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1 Introduction

Vector autoregressive (VAR) models have been applied in several ways to analyze various
forms of present value models. The most immediate one is to incorporate the restrictions
entailed by the present value models to estimate the parameters of the VAR model to
form a basis for statistical testing of the model.

Use of all purpose tests like likelihood ratio and Wald tests often leads to rejection of
the restrictions. A natural question is then whether the rejection is due to essential parts
of the present value models or is due to features of less importance. Campbell and Shiller
(1987) proposed a graphical technique which addresses this issue in a present value model.
As a special case of this let {Xt} = (Yt, yt)

′ be a 2-dimensional time series consisting of
the stock price at the end of period t and of the dividend paid during the period t. The
present value model entails that the stock price can be expressed as a discounted sum of
the expected future dividends given the information presently available i.e.

Yt =
∞∑
i=1

δiEt[yt+i] + c, (1)

which implies
Yt = δEt[Yt+1 + yt+1] + c(1− δ). (2)

Note that if the information set contains more variables than the stock prices and
dividends, the conditional expectations may involve these variables. Also, note that in
Campbell and Shiller (1987) c = 0 for the present value model of stock prices. We find it
useful for the discussion to allow for a general value of c.

Equation (2) shows that if both Yt and yt are I(1) variables, S1
t = Yt − δ

1−δ
yt is

stationary and we find the representation from (1)

Yt − δ

1− δ
yt =

1

1− δ

∞∑
i=1

δiEt[∆yt+i] + c. (3)

Campbell and Shiller (1987) denoted S1
t = Yt− δ

1−δ
yt the (actual) spread , and defined

the theoretical spread as S2
t = 1

1−δ

∑∞
i=1 δiEt[∆yt+i], so that the present value model can

be expressed as,
S1

t = S2
t + c. (4)

Alternatively, using (1) one may express the spread as

Yt − δ

1− δ
yt =

δ

1− δ
Et[∆Yt+1 + ∆yt+1] + c, (5)

which says that the spread is linear in the optimal forecast of the change in the sum of
the stock price and the dividend. Also (5) may be written in the form (4) by defining the
theoretical spread as S3

t = δ
1−δ

Et[∆Yt+1 + ∆yt+1].
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The basic idea of the procedure suggested by Campbell and Shiller (1987), is to com-
pare an estimator of the actual spread

S1
t = Yt − δ

1− δ
yt,

and an estimator of the theoretical spread, S2
t , that is, a forecast of a weighted average

of the future change in dividends

S2
t =

1

1− δ

∞∑
i=1

δiEt[∆yt+i]. (6)

Also one could consider forecasts of

S3
t =

δ

1− δ
Et[∆Yt+1 + ∆yt+1]. (7)

This seems as a sensible thing to do. Both the spread and the theoretical spread have
intrinsic meaning. If the restrictions implied by the present value model are valid, both
versions estimate the same thing. This idea is implemented by Campbell and Shiller in a
number of steps

• Estimate the cointegrating relation Yt − δ
1−δ

yt by regression.

• Transform the data to the stationary variables Ŝ1
t = Yt − δ̂

1−δ̂
yt and ∆yt.

• Fit a VAR model to the demeaned stationary variables (Ŝ1
t , ∆yt).

• Calculate the forecast of Et[∆yt+i] from the fitted model and calculate Ŝ2
t from (6).

• Compare Ŝ1
t and Ŝ2

t , e.g. by plotting them in the same diagram and compute
statistics as correlation or variance ratio.

There are several problems with this procedure

1) The three first steps are in fact a two-step procedure which ignores that there is a
relation between the original observations and the transformed series. In fact, the
parameters of the stationary VAR model for the transformed series are functions of
the parameters of the reduced rank VAR of the original observations.

2) There may be several possibilities for transforming to a stationary system, e.g.
Campbell and Shiller (1987, p. 1067) mention that also (Ŝ1

t , ∆Yt) can be used for
fitting a VAR model. These alternatives may result in different fitted stationary
models, and hence in different forecasts.
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3) There are other definitions of a theoretical spread which can be used, as we have
seen, i.e. Ŝ3

t .

4) For systems containing more than just two variables, there may be more stationary
linear combinations of the variables than the one described by the spread, so the
spread need not identify the cointegrating relations.

5) It is not clear what is the appropriate framework for evaluating the uncertainty of the
forecasts, the original I(1) system or the stationary VAR model for the transformed
data.

We suggest in the present note that this implementation of the basic idea can be im-
proved by conducting the analysis in a cointegrated VAR model of the originals series.
There has recently been some work indicating that such results would be useful. Kur-
mann (2005) compared measures of theoretical and observed inflation in a New Keynesian
pricing model following Campbell and Shiller’s approach. Carriero et al (2006) compared
spread between long- and short-term interes rates using similar ideas.

In the next section we define the model, show how the statistics of interest can be
derived and consider some potential applications. In section 3 the asymptotic distribution
of the actual spread and of the correlation and variance ratios are derived. In the last
section the results using the procedures we propose are compared to those of two previous
studies by Campbell and Shiller (1987) and Engsted (2002).

We use the following notation. If a p × r matrix α, where r ≤ p, has full rank, α⊥
denotes a p×(p−r) matrix of full rank such that α′⊥α = 0. The matrix α(α′α)−1 is defined
as ᾱ, so that α′ᾱ = Ir and ᾱα′ is a projection matrix, vec(α) denotes the vector consisting
of the stacked columns of α, and ⊗ is the Kronecker product defined as C⊗D = {CijD}.
Convergence in probability is denoted by

P→ and =⇒ means convergence in distribution.

2 The statistical model

2.1 The statistical model

Assume that the p−dimensional data vector is generated by the cointegrated VAR

∆Xt = α(β′Xt−1 + κ1t) + Γ1∆Xt−1 + · · ·+ Γk−1∆Xt−k+1 + µ0 + εt (8)

where α and β are p × r matrices and that the errors εt are independent multivariate
Gaussian variables with mean zero and covariance matrix Ω. Let β∗ = (β′, κ1)

′ and
X∗

t−1 = (X ′
t−1, t)

′.
For the asymptotic analysis we also assume that the process is I(1), which means that

the characteristic polynomial corresponding to model (8) has all zeros outside the unit
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circle or exactly at 1. Furthermore, the matrix α′⊥Γβ⊥, where Γ = Ip − Γ1 − · · · − Γk−1,
has full rank p− r. Under these assumptions, we have the representation

Xt = C

t∑
i=1

(εi + µ0) +
∞∑
i=0

Ci(εt−i + ακ′1(t− i) + µ0) + A0 (9)

= C

t∑
i=1

εi + ξt + ξ0 + Yt + A0

where Yt is stationary, A0 depends on initial values so that β′A0 = 0, and the matrix C
is given by

C = β⊥(α′⊥Γβ⊥)−1α′⊥,

see e.g. Johansen (1995a). In order to forecast the process, it is convenient to consider
model (8) formulated in the stationary companion form. From (8) it follows that

β∗′X∗
t = β′Xt + κ1(t + 1) = β′Xt−1 + κ1(t + 1) + β′α(β′Xt−1 + κ1t) (10)

+ β′Γ1∆Xt−1 + · · ·+ β′Γk−1∆Xt−k+1 + β′µ0 + β′εt

= (β′α + Ir)β
∗′X∗

t−1 + κ1 + β′Γ1∆Xt−1 + · · ·+ β′Γk−1∆Xt−k+1 + β′µ0 + β′εt.

We define the stacked stationary process

Zt−1 = Zt−1(β
∗) = (X∗′

t−1β
∗, ∆X ′

t−1, · · · , ∆X ′
t−k+1)

′.

of dimension l = r + p(k − 1).
For k > 1, Zt satisfies the AR(1) equation

Zt = AZt−1 + µ + Qεt, (11)

where the l × l matrix A and the l × p matrix Q are given by

A =




β′α + Ir β′Γ1 · · · β′Γk−1

α Γ1 · · · Γk−1

0 Ip 0
...

...
0 0 · · · Ip 0




, Q =




β′

Ip

0
...
0




(12)

and µ = Qµ0 + (κ′1, 0 . . . , 0)′. Because (11), regarded as a difference equation, has a
stationary solution, all eigenvalues of A must have modulus less than one. For k = 1, the
autoregressive equation can be expressed in Zt = β∗′X∗

t , and β′α + Ir. The autoregressive
formulation implies that

Et(Zt+i) = AiZt +
i−1∑
j=0

Ajµ = AiZt + Biµ,

Bi = (Il − Ai)(Il − A)−1.
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From the conditional expectations Et(Zt+i) we can now pick out the conditional ex-
pectations of the differences, on which forecasts can be based, because

Et(∆Xt+i) = (0p×r, Ip, 0p×(l−r−p))Et(Zt+i) = d′[AiZt + Biµ]. (13)

For k = 1, the formula is easier as Et(∆Xt+i) = Et(αβ∗′X∗
t+i−1) + µ0 and Et(β

∗′X∗
t+i) =

(Ir + β′α)Et(β
∗′X∗

t+i−1) + κ1 + β′µ0. Thus

Et(∆Xt+i) = α(Ir + β′α)i−1β∗′X∗
t − α(β′α)−1[Ir − (Ir + β′α)i−1](β′µ0 + κ1) + µ0.

For technical reasons it is convenient to use, in this case also, an autoregressive represen-
tation where the vector Zt−1 contains the differences ∆Xt−1. For k = 1 the matrix A will
then be singular and equal to

A =

(
β′α + Ir 0

α 0

)
. (14)

Unless otherwise stated, when k = 1, A will be given by (14), l = r + p and Zt−1 =
(X∗′

t−1β
∗, ∆X ′

t−1)
′.

2.2 A general definition of actual and theoretical spreads

In the statistical model it is convenient to define the spreads in terms of the stationary
cointegrating relations. Thus we define in general the actual spread as

β∗1(υ)′X∗
t = β1(υ)′Xt + κ1t = a′Zt(β

∗). (15)

When the spread is normed on the first element, a = (1, 0, . . . , 0) ∈ Rl, otherwise a =
(1/β11, 0, . . . , 0) ∈ Rl. If κ1 = 0 we use β1(υ)′Xt = a′Zt(β), and if further µ = ακ0 we use
β∗1(υ)′X∗

t = β1(υ)′Xt + κ0 = a′Zt(β
∗).

The spread β∗1(υ) is linear in υ, which is a vector of m1 ≤ p + 1 − r parameters
describing the spread. Then β∗1 may be written

β∗1 = h∗1 + H∗
1υ1. (16)

where h∗1 is a (p + 1)× 1 vector and H∗
1 is (p + 1)×m1 matrix.

We assume that the other r− 1 columns of β∗ are just identified by linear restrictions
and a normalization, which we express as

β∗i = h∗i + H∗
i υi. (17)

Here h∗i is a (p + 1) × 1 vector and H∗
i is (p + 1) ×mi = (p + 1) × (p + 1 − r), matrix

so that β∗i has mi = p + 1− r free parameters i = 2, . . . , r. Also let H∗
i = (H ′

1i, H
′
2i)

′ and
assume finally that all columns of β are identified.
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A theoretical spread will be used in a wider sense than in Campbell and Shiller (1987).
Thus both the formulations (1) and (5) may be taking as starting point, and it turns out
in the examples below that the theoretical spread can written in the form

b′[f(A)Zt(β
∗) + g(A)µ] (18)

where b is a suitably defined vector, and f(A) and g(A) are suitably defined matrices.
Strictly speaking f and g also depend on the parameters in the cointegrating relations,
but the estimators of these are super-consistent, so that we have suppressed them in the
notation. All the estimators necessary to compute Â and µ̂ i.e. υ̂, α̂, Γ̂1, . . . , Γ̂k−1, µ̂0, κ̂1 are
the maximum likelihood estimator in the model (8), conditioned on the initial observations
X−k+1, · · · , X0.

Example 1: the present value model. Consider again the present value model with Xt =
(Yt, yt, z

′
t)
′, where Yt and yt are defined as before and zt are additional variables of interest

to be included in the information set. Let a be the l-dimensional vector where only the
first element is non-zero and equal to one. Then the actual spread, i.e. S1

t from the
introduction, can be expressed as

S1
t = Yt − δ

1− δ
yt = a′Zt,

and β∗1 = (1,− δ
1−δ

, 0, . . . , 0)′, is assumed identified by the zero restrictions. In this case
there is only one parameter, υ = δ/(1− δ), to be estimated, and m1 = 1.

As for the theoretical spread, i.e. S2
t , as in the introduction,

∞∑
i=1

δiEt[Zt+i] = δA(Il − δA)−1Zt +
∞∑
i=1

δi

i∑
j=1

Aj−1µ

= δA(Il − δA)−1Zt +
δ

1− δ
(Il − δA)−1µ.

Pre-multiplying Zt by b′ = e′2d
′, where d is defined in (13) and ei is the p-dimensional vector

where only the i’th element is non-zero and equal to one, picks out the first difference
series for the dividends. Taking

f(A) =
δ

1− δ
A(Il − δA)−1, g(A) =

δ

(1− δ)2
(Il − δA)−1,

the theoretical spread may be written on the form (18).
An alternative formulation is to express the spread as the optimal forecast of the

change in the sum of the stock price and dividend, i.e. as S3
t in (7). Then the theoretical

spread, which is also of the form (18), will be

S3
t =

δ

1− δ
(1, 1, 0, . . . , 0)d′(ÂZt(β

∗) + µ)
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where

f(A) =
δ

1− δ
A, g(A) =

δ

1− δ
Il, b′ = (1, 1, 0, . . . , 0)d′. ¥

Example 2: uncovered interest parity. If Xt = (i1,t, i2,t, dt)
′, where i1,t and i2,t are domestic

and foreign interest rates respectively, and dt is the depreciation of own currency. The
uncovered interest parity is defined as

i1,t − i2,t = Et[dt+1],

which can also be expressed as

i1,t − i2,t − dt = Et[∆dt+1].

In this case it is natural to consider the forecast of the right hand side given by

Ŝ2
t = e′3d

′(ÂZt(β̂
∗) + µ̂),

so that
f(A) = A, g(A) = 1, b′ = e′3d

′.¥
Example 3: term structure of interest rate. Consider next the term structure of interest
rate where R

(n)
t is an n-period discount yield or interest rate. We focus on periods of three

and one months. The linearized form of the expectation hypotheses of the term structure
(EHTS) can be expressed as

R
(3)
t =

1

3
(R

(1)
t + Et[R

(1)
t+1] + Et[R

(1)
t+2]) + c (19)

where c is a risk premium. Thus, the EHTS implies that the actual interest spread

S1
t = R

(3)
t −R

(1)
t =

1

3
Et[∆R

(1)
t+2] +

2

3
Et[∆R

(1)
t+1] + c

is a cointegrating relations if (R
(3)
t , R

(1)
t ) is I(1).

Therefore, if we let Xt = (R
(3)
t , R

(1)
t , z′t)

′, where the elements of zt are additional
variables of interest, the EHTS model fit into the framework described above. Obvious
candidates as elements of zt are other interest rates of different periods. Then more
elaborate EHTS than (19) may also be investigated.

The actual spread is directly observed, so Ŝ1
t = S1

t , β1 = (1,−1, 0, . . . , 0)′ and there
are no parameters to be estimated in the actual spread, i.e. m1 = 0. A reduced rank
VAR model (8) with a restricted constant term, µ0 = ακ′0, appears to be most natural,
as linear trends are unlikely to be present in interest data. The stacked process satisfies
the equation

Zt = AZt−1 + Qακ′0 + Qεt,
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and gives the conditional expectations

Et[∆R
(1)
t+1] = e′2Et[d

′Zt+1] = e′2d
′(AZt + Qακ′0),

Et[∆R
(1)
t+2] = e′2Êt[d

′Zt+2] = e′2d
′(A2Zt + AQακ′0 + Qακ′0).

Thus in this context the theoretical spread is

S2
t =

1

3
e′2d

′[A2Zt + 2AZt + AQακ′0 + 3Qακ′0].

In the case

f(A) =
1

3
(A2 + 2A), g(A) =

1

3
(A + 3Il), b′ = e′2d

′. ¥

3 Asymptotic distributions of spreads, correlation,

variance ratio, and noise ratio

We consider the asymptotic distribution of the spreads and of numerical summaries used to
describe them such as correlation, variance ratio and noise ratio. A process of considerable
interest is the difference of the estimators of the spreads, T 1/2(Ŝ1

t − Ŝ2
t ). It turns out that

the limit does not exist. Therefore, we have to analyze it by considering some functionals
like those mentioned, correlation, variance ratio and noise ratio.

3.1 The spreads

Both the actual spread, S1
t = β∗1(υ)′X∗

t = a′Zt, where a is the first unit vector, and the
theoretical spread S2

t = b′[f(A)Zt + g(A)µ)], where b is a suitable selection vector, can be
expressed in terms of Zt. For St = (S1

t , S
2
t )
′ we define ψ and η by

S̄T =

(
a′

b′f(A)

)
Z̄T +

(
0

b′g(A)µ

)
= ψZ̄T + η, (20)

and let µZ = E[Zt], µS = ψµZ + η and ΣS = ψΣZψ′ where ΣZ is the covariance matrix
of Zt. Then, let

UT =
1

T

T∑
t=1

(St − µS)(St − µS)′ = ψ
1

T

T∑
t=1

(Zt − µZ)(Zt − µZ)′ψ′. (21)

Denote by ̂̄ST , ÛT the estimates we get by replacing all parameters by their maximum
likelihood estimates. In the appendix the following proposition is proved.

Proposition 1 Let f and g be continuously differentiable and define the derivative F =
∂vec(f(A))/∂(vec(A))′. Then
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i)
̂̄ST

P→ µS (22)

ÛT
P→ ΣS. (23)

ii) On D4[0, 1], we find

u
√

Tvec(Û[Tu] − ÛT ) =⇒ WU(u)− uWU(1)

where WU is Brownian motion with variance ΣU , which is found as the variance of

[{(ζ ⊗ ψΣZ)Kll + (ψΣZ ⊗ ζ)}F (Σ−1
Z ⊗ I), (ψ ⊗ ψ)]V. (24)

where ψ is defined in (20) and ζ = (0l×1, b)
′. The variance of V = (V ′

1 , V
′
2)
′ is given

by (27) in Lemma 2 in the appendix.

When k = 1, Σ−1
Z in (24) shall be substituted with (Ir 0)′((Ir 0)ΣZ(Ir 0)′)−1(Ir 0).

Remark 1. It is worth emphasizing that the asymptotic variance of vec(ÛT ) consists
of two parts. On the one hand, the term (ψ ⊗ ψ)V2, which depends on the coefficients
of the VAR only through the value of f(A). On the other hand, a component which
depends on the linearization of f(A) with respect to A, and which will take into account
the variation in the estimated coefficients in A.

There are also other random variables whose distributions are of interest. As shown in
Lemma 3 in the appendix the asymptotic distribution of T 1/2(Ŝ1

[Tu]−S1
[Tu]) = T 1/2a′(Ẑ[Tu]−

Z[Tu]) = T 1/2(β∗1(υ̂)− β∗1(υ))′X∗
[Tu] is mixed Gaussian. But the asymptotic distribution of

T 1/2(Ŝ2
[Tu] − S2

[Tu]) is rather involved, as we shall now see. We find that

T 1/2(Ŝ2
[Tu] − S2

[Tu]) = T 1/2[b′f(Â)Z[Tu](β̂∗)− b′f(A)Z[Tu](β
∗) + g(Â)µ̂− g(A)µ]

= b′f(Â)T 1/2[Z[Tu](β̂∗)− Z[Tu](β
∗)] + b′T 1/2[f(Â)− f(A)]Z[Tu](β

∗)

− b′T 1/2[g(Â)µ̂− g(A)µ] + OP (T−1).

The first term converges in distribution, as we have pointed out, and the last term con-
verges by an application of the delta method. The second term is more complicated
because although the factor T 1/2[f(Â)−f(A)] converges in distribution by an application
of the delta method, the process Z[Tu](β

∗) does not converge to anything as a process in
Dl[0, 1].

The same remark holds for the difference of the estimated actual spread and the
estimated theoretical spread: Ŝ1

[Tu]− Ŝ2
[Tu], which of course is the most interesting process

to analyze.
As a consequence some functionals of the processes Ŝ1

[Tu] and Ŝ2
[Tu] for which we can

find the asymptotic properties, will be considered in the next section.
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3.2 Correlation, variance ratio and noise ratio

The dependency of the movements of the estimates of the actual and theoretical spreads
is often described by the correlation, the variance ratio and the noise ratio of the two
series, defined as

ρ = Cov(S1
t , S

2
t )/

√
V ar(S1

t )V ar(S2
t ),

vr = V ar(S1
t )/V ar(S2

t ),

nr = V ar(S1
t − S2

t )/V ar(S1
t ).

We give below the asymptotic distributions of these quantities estimated recursively
on the interval 1 ≤ t ≤ [Tu], that is as processes on D[0, 1]. We find that for ρ, say, we
get

Σ−1/2
ρ uT 1/2(ρ̂[Tu] − ρ̂T ) =⇒ B(u)− uB(1)

so that sup tests can be applied. Here Σ
−1/2
ρ is the asymptotic variance of ρ̂T , as given in

Proposition 2 below, and B(u) is a standard Brownian motion. Similar results hold for
the other quantities.

It follows from Proposition 1 that the estimators are consistent, so that

ρ̂T
P→ ρ =

a′ΣZf(A)′b√
a′ΣZab′f(A)ΣZf(A)′b

(25)

v̂rT
P→ vr =

a′ΣZa

b′f(A)ΣZf(A)′b

n̂rT
P→ nr =

a′ΣZa + b′f(A)ΣZf(A)′b− 2a′ΣZf(A)′b
a′ΣZa

(26)

where ΣZ is the covariance matrix of Zt.
In the special case of k = 1 and r = 1, there is only one cointegration vector, and both

estimated spreads can be expressed as linear functions of β̂′X∗
t , which is scalar. This can

be seen from the discussion at the end of section 2.1, because the conditional expectations
of the differences are functions of β′X∗

t only. One consequence is that both the empirical,
ρ̂, and population correlation, ρ equal 1. Another is that the three dimensional asymptotic
distribution considered in Proposition 2 must be degenerate.

By a straightforward application of the delta method we get the following result from
Proposition 1.

Proposition 2 Let matrix Σu be the asymptotic 3× 3 variance of T 1/2(ÛT11, ÛT12, ÛT22),
which can be found as a sub-matrix of ΣU in Proposition 1. Then

i)
uT 1/2(ρ̂[Tu] − ρ̂T ) =⇒ Wρ(u)− uWρ(1),

10



where the variance of Wρ is Σρ = 1
4
ρ2c′1Σuc1 for

c1 = [
1

a′ΣZa
,

−2

a′ΣZf(A)′b
,

1

b′f(A)ΣZf(A)′b
]′.

ii)
uT 1/2(v̂r[Tu] − v̂rT ) =⇒ Wvr(u)− uWvr(1),

where Wvr has variance Σvr = c′2Σuc2 for

c2 = (b′f(A)ΣZf(A)′b)−2[b′f(A)ΣZf(A)′b, 0,−a′ΣZa]′.

iii)
uT 1/2(n̂r[Tu] − n̂rT ) =⇒ Wnr(u)− uWnr(1),

where Wnr has variance Σnr = c′3Σuc3 for

c3 = (a′ΣZa)−2[−b′f(A)ΣZf(A)′b + 2a′ΣZf(A)′b,−2a′ΣZa, a′ΣZa]′.

Example 1, continued. Here f(A) = δ
(1−δ)

A(Il−δA)−1 = 1
(1−δ)

[−Il +(Il−δA)−1] which
shows that

f(Â)− f(A) =
1

(1− δ)
[(Il − δÂ)−1 − (Il − δA)−1]

=
δ

(1− δ)
(Il − δA)−1(Â− A)(I − δÂ)−1.

The linearization needed to compute the variance in (24) is therefore in this case,

vec{[f(Â)− f(A)]} =
δ

(1− δ)
[(Il − δÂ′)−1 ⊗ (Il − δA)−1]vec((Â− A))

=
δ

(1− δ)
[(Il − δA′)−1 ⊗ (Il − δA)−1]vec((Â− A)) + oP (T−1/2),

and the estimated standard error of the correlation can be worked out as described above.
In addition to the level variance ratio based on Ŝt which works for general models of

the form we consider, Campbell and Shiller (1987) also suggested an innovation variance
ratio which is tailored to present value models. The variable

ξ1
t = S1

t − (
1

δ
)S1

t−1 +
δ

1− δ
∆yt

is a measure of the excess return on stock.

11



Now, define a similar quantity in terms of the theoretical spread

ξ2
t = S2

t − (
1

δ
)S2

t−1 +
δ

1− δ
∆yt.

After some algebra this is seen to equal

ξ2
t =

1

1− δ

∞∑
i=0

δi{Et[∆yt+i]− Et−1[∆yt+i]}

which can be interpreted as an innovation from time t−1 to time t of the expected present
value of ∆yt. Let ξ̂t = (ξ̂1

t , ξ̂
2
t )
′ where ξ̂1

t and ξ̂2
t are the estimators of ξ1

t and ξ2
t respectively.

Then we may proceed as described for the level variance ratio to derive the asymptotic
distribution of the innovation variance ratio because both innovations may be expressed
as linear combinations of elements of Zt and Zt−1. ¥

Example 2, continued. Then f(A) = A, so the asymptotic distribution follows from
(24) with F = Il2 . ¥

Example 3, continued. In this case

f(Â)− f(A) =
1

3
Â2 +

2

3
Â− 1

3
A2 − 2

3
A

= (
1

3
(Â + A) +

2

3
Il)(Â− A) =

2

3
(A + Il)(Â− A) + oP (T−1/2),

so the asymptotic distribution of the correlation and the variance ratio can be worked out
using (24) with F = Il ⊗ 2

3
(A + Il). ¥

Remark 2. In order to take into account that the correlation is bounded by 1 in ab-
solute value it is useful to consider the function 1

2
log(1+ρ̂

1−ρ̂
), with inverse tanh, which is

asymptotically Gaussian with mean 1
2
log(1+ρ

1−ρ
) and variance 1

4T
( ρ

1−ρ2 )
2c′1Σuc1. An approx-

imate 95% confidence interval has therefore bounds tanh[1
2
log(1+ρ̂

1−ρ̂
)± 1.96ρ̂

1−ρ̂2

√
1

4T
c′1Σ̂uc1].

Remark 3. Campbell and Shiller (1989) suggested computing the asymptotic distri-
bution of the correlation and variance ratio using numerical differentiation with respect
to the elements of the matrix A.

Remark 4. The arguments used to derive the asymptotic distributions relied on the
fact that the parameters in the cointegration vectors are super-consistent, and hence can
be treated as known. The situation where all these parameters actually are known, as in
Examples 2 and 3, is therefore completely covered by the treatment above.

12
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Figure 1: Real stock prices (solid line) and real dividends, multiplied by 20, (dashed line)
of American stocks 1872-1986.

4 Some simple applications

We will compare the result of applying the methods proposed in this paper to the results
reported in Campbell and Shiller (1987) and Engsted (2002). These studies are carried
out in a bivariate setup so the situations are particularly simple, as pointed out in the
introduction. The intention of the exercises is therefore to compare the traditional pro-
posals and the modifications we suggest, and see how they differ. Both contain important
lessons.

4.1 A present value model of Campbell and Shiller reconsidered

Campbell and Shiller used a VAR-model containing an unrestricted constant term to
analyze series of U.S. stock prices and dividends for the years 1872-1986. The series are
displayed in Figure 1. As explained in the introduction they fitted a VAR-model of lag

13



length two to two-dimensional series consisting of the estimated actual spread and the
differenced dividend series after having removed the means. Let Xt = (Pt, Dt)

′, where Pt

is the stock price series, and Dt is the dividend series.
We fit a two-dimensional VAR of the form

∆Xt = αβ′Xt−1 + Γ∆Xt−1 + µ + εt,

i.e. a model with an unrestricted constant term. A likelihood ratio test of the restrictions
on the coefficients implied by the present value relations yields a p-value of 0.11, see
Johansen and Swensen (1999).

Time

1880 1900 1920 1940 1960 1980

−
40

−
20

0
20

Time

1880 1900 1920 1940 1960 1980

−
30

−
10

0
10

20

Figure 2: Plot of estimates of actual spread (solid line) and first theoretical spread, S2
t ,

(dashed line) of U.S. stocks 1872-1986: upper panel as described in text, lower panel
centered at the means.

The method for estimating the theoretical spread described in Section 2 can be used

14



Table 1: The matrix Â for U.S. stocks (standard errors in parenthesis)
0.733
(0.076)

−0.170
(0.115)

−9.815
(4.055)

−0.118
(0.071)

0.160
(0.107)

−4.683
(3.780)

0.004
(0.001)

0.010
(0.002)

0.153
(0.076)

with κ1 = 0 and Zt−1(β) = Zt−1 = (X ′
t−1β, ∆X ′

t−1)
′. Figure 2 shows plots of the actual

spread and the estimated theoretical spread defined as estimated present value of the
dividends, in the upper panel. This corresponds to estimates of both sides of (4) in the
introduction, with c = 0. As one can see the levels of the two series are quite different.
However, when series are centered at the same mean, corresponding to Campell and
Shiller’s (1987) demeaning, the result is similar to the corresponding one in Campbell
and Shiller (1987). These results are not so surprising in light of the linear trend which
is evident in the plot of the series. The transformation used by Campbell and Shiller
(1987) removes this to a large extent, so the transformed series appear stationary. A
further demeaning, before fitting a VAR-model without a constant, centers both spreads
approximately at zero. However, the modified method we propose is based on a VAR-
model with a constant. Due to the linear trend the differences of the dividends are
mostly positive. Because the theoretical spread is a weighted sum of these differences, the
estimates of the theoretical spread can also be expected to be positive, as is indeed the
case, see the upper panel in Figure 2. Using the approach of Campbell and Shiller (1987)
it is difficult to discover a non-zero c in formulas (1)-(5) when the series contain a trend,
but using the modified approach such a feature appears immediately.

Table 2: Comparison of results by using the modified and traditional procedures.
Modified procedure Traditional procedure
est. std. err., est. std. err.,

estimate two terms one term estimate est. std. err.
corr(S1

T , S2
T ) 0.94 0.11 0.10 0.911 0.207

vr(S1
T , S2

T ) 3.60 2.37 2.31 4.786 5.380
nr(S1

T , S2
T ) 0.29 0.25 0.24 - -

corr(S1
T , S3

T ) -0.46 0.39 0.43 - -
vr(S1

T , S3
T ) 0.05 0.05 0.05 - -

nr(S1
T , S3

T ) 23.52 20.60 20.25 - -
100(1− δ)/δ 2.98 - - 3.2 -

In Figure 3 a similar exercise is done, but now defining the theoretical spread as linear
in the forecast of the change in stock price and dividend, i.e as S3

t defined in (7) in the
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Figure 3: Plot of estimates of actual spread (solid line) and second theoretical spread,
S3

t , (dashed line) of U.S. stocks 1872-1986: upper panel as described in text, lower panel
centered at the means.
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introduction. In this case the two spreads differ much more. The discrepancy may not
be so surprising if one looks at the estimated matrix Â, which can be found in Table 1.
Remark the large, but not significant, negative value of the entry corresponding to the
element (1, 2) in Γ̂, -4.68. In the estimate of the first theoretical spread only forecasts of
the change in dividends are used, which means that the last row of Â(I − δ̂Â)−1 is used
for combining the elements of Zt. With δ̂ = 0.971 this row equals (0.012,0.009,0.001).
For the estimate of the second theoretical spread both forecasts of the stock prices and
dividends are used. Hence, the two last rows in Â are involved, which means that the
coefficient −4.68 will have a direct influence on the estimated spread in this case.

It may be worth pointing out that Campbell and Shiller (1987) do not find the present
value model for stock prices convincing either, see e.g. pp. 1083-1085. Hence, the
discrepancy between the behavior of the two theoretical spreads supports their impression.
Turning to the numerical summaries, the results from the modifications we propose are
compared to those of Campbell and Shiller (1987) in the first and second row of Table
2. The two rightmost columns in Table 2 are taken from Campbell and Shiller (1987).
The estimates of the standard errors from the asymptotic distribution are smaller than
the estimates using numerical differentiation proposed by Campbell and Shiller (1989),
regardless of whether one or two terms of (24) are included in the asymptotic variance.
Actually, Campbell and Shiller (1989) treat the covariance matrix of Zt as fixed. That
corresponds to the situation where the asymptotic variance as given in (24) in Proposition
1, is calculated just from the first term in (24). When the covariance matrix is not
considered as fixed an extra term, (ψ ⊗ ψ)V2, is necessary. As to the estimate of the
variance ratio reported in the second row, remark the estimates of the standard errors
are similar, regardless of whether one or two terms are included in the estimate of the
variance. Also, note that the variance ratio is not significantly different from 1, and
the noise ratio is not significantly different from zero. The results for the alternative
theoretical spread defined by the forecast of the change in the sum of the one period stock
price and dividend, i.e what is denoted S3

t in the introduction are displayed in rows four
to six. They confirm the impression one gets from Figure 3.

In Figure 4 a recursive plot of the correlation between the estimate of the actual and
the first theoretical spread is displayed. From Proposition 2 it follows that the asymptotic
distribution is a Brownian bridge on [0, 1], whose maximum has a 95%-quantile equal to
1.36. There is therefore no indication that the correlation is nonconstant from a test based
on the supremum of ρ̂t, t = 1874, . . . , 1986.

4.2 A present value model for Danish stock prices

Consider next the example used by Engsted (2002) to illustrate various measures of fit
for rational expectations models. The yearly bivariate time series Xt = (Pt, Dt)

′ he
considered consists of real stock prices, Pt, and dividends, Dt, for the period 1922-1996
and is displayed in Figure 4. He computed estimates of the actual and theoretical spread
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Figure 4: Recursive plot of tT−1/2Σ̂
−1/2
ρ (ρ̂t − ρ̂T ) where ρ̂t = ĉorr(S1

t , S
2
t ) of U.S. stocks

1872-1986.

by the procedure proposed by Campbell and Shiller (1987). The stock index Pt is a
weighted portfolio measured at the end of year t, and Dt is the dividend paid during
the same year. As in Engsted (2002) we used lag length 1 and fitted a reduced rank
VAR-model of the form

∆Xt = αβ′Xt−1 + ακ0 + εt.

The p-value of the likelihood ratio test of the restrictions on the coefficients implied by
the present value relations is 0.21, see Johansen and Swensen (2004). The method for
estimating the theoretical spread described in Section 2 can be applied with κ1 = 0, µ0 =
ακ0. The actual spread, S1

t , is the normed cointegration vector S1
t = Pt−δ/(1−δ)Dt +κ0

because β2/β1 = −δ/(1− δ). Using the appropriate modifications described in Section 2,
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Figure 5: Real stock prices (solid line) and real dividends (dashed line) of Danish stocks
1922-1996.

because the lag length k is equal t, we get

∆Xt = αβ∗′
(

Xt−1

1

)
+ εt and β∗′

(
Xt

1

)
= (1 + β′α)β∗′

(
Xt−1

1

)
+ β′εt

where β∗ = (β′, κ0)
′. Then

∞∑
i=1

δiEt[∆Xt+i] =
∞∑
i=1

δiα[1 + β′α]i−1β∗′
(

Xt

1

)
= δα[1− δ(1 + β′α)]−1β∗′

(
Xt

1

)
,

and the theoretical spread is

S2
t =

1

1− δ

∞∑
i=1

δiEt[∆Dt+i] =
δα2

(1− δ)(1− δ(1 + β′α))
(Pt − δ

1− δ
Dt + κ0).
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Table 3: Comparison of results for Danish stocks using the modified procedure with the
results of Engsted

Modified procedure Engsted results
estimate sd estimate

corr(S1
t , S

2
t ) 1.00 0.000 0.9999

vr(S1
t , S

2
t ) 3.35 1.882 3.38

nr(S1
t , S

2
t ) 0.205 0.139 0.210

100(1− δ)/δ 6.17 −

Both estimated spreads are therefore linear functions of the estimated cointegration vector.
Hence the correlation is 1, which may explain the correlation 0.999 obtained by Engsted
(2003) after fitting a VAR model to (Ŝ1

t , ∆Dt)
′.

Also the alternative definition of the theoretical spread, i.e the one denoted by S3
t in

the introduction, has this feature because

Et

(
∆Pt+1

∆Dt+1

)
= αβ∗′




Pt

Dt

1


 =

(
α1

α2

)
(Pt − δ

1− δ
Dt + κ0),

so that S3
t = Et[∆Pt+1 + ∆Dt+1] = (α1 + α2)Pt − δ/(1− δ)Dt + κ0.

Figure 6, which displays the actual and first theoretical spread, is almost identical to
the corresponding figure in Engsted (2002). The ratio between the theoretical and actual
spread, which we denote as γ, is estimated as γ̂ = (δ̂/(1− δ̂))α̂2[1− δ̂(1 + β̂′α̂)]−1 = 0.55.
The estimates of the variance ratio and noise ratio between the two series are close to
those reported by Engsted, see Table 3. In this case A is given by (14) and it is seen that

f(A) =
δ

1− δ
A(Il − δA)−1 =

δ

(1− δ)(1− δ(1 + β′α))
A

so that with a = (1, 0, 0)′ and b = (0, 0, 1)′ we find b′f(A) = γa′. Therefore

(a′ΣZa, a′ΣZf(A)′b, b′f(A)ΣZf(A)′b) = ΣZ11(1, γ, γ2)

which shows that ρ = sign(γ), vr = γ−2, nr = (1 − γ)2 and that the estimates and their
variance are functions of α and β, and their estimates and their variances. Hence the
asymptotic distributions are identical, whether the covariance matrix of Z ′

t = (X ′
tβ, ∆X ′

t)
′

is considered as fixed or not.

5 Conclusion

In Campbell and Shiller (1987) a method based on comparing actual and theoretical
spreads was introduced. In this paper we have reconsidered the proposals in an I(1)
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Figure 6: Plot of the estimates of actual spread (solid line) and first theoretical spread,
S2

t , (dashed line) of Danish stocks 1922-1996.

framework with a particular view to how the basic ideas can be extended to higher di-
mensions than the bivariate setup originally treated. We pointed out several problems
that had to be resolved, proposed a statistical model for that purpose, and illustrated its
potentiality in a number of examples. The asymptotic distribution of the difference of the
spreads turns out to not exist as a process. However, the distributions of the commonly
used numerical summaries, such as correlation, variance ratio and noise ratio, converge
in distribution. The limiting distributions are Gaussian, and corresponding invariance
principles have been worked out. Finally, we consider the additional insights that can
be gained from applying the setup and methods to the data on U.S. stock prices and
dividends originally studied by Campbell and Shiller (1987), and of the data on Danish
stocks illustrated by Engsted (2002).
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6 Appendix

We first give some general results in Lemma 1 and Lemma 2 about the asymptotic behavior
of product moments derived from a multivariate AR(1) process. In Lemma 3 and Lemma
4 we then find the asymptotic properties of the estimators of the statistical model defined
in Section 2.

Lemma 1 i) Let Xi of dimension ni, i = 1, . . . , 4 be multivariate Gaussian random
variables and let Cov(Xi, Xj) = Σij. Then

Cov(vec(X1X
′
2), vec(X3X

′
4)) = (Σ24 ⊗ Σ13) + (Σ23 ⊗ Σ14)Kn3n4 ,

where Kn3n4 is the commutation matrix defined by vec(M) = Kn3n4vec(M ′) for any
n3 × n4 matrix M, see for instance Lütkepohl (2005, p. 663).

ii) Let Xit of dimension ni, i = 1, . . . , 4 be multivariate Gaussian linear stationary
processes with finite variances and let Cov(Xit, Xjs) = γij(t− s). Then

T−1Cov(
T∑

t=1

vec(X1tX
′
2t),

T∑
t=1

vec(X3tX
′
4t))

→
∞∑

h=−∞
(γ24(h)⊗ γ13(h) + γ23(h)⊗ γ14(h)Kn3n4).

Proof of i). The result is a multivariate version of the well known result for Gaussian
univariate variables that

Cov(X1X2, X3X4) = Cov(X1, X3)Cov(X2, X4) + Cov(X1, X4)Cov(X2, X3).

It can be generalized to non Gaussian variables by adding an extra term depending on
the fourth cumulant, see e.g. Anderson (1971, Thorem 8.4.2).

Let Bn2×n1 and Cn4×n3 be arbitrary matrices. A general linear function of vec(X1X
′
2)

is vec(B′)′vec(X1X
′
2) = tr{BX1X

′
2} = X ′

2BX1 and we therefore investigate

Cov(X ′
2BX1, X

′
4CX3) =

∑

ijkm

BijCkmCov(X2iX1j, X4kX3m)

=
∑

ijkm

BijCkm(Σ24,ikΣ13,jm + Σ23,imΣ14,jk)

= tr{BΣ13C
′Σ′

24}+ tr{BΣ14CΣ′
23}

= vec(B′)′(Σ24 ⊗ Σ13)vec(C ′) + vec(B′)′(Σ23 ⊗ Σ14)vec(C)

= vec(B′)′[(Σ24 ⊗ Σ13) + (Σ23 ⊗ Σ14)Kn3n4 ]vec(C ′),
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where we apply the formula tr(ABCD) = vec(A′)(D′ ⊗B)vec(C).
Proof of ii). The covariance equals

T−1

T∑
t=1

T∑
s=1

Cov(vec(X1tX
′
2t), vec(X3sX

′
4s))

= T−1

T∑
t=1

T∑
s=1

[(γ24(t− s)⊗ γ13(t− s)) + (γ23(t− s)⊗ γ14(t− s))Kn3n4 ]

= T−1

T∑

h=−T

(T − |h|)[(γ24(h)⊗ γ13(h)) + (γ23(h)⊗ γ14(h))Kn3n4 ]

which converges as indicated.

Lemma 2 Let Yt = AYt−1 + δt be an l−dimensional stationary vector autoregressive
process and let δt be i.i.d. Nl(0, Φ). Then

(i) Yt =
∑∞

i=0 Aiδt−i has mean zero and variance ΣY =
∑∞

i=0 AiΦAi′ which can be
written vec(ΣY ) = (Il2 − A⊗ A)−1vec(Φ).

(ii) T−1
∑T

t=1 Yt
P→ 0 and T−1

∑T
t=1 Yt−1Y

′
t−1

P→ ΣY .

(iii) Let

V1,T =
T∑

t=1

Yt−1δ
′
t and V2,T =

T∑
t=1

(Yt−1Y
′
t−1 − ΣY )

and VT = (vec(V ′
1,T )′, vec(V ′

2,T )′)′, then

lim
T→∞

T−1V ar(VT ) = ΣV =

(
Σ11 Σ12

Σ21 Σ22

)
(27)

where

Σ11 = ΣY ⊗ Φ

Σ21 = (Il2 − A⊗ A)−1[(AΣY ⊗ Φ) + (Φ⊗ AΣY )Kll]

Σ22 = [(ΣY ⊗ ΣY + (Il2 − A⊗ A)−1(AΣY ⊗ AΣY )

+ (ΣY A′ ⊗ ΣY A′)(Il2 − A′ ⊗ A′)−1)](Il2 + Kll)

(iv) Finally
T−1/2V[Tu] =⇒ WV (u)

as processes on D(2l)2 [0, 1]where WV (u) is an (2l)2−dimensional Brownian motion

with variance ΣV .
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Proof of ( i). We find

Yt = AYt−1 + δt =
∞∑
i=0

Aiδt−i,

which has mean zero and variance

∞∑
i=0

AiΦAi′,

which in vectorized form is (Il2 − A⊗ A)−1vec(Φ).
Proof of ( ii). The convergence follows from the law of large numbers.
Proof of ( iii). We define

γ(h) = Cov(Yt+h, Yt) = AhΣY if h ≥ 0 and ΣY A′−h if h < 0,

φ(h) = Cov(Yt+h, δt) = AhΦ if h ≥ 0 and 0 if h < 0,

η(h) = Cov(δt+h, δt) = Φ if h = 0 and 0 if h 6= 0.

From Lemma 1 we find that

T−1V ar(vec(V ′
2,[Tu]))

→
∞∑

h=−∞
[(γ(h)⊗ γ(h)) + (γ(h)⊗ γ(h))Kll]

= (ΣY ⊗ ΣY +
∞∑

h=1

(AhΣY ⊗ AhΣY ) +
∞∑

h=1

(ΣY Ah′ ⊗ ΣY Ah′))(Il2 + Kll)

= [ΣY ⊗ ΣY + (Il2 − A⊗ A)−1(AΣY ⊗ AΣY )

+ (ΣY A′ ⊗ ΣY A′)(Il2 − A′ ⊗ A′)−1](Il2 + Kll).

Similarly

T−1Cov(vec(V ′
2,[Tu]), vec(V ′

1,[Tu]))

= T−1Cov(
T∑

t=1

vec(Yt−1Y
′
t−1),

T∑
t=1

vec(δtY
′
t−1))

→
∞∑

h=−∞
[(γ(h)⊗ φ(h− 1)) + (φ(h− 1)⊗ γ(h))Kll]

=
∞∑

h=1

[(AhΣY ⊗ Ah−1Φ) + (Ah−1Φ⊗ AhΣY )Kll]

= (Il2 − A⊗ A)−1[(AΣY ⊗ Φ) + (Φ⊗ AΣY )Kll].
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Finally

V ar(vec(V ′
1,T )) = V ar(T−1/2

T∑
t=1

vec(δtY
′
t−1))

=
∞∑

h=−∞
[γ(h)⊗ η(h)) + (φ(h− 1)⊗ φ(−h + 1)′)Kll] = ΣY ⊗ Φ.

Proof of ( iv). We can apply Theorem 21.1 in Billingsley (1968) which gives an in-
variance principle for φ−mixing sequences. We study the joint asymptotic distribution of∑T

t=1 Yt−1Y
′
t−1,

∑T
t=1 Yt−1δ

′
t by considering the univariate process

ηt = f(δt, δt−1, . . . ) = tr{B(YtY
′
t − ΣY )}+ tr{C(δt+1Y

′
t )},

for arbitrary l× l matrices B and C. We define an m− dependent approximation to Yt by

Y m
t =

m∑
i=0

Aiδt−i

with the remainder term

Y r
t =

∞∑
i=m+1

Aiδt−i = Am

∞∑
i=1

Aiδt−m−i,

so that
ΣY = Σm

Y + Σr
Y = V ar(Y m

t ) + V ar(Y r
t ).

We define
ηm

t = tr{B(Y m
t Y m′

t − Σm
Y )}+ tr{C(δt+1Y

m′
t )}

and have to show that for
νm = E(ηt − ηm

t )2

it holds that ∞∑
m=1

ν1/2
m < ∞.

This follows if we can show that νm is exponentially decreasing in m.
We find using Yt = Y m

t + Y r
t that

ηt − ηm
t = tr{B(Y m

t Y r′
t + Y r

t Y m′
t + Y r

t Y r′
t − Σr

Y )}+ tr{Cδt+1Y
r′
t },

so that all terms contain an exponentially decreasing factor Am, which implies that∑∞
m=1 ν

1/2
m < ∞ and Theorem 21.1 of Billingsley (1968) now gives the required result.

The variance was found in (iii). ¥

25



Lemma 3 Let the I(1) process Xt be given by the cointegrated VAR model with restricted
linear term, (8). Assume that β is identified by the restrictions

β∗i = h∗i + H∗
i υi, i = 1, . . . , r,

where h∗i is a (p+1)×1 vector and H∗
i is (p+1)×mi so that β∗i has mi free parameters. Let

ξ denote the trend coefficient in the process Xt, see (9), then H∗′
i X∗

t has trend coefficient

τi = H∗′
i

(
ξ
1

)
.

If τi 6= 0, we define the normalization matrix

AiT =
(
T−1/2τi⊥, T−1τ̄i

)

where τ̄i = τi(τ
′
iτi)

−1, and let Hi = (Ip, 0)H∗
i . Then

A′
iT H∗′

i X∗
[Tu] =⇒

(
τ ′i⊥H ′

iCW (u)
u

)
= Gi(u)

and the limit in distribution of {T 1/2A−1
iT (β̂∗i − β∗i )} is the mixed Gaussian distribution

{Bi} = {α′iΩ−1αj

∫ 1

0

(Gi − Ḡi)(Gi − Ḡi)
′du}−1{

∫ 1

0

(Gi − Ḡi)(dW )′Ω−1αi},

where Ḡi =
∫ 1

0
Gi(u)du. Finally we have the results

T 1/2(β̂∗i − β∗i )
′X∗

[Tu] =⇒ B′
iGi(u) (28)

T∑
t=1

(β̂∗i − β∗i )
′X∗

t X∗′
t (β̂∗i − β∗i ) =⇒ B′

i

∫ 1

0

Gi(u)Gi(u)′duBi (29)

A similar result holds if τi = 0, but then Gi = HiCW (u).
It follows that likelihood ratio tests for hypotheses on β∗ are asymptotically distributed

as χ2.

Proof: From (9) it follows that

H∗′
i X∗

[Tu] = H∗′
i

(
ξ[Tu]

[Tu] + 1

)
+ H∗′

i

(
C

∑[Tu]
i=1 εt

0

)
+ H∗′

i

(
A0 + ξ0 + Y[Tu]

0

)
. (30)

so that in the direction τi, the linear term dominates, and orthogonal to this the random
walk dominates:

T−1τ̄ ′iH
∗′
i X∗

[Tu] =⇒ u

T−1/2τ ′i⊥H∗′
i X∗

[Tu] =⇒ τ ′i⊥H∗′
i

(
CW (u)

0

)
= τ ′i⊥H ′

iCW (u),
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which we write as
A′

iT H∗′
i X∗

[Tu] =⇒ Gi(u).

Let R1t denote the residuals of X∗
t−1 corrected for lagged differences and a constant. Then

the likelihood profile for the parameters (α, β, Ω) gives the score for υi normalized by AiT ,
which converges in distribution to a mixed Gaussian distribution

T∑
t=1

A′
iT H∗′

i R1tε
′
tΩ

−1αi =⇒
∫ 1

0

(Gi − Ḡi)(dW )′Ω−1αi

and the information for (υi, υj) normalized by T−1/2A′
iT and T−1/2AjT converges in dis-

tribution

α′iΩ
−1αjT

−1

T∑
t=1

A′
iT H∗′

i R1tR
′
1tH

∗
j AjT =⇒ α′iΩ

−1αj

∫ 1

0

Gi(u)G′
j(u)du,

so that the asymptotic distribution of {T 1/2A−1
iT (β̂∗i −β∗i )} is mixed Gaussian as indicated.

The asymptotic conditional variance matrix is non-singular because identification im-
plies that β∗′⊥H∗

i has full rank mi, see Johansen (2009, Lemma 4). An estimator of the
asymptotic conditional variance is given by

{Â′
iT H∗′

i S∗11H
∗′
j ÂjT}, (31)

where TS∗11 =
∑T

t=1 R1tR
′
1t. ¥

Lemma 4 Let the I(1) process Xt be given by (8) and let ΣZ be the asymptotic variance
of the stacked process of dimension l = r + (k − 1)p. Then, as T → ∞, T 1/2vec(Â − A)
converges in distribution to Nl2(0, Σ

−1
Z ⊗ QΩQ′) when k > 1. For k = 1, the limit is

N(r+p)2(0, (Ir, 0)′((Ir, 0)ΣZ(Ir, 0)′)−1(Ir, 0)⊗QΩQ′).

Proof. When k > 1

T 1/2(Â−A) = QT 1/2
(
α̂− α, Γ̂1 − Γ1, . . . , Γ̂k−1 − Γk−1

)
+ oP (1) = T 1/2Q(θ̂− θ) + oP (1).

The rest of the proof is as in Theorem 13.5 in Johansen (1995). The rows r + 1, . . . , r + p
of Zt = AZt−1 + µ + Qεt can be written

∆Xt = θZt−1(β
∗) + µ0 + εt.

For fixed β∗ this is a regression equation and

T 1/2Q(θ̂ − θ) = T−1/2

T∑
i=1

Qεt(Zt−1(β
∗)− µZ)′Σ−1

Z + oP (1)

= T−1/2V ′
1,T Σ−1

Z + oP (1),
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because, referring to Lemma 2, δt = Qεt and Yt−1 = Zt−1(β
∗) − µZ . Since Φ = QΩQ′,

it also follows from Lemma 2 that T 1/2vec(Q(θ̂ − θ)) converges in distribution toward
Nl2(0, Σ

−1
Z ⊗QΩQ′).

When k = 1

√
T (Â−A) =

(
β̂′α̂− β′α 0

α̂− α 0

)
= Q

√
T (α̂−α, 0) + oP (1) =

√
TQ(α̂−α)(Ir 0) + oP (1),

which shows the result.¥
Proof of Proposition 1. We first show that replacing Ẑt with Zt in S̄T we get a

difference of OP (T−1/2). From (28) and (29) in Lemma 3 we have that the difference
Ẑt − Zt is OP (T−1/2) because

T 1/2(Ẑ[Tu] − Z[Tu])
′ = (X ′

[Tu](β̂1 − β1), 0, . . . , 0) =⇒ (G′
1(u)B1, 0, . . . , 0). (32)

Then, see (20),

T−1

T∑
t=1

St − (ψT−1

T∑
t=1

Ẑt + η) = ψT−1

T∑
t=1

Zt + η − (ψT−1

T∑
t=1

Ẑt + η) (33)

= ψT−1

T∑
t=1

(Zt − Ẑt) = OP (T−1/2).

Next we show that replacing Ẑt with Zt and replacing µ̂S by µS (or ̂̄ZT by µZ) in
UT gives a difference of OP (T−1). Because Yt = Zt − µZ , we may write Ẑt − µ̂Z =
(Ẑt − Zt) + Yt + (µZ − µ̂Z) and find

T−1[

[Tu]∑
t=1

(Ẑt − µ̂Z)(Ẑt − µ̂Z)′ −
[Tu]∑
t=1

YtY
′
t ] (34)

= T−1

[Tu]∑
t=1

(Ẑt − Zt)(Ẑt − Zt)
′ + T−1

[Tu]∑
t=1

Yt(Ẑt − Zt)
′ + T−1

[Tu]∑
t=1

(Ẑt − Zt)Y
′
t

+ T−1[Tu](µZ − µ̂Z)(µZ − µ̂Z)′ + [T−1

[Tu]∑
t=1

Yt](µ̂Z − µZ)′ + (µ̂Z − µZ)[T−1

[Tu]∑
t=1

Y ′
t ]

+ [T−1

[Tu]∑
t=1

(Ẑt − Zt)](µ̂Z − µZ)′ + (µ̂Z − µZ)[T−1

[Tu]∑
t=1

(Ẑt − Zt)
′].
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Now from (29) of Lemma 3 we find that the first term is OP (T−1). The second and
third term are

T−1

[Tu]∑
t=1

(Ẑt − Zt)Y
′
t = (Ir, 0, . . . , 0)′T−1

[Tu]∑
t=1

(β̂∗1 − β∗1)
′X∗

t Y ′
t

= T−1(Ir, 0, . . . , 0)′T−1/2

[Tu]∑
t=1

T 1/2[A−1
T1(β̂

∗
1 − β∗1)]

′A′
T1X

∗
t Y ′

t = OP (T−1).

The next three terms are OP (T−1) because from from Lemma 2 with Yt = Zt − µZ ,

δt = Qεt, and Φ = QΩQ′, µ̂Z − µZ = OP (T−1/2) and T−1
∑[Tu]

t=1 Yt = OP (T−1/2). Finally
the last two terms are products of terms which we have argued each is OP (T−1/2).

We can now prove the relations (22) and (23). The law of large numbers shows that

S̄T
P→ ψµZ + η = µS,

UT
P→ ψΣZψ′ = ΣS,

and we have shown above that we can replace Ẑt by Zt and µS by its estimate with a
small error, and Lemma 4 shows we can replace (ψ, η) by their estimates, so that (22)
and (23) follows.

We can now find the asymptotic distribution of

uT 1/2(Û[Tu] − ψΣZψ′) = T−1/2

[Tu]∑
t=1

[ψ̂[Tu](Ẑt − µ̂Z)(Ẑt − µ̂Z)′ψ̂′[Tu] − ψΣZψ′]. (35)

From (34) it follows that the difference between UT and what we get by inserting Ẑt for
Zt and µ̂Z for µZ is OP (T−1).

Thus for Yt = Zt − µZ , (35) has the same limit distribution as

T−1/2

[Tu]∑
t=1

[ψ̂[Tu]YtY
′
t ψ̂

′
[Tu] − ψΣZψ′] (36)

= T 1/2ψ

[Tu]∑
t=1

(YtY
′
t − ΣZ)ψ′ + T 1/2(ψ̂[Tu] − ψ)uΣZψ′ + T 1/2ψuΣZ(ψ̂[Tu] − ψ)′ + oP (1).

With the notation V1,T and V2,T from Lemma 2, using that δt = Qεt, and ζ = (0, b)′

we find
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uT 1/2vec((ψ̂[Tu] − ψ)ΣZψ′) = uT 1/2vec(ζ(f(Â[Tu])− f(A))ΣZψ′)

= uT 1/2(ψΣZ ⊗ ζ)vec(f(Â[Tu])− f(A))

= uT 1/2(ψΣZ ⊗ ζ)Fvec(Â[Tu] − A) + oP (1)

= (ψΣZ ⊗ ζ)Fvec(T−1/2V ′
1,[Tu]Σ

−1
Z ) + oP (1)

= (ψΣZ ⊗ ζ)F (Σ−1
Z ⊗ Il)vec(T−1/2V ′

1,[Tu]) + oP (1).

Therefore we can write (36) in vectorized form as

(ψ ⊗ ψ)vec(V ′
2,[Tu]) (37)

+ [(ψΣZ ⊗ ζ) + (ζ ⊗ ψΣZ)Kll]F (Σ−1
Z ⊗ Il)]vec(V ′

1,[Tu]) + oP (T 1/2).

When k = 1, we use (Ir 0)′((Ir 0)ΣZ(Ir 0)′)−1(Ir 0) instead of Σ−1
Z .

From Lemma 2 with Yt = Zt−µZ , δt = Qεt, and Φ = QΩQ′ we find that uT 1/2vec(Û[Tu]−
ΣS) converges in distribution on D4[0, 1] to

[(ζ ⊗ ψΣZ)Kll + (ψΣZ ⊗ ζ)]F (Σ−1
Z ⊗ Il), ψ ⊗ ψ)V,

which has a variance as indicated.
Finally we find, replacing ΣS by ÛT , that

uT 1/2vec(Û[Tu] − ÛT ) =⇒ WU(u)− uWU(1). ¥
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