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Abstract

This paper proposes the new concepstufchastic leverage stochastic volatility models.
Stochastic leverage refers to a stochastic process whptdces the classical constant correlation
parameter between the asset return and the stochastidityofabcess. We provide a systematic
treatment of stochastic leverage and propose to model tiehasitic leverage effect explicitly,
e.g. by means of a linear transformation of a Jacobi proc&sh models are both analyti-
cally tractable and allow for a direct economic interprietat In particular, we propose two new
stochastic volatility models which allow for a stochastedrage effect: the generalised Heston
model and the generalised Barndorff-Nielsen & Shephardahdffe investigate the impact of a
stochastic leverage effect in the risk neutral world by &g on implied volatilities generated by
option prices derived from our new models. Furthermore, iwe g detailed account on statistical
properties of the new models.

Keywords Stochastic volatility- volatility of volatility - stochastic correlationleverage effect
- Jacobi process Ornstein—Uhlenbeck processquare root diffusion Lévy process Heston
model- Barndorff-Nielsen & Shephard model
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1 Introduction

Stochastic volatility (SV) models for asset prices havengdigreat popularity in recent years. The
main reason for this is that they can explain many empiriaetsf observed in financial markets, such
as time—varying volatility and volatility clusters. In piaular, they are able to reproduce the observed
implied volatility smile and are therefore essential foicimg and hedging financial derivatives, see
e.g. Rogers & Veraart (2008) and the references therein.

A very important empirical fact which can be modelled via achkiastic volatility model is the
so—calledlieverage effect The leverage effect refers to the relationship betweeataste returns
and volatility which tend to be negatively correlated. Orplanation, which also led to its name, is
that negative stock return might increase financial leveragich itself makes the stock riskier and
therefore leads to higher volatility. This effect was iality analysed by Black (1976) and was further
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supported by studies by Christie (1982), Nelson (1991) anodimers and, more recently, by Harvey &
Shephard (1996), Bouchaud et al. (2001), Tauchen (2004)2%0 (2005), Bollerslev et al. (2006).
In empirical data, the leverage effect is particularly apps when looking at data from indices.

The leverage effect can be modelled in terms of two corrélatechastic processes which drive
the asset price process and the volatility process. Welivkrmodels incorporating the leverage effect
are e.g. the Heston model (Heston 1993) and the Barndoglsdh & Shephard model (Barndorff-
Nielsen & Shephard 2001, 2002), (BNS model). In both modelsrstant correlation is assumed.

The present paper introduces the concept stoahastideverage effect in continuous time in a
very general framework. We model the correlation betweenaset returns and the volatility as a
stochastic process. To the best of our knowledge this is thedaper that studies such a general
stochastic model for the leverage.

Stochastic leverage has the advantage that it introducesi@itional factor or source of ran-
domness into a stochastic volatility model which has a @teconomic interpretation. Among the
stochastic volatility models, it is well known that muliitar SV models outperform single factor SV
in practice, but might not necessarily be as analyticaklyctable. We will present how stochastic
leverage can be included in stochastic volatility modelshstilhat some analytic results can still be
obtained.

Another big advantage of stochastic leverage was pointetyoCarr & Wu (2007). They show
that not only stochastic volatility but also stochasticvgkan be observed in financial markets. They
provide empirical results that stochastic skew is pregeeipirical currency option data and show
that it is very important to account for it. They briefly memtithe possibility to incorporate this fea-
ture by randomising the correlation parameter betweenttfreiecy return and the stochastic volatility
process, but do not further investigate this approach. ishigat we do in the present paper.

Note that stochastic correlation as such has been studidet iliterature before. However, the
focus has mainly been on modelling the correlation betwesiows asset prices and not between
stochastic volatility and the asset price. In the contexholftivariate asset price models, one stochas-
tic process has received particular attention: the Wighradess. It has been introduced in the proba-
bility literature by Bru (1991) and has been studied extegigirecently in the econometrics literature,
see e.g. Gouriéroux (2006), Gouriéroux et al. (2009)esihcan be used as a building block for mod-
elling stochastic correlation between various assets. édewy the shortcomings of such a model are
well-known, for a discussion see Pigorsch & Stelzer (2008)particular, the stochastic correla-
tion generated by such models is not straightforward tapmné: and, hence, we propose a different
approach which leads to analytically tractable models Wwhigve a direct economic interpretation.

In the following, we will use the expressi@tochastic correlatiorandstochastic leveragater-
changeably, and both refer to the stochastic process nmgléle correlation between the stochastic
drivers of the volatility and the asset price processes.

The outline of this article is as follows. In Section 2, weraauce the concept of stochastic
leverage. We describe two general classes of stochastdilitglmodels (with and without jumps)
which exhibit stochastic leverage. We then present spetifidels which can be used to model a
correlation process and therefore account for the leveediget. The most important process we
study as a building block for a stochastic correlation pssds the Jacobi diffusion. It is analytically
tractable and can be easily extended in such a way that ipostip the interva[—1, 1] which makes
it an ideal process to model correlation.

In Section 3, we extend the Heston model and the Barndodfsiih & Shephard model by in-
corporating stochastic leverage using a transformed Jddéision. We develop the semimartingale
characteristics corresponding to the new dynamics of thetgmice.

In Section 4, we discuss the change of measure from the redd wmbability measure to the
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risk—neutral probability measure and discuss its appdinab pricing financial derivatives. Particular
emphasis is on the structure preserving change of measumathinthe generalised Heston and the
generalised Barndorff-Nielsen & Shephard models.

Section 5 studies the influence of the stochastic leveradbeopricing of European plain vanilla
options in the generalised Heston model. A sensitivity tslkdows the relationship between the
various model parameters describing the stochastic Igeerén particular, we compare the results
with the classical Heston model with constant correlation.

Next, we turn our attention to statistical aspects of our s&vchastic volatility and stochastic
leverage models. Section 6 focuses on the impact of a stichagerage effect on return—volatility
regressions, which are widely used in econometrics for areagboth the leverage and the volatility
feedback effect and, furthermore, we investigate the effiéstochastic leverage on the ability to
forecast volatility based on option implied volatilities.

Section 7 is then devoted to the problem of estimating s&ichkeverage non—parametrically and
to parameter estimation in our new model classes.

Finally, Section 8 concludes.

All proofs are relegated to the appendix.

2 Modelling stochastic leverage

2.1 The concept of stochastic leverage

This section introduces the concept of a stochastic leesefigct, i.e. a stochastic correlation between

the driving process of the asset price and the driving psoéthe stochastic volatility process.
Throughout the paper, we will assume that the logarithmsetagriceY = (Y;):>0 iS given by

an Ité semimartingale, which is a standard assumptione ge@arndorff-Nielsen & Shephard (2002,

2007), Jacod (2008), Ait-Sahalia & Jacod (2009). An ltiseartingale is defined as a semimartin-

gale whose characteristics are absolutely continuous negthect to the Lebesgue measure, see e.g.

Jacod (2008). In particular, its dynamics are given by

dY;f = 6tdt + Ut—th + th, (1)

wherea = (a;)i>0 is a predictable drift process, = (0¢):>0 is a predictable stochastic volatility
process and = (.J;);>¢ is a pure jump component.
For the stochastic volatility process, we assume that it satisfies

do? = bydt + f(02)dZ, 2)

for a predictable proces?s = (gt)tzo which possibly describes the mean reversion of the squared
volatility process, a deterministic functiofi: R, — R, and a drift-less Lévy process = (Z;):>o.
From the Lévy Khintchine formula, we know th&tconsists of a Brownian motion part (denoted by
7Z¢ = (Zf)1>0) and a pure jump process denotedfy = (Z);>. For ease of exposition, we will
throughout the paper assume tlztis in fact astandardBrownian motion (ifZ¢ # 0).

Note, that both stochastic proces§eand5 are assumed to be predictable stochastic processes.
Particularly, they can depend onas well but can also have additional stochastic drivers.

In order to account for the leverage effect, most of the vkelbwn stochastic volatility models
allow for correlation between the Brownian motions, whiclvel the logarithmic asset price and the
volatility process, i.e.Cor(W;, Zf) # 0 and/or between the jump processes which drive the asset
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price and the volatility, i.eCor(J;, Z{) # 0. In particular, these correlations are usually assumed to
be constant and not time—varying or stochastic.

In this paper, we propose to model the correlation by a s&iithprocess. For ease of exposition,
we assume throughout the paper that the leverage effectieppiher in the continuous or in the
jump component and not in both. However, extensions to thesrgeneral case are straightforward
and can be constructed along the lines of this paper.

Definition We assume that the logarithmic asset price is given by aselttimartingale as defined in
(1) and that the stochastic volatility process is definech4g).
Thestochastic correlatioror stochastic leveragprocess is defined as the predictable stochastic pro-
cessp = (py)i>0 taking only values inf—1,1] and satisfyingd[W, Z¢], = pdt or d[J, Z%], =
pid]J, Z%,, for a pure jump process = (.ﬁ) _,» Which is dependent ot

t>

2.2 Stochastic leverage and stochastic volatility (of votaity)

Note that the concept of stochastic leverage is closelyetinto the concept of stochastic volatility
and stochastic volatility of volatility. So, before we tumexplicit models for stochastic leverage, we
briefly discuss the relationship between those three giesti

As already mentioned, one factor stochastic volatility glecre not supported by empirical stud-
ies. Hence, recent research on stochastic volatility nsodas focused on multi—factor stochastic
volatility models. However, additional sources of rand@ssican not only be introduced on the same
level as the stochastic volatility process, but also byegifiochastic leverage or stochastic volatility
of volatility. The latter has recently been studied by BamfidNielsen & Veraart (2009).

In particular, they have studied stochastic volatility ggsses of the type

do? = bydt + v, f(02)dZ,

wherey = (v;):>0 denotes a stationary, non—-negative stochastic varianeariaince process, which
is independent of all the other driving processes in thetgsase model. If the asset price is given by
(1) and if additionallyZ is a Brownian motion which is correlated witli with correlation coefficient
c € [~1,1] then the quadratic covariation &f and? is given by

dlY, %) = ey f(a?)dt, (3)
If insteadZ = .J, then
dly, 0'2]t = %f(f’tz)d[ff]ta 4)

which is similar to the stochastic leverage mentioned aba¥ere we have an additional source of
randomness in the quadratic covariation. However, i§ independent of¥” andJ, then[Y, o] = 0.

So, we see that both stochastic leverage and stochastidityotzf volatility can lead to a similar
(possibly even to the same) structure[b’t 02] . However, it should be stressed that the two concepts
are not identical. In particular, the existence of stodhdsverage does not necessarily imply the
existence of stochastic volatility of volatility and, vieersa, the existence of stochastic volatility of
volatility does not necessarily imply the existence of kamstic leverage.

Finally note that stochastic leverage is a particular cagadulitional) stochastic volatility. So, we
observe that there are very close links between stochasfatility, stochastic volatility of volatility
and stochastic leverage, but they are generally not the.same
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2.3 Models for leverage

In this section we present different approaches to modgbirstochastic or time—varying leverage
effect. The classical approach to model a constant levextiget over time is to use a constant which
models the correlation between the stochastic drivers efafset price process and the volatility
process. When looking at empirical data, however, it tunrtsiuat the leverage effect is not constant
over time.

2.3.1 Time—-varying, deterministic leverage

A first approach is to assume that the correlation betweetwibistochastic drivers is a deterministic
function of time which varies betwedn-1, 1]. The advantage of such an approach is that no addi-
tional source of randomness is introduced which simplifiescalculations. In particular, for hedging
purposes, one only has to deal with two sources of risk. Shiisés just a special case of a stochastic
leverage process, we do not go into more details.

2.3.2 Local leverage

A first step to introduce randomness into the correlatiorcgse is to assume that it is a function of the
stochastic asset price and/or the stochastic volatiliaehSa stochastic leverage is effectiveljoaal
leverageand corresponds to the concept of local volatility wheretility is modelled as a function
of the underlying asset price. Models of this type have béattied by e.g. Romano & Touzi (1997)
and, more recently, by Bandi & Reno (201)8

2.3.3 Finite state Markov process

A next step would be to assume that the correlation proceasfiisite state Markov chain. If for
example it is assumed that the correlation is negative, onklchoose a finite number of values in
[—1,0] which describe the state of the Markov chain. We will seerlatethat even a continuous
diffusion process can be used to model a correlation praghi&h can only visit two states.

2.3.4 Jacobi process

When modelling stochastic leverage as a stochastic prosed#rst need to ensure that the stochastic
process only takes values jr-1,1]. We could therefore use an arbitrary stochastic proceds suc
as a Brownian motion and use an appropriate function to maptd the interval—1,1]. Such an
approach, however, usually lacks economic interpretatfonatural building block for a correlation
process which allows economic interpretation is daeobi processlt is a mean—reverting diffusion
process which only takes values|in 1]. Applying a linear transformation to the Jacobi diffusion
results in a process which only takes values-i, 1]. We will discuss more details of the Jacobi
process in Section 2.4.

2.3.5 A general stochastic leverage process

Finally, we present a very general approach on how to coriseumodel for stochastic leverage.
Similar, to the model based on the Jacobi process, we focusowstructing a stochastic process
which takes only values if©), 1]. Such a process can then be used as a building block for muagell
stochastic correlation.
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A very general framework for constructing such a procesgjvien as follows. Let us assume
thatU() = (U"),5 for i = 1,2 are independent, non-negative semimartingales. Thengfireech
stochastic procesB = (R:):>0 by

v

Ry= —t——.
e

Clearly, we always have that< R; < 1.

Note that the Jacobi process is essentially constructeding two independent square root dif-
fusions (Cox et al. (1985)) fo/(!) andU(?). However, we can choose various other processes for
UM andU® as long as they are guaranteed to stay positive. Hence asticivolatility models,
which satisfy the positivity requirement, are natural clesiforU(*), wherei = 1,2. It is also pos-
sible, to construct a procegswhich is purely driven by jumps. E.g. we could modé&l) as a Lévy
subordinator. In particular, if we choose gamma subordnsatwe obtain a proceds which is Beta
distributed and purely jump—driven, as opposed to the Jgwobess whose stationary distribution is
also given by a Beta distribution, but which is driven by aBnegan motion. Another possibility is to
model thel/ () by non—Gaussian Ornstein Uhlenbeck processes.

In the following, we will restrict our attention to stoch&steverage models based on the Jacobi
diffusion and we will study the potential of jump—driven nebsl for stochastic correlation in future
research.

2.4 The Jacobi process

The Jacobi process belongs to the classal¥ablediffusion processes, see Albanese & Kuznetsov
(2005), and is therefore analytically tractable. It is &édkto the Jacobi polynomials in the sense
that the eigenfunctions of the Jacobi diffusion generator be expressed in terms of the Jacobi
polynomials. Its stationary distribution is a Beta distitibn. The Jacobi process has been studied by
e.g Gouriéroux & Valéry (2004) in the context of how suchiffudion can be estimated from data,
Gouriéroux & Jasiak (2006) studied a multivariate versasra tool for modelling smooth transitions;
Larsen & Srensen (2007) use an general class of a Jacobi-type diffaisicmodel the logprices of
exchange rates in a target zone controlled by central bdrksnan & Srensen (2008) study the
Pearson diffusion in detail and the Jacobi process is ongamase of a Pearson diffusion. Finally,
Schoutens (2000) collects many properties of diffusiorc@sses which are linked to some orthogonal
polynomials.

In the following we give a brief account of the properties afeeobi process which will be used
in our analysis. A Jacobi process satisfies the SDE

AV, = (¢ = nVy)dt + 6/ Vi(1 — Vy)dw’, (5)

where(, n, § are positive constants antf" is a standard Brownian motion. This can be rewritten as
dV; = —n (Vt — %) dt + 6/ Vi(1 — Vy)dwyY .

This process takes values|in 1] and is mean-reverting to at speed.

For a correlation coefficient we want to have a process, which takes values between -1 armtl 1 a
which is mean reverting. Hence we work with a linear transfation of the Jacobi process which is
given by

pr =2V, — 1. (6)
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Then from Ib’s formula the dynamics qgf are given by

dpy = ((2¢ =) = npe) dt + 0/ (1 + pr) (1 — pr)dWY .

Clearly, p takes values betweenl and1 and is mean—reverting 13577‘—’7 at speed.
The dynamics of the procegsis a special case of the diffusion process studied by Larsen &
Serensen (2007). They consider a diffusiptaking values in Ry — R4, Re + R4) which satisfies

dpr = —Ra(pr — (R + RaRa))dt + Rs\/ B} — (5 — Ro)?dWY 7)

whereR; > 0,1 < R3 < 1 andWW" is a Brownian motion. This diffusion is an ergodic diffusiin
and only if

k1 = Ri(1— Rg)RgQ >1,
Ko = Ri(1+ Rs)R;” > 1.

Its stationary distribution is a shifted and rescaled Bet&idution and its probability density function
is given by

1

5 _ . k1—1 . ro—1 ) 1—K1—kK2
fo(x) = (R + Ry — )™ (R4 — R + 2)™ " (2Ry) Bl )

for z € (Ry — R4, Ro + R4) and0 otherwise. Herd3(-, -) denotes the Beta—function. A < 1 then

the boundaryRs + R4 can be reached in finite time, if, < 1 then the boundary, — R4 can be
reached in finite time. The eigenfunctions of the diffusi@mgrator can be expressed in terms of the
Jacobi polynomials and can be found in Larsend&ehsen (2007).

Clearly, p satisfies the SDE (7) if we séty = 1, Ry = 0,R; = 6, R = n,R3 = 2% —1and
require thatRs € (—1,1).

We have therefore found a process which stays withih, 1] and hence can be used to model
correlation. If some additional information were avaigbé.g. that the correlation varies within a
subinterval of—1, 1], a process described by the SDE (7) with bounds chosen aeghyrdould be
used to model the restricted correlation process. An examplld be to assume that correlation is
strictly negative or that it varies only within a small intal centered around etc.

A very interesting characteristic of a Jacobi process isithands to a jump process with state
space{0, 1} and constant intensities, ftends to infinity. This result and further discussions can be
found in Gouriéroux & Jasiak (2006). Figure 1 illustrathe sensitivity of the Jacobi process with
respect t@. Generally, the smaller the paramefiethe smoother are the sample paths. For increasing
values off, we observe a jump-type behaviour. In particular, the Begtmiloution of the stationary
Jacobi process tends in distribution to a Bernoulli distitm with parametel%. It is also clear from

the definition of the process that the term in front of the Bi@m motiond/V;(1 — V;) is essentially
zero forV; close to0 or 1. It attains its maximum fol/ = % and therefore we see that the process
has a clear tendency to move away from values aro}Jadd goes towards its natural bourtdsr 1.
At the boundaries the mean reversion of the process kickauiicplarly strongly. If the parameter
0 is large, however, the effect of a large variance in the ceantel a low variance at the boundaries
dominates the overall behaviour of the process, i.e. thegsomoves towards the boundaries.

We could therefore model a rather extreme behaviour of tmeeledion process by increasing
the parametef. Then the correlation process will essentially take twagal This reminds on the
Markov chain approach described previously where it wasraed that the correlation process can
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only take a finite number of values. We therefore see thatdhehi process can be used to model
such a behaviour as well.

Generally, we find that the Jacobi diffusion and its gensasilbns are ideal diffusions to model
stochastic correlation. We assume that stochastic coels mean—reverting to a long—term mean
and is driven by a Brownian motion whose fluctuation can beliiegh by using a higher volatility
parameter for the stochastic correlation process. Frontamnoenic perspective this is perfectly sen-
sible. We do expect that the correlation between the stackme and the volatility process has some
long term mean around which it fluctuates. If we want to modeterextreme stochastic behaviour,
this can be done by either playing with the volatility pardéenén the Jacobi diffusion or by choosing
a slower speed of mean reversion parameter.
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Figure 1:Sensitivity with respect to# Sample path of a Jacobi process with= 0.5, = 0.5,n =1
andd € {1,5,25}. Number of steps3000; step size).0002.

3 Generalised Heston and generalised BNS model with stochiedever-
age

The aim of this section is to introduce two concrete modelscviallow for the new concept of

stochastic leverage. They are extensions of stochasttilitgl models which are particular popular
and successful both from a practical and a theoretical pafiiew: The Heston model, Heston
(1993), in which the stochastic volatility is modelled agjaare root diffusion, see Cox et al. (1985),
and the Barndorff-Nielsen & Shephard model, in which thelséstic volatility is modelled as a non—
Gaussian Ornstein—Uhlenbeck process, see Barndorfééied. Shephard (2001, 2002).

3.1 Model definition

Suppose that we have a probability spéQe A, ), on which we define four independent processes:
three standard Brownian motiofE = (W;);>o, W = (Wt) andWV = (W/)),., and a Lévy
= >0 =z

subordinatorl, = (L;);>o. Throughout this paper, we denote By= (Y;);>o the logarithmic asset
price, byS; = Sy exp(Y;) the asset price, whei® > 0, by o = (0¢)+>0 the stochastic volatility, and
by p = (pt)e>0 the stochastic correlation process.

First of all we extend the classical Heston model by allowimgstochastic correlation.
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Definition TheGeneralised Heston mod@bH) is defined by
dY; = (p+ bo}) dt + oyd X,
dX; = prdWy + /1 — p2dW, (8)
do? = o — o?)dt + o dWy,

wherep, b € R, a, 3, > 0, and where» = (p;);>0 is a stochastic correlation process. Furthermore,
the processel/, W, p are assumed to be independent.

If 203 > ~2, 0% stays almost surely positive wheg > 0.

Remark It follows immediately from Lévy’'s Theorem, that the preseX is a standard Brownian
motion, see e.g. (Musiela & Rutkowski 2005, p. 232).

Definition A GH model is calledyeneralised Heston model with Jacobi correlati@HJ) if p satis-
fies

dpy = ((2¢ = n) = npy) dt + 01/ (1 + pe) (1 — pr)dW

wheren, ¢, § are positive constants antl" = (WtV) />0 IS a standard Brownian motion.

Similarly, we can defined the generalised BNS model in tHeviohg way.

Definition Thegeneralised BNS modéEBNS) is defined by

dY; = (u + bo}) dt + o dWy + padLy,

9
do? = —Xo2dt + dLy;, ®)

whereo—g = ffoo e*dLy,. Furthermoreyu, b € R and\ > 0. The stochastic correlation procgss
assumed to be non—positive. Furthermore, we assume indiepesn between the proces$€s L and

p-
Clearly,o? is a non—Gaussian Ornstein Uhlenbeck process with stagiosepresentation
t
ol = / e M= dL,.
—0o0
Remark By restrictingp to be non—positive, we ensure that the jumps in the priceoaedly bounded,

see Remark 2.1 in Hubalek & Sgarra (2007).

Remark For parameter estimation in a GBNS model, it will be necgssaifix some moments of
eitherp or L to make sure that the model is uniquely identified. Otherwige could always multiply
p by a constant and scale the subordindiaccordingly.

In this paper we suggest to model the correlation coeffidigné linear transformation of a Jacobi
process.
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Definition A GBNS model is called generalised BNS model with Jacobi correlati@®BNSJ), if
the stochastic leverage= (p:):>0 is given by a linear transformation of a stationary Jacobcpss
pr = —V;, where

dV; = (¢ — qVi)dt + 65/ Vi(1 — Vo) dWwY (10)
whereWWV is a standard Brownian motion agdn, 6 > 0.

Remark Note that in models of type (9), the quadratic covariatiotwieen the price and the squared
stochastic volatility is given by

d[Y,0%] = pxe(dLx)?* = pxed[L]x- (11)

Since the leverage effect is due to the jump component andumto a diffusion, the procegsdoes

not solely describe the quadratic covariation betweendbgegrice and the volatility, but the jumps
play a direct role, too. Hence we cannot interpieds a correlation coefficient as easily as in the
diffusion set up. In particular, we do not have to restrito the interval—1, 0], but could allow for

any negative valup. Hence, there is a great flexibility in how to model the staticgprocess. In

this paper, we will focus on a process which takes valugds-in 0] and all smaller values dt, o]

are assumed to be due to the jump sizé.oExtensions to processes which can take values between
[—K,0] for someK > 0 are straightforward. Carrying out empirical studies wilihto find out
which value forK is realistic and whether it should be a finite value at all oethler an unbounded
processp describes empirical data even better.

Throughout this section, we will work with the natural filicn (ft)tzo generated by the triple
(W, W, W) in the GH model and byiV, Ly, W) in the GBNS model.

3.2 Semimartingale characteristics

First of all, we derive the semimartingale characteristgee Jacod & Shiryaev (2003), of the new
stochastic volatility and stochastic leverage models. Weneed these results later, when we study
how the dynamics of our new models change when we consider tineler a risk—neutral probability
measure.

Proposition 3.1 The semimartingale characteristics ¥fin the GH model are given b3, C, vy ),
where

dB; = (u+ bo})dt, dCy = o7 dt, vy (dt,dz) =0,

Next, we study the dynamics of the asset price in the GH framnlewA straightforward application
of 1té’s formula leads to the following result.

Proposition 3.2 In the framework of a GH model, with logarithmic asset price= (Y;):>0, the
dynamics of the asset pricg = exp(Y;) are given by

dS; = S, <<u - (b + %) a§> dt + atht>

1 —
=5 <<,u—|— <b+§> Jt2> dt—i—O’tptth—l—O't 1—p%th> .
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Next, we turn our attention to the GBNS model. Again, we dtgrteriving the semimartingale
characteristics of the logarithmic asset price. Since thlg jump processes we deal with in the
GBNS model are of finite variation, we can work with the zermtration function, which we denote
by h(z) = 0. Furthermore, for any semimartingalé, we will denote byux the Poisson random
measure associated with the jumps¥oand byvx its predictable compensator. Note that throughout
this paper, we will use to indicate integration with respect to (compensated) jumgasures andto
indicate standard stochastic integration.

Proposition 3.3 The semimartingale characteristics bfin the GBNS model (defined in (9)) with
respect to the truncation functidnxz) = 0 are given by(B, C, vy ), where

dB; = (p + bo?)dt, dCy = o2dt, vy (dt,dz) = F(t,dx)dt,

wherells(—x) x F(t,dx) = La(pax) * Ur(dz)X forany A € B(R \ {0}) and where/;, denotes the
Lévy measure af.

From the semimartingale characteristics above, we seethhgump part ofY” is not a Lévy
process, since its characteristics are generally timgingand not deterministic. Hence, our new
model is a real generalisation of the BNS model and nestsi&model when we setto a constant.

Proposition 3.4 We obtain the following representation results for the jmgee and the price process
in the GBNS model:

() The semimartingal@” (defined in (9), (10)) can be represented as

t t
Y2=Y0+{/ (M+b0t2)dt+PAt*VL}+{/ Udes-i-P,\t*(ML—VL)}-
0 0

The term in the first bracket is of finite variation and the temthe second bracket is the sum
of the continuous part plus the jump part of a local martiregal

(i) The dynamics of the asset pricge = exp(Y;) are given by

1 At [e%e)
dS; = S¢— <<,u + <b + 5) o? —I—/ / (e —1) UL(dm)ds> dt
o Jo

+ Ut_th + th),

where

= [ 5 / (e 1) (g, — wr)(de, ds),

which is clearly a local martingale.

Note that in this representation it becomes clear, why wemasghatp can only take negative values,
otherwise the integral above would not exist.



4 CHANGE OF MEASURE 12

4 Change of measure in the GH and GBNS model and application®t
option pricing

In order to use our new models for option pricing, we have tngle the probability measure. So far,
we have worked under the real world measBréVe have argued that stochastic correlation between
the drivers of the stochastic volatility and the asset ppigEess is an empirical fact which can be
observed when looking at empirical asset price data, iiaguke real world probability measui
When we want to price options, however, we need to find an atgnv martingale measure. We will
see in this section that such a measure can be constructedhrasvay, that the model structure, and
hence a stochastic leverage process, can be preservedtumaew measure.

Let us assume th&t" is another probability measure which is absolutely comursuwith respect
to P. Then there exists a unique, see Jacod & Shiryaev (2003,rdimebl.3.4), and up tdP-, P*—
indistinguishabilityP-martingaleZ, such that, for alt > 0

dp*
Zy =E < ]:t) .

dP
Z is then called the density or Radon-NiKod derivative.

In the following, we will study three aspects: First, we stumbw the semimartingale character-
istics of Y’ change under the change of measure. Next, we derive a partrepresentation for the
density proces%’. Finally, we study which class of measure changes preséneestructure of the
GH and GBNS model.

Recall that a probability measuf& on (€2, .A) is anequivalent martingale measu(EMM) if the
discounted asset priee ™S, is a martingale undef*. Let M denote the set of equivalent martingale
measures for the GH or the GBNS model andAdt ¢ M denote the set ddtructure preserving
EMMs of the GH or the GBNS model. Further, we wrlidor the stochastic exponential, see (Jacod
& Shiryaev 2003, 1.4f).

4.1 Change of measure in the GH model

A straightforward application of the Girsanov theorem E#althe following result.

Assumption (A): LetY denote the semimartingale defined in the GH model (8), wherstochastic
correlation process. Furthermore, we assume that all loeatingales are representable with
respect td W, W, WwV").

Proposition 4.1 LetP* € M and let assumption (A) be/ satisfied. Then there exists aqiedalie and
on [0, 7] square integrable process = (M), ) ¢B))" = (), such that

Zt=5</ waw,+ [ o@aw.+ [ wg?’)dWsV) L 0<t<T,
0 0 0

t

is a density process, i.¢, = E (4| %) andE(Zr) = 1.
The process satisfies

1
M+<b+§> Ut2+at1/1§1)—r20

dP @ dt almost surely, where > 0 denotes the riskless interest rate.
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The theorem above describes a general change of measurdiagdo the Girsanov theorem for
the GH model. If we specify the predictable proces® further, we can even define a change of
measure which is structure preserving and, hence, of pkatimterest in applications. Such a change
of measure is described in the following theorem.

Proposition 4.2 Assume that (A) holds. Then, the process

w_ 1/ 1y
{ —( " (b+2)at),

is a.s. square integrable df, 7’| and predictable and there exists an 7] square integrable and
predictable proces$y(?, ¢3)) such that

Zt:é’(/ ngl)dWer/ ¢g2>dWs+/ ¢g3>dWsV> ., 0<t<T,
0 0 0

t

is a density process. We obtain an EMM by defining
dP* = ZpdP,

and the dynamics of the model under the probability meaBtiae given by
1 2 *
dY, = T 50 dt + o dX™,

dX* = pdW; + /1 — p2dW,
da? =—af (ﬂ* — O't2) dt + ~vo dW,
pr =2V, — 1,
dVi = (¢* = ' Vi)dt + 0/ Vi(1 — Vi)dWy"™,

whereW; = W, — [ oM ds, Wy =W, — IN Pds andWwy* = WY — IS ¥ ds are independent
P*—Brownian motions. Also, we haveé = o + A and §* = % for someA € R. Similarly,
N =n+ ¢, and(* = H% for a constant) € R. HenceP* € M.

4.2 Change of measure in the GBNS model

Now we focus on the change of measure in the GBNS model whictore involved than the one in
the GH model due to the presence of jumps. In order to tackdetioblem, we start by investigating
how the the semimartingale characteristics of the logaiitrasset price process change in the GBNS
model, if one performs a Girsanov change of measures.

Recall that the semimartingale characteristic¥ @fre given by B, C, v) and have been explicitly
stated in Proposition 3.3. Also, I& denote the predictable—field onQ2 x R, and letP = P ® B,
for the Borelo—algebra5. From (Jacod & Shiryaev 2003, Girsanov Theorem, p.172), nosvkthat
for a probability measur®* which is (locally) absolutely continuous with respectPiothere exist a
P—measurable, nonnegative functi®and a predictable procegssatisfying

t t
/ Cssds < 00 and/ wgcsds <oo, P"—a.s. forteRy,
0 0
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such that the characteristics BfunderP* are given by(B’, C’, v}, ), where

¢
B’:B—i—/cswsds, ' =C, V;:f"/ya
0

where we work — as before — with the zero truncation functidoreover, £ and satisfy all the
conditions above if and only if

§7- =E(Z * py|P)

t
<ZC, / ades> = / o21pyZs_ds,
0 t 0

whereZ denotes the corresponding density process of the measamgetand
< -,- > denotes the predictable bracket.

Next, we derive an explicit representation for the Radokelym derivativeZ in the change of
measure. The following proposition generalises the cpording result given in Nicolato & Venar-
dos (2003, Theorem 3.1).

Assumption (B): LetY denote the semimartingale defined in (9), wheig a stochastic correlation
process satisfying < 0. Furthermore, we assume that all local martingales areseptable
with respect tqW, Ly, W") and thatl is quasi-left continuous.

Proposition 4.3 Let P* € M and assume that assumption (B) is satisfied. Then theres existe-

dictable and or{0, ] square integrable process = (1), )" = (1), and a strictly positive,
predictable functiorf = ¢(w, t, z) satisfying(1 — /€)% x vz, < oo P—a.s. such that

a:s(/ wg”dws+/ w§2>dW!+<£—1><uL—uL>> , 0<t<T,
0 0

t

is a density process, i.¢, = E (4| %) andE(Zr) = 1.
The process and the functiorg satisfy

1 [ee]
[+ <b + 5) o? + /\/ (ePs — 1) £(t, x)Up(x)dz + o) —r =0
0
dP @ dt almost surely, where > 0 denotes the riskless interest rate.

Next, we restrict the class of equivalent martingale messiguch that the model structure is
preserved under the change of measure. Recall that we deynotd’ the class of such structure
preserving martingale measures and proceed by extendingotinesponding results by Nicolato &
Venardos (2003) to our more general model class. Let

E':{E;R+—>R+:/OOO (1—\/§>2UL(x)dx<oo},

denote a class afeterministicfunctions and foge =/, we write

U (2) = E(x)UL ().
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Analogously to the work by Nicolato & Venardos (2003), we deel from

fooo min(1, a:)UE(a:)dx < oo that
At 00 ~
/ / (eM* —1) Uf(m)dx
o Jo

exists for negative and, also, thaf (£ — 1) + (1, — 1)) is a true martingale fof € =

Proposition 4.4 Letge =’ and assume that (B) holds. Then, the process

g =L ( <b+ >0t A/ (P2 — 1) E(2) U (a )dx),

is predictable and a.s. square integrable [0n7"] and there exists a predictable and @h7] square
integrable process® = ({?));> and a strictly positive, predictable functigh= ¢ (w, ¢, z) satis-
fying (1 — /€)? x v, < oo P-a.s. such that

e ([ oawr [o@awd (€ 1) e ) 0<esT,
0 0

t
is a density process. We obtain an EMM by defining

dPE = Z5.dP,
and the dynamics of the model under the probability meaBtiare given by

dY, = < - —at /\/ (e — 1) E(2)Us (w )daz> dt + o dWE + prdLS,,

do? = —\o2dt + dLS,.
Pt = _‘/ta

AV = (¢S — nfV)dt + 0/ V(1 — V) dw, s,
Whereth =W, — fo zps )ds and WV§ wY fot ¢§2)ds are P~—Brownian motions andLﬁt is a
Pé—subordinator. Also, we havg = 7 + ¢, and¢¢ = ﬁ for a constanty € R. FurthermorelV$,

Wt and L§, are independent unde. HenceP¢ € M.

Conversely, for an* € M’ there exists a deterministic functié{ne =/ such thatP* and P¢
coincide.

In order to conclude this section, we derive a quasi—exdlicmula for the Laplace transform of
the logarithmic asset price in the GBNS model, which can teel disr computing option prices in a
GBNS framework.

Proposition 4.5 In the GBNS model with stochastic leverage, the Laplacestommation withu € R
is given by

E (exp(uYr)| )
= exp <U(Yt +u(T —t) + (ub + u;) % (1 — e—A(T—t)> Ut2>

2 (e ([ w(umnet§ (1220 ) as) )

wherev = ub + “72 and wherex denotes the cumulant transform of the subordindior
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So, if p; Is deterministic, we get a analytic expression for the Leplaansformation
1
E (exp(uYr)| F;) = exp <u(Y} +u(T—1)) + vy (1 - e—A(T—t)) Ut2>

exp <)\ /tT K (upAs + % (1 — e—A(T—s)>> ds) )

If pis stochastic, we have to compute the expectation

E <exp ()\ /tT . (up)\s n % (1 - e_)‘(T_s))> ds>> .

In general, we cannot expect to get an analytical expressrdhis expectation, even if we work with
stochastic processeswhose distribution is known. In order to evaluate this exgian, one will
have to use Monte Carlo methods.

5 Volatility smiles

In this section, we study the influence of stochastic levemag European call option prices and the
corresponding implied volatilities. We concentrate on gleaeralised Heston model (8) and assume
that the stochastic correlation processatisfies the SDE of a generalised Jacobi diffusion spedified
(7). Before going into details on the stochastic corretatitodel we first briefly describe the influence
of the model parameter in the classical Heston model, it e@gnstant correlation.

5.1 Influence of model parameters in the classical Heston med

The classical Heston model with constant correlation has eequently studied in the literature.
The influence of the model parameters on the shape of theachpblatility smile is therefore well
understood, see e.g. (Hakala & Wystup 2002, Chapter 23eneml, the effect of changing the initial
varianceo? in the classical Heston model has a very similar effect angihg the long—run variance
B. The highers? or 3 the higher are the implied volatilities. The smile therefe shifted upwards
or downwards but keeps mainly the same overall shape.

In contrast, when the speed of mean reversion parameiichanged, the overall shape of the
smile changes significantly, in particular with respecti® &t the money part of the smile. For higher
values ofa the implied volatilities corresponding to at the moneyk&rprices are shifted upwards
whereas the wings of the smile are hardly affected.

The volatility of the volatility v is of crucial importance for the shape of the smile. If it i$ se
equal to zero, the volatility process is deterministic dreté¢fore the smile degenerates into a straight
horizontal line. Increasing the volatility of volatilithcreases the convexity of the smile.

The constant correlation in the classical Heston modelenites the symmetry of the volatility
smile. If the correlation is 0 the smile is mainly symmetribeveas positive correlation corresponds
to a shift of the minimum of the smile towards higher strikesl aegative correlation towards lower
strikes, i.e. positive correlation makes calls more expperand negative correlation makes puts more
expensive.
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5.2 Influence of model parameters in the generalised Hestonadel

In order to compute European call option prices in the GH rhadld stochastic correlation given
by (7) we use Monte Carlo methods together with a classigatated Euler scheme with 32,000 time
steps for an option with 10 years maturity, constant intesger = 0 and strikes i{50, 51, ..., 149, 150}.
The asset price at timgis assumed to b&00. We simulatel00, 000 paths to compute one option
price. From these prices, we derive the corresponding @dplblatilities and plot them for various
strikes.

We first study the influence of a stochastic correlation gede the Heston model on the shape
of the implied volatility smile. The default parameters bé&tstochastic variance process are taken
to beo? = 0.04,a = 0.8,3 = 0.04,7 = 0.5. It should be noted that the CIR process with this
parameterisation does not satisfy the Feller condifio® > ~? and therefore) is attainable. In
empirical studies it is often observed that the stochastiatiity process does not satisfy the Feller
condition, see e.g. the comments in Andersen (2007), Beo&dKaya (2006), van Haastrecht &
Pelsser (2008), and we have therefore chosen this parasatitar.

The correlation process satisfies the SDE (7) with default parametéig = 0, Ry = 1, Ry =
0, R3 =0, Ry =1, R; = 1.5. For more information on the model parameters used, seeniippa.

In our numerical analysis we find that the overall influencéhef parameters describing the dy-
namics of the stochastic volatility process on the shapéefttnile stays the same as in the Heston
model (with constant correlation). As an example we juss@ne the influence of the volatility of
volatility in Figure 2. We find that the smile is flatter for lewvalues ofy.

0.20

.19

1 —
N T~. . .—
18- — R

L7
7 -—— gamma=0.24

.16 —— gamma=0.5

.15

— gamma=1.0

.14
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Figure 2: Sensitivity with respect to~ for v € {0.24,0.5,1}. Implied volatilities computed from
simulated call prices wittby = 100, 7 = 10,r = 0. This Figure uses a slightly different scale for
the y-axis than all other Figures due to the large variatibthe implied volatilities in the present
example.

Next, we consider the influence of the parameters descrithi@gtochastic correlation process.
Figure 3 shows the implied volatilities for different vatuef the volatility parameteks of the gen-
eralised Jacobi diffusion. For smdlls, the correlation process is almost deterministic wherfeas,
large values of?;, itis close to a jump-type diffusion. We find that changing plarameteR; results
in an upwards or downwards shift of the implied volatilitiér increasing values @ts, the implied
volatilities are first shifted downwards. Fé¥% = 5, however, we see that the implied volatilities are
again almost the same as 8 = 0.1. This is due to the fact that the stochastic correlation ggedn
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that case resembles already a jump—diffusion type modei &hostly taking extreme valuesl, 1,
which results in a very similar behaviour as just assuminglarost deterministic correlation around
zero.

Figure 4 shows the sensitivity of the implied volatilitiestlwrespect to the support of the corre-
lation process modelled in terms of the parameférsand R4. We find that these parameters have a
strong influence on the shape and the location of the smileaiticular, we observe that the negative
correlation processH, = —0.5, R4 = 0.5, i.e. support—1, 0], long—term mean-0.5) has higher
implied volatilities for higher strike prices than the pgo& correlation processi,; = 0.5, Ry = 0.5,

i.e. support0, 1], long—term mean.5) and vice versa for lower strike prices. The correlationcpss
which can take both positive and negative valuBs & 0, R4 = 1, i.e. supporf—1, 1], long—term
mean0) is almost symmetric around the at the money price and eshébirue smile shape. Indeed,
we find here as well that the positive correlation processanaklls more expensive and the negative
correlation process makes puts more expensive.

Figure 5 compares the correlation process varying in a smaterval[—0.5, 0.5] to those varying
in the larger interva]—1, 1]. For both intervals we compare slow and fast mean revers@rf?; =
0.1 andR; = 1 respectively. We see that the influence of the speed of mearsien here is marginal.
The support of the correlation process, however, doesrdeterthe overall location of the smile. We
find that a smaller support for the correlation process teguhigher overall implied volatilities.

Figure 6 compares the classical Heston model with consamélation equals zero, to the GH
were the correlation process varies in eithed.5, 0.5] with long—term mea# or in [—1, 1] with long—
term meart). We find that if the correlation process varies only in a sinédirval the resulting implied
volatilities are very similar to those of the classical Hesiodel where a constant correlation where
chosen which is the center of this interval. This is obvigusbt surprising. The implied volatilities
for constant correlation are generally higher than thosetimchastic correlation in this example. If
the stochastic correlation process varies in a wider iatéhere[—1, 1]), then the implied volatilities
are generally even lower.

Figure 7 shows the influence of the paramedtgron the shape of the smile for a mean reversion
parameter?; € {0.1,1}. We are again considering a stochastic correlation pracessl, 1] and
study different values foR3 which result in different long—term means of the stochastizelation
process. Due to the parameterisation of the model, the Emgmeank,; + R3 R4 corresponds t@s
in this example. We find that this parameter strongly inflesnthe shape of the smile. If the long—
term mean i¥), we observe an almost symmetric smile, whereas a negatiagositive long—term
mean results in a left— and a right—skew, respectively. @digewe find that the smiles in Figure
7(b) corresponding td?; = 0.1 are flatter and exhibit a stronger smile shape rather thdrskesv
shape compared to a fast mean reversion paramgter 1 in Figure 7(a). Moreover, we find that the
influence of the speed of mean reversion paramiieis more pronounced when the long—run mean
is leading to asymmetric implied volatilities.

In general, we find that for negative support of the corretafunction or for a negative long—term
mean, the European call prices are higher for strike prioeslsr thanS, and are smaller for strike
prices greater thaf, than the prices for positive support or positive long—tereamor symmetric
correlation processes which can take both negative antvmogalues.

In principal, the support of the correlation process togethith its long—term mean can be used
to model the symmetry of the smile. For asymmetric smile fieezd of mean reversion parameter can
be chosen to increase or decrease the convexity of the shalesymmetric smiles the influence of
this parameter seems to be marginal. The length of the suppthre correlation process can be used
to shift the implied volatilities upwards or downwards. larficular the more values the correlation
process can take, the lower are usually the implied vdiasli
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Figure 3:Sensitivity with respect to R for R; € {0.1,1.5,1}.
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Figure 4:Sensitivity with respect to R, R4.
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Figure 5:Sensitivity with respect to Ry, Rs, Ry.
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Figure 6:Influence of stochastic correlation. Comparison of the classical Heston model with con-
stant correlation= 0 and the Heston model with stochastic correlation procegs-in5, 0.5) with
long—term mean= 0 and in(—1, 1) with long—term meag= 0.
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Figure 7:Sensitivity with respect to R3 for different values of R;.
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6 Influence of leverage effect and volatility feedback effémn return—
volatility regressions

So far, we have studied the concept of stochastic leveragenave investigated its impact in the
context of equivalent martingale measures and optionngicrhis section and the following one are
now devoted to more statistical aspects of stochasticdgegrwhich arise when one is interested in
measuringhe leverage effect.

We start with a very simple set up: A standard tool in econaicgetor quantifying the empirical
leverage effect is by means of return—volatility regressiof various types. The aim of this section is
now to study the impact of stochastic leverage on such retotatility regressions and to investigate
further how well we can measure both the leverage effect lamddlatility feedback effect in the GH
and GBNSJ model based on a simple regression framework. A sbte on forecasting volatility
based on option implied volatility will round off this seati and will link it to the topics of change of
measure and applications to option pricing we studied kefor

Our work extends recent work by Bollerslev & Zhou (2006), IBddlev et al. (2006) to the GH
model with stochastic leverage and furthermore derivesctiteesponding results for the GBNSJ
which allows for stochastic leverage in terms of a linearnsformed Jacobi process. Note in par-
ticular that, throughout this section, we work under thauagstion that the instantaneous volatility
feedback effect, which is described by the paramitarthe drift of the log—price process jmsitive
in order to obtain results which are comparable to the on8wilerslev & Zhou (2006).

6.1 Leverage effect

First of all, we focus on the classical leverage effect, Whicreferred to as the — usually negative —
correlation between lagged returns and current volatilityorder to measure this effect, econometri-
cians usually study the population regressions for integrgolatility, given by

t+h t
/ o2du=G+D dYy + €riin, (12)
t t—h

and for the option implied volatility, we write

t+h t

E; ( / agdu> =G*+ D~ dYu + € 1 hs (13)
t t—h

for constants7, D, G*, D* € R and for white noise processes*. Note that we denote bif; the

conditional expectation under the equivalent, risk—rautrartingale probability measui®&, condi-

tional on ;.

In the literature, we find some empirical studies which findo be positive and others which
indicate thatD is negative (for a discussion on these results and furtliermmces to the corresponding
empirical studies see Bollerslev & Zhou (2006)). In thisteet we will shed some light on how both
a positive and a negative leverage effect can be explaingdifba GH model and in a GBNS model.
Motivated by the empirical findings, we will assume throughthis section thaE(p) < 0, which
is in line with the assumption of Bollerslev & Zhou (2006), evAssumed that the deterministic,
instantaneous correlation coefficient is negative.
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Recall that the GH model is given by equation (8), i.e.

dYVt = (,U, + bO’tZ)dt + oy <Ptth + 1-— thWt> ,
do? = o — o?)dt + yo, dWy,

for positive constants, b, a, 3,~, and whereW,W are independent Brownian motions apds a
stochastic process taking values-nl, 1], which is independent df” andW . For ease of exposition,
we will additionally assume thatis stationary e.g.p is a linearly transformed stationary Jacobi pro-
cess. Furthermore, when we apply a structure preservinggehaf measure as discussed in Section 4,
the memory parameter of the volatility process under thengtral measure is given by = a+ A,
where the constamd is usually assumed to be negative, €. < «, and the long term mean under
the risk neutral measure is denoted®y

Proposition 6.1 In the GH model, with standard parameter restrictiansy*, 3, 5*, v,b > 0, A <
0 and with a stationaryp with E(p) < 0, the population slope parameters and intercepts in the
population regressions (12) and (13) are given by

(bﬁ’y + BE(p)y ) é (1 _ e—ah)2
Bh+ 2 (24 2B(p) ) (—1 + ha + e=oh)
G = hB — D(u+bB)h,

D_

and
(bﬁ’y + BE(p)y ) (1- e—ah) ai (1- e—a*h)
Bh+ 25 (B2 4 2B(p) ) (1 + ha + e=oh)

= (55 o (1= ) + 8" — D*(u + bR

Also, if0 < b < —2%, thenD* < D < 0 and if0 < —2% < b,weget) < D < D*.

As in Bollerslev & Zhou (2006), we also find for the GH model aiiallows for a stochastic leverage
effect that theempirical leverage coefficient, given blp and D*, respectively, depends positively
on theinstantaneousvolatility feedback parametdr and negatively on thinstantaneoudeverage
parameter which is given by the mean of the stochastic IgecedfectE(p). Depending on which
effect is more pronounced we might find both a negative or #ip@empirical leverage coefficient
in empirical studies.

Next, we study the population regressions in the GBNSJ mdrietall that the GBNSJ model is
defined by equations (9) and (10). Furthermore, we will deryt\* the memory parameter of’
under the risk neutral measure.

Proposition 6.2 In the GBNSJ model, with standard parameter restrictionsd, A, \*,(, 7,0,k =
E(Ly),k2 = Var(Ly),k] = E*(L1) > 0 andE(p) < 0, the population slope parameters and
intercepts in the population regressions (12) and (13) averg by

K9 <% + @) % (1 - e_)‘h)2 — I{%E(p)h (—1 + Ah + e‘Ah)

var (JL,av,) ’
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where

t
1
Var (/ d}g) — b {2XE(p) + b} — (—1 + AR+ e_)‘h>
t—h A

1
+2023E (p?) pers (—1 — Anh + th) + k1 (14 AE(p)) h.
The intercept in the regression is given by

G = hk1 — D(u+ bk1 + Ac1E(p))h.

For the implied volatility, we get
(% + Elebnar) § (1= ) o (1= ™)
Var <ftt_h dYs)

1 x
G* = (k1 — K]) > <1 —e h) + hr] — D*(u + bk1 + Ac1E(p))h.

D* =

)

The findings in the GBNSJ model are similar to the ones we ohtaithe GH model. The first

part of the numerator of the empirical leverage coefficisribasically equivalent to the coefficient
we obtain in the GH model. However, in addition, we obtain rantevhich depends positively on
the instantaneous mean of the stochastic leverage. Thatsntleat, even if the volatility feedback
parameter is small or even zero, we could nevertheless fimsitiye empirical leverage coefficient.
Note that in the population regression based on the optigiiech volatility, the extra term, which

depends positively on the instantaneous leverage effe longer present.

6.2 Volatility feedback effect

Now we focus on the so—callegblatility feedback effecivhich is regarded as the usually positive
correlation between current volatility and future returimsorder to measure it empirically, econome-
tricians usually focus on the following two population reggions:

t+h __ t+h
/ dy, =G+ D/ ondu + € pn, (14)
t t
and
t+h L t+h
/ dY, = G* + D*E; < / aidu> + i (15)
t t

for constantss, D, G*, D* € R and where, ¢ denote white noise processes.

Note that the main difference between the leverage and tlatilitg feedback effect, from an
empirical point of view, lies in theausality (as discussed by Bollerslev et al. (2006)): While the
leverage effect describes how a negative price incremadsle an increase in subsequent volatility,
the volatility feedback effect explains how an increase dtatility can give rise to negative price
increments.

The corresponding results for the volatility feedback efia the GH and GBNSJ model are now
given as follows.
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Proposition 6.3 In the GH model, with standard parameter restrictiansx*, G, 5*, v,b > 0, A < 0
and with a stationary with E(p) < 0 and . # 0, the population slope parameters and intercepts in
the regressions (14) and (15) are given by

Db aE(p) <0, G <#_ 504E(P)> h,
Y Y
and
~ é (1 — e_ah)
Pt <t
G* = (u+bB)h - D* (6’% +(8 - ﬂ*)% (1 - e—ah>> :

Also, we get fof < b < —E(,Yﬂ that

D <0< D* <b,

L* 1_87(x*h
andfor0<—%<b<ﬁ() “<

P
R (e we have

0< D < D*<b.

The results above show clearly, that the instantaneoudilitgldeedback effect which is given by
b is systematically underestimated by the empirical vatgatfieedback effectD in the presence of
stochastic leverage with negative mean. The same resollhalds when we look at the option implied
return—volatility regression.

In the GBNSJ model, the findings are very similar again. Antaathl nice feature in this mod-
elling framework is that the intercept of the populationresgion equals thieue drift, which was not
the case in the generalised Heston model.

Proposition 6.4 In the GBNSJ model, with standard parameter restrictiond, A, \*,(,n,0, k1 =
E(L1),ke = Var(Ly),k; = E*(L1) > 0, E(p) < 0andp # 0 and \* < A, the population slope
parameters and intercepts are given by

D = b+ \E(p) < b, G = ph,
and
5*_1) %(1 e_Ah) b
- 1 —\h) —
)\—*(1—6 )

G 5 1
G" = (/L‘Fblil +>\I{1E(p))h — D* <,{’{h_|_ (’{1 o ’{{)F <1 _ e_)\h>> .

Also, if additionally\* < \*, we get for0 < b < —E(p)A that
D <0< D* <b,

.
(1

R DR ()

and for0 < —E(p)A < b < AE(p) , we have

0< D < D*<b.
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6.3 Implied volatility forecasting bias

The final part of this section focuses on the impact of therbeye effect on creating a bias when
forecasting volatility based on option implied volatilitf he corresponding population regression is
given by

t+h o t+h
/ O'?Ldu =G+ DE;k </ O'ZdU) + €t 1h, (16)
t t

whereG, D € R ande denotes white noise. Ideally, we would like to have that= 0 and that

D = 1. This would imply that the implied volatility generates usded volatility forecasts. However,
we obtain the following results for the GH and GBNSJ model.

Proposition 6.5 Under the same assumptions as in Proposition 6.3 and Propo$.4 the slope and
the intercept of the population regression (16) in the GH eldslgiven by

p_ e
b= ai (1 —e—"h)

R (0 ) R (R (R E e

and in the GBNSJ model, we get

1(]_ =M
%SL
)\—*(1_6 )

G (n-3 (1= )i (- (1)) 200

)\*

<1,

D

So we observe that while we underestimate the slope coeffitieghe GH model, this is not neces-
sarily true in the GBNSJ model. However, under the additiasaumption thah*™ < A, we get that
D < 1in both models.

After we have studied a very simple method for quantifyingetage—type effects in form of
return—volatility regressions and after we have found obdtwmpact thestochastideverage has on
such regressions, we will next turn to more advanced metfawdaeasuring the leverage effect.

7 A short note on estimation and inference

Last but not least, we address the problem of estimation rfieceince in our two new models in the
presence of stochastic leverage. In fact, there are twastgpestimation problems which should
be discussed: First of all, there is the question of how we estmate stochastic leverage non—
parametrically and how we can make inference on it. Secomsljnteresting to investigate how the
model parameters in both the GHJ and the GBNSJ model canibeat=d.

Throughout this section, we will work under the physicalkability measure and we will assume
that we observe the asset price at high frequencies. Fartrer we ignore any sort of microstructure
effect and just refer to Bandi & Russell (2008), Zhang et2006), Hansen & Lunde (2006), Jacod
et al. (2008), Barndorff-Nielsen et al. (208B) and the references therein for a detailed account on
this matter.
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7.1 Non-—parametric estimation of the leverage effect

We start with the question of how to estimate the stochastierage non—parametrically. This ques-
tion has recently been addressed by Bandi & Rend (@008 modelling framework which allows for
local stochastic leverage. However, here we are interested mraeee general models for stochastic
leverage. So, we will proceed differently. Since, stodbdst/erage is a special case of stochastic
volatility it is natural to use similar methods for estinmgtithe leverage than the ones which are very
successful in estimating stochastic volatility.

Throughout the section, we assume that we observe the tlagéeciasset pricé” = (Y;);>o over
a time intervall0, 7| for someT" > 0 at timesiA,, fori = 0,1,...,[T/A, ] for someA,, > 0 such
thatA, — 0 asn — oo. Then we writeA'Y = Yja, — Y(;_1)a, for theith return ofY". In the
following, we always assume that< ¢ < 7'.

A key quantity in estimating the stochastic volatility/gage is the quadratic variation process,
see e.g. Protter (2004), denoted by the square bré¢katd its empirical counter part, thealised
variance(RV) (Andersen & Bollerslev (1998), Barndorff-Nielsen & &bhard (2001, 2002)), which
is defined by

[t/An]
RV'= > (A7Y)?.

i=1

Clearly, RV;* — [Y]; asn — oo, where the convergence is uniform on compacts in probgifiitp),
see Protter (2004).

Note that in the GH model, the quadratic variat{®f, is given byfot o2ds, whereas in the GBNS
model we obtainf; o2ds + 3., P2, (Lns).

The concept of realised variance has been generalisedigecemultipower variation (Barndorff-
Nielsen & Shephard (20@®%, Barndorff-Nielsen et al. (2006), Jacod (2008),Veraa®0Q)) and trun-
cated realised variance (Mancini (2001, 2006), Jacod (Q00®rder to estimate the continuous and
the discontinuous part of the quadratic variation sepbratéese methods seem to be promising tools
when we look at the GBNS model, since the stochastic coiwelabefficient appears in the jump part
of the quadratic variation and can be estimated separassiydoon the difference of realised variance
and realised multipower variation. However, we observe, théen we are in the GH model, the
stochastic leverage has no contribution to the quadratiati@n. In order to estimate it we should
hence focus on the quadratic covariation instead. In the GHetwe have

dY,0%); = o7 pydt, (17)
and in the GBNS model, we get
dlY,0%); = pxed[L] - (18)

In order to estimatgY, o] non—parametrically, one can use an estimator proposed lkyakly
& Zhang (2009), which is based on the sum of the products ohtgk frequency increments of
the logarithmic asset price and suitably normalised estichspot variances, see e.g. Lee & Mykland
(2006), Bandi & Rend (20G8. Note that Mykland & Zhang (2009) focus on continuous Itbgesses
for the asset prices which, clearly, do not include the GBN@E®h However, extensions of their work
to the jump case (using similar reasoning as in Jacod (2@08)jkely to be straightforward to derive
and will be studied elsewhere in future research.
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7.2 Parameter estimation in models which allow for stochagt leverage

Next, we turn our attention to the question of how we can eggrthe model parameters which specify
the GH and the GBNS model. Parameter estimation in stochadttility models has been studied
intensively in the last decade. Popular methods includagigumaximum likelihood estimation, see
Barndorff-Nielsen & Shephard (2005 Gallant (1997), generalised methods of moments, see e.g.
Bollerslev & Zhou (2002), and simulation methods, see ealprts et al. (2004), Frihwirth-Schnatter
& Sogner (2001), Griffin & Steel (2006), and Ait-Sahalia 8nkmel (2007) and the references therein.
Following the work by Barndorff-Nielsen & Shephard (2@)6veraart (2008), Todorov (200%),
we can use the time series of realised variances/multipgargition for estimating the model param-
eters of the generalised Heston and BNS model, since we capute all moments of interest in
explicit form (see the appendix) or can use suitable apprations as in Todorov (20@% and hence,
can use quasi—maximum likelihood methods or general mstbbchoments for estimating the model
parameters and for making inference on them. An implemientatf such estimation methods will
be left for future research.

8 Concluding remarks

This paper contains a systematic treatment of the new corufep stochastic leverage effect in
stochastic volatility models. By modelling the stochadéicerage effect explicitly, e.g. by means
of a linear transformation of a Jacobi process, we have famdnalytically tractable asset price
model which allows for an easy economic interpretation dhlxiochastic volatility and stochastic
leverage.

In order to get a better understanding of such models, we peygosed two new stochastic
volatility models which allow for stochastic leverage: tipeneralised Heston model and the gener-
alised Barndorft-Nielsen & Shephard model.

We have studied in detail how such models behave under betértipirical and the risk neutral
probability measure and we have investigated the impliddtiity patterns of such more general
stochastic volatility and stochastic leverage modelsaliinwe have addressed statistical aspects, in
such a new model class. In particular, we have given expkstlts on how a stochastic leverage
effect affects return—volatility regression and the &pild forecast volatility based on option implied
volatilities. Furthermore, we have indicated how one cdimege stochastic leverage and the param-
eters in these new model classes.

In future research, it will be interesting to study multize extensions of our new models and to
carry out an empirical study by implementing the estimatexhniques described in this paper.
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APPENDIX

A Choice of parameters for the simulation study

The following table contains all the parameter values usdbé simulations for Figure 2 - 7.
We considered European call options with asset price at tirgen by S, = 100, maturity
T = 10 and interest rate = 0.
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Table 1: Parameter values used in the simulations for Figure.
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B Proofs

B.1 Proofs for Section 3

Proof of Proposition 3.3: The drift and the continuous martingale part are straigivfod to derive
and, for the jump part, we g&Y; = py,_ ALy, and

t 0 t
Ytd :/ / zpy (dz,ds) 2/ Prs—dLys = Z Prs—ALs
0 J—c0 0

0<s<t
t [e%e)
= / / zpxs—pr(dz, Ads),
0 JO

where;, denotes the Poisson random measure associated.wiith predictable compensator;,.
In particular, for anyAd € B(R\ {0}), we get

La(=2) % py = Ta(paz) * pir,
and, hence,
Ta(—z) xvy = Ta(prz) * vr.

Note thatvy, is factorisable and homogeneous with(dz, ds) = Ur(dx)ds, whereUy, is the Lévy
measure of. Hence, we get for anj € B(R \ {0})

Ia(—2z) x vy (dz,dt) = Tx(prz) x Ur(dz)\dt.

B.2 Proofs for Section 4

Proof of Proposition 4.2: Proposition 4.2 is a straightforward application of thesairov theorem.
Note that the independence of the Brownian motions undeigkeeutral measure follows along the
lines of Musiela & Rutkowski (2005, p. 233). O

Proof of Proposition 4.3: We start this proof by giving a very general outline on how ¢ostruct
the density procesg. It turns out that? is given by the Doléans—Dade exponential of the local
martingaleN, whereN is constructed in the following. Note that throughout thisqd, we follow
closely Jacod & Shiryaev (2003, 111.5). Let

ay = VY({t}7R)a
g = [ &, x)vy ({t}, dx), if the integral exists
7 o, otherwise

We define a predictable time by

Y =inf{t: eitherft > 1,0ra; = 1and§t < 1},
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which is always positive and we define
t t o0 2
= [ botonyeds+ [ |7 (1= VEED) Tos (s (ds.da)
2

+§j@¢f@—¢r¢Qﬂmmﬁ

s<t
Furthermore, let

T, = inf(t, H; > n), A =1[0,%) N (U,[0,T3,]) .

From Jacod & Shiryaev (2003, Proposition 111.5.10), we pet there is a unique procedson the set
A such that for every stopping timewhich satisfies0, 7| C A, the stopped procesg” is aP—local
martingale given by

N™ = (YLjo.ny) - YO+ Vo3 * (by — vy),

=~ $—a
V= <5 -1+ %H{ad}) Loy

under suitable integrability conditions on the processies shat the integrals above exist.
The density process has then the form

Z= 2o+ (Z0) Y+ (ZV) % (uy =) + 7,

where all quantities are as defined above ghé aP—local martingale with?z) = 0, <Z ‘e, YC> =0

andE (Z * py| 75) = 0, see Jacod & Shiryaev (2003, Lemma I11.5.17).

If we additionally assume that all local martingales unéleare representable relative 10 see
Jacod & Shiryaev (2003, 111.4c), and that= 0 (which implies thafy” is quasi—left continuoysthen
the density process is, according to Jacod & Shiryaev (2008prem 111.5.19), given by

Z =20+ (Z-4)- Y+ (Z_(§ = 1)) x (py — vvy),

which is the density mentioned by Nicolato & Venardos (2003)is result can also be written as

t _ .
g { Zoesp (Nt—% Oz/gagds) [ococe (1+ AN e 2V ifte A,
0, if t ¢ A

Furthermore, we deduce from Jacod & Shiryaev (2003, 11.8) tihe formula above is equivalent to

5 _ [ ZEWN), ifteA,
70, iftg A

Now, we have all the means to carry out the proof of the prajposiUsing the above results, we
apply the generalised Girsanov theorem to the triiple W', L). In particular, we get that

t t
Wzm—/w%, ww:wu/w%&
0 0
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are Brownian motions with respect, and
vi(dt,dz) = N(t, 2)Ur (z)dxdt

is the compensator qf;, underP*. Under the new measuilg*, the asset price satisfies the
following SDE:

dS; = S;_ (brdt + O'tth* + th*),

where

At poo

| [ e =0 o - e, as),

0 0
and

1 [ee]

b =+ <b + 5) o2 4\ / (e — 1) E(t, 2)UL(dx) + oy,
0

In order to ensure that "t S, is a (local) martingale undét, we seth; = r. O

Proof of Proposition 4.4: The first part of the proof follows from the general Girsanlegdrem and
the arguments given in the proof of Nicolato & Venardos (200Beorem 3.2). Additionally, we

deduce the independence bf and W€ underP* from Sato (1999, Theorem 19.3). Finally, a
straightforward computation along the lines of Musiela &lwvski (2005, p. 233) shows thit *¢
andW¢ are independent und&. O

Proof of Proposition 4.5: Letu € R. Then

E (exp(u(Yr — Y1) Ft)

T T T
=E <exp <u <,u(T —t)+ b/ afds) + u/ o, dW + u/ p,\de)\s> ]—"t>
t t t
T T T
=E <E <exp <u <,u(T —t)+ b/ a?ds) + u/ o, dWy + u/ pASdLAS>
t t t

7))
T T
=K (exp <u <,u(T —t)+ b/ 03(13) + u/ p,\SdL)\s>
t t
T 1%
E <exp <u / anW8> FEFW )'ft>.
¢

T v w2 T
E (exp <u/ ades> FEFY > = exp (7/ O‘?d&’) ,
t t

Note that
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hence, we have

E (exp(u(Yr — Y1))| Ft)

T u2 T
=E (exp <uu(T —t)+ u/ PrsdLys + <ub + 7) / a?ds) ‘ .7-})
¢ ¢
T ’LL2 T
= exp(up(T —t))E <eXp <u/ PrsdL s + <ub + 7) / 0?ds> ]-'t> .
¢ ¢

/tT agds = % <1 — e_A(T_t)) O't2 + % /tT <1 — e_/\(T_s)> dLys.

Hence, we get fov = (ub + “;) that

Note that

E (exp(u(Yr —Yy))| Fi) = exp <uu(T —t)+ fu% (1 - e_)‘(T_t)) at2>

(e ([ (unse+ § (1-209) ) )| ).

Now we apply Cont & Tankov (2004, Lemma 15.1) and obtain

E <exp ( /t ' (ums + % (1 - e—MT—@)) dLAs> ‘ ]:WV,]-“t)
= exp <)\ /tT K (u,oAs + ; (1 — 6—>\(T—s)>> ds) 7

wherex denotes the cumulant transform of the subordinétor O

B.3 Proofs for Section 6

Proof of Proposition 6.1: Note that

2 2

E (08) =0, E (03) =62+ %, Var (08) = %,
E (02 02) =62+ —5fy2 e~ Clu=s Cor (02 02) = ¢~olu—sl
urrs) 20 ’ urvs) .

First, we computé’ar ([f_h dYS) . Note that

t t t
/ dy, :Yt—Yt_h:thrb/ a§ds+/ osdXs.
t—h t—h t—h

Clearly,

E([ d}g) = ph + bhE (03) = (1 + b3) h.

—h
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Also,
t
E(Y?)=E (2/ YadYs + [Y]t>
0
t S
=2E </ / ((n+bo2)du + 0,dXy,) (1 + bo?) ds> +tE (03)
0 JO
2,2 2 2572 —at 2 22,2
= 12t + 2ubBt: + b — (—14at+e ) +b°6°° +tp.
Note that

t s t s
E( / / auquagds>=E< / / aupudwuagds>
0 Jo 0 JO
t s x t2
:—aE<///aupuqua:%dxds—FﬂE(p)’y—),
o Jo Jo 2

and when we solve this integral equation, we get

(//Juqu02d> mE() (-1+at+e ).

SinceY has stationary increments, we conclude that

E ((Y; — Yi—p)?) = p®h* + 2ubBh* + b? (—ﬁl + ﬁlh + 6%h? +

5E( ol

6732 e_ah> + hg

+ 2b (—1 —I—ozh—l—e_o‘h) )

Hence

2
Var (Y — Yi_p) = Bh+ <b2ﬁl3 + 25&%5)7) (=1 +ha+en)
—ﬁh+bm < +2E(p )) (—1+hoz+e_°‘h).

Next, we compute the covariance. Clearly,

t+h t
Cov </ aidu,/ dYS>
t t—h
t+h t t+h t
=bCov ( / o2du, / agds> + Cov ( / o2du, / astS>
t t—h t t—h

- (B + sloh) o (1)’

since

t+h t 2 pt+h gt 2 4 2
Cov </ Jidu,/ J?dS) = ﬁl/ / e~ sl quds = ﬁl—2 <1 - e_ah> ,
t t—h 200 Jy t—h 200 «
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and

t+h t t+h t
Cov < / oldu, / anXs> =E < / / aspsdwsagdu>
t t—h t t—h

_ BE(p)y (1 B 6—ah)2'

o2
Hence, we get
L _Cov (S " o2du, J ) (%2 + BB (o)) & (1 - eoh)?
N Var (ft—h dYS> Bh + 2 (%’ + 2E(p)> (=14 ha+ e—ah)'

Hence, the intercept in the regression is given by

thh Cov (ftHh o2du, ftt_h dYS)
G:=E / ogds | — - E(Y; —Yipn)
t Var <ft_h dYS)

=hB — D(pu+ bB)h.
The coefficient of the implied volatility asymmetry is defihiey
Cov <EI <fi+haidu> ,ff_h dYS)

b= Var (ff_h d}g)

Note thatlE} (ft”’ 2du) =L (1-e ") (67 — B*) + 8h, and, hence,

t+h t
Cov (Ef (/ Jﬁdu) ,/ dYS>
¢ t—h
=Cov <% (1 — e_o‘*h) o? + B* <h — % (1 — e_o‘*h)> ,/t dY8>
t—h
= b% (1 - > Cov <0t , /tih 0§d8> + % (1 — e_o‘*h> Cov <0 , asts>

= bﬁ—72i (1 - e_o‘*h) é <1 - e_ah> + E(p)ﬁy% (1 - e_o‘*h> ! (1 - e_o‘h) .

20 oF «

Hence, we get

_ (B EOn) (- ()
B+ (& +2E(p)) (1 + ha + e=oh)

)

and, for the intercept, we get

= (557 o (1= ) + 5 — D+ BB
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Clearly,

b b
Var (= Yien) = g0+ 57 (24 28(9)) (14 ha+ ) >0,
(8% (6%

hence, ifo < b < —2%, thenD* < D < 0 and if0 < —2% < b,we getd < D < D*. Re-
call thata* = a+A. So, the assumption thadt< Oleadstd) < 2 (1 —e ") < L (1 —e "), O

Proof of Proposition 6.2: Note that for
dY; = (p + bol)dt + o dW + prdLy,
dof = —Xojdt + dLy,
dpy = (¢ + npe)dt + 0/—pi(1+ p)dW,

we have
E (0p) = k1, E (o) :n%+%7 Var (a3) :%7
E (0}, 02) = KT+ %e(—“u—ﬂ), Cor (02,02) = &=,

First, we computé’ar ([f_h dYS) . Note that

t t t t+h
AYs=Y, =Y, p=ph+0 Jgds —I—/ osdW —I—/ Prs@L s
—h t—h t—h ¢

Clearly,

t
E (/ dYS> = ph + bhEE (Jg) + A1 E(p)h = (1 + br1 + A1 E(p)) h.
t—h

Note thatE(p) = —&. Also,

E(Y?)=E <2 /O t YadYs + [Y]t>

t s
9% ( [ [ et b oudiV + i) (n+ 092) ds + pAde,\S)>
0 JO
+tE (08) + tAr1E (p) .

Note that
t S
2E </ / (1 + bai) du (p+ baz) ds>
0 JO
1
= 12t + 2ubkit® + b%gp (—1 +e M4 At) + b2 K212,
and

t s
E (2/ / (1 +by) dUP/\de/\s> = urk1E (p) t2 + AIBE (p) t2 = (1 + br1) A1 E (p) t2.
0 Jo
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Furthermore, we have

t s t s x
E < / / auquagds> = —\E ( / / / auquagdxds> ,
0 JO 0o Jo JO

and when we solve this integral equation with initial valyen@ getE (f(f f(f auquagds> =
and, hence,
t S
E <2/ / o, dW,, (,u + baz) ds> =0.
0o Jo
Also, we have

t s t s
2 </ / Juqup)\de)@) = 2)\/@1/ E </ O'uqup)\st>
0 Jo 0 0

37

0,

t s
= 2)\Ky / E </ auqu> E (prs)ds =0,
0 0

and

t s t s
oF < / / PrudLy (1 + bo?) ds> = urk1E(p)t? + 2bE < / / p,\udLAuagds> ,
0 JO 0 JO

where

E </ p)\udL)\u0€>
0
=K </ / p)\de)\de'?L) +E (/ UipkudL)\u> +E </ p)\ud[L])\u>
0 JO 0 0

= -\E </ / pmdLAxaidu> +E </ / p,\deAde)\u> + M&2E(p)s + ArgE(p)s
0o Jo 0o Jo

s u 2
=-)\E </ / pmdLAxaidu> + /\ZIQ%E(p)% +A (/{% + k2) E(p)s.
0o Jo
So, fory(t) = E (fot pMdLMat2> we obtain an ordinary differential equation (ODE) of type
Y (1) + Ay (t) = NRIE(p)t + A(KT + ka),
with y(0) = 0. Hence, we get
t
y(t)=E </ p,\udL)\uat2> = (1 — e_/\t) Ko (p) + AIE(p)t,
0

and

t s 1 1
E </ / pAudLAuo*gds> = rolE(p)~ <—1 + At + e_)‘t> + —ATE(p)t2.
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Note that using the same reasoning as above, we get far eny < t:

t
E </ p,\SdL)\SJt2> = <1 - e_)‘(t_x)> ko (p) + A&3E(p)(t — ).

Altogether, we have

t s
2E < / / paudLry (14 bo2) ds)
0 J0

1 .
= Akt E(p) (s + bra) €2 + 2DAR2E(p) 35 (—1 YA te At) ,

t s t s
E (2 / / qudLAupAdeAs> = 2)K1 / E ( / p)\udL)\up)\s> ds
0 Jo 0 0

2

t s u
= 2 K1 / ()\2(;411}3 (p) % + AnE </ / pmdL)\x> Pwdu + Ak E (p2) 8> ds,
0 o Jo

E < / mudmums) _E < / / pmdLM) dpra +E < / piudmu>
0 0 0 0
= ME </ / p)\de)\x> du + A\nE </ / p)\mdL)\m> Poudu + Ak E (p2) S
0 0 0 0

82 s u
= A2(k1E (p) 5 + A\pE (/0 /0 p,\deAx> Padu + Ak E (pz) s.

and

where

Hence, we get

t s
E <2 / / PrxudLyuprs dL,\s>
o Jo

¢ <

1
= 2 Ant 2,2 2
2A\K1 </\/£1E (p ) + /\nmE(p)> N2 ( 1—Ant+e ) A IilnE(p)t .

Altogether, we get
1
E ((Yt)z) = 12t + 2ubkt? + b2/{2ﬁ <—1 +e My )\t) + bRt
1
+2 (e + br1) Mer E (p) t2 + 2b/\/£2E(p)§ <—1 + At + e_)‘t>
+2Xk1 | A1 E (p?) + )\glilE(p) L (—1 — At + e’\"t) —\? %ﬁE(p)ﬁ
U A2p? U

+ k1 (1+ AE(p)) £,

SinceY has stationary increments, we conclude B&tY; — Y;_,)?) = E ((Y5)?). Hence

1
Var (Vi = Yi-n) = brz {2AE(p) + b} (—1 Ny e—”l)

+2)242E (?) (—1 ~ph+ th) + k1 (14 AE(p)) h.

1
2272
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Next, we compute the covariance. Clearly,

t+h t
Cov </ aidu,/ dY8>
t t—h
t+h t t+h t
= bCov </ Uidu,/ U?d&’) + Cov </ Uidu,/ pASdLAS> ,
t t—h t t—h
where

t+h t t+h  pt 1 9
Cov </ aidu,/ U§d3> = @/ / e M=l guds = @—2 (1 - e_Ah) ;
t t—h 2 Jy —h 2 A
t+h t t+h t
Cov < / oldu, / pAde)\s> =E < / / pASdL,\saidu> — A&IE(p)h?
t t—h t t—h

t+h t
— / E (/ pASdLAsai> du — M3E(p)h?,
t t—h
where foru > t:

t t t U
E </ pASdLASo*i) =" (/ p,\tdL)\Scrf) +E </ p)\de,\S/ dag,)
t—h t—h t—h t
t t U t u
_E ( / pAtdLAsﬁ) Y ( / preiLss / aidx> +E < | para | dLM>
t—h t—h t t—h t

t u
= MEE(p)h + raB(p) (1— ) — XE ( [ oars. [ azdx) .
t—h t

and

So, we obtain a differential equation of the type
y'(u) + Ay(u) =0,
y(t) = A2E(p)h + r2E(p) (1 - e_>‘h> —: A(h).

From solving the above ODE, we get

t
E </ p,\SdL)\sc;'i) = A(h)e_)‘(“_t),
t

—h

and

Hence,

t+h t
Cov (/ aidu,/ pASdLAS> = /{%E(p)h (1 — \h — e_>‘h>
t t—h

+ /\/igE(p)% (1 - e_)‘h)2 .
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Altogether, we have

t+h t b 1 2
2 _ o 2L (1 _ -
Cov </t o, du, /t_h dYS> = Kg <2 + E(p)A) 32 (1 e )

— K2E(p)h <—1 + A\h + e_>‘h> .
Hence, we get

b Cov <ftt+h o2du, ftt_h dYs)
Var (ftt—hdys)

K2 (% + E(p))\) % (1 — e_)‘h)2 — H%E(p)h (—1 4+ \h + e‘Ah)
Var (ftt_h dYs>

t
1
Var ( / d}g) — by {2XE(p) + b} — (—1 + AR+ e_>‘h>

t—h A

9

+ 2\%K2E (pz) <—1 — Anh + e>"7h> + k1 (1+XE(p)) h

1
A2n2
Hence, the intercept in the regression is given by

t+h Cov ft+h o2du, ft_ dYs
G::E(/ agds>— U h )E(Yt—Yt_h)
t

Var <ftt_h dYS)
= hk1 — D(p + br1 + Ark1E(p))h.

The coefficient of the implied volatility asymmetry is defihiey
* t+h t
e 2 O (i () i)
Var <ft_h dYs>

Here, we work with structure preserving changes of meassidiszussed earlier. Under the new
measure, the volatility process satisfies

do? = —No?dt + dL%.,,

whereL* is a Lévy subordinator under the new measure with= E (L}). Then

t+h t+h
E; (/ 05du> :/ E; (05) du,
t t
E; (05) = atz + E} </t dai) = O‘t2 — N'E} (/t Uidl’) + Ef (/t dL§x>

=o? —/\*/t E; (0323) dx + N'k](u — 1),

where
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which leads to

and, hence,

Hence,

t+h t
Cov (Ef (/ Jﬁdu) ,/ dYs>
t t—h
B Lo ) 2 /t
- <)\* (1-e) et o
_ bi (1 _ e‘)‘*h> Cov <at2,/t U§d8> + i <1 — e_’\*h> Cov <Ut2,/t Pkde/\S>
¥ t—h A t=h

= b%% (1 - e_)‘*h) % (1 - e_)‘h) + E(p)lig% (1 — e_/\*h> (1 - e_)‘h) .

Hence, we get
(B2 +E(p)rar) § (1= e ) 5k (1= e

b= Var <ftt_h dYs>

I

and, for the intercept, we get

1 *
G* = (k1 — K]) — (1 —e h) + hi] — D*(u + br1 + A&1E(p))h.

\
Clearly,
Var (Y —Y,—p) > 0,
and
—KZE(p)h (—1 Tyt e_’\h> >0,
hence,

Ko (% + E(p)/\) % (1 — e_/\h)2'
Var <ftt_h dYs>

So, ifb < —2AE(p) andA* < A, henced < 1 (1 — e ) < & (1 —e™*'"), we getD* < D.

D >
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Proof of Proposition 6.3: We have to compute

Cov < tHh dys, fttJrh Jgdu)

Var ( tt+h aidu)

Clearly,

t+h 29
Var (/ agdu> i (~1+an+en).
¢ a o«

For the covariance, we get

t+h t+h
Cov </ dYS,/ Jidu)
t t
t+h t+h t+h t+h
= bCov < / olds, / agdu> + Cov ( / osdXs, agdu> ,
t t t t

t+h t+h t+h t+h
Cov </ 0sdXs, Jidu) =E </ USdeWs/ 05du>
¢ ¢ ¢

t
t+h u 1
=F ( / aspsdwsaidu> = BE(p)y— (—1 + ah + e—ah) .
t t o

where

Hence, we get

Clearly,D < 0if 0 < b < —E(p)a/y andD > 0if 0 < —E(p)a/~ < b. For the intercept, we get

G=E(Yyn-Y,) — DE </tt+h agdu> = <u— ﬂa%(p» h.

For the implied volatility, we get

t+h 2
Var <Et </t audu>> S0 a2 <1 e > ,

and, similarly as before, usirig; (ffrhagdu) =L (1—e M) (0 — ) + B*h,

Cov <Yt+h - Y, E} </tt+h Jﬁdu)) = bi—ffé (1 — e—ah) % (1 — e_a*h) .

Combining the above results, we get

L)
% (1 —e—2"h)

D*=1b
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Clearly,0 < D* <b given thath > 0 and A < 0. For the intercept, we get

~ . t+h
G* =E(Yiup — ;) — D'E (E; </ agdu»
t

% * * 1 —«
— (u+bB)h—D (5 ht (55— (1 h))
[0
Altogether, we get fof < b < —E(p)a/y thatD < 0 < D*, and for0 < —E(p)a/y < b <

as(p) e (e
T (e e (e

t+h 2
2 _ ﬁ/y 1 —ah 2
Cov <}Q+h—}/;§,]Et </t O'udu>> —bﬁ@ (1—6 > .

, we have) < D < D*. Finally, similarly as before, we get

Proof of Proposition 6.4: We have to compute

Cov < tHh dyYs, fttJrh J?Ldu)
Var (ftt+h aﬁdu) ‘

Clearly,

t+h 1
Var (/t aidu> = fK2yg (—1 + Ah + e_)‘h) .

For the covariance, we get

t+h t+h t+h t+h
Cov (/ dYs,/ aidu> = bCov </ Jgds,/ 05du>
t t t t
t+h t+h t+h t+h
+ Cov </ anWS,/ aidu) + Cov </ pASdL,\S,/ aidu) ,
t t t t

t+h t+h t+h  ru
Cov (/ adeS,/ 05du> =K </ / adesaidu> =0,
t t t t
and

t+h t+h t+h t+h
Cov </ p,\SdL)\S,/ Jidu) =E </ p,\SdLAS/ 05du> — M&IE(p)h?
t t t t
t+h u t+h u
=E ( / / pAdeASU?Ldu> +E ( / / agdsp,\udLM> — M&IE(p)h?
t t t t

t+h 1
= / (I{QE([)) <1 - e_)‘(“_t)> + ARTE(p) (u — t)) du + iAﬁ%E(p)lﬁ — AIE(p)h?
t

where

= IizE(p)i <—1 + A+ e_)‘h> .
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Hence, we get

D = b+ AE(p).

Clearly,D < 0if 0 < b < —E(p)AandD > 0if 0 < —E(p)A < b. For the intercept, we get

- . t+h
G=E(Yup—-Y,) — DE </ Jﬁdu) = ph.
t

For the implied volatility, we get

t+h 2
* 2 _ k2 1 —X*h
Var <Et </t audu>> =5 w2 (1 —e > ,

and, similarly as before, usirig; (ffrhagdu) = (1—e M) (67 — K7) + Kih,

t+h t+h 1 .
Cov <Yt+h - Y, E; </ aidu)) = Cov </ dYS,UEF (1 —e? h>>
t t

-5 -

1 —\h
. x (=)
=t
A*

Combining the above results, we get

Clearly,0 < D* < b given thatb > 0 and\* < \. For the intercept, we get

~ . t+h
G* =E(Yyyy — Y;) — D'E <E; </ aidu))
t

~ 1 N
= (14 bry + A E(p))h — D* (n’{h + (k1 = A1) (1 —e h)) :
Altogether, we get fol0 < b < —E(p)A that D < 0 < D* and for0 < —E(p)A < b <

&= (1—e ~ o~ .
AE(p) %(l_exg)_%(l_em) , we have) < D < D*. Finally, similarly as before, we get

t+h 1 i 2
Cov <Yt+h - Y, E, (/t 05du>> =(b/2+E(p)A) K273 (1 —e” ) :

Proof of Proposition 6.5: Note that

— Cov (ftt+h o2du, E} (ftHh aﬁdu)) - 62—12% (1—eah) L (1—ca'h)
Var (B; (™" o2du)) B2 (1 (] eah))?
é 1—eah
= L( ) 1,
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where we used the results from the proof of the previous @mitipos. For the intercept, we get

o t+h o t+h
G:E(/ agdu> — DE (E: (/ agdu>>
t t

o ) 1 —a*h 2 * 1 —a*h

—ﬂh—DE<g(l—e )at—i-ﬂ (h—§<1—e >>>

_ 1 —ah * 1 —a*h é (1 - e_ah)

_5(h_5(1_e ))m (h_g(l_e ))—%(1_6_%.
Note that for the GBNSJ model, we get

1 (1_ o—Ah
D t t Zf\(l e )<17

Var (E;{ (ftt+h aﬁdu)) 3= (L—eh) =

Cov < i o2du, B ( i aidu>)

where we used the results from the proof of the previous itipos. For the intercept, we get

- t+h o t+h
G=E ( / agdu> —~DE (E; ( / agdu>>
t t
_ e L S O 5 N R (S S SRR v S
= kb DIE()\*(I ¢ )Ut+lil<h S (1=
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