

1=0

In terms of these moment matrices we have the following results.

22



Lemma A.2 Under the conditions of Theorem 1, and as T — oo,
Soo 5 Y0, 'S0 5 Yigo and B'Sup - Yigg (A.5)
where X;; = Q5 — QZQQ;;QQJ-, 1,7 =0,1,8. Moreover, the following identities hold,
Yoo = aXg + 2, Lo = aXigg (A.6)

and
2501 — 260104(0/250104)*10/2601 = ou(o/lEou)*lo/l. (A.7)

Proor: Consider 3'S1g = 3 My — B MyaMs,,' Moy, Using Lemma A.1 and the fact
that, by definition,

AXt = O[ﬁlXt_l + \IIUt + &t = (057 \Ij) Xﬂt—l + Et, (A8)

the first term equals,

T T
1 1
B'Myy = o Y BXiAX] = T > B X (0, 9) Xgog +51)
t=1 t=1

As mentioned in section 2, the strong law of large numbers in Hannan and Heyde
(1972) can be applied by Assumption 2 and the fact that the coefficients ®' in the
representation for Xz, in are exponentially decreasing by Lemma A.1. We then obtain
directly that:

B'Mig 2 Qao := ' (0, 0) QY [@(B,1,,0,...,0) T(B,1,,0,...,0) "] (o, )"
=0

Likewise, the terms /3’ Mia, Msy and My, converge in probability and we conclude that
ﬁlslo L ZBO = Qﬁo — 9529521920 .

Identical arguments lead to the other results in (A.5).

The identities in (A.6) follow by post-multiplying (A.8) by (the transpose of) 5’ X; 1, AX,
and U, respectively, taking averages and applying the law of large numbers as above,
and solving the resulting system of equations. To prove the identity in (A.7) use the
projection identity

I, = Yool Yo a) e + ay (o, Seoa) e/ Too

and o/, Xgp = o/, X; see (A.6). O
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Lemma A.3 Define the (p — r)-dimensional process,
G(u) = B LCW (u), (A.9)

where W (-) is a p-dimensional Browian motion with covariance ¥. Then under the
conditions of Theorem 1, as'T — oo,

1

ﬁﬁgxm “ G(u) (A.10)
B Sway = B Spa, = /01 G (s)dW (s) ay (A.11)
roisus, ® [ Gy (A12)
and furthermore,
VTB S0 = VTS Sieal % Novyr(0, 555 @ o, Sar) (A.13)
B'S118, € 0,(1). (A.14)

PrOOF: The result in (A.10) holds by using the FCLT in Brown (1971) (see the
discussion in Remark 2.2) applied to ¢, as Lemma A.1 implies directly that ', X|7.| =

3.0 ey + 0,(VT). To prove (A.11) note that
B 51 = B My — ' Miy My M,

where My, :=T7! Zthl AX;e,. Consider first 5| M;. and use the representation of X,
given in (A.1) to see that

B M. = % (B'LC’ Zthl(Zj: gi)e, + ) Zthl Si1e, + B Co 2;1 52)

which by Hansen (1992), the LLN and the fact that ¢; and £;_; are uncorrelated, weakly
converges to fol G (s)dW (s)". Next, M.y := T~ ZtT:1 U] tends to zero in probability
by the law of large numbers. Since 3’ M5 € O,(1) and May converges in probability by
the law of large numbers, we conclude that (A.11) holds. The result in (A.12) follows
immediately from (A.10) and the continuous mapping theorem. Finally (A.13) holds
by applying the central limit theorem to the MDS ('X;_;&}, rewriting S;. as above. []

A.2 Proof of Theorem 3

While our results are new and generalize the results in Swensen (2006), we closely
follow the sequence of arguments in Swensen (2006). As there we use P* to denote
the bootstrap probability and likewise E* to denote expectation under P*. Thus, as
in Swensen (2006, proof of Proposition 1), the weak convergence in probability result
in Theorem 3, Q° =, Q,., can be shown to hold by using Lemmas A.6 and A.7
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below. These extend Lemmas A.2 and A.3 in the proof of Theorem 1 to the case of
the wild bootstrap data. Specifically, Lemmas A.4, A.5, A.7 and A.6 below extend and
generalize Lemmas 1, S1 and S2 used in Swensen (2006, proof of Proposition 1) for 11D
bootstrap shocks.

Establishing that Q% =, Q.. implies G ;. () — G/ (+), uniformly in probability, where
G denotes the cumulative distribution function of @), . Then, using the same ar-
guments as in the proof of Theorem 5 in Hansen (2000b), it is entirely straightforward
to prove that pgT = U[0,1] given the foregoing results. This completes the proof.

We now move to establishing the intermediate lemmas referred to above, establish-
ing a Granger-type representation and an invariance principle for the bootstrap data,
analogous to those given for the original data in Lemmas A.1 and A.3 respectively.

Lemma A.4 Under the conditions of Theorem 1,

where

~

C = (I,,0,..,0)B (A" B,)'A" = 3, (&/,['B,) &,
t

R = (&, ) (BA)S STV )

,,,,,

PrROOF: From the proof of Lemma A.1 with X! := (X, .., X", ;)" and X} := 0 we
find directly as in (A.4) that X} = (I,,0,...,0) X? has the representation,

t
Xp=C> &+ TRy

=1

where C' and R! as as defined in Lemma A.1, and where ® := (I, + B’ 1&) and U :=
(f‘l, Dy 1). Note that in the definition of R’ the sum is not infinite as the bootstrap
residuals are defined for ¢ > 1 only. The matrices A and B are defined as A,B of (A. 3)
with « and [ replaced by the corresponding estimators &, 6 , and e? := (Et ,0, ..., O) .
The proof is then completed along the same lines as the proof of Lemma A.4 in CRT;
see the accompanying working paper, Cavaliere et al. (2009), for details. 0

Lemma A.5 Under the conditions of Theorem 1,

L7

T ) T1/2 Zs
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PrOOF: Paralleling arguments made in the proof of Lemma A.5 in CRT, the stated
result follows on establishing pointwise convergence for 71 Z}Z?J gi€; — uX, which

indeed follows by the law of large numbers. O

Lemma A.6 Let G (-) be defined as in (A.9). Then under the conditions of Theorem

1,
LB Xl 5y Glu) (A.15)
B Sty = B Shay 2, / G (s)aw () a (A.16)
15, S5, 5, /0 ' G(s)C(s)ds (A.17)
and furthermore,
VTR Sty = VTH S a1 %, Nyspr (0,555 ® o, Sy ) (A.18)
BShp € 0,(1) (A.19)

i probability as T — oo.

PrOOF: Applying Lemma A.4 and Lemma A.5, the results hold as in Lemma S2 of

Swensen (2006). O
Lemma A.7 Under the conditions of Theorem 3,

P*(|[S8 = Soo| >n) — 0 (A.20)

P (HS&B - ZOBH >n) =0 (A.21)

P (HB/SM - EﬁﬁH > ) =0 (A.22)

wn probability as T — oo.

PROOF: In the interests of brevity, we only provide a proof of (A.20) here. Proofs of
(A.21) and (A.22) can be obtained on request. Notice that S%, = ME,— M, (M§2)_1 M5,
where the Mibj are the product moments in terms of the bootstrap data. Hence, as noted
in Swensen (2006), (A.20) follows by establishing that P* (||[M* —Sy||>n) — 0,
where

T T
1 1
M = = > AXAX], MY = 7 > AXJAXY and Xy = plim M

t=1 t=1 T—o0
with X, = (X}, ., X/_p1) and X2 = (XY, .., XY, 1) By Lemma A.l, X5 =
Yoo ®'n,_; and, hence, (A.2), implies that
AX; =AY 7 (B,1,0,...,0) & + (1,0,...,0) & := Y bicy . (A.23)
=1 =0
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Similarly, AX? = Y170 0,e% ;€2 = 2w, As previously noted in the proof of Lemma
A 4, for sufficiently large T, ||®?|
1, uniformly in i. In particular, the coefficients 6; and 9, are exponentially decreasing.

Next recall that Xy, = >0 0;20;, and observe that with X, := E* (Mb),

‘GBZH < ¢\' for some generic constant ¢ > 0,0 < A <

| MP = Suf]| < || MP = Sase|| + IS0 — Sl -

To see that ||X» — Xj/]| tends to zero in probability rewrite first X, as:

t:]' /[’:0 7420 t:l 7,:0
T T—t T 00
1 NT 1 T
= T E ngtét@ = f E E ngtgtﬁl — %T,
t=1 \i=0 t=1 \i=0

!/

where Vip = %Z;‘le (Z;’iT%H aété;@i) = 0, (1). To see this, use the fact that
0; = A®'B, where A and B are constant matrices, see (A.23), and §; = A®'B. In

particular, for sufficiently large T, ||6;
E|le]* < K < o0 and S i A" = 0as T — oo. Next, observe that

< ¢\', uniformly in i, and the result holds as

t=1 =0
i 1 r Al .. ~l > . N
= (Z 0; <f > é@) 0;— > eizez> + (Z 0,20, — 2M>
=0 t=1 =0 =0
=: Vor + Var

20

T
PS>

by the result that 77377 2,2, 2 % (see Theorem 2), and because szo (91 ® 92)
is of order one. Also,

vec (Var) = (i (91 ® 9,) — i 0; ® 01)> vec (X) 20,

1=0 i=0

using, as above, the fact that 6; = A®'B and 6, = Ad'B.
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Finally, consider the term HM b S H We have

t=1 =0 =0
1 L[ A , 1 A/
=T Zei‘:’g—i (02-5’;_2.> T T Z Z Z i€lig) 2%
t=1 =0 t=1 \1,j=0,i#j
=: M} + Mj

with s := (w? — 1) an i.i.d. process with mean zero and finite moments of all order.
Now, since

1 T t—1 ) . 1 T i1 N ~
T Z < vec (Qiét_iég_ﬁiﬁt_i)> =7 Z <Z Ki—; (Qi X 9i> vec (ét—iég—i)>

t=1 1=0

it therefore follows that,

. 1 T t—1 . 1 T ) T—t A A
P T; iZ@s _ify_ z@mtz >0 §T252;E mt;(ﬁi@)&)vec(etq)
E (k2 1 Zor=t . ) 2
< ngt) T tz; 2 <9Z ® 9i> vec (£;€})

Thus, with ¢ = ¢+ 0, (1),

Z ||lvec (,&})]

which converges in probability as £; has bounded fourth order moment. This establishes
the result that M? — ¥, = 0, (1). It can similarly be shown that M} = o, (1), which
completes the proof. [l

A.3 Proof of Theorem 4

We proceed as in the proof of Theorem 3. Specifically, we establish that the results
in Lemmas A.4, A.5, A.7 and A.6 also hold for the i.i.d. bootstrap. Without causing
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confusion, we now denote by P* the i.i.d. bootstrap probability and likewise E* denotes
expectation under P*. Objects with a superscript s in what follows are understood to
be the i.i.d. bootstrap analogues of the corresponding wild bootstrap quantities with a
superscript b.

Consider first the analogue of Lemma A 4.

Lemma A.8 Under the conditions of Theorem 1, the i.i.d. bootstrap data satisfy,

t
:C'Zaf+T1/2Rf

i=1

r||R|| > n) — 0 in probability as T — oc.

=1,...,

-----

bootstrap,
1
E* (e7e5)” = Z
TS
one finds,
1 < 1
* * (_8l_S Al a2
P (T 1/2 max e > n) < 774T2 ZE (e7e5) = _—z ;(s;gt) =0, (?) 20

That Lemmas A.5 and A.7 hold for the i.i.d. bootstrap case holds by Lemma S2 of
Swensen (2006). Finally, we need the analogue of Lemma A.7 for the i.i.d. case:

Lemma A.9 For the i.i.d. bootstrap and under the conditions of Theorem 4,

P* (1550 = Zooll > m) — 0 (A.24)
P ( S5 — 205“ > 77) 0 (A.25)
p(wfﬁ—%w>@—w (A.26)

i probability as T — oo.
PROOF: Proceed as in the proof of Lemma A.7 to reach the identical inequality:

| M — 3] < || M° — s

Sl PUVERC VI
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For evaluation of the last term, re-write ¥ ,/s as:

where Y7 = 1 ZtT:l &,2}, and making use of the fact that & are conditionally indepen-
dent. Re-write again,

T t—1 o0 T [e'S)
Sars = % ( 9,-2T9;) = Zeizﬁ; - %Z ( 3 eizTeg) . (A27)
t=1 i=0 i=T—t+1

The last term tends to zero by the arguments in the proof of Lemma A.7 for Vi7 = 0
and using the result that $7 > ¥ by consistency. Likewise, the first term in (A.27)
tends in probability to X,; as desired. This holds by rewriting it as Vor 4+ Var, these
objects defined analogously as in the proof of Lemma A.7, and using the arguments
there to show that Vo — 0, while V3r — ¥ in probability.

Turning to the final term || M* — X,:||, we have that

1 T t—lA A , 1 T 1 )
A3 (S e ) ) 25 8 e r) = o

4,7=0,i#7j

~

First, observe that, M7 — Xy = 7 Ly~ (Z 0, (é‘fﬂ-gtg’ﬂ- — 2T> 9;) Using the vec(+)

operator and interchanging summation,
T—t

%Z (i vec <@Z (5?71-5?’7@- - f]T) @;)) = %Z Z (@1 ® @Z> vec (&tfaf' i?T) :

t=1 i=

Z (9, ® 9,) vec (5?5?’ i]T>

T—t 2
(Z 0, ® 9i> vec (efef’ ET)
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Use next that,

E*

. 2 N2 1 & N2
vec <s§s§’ — ZT> H = E*tr <5fef' - ZT> =7 Z tr <5t52 - ZJT)
t=1

which converges in probability as a result of the assumption that &, has bounded
fourth order moment. This establishes the result that M;{ — Xy = o0, (1). Similarly
M3 = o, (1), which completes the proof. O
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TABLE 1: SIZE OF STANDARD AND BOOTSTRAP PLR TESTS FOR RANK = 0 AGAINST RANK = p. TRUE RANK IS 0.

p=2 p=3 p=4 p=95

Model A: ;¢ = h;; vi, hiy = w + doe?,_y +dihig1, vig ~ iid. N(0,1),i=1,...,p
do d T Q Q@ Q Qb  Qf Qo Q Q% Qo Q4 Q4

0.0 0.0 50 6.3 5.7 4.9 7.0 5.1 4.9 8.7 4.3 4.8 121 3.7 4.8
100 5.3 4.9 4.6 6.6 5.1 5.5 7.3 5.0 5.1 8.1 4.4 4.7
200 5.3 4.6 4.8 6.1 5.3 5.2 6.5 4.9 4.9 6.9 4.4 4.7
0.5 0.0 50 9.9 7.2 7.9 10.7 6.6 7.8 136 6.3 8.5 176 6.2 9.1
100 7.3 5.3 6.5 9.8 6.3 7.9 112 6.3 8.3 126 54 8.2
200 6.6 4.8 5.9 8.3 5.3 7.2 8.7 5.2 6.7 9.6 4.3 6.8

0.3 0.65 50 10.2 6.8 8.3 126 7.2 9.6 148 64 9.4 181 6.2 9.5
100 9.9 5.6 8.5 123 6.5 10.3 13.7 6.2 10.7 148 6.3 10.0
200 100 5.6 9.3 10.7 5.2 9.5 12.1 5.6 10.0 139 57 109
0.2 0.79 50 9.3 6.6 7.6 112 7.1 8.3 13.8 5.9 8.2 16.2 5.5 7.7
100 9.9 5.6 8.7 114 64 9.8 131 6.2 9.9 140 5.5 9.2
200 10.8 5.5 10.1 122 54 110 128 5.5 10.7 13.5 5.6 10.6

0.056 094 50 6.5 5.9 5.2 7.6 9.5 5.2 9.3 4.6 5.3 123 4.2 4.9
100 5.8 4.9 5.2 7.0 5.4 5.6 8.1 5.2 5.8 8.8 4.4 4.9
200 6.5 5.1 5.9 7.2 5.1 6.5 7.2 5.0 5.5 7.9 4.9 5.5

Model B: &y = b, *vi s, hiy = w + doe?,_y + dihig_1, vig ~ idd. ts, i =1,..,p
do T Qv Qf  Qf Qv Qf  Qf Q  Qf  Qf Qo Q@

0.0 0.0 50 6.6 5.2 5.1 8.0 4.9 5.8 9.3 4.4 5.6 128 3.6 5.0
100 5.7 4.9 5.0 6.3 4.7 4.9 6.7 4.1 5.0 8.2 4.4 4.8
200 5.5 4.7 5.0 5.8 4.6 4.6 6.3 4.8 4.9 6.5 3.8 4.4
0.5 0.0 50 8.5 6.0 6.8 11.3 64 7.9 127 5.6 8.2 159 48 7.4
100 7.3 5.3 6.4 8.4 5.2 6.8 9.5 5.1 6.9 12.0 5.1 7.2
200 6.5 5.0 5.6 6.9 4.7 5.9 8.1 4.9 6.4 8.6 4.3 6.1
0.3 0.65 30 8.7 5.8 7.1 11.0 6.2 7.8 126 5.9 7.9 15.8 4.9 7.2
100 7.5 5.1 6.5 9.2 5.5 7.7 104 5.5 7.7 124 5.6 7.5
200 7.2 5.2 6.6 8.2 5.2 7.1 9.5 5.1 7.4 10.2 4.7 7.2
0.2 0.799 50 8.0 5.6 6.4 105 6.0 7.6 11.7 5.2 7.3 145 4.7 6.4
100 7.2 5.4 6.2 8.9 5.4 7.3 9.7 5.3 7.3 112 54 7.2
200 7.1 5.0 6.2 8.3 5.0 7.0 8.7 5.1 7.4 9.7 4.5 6.6
0.06 094 50 6.9 5.2 5.3 8.9 5.4 6.2 9.9 4.6 5.9 131 3.9 5.2
100 5.9 5.0 5.3 7.1 5.0 5.9 7.4 4.6 5.4 8.9 4.5 5.4
200 5.8 4.7 5.4 6.5 4.6 5.5 7.2 5.1 5.8 7.2 4.0 4.8

Model C: e;¢ = b/ *vi e, In(hie) = —0.23 + 0.9In(hyg—1) + 0.25[0F,_;| — 0.3v;4-1], vie ~ iid. N(0,1),i=1,...,p
T Qo Q4 Q5 Qo Q4 Q5 Qo Q4 Qp Qo Q4 Q5

50 11.0 7.2 9.2 138 79 10.5 172 73 10.6 2000 7.1 10.1
100 103 5.6 9.2 129 6.6 10.7 146 6.3 11.1 16.8 7.0 11.8
200 9.7 5.3 9.1 115 5.9 10.1 136 54 11.2 147 57  11.2

Model D: &4 = h;; vi ¢, hiy = 0.0216 + 0.6896h; 1 + 0.3174[g; 41 — 0.1108]2, vy ~ iid. N(0,1),i=1,...,p
r Qo Qb Q3 Qo Qt Q3 Qo Qt Q3 Qo Q4 0

50 11.8 6.8 9.9 144 79 11.1 169 7.6 11.3 19.8 6.6 10.3
100 12.7 6.2 11.5 15.0 6.9 13.1 16.6 6.9 13.1 18.7 6.5 13.2
200 139 5.6 13.0 170 6.0 15.0 179 6.3 15.3 202 64 16.1

Model E: €4 = hj4vi¢, hiy = 0.005 + 0.Thi -1 + 0.28[|ei 1] — 0.23;4—1)?, vie ~ iid. N(0,1),i=1,...,p
T Qo Q4 Q5 Qo Q4 Q5 Qo Q4 Qp Qo Q4 0

50 10.7 6.7 9.0 13.1 7.3 10.1 155 6.6 10.1 182 6.1 9.5
100 11.1 5.7 10.0 13.0 6.3 11.2 149 6.2 11.8 16.1 5.8 114
200 120 4.9 11.3 14.1 5.7 12.5 16.0 5.6 13.6 169 54 138

Model F: Eit = Vit €XP (hi,t)y hiﬂg = /\hi,t—l + 0.5&7“ (fht, Ui,t) ~ i.i.d. N(O, diag(og, 1))7 = 1, ey P
A O¢ T Qo Q4 Q3 Qo Q4 Qp Qo Q4 Qp Qo Qb 0

0.936 0.424 50 19.3 84 16.9 245 9.1 19.1 293 9.7 208 35.0 11.0 222
100 21.3 6.8 19.1 26.8 85 232 322 87 263 354 95 270
200 220 6.8 20.1 213 76 246 327 7.8 281 37.1 79 308
0.951 0.314 50 16.5 7.1 13.7 20.0 8.2 16.3 240 84 16.5 281 9.0 17.3
100 175 6.5 15.6 222 74 19.2 254 79 208 28.0 87 215
200 186 6.6 17.2 228 6.7 205 259 6.6 222 305 7.7 249




TABLE 2: STANDARD AND BOOTSTRAP SEQUENTIAL PROCEDURES FOR SELECTING THE CO-INTEGRATION
RANK. p =2, TRUE RANK 15 0.

@-based QP-based Q*-based
r= 0 1 2 0 1 2 0 1 2

Model A: it = hitsz, h@t =w+ doé‘itil + dlh’i,7t—17 Vit ~ ii.d. N(O, 1), = 1, P
do dy T

0.0 0.0 50 93.7 55 0.8 943 46 1.1 95.1 39 1.0
100 94.7 5.0 04 95.1 4.2 0.6 954 41 0.5
200 94.7 5.0 0.3 954 39 0.7 95.2 43 0.5
0.5 0.0 50 90.1 9.2 0.7 928 6.1 1.1 921 6.8 1.1
100 92.7 6.7 06 94.7 46 0.7 93.5 57 0.8
200 934 6.0 0.6 95.2 4.1 0.6 941 52 0.7
0.3 0.7 50 89.8 9.1 1.0 93.2 55 1.2 91.7 7.0 1.3
100 90.1 9.1 0.7 944 5.0 0.6 915 74 1.1
200 90.0 9.1 09 944 49 0.7 90.7 79 14
0.2 0.8 50 90.7 83 1.0 934 54 1.2 924 64 1.2
100 90.1 9.1 0.9 944 48 0.8 913 7.5 1.3
200 89.2 9.7 1.0 945 49 0.6 89.9 86 1.5
0.1 0.9 50 93.5 5.8 0.7 941 4.7 1.3 948 4.1 1.2
100 942 55 0.3 95.1 4.1 0.8 94.8 4.7 0.6
200 935 6.1 04 949 45 0.7 941 5.1 0.8

Model B: ;¢ = h;*vi e, hiy = w + doe?,_y + dihig—1, vig ~ idd. t5,i=1,..,p
do d, T

00 00 50 934 6.0 0.6 948 42 1.1 949 42 1.0
100 943 54 03 95.1 4.3 0.7 95.0 4.4 0.6
200 945 50 0.5 95.3 4.1 0.6 95.0 4.2 0.8
05 00 50 915 7.7 0.8 94.0 48 1.2 932 58 1.0
100 927 6.9 04 94.7 4.6 0.7 93.6 5.6 0.8
200 935 6.1 0.5 95.0 4.4 0.6 944 48 0.8
03 07 50 91.3 80 0.7 94.2 4.7 1.1 929 6.1 1.0
100 925 7.0 0.5 949 45 0.6 935 56 0.9
200 928 6.5 0.6 948 4.6 0.7 934 57 09
02 08 50 920 7.3 0.8 944 45 1.1 936 53 1.1
100 928 6.7 0.5 94.6 4.7 0.7 938 55 0.7
200 929 65 0.6 95.0 4.4 0.6 938 55 0.8
01 09 50 93.1 6.2 0.7 94.8 4.2 1.0 94.7 44 0.9
100 941 55 04 95.0 4.4 0.7 94.7 45 0.7
200 942 53 05 95.3 4.0 0.7 946 45 0.8
Model C: ;¢ = h;/*vi¢, In(hie) = —0.23 + 0.91In(hsg—1) + 0.25[v2, ;| — 0.3v; 1], vie ~ iid. N(0,1),i=1,...,p
50 89.0 9.8 1.1 928 6.1 1.1 908 7.7 1.5
100 89.7 94 0.9 944 49 0.7 90.8 8.0 1.2
200 90.3 9.0 0.8 94.7 45 0.7 909 7.9 1.2
Model D: &;¢ = h;; vy, hiy = 0.0216 + 0.6896/;,—1 + 0.3174[g; 11 — 0.1108]2, vy ~ iid. N(0,1),i=1,...,p
50 882 10.6 1.2 932 55 1.3 90.1 82 1.7
100 87.3 117 1.1 93.8 54 0.8 885 9.8 1.6
200 86.1 12.6 1.3 944 49 0.7 87.0 11.1 2.0
Model E: & = hi4 vig, hi = 0.005 + 0.Thi -1 + 0.28[|es —1] — 0.2314-1]%, v ~ Lid. N(0,1),i=1,..,p
50 89.3 9.6 1.2 933 5.6 1.2 91.0 76 1.5
100 88.9 10.1 1.0 943 5.1 0.7 90.0 8.8 1.2
200 88.0 10.7 1.3 95.1 4.1 0.8 88.7 9.7 1.6

Model F: &4 = v; g exp (hit), hit = Mii—1 + 0.58 ¢, (&g, vie) ~ 11.d. N(O,diag(og, 1),i=1,..,p
)\ 05 T

0.936 0.424 50 80.7 16.8 2.5 916 73 1.1 83.1 14.0 2.9
100 78.7 19.0 24 93.2 59 1.0 80.9 164 2.6
200 78.0 199 21 93.2 6.2 0.6 79.9 177 24
0.951 0.314 50 83.5 144 2.1 929 6.0 1.1 86.3 114 2.3
100 82,5 156 1.9 935 55 1.0 844 132 2.3

200 81.4 169 1.7 934 6.1 0.6 82.8 15.2 2.0




TABLE 3: STANDARD AND BOOTSTRAP SEQUENTIAL PROCEDURES FOR SELECTING THE CO-INTEGRATION
RANK. p =3, TRUE RANK 1s 0.

Q-based QP-based ()%-based

= 0 1 2 3 0 1 2 3 0 1 2 3

Model A: €54 = ;v e, hie = w + doe?_y + dihig—1,vi4 ~ ii.d. N(0,1),i=1,..,p

dy di T

00 00 50 930 61 07 01 949 42 06 03 951 40 0.7 0.2
100 934 60 06 01 949 44 05 02 945 48 06 0.1
200 939 55 06 00 947 46 05 01 948 45 05 02

05 00 50 893 97 09 01 934 56 07 03 922 70 06 0.2
100 902 88 09 01 937 55 06 02 921 69 08 02
200 917 7.5 07 01 947 47 05 01 928 63 0.6 03

03 065 50 874 112 1.1 03 928 59 11 02 904 81 11 04
100 877 111 1.0 02 935 57 06 03 897 88 11 03
200 893 98 08 01 948 46 04 02 905 84 09 02

02 079 50 888 100 09 02 929 59 09 03 9.7 72 08 03
100 886 101 11 02 936 54 08 02 902 84 1.1 03
200 87.8 11.0 1.0 02 946 46 06 02 8.0 95 11 04

005 094 50 924 66 08 02 945 45 06 04 948 43 07 0.2
100 930 62 0.6 02 946 45 06 02 944 49 06 02
200 928 6.6 04 01 949 45 05 02 935 59 04 02

Model B: Eit = h})fi)i’t, hi,t =w+ d05127t_1 + dlhiﬂg_l, Vit ™~ ia.d. ts,i=1,...,p

do dy T

0.0 0.0 50 92.0 7.3 0.6 0.2 95.1 4.2 0.5 0.2 94.2 51 0.5 0.3
100 93.7 5.7 04 0.1 95.3 4.0 05 0.2 95.1 42 04 0.2
200 94.2 5.2 0.6 0.0 95.4 4.0 0.5 0.1 95.4 41 05 0.1

0.5 0.0 50 88.7 103 0.8 0.1 93.6 54 0.8 0.2 92.1 6.8 09 0.2
100 91.6 77 0.5 0.2 94.8 4.4 0.7 0.2 93.2 6.0 0.7 0.2
200 93.1 64 0.5 0.1 95.3 4.2 04 0.1 94.1 53 04 0.2

0.3 0.65 50 89.0 99 09 0.1 93.8 54 0.6 0.2 92.2 6.9 0.7 0.2
100 90.8 83 0.7 0.2 945 46 0.6 0.3 92.3 6.7 08 0.3
200 91.8 7.5 06 0.1 94.8 4.6 04 0.2 92.9 6.2 06 0.3

0.2 0.79 50 89.5 94 1.0 0.1 94.0 52 0.6 0.2 92.4 6.5 09 0.3
100 91.1 79 0.8 0.2 946 46 0.6 0.3 92.7 6.2 0.7 0.3
200 91.7 76 0.6 0.1 95.0 44 0.5 0.2 93.0 6.2 0.5 0.3

0.05 0.94 50 91.1 81 0.7 0.1 946 46 0.5 0.3 93.8 54 0.6 0.2
100 92.9 6.5 04 0.2 95.0 4.2 05 0.3 94.1 51 04 0.3
200 93.5 6.0 0.5 0.1 95.4 4.1 04 0.1 94.5 4.8 04 0.2

Model C: €4 = h, v, In(hiy) = —0.23 +0.91n(hy 1) + 0.25[v2,_,| — 0.30; 1], vi,¢ ~ ii.d. N(0,1),i=1,....p

50 86.2 121 1.4 0.3 921 65 1.0 04 89.5 89 12 04
100 87.1 116 1.2 0.1 934 57 0.7 0.2 893 91 14 03
200 88.5 104 1.0 0.1 941 54 03 0.2 899 87 10 04

Model D: €;¢ = i vig, hiy = 0.0216 + 0.6896h; 1 + 0.3174[g; -1 — 0.1108]2, v ~ Lid. N(0,1), i =1,...,p
50 856 126 1.5 03 921 65 1.1 04 89 94 12 05
100 850 133 15 02 931 59 08 02 8.9 113 14 04
200 830 150 1.8 03 940 52 06 02 8.0 126 1.9 0.5

Model E: ;¢ = hj4 vi¢, hiy = 0.005 + 0.Thi -1 + 0.28[|es 1] — 0.23;4— 1), vip ~ iid. N(0,1),i=1,...,p
50 869 11.6 1.3 02 927 6.1 09 03 899 85 10 0.6
100 870 117 12 02 937 55 06 01 88 97 1.2 03
200 859 128 12 01 943 51 05 01 8.5 107 1.5 0.3

Model F: e;4 = v; pexp (hit), hit = MNrig—1 + 0.5& ¢, (&it,vie) ~ 11.d. N(O, diag(ag, 1),i=1,..,p
A 0’5
0.936 0.424 50 75.5 20.7 34 04 909 7.5 13 0.3 80.9 159 26 0.6
100 73.2 223 3.8 0.6 91.5 74 09 0.2 76.8 19.1 3.2 0.8
200 727 236 3.3 04 924 6.7 0.7 0.2 75.4 214 25 0.7
0.951 0.314 50 80.0 172 24 04 91.8 6.7 1.2 0.3 83.7 13.6 2.1 0.6
100 77.8 188 3.0 0.5 926 6.4 09 0.2 80.8 159 25 0.8
200 772 200 24 04 93.3 6.1 05 0.1 79.5 176 2.3 0.6




TABLE 4: STANDARD AND BOOTSTRAP SEQUENTIAL PROCEDURES FOR SELECTING THE CO-INTEGRATION

RANK. p =4, TRUE RANK 15 0.

Q-based Q%-based Q*-based
r= 0 1 2 3 4 0 1 2 3 4 0 1T 2 3 4
Model A: €54 = i v e, hiy = w + doe?_y + dihig—1,vi4 ~ ii.d. N(0,1),i=1,..,p
do d T
00 00 50 913 7.7 09 01 00 957 37 05 01 01 952 41 05 0.1 00
100 927 64 07 02 00 950 42 06 02 00 949 43 06 02 00
200 935 59 05 01 00 951 42 05 0.1 0.1 951 42 05 01 0.0
05 00 50 864 120 13 02 00 937 54 06 02 02 915 74 08 02 0.1
100 888 100 1.0 02 00 937 55 04 02 0.1 9.7 71 0.7 03 0.1
200 913 80 06 0.1 00 948 47 04 01 00 933 59 06 0.1 00
03 065 50 8.2 131 14 02 00 936 54 07 02 0.1 90.6 80 1.0 0.3 02
100 8.3 120 1.5 02 00 938 53 07 02 0.1 89.3 92 13 02 0.1
200 879 109 1.0 02 0.0 944 49 06 01 00 9.0 88 1.0 02 0.1
02 079 50 8.2 121 14 02 00 941 49 06 03 01  91.8 69 08 03 0.1
100 8.9 115 1.3 02 00 938 53 08 01 00 901 83 1.2 03 0.1
200 872 114 12 01 01 945 48 06 01 00 8.3 93 1.2 01 0.1
005 094 50 907 82 10 01 01 954 39 04 02 0.1 947 45 05 02 0.1
100 919 73 07 01 00 948 45 04 03 0.1 942 49 06 02 0.0
200 928 65 06 01 00 950 44 05 01 00 945 48 06 0.1 00
Model B: Eit = h}thUi’t, hi,t =w+ d05227t_1 + dlhiﬂg_l, Vi ¢ ™~ i.d. ts,i=1,...,p
do d T
00 00 50 907 82 09 02 00 956 3.6 06 01 01 944 49 05 02 00
100 933 58 06 02 01 959 34 05 01 0.1 95.0 44 04 02 0.1
200 937 56 06 00 00 952 42 06 00 00 951 42 07 01 00
05 00 50 873 11.2 11 03 00 944 48 06 02 00 918 7.2 07 02 0.1
100 905 84 09 01 01 949 43 06 01 0.1 931 59 0.7 02 0.1
200 919 74 06 01 00 951 44 04 01 0.1 93.6 58 04 02 0.1
03 065 50 874 109 14 02 00 941 51 06 01 01 921 68 08 02 0.1
100 8.6 92 09 01 01 945 46 06 01 0.1 923 65 08 02 0.1
200 905 86 0.7 01 00 949 45 05 0.1 0.1 926 66 06 0.1 0.1
02 079 50 883 101 13 02 01 948 45 05 01 0.1 92.7 63 0.7 02 0.1
100 903 86 09 01 01 947 45 06 01 01 927 61 08 02 02
200 913 7.8 06 02 00 949 44 05 01 0.1 926 65 0.7 01 0.1
005 094 50 901 88 09 02 00 954 38 06 01 01 941 51 06 02 0.0
100 926 65 07 02 01 954 39 05 01 0.1 946 45 06 02 0.1
200 928 65 06 00 00 949 45 05 01 00 942 50 07 00 0.0
Model C: €14 = h;, v, In(hie) = —0.23 + 0.91n(hye—1) + 0.25[v2,_,| — 0.30; 1], vi¢ ~ ii.d. N(0,1),i=1,...,p
50 828 151 1.8 02 00 927 63 08 02 0.1 894 90 11 04 0.1
100 854 128 16 02 00 937 53 07 02 0.1 889 94 12 03 0.1
200 864 121 13 02 00 946 46 06 01 00 8.8 97 1.2 02 0.0
Model D: g;¢ = ;" vis, hiy = 0.0216 + 0.6896h; 1 + 0.3174[g; -1 — 0.1108]2, vy 4 ~ Lid. N(0,1), i =1,...,p
50 831 146 2.0 03 00 924 64 08 03 00 8.7 97 12 03 00
100 834 141 21 03 01 931 59 08 01 0.1 86.9 109 1.8 04 0.1
200 821 154 22 02 01 937 54 06 02 00 8.7 130 1.9 03 0.1
Model E: €54 = hi4 vi¢, hiy = 0.005 + 0.Thi -1 + 0.28[|es 1] — 0.23;4— 1), vie ~ iid. N(0,1),i=1,...,p
50 845 136 1.7 02 00 934 56 08 02 00 8.9 87 11 02 0.1
100 851 131 14 02 01 938 53 0.7 01 0.1 88.2 101 1.3 02 0.1
200 840 141 1.7 01 00 944 50 04 02 00 8.4 118 1.6 02 0.0
Model F: ;4 = v; s exp (hit), hit = i -1+ 0.58 ¢, (&it,0ie) ~ 1.1.d. N(O, diag(ag, 1),i=1,..,p
A 0’5 T
0936 0424 50 707 239 44 08 02 903 82 11 02 02 792 168 29 0.7 04
100 678 260 52 08 02 913 7.5 09 02 0.1 737 213 40 0.7 03
200 673 268 50 08 01 922 69 08 00 00 719 233 39 06 03
0951 0314 50 760 200 34 05 01 916 7.0 1.0 02 02 8.5 137 22 04 02
100 746 208 39 04 02 921 67 1.0 01 0.1 792 169 31 05 0.3
200 741 21.1 40 06 01 934 55 08 02 0.1 778 182 3.2 0.6 0.2




TABLE 5: STANDARD AND BOOTSTRAP SEQUENTIAL PROCEDURES FOR SELECTING THE CO-INTEGRATION

RANK. p =5, TRUE RANK 15 0.

@-based Q%-based Q*-based
r="0 1 2 3 45 0 1 2 3 45 0 1T 2 3 45
Model A: ;¢ = ;v e, hie = w + doe?_y + dihig—1, 014 ~ ici.d. N(0,1),i=1,...,p
do d T
00 00 50 879 106 12 03 01 963 31 04 02 00 952 41 06 0.1 0.0
100 9.9 73 06 01 00 956 40 04 00 00 953 43 03 0.1 0.0
200 931 61 07 01 00 956 37 06 01 00 953 40 05 0.1 00
05 00 50 824 153 20 03 00 938 54 06 02 00 909 83 08 0.1 00
100 874 11.0 14 01 00 946 47 06 01 01 918 71 08 02 0.1
200 904 88 08 01 00 957 39 04 00 00 932 6.0 06 0.1 0.0
03 065 50 819 153 25 02 01 938 52 09 01 01 905 81 12 0.1 0.0
100 8.2 128 15 04 01 937 54 06 01 01 9.0 87 09 03 0.1
200 86.1 123 14 02 00 943 51 06 01 00 8.1 95 12 02 0.1
02 079 50 83.8 13.8 21 03 01 945 45 08 02 00 923 64 10 03 0.1
100 86.0 121 15 03 01 945 48 05 01 00 908 7.9 10 02 0.1
200 86.5 11.8 15 02 00 944 48 07 01 00 894 90 13 03 0.0
005 094 50 877 108 12 03 01 958 35 05 02 00 951 41 06 02 0.0
100 912 78 08 01 01 956 38 05 01 00 951 43 06 0.1 00
200 921 71 07 01 00 951 43 05 01 00 945 49 06 0.1 0.0
Model B: Eit = h})fi)i’t, hi,t =w+ d05127t_1 + dlhiﬂg_l, Vit ™~ id.d. ts, i =1,...,p
do dy T
00 00 50 872 114 11 02 01 9.4 32 02 01 01 950 45 03 0.1 0.1
100 91.8 73 08 01 00 956 39 03 01 00 952 43 04 00 0.1
200 935 59 05 00 00 962 34 03 00 00 956 40 03 00 0.1
05 00 50 841 139 17 02 01 952 40 06 01 01 926 6.6 07 0.1 0.1
100 880 106 1.2 01 00 949 44 05 01 00 928 64 07 01 00
200 914 78 07 01 00 957 38 04 01 00 939 54 06 0.1 0.0
03 065 50 842 138 17 02 01 951 40 06 01 01 928 6.0 10 0.1 0.1
100 876 111 11 01 01 944 50 04 01 00 925 6.6 07 0.1 0.1
200 898 93 10 00 00 953 42 04 01 00 928 64 07 0.1 0.0
02 079 50 8.5 125 16 03 01 953 39 06 01 01 936 53 09 01 0.1
100 888 99 12 01 00 946 48 04 01 01 928 63 07 01 0.1
200 90.3 87 10 01 00 955 41 04 01 00 934 6.0 06 0.1 0.0
005 094 50 86.9 115 13 02 01 961 34 03 01 01 948 47 04 0.1 0.0
100 9.1 80 09 01 00 955 39 05 01 00 946 47 06 0.1 0.0
200 928 66 06 00 00 960 37 03 01 00 952 43 04 01 00
Model C: &;; = h,, vi 1, In(hi ) = —0.23 4 0.91n(h; 1 1) +0.25[v2, ;| — 0.3v;4_1],vi s ~ ii.d. N(0,1),i=1,...,p
50 80.0 169 27 03 01 929 59 09 01 01 899 87 11 02
100 83.2 147 18 03 01 930 59 09 02 00 8.2 101 12 04
200 8.3 13.0 16 01 00 943 50 06 01 00 88 99 12 02
Model D: &;4 = h;; v 4, hiy = 0.0216 + 0.6896/;,¢—1 + 0.3174[g; -1 — 0.1108]2, vy ~ Lid. N(0,1), i =1,..,p
50 80.2 165 27 05 0.1 934 54 08 03 0.1 89.7 83 16 04
100 81.3 159 24 04 0.1 935 56 0.7 02 00 8.8 11.1 1.6 04
200 798 17.1 28 0.3 0.1 93.6 53 09 0.1 0.1 83.9 133 22 05
Model E: g;4 = h;4 vie, hie = 0.005 + 0.7h;¢—1 + 0.28[|es—1| — 0.23¢;4-1]%, vip ~ idd. N(0,1),i=1,...,p
50 81.8 152 26 04 01 939 49 09 02 01 905 7.8 14 02
100 839 139 19 03 01 942 51 06 01 01 8.6 98 1.3 02
200 831 147 18 03 00 946 46 05 01 00 862 1.7 16 03
Model F: ;4 = v; 1 exp (hit), hit = MNig—1+ 0.5 ¢, (&1, vip) ~ 1.i.d. N(O,diag(ag, 1),i=1,..,p
)\ 05 T
0.936 0.424 50 650 264 69 13 03 8.0 89 1.6 04 01 778 17.0 39 10 0.3
100 64.6 278 62 12 02 905 79 1.2 03 01 730 214 46 08 0.2
200 629 287 70 13 01 921 66 1.1 02 00 692 239 56 11 02
0.951 0.314 50 719 220 50 10 02 910 74 12 02 01 827 138 27 06 0.2
100 720 225 45 09 02 913 73 12 02 00 785 176 3.0 08 0.2
200 69.5 248 48 08 01 923 67 08 02 00 751 204 35 09 0.1




TABLE 6: SIZE OF STANDARD AND BOOTSTRAP PLR TESTS FOR RANK = 0 AGAINST RANK = p. TRUE RANK IS 1.

p=2 p=3 p=4 p=95

Model A: ;¢ = h;; vi, higy = w + doe?,_y +dihig1, vig ~ iid. N(0,1),i=1,...,p
do dy T Q1 Q4 Q1 Q1 Qb Q1 Q1 Qb Q1 Q1 Qb Q1

0.0 0.0 50 5.2 5.7 4.9 5.2 4.7 4.1 6.2 4.0 3.7 6.1 2.6 2.8
100 5.8 5.6 5.5 5.9 5.2 5.0 6.9 5.2 5.0 7.3 4.6 4.6
200 9.5 5.6 5.0 5.6 5.0 4.9 5.3 4.5 4.5 6.8 4.6 4.6
0.5 0.0 50 6.3 5.8 5.9 7.6 5.4 6.0 9.0 5.1 5.7 9.0 3.6 4.5
100 6.4 6.0 6.0 7.9 5.5 6.6 8.5 5.2 6.2 106 5.8 7.4
200 5.1 4.9 5.0 7.3 5.4 6.5 7.8 5.1 6.1 8.8 4.8 6.5
0.3 0.65 50 6.8 5.9 6.2 7.7 5.5 6.0 9.6 5.1 6.2 9.9 4.0 5.0
100 7.7 5.8 7.4 10.2 5.9 8.2 112 6.2 8.6 123 5.6 8.6
200 7.5 5.5 7.4 9.4 5.1 8.7 105 5.0 8.7 127 54 9.8
0.2 0.799 50 6.5 5.8 6.1 7.8 5.6 6.1 8.8 4.9 5.2 9.6 4.0 4.4

100 8.0 5.9 7.5 10.1 5.7 8.0 10.6 5.5 8.3 12.1 5.1 8.1
200 7.9 5.4 7.8 104 6.0 9.2 112 53 9.3 126 54 10.2

0.06 094 50 5.2 5.5 5.0 5.8 4.7 4.4 6.2 4.1 3.7 6.5 2.7 2.9
100 6.1 5.6 5.9 6.9 5.1 5.6 7.1 5.3 5.2 7.9 4.8 4.9
200 5.8 5.7 5.7 6.8 5.1 5.7 6.6 4.6 5.4 7.4 4.7 5.4

Model B: &y = b, *vi s, hiy = w + doe?,_y + dihig_1, vig ~ idd. ts, i =1,..,p
do T Q1 Qo3 Q Qo3 Q Q@3 Q1 QF @

0.0 0.0 50 5.1 6.0 4.6 6.5 5.4 4.7 6.7 4.3 3.9 7.3 2.7 3.3
100 5.6 5.6 5.1 6.4 5.3 5.5 6.7 4.6 4.9 6.8 3.8 4.2
200 4.9 4.6 4.3 5.6 4.6 4.6 6.4 4.6 4.8 6.6 4.1 4.7
0.5 0.0 50 6.2 6.3 5.6 7.8 5.6 6.0 7.8 4.5 5.0 9.9 3.6 4.4
100 6.3 6.2 5.8 6.9 5.2 6.0 8.7 5.4 6.4 9.3 5.0 6.4
200 9.5 4.8 4.9 6.5 5.2 5.5 7.4 4.7 5.9 7.9 4.7 5.6
0.3 0.65 50 6.5 6.4 6.2 7.8 5.7 6.4 8.2 4.5 5.2 9.7 3.4 4.7
100 6.6 5.9 6.1 7.7 5.3 6.5 9.0 5.4 6.7 10.0 4.9 6.4
200 5.9 4.9 5.4 7.2 5.0 6.1 8.3 4.9 6.8 9.0 4.8 6.6
0.2 0.799 50 6.4 6.3 5.9 7.5 5.6 6.0 7.6 4.4 5.0 9.0 3.3 4.3
100 6.5 6.0 6.0 7.7 5.3 6.3 8.8 5.3 6.5 9.3 4.4 6.0
200 5.8 4.5 5.6 7.4 4.9 6.3 8.4 5.0 6.9 9.0 4.7 6.5
0.06 094 50 5.7 6.1 5.0 6.7 5.1 5.0 6.4 4.0 4.0 7.7 3.0 3.5
100 6.0 5.5 5.6 6.9 5.4 5.8 7.1 4.9 5.3 7.5 3.8 4.7
200 9.5 4.8 5.0 6.2 4.8 5.0 6.9 5.0 5.6 7.3 4.3 5.2

Model C: e;¢ = b/ *vi e, In(hie) = —0.23 + 0.9In(hyg—1) + 0.25[0F,_;| — 0.3v;4-1], vie ~ iid. N(0,1),i=1,...,p
T Q1 Q4 Q1 Q1 Q4 Q3 Q1 Q4 Q1 Q1 Qb Q1

50 7.0 5.9 6.5 8.2 5.8 6.5 105 54 7.0 11.0 4.0 5.2
100 7.7 5.9 7.2 103 6.3 8.8 119 5.7 9.0 139 6.6 9.6
200 7.6 5.6 7.2 9.7 5.9 8.6 11.3 58 9.6 13.3 6.1 10.5

Model D: &4 = h;; vi ¢, hiy = 0.0216 + 0.6896h; 1 + 0.3174[g; 41 — 0.1108]2, vy ~ iid. N(0,1),i=1,...,p
r Q1 Q4 Q1 Q1 QY Q1 Q1 QY Q1 Q1 QY Q1

50 7.8 6.2 7.2 9.3 5.6 7.5 11.0 5.5 7.3 121 4.5 6.2
100 9.8 6.5 9.2 132 6.9 11.2 14.0 6.2 11.3 15.7 5.5 11.3
200 10,5 5.9 10.2 14.1 6.3 12.6 15,6 5.7 134 179 5.9 15.1

Model E: €4 = hj4vi¢, hiy = 0.005 + 0.Thi -1 + 0.28[|ei 1] — 0.23;4—1)?, vie ~ iid. N(0,1),i=1,...,p
T Q1 Q4 Q1 Q1 Q4 Q1 Q1 Q4 Q1 Q1 Qb 1

50 7.5 6.1 6.9 8.9 0.7 6.9 106 5.1 6.3 11.0 4.2 5.8
100 9.2 6.2 8.5 11.7 6.5 9.9 126 5.9 10.1 135 5.5 9.5
200 9.3 5.8 9.1 124 6.1 11.5 140 5.9 11.9 148 5.6 12.2

Model F: Eit = Vit €XP (hi,t)y hiﬂg = /\hi,t—l + 0.5&7“ (fht, Ui,t) ~ i.i.d. N(O, diag(og, 1))7 = 1, ey P
A O¢ T @1 Ql{ Q@1 @1 Qlf Q1 Q1 Qlf @1 Q1 Qlf i

0.936 0.424 50 10.5 7.0 10.1 15.1 7.1 11.7 194 78 13.8 218 7.6 13.3
100 124 6.5 11.6 196 7.6 16.9 24.0 8.2 19.6 28.0 8.8 20.8
200 12.0 6.1 11.5 189 6.6 17.0 255 74 219 303 79 254
0.951 0.314 50 9.2 6.7 9.0 127 7.0 10.5 153 6.6 10.6 179 6.3 10.7
100 11.3 6.8 10.7 169 7.2 14.4 198 7.5 16.5 227 74 164
200 10.9 5.5 10.4 16.2 6.1 14.3 21.0 6.5 17.9 253 7.1 20.7




TABLE 7: STANDARD AND BOOTSTRAP SEQUENTIAL PROCEDURES FOR SELECTING THE CO-INTEGRATION
RANK. p =2, TRUE RANK 1s 1.

@-based QP-based Q%-based
r=0 r=1 r=2 r=0 r=1 r=2 r=0 r=1 r=2
Model A: it = hif”i,ta hiﬂg =w+ doé‘itil + dlhi7t—17 Vit ~ ii.d. N(O, 1), = 1, ey P
do d T
0.0 00 50 94 854 5.2 148 795 5.7 120 831 48
100 00 942 58 00 944 56 00 945 5.5
200 00 945 55 0.0 944 56 00 950 5.0
05 00 50 98 839 6.3 180 764 56 125 817 5.8
100 00 936 6.4 03 938 6.0 00 940 6.0
200 0.0 949 5.1 0.0 951 49 00 950 5.0
03 065 50 125  80.7 6.8 212 731 5.8 147 790 6.2
100 02 920 7.7 14 928 58 03 923 74
200 00 925 7.5 01 944 55 00 926 74
02 079 50 143 793 65 223 720 5.7 170 769 6.1
100 0.3 9.7 80 1.8 924 59 03 922 75
200 00 921 7.9 01 946 54 00 922 78
005 094 50 1.7 831 5.2 166 779 55 142 808 5.0
100 00 939 6.1 02 942 56 00 940 5.9
200 00 942 58 00 943 5.7 00 943 57
Model B: ;¢ = h;*vi e, hiy = w + doe?,_y + dihig—1, vig ~ idd. t5,i=1,..,p
do d T
00 00 50 102 846 5.1 161 781 59 135 819 4.6
100 0.0 944 56 01 942 56 00 948 5.1
200 00 951 49 0.0 954 46 00 957 43
05 00 50 104 834 6.2 179 759 6.2 13.7  80.8 5.6
100 0.0 937 63 03 936 6.2 01 941 58
200 00 945 55 00 952 48 00 951 4.9
0.3 065 50 113 822 65 191 746 6.3 147 791 6.2
100 01 933 6.6 06 935 59 01 937 6.1
200 00 941 59 00 951 49 00 946 5.4
02 079 50 120 817 6.4 19.0 748 6.2 152 789 5.9
100 01 934 65 06 934 6.0 02 939 6.0
200 0.0 942 58 0.0 955 45 00 944 56
0.05 094 50 114 829 57 173 767 6.0 144 807 5.0
100 01 939 6.0 03 942 5.5 01 943 56
200 00 945 55 00 952 48 00 950 5.0
Model C: ;4 = h.,*v;q, In(hiy) = —0.23 +0.91In(h; 1) + 0.25[v2, ;| — 0.3v;4_1], viy ~ iid. N(0,1),i=1,...,p
50 122 808 7.0 217 1725 5.8 148 786 65
100 0.2 921 7.7 14 927 59 0.3 925 72
200 00 924 76 01 943 56 00 928 72
Model D: &4 = h; vy, hie = 0.0216 + 0.6896h; 41 + 0.3174[z; -1 — 0.1108]2, vy ~ iid. N(0,1),i=1,...,p
50 147 775 7.8 245  69.7 5.9 173 755 1.2
100 0.6 89.7 9.8 3.0 905 6.5 07 901 92
200 00 895 10.5 04 937 59 00 89.7 102
Model E: ;¢ = hi4 vig, hi = 0.005 + 0.7hi -1 + 0.28[|es,—1] — 0.2314-1)%, vip ~ Lid. N(0,1),i=1,..,p
50 135 790 75 227 713 6.0 162 770 6.8
100 05 903 9.2 25 913 6.2 05 910 85
200 00 907 93 02 940 58 00 909 9.1
Model F: Eit = V4t €Xp (hi,t), hi7t = /\hi,t—l + O-5€i,t, (§i7t,vi7t) ~ ii.d. N(O,diag(ag, 1)), 1= 1, ey P
A 0’5 T
0.936 0424 50 160 735 105 295 645 6.0 193 708 9.9
100 13 863 124 87 8.0 63 19 865 11.6
200 00 880 120 12 927 6.0 00 85 115
0.951 0.314 50 159 749 9.2 278 662 6.0 189 723 88
100 0.9 87.8 113 6.3 87.0 6.7 1.3 8.0 10.7
200 00 89.1 109 07 938 5.5 00 89.6 104




TABLE 8: STANDARD AND BOOTSTRAP SEQUENTIAL PROCEDURES FOR SELECTING THE CO-INTEGRATION

RANK. p =3, TRUE RANK 1s 1.

@-based QP-based Q*-based
r= "0 1 2 3 0 1 2 3 0 1 2 3
Model A: it = hif”i,ta hiﬂg =w+ doé‘itil + dlhi7t—17 Vit ~ ii.d. N(O, 1), = 1, ey P
do d T
0.0 00 50 285 66.3 4.8 0.4 40.3 550 3.8 0.9 36.7 59.3 34 0.6
100 02 939 55 05 04 943 45 0.7 0.3 947 44 06
200 00 944 52 04 00 95.0 45 0.5 00 951 44 05
05 00 50 255 669 68 08 39.8 549 43 1.0 324 617 50 09
100 08 913 7.3 06 21 923 4.7 08 1.1 924 57 09
200 0.0 927 6.7 0.6 00 946 4.6 08 0.0 935 57 0.8
03 065 50 25.9 664 68 08 39.8 54.9 43 1.1 3.6 625 49 1.0
100 1.8 880 91 1.1 51 89.0 50 1.0 24 894 69 13
200 00 90.6 86 08 02 947 43 08 00 913 7.6 1.2
02 079 50 273 649 7.0 0.7 388 55.7 4.5 0.9 326 614 52 08
100 25 874 9.0 1.1 6.1 883 4.7 09 31 890 6.6 1.3
200 00 89.6 94 1.0 02 938 51 09 00 908 7.9 1.3
005 094 50 277 665 53 0.5 376 57.9 3.5 1.0 342 614 3.7 0.7
100 08 923 63 06 19 931 43 0.8 1.6 929 48 08
200 00 932 64 04 00 949 44 07 00 943 5.1 06
Model B: ;¢ = h;*vi e, hiy = w + doe?,_y + dihig—1, vig ~ idd. t5,i=1,..,p
do d T
00 00 50 286 649 59 06 40.9 538 4.1 1.2 36.8 585 3.8 0.9
100 05 931 57 0.7 1.1 937 42 1.0 0.8 937 47 0.8
200 00 944 51 05 00 954 4.0 0.7 00 954 41 05
05 00 50 26.6 656 7.2 0.5 40.7 539 43 1.0 347 593 51 0.9
100 05 926 62 0.7 20 928 4.2 1.1 1.0 930 50 09
200 00 935 6.0 05 00 948 4.7 04 0.0 945 50 05
0.3 065 50 27.3 648 7.1 0.7 41.0 535 44 1.1 34.3 594 52 1.2
100 09 915 7.0 0.7 27 919 44 1.0 12 923 56 09
200 00 928 66 06 00 95.0 4.3 0.7 00 939 53 08
02 079 50 27.9 646 68 0.7 40.3 544 44 1.0 349 592 48 1.1
100 1.0 913 7.0 0.7 28 91.9 4.4 09 13 923 56 08
200 0.0 926 69 05 00 951 4.2 06 0.0 937 57 0.6
0.05 094 50 285 648 6.1 0.6 405 545 4.0 1.0 36.1 589 4.0 0.9
100 0.7 924 63 06 1.7 929 43 1.2 1.0 931 50 09
200 00 938 57 05 00 952 42 0.6 00 950 44 06
Model C: ;¢ = h;/*vi ¢, In(hie) = —0.23 + 0.9In(hsg—1) + 0.25[v2, ;| — 0.3v; 1], vie ~ iid. N(0,1),i=1,...,p
50 250 66.8 7.2 1.0 39.8 545 4.5 1.1 3.3 622 54 1.1
100 1.7 880 93 10 54 884 53 1.0 23 888 7.7 12
200 00 903 9.0 07 03 938 51 08 00 914 75 1.1
Model D: &;¢ = h;, vy, hiy = 0.0216 + 0.6896/;,—1 + 0.3174[g; 11 — 0.1108]2, vy ~ iid. N(0,1),i=1,..,p
50 266 641 84 1.0 40.1 544 46 08 31.6 61.0 63 1.1
100 3.2 836 116 15 89 842 56 1.3 3.9 848 94 1.9
200 0.0 859 125 1.6 07 930 51 1.1 0.0 87.3 108 1.9
Model E: &y = hi4 vig, hi = 0.005 + 0.Thi -1 + 0.28[|es —1] — 0.23:4-1]%, v ~ Lid. N(0,1),i=1,..,p
50 27.0 641 7.9 1.0 40.6 539 4.5 1.0 3.9 612 56 1.3
100 2.8 8.5 104 1.3 79 8.7 55 1.0 34 866 82 17
200 00 87.6 111 13 05 933 55 0.6 0.0 885 100 15
Model F: e; 4 = v; g exp (hit), hit = Mi—1 + 0.58 ¢, (&g, vie) ~ 11.d. N(O,diag(og, 1),i=1,..,p
0.936 0.424 50 234 615 13.1 20 42.0 514 53 1.3 287 59.7 9.6 2.1
100 3.7 767 170 26 182 745 6.2 1.1 52 779 141 28
200 0.1 810 169 2.0 23 911 58 08 0.1 829 146 24
0.951 0.314 50 24.9 625 11.0 1.7 411 524 51 14 299 59.7 84 21
100 35 79.6 147 22 147 783 56 14 45 812 118 2.6
200 0.1 838 147 15 15 924 52 0.8 0.1 8.6 123 20




TABLE 9: STANDARD AND BOOTSTRAP SEQUENTIAL PROCEDURES FOR SELECTING THE CO-INTEGRATION
RANK. p =4, TRUE RANK 1s 1.

Q-based QP-based Q*-based
r="0 1 2 3 4 0 T 2 3 1 0 1 2 3 4
Model A: Eit = h:’fvi,t, h@t =w+ d05127t71 + dlhi,t—l, Vi g ™~ ii.d. N(O, 1), 1=1,..,p
do d T
00 00 50 425 512 55 0.7 0.1 60.3 357 3.1 06 0.3 56.1 40.2 3.0 04 0.2
100 22 909 63 06 0.0 46 903 43 06 0.3 3.6 914 43 05 0.2
200 0.0 947 48 04 0.0 0.0 955 39 05 0.1 00 955 4.0 04 0.1
05 00 50 36.6 543 80 0.8 0.3 580 371 41 05 0.3 485 459 48 05 04
100 2.0 886 75 09 0.1 74 874 45 06 0.2 43 894 55 06 0.1
200 0.0 922 72 05 0.1 0.0 948 46 04 0.1 00 939 54 05 0.1
03 065 50 345 559 84 08 0.3 54.6 404 4.0 05 04 455 483 53 0.6 0.3
100 49 839 97 13 02 126 81.1 53 06 0.3 75 840 72 09 05
200 0.0 8.5 92 1.1 0.2 04 946 43 05 0.2 00 912 75 1.0 0.2
0.2 079 50 35.7 555 7.5 1.0 0.3 51.8 434 39 05 0.3 452 497 42 0.6 03
100 65 829 92 1.3 0.2 141 804 46 06 0.3 89 828 69 1.1 04
200 0.0 8.8 99 1.0 0.2 04 943 45 06 0.3 00 90.7 79 1.0 04
0.05 094 50 395 543 52 08 0.1 56.0 39.9 3.3 05 0.3 51.0 454 29 04 0.3
100 42 8.7 6.1 09 0.1 75 872 43 08 0.2 6.1 88.7 42 0.7 0.3
200 0.0 934 59 0.7 0.0 0.0 954 4.0 05 0.2 0.0 946 46 05 0.2
Model B: ;¢ = h;*v; ¢, hiy = w + doe?,_y + dihig—1, vig ~ idd ts5, i =1,..,p
do d T
00 00 50 434 499 57 08 0.1 619 341 3.1 0.7 0.2 570 392 30 08 0.1
100 2.7 906 59 06 0.1 59 895 3.9 05 0.3 43 908 41 05 02
200 0.0 936 59 04 0.1 00 954 41 04 0.1 00 952 41 05 02
05 00 50 39.6 526 68 09 0.1 58.8 369 35 08 0.2 51.6 434 4.1 0.7 0.2
100 3.0 8.3 79 07 0.1 81 8.5 4.7 05 03 49 8.7 56 0.6 0.2
200 0.0 926 6.6 0.7 0.0 0.0 952 42 04 0.1 00 941 51 06 0.1
03 065 50 396 522 72 08 0.1 584 372 34 07 0.3 515 434 41 08 0.2
100 3.7 872 79 09 0.2 9.7 849 45 06 0.3 6.0 873 58 0.7 0.3
200 0.0 91.7 7.6 0.7 0.1 0.0 950 43 05 0.1 00 932 59 08 02
02 079 50 404 521 65 09 0.2 58.6 372 32 08 0.3 52.3 42.8 40 0.7 0.2
100 44 868 75 10 02 10.0 847 44 07 0.3 6.6 869 54 0.7 0.3
200 0.0 91.6 7.7 06 0.1 01 950 43 05 0.1 00 931 63 05 0.1
0.05 094 50 423 513 54 0.7 02 60.1 361 29 06 0.3 542 418 32 05 0.3
100 3.9 891 62 0.7 0.1 79 872 40 06 03 57 889 45 05 0.3
200 0.0 931 63 04 0.2 0.0 950 43 05 0.1 0.0 944 49 04 0.2
Model C: &5 = h;*vi ¢, In(hie) = —0.23 4 0.9In(hiy—1) + 0.25[v2,_,| — 0.3v; 1], vie ~ iid. N(0,1),i=1,....p
50 339 557 9.0 12 02 54.2 406 4.1 0.7 0.3 444 486 58 08 04
100 49 833 105 1.3 0.1 13.7 80.6 4.7 0.6 0.4 71 839 76 10 04
200 0.0 8.7 101 1.0 0.2 05 937 50 0.6 0.3 00 904 84 10 03
Model D: g;4 = h;; vig, hiy = 0.0216 + 0.6896h; 1 + 0.3174[g; -1 — 0.1108]2, v ~ Lid. N(0,1),i=1,...,p
50 333 558 93 14 0.3 51.6 431 4.2 09 0.3 424 504 59 1.1 03
100 74 786 120 1.7 0.3 18.0 758 5.0 0.9 04 9.7 790 93 1.3 0.6
200 01 844 135 1.8 0.2 1.6 927 47 07 03 0.1 865 11.1 18 0.5
Model E: ;¢ = h; vie, hig = 0.005 + 0.Thi -1 + 0.28[|ei 1] — 0.23;¢1)?, vie ~ iid. N(0,1),i=1,...,p
50 345 549 92 1.1 0.3 524 426 3.9 0.7 0.3 434 503 53 0.7 03
100 6.7 80.7 10.7 1.5 0.4 16.9 77.2 47 09 0.3 94 804 82 13 0.6
200 0.1 8.0 123 14 0.3 09 932 50 05 0.3 0.1 880 102 1.3 04
Model F: €i,t = U4t €Xp (h¢7t), h/;,,t = /\hz’,t—l + 0.5&'7“ (gi,t; U;,,t) ~ i.i.d. N(O, diag(ag, 1)), 1= 1, ey P
)\ 0’5 T
0.936 0.424 50 27.9 527 161 3.0 04 496 429 63 09 0.3 36.0 50.2 109 22 0.6
100 79 681 203 32 04 26.7 654 64 1.2 0.3 109 695 162 2.7 0.7
200 02 742 220 29 0.6 49 878 65 0.6 0.2 04 777 185 26 0.8
0.951 0.314 50 30.0 54.7 127 22 04 499 437 53 08 0.3 385 51.0 84 16 0.6
100 78 724 171 24 04 23.9 68.7 62 09 0.3 105 73.0 140 1.7 08
200 02 789 181 25 04 3.0 905 58 06 0.1 02 819 152 20 0.7




TABLE 10: STANDARD AND BOOTSTRAP SEQUENTIAL PROCEDURES FOR SELECTING THE CO-INTEGRATION

RANK. p =5, TRUE RANK 1S 1.

Q-based QP-based Q*-based
r="0 1 2 3 4,5 0 1T 2 3 45 0 1 2 3 4,5
Model A: g5, = b, vip, hie = w + doe? 1 + dihig—1,0i4 ~ ii.d. N(0,1),i=1,..,p
do d T
00 00 50 515 424 53 06 01 754 221 21 02 02 710 263 23 03 0.1
100 72 8.5 66 06 0.1 155 80.0 3.8 05 0.2 129 825 40 05 0.1
200 00 932 60 07 0.1 00 954 40 04 0.2 00 954 40 05 0.1
05 00 50 447 463 79 09 02 714 250 31 03 02 631 324 38 04 03
100 77 817 94 10 02 199 743 50 06 02 128 798 65 0.7 02
200 00 91.2 80 07 0.1 00 952 43 03 0.1 00 935 58 05 0.1
03 065 50 415 486 87 11 01 656 304 34 05 01 574 37.7 42 06 0.1
100 103 775 105 1.6 02 246 699 46 0.7 02 155 758 7.3 11 0.3
200 00 87.2 115 11 0.2 1.0 936 47 06 0.1 01 901 85 1.1 02
02 079 50 41.8 485 84 1.0 03 640 320 33 05 02 562 393 37 05 02
100 122 757 105 13 03 254 695 42 07 02 176 744 68 10 0.3
200 02 87.2 111 14 0.2 13 933 48 04 0.2 0.3 895 87 1.2 03
005 094 50 47.6 458 56 07 02 706 267 21 04 02 649 323 24 03 0.1
100 104 817 7.0 0.7 0.1 193 759 4.0 06 0.1 161 791 42 05 0.1
200 00 926 67 06 0.1 01 952 42 04 0.1 00 946 48 04 02
Model B: Eit = h;7t2vi7t7 h@t =w+ dQE?’t,I + d1h1‘7t_1,1}7;7t ~idd. ts, i =1,...,p
do d T
00 00 50 49.8 429 64 08 0.1 746 227 23 03 01 691 277 28 03 0.1
100 78 8.4 61 06 0.1 16.6 796 35 02 0.1 135 823 38 04 0.1
200 00 934 60 06 0.1 00 959 38 03 0.1 00 953 42 04 0.1
05 00 50 43.6 465 89 07 02  7L1 254 30 03 02 631 326 39 03 02
100 81 827 82 09 02 195 755 44 05 02 134 802 57 05 02
200 00 920 74 05 0.1 02 951 43 03 0.1 00 944 51 03 02
03 065 50 431 472 88 08 0.1 706 260 28 03 02  61.8 336 42 04 0.1
100 87 813 9.0 09 02 200 751 44 04 0.1 141 795 57 06 02
200 00 91.0 81 0.7 0.2 03 949 42 05 0.1 00 933 58 07 0.1
02 079 50 44.0 470 80 08 0.1 700 268 27 04 01 624 334 37 04 0.1
100 88 819 82 10 01 201 755 39 03 0.1 148 792 53 06 02
200 00 91.0 82 07 0.1 02 950 42 05 0.1 0.0 934 57 06 02
005 094 50 478 445 69 07 01 726 244 25 03 02 663 303 28 04 0.1
100 90 835 68 05 0.1 179 782 34 03 0.1 149 804 42 04 01
200 00 927 66 07 0.1 01 956 39 04 0.0 00 948 45 05 0.1
Model C: ;4 = ;i vi e, In(hig) = —0.23 + 0.91n(h 1) + 0.25[[v?,_ ;| — 0.3v;4-1],v5¢ ~ iid. N(0,1),i=1,....p
50 394 496 96 1.2 02 650 31.0 33 05 02 555 394 43 06 02
100 92 769 121 17 01 239 696 56 08 02 144 760 83 11 03
200 01 8.6 119 1.2 0.2 08 932 53 06 0.2 01 894 92 09 04
Model D: &;¢ = h;, vy, hiy = 0.0216 + 0.6896/;,—1 + 0.3174[g; 11 — 0.1108]2, vy ~ iid. N(0,1),i=1,....p
50 388 49.1 102 1.6 03 610 345 34 08 03 527 412 50 09 03
100 121 722 136 18 03 280 665 47 06 0.1 170 717 99 10 03
200 02 819 152 24 0.3 33 90.8 49 0.7 0.3 04 845 125 19 0.7
Model E: & = hi, vig, hi = 0.005 + 0.Thi -1 + 0.28[|es—1] — 0.23;4-1)%, v ~ Lid. N(0,1),i=1,..,p
50 39.9 491 94 12 04 627 332 34 05 02 539 403 48 07 03
100 114 751 117 16 03 263 682 47 06 02 162 743 83 09 03
200 02 8.0 127 18 0.3 22 922 46 07 0.2 03 875 104 14 05
Model F: e; 4 = v; g exp (hit), hit = Mi—1 + 0.58 ¢, (&g, vie) ~ 11.d. N(O,diag(o?, 1),i=1,..,p
A 0’5 T
0.936 0.424 50 288 494 169 39 10 557 372 56 12 03 410 458 103 22 0.7
100 11.8 602 227 47 06 343 571 72 1.2 02 163 629 17.0 29 08
200 05 69.2 252 45 0.7 86 835 6.7 09 0.3 0.8 738 208 3.7 0.9
0.951 0.314 50 32.8 493 143 29 06 576 364 46 11 04 454 439 83 1.8 05
100 123 650 189 32 06 326 60.1 62 09 02 172 664 134 25 04
200 03 744 217 28 0.7 61 86.9 58 0.9 04 08 785 175 25 0.7




TABLE 11: SIZE OF STANDARD AND BOOTSTRAP PLR TESTS FOR RANK = 0 AGAINST RANK = p.
TRUE RANK 1S 0. VAR(2) CASE.

p=2 p=3 p=4 p=>5

Model A: Eit = h;fi)i)t, hi,t =w+ d05127t71 + dlhi7t—17 V¢ ™~ ii.d. N(O, 1), i=1,...,p
do dy T Qo Qb Q5 Qo Qb Qp Qo Qb Q5 Qo Q} o
00 00 50 122 73 6.8 214 65 6.9 415 85 89 70.3 9.7 115
100 89 60 6.2 125 56 5.9 189 52 59 320 65 74
200 70 49 5.3 85 52 5.6 109 48 5.1 158 52 5.3
03 065 50 16.3 80 10.1 270 85 11.0 462 94 112 722 12.0 14.6
100 129 67 94 173 7.1 10.1 254 7.0 106 38.1 86 125
200 105 59 8.8 134 58 94 161 57 94 229 6.3 108

Model B: ;¢ = h;*v;¢, hiy = w + doe?,_y + dihig—1, vig ~ idd. t5, i =1,..,p
d _d T Q Qb  Qf Q @ Q Qb @ Q Q&
00 00 50 123 62 6.7 220 69 7.6 413 77 87 70.2 102 11.1
100 84 50 5.7 122 55 6.1 187 58 6.8 323 57 65
200 73 54 5.6 87 51 55 109 52 538 16.8 59 6.4
03 065 50 143 72 80 246 80 9.6 447 86 105 724 11.0 12.6
100 107 56 7.6 142 61 7.8 222 63 84 354 66 93
200 9.0 59 74 11.0 59 75 135 52 7.3 198 6.1 8.1
Model C: ;¢ = h;*vi s, (R e) = —0.23 + 0.91In(hi 1) + 0.25[v2,_;| — 0.30; 1], vie ~ iid. N(0,1),i=1,...,p
T Qo Q Q5 Qo Qb Q5 Qo Q4 Q5 Qo Qb Q5
50 164 83 10.3 277 89 114 474 104 125 73.0 125 156
100 133 67 9.1 180 7.0 106 255 7.6 114 399 85 126
200 108 59 8.6 132 60 9.2 16,7 6.0 94 225 65 10.2
Model D: €54 = h;*vis, hie = 0.0216 + 0.6896h; 1 + 0.3174[g; -1 — 0.1108]2, vy ~ iid. N(0,1), i =1,..,p
T Qv Qf  Qf Qv Qf  Qf Q  Qf  Qf Qo Q@
50 179 89 11.8 298 9.8 12.3 476 106 135 731 127 159
100 160 7.3 124 21.0 7.8 129 297 80 138 428 93 148
200 150 6.2 125 18.8 6.7 144 229 6.6 146 297 74 16.2
Model E: ;¢ = hi4 vig, hip = 0.005 + 0.7hi -1 + 0.28[es—1] — 0.2314-1]%, vy ~ Lid. N(0,1),i=1,..,p
T Qo Q5 Q5 Qo Q4 Q5 Qo Q4 Q5 Qo Qb 0
50 170 83 10.8 285 9.1 115 459 10.3 13.1 725 122 15.7
100 144 70 108 199 74 122 274 74 124 409 82 133
200 129 64 111 16.6 65 126 200 62 125 265 6.2 13.0
Model F: Eit = V4t €XP (hi,t); hi,t = /\hiﬂg_l + O-5€i,ta (§i7t, Ui,t) ~ 1i.d. N(O,diag(a?, 1)), 1= 1, ey P

A o¢ T Qo Qb Qp Qo Qb Qp Qo Qb Qp Qo Q} 0
0.051 0.314 50 21.7 88 14.1 33.0 106 16.1 522 134 19.8 76.0 165 22.7
100 199 81 1538 269 87 18.0 36.6 9.5 19.2 496 11.7 213
200 16.9 59 13.8 226 6.7 169 302 7.3 207 372 81 214




TABLE 12: STANDARD AND BOOTSTRAP CO-INTEGRATION TESTS: UK, JAPAN, CANADA AND THE U.S.

Asymptotic Wild Bootstrap L.I.D. Bootstrap
Country @, Statistics p-values p-values p-values
UK r= 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
154.88 67.83 10.65  0.98 0.00 0.00 0.58 0.95 0.00 0.00 0.76 0.98 0.00 0.00 0.60 0.95
Japan r= 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
101.86 40.19 10.50  3.68 0.00 0.01 0.59 0.46 0.00 0.20 0.86 0.75 0.00 0.04 0.71 0.51
Canada r = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
248.50 74.65 15.84  6.11 0.00 0.00 0.18 0.18 0.00 0.00 0.33 0.31 0.00 0.00 0.20 0.26
USA r= 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
138.66 60.04 33.32 17.47 3.15 0.00 0.01 0.08 0.12 0.55 0.02 0.36 0.51 0.62 0.90 0.00 0.01 0.12 0.15 0.62
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