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Abstract

In this paper we study the asymptotic behaviour of power and multipower variations

of processes Y :

Yt =
∫ t

−∞
g(t− s)σsW (ds) + Zt

where g : (0,∞) → IR is deterministic, σ > 0 is a random process, W is the stochastic

Wiener measure, and Z is a stochastic process in the nature of a drift term. Processes of

this type serve, in particular, to analyse data of velocity increments of a fluid in a turbulence

regime with spot intermittency σ. The purpose of the present paper is to determine the

probabilistic limit behaviour of the (multi)power variations of Y , as a basis for studying

properties of the intermittency process σ. Notably the processes Y are in general not of the

semimartingale kind and the established theory of multipower variation for semimartingales

does not suffice for deriving the limit properties. As a key tool for the results a general

central limit theorem for triangular Gaussian schemes is formulated and proved. Examples

and an application to realised variance ratio are given.
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1 Introduction

The motivation for the development of the results reported in this paper has been the need to

construct tools for studying the probabilistic limit behaviour of (realised) quadratic variation

and other multipower variations in relation to the class of Brownian semistationary (BSS)

processes. This class, which was introduced in [BNSch09], consists of the processes Y = {Yt}t∈R

that are defined by

Yt = µ+
∫ t

−∞
g(t− s)σsW (ds) +

∫ t

−∞
q(t− s)asds (1.1)

where µ is a constant, W is the stochastic Wiener measure, g and q are nonnegative determin-

istic functions on R, with g (t) = q (t) = 0 for t ≤ 0, and σ and a are càdlàg processes. When

σ and a are stationary then so is Y . Hence the name Brownian semistationary processes. The

BSS processes form the natural analogue, for stationarity related processes, to the class BSM
of Brownian semimartingales

Yt = µ+
∫ t

0
σsdWs +

∫ t

0
asds. (1.2)

In the context of stochastic modelling in finance and in turbulence the process σ embodies the

volatility or intermittency of the dynamics, whether the framework is that of BSM or BSS.

For detailed discussion of BSS and the more general concept of tempo-spatial ambit processes

see [BNSch04], [BNSch07], [BNSch08a], [BNSch08b], [BNSch08c], [BNSch09]. Such processes

are, in particular, able to reproduce key stylized features of turbulent data.

A main difference between BSM and BSS is that in general models of the BSS form are

not semimartingales (for a discussion of this, see Section 3 of [BNSch09]). In consequence, var-

ious important techniques developed for semimartingales, such as the calculation of quadratic

variation by Ito algebra and those of multipower variation, do not apply or suffice in BSS
settings. The present paper addresses some of the issues that this raises.

The theory of multipower variation was primarily developed as a basis for inference on σ

under BSM models and, more generally Ito semimartingales, with particular focus on inference

about the integrated squared volatility σ2+ given by

σ2+
t =

∫ t

0
σ2
sds. (1.3)

This quantity is likewise a focal point for the results discussed in the following.

Section 2 introduces common notation for multipower variation and recalls some basic prop-

erties of such quantities. A law of large numbers and a central limit theorem for multipower

variation of triangular arrays of Gaussian random variables are derived in Section 3, and these

limit results are drawn upon in Section 4 to establish probability and central limit theorems

for multipower variation for BSS processes, with most of the proofs postponed to the penul-

timate Section 7. Section 5 presents several examples, and Section 6 discusses an application
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concerning the limit behaviour of the realised variation ratio, i.e. the ratio of realised bipower

variation to realised quadratic variation. The final Section 8 concludes and indicates some

possible directions for further related work. An appendix summarises a number of properties

of the modified Bessel functions of the modified third kind, needed for derivations in Section 5.

2 Multipower Variation

The concept of (realised) multipower variation was originally introduced in [BNS04a] in the

context of semimartingales, and the mathematical theory has been studied in a number of

papers ([BNGJPS06], [Jac08a], [BNSW06], [KiPo08]) while various applications are the main

subjects in ([BNS04b]), [BNS06], [BNS07], [Jac08b], [Woe06]. Multipower variation turns out

to be useful for analysing properties of parts of a process that are not directly observable. In

this section we present the definition of realised multipower variation and recall its asymptotic

properties for some classes of processes.

Let us consider a continuous-time process X, defined on some filtered probability space

(Ω,F , (Ft)t≥0, P ), that is observed at equidistant time points ti = i/n, i = 0, . . . , [nt]. A

realised multipower variation of the process X is an object of the type

[nt]−k+1∑
i=1

k∏
j=1

|∆n
i+j−1X|pj , ∆n

i X = X i
n
−X i−1

n
, p1, . . . , pk ≥ 0 , (2.1)

for some fixed number k ≥ 1. We now present an overview of the asymptotic theory for

quantities of the form (2.1) for various types of processes X.

We start with the BSM case

Xt = X0 +
∫ t

0
asds+

∫ t

0
σsdWs (2.2)

where W is a Brownian motion, a is a locally bounded and predictable drift process, and σ is

an adapted and càdlàg volatility process. As was established in [BNGJPS06], the convergence

in probability

np
+/2−1

[nt]−k+1∑
i=1

k∏
j=1

|∆n
i+j−1X|pj

ucp−→ µp1 · · ·µpk
∫ t

0
|σs|p+ds (2.3)

holds, where p+ =
∑k

j=1 pj and µp = E[|u|p], u ∼ N(0, 1) and we write Zn
ucp−→ Z when

supt∈[0,T ] |Znt − Zt|
P−→ 0 for any T > 0. Under a further condition on the volatility process

one obtains the associated stable central limit theorem:

√
n
(
np

+/2−1

[nt]−k+1∑
i=1

k∏
j=1

|∆n
i+j−1X|pj − µp1 · · ·µpk

∫ t

0
|σs|p+ds

)
st−→
√
A

∫ t

0
|σs|p+dBs , (2.4)
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whereB is another Brownian motion, defined on an extension of the probability space (Ω,F , (Ft)t≥0, P )

and independent of F , and the constant A is given by

A =
k∏
l=1

µ2pl − (2k − 1)
k∏
l=1

µ2
pl

+ 2
k−1∑
m=1

m∏
l=1

µpl

k∏
l=k−m+1

µpl

k−m∏
l=1

µpl+pl+m .

Recall that the stable convergence of processes is defined as follows. A sequence of processes

Zn converges stably in law towards the process Z (written Zn
st−→ Z), that is defined on the

extension of the original probability space (Ω,F , (Ft)t≥0, P ), if and only if for any bounded and

continuous real-valued functional f and any F-measurable random variable V it holds that

lim
n→∞

E[f(Zn)V ] = E[f(Z)V ].

When the latter holds only for G-measurable random variables V , where G is a sub-σ-algebra

of F , we speak of G-stable convergence and use the notation Zn
G−st−→ Z.

A crucial property of the realised multipower variation is its robustness to jumps when

maxi(pi) < 2 ([BNSW06], [Jac08c]). Assume for a moment that X is a general Ito semimartin-

gale with continuous part Xc satisfying (2.2). Then, by (2.3) and the robustness property, we

obtain the convergence
µ−2

1

∑[nt]−1
i=1 |∆n

i X||∆n
i+1X|∑[nt]

i=1 |∆n
i X|2

P−→ [Xc]
[X]

,

where [X] denotes the quadratic variation of the semimartingale X and the limit is less than

or equal to 1. The latter result, together with the stable convergence in (2.4), can be used to

construct a formal test for jumps (see [BNS04a]). On the other hand, we know that if the limit

of the left-hand side is greater than 1 (which is the case for some typical turbulence data), the

process X can not be an Ito semimartingale.

In another direction, a study [BNCPW09] was made of the asymptotic behaviour of multi-

power variation for processes of the type

Xt = X0 +
∫ t

0
σsdGs , t ≥ 0 , (2.5)

where G is a continuous Gaussian process with centered and stationary increments (the latter

integral is defined as a Riemann-Stieltjes integral). The process defined in (2.5) is, in general,

also not a semimaringale, and the theory in [BNGJPS06] does not apply. In particular, a

different normalisation is required. Define the (normalised) multipower variation by

V (X, p1, . . . , pk)nt =
1

nτ
p+
n

[nt]−k+1∑
i=1

k∏
j=1

|∆n
i+j−1X|pj , p1, . . . , pk ≥ 0 ,

where τn > 0 is given by

τ2
n = R̄(1/n) (2.6)
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with

R̄(t) = E[(Gs+t −Gs)2]. (2.7)

Under some assumptions on R̄ and the volatility process σ it was shown that

V (X, p1, . . . , pk)nt
ucp−→ ρp1,...,pk

∫ t

0
|σs|p+ds

for a certain constant ρp1,...,pk which depends on the behaviour of R̄ near 0. Furthermore, an

associated (stable) central limit theorem, of a form similar to (2.4), was derived. Note however

that in general there are essential differences between the characters of BSS processes and

processes of type (2.5).

3 Multipower variation of Gaussian triangular arrays

In this subsection we derive some asymptotic results for functionals of arrays of stationary

Gaussian sequences. We consider a triangular array (Xi,n)n≥1,1≤i≤[nt] (t > 0) of row-wise

stationary Gaussian variables with mean 0 and variance 1. Let

rn(j) = cor (X1,n, X1+j,n) , j ≥ 0, (3.1)

be the correlation function of (Xi,n)1≤i≤[nt]. Assume that the array (Xi,n)n≥1,1≤i≤[nt] is ”non-

degenerate”, i.e. the covariance matrix of (Xi,n, . . . , Xi+k,n) is invertible for any k ≥ 1 and

n ≥ 1 (otherwise the results below do not hold).

Now, define the multipower variation associated with the sequence (Xi,n)n≥1,1≤i≤[nt]:

V (p1, . . . , pk)nt =
1
n

[nt]−k+1∑
i=1

k∏
j=1

|Xi+j−1,n|pj , p1, . . . , pk ≥ 0. (3.2)

Our first result is the weak law of large numbers.

Theorem 1 Assume that there exists a sequence r(j) with

r2
n(j) ≤ r(j) , 1

n

n−1∑
j=1

r(j)→ 0 (3.3)

as n→∞. Then it holds that

V (p1, . . . , pk)nt − ρ(n)
p1,...,pk

t
ucp−→ 0 , (3.4)

where

ρ(n)
p1,...,pk

= E
[
|X1,n|p1 · · · |Xk,n|pk

]
. (3.5)
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Proof of Theorem 1: See Section 7.

Before we present the associated central limit theorem we need to introduce another Gaus-

sian process. Suppose that rn(j)→ ρ(j), j = 1, . . . , k− 1, for some numbers ρ(j). Let (Qi)i≥1

be a non-degenerate stationary centered (discrete time) Gaussian process with expectation 0,

variance 1 and correlation function

ρ(j) = cor (Q1, Q1+j) , j ≥ 1. (3.6)

Define

VQ(p1, . . . , pk)nt =
1
n

[nt]−k+1∑
i=1

k∏
j=1

|Qi+j−1|pj (3.7)

and let ρp1,...,pk = E(|Q1|p1 · · · |Qk|pk). Then ρ(n)
p1,...,pk → ρp1,...,pk and in this case we obtain the

ucp convergence

V (p1, . . . , pk)nt
ucp−→ ρp1,...,·pkt.

The multivariate central limit theorem for the family (V (pj1, . . . , p
j
k)
n
t )1≤j≤d is as follows:

Theorem 2 Assume that

rn(j)→ ρ(j) , j ≥ 0, (3.8)

where ρ(j) is the correlation function of some stationary centered discrete time Gaussian process

(Qi)i≥1 with E[Q2
i ] = 1. Suppose furthermore that, for any j, n ≥ 1, there exists a sequence

r(j) with

r2
n(j) ≤ r(j) ,

∞∑
j=1

r(j) <∞. (3.9)

Then we have
√
n
(
V (pj1, . . . , p

j
k)
n
t − ρ

(n)

pj1,...,p
j
k

t
)

1≤j≤d
⇒ β1/2Bt , (3.10)

where B is a d-dimensional Brownian, β is a d× d-dimensional matrix given by

βij = lim
n→∞

n cov
(
VQ(pi1, . . . , p

i
k)
n
1 , VQ(pj1, . . . , p

j
k)
n
1

)
, 1 ≤ i, j ≤ d , (3.11)

and the convergence holds in the space D([0, T ]d) equipped with the uniform topology.

Proof of Theorem 2: See Section 7.

Remark 1 It is possible that the condition (3.8) in its present form is not required. However,

it leads to an explicit formula for the asymptotic variance in the central limit theorem. In order

to allow substitution of ρ(n)

pj1,...,p
j
k

by ρ
pj1,...,p

j
k

in (3.10) the requirement (3.8) must be strengthened

so as to ensure that
√
n

(
ρ

(n)

pj1,...,p
j
k

− ρ
pj1,...,p

j
k

)
→ 0. For further discussion of this, see Remark

13 in Section 4 and Section 5.3.
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Remark 2 Similar asymptotic results can be obtained for general quantities of the form

1
n

[nt]−k+1∑
i=1

H(Xi,n, . . . , Xi+k−1,n) (3.12)

for some function H : IRk → IR. Let m denote the Hermite index of H (notice that the Hermite

index of the power function used in (3.2) is 2). Replace the condition (3.3) by

|rmn (j)| ≤ r(j) , 1
n

n−1∑
j=1

r(j)→ 0

and (3.9) by

|rmn (j)| ≤ r(j) ,
∞∑
j=1

r(j) <∞.

Then Theorem 1 and 2 hold true for the functional (3.12) provided that EH2(Nk(0,Σ)) < ∞
for any invertible Σ ∈ IRk×k. We omit the details.

Remark 3 Ho and Sun [HoSu87] have shown a non-functional version of Theorem 2 for statis-

tics of the type (3.12) when the correlation function rn does not depend on n. To the best of

our knowledge Theorem 2 is the first central limit theorem for (general) multipower variation

of a row-wise stationary Gaussian process.

4 Multipower variation for BSS processes

Armed with the general theorems proved in Section 3 we are now set to establish laws of large

numbers and central limit results for multipower variations in the framework of the Browninan

semistationary processes. The regularity conditions invoked are given in a first subsection,

while the next states the theorems, the main parts of the proofs being postponed to Section

7; the third subsection discusses the nature of the, rather technical, regularity conditions and

describes a set of simpler assumptions that are more amenable to checking.

4.1 Conditions

We consider a filtered probability space (Ω,F , (Ft)t≥0, P ), assuming the existence thereon of a

BSS process, for the time being without drift term, i.e.

Yt =
∫ t

−∞
g(t− s)σsW (ds) (4.1)

where W is an Ft-stochastic Wiener measure, σ is an Ft-adapted and càdlàg volatility process

and g : (0,∞) → IR is a deterministic continuous memory function with g ∈ L2((0,∞)). We

also require
∫ t
−∞ g

2(t − s)σ2
sds < ∞ a.s. to ensure that Yt < ∞ a.s. for all t ≥ 0. By an

7
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Ft-stochastic Wiener measure we understand a Gaussian stochastic measure such that, for any

Borelian set A with E(W (A)2) <∞

W (A) ∼ N(0,m(A)),

where m is the Lebesgue measure, and if A ⊆ [t,+∞) then W (A) is independent of Ft. Note

that
{
Bt :=

∫ t
aW (ds), t ≥ a

}
is a standard Brownian motion starting in a.

The process Y is assumed to be observed at time points ti = i/n, i = 1, . . . , [nt]. Now, let

G be the stationary Gaussian process defined as

Gt =
∫ t

−∞
g(t− s)W (ds). (4.2)

This is an important auxiliary object in the study of BSS processes. Note that G belongs to

the type of processes ocurring in (2.5), and that the autocorrelation function of G is

r(t) =
∫ ∞

0
ḡ(t+ u)ḡ(u)du, (4.3)

where ḡ(t) = g(t)/||g|| with ||g|| the L2 norm of g. We are interested in the asymptotic

behaviour of the functionals

V (Y, p1, . . . , pk)nt =
1

nτ
p+
n

[nt]−k+1∑
i=1

k∏
j=1

|∆n
i+j−1Y |pj , p1, . . . , pk ≥ 0 ,

where ∆n
i Y = Y i

n
−Y i−1

n
and τ2

n = R̄(1/n) with R̄(t) = E[|Gs+t−Gs|2], t ≥ 0. In the following

we assume that the function g is continuously differentiable on (0,∞), g′ is non-increasing on

(b,∞) for some b > 0 and g′ ∈ L2((ε,∞)) for any ε > 0. Moreover, we assume that for any

t > 0

Ft =
∫ ∞

1
(g′(s))2σ2

t−sds <∞ (4.4)

almost surely. We shall extend the domain of g to R by taking g(x) = 0, for x ≤ 0.

Remark 4 The assumption (4.4) ensures that the process Y has the same ”smoothness” as

the process G (see Lemma 1 in Section 7). It is rather easy to check in practice, because it is

implied by the condition EFt <∞ for t > 0. Furthermore, if g has bounded support assumption

(4.4) is trivially fulfilled since σ is càdlàg.

Remark 5 Let us note again that the process Y is, in general, not a semimartingale. In

particular, this is the case when g′ 6∈ L2((0,∞)). For a closer discussion, see [BNSch09]. On

the other hand, the process Y is not of the form (2.5). Thus, we require new methods to prove

the asymptotic results for V (Y, p1, . . . , pk)nt . Processes of the form (4.1) are used for modelling

velocity of turbulent flows, see [BNSch07], [BNSch08a], [BNSch08b]. The function g, that is

used in such models, behaves often as tδ near the origin. Hence, when δ ∈ (−1/2, 1/2)\{0}, Y
is neither a differentiable process nor a semimartingale (because g′ 6∈ L2((0,∞))). This is the

primary case of our interest.
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We define the correlation function of the increments of G:

rn(j) = cov
(∆n

1G

τn
,
∆n

1+jG

τn

)
=
R̄( j+1

n ) + R̄( j−1
n )− 2R̄( jn)

2τ2
n

, j ≥ 0.

Next, we introduce a class of measures that is crucial for our purposes. We define (recall that

g(x) := 0 for x ≤ 0)

πn(A) =

∫
A(g(x− 1

n)− g(x))2dx∫∞
0 (g(x− 1

n)− g(x))2dx
, A ∈ B(R). (4.5)

We further set πn(x) = πn({y : y > x}). Note that πn is a probability measure on IR+.

For the weak law of large numbers we require the following assumptions:

(LLN): There exists a sequence r(j) with

r2
n(j) ≤ r(j) , 1

n

n−1∑
j=1

r(j)→ 0.

Moreover, it holds that

lim
n→∞

πn(ε) = 0 (4.6)

for any ε > 0.

Remark 6 (i) The first condition of (LLN) is adapted from Theorem 1. It guarantees the

ucp convergence of V (G, p1, . . . , pk)nt . The second condition of (LLN) says that the whole

mass of the measure πn concentrates at 0. In particular, it is equivalent to the weak

convergence

πn → δ0 ,

where δ0 is the Dirac measure at 0.

(ii) The condition (4.6) is absolutely crucial for the limit theorems given in the next subsec-

tion. When this condition is violated things become more complicated. In particular, it

may lead to a different stochastic limit of V (Y, p1, . . . , pk)nt (see an example in Section

5). Intuitively, this can be explained by the observation that the increments ∆n
i Y contain

substantial information about the volatility (far) outside of the interval [ i−1
n , in ] when the

condition (4.6) does not hold. Thus, in general, we can not expect the limit described in

Theorem 3 below.

Now, we introduce the assumptions for the central limit theorem:

(CLT): Assumption (LLN) holds, and

rn(j)→ ρ(j) , j ≥ 0,

9
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where ρ(j) is the correlation function of (Qi)i≥1, as introduced in (3.6). Furthermore, there

exists a sequence r(j) such that, for any j, n ≥ 1,

r2
n(j) ≤ r(j) ,

∞∑
j=1

r(j) <∞,

and for some γ ∈ (0, 1] we have

E[|σt − σs|2] ≤ C|t− s|2γ . (4.7)

Finally, set p = min1≤i≤k,1≤j≤d(p
j
i ). Assume that γ(p∧1) > 1

2 and that there exists a constant

λ < − 1
p∧1 such that for any εn = O(n−κ), κ ∈ (0, 1), we have

πn(εn) = O(nλ(1−κ)). (4.8)

Remark 7 Note that if σ is stationary with increasing complementary autocorrelation func-

tion ω̄, say, then condition (4.7) reduces to ω̄ < Cu2γ. In particular, for the realized quadratic

variation we require 1/2 < γ ≤ 1 meaning that $(u) should go to 0 quite fast or , equivalently,

that ω(u) tends fast to 1. In other words, σ should not vary too fast.

Remark 8 Assumption (4.7) is only one of a variety of possible regularity conditions on σ

that can lead to a central limit theorem for multipower variations of the kind we are after, and

it is some way away from being necessary. For instance, Theorem 5 below will also hold is σ

is a sum of two processes, one of which satisfies (4.7) and the other having the property that

(almost) every sample path is of bounded variation on finite intervals.

Remark 9 The first part of assumption (CLT) ensures the weak convergence of the standard-

ized version of V (G, p1, . . . , pk)nt . The condition (4.8) is certainly stronger than (4.6) in (LLN).

In Section 4.3 we will explain how (4.8) can be checked in practice.

4.2 Limit theorems

In this section we present the limit laws of multipower variations of BSS processes, in part

widening the scope slightly to allow more general drift terms. Recall that the (realised) multi-

power variation of a process Y of the form (4.1) is defined as

V (Y, p1, . . . , pk)nt =
1

nτ
p+
n

[nt]−k+1∑
i=1

k∏
j=1

|∆n
i+j−1Y |pj , p1, . . . , pk ≥ 0 , (4.9)

where τ2
n = R̄

(
1
n

)
and p+ =

∑k
j=1 pj . Our first result is the following probability limit theorem.

Theorem 3 Assume that the condition (LLN) holds with Y given by (4.1). Define

ρ(n)
p1,...,pk

= E
[∣∣∣∆n

1G

τn

∣∣∣p1 · · · ∣∣∣∆n
kG

τn

∣∣∣pk].
10
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Then we have

V (Y, p1, . . . , pk)nt − ρ(n)
p1,...,pk

∫ t

0
|σs|p+ds

ucp−→ 0. (4.10)

Proof of Theorem 3: See section 7.

Next, we demonstrate that the functional V (Y, p1, . . . , pk)nt is robust to some types of drift

processes, which includes the kind of drift term occurring in BSS processes.

Proposition 4 Consider a process Z = Z1 + Z2, where Z2 = Y is given by (4.1). Assume

that the condition (LLN) holds and define

V (Z1, Z2; p1, . . . , pk; ι1, . . . , ιk)nt =
1

nτ
p+
n

[nt]−k+1∑
i=1

k∏
j=1

|∆n
i+j−1Zιj |pj , p1, . . . , pk ≥ 0 ,

where ι1, . . . , ιk ∈ {1, 2}. If for any t > 0 and any (ι1, . . . , ιk) 6= (2, . . . , 2),

V (Z1, Z2; p1, . . . , pk; ι1, . . . , ιk)nt
P−→ 0 , (4.11)

then

V (Z, p1, . . . , pk)nt − ρ(n)
p1,...,pk

∫ t

0
|σs|p+ds

ucp−→ 0.

Proof of Proposition 4: For simplicity we consider the case k = 2. Since V (Z, p1, p2)nt is

increasing in t and the process ρ(n)
p1,p2t is continuous in t, it is sufficient to prove V (Z, p1, p2)nt −

ρ
(n)
p1,p2t

P−→ 0 for a fixed t > 0.

Assume first that 0 ≤ p1, p2 ≤ 1. We have ||x1+y1|p1 |x2+y2|p2−|y1|p1 |y2|p2 | ≤ C(|x1|p1 |x2|p2+

|x1|p1 |y2|p2 + |y1|p1 |x2|p2) (here and elsewhere C denotes a constant the value of which may

change from line to line). Hence we deduce

|V (Z, p1, p2)nt − V (Y, p1, p2)nt |

≤ C(V (Z1, Z2; p1, p2; 1, 1)nt + V (Z1, Z2; p1, p2; 1, 2)nt + V (Z1, Z2; p1, p2; 2, 1)nt ) ,

and we obtain Proposition 4 by (4.11).

Next, assume that p1 ≤ p2, p2 > 1. We deduce that

|(V (Z, p1, p2)nt )1/p2 − (V (Y, p1, p2)nt )1/p2 |

≤ C
(

(V (Z1, Z2; p1, p2; 1, 1)nt )1/p2 + (V (Z1, Z2; p1, p2; 1, 2)nt )1/p2 + (V (Z1, Z2; p1, p2; 2, 1)nt )1/p2
)
,

which completes the proof of Proposition 4. �

Remark 10 The multipower variation is robust to drift processes Z1 that are smoother than

the process Y . Assume, for instance, that the process Z1 satisfies

E[|Z1(t)− Z1(s)|p] = o(R̄p/2(|t− s|))

for every p > 0. In this case condition (4.11) is obviously satisfied.

11
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Next, we demonstrate a joint central limit theorem for a family (V (Y, pj1, . . . , p
j
k)
n
t )1≤j≤d of

multipower variations. Let G be the σ-algebra generated by the auxiliary process G.

Theorem 5 Assume that the process σ is G-measurable and the condition (CLT) holds. Then

we obtain the stable convergence

√
n
(
V (Y, pj1, . . . , p

j
k)
n
t − ρ

(n)

pj1,...,p
j
k

∫ t

0
|σs|p

j
+ds

)
1≤j≤d

G−st−→
∫ t

0
A1/2
s dBs , (4.12)

where B is a d-dimensional Brownian motion that is defined on an extension of the filtered

probability space (Ω,F , (Ft)t≥0, P ) and is independent of F , and A is a d × d-dimensional

process given by

Aijs = βij |σs|p
i
++pj+ , 1 ≤ i, j ≤ d , (4.13)

and the d× d matrix β is defined in (3.11).

Proof of Theorem 5: See Section 7.

Remark 11 We require the G-measurability of the process σ for the following reason. In fact,

in Section 7, we will first prove the joint weak convergence(
Gt,
√
n
(
V (G, pj1, . . . , p

j
k)
n
t − ρ

(n)

pj1,...,p
j
k

t
)

1≤j≤d

)
⇒
(
Gt, β

1/2Bt

)
.

This implies the joint convergence(
σtl ,
√
n
(
V (G, pj1, . . . , p

j
k)
n
tl
− ρ(n)

pj1,...,p
j
k

tl

)
1≤j≤d

)
1≤l≤m

⇒
(
σtl , β

1/2Btl

)
1≤l≤m

,

for any fixed m, because σ is G-measurable. From the latter we deduce the G-stable convergence

of Theorem 5 by a certain approximation technique.

From the above argument it is easy to see that Theorem 5 remains true when σ is independent

of W . Hence, Theorem 5 holds for any process σ = σ(1) + σ(2) such that σ(1) is G-measurable,

σ(2) is independent of W and both processes σ(1) and σ(2) satisfy the conditions of assumption

(CLT).

For completeness we provide a condition under which the above central limit theorem is

robust to a potential drift process.

Proposition 6 Consider a process Z = Z1 + Z2, where Z2 = Y is given by (4.1). Assume

that the conditions of Theorem 5 hold and d = 1. If

√
nV (Z1, Z2; p1, . . . , pk; ι1, . . . , ιk)nt

P−→ 0 , (4.14)

for any t > 0 and any (ι1, . . . , ιk) 6= (2, . . . , 2), then we obtain

√
n
(
V (Z, p1, . . . , pk)nt − ρ(n)

p1,...,pk

∫ t

0
|σs|p+ds

)
1≤j≤d

G−st−→
√
β

∫ t

0
|σs|p+dBs.

12
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Proof of Proposition 6: Proposition 6 can be proved by the same methods as Proposition 4

(details omitted). �

Clearly, Proposition 6 extends in a direct manner to the multivariate setting (d ≥ 1). Con-

cerning the possibility of substituting ρ(n)

pj1,...,p
j
k

by ρ
pj1,...,p

j
k

in the above conclusions, see Remark

1.

4.3 Discussion of assumptions

We start our discussion again by considering the auxiliary, centered stationary Gaussian, pro-

cess

Gt =
∫ t

−∞
g(t− s)W (ds).

First of all, we want to demonstrate how Theorems 1 and 2 apply for the multipower variation

of the process G. In other words, we will give a hint how to check the conditions of these

theorems.

Recall the definition (2.7) of the variance function R̄ of the increments of G and note that

R̄(t) = E[|Gs+t −Gs|2] =
∫ t

0
g2(x)dx+

∫ ∞
0

(g(t+ x)− g(x))2dx , t ≥ 0.

Clearly, the asymptotic behaviour of the multipower variation of the process G is fully deter-

mined by the behaviour of the function R̄ near 0. As we deal with a continuous process G, it is

natural to assume that R̄(t) behaves essentially as tα (for some α > 0) near 0 (later on we will

formalize this assumption). Since the case where the paths of G are differentiable (a.s.) is not

very interesting for us (because the consistency can be deduced by the mean value theorem),

we concentrate on the region 0 < α < 2 (the corresponding g(t) behaving as t(α−1)/2).

Let us introduce a new set of assumptions that correspond to the previous discussion. These

assumptions were proposed by Guyon and Leon in [GuyLe89] (those authors considered the

case of centered stationary Gaussian processes X; this relates to the BSS setting with σ con-

stant) and the same assumptions were used in [BNCP09] and [BNCPW09].

(A1) R̄(t) = tαL0(t) for some α ∈ (0, 2) and some positive slowly varying (at 0) function

L0, which is continuous on (0,∞).

(A2) R̄′′(t) = tα−2L2(t) for some slowly varying function L2, which is continuous on (0,∞).

(A3) There exists b ∈ (0, 1) with

K = lim sup
x→0

sup
y∈[x,xb]

∣∣∣L2(y)
L0(x)

∣∣∣ <∞.

13
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Recall that a function L : (0,∞)→ IR is called slowly varying at 0 when the identity

lim
x↘0

L(tx)
L(x)

= 1

holds for any fixed t > 0.

Now, note that under assumption (A1) we have, for any j ≥ 1,

rn(j) = cov
(∆n

1G

τn
,
∆n

1+jG

τn

)
=

R̄( j+1
n ) + R̄( j−1

n )− 2R̄( jn)
2R̄( 1

n)
→ ρ(j) =

1
2

((j + 1)α − 2jα + (j − 1)α) , (4.15)

because L0 is slowly varying at 0. It is obvious that ρ(j) is the correlation function of the discrete

time stationary Gaussian process Qi = B
α/2
i −Bα/2

i−1 , where Bα/2 is a fractional Brownian motion

with parameter α/2.

As shown in [GuyLe89] and [BNCP09] assumptions (A1)-(A3) imply that for any α ∈ (0, 2)

there exists a number h = h(α) > 0 such that

r2
n(j) ≤ r(j) = Cj−h

for all j ≥ 1 and all, but finitely many, n. Hence, under (A1)-(A3), the condition of Theorem

1 is satisfied for all α ∈ (0, 2), because 1
n

∑n
j=1 r(j)→ 0.

Moreover, the conditions (A1)-(A3) imply that for any α ∈ (0, 3/2) there exists a number

h̄ = h̄(α) > 1 such that

r2
n(j) ≤ r(j) = Cj−h̄−1

for all j ≥ 1 and all, but finitely many, n. Consequently, when α ∈ (0, 3/2) and (A1)-

(A3) hold, the conditions of Theorem 2 are satisfied with Qi = B
α/2
i − Bα/2

i−1 , i ≥ 1, since∑∞
j=1 r(j) <∞.

Remark 12 It is easy to see that R̄( j+1
n

)+R̄( j−1
n

)−2R̄( j
n

)

2R̄( 1
n

)
→ ρ(j) implies that for all j ≥ 1 there

exits an s(j) such that
R̄( jn)
R̄( 1

n)
→ s(j).

Since the result in Theorem 5 is independent of the scale of time we use, we must have

R̄(j∆)
R̄(∆)

→
∆↓0

s(j),

for any ∆ and then s(jk) = s(j)s(k); consequently s(j) = jα, for a certain α ∈ R. Moreover,

since (j + 1)α − 2jα + (j − 1)α is a covariance function we have 0 < α < 2. So in the present

setting (Qi)i≥1, as defined in Section 3, is always a standard fractional Gaussian noise.

14
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Remark 13 In Theorem 5 the quantity ρ
(n)
p1,...,pk can be replaced by its limit ρp1,...,pk (which

necessarily exists because rn(j)→ ρ(j) for all j ≥ 1) whenever

√
n(ρ(n)

p1,...,pk
− ρp1,...,pk)→ 0.

As the quantity ρ(n)
p1,...,pk is a continuously differentiable function of rn(1), . . . , rn(k − 1) (recall

that we are in the non-degenerate case) the latter follows from

√
n max
j=1,...,k−1

|rn(j)− ρ(j)| → 0.

To study the above convergence let us introduce the notion of the second order regular variation

(however, we restrict ourselves to the second order regular variation of slowly varying func-

tions). A slowly varying function L : (0,∞) → IR is called second order regular varying (at

0) with parameter γ > 0 if there exists a function A : (0,∞) → IR, positive or negative, with

limx→0A(x) = 0 such that

lim
x→0

L(tx)
L(x) − 1

A(x)
=
tγ − 1
γ

holds for all t > 0. It is known that if the limit on the left-hand side exists for all t > 0 it

must be essentially of the form tγ−1
γ . Furthermore, if L is second order regular varying with

parameter γ > 0 then the function A must be regular varying with parameter γ, i.e.

lim
x→0

A(tx)
A(x)

= tγ

for all t > 0. Notice that the parameter γ essentially gives the rate of convergence for L(tx)
L(x) → 1.

Observing the convergence in (4.15) we deduce that

√
n max
j=1,...,k−1

|rn(j)− ρ(j)| → 0

holds when the slowly varying function L0, which appears in the assumption (A1), is second

order regular varying with parameter γ > 1
2 .

Now, let us see what the conditions (A1)-(A3) mean for the memory function g. For

simplicity let us consider functions of the form

g(x) = xδ1(0,1](x) , x > 0. (4.16)

For such functions we readily obtain assumptions (A1)-(A2) with

α = 2δ + 1 , δ ∈ (−1
2
, 0) ∪ (0,

1
2

).

(the technical assumption (A3) has to be checked separately; for an example see Section 5).

Note that for δ = 0, for which assumption (A2) does not hold, the processG is a semimartingale

and the multipower variations can be treated as in [BNGJPS06].
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Next, we discuss the assumptions of subsection 4.1 for the function g defined in (4.16).

Recall that condition (4.4) is automatically satisfied for functions g with compact support (as

in (4.16)). A straightforward calculation shows that

πn(ε) = O((nε)2δ−1).

for any ε > 1
n . Thus, the condition (4.6) of (LLN) is satisfied (because 2δ − 1 < 0) and

Theorem 3 is valid for all δ ∈ (−1/2, 0) ∪ (0, 1/2).

Finally, we explain how to verify the condition (4.8) of (CLT). Recall that p = min1≤i≤k,1≤j≤d(p
j
i ).

Let εn = n−κ, κ ∈ (0, 1). We readily deduce that

πn(ε) = O(nλ(1−κ)) , λ = 2δ − 1.

Thus, condition (4.8) is satisfied if

λ < − 1
1 ∧ p

.

We immediately deduce that Theorem 5 holds if

p ≥ 1 : γ >
1
2
, δ ∈ (−1

2
, 0)

1
2
< p < 1 : γ >

1
2p
, δ ∈ (−1

2
,
p− 1

2p
).

Remark 14 Clearly, we can deal with a larger class of functions g than g(x) = xδ1(0,1](x).

Assume that condition (4.4) holds. In the following we consider functions Lg, Lg′, which are

continuous on (0,∞) and slowly varying at 0. We assume the following conditions:

Assumption: g ∈ L2((0,∞)) and for some δ ∈ (−1/2, 0) ∪ (0, 1/2) it holds that

(i) g(x) = xδLg(x).

(ii) g′(x) = xδ−1Lg′(x) and, for any ε > 0, g′ ∈ L2((ε,∞)). Moreover, g′ is non-increasing

on (b,∞) for some b > 0.

We further assume that the function

R̄(t) =
∫ t

0
g2(x)dx+

∫ ∞
0

(g(t+ x)− g(x))2dx

satisfies the conditions (A1)-(A3) with α = 2δ + 1.

Under these assumptions we conclude (as for the simple example g(x) = xδ1(0,1](x)) that

Theorem 3 holds for any δ ∈ (−1/2, 0) ∪ (0, 1/2), and Theorem 5 holds when further

p ≥ 1 : γ >
1
2
, δ ∈ (−1

2
, 0)

1
2
< p < 1 : γ >

1
2p
, δ ∈ (−1

2
,
p− 1

2p
).

In both cases we have Qi = B
δ+ 1

2
i −Bδ+ 1

2
i−1 , i ≥ 1.
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5 Examples

The present Section discusses two examples of choice of the damping function g and the asso-

ciated probabilistic limit behaviour.

As above let r denote the autocorrelation function of G =
∫ ·
−∞ g(·− s)W (ds), and we write

r̄ for 1 − r. Note that assumptions (A1)-(A3) could equivalently have been formulated in

terms of r̄ rather than R̄ (since R̄ (t) = 2 ‖g‖2 r̄ (t)).

Suppose first that

g (t) = e−λt1(0,1) (t)

with λ > 0. This example (for a detailed discussion see [BNSch09]) is a non-semimartingale

case, and it can be shown that πn → π, with π given by

π =
1

1 + e−2λ
δ0 +

1
1 + e2λ

δ1,

where δx is the Dirac measure at x. Moreover,

V (Y, 2)nt
P−→ σ2+

t −
(

1 + e2λ
)−1

σ2+
−t .

Thus, in particular, we do not have V (Y, 2)nt
P−→ σ2+

t . Note that in this example assumption

(A2) is not satisfied.

Our main example is

g (t) = tν−1e−λt1(0,∞) (t) (5.1)

for λ > 0 and with ν > 1
2 . (So, for t near 0, g(t) behaves as tδ with δ = ν − 1.) The following

two subsections discuss the properties of the autocorrelation function r for this g, presenting

exact formulae (in terms of the Bessel functions Kν) for r and its derivatives in subsection

5.1 and deriving asymptotic properties of r̄ (t) = 1 − r (t) for t → 0 in subsection 5.2. Armed

with these results we show in subsection 5.3 that assumptions (A1)-(A3) are met provided

α = 2ν − 1 ∈ (0, 2) , i.e. ν ∈ (1
2 ,

3
2) and that ρ(n)

pj1,...,p
j
k

may be substituted by ρ
pj1,...,p

j
k

in the

central limit theory provided ν ∈
(

1
2 ,

5
4

)
.

Remark 15 The derivative g′ of g is not square integrable if 1
2 < ν < 1 or 1 < ν ≤ 3

2 ;

hence, in these cases Y is not a semimartingale. For 1
2 < ν < 1 we have g (0+) = ∞ while

g (0+) = 0 when 1 < ν ≤ 3
2 . Of course, for ν = 1 the process Y =

∫ ·
−∞ g(· − s)σsW (ds) is

simply a modulated version of the Gaussian Ornstein-Uhlenbeck process, and in particular, a

semimartingale. Note also that when ν > 3
2 then Y is of finite variation and hence, trivially, a

semimartingale.

Remark 16 With Y =
∫ ·
−∞ g(· − s)σsW (ds), suppose that the volatility process is constant,

σt = σ. This is a special case of the class of stationary Gaussian processes discussed by

17
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[GuyLe89]. These authors showed that, under conditions (A1)-(A3),

(2λ)2ν−1

Γ (2ν − 1)
1

2nτn
V (Y, 2)nt

p→ σ2

More generally, they derived associated (nonfeasible) limit law results which in the present

example (of (5.1) (not considered by [GuyLe89]), implies that the limit distribution is normal

if 1
2 < ν < 5

4 , with rate n3/2r̄
(

1
n

)
, while for 5

4 < ν < 3
2 it belongs to the second order chaos, the

rate of convergence being then n−2ν+3. Extension to the power variations V (Y, q)nt , q > 0, are

also given in [GuyLe89]. In [BNCP09] extensions of the normal limit results to processes of the

form
∫ ·

0 σsdGs where G is a Gaussian process with stationary increments are established. The

earlier paper [Guy87] contains a set of sufficient conditions for convergence in probability of

normalised versions of V (Y, q)nt in cases where the process Y is nonstationary Gaussian. The

conditions are rather restrictive; in particular, they can only apply to certain types of processes

for which r̄
(

1
n

)
behaves as a constant times n−1 as n→∞.

For the following analysis we need a number of, mostly well known, properties of modified

Bessel functions of the third type Kν . These are given in the Appendix.

5.1 Formulae for r and its derivatives

With g given by (5.1) the autocorrelation function r of G =
∫ ·
−∞ g(· − s)W (ds) has the form

(cf. formula (4.3))

r (t) =
(2λ)2ν−1

Γ (2ν − 1)
e−λt

∫ ∞
0

(t+ u)ν−1 uν−1e−2λudu. (5.2)

Hence by formulae (A.1.4), (A.1.5) and (A.1.10) in the Appendix we find

‖g‖2 r (t) =

√
2
π

Γ (ν) 2−νλ−ν+ 1
2 tν−

1
2Kν− 1

2
(λt)

=

√
2
π

Γ (ν) 2−νλ−2ν+1K̄ν− 1
2

(λt)

=
1
2

Γ (ν) Γ(ν − 1
2)

Γ(1
2)

λ−2ν+1Ǩν− 1
2

(λt) . (5.3)

where we have used the doubling formula

Γ(2ν − 1) = 22ν−2 Γ (ν) Γ
(
ν − 1

2

)
Γ
(

1
2

) . (5.4)

It follows, by (A.1.7), that

r (t) = Ǩν− 1
2

(λt) .. (5.5)

Now, let

a (ν) = 2−ν+1Γ (ν)−1 .

18
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so that
a (ν)

a (ν + 1)
= 2ν (5.6)

and

Ǩ (x) = a (ν) K̄v (x) .

Supposing for notational simplicity that λ = 1 and using (A.1.9) and (A.1.8) we find, for

ν ∈
(

1
2 ,

3
2

)
,

r̄′ (t) = −a
(
ν − 1

2

)
tK̄ν− 3

2
(t)

= −a
(
ν − 1

2

)
tν−

1
2Kν− 3

2
(t)

= −a
(
ν − 1

2

)
tν−

1
2K 3

2
−ν (t)

= −a
(
ν − 1

2

)
t2ν−2K̄ 3

2
−ν (t)

= −
a
(
ν − 1

2

)
a
(

3
2 − ν

) t2ν−2Ǩ 3
2
−ν (t) (5.7)

r̄′′ (t) = a

(
ν − 1

2

){
t2K̄ν− 5

2
(t)− K̄ν− 3

2

}
= a

(
ν − 1

2

){
tν−

1
2K 5

2
−ν (t)− tν−

3
2K 3

2
−ν (t)

}
= a

(
ν − 1

2

)
t2ν−3

{
K̄ 5

2
−ν (t)− K̄ 3

2
−ν (t)

}
(5.8)

r̄′′′ (t) = −a
(
ν − 1

2

){
t3K̄ν− 7

2
(t)− 3tK̄ν− 5

2
(t)
}

= −a
(
ν − 1

2

){
tν−

1
2K 7

2
−ν (t)− 3tν−

3
2K 5

2
−ν(t)

}
= −a

(
ν − 1

2

)
t2ν−4

{
K̄ 7

2
−ν (t)− 3K̄ 5

2
−ν(t)

}
. (5.9)

5.2 Behaviour of r̄ = 1− r near 0

From the asymptotic expansions (A.2.4), (A.2.5) and (A.2.6) we find that for t → 0 the com-

plementary autocorrelation function r̄ (t) = 1− r (t) behaves as

2−2ν+1 Γ( 3
2
−ν)

Γ(ν+ 1
2) (λt)2ν−1 +O

(
t2
)

for 1
2 < ν < 3

2

r̄ (t) ∼ 1
2 (λt)2 | log t| for ν = 3

2

1
4(ν− 3

2) (λt)2 +O
(
t2ν−1

)
for 3

2 < ν
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Table 1

Remark 17 So for 3
2 < ν ≤ 2 the autocorrelation function is twice differentiable at 0 and

consequently Y has continuously differentiable sample paths, while for 1
2 < ν ≤ 3

2 the sample

paths are Lipschitz of order λ for every 0 < λ < ν − 1
2 (cf. [CL67] Section 9.2).

5.3 Verification of assumptions (A1)-(A3)

This subsection establishes that conditions (A1)-(A3) are satisfied (with α = 2ν − 1 and

ν ∈
(

1
2 ,

3
2

)
, i.e. α ∈ (0, 2)). Recall that in those conditions we may substitute r̄ for R̄.

On account of (5.5) and Table 1 we find that r̄ is of the form

r̄(t) = t2ν−1L0 (t)

with

L0 (t) = t−2ν+1
(

1− Ǩν− 1
2

(λt)
)

and

L0 (t)→ 2−2ν+1 Γ
(

3
2 − ν

)
Γ
(
ν + 1

2

) for t→ 0.

It follows that L0 is slowly varying at 0, and hence assumption (A1) is met.

In fact, more is true: L0 is second order slowly varying To see this, note that

L0 (tx)
L0 (x)

= t−2ν+1
1−Kν− 1

2
(λtx)

1−Kν− 1
2

(λx)

from which we find, using formula (A.2.4),

L0 (tx)
L0 (x)

=
2−2ν+1 Γ( 3

2
−ν)

Γ( 1
2

+ν) (λx)2ν−1 − 1
4

1
3
2
−v (λx)2 t3−2ν +O

(
x2ν+1

)
2−2ν+1 Γ( 3

2
−ν)

Γ( 1
2

+ν) (λx)2ν−1 − 1
4

1
3
2
−v (λx)2 +O (x2ν+1)

=
1− 22(ν−1) Γ( 1

2
+ν)

Γ( 3
2
−ν) (λx)3−2ν t3−2ν

3−2ν +O
(
x2
)

1− 22(ν−1) Γ( 1
2

+ν)
Γ( 3

2
−ν) (λx)3−2ν +O (x2)

.

Thus
L0 (tx)
L0 (x)

− 1 = A (x)
t3−2ν − 1

3− 2ν
+ o (A (x))

where

A (x) = −2−2(ν−1) Γ
(

1
2 + ν

)
Γ
(

3
2 − ν

) (λx)3−2ν

which tends to 0 as x→ 0. Hence L0 is second order regulary varying with parameter γ = 3−2ν.
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It follows that, for the present example, Remark 13 applies provided 3 − 2ν > 1
2 , i.e.

1
2 < ν < 5

4 .

Next, we note that

r̄′′(t) = t2ν−3L2(t)

with

L2 (t) = a

(
ν − 1

2

){
K̄ 5

2
−ν (t)− K̄ 3

2
−ν (t)

}
,

where the function a is defined by a(ν) = 2−ν+1Γ(v)−1 and L2 is slowly varying at 0 with

L2 (t)→ −23 (ν − 1)
Γ
(

3
2 − ν

)
Γ
(
ν − 1

2

) for t→ 0.

The latter follows from the rewrite

r̄′′ (t) = t2ν−3a

(
ν − 1

2

)
a

(
3
2
− ν
)−1 {

(3− 2ν) Ǩ 5
2
−ν (t)− Ǩ 3

2
−ν (t)

}
= t2ν−322 Γ

(
3
2 − ν

)
Γ
(
ν − 1

2

) {(3− 2ν) Ǩ 5
2
−ν (t)− Ǩ 3

2
−ν (t)

}
.

Thus (A2) holds.

Finally, we find

L′2 (t) = a

(
ν − 1

2

){
K̄ ′5

2
−ν (t)− K̄ ′3

2
−ν (t)

}
= a

(
ν − 1

2

)
t
{
K̄ 1

2
−ν (t)− K̄ 3

2
−ν (t)

}
= a

(
ν − 1

2

)
t
{
t

1
2
−νKν− 1

2
(t)− K̄ 3

2
−ν (t)

}
= a

(
ν − 1

2

)
t
{
t−2ν+1K̄ν− 1

2
(t)− K̄ 3

2
−ν (t)

}
= a

(
ν − 1

2

)
t−2ν+2

{
a(ν − 1

2
)−1t−2ν+1Ǩν− 1

2
(t)− a(ν − 3

2
)−1t2ν−1Ǩ 3

2
−ν (t)

}
Hence (for ν ∈

(
1
2 ,

3
2

)
) L2 (t) is increasing near 0. Consequently

lim sup
x→0

sup
y∈[x,xb]

∣∣∣∣L2 (y)
L0 (x)

∣∣∣∣ ≤ lim sup
x→0

∣∣∣∣∣L2

(
xb
)

L0 (x)

∣∣∣∣∣ .
Here, as x→ 0,

L0 (x)→ 2−2ν+1 Γ
(

3
2 − ν

)
Γ
(
ν + 1

2

) .
while

L2

(
xb
)
→ a

(
ν − 1

2

){
a

(
5
2
− ν
)−1

− a
(

3
2
− ν
)−1

}
.

Therefore also condition (A3) is satisfied.
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6 An application

Let us consider the realised variation ratio (RVR) defined for a stochastic process X as

RV Rnt :=
π
2V (X, 1, 1)nt
V (X, 2, 0)nt

. (6.1)

The RVR is of interest as a diagnostic tool concerning the nature of empirical processes.

In particular, it can be used to test the hypothesis that such a process is a Brownian

semimartingale (with nontrivial local martingale component) against the possibility that it is

of this type plus a jump process, see [BNSW06] and [Jac08c] (some related work is discussed

in [Woe08]). If a jump component is present then the limit of RV Rnt is smaller than 1.

However, in the course of the turbulence project, mentioned earlier, when calculating the

RVR for an extensive high quality data set from atmospheric turbulence it turned out that the

values of RVR were consistently higher than 1. The wish to understand this phenomenon has

been a strong motivation for the theoretical developments described in the present paper. As

a consequence of Theorem 3, we obtain the following probability limit result for the realised

variation ratio of BSS processes:

RV Rnt − ψ (rn(1))
ucp−→ 0 (6.2)

where

ψ (ρ) =
√

1− ρ2 + ρ arcsin ρ, (6.3)

which equals π
2 times the mean E {|UV |} of two standard normal variables U and V with

correlation ρ.

Remark 18 Notice that under the assumptions of Theorem 2 we have rn(1)→ ρ(1) and thus

RV Rnt
ucp−→ ψ (ρ(1)) .

The latter can be used for parameter estimation. Under assumptions (A1)-(A3) we have that

ρ(1) = 2α−1 − 1. Consequently, the parameter α can be consistently estimated, because the

function ψ is invertible on (0,1).

Moreover, we have that

√
n
(
RV Rnt − ψ(rn(1))

)
=
√
n
( π

2V (Y, 1, 1)nt − ψ(rn(1))
∫ t

0 σ
2
sds∫ t

0 σ
2
sds

)
−
√
nRV Rnt

(V (Y, 2, 0)nt −
∫ t

0 σ
2
sds∫ t

0 σ
2
sds

)
,

so, if the parameter α ∈ (0, 1), by applying Theorems 3 and 5, we obtain
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√
n
(
RV Rnt − ψ(rn(1))

)
st−→ (

π

2
,−ψ(ρ(1)))β1/2

∫ t
0 σ

2
sdBs∫ t

0 σ
2
sds

, (6.4)

where ψ is as above and the matrix β is given in Theorem 2. Specifically we find β = (βij)1≤i,j≤2

where

β11 = lim
n→∞

n var
(
VQ(1, 1)n1

)
,

β22 = lim
n→∞

n var
(
VQ(2, 0)n1

)
,

β12 = lim
n→∞

n cov
(
VQ(2, 0)n1 , VQ(1, 1)n1

)
with Q as defined in Theorem 2. Thus, we obtain

β22 = var(Q2
1) + 2

∞∑
k=1

cov(Q2
1, Q

2
1+k) = 2 + 4

∞∑
k=1

ρ2(k).

Similarly, we have that

β12 = cov(Q2
1, |Q1||Q2|) + 2

∞∑
k=1

cov(Q2
1, |Q1+k||Q2+k|).

To compute the latter, we use the following formula:

E[|X2
1X2X3|] =

2
π

(√
1− ρ2

23(1 + ρ2
12 + ρ2

13) + (ρ23 + 2ρ12ρ13) arcsin(ρ23)
)

:= h(ρ12, ρ13, ρ23),

where X1, X2, X3 are standard normal with cov(Xi, Xj) = ρij , see [Nab52]. Consequently, we

obtain the identity

β12 =
(
h(1, ρ(1), ρ(1))− f(ρ(1))

)
+ 2

∞∑
k=1

(
h(ρ(k), ρ(k + 1), ρ(1))− f(ρ(1))

)
.

For the remaining term we deduce

β11 = var(|Q1||Q2|) + 2
∞∑
k=1

cov(|Q1||Q2|, |Q1+k||Q2+k|).

However, there is no explicit formula available for the latter expression but it can be easily

computed numerically.

7 Proofs

All positive constants (which do not depend on n) in the proof are denoted by C, although

they might change from line to line.

Before we proceed with the proofs of the main results we review the basic concepts of the

Wiener chaos expansion. Consider a complete probability space (Ω,F , P ) and a subspace H1 of

L2(Ω,F , P ) whose elements are zero-mean Gaussian random variables. Let IH be a separable
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Hilbert space with scalar product denoted by 〈·, ·〉IH and norm || · ||IH . We will assume that

there is an isometry

W : IH → H1

h 7→ W (h)

in the sense that

E[W (h1)W (h2)] = 〈h1, h2〉IH .

It is easy to see that this map has to be linear.

For any m ≥ 2, we denote by Hm the m-th Wiener chaos, that is, the closed subspace of

L2(Ω,F , P ) generated by the random variables Hm(X), where X ∈ H1, E[X2] = 1, and Hm is

the m-th Hermite polynomial, i.e. H0(x) = 1 and Hm(x) = (−1)me
x2

2
dm

dxm (e−
x2

2 ).

Suppose that IH is infinite-dimensional and let {ei, i ≥ 1} be an orthonormal basis of IH.

Denote by Λ the set of all sequences a = (a1, a2, ...), ai ∈ N, such that all the terms, except

a finite number of them, vanish. For a ∈ Λ we set a! = Π∞i=1ai! and |a| =
∑∞

i=1 ai. For any

multindex a ∈ Λ we define

Φa =
1√
a!

Π∞i=1Hai(W (ei)).

The family of random variables {Φa, a ∈ Λ} is an orthonormal system. In fact

E [Π∞i=1Hai(W (ei))Π∞i=1Hbi(W (ei))] = δaba! ,

where δab denotes the Kronecker symbol. Moreover, {Φa| a ∈ Λ, |a| = m} is a complete

orthonormal system in Hm .

Let a ∈ Λ with |a| = m. The mapping

Im : IH�m → Hm

⊗̃∞i=1e
⊗ai
i 7→ Π∞i=1Hai(W (ei)),

between the symmetric tensor product IH�m, equipped with the norm
√
m! ‖·‖IH⊗m , and the

m-th chaos Hm is a linear isometry. Here ⊗̃ denotes the symmetrization of the tensor product

⊗ and I0 is the identity in R. For h ∈ IH⊗m we set Im(h) := Im(h̃). For any g ∈ IH⊗m,

h ∈ IH⊗n, n,m ≥ 0, it holds that

E[Im(g)In(h)] = δmnm!〈g̃, h̃〉IH⊗m .

For any h = h1 ⊗ · · · ⊗ hm and g = g1 ⊗ · · · ⊗ gm ∈IH⊗m, we define the p-th contraction of h

and g, denoted by h⊗p g, as the element of IH⊗2(m−p) given by

h⊗p g = 〈h1, g1〉IH · · · 〈hp, gp〉IHhp+1 ⊗ · · · ⊗ hm ⊗ gp+1 ⊗ · · · ⊗ gm.

This definition can be extended by linearity to any element of IH⊗m.
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Now, let G be the σ-field generated by the random variables {W (h)| h ∈ IH}. Any square

integrable random variable F ∈ L2(Ω,G, P ) has a unique chaos decomposition

F =
∞∑
m=0

Im(hm) ,

where hm ∈ IH�m (see [Nu06] for more details).

Finally, we adapt the theory of Wiener chaos expansion to the set up of Section 3. Let G
be the σ-field generated by the random variables (Xi,n)n≥1,1≤i≤[nt] and H1 be the first Wiener

chaos associated with (Xi,n)n≥1,1≤i≤[nt], i.e. the closed subspace of L2(Ω,G, P ) generated by

the random variables (Xi,n)n≥1,1≤i≤[nt]. Notice that H1 can be seen as a separable Hilbert space

with a scalar product induced by the covariance function of the process (Xi,n)n≥1,1≤i≤[nt]. This

means we can apply the above theory of Wiener chaos expansion with the canonical Hilbert

space IH = H1. Denote by Hm the mth Wiener chaos associated with the triangular array

(Xi,n)n≥1,1≤i≤[nt] and by Im the corresponding linear isometry between the symmetric tensor

product H�m1 (equipped with the norm
√
m! ‖·‖H⊗m1

) and the mth Wiener chaos.

7.1 Preliminary results

First of all, let us note that w.l.o.g. the volatility process σ can be assumed to be bounded

on compact intervals because σ is càdlàg. This follows by a standard localization procedure

presented in [BNGJPS06]. Furthermore, the process Ft, defined by (4.4), is continuous, because

σ is càdlàg. Hence, Ft is locally bounded and can be assumed to be bounded on compact

intervals w.l.o.g. by the same localization procedure.

Next we establish three lemmas.

Lemma 1 Under assumption (4.4) it holds that

E[|∆n
i Y |p] ≤ Cpτpn , i = 0, . . . , [nt] (7.1)

for all p > 0.

Proof of Lemma 1: Recall that g′ is non-increasing on (b,∞) for some b > 0. Assume

w.l.o.g. that b > 1. Observe the decomposition

∆n
i Y =

∫ i
n

i−1
n

g(
i

n
− s)σsW (ds) +

∫ i−1
n

−∞

(
g(
i

n
− s)− g(

i− 1
n
− s)

)
σsW (ds).

Since σ is bounded on compact intervals we deduce by Burkholder’s inequality

E[|∆n
i Y |p] ≤ Cp

(
τpn + E

(∫ ∞
0

(
g(

1
n

+ s)− g(s)
)2
σ2
i−1
n
−sds

)p/2)
We immediately obtain the estimates∫ 1

0

(
g(

1
n

+ s)− g(s)
)2
σ2
i−1
n
−sds ≤ Cτ

2
n ,
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∫ b

1

(
g(

1
n

+ s)− g(s)
)2
σ2
i−1
n
−sds ≤

C

n2
,

because g′ is continuous on (0,∞) and σ is bounded on compact intervals. On the other hand,

since g′ is non-increasing on (b,∞), we get∫ ∞
b

(
g(

1
n

+ s)− g(s)
)2
σ2
i−1
n
−sds ≤

F i−1
n

n2
.

The boundedness of the process F implies (7.1). �

Next, for any stochastic process f and any s > 0, we define the (possibly infinite) measure

(recall that g(x) := 0 for x ≤ 0)

πnf,s(A) =
E
∫
A(g(x− 1

n)− g(x))2f2
s−xdx∫∞

0 (g(x− 1
n)− g(x))2dx

, A ∈ B(R). (7.2)

We further define πnf,s(x) = πnf,s({y : y > x}).

Lemma 2 Under assumption (4.4) it holds that

sup
s∈[0,t]

πnσ,s(ε) ≤ Cπn(ε) (7.3)

for any ε > 0, where πn is given by (4.5).

Proof of Lemma 2: Recall again that g′ is non-increasing on (b,∞) for some b > 0, and

assume w.l.o.g. that b > ε. Since the processes σ and F are bounded we deduce exactly as in

the previous proof that∫ ∞
ε

(g(x− 1
n

)− g(x))2σ2
s−xdx =

∫ b

ε
(g(x− 1

n
)− g(x))2σ2

s−xdx+
∫ ∞
b

(g(x− 1
n

)− g(x))2σ2
s−xdx

≤ C
(∫ ∞

ε
(g(x− 1

n
)− g(x))2dx+ n−2

)
.

This completes the proof of Lemma 2. �

Finally, we present the following technical Lemma.

Lemma 3 Under the assumption (CLT) there exists a number l ≥ 1 and positive sequences

ε
(j)
n → 0, j = 1, . . . , l, such that 0 < ε

(1)
n < · · · < ε

(l)
n and

ε(1)
n = o(n−

1
2γ(p∧1) ) , πn(ε(l)

n ) = o(n−
1
p∧1 ) (7.4)

(ε(j+1)
n )2γπn(ε(j)

n ) = o(n−
1
p∧1 ) , j = 1, . . . , l − 1 , (7.5)

where p = min1≤i≤k,1≤j≤d(p
j
i ).
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Proof of Lemma 3: Assume first that p ≥ 1. Recall that γ > 1/2. Set ε(j)
n = n−κj ,

j = 1, . . . , l, with 1 > κ1 > . . . > κl > 0. The condition πn(ε(j)
n ) = O(nλ(1−κj)) for some

λ < −1, presented in (4.8), implies that conditions (7.4) and (7.5) are satisfied if we find

1 > κ1 > . . . > κl > 0 such that

κ1 >
1

2γ
,

κl < 1 +
1
λ
,

(1 + λ)− κjλ− 2κj+1γ < 0 , 1 ≤ j ≤ l − 1.

From the first and the last inequality we deduce by induction that

1
2γ

< κ1 <
1 + λ

λ

l−1∑
i=0

(
− 2γ

λ

)i
+
(
− 2γ

λ

)l
κl

must hold.

When 2γ ≥ −λ the term on the right-hand side converges to ∞ as l →∞. In that case it

is easy to find constants 1 > κ1 > . . . > κl > 0 such that (7.4) and (7.5) are satisfied.

When 2γ < −λ the limit of 1+λ
λ

∑l−1
i=0

(
− 2γ

λ

)i
is 1+λ

λ+2γ (as l → ∞) and the restriction on

κ1 becomes
1

2γ
< κ1 <

1 + λ

λ+ 2γ
.

Notice that 1
2γ <

1+λ
λ+2γ because γ > 1/2. The existence of the positive powers κj , j = 2, . . . , l

that satisfy the original inequality follows by an induction argument.

Assume now that p < 1. Recall that γ must satisfy

γ >
1
2p

and λ < −1
p . Again the conditions (7.4) and (7.5) are satisfied if we find 1 > κ1 > . . . > κl > 0

such that

κ1 >
1

2γp
,

κl <
1 + λp

λp
,

(
1
p

+ λ)− κjλ− 2κj+1γ < 0, 1 ≤ j ≤ l − 1.

Notice that the second inequality has solutions because λ < −1
p . Moreover, we deduce as above

that the inequality
1

2γp
< κ1 <

1
p + λ

λ

l−1∑
i=0

(
− 2γ

λ

)i
+
(
− 2γ

λ

)l
κl
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must hold. Again the more complicated case is 2γ < −λ. By letting l →∞ the restriction on

κ1 becomes
1

2γp
< κ1 <

1
p + λ

λ+ 2γ

Note that 1
2γp <

1
p

+λ

λ+2γ because γ > 1
2p . As before the existence of the positive powers κj ,

j = 2, . . . , l that satisfy the original inequality follows by an induction argument. �

7.2 Some notation

Recall that the covariance matrix of (Xi,n, . . . , Xi+l,n) is invertible for any l ≥ 1 and n ≥
1. Let Xn

i (1), . . . , Xn
i (k) be an i.i.d. N(0, 1) sequence that spans the same linear space as

Xi,n, . . . , Xi+k−1,n (such a sequence can be constructed by the Gram-Schmidt method). Thus,

it has the representation

Xn
i (j) =

k∑
l=1

anljXi+l−1,n , j = 1, . . . , k , (7.6)

for some real numbers anlj . Note that

|anlj | ≤ C ,

for all l, j, n, because E[X2
i,n] = 1 for all i, n.

For any 1 ≤ j ≤ d, we obtain the Wiener chaos representation

V (pj1, . . . , p
j
k)
n
t − ρ

(n)

pj1,...,p
j
k

t =
∞∑
m=2

Im

( 1
n

[nt]∑
i=1

fnm,j(i)
)

+Op(n−1) , (7.7)

where the fnm,j(i) ∈ IH�m are given by

fnm,j(i) =
∑

kl∈{1,...,k}

cnk1,...,km(j)Xn
i (k1)⊗ · · · ⊗Xn

i (km) (7.8)

for some coefficients cnk1,...,km(j). We set

cnm(j) = ||fnm,j(i)||2IH⊗m =
∑

kl∈{1,...,k}

|cnk1,...,km(j)|2. (7.9)

Note that

var
(
|Xi,n|p

j
1 · · · |Xi+k−1,n|p

j
k

)
=
∞∑
m=2

m!cnm(j) < C (7.10)

for all n, j, because E[X2
i,n] = 1 for all i, n. Finally, when fnm,j(i), c

n
k1,...,km

(j) and cnm(j)

correspond to some particular choice of powers p1, . . . , pk we use the notation fnm(i), cnk1,...,km
and cnm.

Now assume that the assumptions (3.8) and (3.9) of Theorem 2 hold. Since anlj in (7.6) is

a continuous function of r(1), . . . , rn(k − 1) and the Gaussian process Q is non-degenerate, we

have that

anlj → alj ,
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and the sequence Qi(1), . . . , Qi(k) given by

Qi(j) =
k∑
l=1

aljQi+l−1 , j = 1, . . . , k , (7.11)

is an i.i.d. N(0, 1) sequence. Now, let us associate fm,j(i), ck1,...,km(j) and cm(j) with the

functional VQ(pj1, . . . , p
j
k)
n
t − ρpj1,...,pjkt, where

ρ
pj1,...,p

j
k

= E
[
|Q1|p

j
1 · · · |Qk|p

j
k

]
,

by (7.7), (7.8) and (7.9). By a repeated application of the multiplication formula (see [Nu06]),

we know that cnk1,...,km(j) is a continuous function of rn(1), . . . , rn(k − 1). Since rn(j) → ρ(j)

we obtain

cnk1,...,km(j)→ ck1,...,km(j) , cnm(j)→ cm(j) , (7.12)

〈fnm,j1(i), fnm,j2(i+ l)〉IH⊗m → 〈fm,j1(i), fm,j2(i+ l)〉IH⊗m , (7.13)

cov
(
|Xi,n|p

j1
1 · · · |Xi+k−1,n|p

j1
k , |Xi,n|p

j2
1 · · · |Xi+k−1,n|p

j2
k

)
=
∞∑
m=2

m!〈fnm,j1(1), fnm,j2(1)〉IH⊗m

→ cov
(
|Qi|p

j1
1 · · · |Qi+k−1|p

j1
k , |Xi,n|p

j2
1 · · · |Qi+k−1|p

j2
k

)
=

∞∑
m=2

m!〈fm,j1(1), fm,j2(1)〉IH⊗m . (7.14)

7.3 Proof of Theorem 1 and 3

Proof of Theorem 1: Since V (p1, . . . , pk)nt is increasing in t and the process ρ(n)
p1,...,pkt is contin-

uous in t, it is sufficient to prove V (p1, . . . , pk)nt − ρ
(n)
p1,...,pkt

P−→ 0 for a fixed t > 0.

Note that

|〈fnm(1), fnm(1+l)〉IH⊗m | ≤ cnm , |〈fnm(1), fnm(1+l)〉IH⊗m | ≤ cnmCm(|rn(l)|m+· · ·+|rn(l−k+1)|m)

(7.15)

Now, due to assumption (3.3), r(j)→ 0 as j →∞. Thus, there exists a H such that |Cr1/2(j−
k + 1)| < 1 for j ≥ H (for any fixed C). By (7.15) we have (for any m ≥ 2)

n−1∑
l=1

|〈fnm(1), fnm(1 + l)〉IH⊗m | ≤ C
(
Hcnm +

n−1∑
l=H

|〈fnm(1), fnm(1 + l)〉IH⊗m |
)

≤ Ccnm

(
H +

n−1∑
l=H

(C|rn(l)|)2
)
≤ Ccnm

n−1∑
l=1

r(l). (7.16)

Hence,

var(V (p1, . . . , pk)nt ) ≤ C

n

∞∑
m=2

m!cnm
(

1 +
n−1∑
l=1

r(l)
)
.
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The latter converges to 0 due to (7.10) and assumption (3.3). �

Proof of Theorem 3: First of all, recall that

E[|∆n
i Y |q] ≤ Cτ qn , E[|∆n

i G|q] ≤ Cτ qn , (7.17)

for any q ≥ 0, due to Lemma 1.

In the following we will prove Theorem 3 only for k = 1, p1 = p. The general case can be

obtained in a similar manner by (7.17) and an application of the Hölder inequality.

Since V (Y, p)nt is increasing in t and the limit process is continuous in t, it suffices to prove

the pointwise convergence V (Y, p)nt
P−→ µp

∫ t
0 |σs|

pds. For any l ≤ n, we have

V (Y, p)nt − µp
∫ t

0
|σs|pds =

1
nτpn

[nt]∑
i=1

(
|∆n

i Y |p − |σ i−1
n

∆n
i G|p

)
+Rn,lt ,

where

Rn,lt =
1
nτpn

( [nt]∑
i=1

|σ i−1
n

∆n
i G|p −

[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|∆n
i G|p

)

+
1
nτpn

[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|∆n
i G|p − µpl−1

[lt]∑
j=1

|σ j−1
l
|p

+ µp

(
l−1

[lt]∑
j=1

|σ j−1
l
|p −

∫ t

0
|σs|p ds

)
,

and

Il(j) =
{
i| i
n
∈
(j − 1

l
,
j

l

]}
, j ≥ 1.

The assumption (LLN) implies that V (G, p)nt
ucp−→ µpt. Since σ is càdlàg and bounded on

compact intervals, we deduce that

lim
l→∞

lim
n→∞

P (|Rn,lt | > ε) = 0 ,

for any ε > 0. Hence, we are left to prove that

1
nτpn

[nt]∑
i=1

(
|∆n

i Y |p − |σ i−1
n

∆n
i G|p

)
P−→ 0.

By applying the inequality ||x|p − |y|p| ≤ p|x− y|(|x|p−1 + |y|p−1) for p > 1 and ||x|p − |y|p| ≤
|x − y|p for p ≤ 1, (7.17) and the Cauchy-Schwarz inequality we can conclude that the above

convergence follows from

1
nτ2

n

[nt]∑
i=1

E[|∆n
i Y − σ i−1

n
∆n
i G|2]→ 0. (7.18)
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Observe the decomposition

∆n
i Y − σ i−1

n
∆n
i G = Ani +Bn,ε

i + Cn,εi ,

where

Ani =
∫ i

n

i−1
n

g
( i
n
− s
)

(σs − σ i−1
n

)W (ds)

Bn,ε
i =

∫ i−1
n

i−1
n
−ε

(
g
( i
n
− s
)
− g
( i− 1

n
− s
))
σsW (ds)− σ i−1

n

∫ i−1
n

i−1
n
−ε

(
g
( i
n
− s
)
− g
( i− 1

n
− s
))
W (ds)

Cn,εi =
∫ i−1

n
−ε

−∞

(
g
( i
n
− s
)
− g
( i− 1

n
− s
))
σsW (ds)− σ i−1

n

∫ i−1
n
−ε

−∞

(
g
( i
n
− s
)
− g
( i− 1

n
− s
))
W (ds)

By Lemma 2 and the boundedness of σ on compact intervals we deduce

1
nτ2

n

[nt]∑
i=1

E[|Cn,εi |
2] ≤ Cπn(ε). (7.19)

and by (4.6) we obtain that

lim
n→∞

1
nτ2

n

[nt]∑
i=1

E[|Cn,εi |
2] = 0.

Next, we get

1
nτ2

n

[nt]∑
i=1

E[|Ani |2] ≤ C

nτ2
n

E
[ [nt]∑
i=1

∫ i
n

i−1
n

g2
( i
n
− s
)

(σs − σ i−1
n

)2ds
]
. (7.20)

Set v(s, η) = sup{|σs − σr|2| s, r ∈ [−t, t], |r − s| ≤ η}. Then we obtain

1
nτ2

n

[nt]∑
i=1

E[|Ani |2] ≤ 1
n

[nt]∑
i=1

E
[
v(
i− 1
n

, n−1)
]
. (7.21)

Moreover, for any κ > 0, since σ is cadlag, there exists n big enough such that

v(
i− 1
n

, n−1) ≤ κ+
(

∆σ i−1
n

)2
1{(

∆σ i−1
n

)2

≥κ
},

so

1
nτ2

n

[nt]∑
i=1

E[|Ani |2] ≤ κ+
1
n

[nt]∑
i=1

E
[ (

∆σ i−1
n

)2
1{(

∆σ i−1
n

)2

≥κ
})
]

≤ κ+ E
[ 1
n

∑
−t≤s≤t

(∆σs)
2 1{(∆σs)2≥κ})

]
,

then

lim
n→∞

1
nτ2

n

[nt]∑
i=1

E[|Ani |2] ≤ κ
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and the convergence to zero follows letting κ tend to zero.

Finally, observe the decomposition Bn,ε
i = Bn,ε

i (1) +Bn,ε
i (2) with

Bn,ε
i (1) =

∫ i−1
n

i−1
n
−ε

(
g
( i
n
− s
)
− g
( i− 1

n
− s
))

(σs − σ i−1
n
−ε)W (ds)

Bn,ε
i (2) = (σ i−1

n
−ε − σ i−1

n
)
∫ i−1

n

i−1
n
−ε

(
g
( i
n
− s
)
− g
( i− 1

n
− s
))
W (ds)..

We obtain the inequalities

1
nτ2

n

[nt]∑
i=1

E[|Bn,ε
i (1)|2] ≤ 1

n

[nt]∑
i=1

E
[
v(
i− 1
n

, ε)
]

(7.22)

1
nτ2

n

[nt]∑
i=1

E[|Bn,ε
i (2)|2] ≤ 1

n

[nt]∑
i=1

E
[
v(
i− 1
n

, ε)2
]1/2

.

By using the same arguments as above we have that both terms converge to zero and we obtain

(7.18), which completes the proof of Theorem 3. �

7.4 Proof of Theorem 2 and 4

Proof of Theorem 2: We first show the weak convergence of finite dimensional distributions

and then prove the tightness of the sequence
√
n
(
V (pj1, . . . , p

j
k)
n
t − ρ

(n)

pj1,...,p
j
k

t
)

1≤j≤d
.

Step 1: Define the vector Zn(j) = (Z1
n(j), . . . , Zen(j))T , 1 ≤ j ≤ d, by

Z ln(j) =
1√
n

[nbl]∑
i=[ncl]+1

(
|Xi,n|p

j
1 · · · |Xi+k−1,n|p

j
k − ρ(n)

pj1,...,p
j
k

)
, (7.23)

where (cl, bl], l = 1, . . . , e, are disjoint intervals contained in [0, T ]. Set Z ln = (Z ln(1), . . . , Z ln(d)),

l = 1, . . . , e. Clearly, it suffices to prove that(
Z ln

)
1≤l≤e

D−→
(
β1/2(Bbl −Bcl)

)
1≤l≤e

,

where the matrix β is given in Theorem 2. By (7.7) we have the representation

Z ln(j) =
∞∑
m=2

Ik

( 1√
n

[nbl]∑
i=[ncl]+1

fnm,j(i)
)
.

Set Fnm,l(j) = 1√
n

∑[nbl]
i=[ncl]+1 f

n
m,j(i). By Theorem 2 in [BNCPW09] we obtain the weak conver-

gence of finite dimensional distributions when we show that

(i) For any 1 ≤ l ≤ e, 1 ≤ j ≤ d we have

lim
N→∞

lim sup
n→∞

∞∑
m=N+1

m!||Fnm,l(j)||2IH⊗k = 0.
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(ii) For any m ≥ 2, 1 ≤ l ≤ e and 1 ≤ j1, j2 ≤ d, we have constants Ck,l such that

lim
n→∞

m!〈Fnm,l(j1), Fnm,l(j2)〉IH⊗m = Cm,l(j1, j2) ,

and
∑∞

m=2Cm,l(j1, j2) = βj1,j2(bl − cl).

(iii) For any 1 ≤ l1 6= l2 ≤ e and 1 ≤ j1, j2 ≤ d, we have

lim
n→∞

〈Fnm,l1(j1), Fnm,l2(j2)〉IH⊗m = 0.

(iv) For any m ≥ 2, 1 ≤ l ≤ e, 1 ≤ j ≤ d and p = 1, . . . ,m− 1

lim
n→∞

||Fnm,l(j)⊗p Fnm,l(j)||2IH⊗2(m−p) = 0.

Note that it is sufficient to prove (i), (ii) and (iv) for l = 1, bl = 1 and al = 0. In this case

we use the notation Fnm(j) = Fnm,1(j).

(i) and (ii): As in (7.16) we have

m!〈Fnm(j1), Fnm(j2)〉IH⊗m = m!
(
〈fnm,j1(1), fnm,j2(1)〉IH⊗m +

2
n

n−1∑
l=1

(n− l)〈fnm,j1(1), fnm,j2(1 + l)〉IH⊗m
)

≤ Cm!〈fnm,j1(1), fnm,j2(1)〉IH⊗m
(

1 +
n−1∑
l=1

r(l)
)

(7.24)

Since
∑∞

l=1 r(l) <∞, we obtain by (7.12)-(7.14) and the dominated convergence theorem

lim
n→∞

m!〈Fnm,l(j1), Fnm,l(j2)〉IH⊗m = Cm(j1, j2)

= m!
(
〈fm,j1(1), fm,j2(1)〉IH⊗m + 2

∞∑
l=1

〈fnm,j1(1), fnm,j2(1 + l)〉IH⊗m
)
,

and
∑∞

m=2Cm(j1, j2) = βj1,j2 (notice that βj1,j2 is finite due to the dominated convergence

theorem). Hence, we deduce (ii). On the other hand, we have

lim sup
n→∞

∞∑
m=N+1

m!〈fnm,j1(1), fnm,j2(1)〉IH⊗m =
∞∑

m=N+1

m!〈fm,j1(1), fm,j2(1)〉IH⊗m <∞.

Thus, we obtain (i) by (7.24).

(iii): W.l.o.g. consider the case j = j1 = j2. For any l1 < l2, as in (7.16), we have

|〈Fnm,l1(j), Fnm,l2(j)〉IH⊗m | ≤
C

n

[nbl1 ]∑
h=[ncl1 ]+1

[nbl2 ]∑
i=[ncl2 ]+1

|rmn (i− h)|.
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Assume w.l.o.g. that cl1 = 0, bl1 = cl2 = 1 and bl2 = 2 (the case bl1 < cl2 is much easier).

Then, by condition (3.9), we obtain the approximation (as in (7.24))

|〈Fnm,l1(j), Fnm,l2(j)〉IH⊗m | ≤ C
( 1
n

n∑
j=1

jr(j) +
n−1∑
j=1

r(n+ j)
)
→ 0 ,

since
∑∞

j=1 r(j) <∞.

(iv): A straightforward computation shows that

||Fnm(j)⊗pFnm(j)||2
IH⊗2(m−p) =

Cm,j
n2

n−1∑
i1,i2,i3,i4=1

rpn(|i1−i2|)rpn(|i4−i3|)rm−pn (|i1−i4|)rm−pn (|i2−j3|).

for some constant Cm,j . The latter is smaller than

C

n

n−1∑
i,h,l=1

|rpn(i)||rpn(l)||rm−pn (|i− h|)||rm−pn (|l − h|)| = C

n

n−1∑
h=1

( n−1∑
i=1

|rpn(i)||rm−pn (|i− h|)|
)2
.

Now, for any 0 < ε < 1, we obtain by the Hölder inequality

n−1
∑

0≤h≤n−1

 ∑
0≤i≤n−1

|rpn(i)||rm−pn (|i− h|)|

2

≤ n−1
∑

0≤h≤[nε]

 ∑
0≤i≤n−1

|rpn(i)||rm−pn (|i− h|)|

2

+2n−1
n−1∑
h=[nε]

[nε/2]∑
i=0

|rpn(i)||rm−pn (|i− h|)|

2

+ 2n−1
n−1∑
h=[nε]

 n−1∑
h=[nε/2]

|rpn(i)||rm−pn (|i− h|)|

2

≤ C

ε
 ∑

0≤i≤n−1

|rmn (i)|

2

+
( ∑

0≤i≤n−1

|rmn (i)|
)2p/m( ∑

[nε/2]<h≤n−1

|rmn (h)|
)2(m−p)/m


The latter is smaller (again by (3.9)) than

C

ε
 ∑

0≤i≤n−1

r(i)

2

+
( ∑

0≤i≤n−1

r(i)
)2p/m( ∑

[nε/2]<h≤n−1

r(h)
)2(m−p)/m


that converges to Cε (

∑∞
i=0 r(i))

2 as n→∞. Thus, we obtain (iv) by letting ε→ 0. �

Step 2: Clearly, it suffices to consider the case d = 1, p1
l = pl. Set

√
n
(
V (p1, . . . , pk)nt − ρ(n)

p1,...,pk
t
)

=
∞∑
m=2

Im

( 1√
n

[nt]∑
i=1

fnm(i)
)

+Op(n−1/2) =: Znt +O(n−1/2)

(where the approximation holds locally uniformly in t) and

Zn,Nt =
N∑
m=2

Im

( 1√
n

[nt]∑
i=1

fnm(i)
)
.
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In Step 1 we have proved that conditions (i)-(iii) of Theorem 2 in [BNCPW09] are satisfied.

Then by (2.3) of Theorem 2 in [BNCPW09] and the Cauchy-Schwarz inequality we obtain the

approximation

P
(
|Zn,Nt − Zn,Nt1 | ≥ λ, |Z

n,N
t2
− Zn,Nt | ≥ λ

)
≤
E1/2[|Zn,Nt − Zn,Nt1 |

4]E1/2[|Zn,Nt2 − Zn,Nt |4]
λ4

≤ C
β2([nt]− [nt1])([nt2]− [nt])

λ4
≤ Cβ

2(t2 − t1)2

λ4

for any t1 ≤ t ≤ t2 and λ > 0. On the other hand (7.14) and (7.24) imply that

lim
N→∞

E[|Znt − Z
n,N
t |2] = 0

for any n and any t. Using this we conclude that

P
(
|Znt − Znt1 | ≥ λ, |Z

n
t2 − Z

n
t | ≥ λ

)
≤ Cβ

2(t2 − t1)2

λ4

for any t1 ≤ t ≤ t2 and λ > 0, from which we deduce the tightness of the sequence Znt by

Theorem 15.6 in [Bil68]. This completes the proof of Theorem 2. �

Proof of Theorem 5: We only consider the case d = 1, k = 1, p1 = p (the general result

is obtained by analogous arguments). We use the decomposition from the proof of Theorem 3:

√
n
(
V (Y, p)nt − µp

∫ t

0
|σs|pds

)
=
√
n
( 1
nτpn

[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|∆n
i G|p − µpl−1

[lt]∑
j=1

|σ j−1
l
|p
)

+
1√
nτpn

[nt]∑
i=1

(
|∆n

i Y |p − |σ i−1
n

∆n
i G|p

)
+R

n,l
t , (7.25)

for any l ≤ n, with

R
n,l
t =

1√
nτpn

( [nt]∑
i=1

|σ i−1
n

∆n
i G|p −

[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|∆n
i G|p

)

+
√
nµp

(
l−1

[lt]∑
j=1

|σ j−1
l
|p −

∫ t

0
|σs|p ds

)
.

Observe that under the assumption (CLT) we obtain the weak convergence

√
n
(
V (G, p)nt − µpt

)
⇒
√
βBt

(see Theorem 2). Since E[Gt(V (G, p)nt − µpt)] = 0 for any t > 0, because G has a symmetric

distribution, we deduce (by Theorem 5 in [BNCP09]) that(
Gt,
√
n
(
V (G, p)nt − µpt

))
⇒
(
Gt,
√
βBt

)
.
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It follows that

√
n
( 1
nτpn

[lt]∑
j=1

|σ j−1
l
|p
∑
i∈Il(j)

|∆n
i G|p − µpl−1

[lt]∑
j=1

|σ j−1
l
|p
)
G−st−→

√
β

[lt]∑
j=1

|σ j−1
l
|p∆l

jB

for any fixed l, because σ is assumed to be G-measurable. On the other hand, we have

√
β

[lt]∑
j=1

|σ j−1
l
|p∆l

jB
P−→
√
β

∫ t

0
|σs|pdBs

as l→∞.

Now we need to prove that the other summands in the decomposition (7.25) are negligible.

The negligibility of the term R
n,l
t is shown as in the proof of Theorem 7 in [BNCP09] but by

using condition (4.7) instead of Hölder continuity of index γ. So we are left to prove that

1√
nτpn

[nt]∑
i=1

(
|∆n

i Y |p − |σ i−1
n

∆n
i G|p

)
P−→ 0.

By applying, for p ≥ 1, the inequality ||x|p − |y|p| ≤ p|x − y|(|x|p−1 + |y|p−1), (7.17) and the

Cauchy-Schwarz inequality, and, for p ≤ 1, ||x|p − |y|p| ≤ |x − y|p and the Jensen inequality,

we have

1√
nτpn

[nt]∑
i=1

E
∣∣∣|∆n

i Y |p − |σ i−1
n

∆n
i G|p

∣∣∣ ≤ 1
√
nτp∧1

n

[nt]∑
i=1

(
E|∆n

i Y − σ i−1
n

∆n
i G|2

) p∧1
2
.

Now we use a similar decomposition as presented in the proof of Theorem 3:

∆n
i Y − σ i−1

n
∆n
i G = Ani +Bn,ε

(1)
n

i +
l∑

j=1

Cn,ε
(j)
n ,ε

(j+1)
n

i

where Ani , Bn,ε
(1)
n

i are defined as above, 0 < ε
(1)
n < · · · < ε

(l)
n < ε

(l+1)
n =∞ and

Cn,ε
(j)
n ,ε

(j+1)
n

i =
∫ i−1

n
−ε(j)n

i−1
n
−ε(j+1)

n

(
g
( i
n
− s
)
− g
( i− 1

n
− s
))
σsW (ds)

− σ i−1
n

∫ i−1
n
−ε(j)n

i−1
n
−ε(j+1)

n

(
g
( i
n
− s
)
− g
( i− 1

n
− s
))
W (ds).
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By assumption (CLT) and Lemma 2 we obtain the following inequalities (since σ is bounded

on compact intervals)

1
√
nτp∧1

n

[nt]∑
i=1

(
E|Ani |2

) p∧1
2 ≤ Cn−γ(p∧1)+ 1

2

1
√
nτp∧1

n

[nt]∑
i=1

(
E|Bn,ε

(1)
n

i |2
) p∧1

2

≤ Cn1/2|ε(1)
n |γ(p∧1)

1
√
nτp∧1

n

[nt]∑
i=1

(
E|Cn,ε

(j)
n ,ε

(j+1)
n

i |2
) p∧1

2

≤ Cn1/2|ε(j+1)
n |γ(p∧1)|πn(ε(j+1)

n )− πn(ε(j)
n )|

p∧1
2 , j = 1, . . . , l − 1,

1
√
nτp∧1

n

[nt]∑
i=1

(
E|Cn,ε

(l)
n ,ε

(l+1)
n

i |2
) p∧1

2

≤ Cn1/2πn(ε(l)
n )

p∧1
2 .

Then we deduce by (CLT) and Lemma 3

1√
nτpn

[nt]∑
i=1

|∆n
i Y − σ i−1

n
∆n
i G|p

P−→ 0.

This completes the proof of Theorem 5. �

8 Conclusion and outlook

In this paper we have derived convergence in probability and normal asymptotic limit results

for multipower variations of processes Y that, up to a drift-like term, has the form

Yt =
∫ t

−∞
g (t− s)σsW (ds)

where the kernel g is deterministic, σ > 0 is an adapted càdlàg process and W is the stochastic

Wiener measure. A key type of example has g (t) behaving as tδ for t ↓ 0 and δ ∈ (−1
2 ,

1
2)\{0}.

In those instances Y is not a semimartingale and the limit theory of multipower variation

developed for semimartingales does not suffice to derive the desired kind of limit results. The

basic tool we establish and apply for this is a normal central limit theorem for triangular

arrays of dependent Gaussian variables. As a case of some special interest for applications,

particularly in turbulence, the central limit behaviour of the realised variation ratio, i.e. the

ratio of bipower variation to quadratic variation, is briefly discussed. Some specific examples

of choice of g are also considered.

The turbulence context referred to concerns time-wise observations of velocities at a single

location x in space. More generally it would be of interest to develop the theory of multipower

variation corresponding to a setting where velocities are observed along a curve τ in space-time.

More specifically, suppose that velocity Yt (x) at position x and time t is defined by

Yt (x) =
∫
A+(x,t)

g (t− s, x− ξ)σs (ξ)W (dξds)
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where W denotes white noise, σt (x) is a positive stationary random field on R2, g is a determin-

istic damping function and A is a subset of space-time involving only points with negative time

coordinate. (For realism in turbulence modelling a drift term should be added to this expression

for Y , but we ignore that here.) Then, with the curve τ parametrised as τ (w) = (x (w) , t (w)),

say, the problem is to study multipower variations of the process X defined as

Xw =
∫
A+τ(w)

g (t (w)− s, x (w)− ξ)σs (ξ)W (dξds) .

Among the questions that this raises is that of proper definition of filtrations. As to the latter,

the concept of alignment, introduced in [BNSch09], is relevant. The definition is as follows.

Definition The curve τ and the ambit set A, with rectifiable and parametrised boundary

C = {c (γ) : γ ∈ Γ}, are said to be aligned if the following conditions are satisfied. Let c⊥

denote the transversal of ċ, i.e. c⊥ = (ċ2,−ċ1).

(i) For all w there exists a partition of C into two sets C+
w and C−w such that τ̇ (w) · c⊥ (γ) ≥ 0

for all γ with c (γ) ∈ C+
w while τ̇ (w) · c⊥ (γ) ≤ 0 for all γ with c (γ) ∈ C−w .

(ii) The subsets Γ+
w and Γ−w of Γ corresponding to C+

w and C−w are connected.

(iii) For all w the curve lengths of C+
w and C−w are positive.

Note that the sets C+
w and C−w constitute the ‘front’ and the ‘rear’ of At(w) (x (w)) as

(x (w) , t (w)) moves along the curve τ .

In another direction it would be of interest to extend results of the present paper to power

and multipower variations of higher order differences of Y . In particular, this might yield

normal central limit theorems for the whole range of values of δ and it could also lead to more

robustness against drift processes. For some recent work on quadratic variation of higher order

differences, see [Beg07a] and [Beg07b] and references given there.

Appendix: Properties of the Bessel functions K

The Bessel functions Kν are defined by

Kν (x) =
1
2

∫ ∞
0

yν−1e−
1
2
x(y−1+y)dy

where the index ν may take any real value. The known formulas for the Kν recalled below are

all given in [GrRy95].
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A.1 Exact properties

Elementary exact properties are

Kν(x) = K−ν(x) (A.1.1)

Kν+1(x) = 2νx−1Kν(x) +Kν−1(x) (A.1.2)

K ′ν(x) = −Kν−1(x)− νx−1Kν(x) (A.1.3)

Let

K̄ν (x) = xνKν (x) (A.1.4)

and, for ν > 0,

Ǩν (x) = 2−ν+1Γ (ν)−1 K̄ν (x) . (A.1.5)

Here K̄ν may be reexpressed as

K̄ν (x) =
1
2

∫ ∞
0

yν−1e−
1
2
ye−

1
2
x2y−1

dy, (A.1.6)

and, by a well known limit property of Kν , we have (for ν > 0)

Ǩν (x)→ 1 as x ↓ 0. (A.1.7)

Note further that expressed in terms of K̄, the relations (A.1.1), (A.1.2) and (A.1.3) take the

form

K̄ν(x) = x2νK̄−ν(x)

K̄ν+1(x) = 2νK̄ν(x) + x2K̄ν−1(x) (A.1.8)

and

K̄ ′ν(x) = −xK̄ν−1(x). (A.1.9)

The latter implies

K̄ ′′ν (x) = x2K̄ν−2(x)− K̄ν−1(x)

K̄ ′′′ν (x) = xK̄ν−2(x) + 2xK̄ν−2(x)− x3K̄ν−3 (x)

= −(x3K̄ν−3 (x)− 3xK̄ν−2(x)).

We shall also need the following formula (formula 3.383.8 in [GrRy95]). For t, ψ, ν > 0,

∫ ∞
0

(t+ s)ν−1 sν−1e−2ψsds =

√
2
π

Γ (ν) 2−νψ−ν+ 1
2 tν−

1
2Kν− 1

2
(ψt) eψt. (A.1.10)

Finally, for n = 0, 1, 2, ... we have

Kn+ 1
2
(x) = K 1

2
(x)

(
1 +

n∑
i=1

(n+ i)!
i!(n− i)!

2−ix−i
)

(A.1.11)
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with

K 1
2
(x) =

√
π

2
x−

1
2 e−x (A.1.12)

while, when the index is a natural number,

Kn(x) =
1
2

n−1∑
k=0

(−1)k
(n− k − 1)!

k!

(x
2

)2k−n

+ (−1)n+1
∞∑
k=0

1
k! (n+ k)!

[
log

x

2
− 1

2
ψ (k + 1)− 1

2
ψ (n+ k + 1)

](x
2

)2k+n
(8.1)

or, equivalently,

K̄n(x) =
1
2

n−1∑
k=0

(−1)k
(n− k − 1)!

k!

(x
2

)2k

+ (−1)n+1
∞∑
k=0

1
k! (n+ k)!

[
log

x

2
− 1

2
ψ (k + 1)− 1

2
ψ (n+ k + 1)

](x
2

)2(k+n)
(8.2)

where ψ is the digamma function.

A.2 Asymptotic properties

The Bessel functions Kν and Iν are connected by

Kν (x) =
1
2

π

sin (πν)
(I−ν (x)− Iν (x)) (A.2.1)

and we have

Iν (x) =
(x

2

)ν ∞∑
n=0

(
x
2

)2n
n!Γ (n+ ν + 1)

.

Using these relations and the fact that

Γ (1− ν) Γ (ν) =
π

sin (πν)
(A.2.2)

we find

K̄ν (x) = 2ν−1 π

sin (πν)

{ ∞∑
n=0

(
x
2

)2n
n!Γ (n− ν + 1)

−
(x

2

)2ν
∞∑
n=0

(
x
2

)2n
n!Γ (n+ ν + 1)

}

= 2ν−1 π

sin (πν)

{
1

Γ (1− ν)
+

1
Γ (2− ν)

(x
2

)2
+ · · ·

− 1
Γ (ν + 1)

(x
2

)2ν
− 1

Γ (ν + 2)

(x
2

)2(ν+n)
− · · ·

}
.
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Alternatively we may write

Ǩν (x) = 1 +
∞∑
n=1

Γ (1− ν)
(
x
2

)2n
n!Γ (n− ν + 1)

−
(x

2

)2ν
∞∑
n=0

Γ (1− ν)
(
x
2

)2n
n!Γ (n+ ν + 1)

.

= 1 +
∞∑
n=1

Γ (1− ν)
(
x
2

)2n
n!Γ (n− ν + 1)

−
(x

2

)2ν
∞∑
n=0

Γ (1− ν)
(
x
2

)2n
n!Γ (n+ ν + 1)

(8.3)

From these expansions, distinguishing between the cases 0 < ν < 1 and ν > 1, we obtain:

If 0 < ν < 1 then

Ǩν (x) = 1− 2−2ν Γ (1− ν)
Γ (1 + v)

x2ν +
1
4

1
1− ν

x2 −O
(
x2(1+ν)

)
. (A.2.4)

When ν = 1 we have, from (8.1),

Ǩ1 (x) = 1− 1
2
|log x|x2 +O

(
x2
)
. (A.2.5)

For ν > 1

Ǩν (x) = 1− 1
4

1
ν − 1

x2 − 2−2νx2ν +O
(
x4
)
. (A.2.6)
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