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Abstract

This paper proposes the new concept ofstochastic leveragein stochastic volatility models.
Stochastic leverage refers to a stochastic process which replaces the classical constant correlation
parameter between the asset return and the stochastic volatility process. We provide a systematic
treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly,
e.g. by means of a linear transformation of a Jacobi process.Such models are both analyti-
cally tractable and allow for a direct economic interpretation. In particular, we propose two new
stochastic volatility models which allow for a stochastic leverage effect: the generalised Heston
model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a
stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by
option prices derived from our new models. Furthermore, we give a detailed account on statistical
properties of the new models.

Keywords Stochastic volatility· volatility of volatility · stochastic correlation· leverage effect
· Jacobi process· Ornstein–Uhlenbeck process· square root diffusion· Lévy process· Heston
model· Barndorff-Nielsen & Shephard model

JEL Classification NumbersC1 · C5 · G0 · G1

1 Introduction

Stochastic volatility (SV) models for asset prices have gained great popularity in recent years. The
main reason for this is that they can explain many empirical facts observed in financial markets, such
as time–varying volatility and volatility clusters. In particular, they are able to reproduce the observed
implied volatility smile and are therefore essential for pricing and hedging financial derivatives, see
e.g. Rogers & Veraart (2008) and the references therein.

A very important empirical fact which can be modelled via a stochastic volatility model is the
so–calledleverage effect. The leverage effect refers to the relationship between asset price returns
and volatility which tend to be negatively correlated. One explanation, which also led to its name, is
that negative stock return might increase financial leverage which itself makes the stock riskier and
therefore leads to higher volatility. This effect was initially analysed by Black (1976) and was further
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supported by studies by Christie (1982), Nelson (1991) among others and, more recently, by Harvey &
Shephard (1996), Bouchaud et al. (2001), Tauchen (2004, 2005), Yu (2005), Bollerslev et al. (2006).
In empirical data, the leverage effect is particularly apparent, when looking at data from indices.

The leverage effect can be modelled in terms of two correlated stochastic processes which drive
the asset price process and the volatility process. Well-known models incorporating the leverage effect
are e.g. the Heston model (Heston 1993) and the Barndorff-Nielsen & Shephard model (Barndorff-
Nielsen & Shephard 2001, 2002), (BNS model). In both models aconstant correlation is assumed.

The present paper introduces the concept of astochasticleverage effect in continuous time in a
very general framework. We model the correlation between the asset returns and the volatility as a
stochastic process. To the best of our knowledge this is the first paper that studies such a general
stochastic model for the leverage.

Stochastic leverage has the advantage that it introduces anadditional factor or source of ran-
domness into a stochastic volatility model which has a natural economic interpretation. Among the
stochastic volatility models, it is well known that multifactor SV models outperform single factor SV
in practice, but might not necessarily be as analytically tractable. We will present how stochastic
leverage can be included in stochastic volatility models such that some analytic results can still be
obtained.

Another big advantage of stochastic leverage was pointed out by Carr & Wu (2007). They show
that not only stochastic volatility but also stochastic skew can be observed in financial markets. They
provide empirical results that stochastic skew is present in empirical currency option data and show
that it is very important to account for it. They briefly mention the possibility to incorporate this fea-
ture by randomising the correlation parameter between the currency return and the stochastic volatility
process, but do not further investigate this approach. Thisis what we do in the present paper.

Note that stochastic correlation as such has been studied inthe literature before. However, the
focus has mainly been on modelling the correlation between various asset prices and not between
stochastic volatility and the asset price. In the context ofmultivariate asset price models, one stochas-
tic process has received particular attention: the Wishartprocess. It has been introduced in the proba-
bility literature by Bru (1991) and has been studied extensively recently in the econometrics literature,
see e.g. Gouriéroux (2006), Gouriéroux et al. (2009), since it can be used as a building block for mod-
elling stochastic correlation between various assets. However, the shortcomings of such a model are
well–known, for a discussion see Pigorsch & Stelzer (2009).In particular, the stochastic correla-
tion generated by such models is not straightforward to interpret and, hence, we propose a different
approach which leads to analytically tractable models which have a direct economic interpretation.

In the following, we will use the expressionstochastic correlationandstochastic leverageinter-
changeably, and both refer to the stochastic process modelling the correlation between the stochastic
drivers of the volatility and the asset price processes.

The outline of this article is as follows. In Section 2, we introduce the concept of stochastic
leverage. We describe two general classes of stochastic volatility models (with and without jumps)
which exhibit stochastic leverage. We then present specificmodels which can be used to model a
correlation process and therefore account for the leverageeffect. The most important process we
study as a building block for a stochastic correlation process is the Jacobi diffusion. It is analytically
tractable and can be easily extended in such a way that its support is the interval[−1, 1] which makes
it an ideal process to model correlation.

In Section 3, we extend the Heston model and the Barndorff-Nielsen & Shephard model by in-
corporating stochastic leverage using a transformed Jacobi diffusion. We develop the semimartingale
characteristics corresponding to the new dynamics of the asset price.

In Section 4, we discuss the change of measure from the real world probability measure to the
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risk–neutral probability measure and discuss its application to pricing financial derivatives. Particular
emphasis is on the structure preserving change of measure inboth the generalised Heston and the
generalised Barndorff-Nielsen & Shephard models.

Section 5 studies the influence of the stochastic leverage onthe pricing of European plain vanilla
options in the generalised Heston model. A sensitivity study shows the relationship between the
various model parameters describing the stochastic leverage. In particular, we compare the results
with the classical Heston model with constant correlation.

Next, we turn our attention to statistical aspects of our newstochastic volatility and stochastic
leverage models. Section 6 focuses on the impact of a stochastic leverage effect on return–volatility
regressions, which are widely used in econometrics for measuring both the leverage and the volatility
feedback effect and, furthermore, we investigate the effect of stochastic leverage on the ability to
forecast volatility based on option implied volatilities.

Section 7 is then devoted to the problem of estimating stochastic leverage non–parametrically and
to parameter estimation in our new model classes.

Finally, Section 8 concludes.
All proofs are relegated to the appendix.

2 Modelling stochastic leverage

2.1 The concept of stochastic leverage

This section introduces the concept of a stochastic leverage effect, i.e. a stochastic correlation between
the driving process of the asset price and the driving process of the stochastic volatility process.

Throughout the paper, we will assume that the logarithmic asset priceY = (Yt)t≥0 is given by
an Itô semimartingale, which is a standard assumption, seee.g. Barndorff-Nielsen & Shephard (2002,
2007), Jacod (2008), Aı̈t-Sahalia & Jacod (2009). An Itô semimartingale is defined as a semimartin-
gale whose characteristics are absolutely continuous withrespect to the Lebesgue measure, see e.g.
Jacod (2008). In particular, its dynamics are given by

dYt = ãtdt + σt−dWt + dJt, (1)

whereã = (ãt)t≥0 is a predictable drift process,σ = (σt)t≥0 is a predictable stochastic volatility
process andJ = (Jt)t≥0 is a pure jump component.

For the stochastic volatility processσ , we assume that it satisfies

dσ2
t = b̃tdt + f(σ2

t )dZt, (2)

for a predictable process̃b = (̃bt)t≥0 which possibly describes the mean reversion of the squared
volatility process, a deterministic functionf : R+ → R+ and a drift-less Lévy processZ = (Zt)t≥0.
From the Lévy Khintchine formula, we know thatZ consists of a Brownian motion part (denoted by
Zc = (Zc

t )t≥0) and a pure jump process denoted byZd = (Zd
t )t≥0. For ease of exposition, we will

throughout the paper assume thatZc is in fact astandardBrownian motion (ifZc 6≡ 0).
Note, that both stochastic processesã and b̃ are assumed to be predictable stochastic processes.

Particularly, they can depend onσ as well but can also have additional stochastic drivers.
In order to account for the leverage effect, most of the well–known stochastic volatility models

allow for correlation between the Brownian motions, which drive the logarithmic asset price and the
volatility process, i.e.Cor(Wt, Z

c
t ) 6= 0 and/or between the jump processes which drive the asset
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price and the volatility, i.e.Cor(Jt, Z
d
t ) 6= 0. In particular, these correlations are usually assumed to

be constant and not time–varying or stochastic.
In this paper, we propose to model the correlation by a stochastic process. For ease of exposition,

we assume throughout the paper that the leverage effect appears either in the continuous or in the
jump component and not in both. However, extensions to the more general case are straightforward
and can be constructed along the lines of this paper.

Definition We assume that the logarithmic asset price is given by an Itôsemimartingale as defined in
(1) and that the stochastic volatility process is defined as in (2).
Thestochastic correlationor stochastic leverageprocess is defined as the predictable stochastic pro-
cessρ = (ρt)t≥0 taking only values in[−1, 1] and satisfyingd[W,Zc]t = ρtdt or d[J,Zd]t =

ρtd[J̃ , Z
d]t, for a pure jump process̃J =

(
J̃t

)
t≥0

, which is dependent ofZd.

2.2 Stochastic leverage and stochastic volatility (of volatility)

Note that the concept of stochastic leverage is closely linked to the concept of stochastic volatility
and stochastic volatility of volatility. So, before we turnto explicit models for stochastic leverage, we
briefly discuss the relationship between those three quantities.

As already mentioned, one factor stochastic volatility models are not supported by empirical stud-
ies. Hence, recent research on stochastic volatility models has focused on multi–factor stochastic
volatility models. However, additional sources of randomness can not only be introduced on the same
level as the stochastic volatility process, but also by either stochastic leverage or stochastic volatility
of volatility. The latter has recently been studied by Barndorff-Nielsen & Veraart (2009).

In particular, they have studied stochastic volatility processes of the type

dσ2
t = b̃tdt+ γtf(σ2

t )dZt,

whereγ = (γt)t≥0 denotes a stationary, non–negative stochastic variance ofvariance process, which
is independent of all the other driving processes in the asset price model. If the asset price is given by
(1) and if additionallyZ is a Brownian motion which is correlated withW with correlation coefficient
c ∈ [−1, 1] then the quadratic covariation ofY andσ2 is given by

d[Y, σ2]t = cγtf(σ2
t )dt, (3)

If insteadZ ≡ J , then

d[Y, σ2]t = γtf(σ2
t )d[J ]t, (4)

which is similar to the stochastic leverage mentioned above, where we have an additional source of
randomness in the quadratic covariation. However, ifZ is independent ofW andJ , then[Y, σ2] ≡ 0.

So, we see that both stochastic leverage and stochastic volatility of volatility can lead to a similar
(possibly even to the same) structure of

[
Y, σ2

]
. However, it should be stressed that the two concepts

are not identical. In particular, the existence of stochastic leverage does not necessarily imply the
existence of stochastic volatility of volatility and, viceversa, the existence of stochastic volatility of
volatility does not necessarily imply the existence of stochastic leverage.

Finally note that stochastic leverage is a particular case of (additional) stochastic volatility. So, we
observe that there are very close links between stochastic volatility, stochastic volatility of volatility
and stochastic leverage, but they are generally not the same.
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2.3 Models for leverage

In this section we present different approaches to modelling a stochastic or time–varying leverage
effect. The classical approach to model a constant leverageeffect over time is to use a constant which
models the correlation between the stochastic drivers of the asset price process and the volatility
process. When looking at empirical data, however, it turns out that the leverage effect is not constant
over time.

2.3.1 Time–varying, deterministic leverage

A first approach is to assume that the correlation between thetwo stochastic drivers is a deterministic
function of time which varies between[−1, 1]. The advantage of such an approach is that no addi-
tional source of randomness is introduced which simplifies the calculations. In particular, for hedging
purposes, one only has to deal with two sources of risk. Sincethis is just a special case of a stochastic
leverage process, we do not go into more details.

2.3.2 Local leverage

A first step to introduce randomness into the correlation process is to assume that it is a function of the
stochastic asset price and/or the stochastic volatility. Such a stochastic leverage is effectively alocal
leverageand corresponds to the concept of local volatility where volatility is modelled as a function
of the underlying asset price. Models of this type have been studied by e.g. Romano & Touzi (1997)
and, more recently, by Bandi & Renò (2008b).

2.3.3 Finite state Markov process

A next step would be to assume that the correlation process isa finite state Markov chain. If for
example it is assumed that the correlation is negative, one could choose a finite number of values in
[−1, 0] which describe the state of the Markov chain. We will see later on that even a continuous
diffusion process can be used to model a correlation processwhich can only visit two states.

2.3.4 Jacobi process

When modelling stochastic leverage as a stochastic process, we first need to ensure that the stochastic
process only takes values in[−1, 1]. We could therefore use an arbitrary stochastic process such
as a Brownian motion and use an appropriate function to map itonto the interval[−1, 1]. Such an
approach, however, usually lacks economic interpretation. A natural building block for a correlation
process which allows economic interpretation is theJacobi process. It is a mean–reverting diffusion
process which only takes values in[0, 1]. Applying a linear transformation to the Jacobi diffusion
results in a process which only takes values in[−1, 1]. We will discuss more details of the Jacobi
process in Section 2.4.

2.3.5 A general stochastic leverage process

Finally, we present a very general approach on how to construct a model for stochastic leverage.
Similar, to the model based on the Jacobi process, we focus onconstructing a stochastic process
which takes only values in[0, 1]. Such a process can then be used as a building block for modelling
stochastic correlation.
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A very general framework for constructing such a process, isgiven as follows. Let us assume
thatU (i) = (U

(i)
t )t≥0 for i = 1, 2 are independent, non–negative semimartingales. Then, we define a

stochastic processR = (Rt)t≥0 by

Rt =
U

(1)
t

U
(1)
t + U

(2)
t

.

Clearly, we always have that0 ≤ Rt ≤ 1.
Note that the Jacobi process is essentially constructed by using two independent square root dif-

fusions (Cox et al. (1985)) forU (1) andU (2). However, we can choose various other processes for
U (1) andU (2) as long as they are guaranteed to stay positive. Hence, stochastic volatility models,
which satisfy the positivity requirement, are natural choices forU (i), wherei = 1, 2. It is also pos-
sible, to construct a processR which is purely driven by jumps. E.g. we could modelU (i) as a Lévy
subordinator. In particular, if we choose gamma subordinators, we obtain a processR which is Beta
distributed and purely jump–driven, as opposed to the Jacobi process whose stationary distribution is
also given by a Beta distribution, but which is driven by a Brownian motion. Another possibility is to
model theU (i) by non–Gaussian Ornstein Uhlenbeck processes.

In the following, we will restrict our attention to stochastic leverage models based on the Jacobi
diffusion and we will study the potential of jump–driven models for stochastic correlation in future
research.

2.4 The Jacobi process

The Jacobi process belongs to the class ofsolvablediffusion processes, see Albanese & Kuznetsov
(2005), and is therefore analytically tractable. It is linked to the Jacobi polynomials in the sense
that the eigenfunctions of the Jacobi diffusion generator can be expressed in terms of the Jacobi
polynomials. Its stationary distribution is a Beta distribution. The Jacobi process has been studied by
e.g Gouriéroux & Valéry (2004) in the context of how such a diffusion can be estimated from data,
Gouriéroux & Jasiak (2006) studied a multivariate versionas a tool for modelling smooth transitions;
Larsen & Sørensen (2007) use an general class of a Jacobi-type diffusion to model the logprices of
exchange rates in a target zone controlled by central banks,Forman & Sørensen (2008) study the
Pearson diffusion in detail and the Jacobi process is one special case of a Pearson diffusion. Finally,
Schoutens (2000) collects many properties of diffusion processes which are linked to some orthogonal
polynomials.

In the following we give a brief account of the properties of aJacobi process which will be used
in our analysis. A Jacobi process satisfies the SDE

dVt = (ζ − ηVt)dt + θ
√
Vt(1 − Vt)dW

V
t , (5)

whereζ, η, θ are positive constants andW V is a standard Brownian motion. This can be rewritten as

dVt = −η
(
Vt −

ζ

η

)
dt+ θ

√
Vt(1 − Vt)dW

V
t .

This process takes values in[0, 1] and is mean–reverting toζη at speedη.
For a correlation coefficientρ we want to have a process, which takes values between -1 and 1 and

which is mean reverting. Hence we work with a linear transformation of the Jacobi process which is
given by

ρt = 2Vt − 1. (6)



2 MODELLING STOCHASTIC LEVERAGE 7

Then from It̂o’s formula the dynamics ofρ are given by

dρt = ((2ζ − η) − ηρt) dt+ θ
√

(1 + ρt)(1 − ρt)dW
V
t .

Clearly,ρ takes values between−1 and1 and is mean–reverting to2ζ−η
η at speedη.

The dynamics of the processρ is a special case of the diffusion process studied by Larsen &
Sørensen (2007). They consider a diffusionρ̃ taking values in(R2 −R4, R2 +R4) which satisfies

dρ̃t = −R1(ρ̃t − (R2 +R3R4))dt +R5

√
R2

4 − (ρ̃t −R2)2dW
V
t (7)

whereR1 > 0,−1 < R3 < 1 andW V is a Brownian motion. This diffusion is an ergodic diffusionif
and only if

κ1 = R1(1 −R3)R
−2
5 ≥ 1,

κ2 = R1(1 +R3)R
−2
5 ≥ 1.

Its stationary distribution is a shifted and rescaled Beta distribution and its probability density function
is given by

fρ̃(x) = (R4 +R2 − x)κ1−1(R4 −R2 + x)κ2−1(2R4)
1−κ1−κ2

1

B(κ1, κ2)
,

for x ∈ (R2 −R4, R2 +R4) and0 otherwise. HereB(·, ·) denotes the Beta–function. Ifκ1 < 1 then
the boundaryR2 + R4 can be reached in finite time, ifκ2 < 1 then the boundaryR2 − R4 can be
reached in finite time. The eigenfunctions of the diffusion generator can be expressed in terms of the
Jacobi polynomials and can be found in Larsen & Sørensen (2007).

Clearly,ρ satisfies the SDE (7) if we setR4 = 1, R2 = 0, R5 = θ,R1 = η,R3 = 2 ξ
η − 1 and

require thatR3 ∈ (−1, 1).
We have therefore found a process which stays within[−1, 1] and hence can be used to model

correlation. If some additional information were available, e.g. that the correlation varies within a
subinterval of[−1, 1], a process described by the SDE (7) with bounds chosen accordingly could be
used to model the restricted correlation process. An example would be to assume that correlation is
strictly negative or that it varies only within a small interval centered around0 etc.

A very interesting characteristic of a Jacobi process is that it tends to a jump process with state
space{0, 1} and constant intensities, ifθ tends to infinity. This result and further discussions can be
found in Gouriéroux & Jasiak (2006). Figure 1 illustrates the sensitivity of the Jacobi process with
respect toθ. Generally, the smaller the parameterθ, the smoother are the sample paths. For increasing
values ofθ, we observe a jump–type behaviour. In particular, the Beta distribution of the stationary
Jacobi process tends in distribution to a Bernoulli distribution with parameterζη . It is also clear from

the definition of the process that the term in front of the Brownian motionθ
√
Vt(1 − Vt) is essentially

zero forVt close to0 or 1. It attains its maximum forV = 1
2 and therefore we see that the process

has a clear tendency to move away from values around1
2 and goes towards its natural bounds0 or 1.

At the boundaries the mean reversion of the process kicks in particularly strongly. If the parameter
θ is large, however, the effect of a large variance in the center and a low variance at the boundaries
dominates the overall behaviour of the process, i.e. the process moves towards the boundaries.

We could therefore model a rather extreme behaviour of the correlation process by increasing
the parameterθ. Then the correlation process will essentially take two values. This reminds on the
Markov chain approach described previously where it was assumed that the correlation process can
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only take a finite number of values. We therefore see that the Jacobi process can be used to model
such a behaviour as well.

Generally, we find that the Jacobi diffusion and its generalisations are ideal diffusions to model
stochastic correlation. We assume that stochastic correlation is mean–reverting to a long–term mean
and is driven by a Brownian motion whose fluctuation can be amplified by using a higher volatility
parameter for the stochastic correlation process. From an economic perspective this is perfectly sen-
sible. We do expect that the correlation between the stock returns and the volatility process has some
long term mean around which it fluctuates. If we want to model more extreme stochastic behaviour,
this can be done by either playing with the volatility parameter in the Jacobi diffusion or by choosing
a slower speed of mean reversion parameter.
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(c) θ = 25

Figure 1:Sensitivity with respect toθ Sample path of a Jacobi process withV0 = 0.5, ζ = 0.5, η = 1
andθ ∈ {1, 5, 25}. Number of steps:5000; step size0.0002.

3 Generalised Heston and generalised BNS model with stochastic lever-
age

The aim of this section is to introduce two concrete models which allow for the new concept of
stochastic leverage. They are extensions of stochastic volatility models which are particular popular
and successful both from a practical and a theoretical pointof view: The Heston model, Heston
(1993), in which the stochastic volatility is modelled as a square root diffusion, see Cox et al. (1985),
and the Barndorff-Nielsen & Shephard model, in which the stochastic volatility is modelled as a non–
Gaussian Ornstein–Uhlenbeck process, see Barndorff-Nielsen & Shephard (2001, 2002).

3.1 Model definition

Suppose that we have a probability space(Ω,A,P), on which we define four independent processes:

three standard Brownian motionsW = (Wt)t≥0, W̃ =
(
W̃t

)
t≥0

andW V =
(
W V

t

)
t≥0

and a Lévy

subordinatorL = (Lt)t≥0. Throughout this paper, we denote byY = (Yt)t≥0 the logarithmic asset
price, bySt = S0 exp(Yt) the asset price, whereS0 > 0, byσ = (σt)t≥0 the stochastic volatility, and
by ρ = (ρt)t≥0 the stochastic correlation process.

First of all we extend the classical Heston model by allowingfor stochastic correlation.
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Definition TheGeneralised Heston model(GH) is defined by

dYt =
(
µ+ bσ2

t

)
dt + σtdXt,

dXt = ρtdWt +
√

1 − ρ2
t dW̃t,

dσ2
t = α(β − σ2

t )dt + γσtdWt,

(8)

whereµ, b ∈ R, α, β, γ > 0, and whereρ = (ρt)t≥0 is a stochastic correlation process. Furthermore,
the processesW , W̃ , ρ are assumed to be independent.

If 2αβ ≥ γ2, σ2 stays almost surely positive whenσ0 > 0.

Remark It follows immediately from Lévy’s Theorem, that the processX is a standard Brownian
motion, see e.g. (Musiela & Rutkowski 2005, p. 232).

Definition A GH model is calledgeneralised Heston model with Jacobi correlation(GHJ) if ρ satis-
fies

dρt = ((2ζ − η) − ηρt) dt+ θ
√

(1 + ρt)(1 − ρt)dW
V
t ,

whereη, ζ, θ are positive constants andW V =
(
W V

t

)
t≥0

is a standard Brownian motion.

Similarly, we can defined the generalised BNS model in the following way.

Definition Thegeneralised BNS model(GBNS) is defined by

dYt =
(
µ+ bσ2

t

)
dt + σtdWt + ρλtdLλt,

dσ2
t = −λσ2

t dt+ dLλt,
(9)

whereσ2
0 =

∫ 0
−∞ eλsdLλs. Furthermore,µ, b ∈ R andλ > 0. The stochastic correlation processρ is

assumed to be non–positive. Furthermore, we assume independence between the processesW , L and
ρ.

Clearly,σ2 is a non–Gaussian Ornstein Uhlenbeck process with stationary representation

σ2
t =

∫ t

−∞
e−λ(t−s)dLλs.

Remark By restrictingρ to be non–positive, we ensure that the jumps in the price are locally bounded,
see Remark 2.1 in Hubalek & Sgarra (2007).

Remark For parameter estimation in a GBNS model, it will be necessary to fix some moments of
eitherρ orL to make sure that the model is uniquely identified. Otherwise, one could always multiply
ρ by a constant and scale the subordinatorL accordingly.

In this paper we suggest to model the correlation coefficientby a linear transformation of a Jacobi
process.
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Definition A GBNS model is called ageneralised BNS model with Jacobi correlation(GBNSJ), if
the stochastic leverageρ = (ρt)t≥0 is given by a linear transformation of a stationary Jacobi process
ρt = −Vt, where

dVt = (ζ − ηVt)dt + θ
√
Vt(1 − Vt)dW

V
t (10)

whereW V is a standard Brownian motion andζ, η, θ > 0.

Remark Note that in models of type (9), the quadratic covariation between the price and the squared
stochastic volatility is given by

d[Y, σ2] = ρλt(dLλt)
2 = ρλtd[L]λt. (11)

Since the leverage effect is due to the jump component and notdue to a diffusion, the processρ does
not solely describe the quadratic covariation between the log–price and the volatility, but the jumps
play a direct role, too. Hence we cannot interpretρ as a correlation coefficient as easily as in the
diffusion set up. In particular, we do not have to restrictρ to the interval[−1, 0], but could allow for
any negative valueρ. Hence, there is a great flexibility in how to model the stochastic processρ. In
this paper, we will focus on a process which takes values in[−1, 0] and all smaller values of[Y, σ2]
are assumed to be due to the jump size ofL. Extensions to processes which can take values between
[−K, 0] for someK > 0 are straightforward. Carrying out empirical studies will help to find out
which value forK is realistic and whether it should be a finite value at all or whether an unbounded
processρ describes empirical data even better.

Throughout this section, we will work with the natural filtration (Ft)t≥0 generated by the triple

(W,W̃ ,W V ) in the GH model and by(W,Lλ,W
V ) in the GBNS model.

3.2 Semimartingale characteristics

First of all, we derive the semimartingale characteristics, see Jacod & Shiryaev (2003), of the new
stochastic volatility and stochastic leverage models. We will need these results later, when we study
how the dynamics of our new models change when we consider them under a risk–neutral probability
measure.

Proposition 3.1 The semimartingale characteristics ofY in the GH model are given by(B,C, νY ),
where

dBt = (µ+ bσ2
t )dt, dCt = σ2

t dt, νY (dt, dx) ≡ 0,

Next, we study the dynamics of the asset price in the GH framework. A straightforward application
of Itô’s formula leads to the following result.

Proposition 3.2 In the framework of a GH model, with logarithmic asset priceY = (Yt)t≥0, the
dynamics of the asset priceSt = exp(Yt) are given by

dSt = St

((
µ+

(
b+

1

2

)
σ2

t

)
dt+ σtdXt

)

= St

((
µ+

(
b+

1

2

)
σ2

t

)
dt+ σtρtdWt + σt

√
1 − ρ2

t dW̃t

)
.
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Next, we turn our attention to the GBNS model. Again, we startby deriving the semimartingale
characteristics of the logarithmic asset price. Since the only jump processes we deal with in the
GBNS model are of finite variation, we can work with the zero truncation function, which we denote
by h(x) ≡ 0. Furthermore, for any semimartingaleX, we will denote byµX the Poisson random
measure associated with the jumps ofX and byνX its predictable compensator. Note that throughout
this paper, we will use⋆ to indicate integration with respect to (compensated) jumpmeasures and· to
indicate standard stochastic integration.

Proposition 3.3 The semimartingale characteristics ofY in the GBNS model (defined in (9)) with
respect to the truncation functionh(x) ≡ 0 are given by(B,C, νY ), where

dBt = (µ+ bσ2
t )dt, dCt = σ2

t dt, νY (dt, dx) = F (t, dx)dt,

whereIA(−x) ⋆ F (t, dx) = IA(ρλtx) ⋆ UL(dx)λ for anyA ∈ B(R \ {0}) and whereUL denotes the
Lévy measure ofL.

From the semimartingale characteristics above, we see thatthe jump part ofY is not a Lévy
process, since its characteristics are generally time–varying and not deterministic. Hence, our new
model is a real generalisation of the BNS model and nests the BNS model when we setρ to a constant.

Proposition 3.4 We obtain the following representation results for the log–price and the price process
in the GBNS model:

(i) The semimartingaleY (defined in (9), (10)) can be represented as

Yt = Y0 +

{∫ t

0

(
µ+ bσ2

t

)
dt+ ρλt ⋆ νL

}
+

{∫ t

0
σsdWs + ρλt ⋆ (µL − νL)

}
.

The term in the first bracket is of finite variation and the termin the second bracket is the sum
of the continuous part plus the jump part of a local martingale.

(ii) The dynamics of the asset priceSt = exp(Yt) are given by

dSt = St−

((
µ+

(
b+

1

2

)
σ2

t +

∫ λt

0

∫ ∞

0
(eρsx − 1)UL(dx)ds

)
dt

+ σt−dWt + dMt

)
,

where

Mt =

∫ λt

0

∫ ∞

0
(eρsx − 1) (µL − νL)(dx, ds),

which is clearly a local martingale.

Note that in this representation it becomes clear, why we assume thatρ can only take negative values,
otherwise the integral above would not exist.
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4 Change of measure in the GH and GBNS model and applications to
option pricing

In order to use our new models for option pricing, we have to change the probability measure. So far,
we have worked under the real world measureP. We have argued that stochastic correlation between
the drivers of the stochastic volatility and the asset priceprocess is an empirical fact which can be
observed when looking at empirical asset price data, i.e. using the real world probability measureP.
When we want to price options, however, we need to find an equivalent martingale measure. We will
see in this section that such a measure can be constructed in such a way, that the model structure, and
hence a stochastic leverage process, can be preserved underthe new measure.

Let us assume thatP∗ is another probability measure which is absolutely continuous with respect
to P. Then there exists a unique, see Jacod & Shiryaev (2003, Theorem III.3.4), and up toP-, P

∗–
indistinguishabilityP–martingaleZ, such that, for allt > 0

Zt = E

(
dP∗

dP

∣∣∣∣Ft

)
.

Z is then called the density or Radon-Nikodým derivative.
In the following, we will study three aspects: First, we study how the semimartingale character-

istics ofY change under the change of measure. Next, we derive a particular representation for the
density processZ. Finally, we study which class of measure changes preservesthe structure of the
GH and GBNS model.

Recall that a probability measureP∗ on (Ω,A) is anequivalent martingale measure(EMM) if the
discounted asset pricee−rtSt is a martingale underP∗. LetM denote the set of equivalent martingale
measures for the GH or the GBNS model and letM′ ⊂ M denote the set ofstructure preserving
EMMs of the GH or the GBNS model. Further, we writeE for the stochastic exponential, see (Jacod
& Shiryaev 2003, I.4f).

4.1 Change of measure in the GH model

A straightforward application of the Girsanov theorem leads to the following result.

Assumption (A): LetY denote the semimartingale defined in the GH model (8), whereρ is stochastic
correlation process. Furthermore, we assume that all localmartingales are representable with
respect to(W,W̃ ,W V ).

Proposition 4.1 LetP∗ ∈ M and let assumption (A) be satisfied. Then there exists a predictable and
on [0, T ] square integrable processψ =

(
ψ(1), ψ(2), ψ(3)

)′
= (ψt)t≥0 such that

Zt = E
(∫ ·

0
ψ(1)

s dWs +

∫ ·

0
ψ(2)

s dW̃s +

∫ ·

0
ψ(3)

s dW V
s

)

t

, 0 ≤ t ≤ T,

is a density process, i.e.Zt = E
(

dP
∗

dP

∣∣Ft

)
andE(ZT ) = 1.

The processψ satisfies

µ+

(
b+

1

2

)
σ2

t + σtψ
(1)
t − r = 0

dP ⊗ dt almost surely, wherer > 0 denotes the riskless interest rate.
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The theorem above describes a general change of measure according to the Girsanov theorem for
the GH model. If we specify the predictable processψ(1) further, we can even define a change of
measure which is structure preserving and, hence, of particular interest in applications. Such a change
of measure is described in the following theorem.

Proposition 4.2 Assume that (A) holds. Then, the process

ψ
(1)
t =

1

σt

(
r − µ−

(
b+

1

2

)
σ2

t

)
,

is a.s. square integrable on[0, T ] and predictable and there exists an on[0, T ] square integrable and
predictable process

(
ψ(2), ψ(3)

)
such that

Zt = E
(∫ ·

0
ψ(1)

s dWs +

∫ ·

0
ψ(2)

s dW̃s +

∫ ·

0
ψ(3)

s dW V
s

)

t

, 0 ≤ t ≤ T,

is a density process. We obtain an EMM by defining

dP∗ = ZTdP,

and the dynamics of the model under the probability measureP
∗ are given by

dYt =

(
r − 1

2
σ2

t

)
dt+ σtdX

∗,

dX∗ = ρtdW
∗
t +

√
1 − ρ2

t dW̃
∗
t ,

dσ2
t = −α∗

(
β∗ − σ2

t

)
dt+ γσtdW

∗
t ,

ρt = 2Vt − 1,

dVt = (ζ∗ − η∗Vt)dt + θ
√
Vt(1 − Vt)dW

V ∗
t ,

whereW ∗
t = Wt −

∫ t
0 ψ

(1)
s ds, W̃ ∗

t = W̃t −
∫ t
0 ψ

(2)
s ds andW V ∗

t = W V
t −

∫ t
0 ψ

(3)
s ds are independent

P
∗–Brownian motions. Also, we haveα∗ = α + A and β∗ = αβ

α+A for someA ∈ R. Similarly,

η∗ = η + φ, andζ∗ = ζ
η+φ for a constantφ ∈ R. HenceP

∗ ∈ M′.

4.2 Change of measure in the GBNS model

Now we focus on the change of measure in the GBNS model which ismore involved than the one in
the GH model due to the presence of jumps. In order to tackle this problem, we start by investigating
how the the semimartingale characteristics of the logarithmic asset price process change in the GBNS
model, if one performs a Girsanov change of measures.

Recall that the semimartingale characteristics ofY are given by(B,C, ν) and have been explicitly
stated in Proposition 3.3. Also, letP denote the predictableσ–field onΩ × R+ and letP̃ = P ⊗ B,
for the Borelσ–algebraB. From (Jacod & Shiryaev 2003, Girsanov Theorem, p.172), we know that
for a probability measureP∗ which is (locally) absolutely continuous with respect toP, there exist a
P̃–measurable, nonnegative functionξ and a predictable processψ satisfying

∫ t

0
csψsds <∞ and

∫ t

0
ψ2

scsds <∞, P
∗ − a.s. for t ∈ R+,
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such that the characteristics ofY underP∗ are given by(B′, C ′, ν ′Y ), where

B′ = B +

∫ t

0
csψsds, C ′ = C, ν

′

Y = ξ · νY ,

where we work – as before – with the zero truncation function.Moreover,ξ andψ satisfy all the
conditions above if and only if

ξZ− = E(Z ⋆ µY |P̃)
〈
Zc,

∫

0
σsdWs

〉

t

=

∫ t

0
σ2

sψsZs−ds,

whereZ denotes the corresponding density process of the measure change and
< ·, · > denotes the predictable bracket.

Next, we derive an explicit representation for the Radon-Nikod́ym derivativeZ in the change of
measure. The following proposition generalises the corresponding result given in Nicolato & Venar-
dos (2003, Theorem 3.1).

Assumption (B): Let Y denote the semimartingale defined in (9), whereρ is a stochastic correlation
process satisfyingρ ≤ 0. Furthermore, we assume that all local martingales are representable
with respect to(W,Lλ,W

V ) and thatL is quasi–left continuous.

Proposition 4.3 Let P
∗ ∈ M and assume that assumption (B) is satisfied. Then there exists a pre-

dictable and on[0, T ] square integrable processψ =
(
ψ(1), ψ(2)

)′
= (ψt)t≥0 and a strictly positive,

predictable functionξ = ξ(ω, t, x) satisfying(1 −
√
ξ)2 ⋆ νL <∞ P–a.s. such that

Zt = E
(∫ ·

0
ψ(1)

s dWs +

∫ ·

0
ψ(2)

s dW V
s + (ξ − 1)(µL − νL)

)

t

, 0 ≤ t ≤ T,

is a density process, i.e.Zt = E
(

dP
∗

dP

∣∣Ft

)
andE(ZT ) = 1.

The processψ and the functionξ satisfy

µ+

(
b+

1

2

)
σ2

t + λ

∫ ∞

0
(eρλsx − 1) ξ(t, x)UL(x)dx+ σtψ

(1)
t − r = 0

dP ⊗ dt almost surely, wherer > 0 denotes the riskless interest rate.

Next, we restrict the class of equivalent martingale measures such that the model structure is
preserved under the change of measure. Recall that we denoteby M′ the class of such structure
preserving martingale measures and proceed by extending the corresponding results by Nicolato &
Venardos (2003) to our more general model class. Let

Ξ̃′ =

{
ξ̃ : R+ → R+ :

∫ ∞

0

(
1 −

√
ξ̃

)2

UL(x)dx <∞
}
,

denote a class ofdeterministicfunctions and for̃ξ ∈ Ξ̃′, we write

U ξ̃
L(x) = ξ̃(x)UL(x).
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Analogously to the work by Nicolato & Venardos (2003), we deduce from∫∞
0 min(1, x)U ξ̃

L(x)dx <∞ that
∫ λt

0

∫ ∞

0
(eρtx − 1)U ξ̃

L(x)dx

exists for negativeρ and, also, thatE((ξ̃ − 1) ⋆ (µL − νL)) is a true martingale for̃ξ ∈ Ξ̃′.

Proposition 4.4 Let ξ̃ ∈ Ξ̃′ and assume that (B) holds. Then, the process

ψ
(1)
t =

1

σt

(
r − µ−

(
b+

1

2

)
σ2

t − λ

∫ ∞

0
(eρλsx − 1) ξ̃(x)UL(x)dx

)
,

is predictable and a.s. square integrable on[0, T ] and there exists a predictable and on[0, T ] square

integrable processψ(2) = (ψ
(2)
t )t≥0 and a strictly positive, predictable functionξ = ξ(ω, t, x) satis-

fying (1 −√
ξ)2 ⋆ νL <∞ P–a.s. such that

Z ξ̃
t = E

(∫ ·

0
ψ(1)

s dWs +

∫ ·

0
ψ(2)

s dW V
s +

(
ξ̃ − 1

)
⋆ (µL − νL)

)

t

, 0 ≤ t ≤ T,

is a density process. We obtain an EMM by defining

dPξ̃ = Z ξ̃
TdP,

and the dynamics of the model under the probability measureP
ξ̃ are given by

dYt =

(
r − 1

2
σ2

t − λ

∫ ∞

0
(eρλtx − 1) ξ̃(x)UL(x)dx

)
dt+ σtdW

ξ̃
t + ρλtdL

ξ̃
λt,

dσ2
t = −λσ2

t dt + dLξ̃
λt,

ρt = −Vt,

dVt = (ζ ξ̃ − ηξ̃Vt)dt + θ
√
Vt(1 − Vt)dW

V,ξ̃
t ,

whereW ξ̃
t = Wt −

∫ t
0 ψ

(1)
s ds andW V,ξ̃

t = W V
t −

∫ t
0 ψ

(2)
s ds are P

ξ̃–Brownian motions andLξ̃
λt is a

P
ξ̃–subordinator. Also, we haveηξ̃ = η + φ, andζ ξ̃ = ζ

η+φ for a constantφ ∈ R. FurthermoreW ξ̃
t ,

W V,ξ̃
t andLξ̃

λt are independent underPξ̃. HenceP
ξ̃ ∈ M′.

Conversely, for anyP∗ ∈ M′ there exists a deterministic functioñξ ∈ Ξ̃′ such thatP∗ and P
ξ̃

coincide.

In order to conclude this section, we derive a quasi–explicit formula for the Laplace transform of
the logarithmic asset price in the GBNS model, which can be used for computing option prices in a
GBNS framework.

Proposition 4.5 In the GBNS model with stochastic leverage, the Laplace transformation withu ∈ R

is given by

E (exp(uYT )| Ft)

= exp

(
u(Yt + µ(T − t)) +

(
ub+

u2

2

)
1

λ

(
1 − e−λ(T−t)

)
σ2

t

)

E

(
exp

(
λ

∫ T

t
κ
(
uρλs +

v

λ

(
1 − e−λ(T−s)

))
ds

))
,

wherev = ub+ u2

2 and whereκ denotes the cumulant transform of the subordinatorL.
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So, if ρt is deterministic, we get a analytic expression for the Laplace transformation

E (exp(uYT )| Ft) = exp

(
u(Yt + µ(T − t)) + v

1

λ

(
1 − e−λ(T−t)

)
σ2

t

)

exp

(
λ

∫ T

t
κ
(
uρλs +

v

λ

(
1 − e−λ(T−s)

))
ds

)
.

If ρ is stochastic, we have to compute the expectation

E

(
exp

(
λ

∫ T

t
κ
(
uρλs +

v

λ

(
1 − e−λ(T−s)

))
ds

))
.

In general, we cannot expect to get an analytical expressionfor this expectation, even if we work with
stochastic processesρ whose distribution is known. In order to evaluate this expectation, one will
have to use Monte Carlo methods.

5 Volatility smiles

In this section, we study the influence of stochastic leverage on European call option prices and the
corresponding implied volatilities. We concentrate on thegeneralised Heston model (8) and assume
that the stochastic correlation processρ satisfies the SDE of a generalised Jacobi diffusion specifiedin
(7). Before going into details on the stochastic correlation model we first briefly describe the influence
of the model parameter in the classical Heston model, i.e. with constant correlation.

5.1 Influence of model parameters in the classical Heston model

The classical Heston model with constant correlation has been frequently studied in the literature.
The influence of the model parameters on the shape of the implied volatility smile is therefore well
understood, see e.g. (Hakala & Wystup 2002, Chapter 23). In general, the effect of changing the initial
varianceσ2

0 in the classical Heston model has a very similar effect as changing the long–run variance
β. The higherσ2

0 or β the higher are the implied volatilities. The smile therefore is shifted upwards
or downwards but keeps mainly the same overall shape.

In contrast, when the speed of mean reversion parameterα is changed, the overall shape of the
smile changes significantly, in particular with respect to the at the money part of the smile. For higher
values ofα the implied volatilities corresponding to at the money strike prices are shifted upwards
whereas the wings of the smile are hardly affected.

The volatility of the volatilityγ is of crucial importance for the shape of the smile. If it is set
equal to zero, the volatility process is deterministic and therefore the smile degenerates into a straight
horizontal line. Increasing the volatility of volatility increases the convexity of the smile.

The constant correlation in the classical Heston model influences the symmetry of the volatility
smile. If the correlation is 0 the smile is mainly symmetric whereas positive correlation corresponds
to a shift of the minimum of the smile towards higher strikes and negative correlation towards lower
strikes, i.e. positive correlation makes calls more expensive and negative correlation makes puts more
expensive.
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5.2 Influence of model parameters in the generalised Heston model

In order to compute European call option prices in the GH model with stochastic correlation given
by (7) we use Monte Carlo methods together with a classical truncated Euler scheme with 32,000 time
steps for an option with 10 years maturity, constant interest rater = 0 and strikes in{50, 51, . . . , 149, 150}.
The asset price at time0 is assumed to be100. We simulate100, 000 paths to compute one option
price. From these prices, we derive the corresponding implied volatilities and plot them for various
strikes.

We first study the influence of a stochastic correlation process in the Heston model on the shape
of the implied volatility smile. The default parameters of the stochastic variance process are taken
to beσ2

0 = 0.04, α = 0.8, β = 0.04, γ = 0.5. It should be noted that the CIR process with this
parameterisation does not satisfy the Feller condition2αβ ≥ γ2 and therefore0 is attainable. In
empirical studies it is often observed that the stochastic volatility process does not satisfy the Feller
condition, see e.g. the comments in Andersen (2007), Broadie & Kaya (2006), van Haastrecht &
Pelsser (2008), and we have therefore chosen this parameterisation.

The correlation processρ satisfies the SDE (7) with default parametersR0 = 0, R1 = 1, R2 =
0, R3 = 0, R4 = 1, R5 = 1.5. For more information on the model parameters used, see Appendix A.

In our numerical analysis we find that the overall influence ofthe parameters describing the dy-
namics of the stochastic volatility process on the shape of the smile stays the same as in the Heston
model (with constant correlation). As an example we just present the influence of the volatility of
volatility in Figure 2. We find that the smile is flatter for lower values ofγ.
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Figure 2: Sensitivity with respect toγ for γ ∈ {0.24, 0.5, 1}. Implied volatilities computed from
simulated call prices withS0 = 100, T = 10, r = 0. This Figure uses a slightly different scale for
the y-axis than all other Figures due to the large variation of the implied volatilities in the present
example.

Next, we consider the influence of the parameters describingthe stochastic correlation process.
Figure 3 shows the implied volatilities for different values of the volatility parameterR5 of the gen-
eralised Jacobi diffusion. For smallR5, the correlation process is almost deterministic whereas,for
large values ofR5, it is close to a jump–type diffusion. We find that changing the parameterR5 results
in an upwards or downwards shift of the implied volatilities. For increasing values ofR5, the implied
volatilities are first shifted downwards. ForR5 = 5, however, we see that the implied volatilities are
again almost the same as forR5 = 0.1. This is due to the fact that the stochastic correlation process in
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that case resembles already a jump–diffusion type model andit is mostly taking extreme values−1, 1,
which results in a very similar behaviour as just assuming analmost deterministic correlation around
zero.

Figure 4 shows the sensitivity of the implied volatilities with respect to the support of the corre-
lation process modelled in terms of the parametersR2 andR4. We find that these parameters have a
strong influence on the shape and the location of the smile. Inparticular, we observe that the negative
correlation process (R2 = −0.5, R4 = 0.5, i.e. support[−1, 0], long–term mean−0.5) has higher
implied volatilities for higher strike prices than the positive correlation process (R2 = 0.5, R4 = 0.5,
i.e. support[0, 1], long–term mean0.5) and vice versa for lower strike prices. The correlation process
which can take both positive and negative values (R2 = 0, R4 = 1, i.e. support[−1, 1], long–term
mean0) is almost symmetric around the at the money price and exhibits a true smile shape. Indeed,
we find here as well that the positive correlation process makes calls more expensive and the negative
correlation process makes puts more expensive.

Figure 5 compares the correlation process varying in a smaller interval[−0.5, 0.5] to those varying
in the larger interval[−1, 1]. For both intervals we compare slow and fast mean reversion,i.e.R1 =
0.1 andR1 = 1 respectively. We see that the influence of the speed of mean reversion here is marginal.
The support of the correlation process, however, does determine the overall location of the smile. We
find that a smaller support for the correlation process results in higher overall implied volatilities.

Figure 6 compares the classical Heston model with constant correlation equals zero, to the GH
were the correlation process varies in either[−0.5, 0.5] with long–term mean0 or in [−1, 1] with long–
term mean0. We find that if the correlation process varies only in a smallinterval the resulting implied
volatilities are very similar to those of the classical Heston model where a constant correlation where
chosen which is the center of this interval. This is obviously not surprising. The implied volatilities
for constant correlation are generally higher than those for stochastic correlation in this example. If
the stochastic correlation process varies in a wider interval (here[−1, 1]), then the implied volatilities
are generally even lower.

Figure 7 shows the influence of the parameterR3 on the shape of the smile for a mean reversion
parameterR1 ∈ {0.1, 1}. We are again considering a stochastic correlation processin [−1, 1] and
study different values forR3 which result in different long–term means of the stochasticcorrelation
process. Due to the parameterisation of the model, the long term meanR2 +R3R4 corresponds toR3

in this example. We find that this parameter strongly influences the shape of the smile. If the long–
term mean is0, we observe an almost symmetric smile, whereas a negative ora positive long–term
mean results in a left– and a right–skew, respectively. Generally, we find that the smiles in Figure
7(b) corresponding toR1 = 0.1 are flatter and exhibit a stronger smile shape rather than just skew
shape compared to a fast mean reversion parameterR1 = 1 in Figure 7(a). Moreover, we find that the
influence of the speed of mean reversion parameterR1 is more pronounced when the long–run mean
is leading to asymmetric implied volatilities.

In general, we find that for negative support of the correlation function or for a negative long–term
mean, the European call prices are higher for strike prices smaller thanS0 and are smaller for strike
prices greater thanS0 than the prices for positive support or positive long–term mean or symmetric
correlation processes which can take both negative and positive values.

In principal, the support of the correlation process together with its long–term mean can be used
to model the symmetry of the smile. For asymmetric smile the speed of mean reversion parameter can
be chosen to increase or decrease the convexity of the smile.For symmetric smiles the influence of
this parameter seems to be marginal. The length of the support of the correlation process can be used
to shift the implied volatilities upwards or downwards. In particular the more values the correlation
process can take, the lower are usually the implied volatilities.
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Figure 3:Sensitivity with respect toR5 for R5 ∈ {0.1, 1.5, 1}.
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Figure 4:Sensitivity with respect toR2, R4.
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Figure 5:Sensitivity with respect toR1, R2, R4.
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Figure 6: Influence of stochastic correlation.Comparison of the classical Heston model with con-
stant correlation= 0 and the Heston model with stochastic correlation process in(−0.5, 0.5) with
long–term mean= 0 and in(−1, 1) with long–term mean= 0.
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(a) Sensitivity with respect toR3 for R1 = 1.
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(b) Sensitivity with respect toR3 for R1 = 0.1.

Figure 7:Sensitivity with respect toR3 for different values of R1.
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6 Influence of leverage effect and volatility feedback effect on return–
volatility regressions

So far, we have studied the concept of stochastic leverage and have investigated its impact in the
context of equivalent martingale measures and option pricing. This section and the following one are
now devoted to more statistical aspects of stochastic leverage, which arise when one is interested in
measuringthe leverage effect.

We start with a very simple set up: A standard tool in econometrics for quantifying the empirical
leverage effect is by means of return–volatility regressions of various types. The aim of this section is
now to study the impact of stochastic leverage on such return–volatility regressions and to investigate
further how well we can measure both the leverage effect and the volatility feedback effect in the GH
and GBNSJ model based on a simple regression framework. A short note on forecasting volatility
based on option implied volatility will round off this section and will link it to the topics of change of
measure and applications to option pricing we studied before.

Our work extends recent work by Bollerslev & Zhou (2006), Bollerslev et al. (2006) to the GH
model with stochastic leverage and furthermore derives thecorresponding results for the GBNSJ
which allows for stochastic leverage in terms of a linearly transformed Jacobi process. Note in par-
ticular that, throughout this section, we work under the assumption that the instantaneous volatility
feedback effect, which is described by the parameterb in the drift of the log–price process ispositive
in order to obtain results which are comparable to the ones inBollerslev & Zhou (2006).

6.1 Leverage effect

First of all, we focus on the classical leverage effect, which is referred to as the – usually negative –
correlation between lagged returns and current volatility. In order to measure this effect, econometri-
cians usually study the population regressions for integrated volatility, given by

∫ t+h

t
σ2

udu = G+D

∫ t

t−h
dYu + ǫt,t+h, (12)

and for the option implied volatility, we write

E
∗
t

(∫ t+h

t
σ2

udu

)
= G∗ +D∗

∫ t

t−h
dYu + ǫ∗t,t+h, (13)

for constantsG,D,G∗,D∗ ∈ R and for white noise processesǫ, ǫ∗. Note that we denote byE∗
t the

conditional expectation under the equivalent, risk–neutral martingale probability measureP∗, condi-
tional onFt.

In the literature, we find some empirical studies which findD to be positive and others which
indicate thatD is negative (for a discussion on these results and further references to the corresponding
empirical studies see Bollerslev & Zhou (2006)). In this section, we will shed some light on how both
a positive and a negative leverage effect can be explained both in a GH model and in a GBNS model.
Motivated by the empirical findings, we will assume throughout this section thatE(ρ) < 0, which
is in line with the assumption of Bollerslev & Zhou (2006), who assumed that the deterministic,
instantaneous correlation coefficient is negative.
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Recall that the GH model is given by equation (8), i.e.

dYt = (µ+ bσ2
t )dt+ σt

(
ρtdWt +

√
1 − ρ2

t W̃t

)
,

dσ2
t = α(β − σ2

t )dt+ γσtdWt,

for positive constantsµ, b, α, β, γ, and whereW,W̃ are independent Brownian motions andρ is a
stochastic process taking values in[−1, 1], which is independent ofW andW̃ . For ease of exposition,
we will additionally assume thatρ is stationary, e.g.ρ is a linearly transformed stationary Jacobi pro-
cess. Furthermore, when we apply a structure preserving change of measure as discussed in Section 4,
the memory parameter of the volatility process under the risk neutral measure is given byα∗ = α+A,
where the constantA is usually assumed to be negative, i.e.α∗ < α, and the long term mean under
the risk neutral measure is denoted byβ∗.

Proposition 6.1 In the GH model, with standard parameter restrictionsα,α∗, β, β∗, γ, b > 0, A <
0 and with a stationaryρ with E(ρ) < 0, the population slope parameters and intercepts in the
population regressions (12) and (13) are given by

D =

(
bβγ2

2α + βE(ρ)γ
)

1
α2

(
1 − e−αh

)2

βh+ bβγ
α2

(
bγ
α + 2E(ρ)

)
(−1 + hα+ e−αh)

,

G = hβ −D(µ+ bβ)h,

and

D∗ =

(
bβγ2

2α + βE(ρ)γ
)

1
α

(
1 − e−αh

)
1

α∗

(
1 − e−α∗h

)

βh+ bβγ
α2

(
bγ
α + 2E(ρ)

)
(−1 + hα+ e−αh)

,

G∗ = (β − β∗)
1

α∗

(
1 − e−α∗h

)
+ hβ∗ −D∗(µ+ bβ)h.

Also, if0 < b < −2E(ρ)α
γ , thenD∗ < D < 0 and if0 < −2E(ρ)α

γ < b, we get0 < D < D∗.

As in Bollerslev & Zhou (2006), we also find for the GH model which allows for a stochastic leverage
effect that theempirical leverage coefficient, given byD andD∗, respectively, depends positively
on the instantaneousvolatility feedback parameterb and negatively on theinstantaneousleverage
parameter which is given by the mean of the stochastic leverage effectE(ρ). Depending on which
effect is more pronounced we might find both a negative or a positive empirical leverage coefficient
in empirical studies.

Next, we study the population regressions in the GBNSJ model. Recall that the GBNSJ model is
defined by equations (9) and (10). Furthermore, we will denote byλ∗ the memory parameter ofσ2

under the risk neutral measure.

Proposition 6.2 In the GBNSJ model, with standard parameter restrictionsµ, b, λ, λ∗, ζ, η, θ, κ1 =
E(L1), κ2 = V ar(L1), κ

∗
1 = E

∗(L1) > 0 and E(ρ) < 0, the population slope parameters and
intercepts in the population regressions (12) and (13) are given by

D =
κ2

(
b
2 + E(ρ)

λ

)
1
λ2

(
1 − e−λh

)2 − κ2
1E(ρ)h

(
−1 + λh+ e−λh

)

V ar
(∫ t

t−h dYs

) ,
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where

V ar

(∫ t

t−h
dYs

)
= bκ2 {2λE(ρ) + b} 1

λ2

(
−1 + λh+ e−λh

)

+ 2λ2κ2
1E
(
ρ2
) 1

λ2η2

(
−1 − ληh+ eληh

)
+ κ1 (1 + λE(ρ))h.

The intercept in the regression is given by

G = hκ1 −D(µ+ bκ1 + λκ1E(ρ))h.

For the implied volatility, we get

D∗ =

(
bκ2

2 + E(ρ)κ2λ
)

1
λ

(
1 − e−λh

)
1
λ∗

(
1 − e−λ∗h

)

V ar
(∫ t

t−h dYs

) ,

G∗ = (κ1 − κ∗1)
1

λ∗

(
1 − e−λ∗h

)
+ hκ∗1 −D∗(µ+ bκ1 + λκ1E(ρ))h.

The findings in the GBNSJ model are similar to the ones we obtain in the GH model. The first
part of the numerator of the empirical leverage coefficient is basically equivalent to the coefficient
we obtain in the GH model. However, in addition, we obtain a term which depends positively on
the instantaneous mean of the stochastic leverage. That means that, even if the volatility feedback
parameter is small or even zero, we could nevertheless find a positive empirical leverage coefficient.
Note that in the population regression based on the option implied volatility, the extra term, which
depends positively on the instantaneous leverage effect, is no longer present.

6.2 Volatility feedback effect

Now we focus on the so–calledvolatility feedback effectwhich is regarded as the usually positive
correlation between current volatility and future returns. In order to measure it empirically, econome-
tricians usually focus on the following two population regressions:

∫ t+h

t
dYu = G̃+ D̃

∫ t+h

t
σ2

udu+ ǫ̃t,t+h, (14)

and
∫ t+h

t
dYu = G̃∗ + D̃∗

E
∗
t

(∫ t+h

t
σ2

udu

)
+ ǫ̃∗t,t+h, (15)

for constants̃G, D̃, G̃∗, D̃∗ ∈ R and wherẽǫ, ǫ̃∗ denote white noise processes.
Note that the main difference between the leverage and the volatility feedback effect, from an

empirical point of view, lies in thecausality (as discussed by Bollerslev et al. (2006)): While the
leverage effect describes how a negative price increment leads to an increase in subsequent volatility,
the volatility feedback effect explains how an increase in volatility can give rise to negative price
increments.

The corresponding results for the volatility feedback effect in the GH and GBNSJ model are now
given as follows.
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Proposition 6.3 In the GH model, with standard parameter restrictionsα,α∗, β, β∗, γ, b > 0,A < 0
and with a stationaryρ with E(ρ) < 0 andµ 6= 0, the population slope parameters and intercepts in
the regressions (14) and (15) are given by

D̃ = b+
αE(ρ)

γ
< b, G̃ =

(
µ− βαE(ρ)

γ

)
h,

and

D̃∗ = b
1
α

(
1 − e−αh

)

1
α∗ (1 − e−α∗h)

< b,

G̃∗ = (µ+ bβ)h− D̃∗

(
β∗h+ (β − β∗)

1

α∗

(
1 − e−αh

))
.

Also, we get for0 < b < −E(ρ)α
γ that

D̃ < 0 < D̃∗ < b,

and for0 < −E(ρ)α
γ < b < αE(ρ)

γ

1

α∗

(
1−e−α

∗
h

)

1

α
(1−e−αh)− 1

α∗ (1−e−α∗h)
, we have

0 < D̃ < D̃∗ < b.

The results above show clearly, that the instantaneous volatility feedback effect which is given by
b is systematically underestimated by the empirical volatility feedback effectD̃ in the presence of
stochastic leverage with negative mean. The same result also holds when we look at the option implied
return–volatility regression.

In the GBNSJ model, the findings are very similar again. An additional nice feature in this mod-
elling framework is that the intercept of the population regression equals thetruedrift, which was not
the case in the generalised Heston model.

Proposition 6.4 In the GBNSJ model, with standard parameter restrictionsµ, b, λ, λ∗, ζ, η, θ, κ1 =
E(L1), κ2 = V ar(L1), κ

∗
1 = E

∗(L1) > 0, E(ρ) < 0 andµ 6= 0 andλ∗ ≤ λ, the population slope
parameters and intercepts are given by

D̃ = b+ λE(ρ) < b, G̃ = µh,

and

D̃∗ = b
1
λ

(
1 − e−λh

)

1
λ∗ (1 − e−λ∗h)

≤ b,

G̃∗ = (µ+ bκ1 + λκ1E(ρ))h− D̃∗

(
κ∗1h+ (κ1 − κ∗1)

1

λ∗

(
1 − e−λh

))
.

Also, if additionallyλ∗ < λ∗, we get for0 < b < −E(ρ)λ that

D̃ < 0 < D̃∗ < b,

and for0 < −E(ρ)λ < b < λE(ρ)
1

λ∗

(
1−e−λ

∗
h

)

1

λ
(1−e−λh)− 1

λ∗ (1−e−λ∗h)
, we have

0 < D̃ < D̃∗ < b.



7 A SHORT NOTE ON ESTIMATION AND INFERENCE 26

6.3 Implied volatility forecasting bias

The final part of this section focuses on the impact of the leverage effect on creating a bias when
forecasting volatility based on option implied volatility. The corresponding population regression is
given by

∫ t+h

t
σ2

udu = G+DE
∗
t

(∫ t+h

t
σ2

udu

)
+ ǫt,t+h, (16)

whereG,D ∈ R and ǫ denotes white noise. Ideally, we would like to have thatG = 0 and that
D = 1. This would imply that the implied volatility generates unbiased volatility forecasts. However,
we obtain the following results for the GH and GBNSJ model.

Proposition 6.5 Under the same assumptions as in Proposition 6.3 and Proposition 6.4 the slope and
the intercept of the population regression (16) in the GH model is given by

D =
1
α

(
1 − e−αh

)

1
α∗ (1 − e−α∗h)

< 1,

G = β

(
h− 1

α

(
1 − e−αh

))
+ β∗

(
h− 1

α∗

(
1 − e−α∗h

)) 1
α

(
1 − e−αh

)

1
α∗ (1 − e−α∗h)

,

and in the GBNSJ model, we get

D =
1
λ

(
1 − e−λh

)

1
λ∗ (1 − e−λ∗h)

≤ 1,

G = κ1

(
h− 1

λ

(
1 − e−λh

))
+ κ∗1

(
h− 1

λ∗

(
1 − e−λ∗h

)) 1
λ

(
1 − e−λh

)

1
λ∗ (1 − e−λ∗h)

.

So we observe that while we underestimate the slope coefficient in the GH model, this is not neces-
sarily true in the GBNSJ model. However, under the additional assumption thatλ∗ < λ, we get that
D < 1 in both models.

After we have studied a very simple method for quantifying leverage–type effects in form of
return–volatility regressions and after we have found out what impact thestochasticleverage has on
such regressions, we will next turn to more advanced methodsfor measuring the leverage effect.

7 A short note on estimation and inference

Last but not least, we address the problem of estimation and inference in our two new models in the
presence of stochastic leverage. In fact, there are two types of estimation problems which should
be discussed: First of all, there is the question of how we canestimate stochastic leverage non–
parametrically and how we can make inference on it. Second, it is interesting to investigate how the
model parameters in both the GHJ and the GBNSJ model can be estimated.

Throughout this section, we will work under the physical probability measure and we will assume
that we observe the asset price at high frequencies. Furthermore, we ignore any sort of microstructure
effect and just refer to Bandi & Russell (2008), Zhang et al. (2005), Hansen & Lunde (2006), Jacod
et al. (2008), Barndorff-Nielsen et al. (2008a,b) and the references therein for a detailed account on
this matter.
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7.1 Non–parametric estimation of the leverage effect

We start with the question of how to estimate the stochastic leverage non–parametrically. This ques-
tion has recently been addressed by Bandi & Renò (2008b) in a modelling framework which allows for
local stochastic leverage. However, here we are interested in even more general models for stochastic
leverage. So, we will proceed differently. Since, stochastic leverage is a special case of stochastic
volatility it is natural to use similar methods for estimating the leverage than the ones which are very
successful in estimating stochastic volatility.

Throughout the section, we assume that we observe the logarithmic asset priceY = (Yt)t≥0 over
a time interval[0, T ] for someT > 0 at timesi∆n for i = 0, 1, . . . , ⌊T/∆n⌋ for some∆n > 0 such
that ∆n → 0 asn → ∞. Then we write∆n

i Y = Yi∆n
− Y(i−1)∆n

for the ith return ofY . In the
following, we always assume that0 ≤ t ≤ T .

A key quantity in estimating the stochastic volatility/leverage is the quadratic variation process,
see e.g. Protter (2004), denoted by the square bracket[·] and its empirical counter part, therealised
variance(RV) (Andersen & Bollerslev (1998), Barndorff-Nielsen & Shephard (2001, 2002)), which
is defined by

RV n
t =

⌊t/∆n⌋∑

i=1

(∆n
i Y )2 .

Clearly,RV n
t → [Y ]t asn→ ∞, where the convergence is uniform on compacts in probability (ucp),

see Protter (2004).
Note that in the GH model, the quadratic variation[Y ]t is given by

∫ t
0 σ

2
sds, whereas in the GBNS

model we obtain
∫ t
0 σ

2
sds+

∑
0≤s≤t ρ

2
λs (Lλs)

2.
The concept of realised variance has been generalised to realised multipower variation (Barndorff-

Nielsen & Shephard (2006a), Barndorff-Nielsen et al. (2006), Jacod (2008),Veraart (2009)) and trun-
cated realised variance (Mancini (2001, 2006), Jacod (2008)) in order to estimate the continuous and
the discontinuous part of the quadratic variation separately. These methods seem to be promising tools
when we look at the GBNS model, since the stochastic correlation coefficient appears in the jump part
of the quadratic variation and can be estimated separately based on the difference of realised variance
and realised multipower variation. However, we observe that, when we are in the GH model, the
stochastic leverage has no contribution to the quadratic variation. In order to estimate it we should
hence focus on the quadratic covariation instead. In the GH model, we have

d[Y, σ2]t = γσ2
t ρtdt, (17)

and in the GBNS model, we get

d[Y, σ2]t = ρλtd[L]λt. (18)

In order to estimate[Y, σ2] non–parametrically, one can use an estimator proposed by Mykland
& Zhang (2009), which is based on the sum of the products of thehigh frequency increments of
the logarithmic asset price and suitably normalised estimated spot variances, see e.g. Lee & Mykland
(2006), Bandi & Renò (2008a). Note that Mykland & Zhang (2009) focus on continuous Itô processes
for the asset prices which, clearly, do not include the GBNS model. However, extensions of their work
to the jump case (using similar reasoning as in Jacod (2008))are likely to be straightforward to derive
and will be studied elsewhere in future research.
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7.2 Parameter estimation in models which allow for stochastic leverage

Next, we turn our attention to the question of how we can estimate the model parameters which specify
the GH and the GBNS model. Parameter estimation in stochastic volatility models has been studied
intensively in the last decade. Popular methods include (quasi-) maximum likelihood estimation, see
Barndorff-Nielsen & Shephard (2006b), Gallant (1997), generalised methods of moments, see e.g.
Bollerslev & Zhou (2002), and simulation methods, see e.g. Roberts et al. (2004), Frühwirth-Schnatter
& Sögner (2001), Griffin & Steel (2006), and Aı̈t-Sahalia & Kimmel (2007) and the references therein.

Following the work by Barndorff-Nielsen & Shephard (2006b), Veraart (2008), Todorov (2009b,a),
we can use the time series of realised variances/multipowervariation for estimating the model param-
eters of the generalised Heston and BNS model, since we can compute all moments of interest in
explicit form (see the appendix) or can use suitable approximations as in Todorov (2009a), and hence,
can use quasi–maximum likelihood methods or general methods of moments for estimating the model
parameters and for making inference on them. An implementation of such estimation methods will
be left for future research.

8 Concluding remarks

This paper contains a systematic treatment of the new concept of a stochastic leverage effect in
stochastic volatility models. By modelling the stochasticleverage effect explicitly, e.g. by means
of a linear transformation of a Jacobi process, we have foundan analytically tractable asset price
model which allows for an easy economic interpretation of both stochastic volatility and stochastic
leverage.

In order to get a better understanding of such models, we haveproposed two new stochastic
volatility models which allow for stochastic leverage: thegeneralised Heston model and the gener-
alised Barndorff–Nielsen & Shephard model.

We have studied in detail how such models behave under both the empirical and the risk neutral
probability measure and we have investigated the implied volatility patterns of such more general
stochastic volatility and stochastic leverage models. Finally, we have addressed statistical aspects, in
such a new model class. In particular, we have given explicitresults on how a stochastic leverage
effect affects return–volatility regression and the ability to forecast volatility based on option implied
volatilities. Furthermore, we have indicated how one can estimate stochastic leverage and the param-
eters in these new model classes.

In future research, it will be interesting to study multivariate extensions of our new models and to
carry out an empirical study by implementing the estimationtechniques described in this paper.
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APPENDIX

A Choice of parameters for the simulation study

The following table contains all the parameter values used in the simulations for Figure 2 - 7.
We considered European call options with asset price at time0 given byS0 = 100, maturity

T = 10 and interest rater = 0.

R0 R1 R2 R3 R4 R5 σ2
0 α β γ

Figure 2: Influence of the volatility of volatilityγ:
0.0 1.0 0.0 0.0 1.0 1.5 0.04 0.8 0.04 0.24
0.0 1.0 0.0 0.0 1.0 1.5 0.04 0.8 0.04 0.5
0.0 1.0 0.0 0.0 1.0 1.5 0.04 0.8 0.04 1.0

Figure 3: Influence of the volatility of the correlation processR5:
0.0 1.0 0.0 0.0 1.0 0.1 0.04 0.8 0.04 0.5
0.0 1.0 0.0 0.0 1.0 1.0 0.04 0.8 0.04 0.5
0.0 1.0 0.0 0.0 1.0 1.5 0.04 0.8 0.04 0.5
0.0 1.0 0.0 0.0 1.0 5.0 0.04 0.8 0.04 0.5

Figure 4: Influence of the range of the correlation process modelled byR2, R4:
-0.5 1.0 -0.5 0.0 0.5 1.5 0.04 0.8 0.04 0.5
0.0 1.0 0.0 0.0 1.0 1.5 0.04 0.8 0.04 0.5
0.5 1.0 0.5 0.0 0.5 1.5 0.04 0.8 0.04 0.5
Figure 5: Influence of the range of the correlation process modelled byR4 and the speed of mean reversionR1:
0.0 1.0 0.0 0.0 0.5 1.5 0.04 0.8 0.04 0.5
0.0 0.1 0.0 0.0 0.5 1.5 0.04 0.8 0.04 0.5
0.0 1.0 0.0 0.0 1.0 1.5 0.04 0.8 0.04 0.5
0.0 0.1 0.0 0.0 1.0 1.5 0.04 0.8 0.04 0.5

Figure 6: Influence of the stochastic correlation versus constant correlation:
0.0 1.0 0.0 0.0 1.0 1.5 0.04 0.8 0.04 0.5
0.0 1.0 0.0 0.0 0.5 1.5 0.04 0.8 0.04 0.5
0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.8 0.04 0.5

Figure 7(a): Influence of the long–term mean influenced byR3 for speed of mean reversionR1 = 1:
0.0 1.0 0.0 0 1.0 1.5 0.04 0.8 0.04 0.5
0.5 1.0 0.0 0.5 1.0 1.5 0.04 0.8 0.04 0.5
-0.5 1.0 0.0 -0.5 1.0 1.5 0.04 0.8 0.04 0.5

Figure 7(b): Influence of the long–term mean influenced byR3 for speed of mean reversionR1 = 0.1:
0.0 0.1 0.0 0.0 1.0 1.5 0.04 0.8 0.04 0.5
0.5 0.1 0.0 0.5 1.0 1.5 0.04 0.8 0.04 0.5
-0.5 0.1 0.0 -0.5 1.0 1.5 0.04 0.8 0.04 0.5

Table 1: Parameter values used in the simulations for Figure2 - 7.
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B Proofs

B.1 Proofs for Section 3

Proof of Proposition 3.3: The drift and the continuous martingale part are straightforward to derive
and, for the jump part, we get∆Yt = ρλt−∆Lλt, and

Y d
t =

∫ t

0

∫ 0

−∞
zµY (dz, ds) =

∫ t

0
ρλs−dLλs =

∑

0≤s≤t

ρλs−∆Lλs

=

∫ t

0

∫ ∞

0
xρλs−µL(dx, λds),

whereµL denotes the Poisson random measure associated withL with predictable compensatorνL.
In particular, for anyA ∈ B(R \ {0}), we get

IA(−x) ⋆ µY = 1IA(ρλx) ⋆ µL,

and, hence,

IA(−x) ⋆ νY = 1IA(ρλx) ⋆ νL.

Note thatνL is factorisable and homogeneous withνL(dx, ds) = UL(dx)ds, whereUL is the Lévy
measure ofL. Hence, we get for anyA ∈ B(R \ {0})

IA(−x) ⋆ νY (dx, dt) = IA(ρλx) ⋆ UL(dx)λdt.

�

B.2 Proofs for Section 4

Proof of Proposition 4.2: Proposition 4.2 is a straightforward application of the Girsanov theorem.
Note that the independence of the Brownian motions under therisk neutral measure follows along the
lines of Musiela & Rutkowski (2005, p. 233). �

Proof of Proposition 4.3: We start this proof by giving a very general outline on how to construct
the density processZ. It turns out thatZ is given by the Doléans–Dade exponential of the local
martingaleN , whereN is constructed in the following. Note that throughout this proof, we follow
closely Jacod & Shiryaev (2003, III.5). Let

at = νY ({t},R),

ξ̂t =

{ ∫
ξ(t, x)νY ({t}, dx), if the integral exists

∞, otherwise.

We define a predictable time by

Σ = inf{t : eitherξ̂t > 1,or at = 1andξ̂t < 1},
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which is always positive and we define

Ht =

∫ t

0
ψsσ

2
sI[0,Σ)(s)ds +

∫ t

0

∫ ∞

0

(
1 −

√
ξ(s, x)

)2
I[0,Σ)(s)νY (ds, dx)

+
∑

s≤t

(√
1 − as −

√
1 − ξ̂s

)2

I[0,Σ)(s).

Furthermore, let

Tn = inf(t,Ht ≥ n), ∆ = [0,Σ) ∩ (∪n[0, Tn]) .

From Jacod & Shiryaev (2003, Proposition III.5.10), we get that there is a unique processN on the set
∆ such that for every stopping timeτ which satisfies[0, τ ] ⊂ ∆, the stopped processN τ is aP–local
martingale given by

N τ = (ψI{[0,τ ]}) · Y c + Ṽ I{[0,τ ]} ⋆ (µY − νY ),

Ṽ =

(
ξ − 1 +

ξ̂ − a

1 − a
I{a<1}

)
I{[0,Σ)},

under suitable integrability conditions on the processes such that the integrals above exist.
The density process has then the form

Z = Z0 + (Z−ψ) · Y c +
(
Z−Ṽ

)
⋆ (µY − νY ) + Z ′,

where all quantities are as defined above andZ ′ is aP–local martingale withZ ′
0 = 0,

〈
Z

′c, Y c
〉

= 0

andE (Z ⋆ µY | P̃
)

= 0, see Jacod & Shiryaev (2003, Lemma III.5.17).

If we additionally assume that all local martingales underP are representable relative toY , see
Jacod & Shiryaev (2003, III.4c), and thatat = 0 (which implies thatY is quasi–left continuous), then
the density process is, according to Jacod & Shiryaev (2003,Theorem III.5.19), given by

Z = Z0 + (Z−ψ) · Y c + (Z−(ξ − 1)) ⋆ (µY − νY ),

which is the density mentioned by Nicolato & Venardos (2003). This result can also be written as

Zt =

{
Z0 exp

(
Nt − 1

2

∫ t
0 ψ

2
sσ

2
sds
)∏

0≤s≤t (1 + ∆Ns) e
−∆Ns , if t ∈ ∆,

0, if t 6∈ ∆
.

Furthermore, we deduce from Jacod & Shiryaev (2003, II.8) that the formula above is equivalent to

Zt =

{
Z0E(Nt), if t ∈ ∆,
0, if t 6∈ ∆

.

Now, we have all the means to carry out the proof of the proposition: Using the above results, we
apply the generalised Girsanov theorem to the triple(W,W V , L). In particular, we get that

W ∗
t = Wt −

∫ t

0
ψ(1)

s ds, W V ∗
t = W V

t −
∫ t

0
ψ(2)

s ds,
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are Brownian motions with respect toP∗, and

ν∗L(dt, dx) = λξ(t, x)UL(x)dxdt

is the compensator ofµLλ
underP

∗. Under the new measureP∗, the asset priceS satisfies the
following SDE:

dSt = St−(b∗t dt + σtdW
∗
t + dM∗

t ),

where
∫ λt

0

∫ ∞

0
(eρtx − 1) (µL − ν∗L)(dx, ds),

and

b∗t = µ+

(
b+

1

2

)
σ2

t + λ

∫ ∞

0
(eρλsx − 1) ξ(t, x)UL(dx) + σtψ

(1)
t .

In order to ensure thate−rtSt is a (local) martingale underP, we setb∗t = r. �

Proof of Proposition 4.4: The first part of the proof follows from the general Girsanov theorem and
the arguments given in the proof of Nicolato & Venardos (2003, Theorem 3.2). Additionally, we
deduce the independence ofLξ̃ andW V,ξ̃ underP

∗ from Sato (1999, Theorem 19.3). Finally, a
straightforward computation along the lines of Musiela & Rutkowski (2005, p. 233) shows thatW V,ξ̃

andW ξ̃ are independent underP
∗. �

Proof of Proposition 4.5: Let u ∈ R. Then

E (exp(u(YT − Yt))| Ft)

= E

(
exp

(
u

(
µ(T − t) + b

∫ T

t
σ2

sds

)
+ u

∫ T

t
σsdWs + u

∫ T

t
ρλsdLλs

)∣∣∣∣Ft

)

= E

(
E

(
exp

(
u

(
µ(T − t) + b

∫ T

t
σ2

sds

)
+ u

∫ T

t
σsdWs + u

∫ T

t
ρλsdLλs

)

| FL,FW V
)∣∣∣Ft

)

= E

(
exp

(
u

(
µ(T − t) + b

∫ T

t
σ2

sds

)
+ u

∫ T

t
ρλsdLλs

)

E

(
exp

(
u

∫ T

t
σsdWs

)∣∣∣∣F
L,FW V

)∣∣∣∣Ft

)
.

Note that

E

(
exp

(
u

∫ T

t
σsdWs

)∣∣∣∣F
L,FW V

)
= exp

(
u2

2

∫ T

t
σ2

sds

)
,
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hence, we have

E (exp(u(YT − Yt))| Ft)

= E

(
exp

(
uµ(T − t) + u

∫ T

t
ρλsdLλs +

(
ub+

u2

2

)∫ T

t
σ2

sds

)∣∣∣∣Ft

)

= exp(uµ(T − t))E

(
exp

(
u

∫ T

t
ρλsdLλs +

(
ub+

u2

2

)∫ T

t
σ2

sds

)∣∣∣∣Ft

)
.

Note that
∫ T

t
σ2

sds =
1

λ

(
1 − e−λ(T−t)

)
σ2

t +
1

λ

∫ T

t

(
1 − e−λ(T−s)

)
dLλs.

Hence, we get forv =
(
ub+ u2

2

)
that

E (exp(u(YT − Yt))| Ft) = exp

(
uµ(T − t) + v

1

λ

(
1 − e−λ(T−t)

)
σ2

t

)

E

(
exp

(∫ T

t

(
uρλs +

v

λ

(
1 − e−λ(T−s)

))
dLλs

)∣∣∣∣Ft

)
.

Now we apply Cont & Tankov (2004, Lemma 15.1) and obtain

E

(
exp

(∫ T

t

(
uρλs +

v

λ

(
1 − e−λ(T−s)

))
dLλs

)∣∣∣∣F
W V

,Ft

)

= exp

(
λ

∫ T

t
κ
(
uρλs +

v

λ

(
1 − e−λ(T−s)

))
ds

)
,

whereκ denotes the cumulant transform of the subordinatorL. �

B.3 Proofs for Section 6

Proof of Proposition 6.1: Note that

E
(
σ2

0

)
= β, E

(
σ4

0

)
= β2 +

βγ2

2α
, V ar

(
σ2

0

)
=
βγ2

2α
,

E
(
σ2

u, σ
2
s

)
= β2 +

βγ2

2α
e−α|u−s|, Cor

(
σ2

u, σ
2
s

)
= e−α|u−s|.

First, we computeV ar
(∫ t

t−h dYs

)
. Note that

∫ t

t−h
dYs = Yt − Yt−h = µh+ b

∫ t

t−h
σ2

sds+

∫ t

t−h
σsdXs.

Clearly,

E

(∫ t

t−h
dYs

)
= µh+ bhE

(
σ2

0

)
= (µ+ bβ)h.
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Also,

E
(
Y 2

t

)
= E

(
2

∫ t

0
YddYs + [Y ]t

)

= 2E

(∫ t

0

∫ s

0

(
(µ+ bσ2

u)du+ σudXu

) (
µ+ bσ2

s

)
ds

)
+ tE

(
σ2

0

)

= µ2t2 + 2µbβt2 + b2
βγ2

α3

(
−1 + αt+ e−αt

)
+ b2β2t2 + tβ.

Note that

E

(∫ t

0

∫ s

0
σudXuσ

2
sds

)
= E

(∫ t

0

∫ s

0
σuρudWuσ

2
sds

)

= −αE

(∫ t

0

∫ s

0

∫ x

0
σuρudWuσ

2
xdxds + βE(ρ)γ

t2

2

)
,

and when we solve this integral equation, we get

E

(∫ t

0

∫ s

0
σudXuσ

2
sds

)
=
βE(ρ)γ

α2

(
−1 + αt+ e−αt

)
.

SinceY has stationary increments, we conclude that

E
(
(Yt − Yt−h)2

)
= µ2h2 + 2µbβh2 + b2

(
−βγ

2

α3
+
βγ2

α2
h+ β2h2 +

βγ2

α3
e−αh

)
+ hβ

+ 2b
βE(ρ)γ

α2

(
−1 + αh+ e−αh

)
.

Hence

V ar (Yt − Yt−h) = βh+

(
b2
βγ2

α3
+ 2b

βE(ρ)γ

α2

)(
−1 + hα+ e−αh

)

= βh+
bβγ

α2

(
bγ

α
+ 2E(ρ)

)(
−1 + hα+ e−αh

)
.

Next, we compute the covariance. Clearly,

Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
dYs

)

= bCov

(∫ t+h

t
σ2

udu,

∫ t

t−h
σ2

sds

)
+ Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
σsdXs

)

=

(
bβγ2

2α
+ βE(ρ)γ

)
1

α2

(
1 − e−αh

)2
,

since

Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
σ2

sds

)
=
βγ2

2α

∫ t+h

t

∫ t

t−h
e−α|u−s|duds =

βγ2

2α

1

α2

(
1 − e−αh

)2
,
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and

Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
σsdXs

)
= E

(∫ t+h

t

∫ t

t−h
σsρsdWsσ

2
udu

)

=
βE(ρ)γ

α2

(
1 − e−αh

)2
.

Hence, we get

D :=
Cov

(∫ t+h
t σ2

udu,
∫ t
t−h dYs

)

V ar
(∫ t

t−h dYs

) =

(
bβγ2

2α + βE(ρ)γ
)

1
α2

(
1 − e−αh

)2

βh+ bβγ
α2

(
bγ
α + 2E(ρ)

)
(−1 + hα+ e−αh)

.

Hence, the intercept in the regression is given by

G := E

(∫ t+h

t
σ2

sds

)
−
Cov

(∫ t+h
t σ2

udu,
∫ t
t−h dYs

)

V ar
(∫ t

t−h dYs

) E (Yt − Yt−h)

= hβ −D(µ+ bβ)h.

The coefficient of the implied volatility asymmetry is defined by

D∗ =
Cov

(
E
∗
t

(∫ t+h
t σ2

udu
)
,
∫ t
t−h dYs

)

V ar
(∫ t

t−h dYs

) .

Note thatE∗
t

(∫ t+h
t σ2

udu
)

= 1
α∗

(
1 − e−α∗h

) (
σ2

t − β∗
)

+ β∗h, and, hence,

Cov

(
E
∗
t

(∫ t+h

t
σ2

udu

)
,

∫ t

t−h
dYs

)

= Cov

(
1

α∗

(
1 − e−α∗h

)
σ2

t + β∗
(
h− 1

α∗

(
1 − e−α∗h

))
,

∫ t

t−h
dYs

)

= b
1

α∗

(
1 − e−α∗h

)
Cov

(
σ2

t ,

∫ t

t−h
σ2

sds

)
+

1

α∗

(
1 − e−α∗h

)
Cov

(
σ2

t ,

∫ t

t−h
σsdXs

)

= b
βγ2

2α

1

α∗

(
1 − e−α∗h

) 1

α

(
1 − e−αh

)
+ E(ρ)βγ

1

α∗

(
1 − e−α∗h

) 1

α

(
1 − e−αh

)
.

Hence, we get

D∗ =

(
bβγ2

2α + βE(ρ)γ
)

1
α

(
1 − e−αh

)
1

α∗

(
1 − e−α∗h

)

βh+ bβγ
α2

(
bγ
α + 2E(ρ)

)
(−1 + hα+ e−αh)

,

and, for the intercept, we get

G∗ = (β − β∗)
1

α∗

(
1 − e−α∗h

)
+ hβ∗ −D∗(µ+ bβ)h.
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Clearly,

V ar (Yt − Yt−h) = βh+
bβγ

α2

(
bγ

α
+ 2E(ρ)

)(
−1 + hα+ e−αh

)
> 0,

hence, if0 < b < −2E(ρ)α
γ , thenD∗ < D < 0 and if 0 < −2E(ρ)α

γ < b, we get0 < D < D∗. Re-

call thatα∗ = α+A. So, the assumption thatA < 0 leads to0 < 1
α

(
1 − e−αh

)
< 1

α∗

(
1 − e−α∗h

)
. �

Proof of Proposition 6.2: Note that for

dYt = (µ+ bσ2
t )dt + σtdWs + ρλtdLλt,

dσ2
t = −λσ2

t dt + dLλt,

dρt = (ζ + ηρt)dt + θ
√
−ρt(1 + ρt)dW

V
t ,

we have

E
(
σ2

0

)
= κ1, E

(
σ4

0

)
= κ2

1 +
κ2

2
, V ar

(
σ2

0

)
=
κ2

2
,

E
(
σ2

u, σ
2
s

)
= κ2

1 +
κ2

2
e(−λ|u−s|), Cor

(
σ2

u, σ
2
s

)
= e−λ|u−s|.

First, we computeV ar
(∫ t

t−h dYs

)
. Note that

∫ t

t−h
dYs = Yt − Yt−h = µh+ b

∫ t

t−h
σ2

sds+

∫ t

t−h
σsdWs +

∫ t+h

t
ρλsdLλs.

Clearly,

E

(∫ t

t−h
dYs

)
= µh+ bhE

(
σ2

0

)
+ λκ1E(ρ)h = (µ+ bκ1 + λκ1E(ρ))h.

Note thatE(ρ) = − ζ
η . Also,

E
(
Y 2

t

)
= E

(
2

∫ t

0
YddYs + [Y ]t

)

= 2E

(∫ t

0

∫ s

0

(
(µ+ bσ2

u)du+ σudWu + ρλudLλu

) ((
µ+ bσ2

s

)
ds+ ρλsdLλs

))

+ tE
(
σ2

0

)
+ tλκ1E (ρ) .

Note that

2E

(∫ t

0

∫ s

0

(
µ+ bσ2

u

)
du
(
µ+ bσ2

s

)
ds

)

= µ2t2 + 2µbκ1t
2 + b2κ2

1

λ2

(
−1 + e−λt + λt

)
+ b2κ2

1t
2,

and

E

(
2

∫ t

0

∫ s

0

(
µ+ bσ2

u

)
duρλsdLλs

)
= µλκ1E (ρ) t2 + λκ2

1bE (ρ) t2 = (µ+ bκ1)λκ1E (ρ) t2.
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Furthermore, we have

E

(∫ t

0

∫ s

0
σudWuσ

2
sds

)
= −λE

(∫ t

0

∫ s

0

∫ x

0
σudWuσ

2
xdxds

)
,

and when we solve this integral equation with initial value 0, we getE
(∫ t

0

∫ s
0 σudWuσ

2
sds
)

= 0,

and, hence,

E

(
2

∫ t

0

∫ s

0
σudWu

(
µ+ bσ2

s

)
ds

)
= 0.

Also, we have

2E

(∫ t

0

∫ s

0
σudWuρλsdLλs

)
= 2λκ1

∫ t

0
E

(∫ s

0
σudWuρλsds

)

= 2λκ1

∫ t

0
E

(∫ s

0
σudWu

)
E (ρλs) ds = 0,

and

2E

(∫ t

0

∫ s

0
ρλudLλu

(
µ+ bσ2

s

)
ds

)
= µλκ1E(ρ)t2 + 2bE

(∫ t

0

∫ s

0
ρλudLλuσ

2
sds

)
,

where

E

(∫ s

0
ρλudLλuσ

2
s

)

= E

(∫ s

0

∫ u

0
ρλxdLλxdσ

2
u

)
+ E

(∫ s

0
σ2

uρλudLλu

)
+ E

(∫ s

0
ρλud[L]λu

)

= −λE

(∫ s

0

∫ u

0
ρλxdLλxσ

2
udu

)
+ E

(∫ s

0

∫ u

0
ρλxdLλxdLλu

)
+ λκ2

1E(ρ)s+ λκ2E(ρ)s

= −λE

(∫ s

0

∫ u

0
ρλxdLλxσ

2
udu

)
+ λ2κ2

1E(ρ)
s2

2
+ λ

(
κ2

1 + κ2

)
E(ρ)s.

So, fory(t) = E

(∫ t
0 ρλudLλuσ

2
t

)
we obtain an ordinary differential equation (ODE) of type

y′(t) + λy(t) = λ2κ2
1E(ρ)t+ λ(κ2

1 + κ2),

with y(0) = 0. Hence, we get

y(t) = E

(∫ t

0
ρλudLλuσ

2
t

)
=
(
1 − e−λt

)
κ2E(ρ) + λκ2

1E(ρ)t,

and

E

(∫ t

0

∫ s

0
ρλudLλuσ

2
sds

)
= κ2E(ρ)

1

λ

(
−1 + λt+ e−λt

)
+

1

2
λκ2

1E(ρ)t2.



B PROOFS 38

Note that using the same reasoning as above, we get for any0 ≤ x ≤ t:

E

(∫ t

x
ρλsdLλsσ

2
t

)
=
(
1 − e−λ(t−x)

)
κ2E(ρ) + λκ2

1E(ρ)(t− x).

Altogether, we have

2E

(∫ t

0

∫ s

0
ρλudLλu

(
µ+ bσ2

s

)
ds

)

= λκ1E(ρ) (µ+ bκ1) t
2 + 2bλκ2E(ρ)

1

λ2

(
−1 + λt+ e−λt

)
,

and

E

(
2

∫ t

0

∫ s

0
ρλudLλuρλsdLλs

)
= 2λκ1

∫ t

0
E

(∫ s

0
ρλudLλuρλs

)
ds

= 2λκ1

∫ t

0

(
λ2ζκ1E (ρ)

s2

2
+ ληE

(∫ s

0

∫ u

0
ρλxdLλx

)
ρλudu+ λκ1E

(
ρ2
)
s

)
ds,

where

E

(∫ s

0
ρλudLλuρλs

)
= E

(∫ s

0

∫ u

0
ρλxdLλx

)
dρλu + E

(∫ s

0
ρ2

λudLλu

)

= λζE

(∫ s

0

∫ u

0
ρλxdLλx

)
du+ ληE

(∫ s

0

∫ u

0
ρλxdLλx

)
ρλudu+ λκ1E

(
ρ2
)
s

= λ2ζκ1E (ρ)
s2

2
+ ληE

(∫ s

0

∫ u

0
ρλxdLλx

)
ρλudu+ λκ1E

(
ρ2
)
s.

Hence, we get

E

(
2

∫ t

0

∫ s

0
ρλudLλuρλsdLλs

)

= 2λκ1

(
λκ1E

(
ρ2
)

+ λ
ζ

η
κ1E(ρ)

)
1

λ2η2

(
−1 − ληt+ eληt

)
− λ2κ2

1

ζ

η
E(ρ)t2.

Altogether, we get

E
(
(Yt)

2
)

= µ2t2 + 2µbκ1t
2 + b2κ2

1

λ2

(
−1 + e−λt + λt

)
+ b2κ2

1t
2

+ 2 (µ+ bκ1)λκ1E (ρ) t2 + 2bλκ2E(ρ)
1

λ2

(
−1 + λt+ e−λt

)

+ 2λκ1

(
λκ1E

(
ρ2
)

+ λ
ζ

η
κ1E(ρ)

)
1

λ2η2

(
−1 − ληt+ eληt

)
− λ2κ2

1

ζ

η
E(ρ)t2

+ κ1 (1 + λE(ρ)) t.

SinceY has stationary increments, we conclude thatE
(
(Yt − Yt−h)2

)
= E

(
(Yh)2

)
. Hence

V ar (Yt − Yt−h) = bκ2 {2λE(ρ) + b} 1

λ2

(
−1 + λh+ e−λh

)

+ 2λ2κ2
1E
(
ρ2
) 1

λ2η2

(
−1 − ληh+ eληh

)
+ κ1 (1 + λE(ρ))h.
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Next, we compute the covariance. Clearly,

Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
dYs

)

= bCov

(∫ t+h

t
σ2

udu,

∫ t

t−h
σ2

sds

)
+ Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
ρλsdLλs

)
,

where

Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
σ2

sds

)
=
κ2

2

∫ t+h

t

∫ t

t−h
e−λ|u−s|duds =

κ2

2

1

λ2

(
1 − e−λh

)2
,

and

Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
ρλsdLλs

)
= E

(∫ t+h

t

∫ t

t−h
ρλsdLλsσ

2
udu

)
− λκ2

1E(ρ)h2

=

∫ t+h

t
E

(∫ t

t−h
ρλsdLλsσ

2
u

)
du− λκ2

1E(ρ)h2,

where foru ≥ t:

E

(∫ t

t−h
ρλsdLλsσ

2
u

)
= E

(∫ t

t−h
ρλtdLλsσ

2
t

)
+ E

(∫ t

t−h
ρλsdLλs

∫ u

t
dσ2

x

)

= E

(∫ t

t−h
ρλtdLλsσ

2
t

)
− λE

(∫ t

t−h
ρλsdLλs

∫ u

t
σ2

xdx

)
+ E

(∫ t

t−h
ρλsdLλs

∫ u

t
dLλx

)

= λκ2
1E(ρ)h+ κ2E(ρ)

(
1 − e−λh

)
− λE

(∫ t

t−h
ρλsdLλs

∫ u

t
σ2

xdx

)
.

So, we obtain a differential equation of the type

y′(u) + λy(u) = 0,

y(t) = λκ2
1E(ρ)h+ κ2E(ρ)

(
1 − e−λh

)
=: A(h).

From solving the above ODE, we get

E

(∫ t

t−h
ρλsdLλsσ

2
u

)
= A(h)e−λ(u−t),

and
∫ t+h

t
E

(∫ t

t−h
ρλsdLλsσ

2
u

)
du = A(h)

1

λ

(
1 − e−λh

)

= κ2
1E(ρ)h

(
1 − e−λh

)
+ λκ2E(ρ)

1

λ2

(
1 − e−λh

)2
.

Hence,

Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
ρλsdLλs

)
= κ2

1E(ρ)h
(
1 − λh− e−λh

)

+ λκ2E(ρ)
1

λ2

(
1 − e−λh

)2
.
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Altogether, we have

Cov

(∫ t+h

t
σ2

udu,

∫ t

t−h
dYs

)
= κ2

(
b

2
+ E(ρ)λ

)
1

λ2

(
1 − e−λh

)2

− κ2
1E(ρ)h

(
−1 + λh+ e−λh

)
.

Hence, we get

D : =
Cov

(∫ t+h
t σ2

udu,
∫ t
t−h dYs

)

V ar
(∫ t

t−h dYs

)

=
κ2

(
b
2 + E(ρ)λ

)
1
λ2

(
1 − e−λh

)2 − κ2
1E(ρ)h

(
−1 + λh+ e−λh

)

V ar
(∫ t

t−h dYs

) ,

V ar

(∫ t

t−h
dYs

)
= bκ2 {2λE(ρ) + b} 1

λ2

(
−1 + λh+ e−λh

)

+ 2λ2κ2
1E
(
ρ2
) 1

λ2η2

(
−1 − ληh+ eληh

)
+ κ1 (1 + λE(ρ))h

Hence, the intercept in the regression is given by

G := E

(∫ t+h

t
σ2

sds

)
−
Cov

(∫ t+h
t σ2

udu,
∫ t
t−h dYs

)

V ar
(∫ t

t−h dYs

) E (Yt − Yt−h)

= hκ1 −D(µ+ bκ1 + λκ1E(ρ))h.

The coefficient of the implied volatility asymmetry is defined by

D∗ =
Cov

(
E
∗
t

(∫ t+h
t σ2

udu
)
,
∫ t
t−h dYs

)

V ar
(∫ t

t−h dYs

) .

Here, we work with structure preserving changes of measure as discussed earlier. Under the new
measure, the volatility process satisfies

dσ2
t = −λ∗σ2

t dt+ dL∗
λ∗t,

whereL∗ is a Lévy subordinator under the new measure withκ∗1 = E (L∗
1). Then

E
∗
t

(∫ t+h

t
σ2

udu

)
=

∫ t+h

t
E
∗
t

(
σ2

u

)
du,

where

E
∗
t

(
σ2

u

)
= σ2

t + E
∗
t

(∫ u

t
dσ2

x

)
= σ2

t − λ∗E∗
t

(∫ u

t
σ2

xdx

)
+ E

∗
t

(∫ u

t
dL∗

λx

)

= σ2
t − λ∗

∫ u

t
E
∗
t

(
σ2

x

)
dx+ λ∗κ∗1(u− t),
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which leads to

E
∗
t

(
σ2

u

)
= σ2

t e
−λ∗(u−t) + κ∗1

(
1 − e−λ∗(u−t)

)
,

and, hence,

E
∗
t

(∫ t+h

t
σ2

udu

)
= σ2

t

1

λ∗

(
1 − e−λ∗h

)
+ κ∗1

(
h− 1

λ∗

(
1 − e−λ∗h

))
.

Hence,

Cov

(
E
∗
t

(∫ t+h

t
σ2

udu

)
,

∫ t

t−h
dYs

)

= Cov

(
1

λ∗

(
1 − e−λ∗h

)
σ2

t ,

∫ t

t−h
dYs

)

= b
1

λ∗

(
1 − e−λ∗h

)
Cov

(
σ2

t ,

∫ t

t−h
σ2

sds

)
+

1

λ∗

(
1 − e−λ∗h

)
Cov

(
σ2

t ,

∫ t

t−h
ρλsdLλs

)

= b
κ2

2

1

λ∗

(
1 − e−λ∗h

) 1

λ

(
1 − e−λh

)
+ E(ρ)κ2

1

λ∗

(
1 − e−λ∗h

)(
1 − e−λh

)
.

Hence, we get

D∗ =

(
bκ2

2 + E(ρ)κ2λ
)

1
λ

(
1 − e−λh

)
1
λ∗

(
1 − e−λ∗h

)

V ar
(∫ t

t−h dYs

) ,

and, for the intercept, we get

G∗ = (κ1 − κ∗1)
1

λ∗

(
1 − e−λ∗h

)
+ hκ∗1 −D∗(µ+ bκ1 + λκ1E(ρ))h.

Clearly,

V ar (Yt − Yt−h) > 0,

and

−κ2
1E(ρ)h

(
−1 + λh+ e−λh

)
> 0,

hence,

D >
κ2

(
b
2 + E(ρ)λ

)
1
λ2

(
1 − e−λh

)2

V ar
(∫ t

t−h dYs

) .

So, if b < −2λE(ρ) andλ∗ < λ, hence0 < 1
λ

(
1 − e−λh

)
< 1

λ∗

(
1 − e−λ∗h

)
, we getD∗ < D.

�
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Proof of Proposition 6.3: We have to compute

Cov
(∫ t+h

t dYs,
∫ t+h
t σ2

udu
)

V ar
(∫ t+h

t σ2
udu

) .

Clearly,

V ar

(∫ t+h

t
σ2

udu

)
=
βγ2

α

1

α2

(
−1 + αh+ e−αh

)
.

For the covariance, we get

Cov

(∫ t+h

t
dYs,

∫ t+h

t
σ2

udu

)

= bCov

(∫ t+h

t
σ2

sds,

∫ t+h

t
σ2

udu

)
+ Cov

(∫ t+h

t
σsdXs,

∫ t+h

t
σ2

udu

)
,

where

Cov

(∫ t+h

t
σsdXs,

∫ t+h

t
σ2

udu

)
= E

(∫ t+h

t
σsρsdWs

∫ t+h

t
σ2

udu

)

= E

(∫ t+h

t

∫ u

t
σsρsdWsσ

2
udu

)
= βE(ρ)γ

1

α2

(
−1 + αh+ e−αh

)
.

Hence, we get

D̃ = b+
αE(ρ)

γ
.

Clearly,D̃ < 0 if 0 < b < −E(ρ)α/γ andD̃ > 0 if 0 < −E(ρ)α/γ < b. For the intercept, we get

G̃ = E(Yt+h − Yt) − D̃E

(∫ t+h

t
σ2

udu

)
=

(
µ− βαE(ρ)

γ

)
h.

For the implied volatility, we get

V ar

(
E
∗
t

(∫ t+h

t
σ2

udu

))
=
βγ2

2α

1

α∗2

(
1 − e−α∗h

)2
,

and, similarly as before, usingE∗
t

(∫ t+h
t σ2

udu
)

= 1
α∗

(
1 − e−α∗h

) (
σ2

t − β∗
)

+ β∗h,

Cov

(
Yt+h − Yt,E

∗
t

(∫ t+h

t
σ2

udu

))
= b

βγ2

2α

1

α

(
1 − e−αh

) 1

α∗

(
1 − e−α∗h

)
.

Combining the above results, we get

D̃∗ = b
1
α

(
1 − e−αh

)

1
α∗ (1 − e−α∗h)

.
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Clearly,0 < D̃∗ < b given thatb > 0 andA < 0. For the intercept, we get

G̃∗ = E(Yt+h − Yt) − D̃∗
E

(
E
∗
t

(∫ t+h

t
σ2

udu

))

= (µ+ bβ)h− D̃∗

(
β∗h+ (β − β∗)

1

α∗

(
1 − e−αh

))
.

Altogether, we get for0 < b < −E(ρ)α/γ that D̃ < 0 < D̃∗, and for0 < −E(ρ)α/γ < b <

αE(ρ)
γ

1

α∗

(
1−e−α

∗
h

)

1

α
(1−e−αh)− 1

α∗ (1−e−α∗h)
, we have0 < D̃ < D̃∗. Finally, similarly as before, we get

Cov

(
Yt+h − Yt,Et

(∫ t+h

t
σ2

udu

))
= b

βγ2

2α

1

α2

(
1 − e−αh

)2
.

�

Proof of Proposition 6.4: We have to compute

Cov
(∫ t+h

t dYs,
∫ t+h
t σ2

udu
)

V ar
(∫ t+h

t σ2
udu

) .

Clearly,

V ar

(∫ t+h

t
σ2

udu

)
= κ2

1

λ2

(
−1 + λh+ e−λh

)
.

For the covariance, we get

Cov

(∫ t+h

t
dYs,

∫ t+h

t
σ2

udu

)
= bCov

(∫ t+h

t
σ2

sds,

∫ t+h

t
σ2

udu

)

+ Cov

(∫ t+h

t
σsdWs,

∫ t+h

t
σ2

udu

)
+Cov

(∫ t+h

t
ρλsdLλs,

∫ t+h

t
σ2

udu

)
,

where

Cov

(∫ t+h

t
σsdWs,

∫ t+h

t
σ2

udu

)
= E

(∫ t+h

t

∫ u

t
σsdWsσ

2
udu

)
= 0,

and

Cov

(∫ t+h

t
ρλsdLλs,

∫ t+h

t
σ2

udu

)
= E

(∫ t+h

t
ρλsdLλs

∫ t+h

t
σ2

udu

)
− λκ2

1E(ρ)h2

= E

(∫ t+h

t

∫ u

t
ρλsdLλsσ

2
udu

)
+ E

(∫ t+h

t

∫ u

t
σ2

sdsρλudLλu

)
− λκ2

1E(ρ)h2

=

∫ t+h

t

(
κ2E(ρ)

(
1 − e−λ(u−t)

)
+ λκ2

1E(ρ)(u− t)
)
du+

1

2
λκ2

1E(ρ)h2 − λκ2
1E(ρ)h2

= κ2E(ρ)
1

λ

(
−1 + λh+ e−λh

)
.
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Hence, we get

D̃ = b+ λE(ρ).

Clearly,D̃ < 0 if 0 < b < −E(ρ)λ andD̃ > 0 if 0 < −E(ρ)λ < b. For the intercept, we get

G̃ = E(Yt+h − Yt) − D̃E

(∫ t+h

t
σ2

udu

)
= µh.

For the implied volatility, we get

V ar

(
E
∗
t

(∫ t+h

t
σ2

udu

))
=
κ2

2

1

λ∗2

(
1 − e−λ∗h

)2
,

and, similarly as before, usingE∗
t

(∫ t+h
t σ2

udu
)

= 1
λ∗

(
1 − e−λ∗h

) (
σ2

t − κ∗1
)

+ κ∗1h,

Cov

(
Yt+h − Yt,E

∗
t

(∫ t+h

t
σ2

udu

))
= Cov

(∫ t+h

t
dYs, σ

2
t

1

λ∗

(
1 − e−λ∗h

))

= b
κ2

2

1

λ

(
1 − e−λh

) 1

λ∗

(
1 − e−λ∗h

)
.

Combining the above results, we get

D̃∗ = b
1
λ

(
1 − e−λh

)

1
λ∗ (1 − e−λ∗h)

.

Clearly,0 < D̃∗ ≤ b given thatb > 0 andλ∗ ≤ λ. For the intercept, we get

G̃∗ = E(Yt+h − Yt) − D̃∗
E

(
E
∗
t

(∫ t+h

t
σ2

udu

))

= (µ+ bκ1 + λκ1E(ρ))h − D̃∗

(
κ∗1h+ (κ1 − κ∗1)

1

λ∗

(
1 − e−λ∗h

))
.

Altogether, we get for0 < b < −E(ρ)λ that D̃ < 0 < D̃∗, and for 0 < −E(ρ)λ < b <

λE(ρ)
1

λ∗

(
1−e−λ

∗
h

)

1

λ
(1−e−λh)− 1

λ∗ (1−e−λ∗h)
, we have0 < D̃ < D̃∗. Finally, similarly as before, we get

Cov

(
Yt+h − Yt,Et

(∫ t+h

t
σ2

udu

))
= (b/2 + E(ρ)λ)κ2

1

λ2

(
1 − e−λh

)2
.

�

Proof of Proposition 6.5: Note that

D =
Cov

(∫ t+h
t σ2

udu,E
∗
t

(∫ t+h
t σ2

udu
))

V ar
(
E
∗
t

(∫ t+h
t σ2

udu
)) =

βγ2

2α
1
α

(
1 − e−αh

)
1

α∗

(
1 − e−α∗h

)

βγ2

2α

(
1

α∗ (1 − e−α∗h)
)2

=
1
α

(
1 − e−αh

)

1
α∗ (1 − e−α∗h)

< 1,
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where we used the results from the proof of the previous propositions. For the intercept, we get

G = E

(∫ t+h

t
σ2

udu

)
−DE

(
E
∗
t

(∫ t+h

t
σ2

udu

))

= βh−DE

(
1

α∗

(
1 − e−α∗h

)
σ2

t + β∗
(
h− 1

α∗

(
1 − e−α∗h

)))

= β

(
h− 1

α

(
1 − e−αh

))
+ β∗

(
h− 1

α∗

(
1 − e−α∗h

)) 1
α

(
1 − e−αh

)

1
α∗ (1 − e−α∗h)

.

Note that for the GBNSJ model, we get

D =
Cov

(∫ t+h
t σ2

udu,E
∗
t

(∫ t+h
t σ2

udu
))

V ar
(

E∗
t

(∫ t+h
t σ2

udu
)) =

1
λ

(
1 − e−λh

)

1
λ∗ (1 − e−λ∗h)

≤ 1,

where we used the results from the proof of the previous propositions. For the intercept, we get

G = E

(∫ t+h

t
σ2

udu

)
−DE

(
E
∗
t

(∫ t+h

t
σ2

udu

))

= κ1h−DE

(
1

λ∗

(
1 − e−λ∗h

)
σ2

t + κ∗1

(
h− 1

λ∗

(
1 − e−λ∗h

)))

= κ1

(
h− 1

λ

(
1 − e−λh

))
+ κ∗1

(
h− 1

λ∗

(
1 − e−λ∗h

)) 1
λ

(
1 − e−λh

)

1
λ∗ (1 − e−λ∗h)

.
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