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Abstract. This paper applies three universal approximators for
forecasting. They are the Artificial Neural Networks, the Kolmogorov-
Gabor polynomials, as well as the Elliptic Basis Function Net-
works. Even though forecast combination has a long history in
econometrics focus has not been on proving loss bounds for the
combination rules applied. We apply the Weighted Average Algo-
rithm (WAA) of Kivinen and Warmuth (1999) for which such loss
bounds exist. Specifically, one can bound the worst case perfor-
mance of the WAA compared to the performance of the best single
model in the set of models combined from. The use of universal
approximators along with a combination scheme for which explicit
loss bounds exist should give a solid theoretical foundation to the
way the forecasts are performed. The practical performance will
be investigated by considering various monthly postwar macroeco-
nomic data sets for the G7 as well as the Scandinavian countries.

JEL classification: C22; C45; C53
Keywords: Forecasting, Universal Approximators, Elliptic Basis
Function Network, Forecast Combination, Weighted Average Al-
gorithm

1. Introduction

In this paper we examine the forecast performance of non-linear mod-
els compared to that of linear autoregressions. Linear models have
the advantage that they can be understood and analyzed in great de-
tail. However, it might be inappropriate to assume that the generating
mechanism of a series is linear. Hence, non-linear models have become
increasingly popular, see e.g. Granger and Teräsvirta (1993). However,
the non-linear models are still restricted by the fact that modeling takes
place within a prespecified family of models. Since the modeler often
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has little prior knowledge regarding the functional form of the data
generating process, choosing the correct family is still not an easy task.
If one wants to avoid making this choice, one may apply universal ap-
proximators which are able to approximate broad classes of functions
arbitrarily well in a way to be made clear in Section 2.
The universal approximators are data driven in the sense that little a
priori knowledge is needed about the functional relationship between
the left- and the right-hand side variables. Three of the four types of
nonlinear models considered in this paper are universal approximators.
Our universal approximators are the Artificial Neural Networks (ANN),
the Kolmogorov-Gabor polynomials, and the Elliptic Basis Function
Networks. While the ANNs have been applied frequently in forecasting
studies such as Stock and Watson (1999) and Teräsvirta et al. (2005),
the Kolmogorov-Gabor polynomials as well as the Elliptic Basis Func-
tion Networks have not been as frequently used.
Since forecasting is carried out using several models we obtain more
than one point forecast of the same variable. But in practice one is of-
ten interested in obtaining a single forecast of a certain variable. This
can be achieved by means of various forecast combination schemes.
The first to study this in econometrics were Bates and Granger (1969).
The literature has proliferated since then and a recent survey is given
in Timmermann (2006). Two caveats apply, however, to many of these
combination algorithms. First, nothing can be said a priori about the
performance of the algorithm (combination rule) compared to the indi-
vidual forecasts. And even if bounds are provided, they often depend
on the joint distribution of the vector consisting of the forecasts made
by the individual models. The Weighted Average Algorithm (WAA) of
Kivinen and Warmuth (1999) developed in the computer science liter-
ature does not share any of these problems. First, explicit loss bounds
for the worst case performance of the algorithm are available. Further-
more, these bounds do not depend on the distribution of the vector of
forecasts from the individual models.
We argue that forecasting with universal approximators and combining
these into a single forecast by an algorithm for which explicit bounds
can be derived forms a solid theoretical foundation for combining fore-
casts. The empirical performance of the universal approximators as
well as the WAA will be investigated by considering various monthly
postwar macroeconomic data sets for the G7 and the Scandinavian
countries.
As many other authors, we find that there are gains to be made by
combining forecasts. However, the way one combines forecasts does
not seem to be of utmost importance. In particular, the performance
of the WAA is roughly the same as that of various schemes imposing
equal weights. Hence, the important thing is to combine but not how
to combine.
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The outline of the paper is as follows. Section 2 introduces the universal
approximators applied in the paper and contains a review of important
theoretical results. Next, Section 3 introduces the benchmark models
and Section 4 discusses forecasting with expert advice with particu-
lar emphasis on the Weighted Average Algorithm and its theoretical
underpinnings. Section 5 presents the results of the application and
Section 6 concludes.

2. Universal Approximators

We begin by defining precisely what we mean by universal approxi-
mators and then discuss the three types employed in this paper.
In order to define universal approximators some preliminary notation
is necessary. Let X be a topological space and A a subset of X. Let
Ā denote the closure of A. Then A is dense in X if Ā = X. Since all
topologies used in this paper will be induced by metrics we may define
the closure of A as

Ā = {x ∈ X | ∃(xn)n≥1 ⊆ A such that xn → x} .

Hence, A is dense in X if for each x ∈ X one can choose an element
a ∈ A that is arbitrarily close (in the metric on X) to x. We are now
ready to define what we mean by universal approximators.

Definition 1. Let H be a subset of functions of a topological space F .
Then H is a universal approximator of F if H̄ = F .

An example could be CC(Rn), the compactly supported continuous
functions on R

n, being dense in Lp(λn) for 1 ≤ p < ∞, where λn is
the Lebesgue measure on (Rn,B(Rn)) with B(Rn)) denoting the Borel
σ-field on R

n. So for any function f ∈ Lp(λn) one can choose a function
h ∈ CC(Rn) that is arbitrarily close to f , where closeness is expressed
in terms of the metric induced by the Lp-norm. Next, we will introduce
the universal approximators used in this paper.

2.1. Artificial Neural Networks. Artificial Neural Networks (ANN)
form a very popular family of universal approximators. They are de-
fined in the following way:

HANN =

{

hq : R
n → R | hq(x) =

q
∑

i=1

βiG(x′γi + δi),

βi, δi ∈ R, γi ∈ R
n, q ∈ N

}

To be precise, HANN is the set of single hidden layer neural network
models. Hornik et al. (1989) show that if one chooses G : R → R to be
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a nondecreasing sigmoidal function1 (i.e. a squashing function) then
HANN is uniformly dense on compacta in C(Rn). More formally, for
any f ∈ C(Rn) and any compact set K ⊆ R

n it holds that

∀ǫ > 0 ∃hq ∈ HANN : sup
x∈K

|f(x) − hq(x)| < ǫ.

Furthermore, they prove that HANN is ”dense in measure” in M(B(Rn))
which denotes the set of Borel measurable functions on R

n. For any
finite measure µ on (Rn,B(Rn)) they define the metric

ρµ(f, g) = inf {ǫ > 0 | µ(x ∈ R
n| |f(x) − g(x)| > ǫ) < ǫ}

and show that HANN is ρµ-dense in M(B(Rn)). So for any f ∈ M(B(Rn))
and any ǫ > 0 there exists an h ∈ HANN such that ρµ(f, h) < ǫ. Since
convergence in the metric ρµ is a metrization of convergence in the mea-
sure µ, this result can also be understood as establishing the existence
of an h ∈ HANN for which the measure of the set {|f(x) − g(x)| > ǫ}
can be made arbitrarily small for any ǫ > 0. Hence, the term dense in
measure is appropriate.
Regarding uniform denseness of HANN in M(B(Rn)) Hornik et al.
(1989) show that for any f ∈ M(B(Rn)) and for any ǫ > 0 there
exists an h ∈ HANN and a compact set K ⊆ R

n such that µ(KC) < ǫ
and |f(x) − h(x)| < ǫ for all x ∈ K.
As a final interesting result we mention that HANN is dense in Lp

for any p ∈ [1,∞) if there exists a compact set K ⊆ R
n such that

µ(KC) = 0. This is true for any finite measure µ and any squashing
function G. The choice of G has not been discussed but an obvious
choice is any cumulative distribution function since these are squash-
ing functions (they are sigmoidal and non decreasing (they are even
càdlàg)).

2.2. Elliptic Basis Function Networks. The Elliptic Basis Func-
tion Networks (EBF) introduced in Park and Sandberg (1994) have
been less frequently applied in Econometrics than the more common
Artificial Neural Networks. The better known Radial Basis Function
Networks (RBF) may be regarded as a special case of the EBF. The

1The defining property of a sigmoidal function in Cybenko (1989) is σ : R → R

is

σ(t) →

{

1 for t → ∞

0 for t → −∞
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set of EBF is defined as

HEBF =

{

hq : R
n → R| h(x) =

q
∑

i=1

wiG(
x1 − ci1

σi1

, ...,
xn − cin

σin

),

ci, σi ∈ R
n, q ∈ N

}

.

The parameters cij and σij are often referred to as the centroids and
width (or smoothing) factors respectively. Though not necessary for the
theorems stated below to be valid it is often assumed that G : R

n → R

is radially symmetric. Put differently, G(x) = G(y) if ||x|| = ||y|| where
||.|| denotes the Euclidean norm on R

n. If G is radially symmetric and
σij = σi for j = 1, ..., n, i = 1, ..., q, HEBF reduces to the set of RBF
Networks2.
A frequent choice of G is the Gaussian, for which

G(x) = exp

(

−
∑n

j=1
x2

j

2

)

For this choice the output of the i’th hidden unit is given by

G(
x1 − ci1

σi1

, ...,
xn − cin

σin

) = exp

(

−

n
∑

j=1

(xj − cij)
2

2σ2
ij

)

(2.1)

Formula (2.1) simply defines a rescaling of the probability density func-
tion of a multivariate Gaussian vector with a diagonal covariance ma-
trix. From (2.1) it is seen why the cijs are called the centroids. The
vector ci determines where in R

n the ith hidden unit is centered. In
practice one wants to center the hidden units in areas of high data in-
tensity. Since the σij’s are allowed to vary across j for each i the level
planes of G will be elliptic (think of n = 2) which explains the term El-
liptic Basis Function Network. In the RBFs the value of G only depends
on the distance to the center in the sense that if ||x − ci|| = ||y − ci||
the i’th hidden unit takes the same value at x and y. In other words,
the level sets are circles (think of n = 2 again) - a special case of the
ellipse.
Regarding the universal approximation ability of the EBF it follows
from Park and Sandberg (1991, 1993, 1994) that if G ∈ L1(Rn) is
bounded and continuous almost everywhere and satisfies

∫

Rn G(x)dx 6=
0 then HEBF is dense in Lp(Rn) for 1 ≤ p < ∞.
Regarding uniform approximation the following result holds. If G is
continuous and satisfies the conditions above then HEBF is uniformly
dense on compacta. In other words any continuous function may be
approximated arbitrarily well in the supremum norm on any compact
set. For more results and details, see Park and Sandberg (1991, 1993,

2If σij = σ for j = 1, ..., n, i = 1, ..., q one also calls HEBF the set of RBF.
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1994).
Finally, we notice that a probability density function is an obvious
choice for G in light of the above conditions on G. This is in contrast
with the sigmoidal hidden units in the case of ANNs. A cumulative
distribution function was an obvious choice in that case. This illus-
trates an interesting difference between the EBF (RBF) networks and
the ANN. The former may be seen as local approaches since probability
distribution functions tend to zero as the distance from the centroids
goes to infinity. So the hidden units are only active close (locally) to
their centroids. The latter may be seen as a global approach since the
hidden units take values close to one for sufficiently large x′γ + δ. Put
differently we do not have that a cumulative distribution function tends
to 0 as the norm of the input vector goes to ∞. Global effects can,
however, cancel out and become local.

2.3. Kolmogorov-Gabor polynomials. The set of Kolmogorov-Gabor
polynomials is defined as follows:

HKG =

{

hq : R
n → R | hq(x) = φ +

n
∑

i1=1

φi1xi1 +
n
∑

i1=1

n
∑

i2=i1

φi1i2xi1xi2 + ...

+
n
∑

i1=1

n
∑

i2=i1

...
n
∑

iq=iq−1

φi1i2...iqxi1xi2 ...xiq , φ, φi1...ij ∈ R, 1 ≤ j ≤ q, q ∈ N

}

.

The Kolmogorov-Gabor polynomials are qth degree polynomials with
all possible cross-products included.
By the Stone-Weierstrass Theorem it follows that HKG is uniformly
dense on compacta in C(Rn). HKG is clearly an algebra of (real) func-
tions on K ⊆ R

n for any compact set K. It vanishes at no point since
HKG ∋ h(x) = 1 +

∑n

i=1
x2

i > 0 for all x ∈ K. HKG also separates
points in K. To see this, let x, y ∈ R

n and assume x 6= y. So for at
least one 1 ≤ i ≤ n it holds that xi 6= yi. Since h(x) = xi belongs to
HKG, the uniform closure of HKG consists of all continuous functions
on K.

3. Benchmark Models

3.1. Smooth Transition Models. The Smooth Transition regression
model is not a universal approximator. The reason for including it
in this work is that it is a benchmark nonlinear model. A standard
Smooth Transition regression model is given by

yt = φ′xt + θ′xtG(st) + εt(3.1)
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where G is the transition function. As is usual in the literature, we
choose G to be the logistic function, i.e.

G(st) =
1

1 + exp(−γ(st − c))

where st is the transition variable. Examples include st = yt−d for some
d ≥ 1 or st = t. The parameter γ controls the speed of transition and
c indicates the position of the transition function.

3.2. Autoregressions. Finally, the pth order linear autoregression

yt = c +

p
∑

i=1

φiyt−i + ut(3.2)

for some p ∈ N is employed as a benchmark in order to check whether
or not the universal approximators are able to outperform it when it
comes to forecasting.

4. Forecasting with Experts

This section introduces forecasting with experts with particular em-
phasis on the Weighted Average Algorithm (WAA) of Kivinen and
Warmuth (1999). To establish the notation consider a setting with n
experts (models) and let Ei denote expert i, i = 1, 2, ..., n, and l the
number of trials, i.e., the number of forecasts made with each model.
Now consider a sequence Sl = {(xt+τ,t, yt+τ )}

l

t=1
where (xt+τ,t, yt+τ ) ∈

[0, 1]n+1 for t ∈ {1, 2, ..., l}; for every t we have access to a vector of
forecasts xt+τ,t = (xt+τ,t,1, ..., xt+τ,t,n) ∈ [0, 1]n whose elements are the
τ period ahead forecasts made by each expert at time t. yt+τ ∈ [0, 1]
denotes the actual outcome of the variable to be forecast. By doing so,
expert i incurs a loss L(yt+τ , xt+τ,t,i). A frequently applied loss func-
tion to be used in this paper is the quadratic loss, i.e. L(yt+τ , xt+τ,t,i) =
(yt+τ − xt+τ,t,i)

2. The total loss of expert i given the sequence Sl is de-

fined as LEi
(Sl) =

∑l

t=1
L(yt+τ , xt+τ,t,i). Similarly, the total loss of an

algorithm A that gives a sequence of forecast {ŷt+τ,t}
l

t=1
is LA(Sl) =

∑l

t=1
L(yt+τ , ŷt+τ,t).

In economic applications one cannot assume that (xt+τ,t, yt+τ ) ∈ [0, 1]n+1.
This assumption can, however, be relaxed to (xt+τ,t, yt+τ ) ∈ [a, b]n+1.
Thus, by choosing [a, b] sufficiently wide one may circumvent this prob-
lem. The exact choice of [a, b] depends on the problem at hand and
the procedure used in this paper to determine it will be described in
Section 5.

The Weighted Average Algorithm. The Weighted Average Al-
gorithm (WAA) of Kivinen and Warmuth (1999) provides a way of
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combining the forecasts xt+τ,t of the experts at trial t into a single fore-
cast. As mentioned in the introduction, an attractive feature of the
WAA is that as opposed to many other forecast combination schemes
applied in econometrics (see e.g. Timmermann (2006)) the WAA does
not make any assumptions regarding the joint distribution of the fore-
casts made by the experts. The loss bounds presented below are purely
arithmetic results that hold for any distribution of xt+τ,t. Letting vt

denote a probability vector of weights, i.e.,

vt ∈

{

s ∈ R
n|

n
∑

i=1

si = 1, si ≥ 0, i = 1, 2, ..., n

}

the forecasts of the WAA are given by ŷt+τ,t = vtxt+τ,t, t = 1, ..., l.
This way of forecasting explains the terminology Weighted Average
Algorithm since the forecasts made by the algorithm are weighted av-
erages of the forecasts made by the experts. The weights in the WAA
are constructed in the following way:

(1) Initialize the algorithm by choosing v1. If no prior knowledge
regarding the performance of the experts is available, an obvious
choice is to give equal weights to all of them.

(2) For t = 1, ..., l
(a) Observe vector of expert forecasts xt+τ,t.
(b) Calculate the forecast of the algorithm, ŷt+τ,t = v′

txt+τ,t.
(c) Observe the actual value of yt.
(d) Update the weights according to

vt+1,i =
vt,i exp(−L(yt, xt,t−τ,i)/c)

∑n

i=1
vt,i exp(−L(yt, xt,t−τ,i)/c)

where the denominator ensures that the weights sum to 1
and c is a positive constant further to be defined below.

Notice that if two experts, E1 and E2 have vt,1/vt,2 6= 1 due to differences
in their previous performance but perform equally well in all future
periods we will not have vt,1/vt,2 → 1 as t → ∞. Their ratio will stay
unchanged unless they actually incur different losses.
What makes the WAA attractive from a theoretical point of view is
the following result in Kivinen and Warmuth (1999):

Theorem 1. Let L(y, x) be a convex twice differentiable loss function of
x for every y. Assume L′

2(y, y) = 0. Letting WAA denote the Weighted
Average Algorithm with uniform initial weights, i.e. v1,i = 1/n, and

Sl = {(xt+τ,t, yt+τ )}
l

t=1
an arbitrary input sequence, it holds that

(4.1) LWAA(Sl) ≤

(

min
1≤i≤n

LEi
(Sl)

)

+ c ln(n)
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where c is a constant that depends on the loss function.

In particular, Kivinen and Warmuth (1999) show that it is enough
that

(4.2) c ≥ sup
0≤x,y≤1

(

L
′

2(y, x)
)2

L
′′

22(y, x)

in order for the inequality (4.1) to be valid. For a quadratic loss func-
tion this implies c ≥ 2. As mentioned above, one cannot in general
know in advance that (xt+τ,t, yt+τ ) ∈ [0, 1]n+1. But if there exists an
interval [a, b] such that (xt+τ,t, yt+τ ) ∈ [a, b]n+1 then inequality (4.1) is
still valid if one chooses

c ≥ sup
a≤x,y≤b

(

d
dx

(y − x)2
)2

d2

dx2 (y − x)2
= sup

a≤x,y≤b

(−2(y − x))2

2
= 2(b − a)2.

Regarding the conditions on c for other loss functions we refer to Kivi-
nen and Warmuth (1999).
The inequality (4.1) is the theoretical foundation of the Weighted Av-
erage Algorithm since it gives an explicit bound on the loss of the
algorithm as compared to the best expert in the set of experts. In
particular, the WAA will perform no worse than the best expert plus
some constant independent of the number of trials. This implies

lim sup
l→∞

LWAA(Sl)

l
≤ lim sup

l→∞

(

min
1≤i≤n

LEi
(Sl)

)

l
.

Thus, the average loss of the WAA will be no larger than the average
loss incurred by the best expert as the number of trials (forecasts)
approaches infinity.

Bounds with respect to random selection of experts. Kivinen
and Warmuth (1999) also prove a result regarding the performance of
the Weighted Average Algorithm compared to the expected loss of
using a random selection of experts. Random selection means that
at each trial one forecasts according to expert Ei with probability ui.
The expected total loss using the probability vector u is then given by

Lavg
u

(Sl) =
n
∑

i=1

uiLEi
(Sl) =

∑l

t=1

∑n

i=1
uiL(yt+τ , xt+τ,t,i). We also need

to define the relative entropy (also referred to as the Kullback-Leibler
divergence3) between two discrete distributions in order to introduce

3Though one might conjecture that the Kullback-Leibler divergence defines a
metric on the space of (discrete) probability distributions this is not the case. In
particular, it is not symmetric, nor does it satisfy the triangle inequality. It is,
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the desired bound. Let u and v be probability vectors in R
n. Then

the Kullback-Leibler divergence is defined as dre(u,v) =
n
∑

i=1

ui ln
(

ui

vi

)

.

The following result holds:

Theorem 2. Let L(y, x) be a convex twice differentiable loss function
of x for every y. Assume L′

2(y, y) = 0. Let v1 be any vector of ini-

tial weights for the WAA and let Sl = {(xt+τ,t, yt+τ )}
l

t=1
be any input

sequence and u an arbitrary probability vector. Then it holds that

(4.3) LWAA(Sl) ≤ Lavg
u

(Sl) + cdre(u,v1)

This inequality states that no matter how one chooses u the Weighted
Average Algorithm will not do much worse than forecasting by choos-
ing experts at random according to u.
If one chooses equal initial weights, i.e. v1,i = 1/n for 1 ≤ i ≤ n, and
chooses uk = 1 and uj = 0 for 1 ≤ k, j ≤ n, j 6= k then one obtains
Lavg

u
(Sl) = LEk

(Sl) and cdre(u,v1) = c ln(n). Hence, (4.3) becomes
LWAA(Sl) ≤ LEk

(Sl) + c ln(n), for all 1 ≤ k ≤ n, and just as in (4.1),

LWAA(Sl) ≤

(

min
1≤i≤n

LEi
(Sl)

)

+ c ln(n). This means that the bound in

(4.1) is obtained again.
The results of this section give the theoretical motivation for apply-

ing the WAA in econometric forecasting. At this point it should be no-
ticed, however, that the WAA is only one of many learning algorithms
developed in computer science that might be of interest for econometri-
cians. More elaborate algorithms that give tighter loss bounds should
also be confronted with economic data. A drawback of the WAA is
that due to its non-differentiability it does not apply to the absolute
loss function L(yt+τ , xt+τ,t,i) = |yt+τ − xt+τ,t,i|. Other algorithms such
as the Hedge-β algorithm by Freund and Schapire (1997) are available
in this case.

5. Application

In order to investigate the performance of the models introduced in
Sections 2 and 3 as well as the Weighted Average Algorithm we con-
sider monthly postwar macroeconomic data sets for the G7 countries
as well as the Scandinavian countries including Finland. Five differ-
ent macroeconomic series were considered for each country: Inflation
(CPI), Industrial Production (IP), long term Interest Rates (I), nar-
row Money Supply (M), and Unemployment (U). For some countries
certain series were missing, and in total 47 series were analyzed. The
series have been obtained from the OECD Main Economic Indicators

however, nonnegative; this can be established using Gibbs’ inequality which in turn
follows from ln(x) ≤ x − 1.
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database and the IMF database. The starting date of the majority of
the series is 1960 and most series are available until 2008. The series
were seasonally adjusted except for CPI and I. For CPI, IP, and M the
models are specified for yearly growth rates.

5.1. Estimation and Forecasting Methodology. In this section we
describe the details of the estimation procedure for the various mod-
els as well as the details of the forecasting procedure. For all series
forecasts were made 1, 3, 6, 12 and 24 months ahead. 72 forecasts
were made at each horizon for each series. For all series, specification,
estimation, and forecasting were carried out using an expanding win-
dow (a recursive scheme) with the last window closing 24 months prior
to the last observation. All models were respecified and reestimated
each time the window was expanded by one observation. All models
were univariate and nested the linear autoregression. The details of
the individual models will follow.

Autoregressions. For each window, autoregressions with up to
five lags were estimated. The one with the lowest value of our Choice
Criterion CC = log(MSE)+δk/T , where k denotes the number of pa-
rameters, δ = 1 and T is the number of observations in the window, was
chosen for forecasting. Compared to the Akaike Information Criterion
(AIC), in which δ = 2, CC is a rather liberal criterion. Since autore-
gressions are affine, E(yt+τ |Ft) equals the skeleton forecast τ periods
made at t (i.e. the recursive forecast ignoring the noise) where Ft is the
σ-algebra generated by {ys}

t
s=1. Even though preliminary experiments

indicated that an insanity filter as introduced in Swanson and White
(1995) was not necessary for the linear autoregression, we adopted the
following rule in order to safeguard ourselves against too extreme fore-
casts. If a forecast did not belong to the interval given by the last
observation of the estimation window plus/minus three times the stan-
dard deviation of the 120 most recent observations in the window it
was replaced by the last observation of the window. In the words of
Swanson and White (1995), craziness was replaced by ignorance. The
purpose of this insanity filter is of course to weed out unreasonable
forecasts and thereby more closely mimic the behavior of a real fore-
caster. The reason for only calculating the standard deviation s based
on the last 120 observations of the window is that for many data sets
the standard deviation of all observations in the window is often very
high due to large historic fluctuations. As a result, basing s on all ob-
servations in the window would lead to occasionally accepting of wild
forecasts.

No Change Forecasts. In order to investigate whether any of the
estimated models was able to beat naive No Change (NC) forecasts
these were also included. Inability to beat the NC forecasts can be seen
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as an indication of a martingale (e.g. a random walk) like behavior of
the series considered.

Smooth Transition Autoregressions. For each window a search
over lag orders up to five was performed. The transition variables
searched over were 1, 2, 6, and 12 lags of the left-hand side variable.
The model with the lowest CC value was chosen for forecasting. This
model could be, and was indeed quite often, a linear one. In order to
avoid biased forecasts the forecasts were generated numerically. This
was done the bootstrap approach as in Teräsvirta et al. (2005). It
works in the following way:

Let yt = f(yt−1, ..., yt−p; θ)+ εt for some parameter vector θ. Letting
h denote the maximal forecast horizon and NB the number of bootstrap
replications we resampled h − 1 errors NB times. Put differently, we
created (ε̂i

t+1,t, ..., ε̂
i
t+h−1,t) for i = 1, ..., NB and generated the τ -step

ahead forecast in the following way

ŷt+τ,t =
1

NB

NB
∑

i=1

f(ŷi
t+τ−1,t + ε̂i

t+τ−1,t, ..., ŷ
i
t+τ−p,t + ε̂i

t+τ−p,t)(5.1)

with ŷi
t+τ−j,t + ε̂i

t+τ−j,t replaced by yt+τ−j for j ≥ τ, j = 1, ..., p. In this
paper NB = 1000 was used. Furthermore, an insanity filter was applied
at the level of the individual bootstrap replications. Specifically, if any
forecast of a bootstrap sample path did not belong to the interval
consisting of the last observation of the given window plus minus 3
times the standard deviation of the 120 most recent observations of
the window, then the whole sample path was discarded.

Kolmogorov-Gabor polynomials. For each window we searched
over models with a maximum number of five lags and the maximal
degree of the polynomial being five. Since the number of parameters
increases rapidly in the number of lags as well as the degree of the
polynomial we implemented a parameter cap of 50 such that speci-
fications containing more than 50 parameters were ignored. Among
the remaining models the one with the lowest CC value was chosen.
Due to the non-affinity of the Kolmogorov-Gabor polynomials the fore-
casts were implemented using the bootstrap technique outlined above.
An insanity filter of the same kind as previously explained was used.
This turned out to be a useful strategy since the Kolmogorov-Gabor
polynomials sometimes generate explosive forecasts.

Artificial Neural Networks. In each window single hidden layer
feedforward networks with a maximum number of five lags and five
hidden units were estimated. Model specification and estimation were
carried out using the QuickNet algorithm of White (2006). The model
with the lowest CC value was chosen for forecasting and as for all non-
affine models the forecasts were generated using a bootstrap approach
combined with the insanity filter.
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Elliptic Basis Function Networks. Models with at most five lags
and no more than five hidden units were estimated in each window. G
was chosen as in (2.1). In other words the models considered were of
the form

yt = αq + β′
qxt +

q
∑

i=1

wi,q exp

(

n
∑

j=1

(xj − cij)
2

2(nσij)2

)

(5.2)

where xt = (yt−1, ..., yt−n), n = 1, .., 5. The multiplication of σij by
n was done for practical reasons. Initial experiments showed that the
hidden units had a very small radius of activity – in particular if many
explanatory variables were included. This made the EBF less interest-
ing and also resulted in large values of wi,q giving many unreasonable
forecasts. By scaling the width parameters proportionally to the num-
ber of explanatory variables this numerical problem was alleviated.
There are many ways to estimate EBFs. We settled for a procedure
which learns the centroids and smoothing factors unsupervised. Af-
ter having determined these the problem is linear and the wi’s can be
found by linear regression. This somehow resembles the structure of
the QuickNet since the problem is split into two parts. First, the cen-
troids and smoothing parameters are found by a grid search. Having
done this, the problem becomes linear and one can determine the w’s
by linear regression.
Several ways exist to determine the centroids and the width parame-
ters. We adopted a grid search over a grid constructed in the following
way. For each n yt−i, i = 1, ..., n, was divided into five clusters of
equally many observation, i.e. the splits were made at the quintiles4.
Within each cluster we calculated the mean as well as the standard de-
viation and regarded these as pairs. This yielded a grid of cardinality
5n.
We are now in a position to describe the details of the algorithm. Let
xt be given, i.e. consider a fixed vector of explanatory variables.

(1) Determine α̂0 and β̂0 by regressing yt on a constant and xt. Also
calculate the value of the choice criterion CC.

(2) For q = 1, ..., 5, add hidden units one by one in the follow-
ing way. Evaluate the q’th hidden unit at each grid point
(which has not been chosen previously) and determine α̂q β̂q

and ŵi,q, i = 1, ..., q by OLS. Notice that the weights of previ-

ously added hidden units as well as α̂q and β̂q are allowed to
change as further hidden units are added whereas the centroids
and smoothing parameters remain fixed once they have been

4One could also split each explanatory variable into more clusters than five and
thereby obtain an even finer grid. Here five clusters were chosen for each series
since the maximum number of hidden units was five
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determined. This resembles the QuickNet algorithm of White
(2006). Calculate the value of the choice criterion.

(3) Repeat (1) and (2) for all choices of explanatory variables which
in our case corresponds to xt = (yt−1, ..., yt−n), n = 1, .., 5.
Choose n̂ ∈ {1, .., 5} and q̂ ∈ {0, ..., 5} such that they minimize
the choice criterion and forecast with the parameter estimates
corresponding to these values.

The forecasts of the Elliptic Basis Function Network were produced
by the same bootstrap procedure as for the aforementioned nonlinear
models. Unreasonable forecasts were weeded out by the insanity filter.

5.2. Results. Tables 2 through 7 in the Appendix report the relative
Root Mean Square Forecast Errors (RMSFE) of each point forecast
relative to the RMSFE of the linear autoregressive specification. The
numbers in brackets are the RMSFE of the linear autoregressive spec-
ification. Empty sections in the tables identify series for which data
was unavailable. In addition to these ratios for the individual models
described above we also performed three forecast combinations with
equal weights: (i) Equal weighting of all models (EQ(All)), (ii) Equal
weighting of all nonlinear models (EQ(NL)), and (iii) Equal weighting
of all universal approximators (EQ(UA)). The No Change forecasts
were regarded as linear models in this context.
As mentioned in Section 4 one must assume the existence of an inter-
val [a, b] such that (xt+τ,t, yt+τ ) ∈ [a, b]n+1 in order to give explicit loss
bounds for the WAA. Of course one can not know in advance that the
forecasts as well as the realizations will belong to an interval [a, b]. One
can circumvent this problem by choosing [a, b] to be a wide interval.
Our solution to this problem was the following. Let Y denote the last
observation in the first estimation window and s the standard devia-
tion of last 120 observations of the first estimation window. Then we
chose [a, b] = [Y − 3s, Y + 3s] which in the vast majority of the cases
was more than wide enough to contain all forecasts and realizations.
The corresponding value of c was denoted cB. The reason for only
calculating s on the basis of the last 120 observations was the same as
explained in the treatment of the insanity filter.
The results for the WAA with c = cB were called WAA(cB). In or-
der to investigate the performance of the WAA for smaller values of c,
i.e. a faster adjustment of the weights towards the models that have
performed well in the more recent past we calculated the forecasts of
the WAA with c = cL = cB

100
. These forecasts were called WAA(cL).

Furthermore, the performance of the WAA was investigated with a
constant low value c = 1. These forecasts were called WAA(1). All
WAA type forecasts were applied separately to each horizon. This al-
lowed the WAA to attach different weights to each model for different
horizons. This is sensible since models performing well in short term
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forecasting need not perform well in long term forecasting and vice
versa. All remaining schemes were applied separately to each horizon.
Furthermore, we performed forecasts using Inverse MSE weights, i.e.

wτ
i,t =

1/MSEτ
i,t−1

n
∑

i=1

1/MSEτ
i,t−1

(5.3)

with MSEτ
i,t−1 = 1

τ

t−1
∑

j=t−τ

(xj,i−yj)
2 and τ indicating the window length

used in the construction of the MSE. An expanding window that used
all previous forecast errors in the construction of wτ

i,t, MSE(All), as
well as a rolling window, MSE(Short), that included the past 6 fore-
cast errors, were applied.
Finally, we generated forecasts by choosing the forecast at a given hori-
zon to be equal to the forecast from the individual model that had the
smallest most recent realized forecast error at that horizon. These fore-
casts are called Last in Tables 2 through 7.
Inspection of Tables 2 through 7 in the Appendix reveals that no sin-
gle model systematically outperforms the others. This is in line with
Teräsvirta et al. (2005). One notices that for some data sets there are
models which have a RMSFE of 1 at all horizons. This indicates that
the linear specification was chosen in each window for this model class.
In general, it is seen that larger gains are to be made from the nonlinear
models at longer forecast horizons. This is where one finds most of the
low RMSFE (<< 1). The Money Supply series seem to be odd in the
sense that this conclusion does not hold for them.
Table 1 summarizes Tables 2 through 7. It shows the RMSFE ratios
as well as the rank of each model across all data sets and all horizons
(Overall), all horizons (Horizon), and all data sets (Data). Since the
loss of a τ period ahead forecast will not be observed until τ periods
have elapsed one would have to initialize the weights of the loss based
algorithms (WAA and MSE) in some fashion until the first loss of the
individual models are realized or simply not start the comparison until
the first losses at the relevant horizon are realized. We chose the lat-
ter. Consequently, for τ period ahead forecasts the actual number of
evaluation periods was 72-τ .
Table 1 confirms that the gains from the non linear models are larger
at the longer forecast horizons.
The No Change forecasts and the Elliptic Basis Function Networks
are the individual model classes that perform best overall. The per-
formance of the No Change forecasts is rather volatile. It is the best
model for the inflation and interest rate series but the worst one for
the industrial production and money supply series. The performance
of the EBF is more stable.
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One also notices that the individual models in general occupy the high
ranks. This confirms that there are gains to be made from forecast
combination. Overall weighting by the inverse MSE using all historic
losses is the best procedure. However, the RMSFE ratios of all weight-
ing schemes are very close to each other. Initially one might find it
disappointing that “intelligent” schemes based on historic losses are
unable to outperform naive schemes such as equal weighting. This
is not surprising, however. Consider a 24-month forecast. The devi-
ation from the truth (the loss) will not be revealed until 24 month
have elapsed. The forecaster cannot use this loss in the loss-based al-
gorithms prior to its revelation. This implies that the losses used in
the loss-based algorithms stem from the performance of the individual
models at least 24 month ago and this may not reflect the recent per-
formance of the individual models which is what one is really interested
in when making the combinations. This is also a possible explanation
to the poor results obtained from simply forecasting with the model
that had the lowest most recently realized loss at the relevant horizon.
In conclusion, there are gains to be made from combining forecasts as
compared to using only a single model. This is in line with Stock and
Watson (1999) and Teräsvirta et al. (2005). The way one combines is
not so important in the sense that RMSFE ratios are roughly equal for
all combination schemes.
Finally, Figures 1 and 2 in the Appendix show the development of the
weights in the WAA for c = cB and c = cL for the industrial produc-
tion series for the UK at all horizons. This series was chosen since
it illustrates some interesting features of the WAA. When inspecting
Table 6 it is not surprising that as the forecast horizon increases more
weight is given to the Kolmogorov-Gabor polynomials since these did
well at the long horizons. By the same token it is sensible that the
linear autoregression receives less weight as the forecast horizon be-
comes longer. When inspecting the development of the weights at the
24-month horizon in Figure 2 it is interesting to see how the weights
of the WAA can adapt over time as the relative performance of the
individual models changes. In particular, the relative weights assigned
to the Elliptic Basis Function Networks and the Kolmogorov-Gabor
polynomials changes around period 35.
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Horizon Data

Overall 1 3 6 12 24 CPI IP I M U

AR 1.000(14) 1.000(10) 1.000(11) 1.000(15) 1.000(11) 1.000(15) 1.000(15) 1.000(10) 1.000(12) 1.000(1) 1.000(10)
NC 0.980(9) 0.999(8) 0.989(10) 0.977(9) 1.008(14) 0.926(10) 0.852(1) 1.118(15) 0.868(1) 1.154(15) 0.990(9)
STR 0.990(11) 1.015(12) 1.006(12) 0.992(12) 1.014(15) 0.923(8) 0.882(12) 1.064(14) 0.962(9) 1.048(10) 1.028(14)
KG 1.005(15) 1.058(15) 1.009(13) 0.991(11) 0.994(10) 0.972(14) 0.873(10) 1.008(12) 1.075(14) 1.082(13) 1.030(15)
ANN 0.998(13) 1.026(14) 1.011(14) 0.998(14) 1.003(12) 0.951(12) 0.877(11) 0.995(9) 1.080(15) 1.049(11) 1.020(13)
EBF 0.980(10) 0.999(9) 0.988(9) 0.981(10) 0.979(9) 0.954(13) 0.927(14) 0.981(7) 0.991(11) 1.017(2) 1.004(11)
EQ(All) 0.948(4) 0.984(4) 0.965(2) 0.950(4) 0.950(5) 0.893(4) 0.860(4) 0.972(4) 0.955(8) 1.027(6) 0.968(2)
EQ(NL) 0.958(7) 0.993(6) 0.973(6) 0.958(7) 0.961(7) 0.905(7) 0.857(2) 0.980(6) 0.984(10) 1.023(3) 0.982(6)
EQ(UA) 0.966(8) 1.001(11) 0.977(8) 0.965(8) 0.965(8) 0.923(9) 0.864(7) 0.978(5) 1.011(13) 1.028(8) 0.986(8)
WAA(cB) 0.948(3) 0.984(3) 0.965(3) 0.949(3) 0.946(3) 0.894(6) 0.863(6) 0.969(2) 0.951(7) 1.027(7) 0.968(3)
WAA(cL) 0.950(5) 0.988(5) 0.971(5) 0.954(6) 0.948(4) 0.889(3) 0.869(9) 0.992(8) 0.913(3) 1.039(9) 0.980(5)
WAA(1) 0.954(6) 0.994(7) 0.977(7) 0.954(5) 0.950(6) 0.893(5) 0.868(8) 1.003(11) 0.905(2) 1.061(12) 0.983(7)
MSE(All) 0.939(1) 0.983(1) 0.964(1) 0.942(1) 0.934(1) 0.872(1) 0.857(3) 0.965(1) 0.922(4) 1.026(4) 0.969(4)
MSE(6) 0.941(2) 0.984(2) 0.966(4) 0.945(2) 0.937(2) 0.875(2) 0.863(5) 0.970(3) 0.925(5) 1.026(5) 0.965(1)
Last 0.993(12) 1.021(13) 1.016(15) 0.995(13) 1.006(13) 0.927(11) 0.909(13) 1.057(13) 0.949(6) 1.086(14) 1.009(12)

Table 1. The Table shows RMSFE ratios as well as the corresponding ranks (in ascending order) for the overall,
the horizonwise, and datawise performance of each forecast procedure. The ratios were calculated by taking the
average over the relevant ratios from Tables 2 through 7. For example, the horizonwise performance was calculated
by taking the average of all ratios at a fixed forecast horizon across all data sets.
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6. Conclusions

In this paper we consider the forecasting performance of non-linear
models relative to linear autoregressions. Three of the model classes
employed are universal approximators - the Kolmogorov-Gabor poly-
nomials, the Artificial Neural Networks, and the Elliptic Basis Function
Networks.
The gains from using non-linear models seem to be larger at the longer
forecast horizons than at the short horizons. Regarding forecast com-
binations it is found that there are gains to be made by combining
forecasts; in particular the performance of various weighting schemes
is more stable than the one of individual models. However, the par-
ticular way of combining the forecasts turns out to be less important.
Naive equal weighting schemes perform as well as more elaborate loss-
based algorithms.
The fact that there are gains to made by combining forecasts agrees
with the findings of Stock and Watson (1999) and Teräsvirta et al.
(2005). It should be mentioned, however, that the former authors pro-
duce their forecasts directly while we, in agreement with the latter,
produce them by iterating forward.
Since the only learning algorithm discussed in this paper is the WAA,
a possible next step could be to investigate the performance of other
algorithms for which explicit loss bounds exist. These algorithms are
interesting since the weights in them have a theoretical foundation as
opposed to e.g. equal weighting.
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7. Appendix
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Figure 1. Development of the weights of the WAA applied to
the Industrial Production series for the UK with c = cB .
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Figure 2. Development of the weights of the WAA applied to
the Industrial Production series for the UK with c = cL.



Inflation Industrial Production Interest Rate Money Supply Unemployment

Canada 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.538] [0.940] [1.295] [1.644] [1.284] [0.519] [0.769] [1.165] [1.253] [1.377] [0.172] [0.274] [0.399] [0.672] [1.144] [0.923] [1.674] [2.263] [2.510] [1.823] [0.149] [0.248] [0.363] [0.475] [0.813]
NC 0.972 0.983 0.977 0.966 0.794 1.085 1.089 1.062 1.135 0.826 0.949 0.896 0.804 0.666 0.583 1.033 1.086 1.204 1.580 1.186 0.993 0.973 0.966 0.922 0.942
STR 0.999 0.990 0.998 0.991 0.901 0.992 0.968 0.970 1.017 0.730 0.982 0.940 0.867 0.745 0.691 0.996 1.007 1.030 1.198 0.923 1.016 1.033 1.053 1.116 1.132
KG 0.985 0.962 0.940 0.885 0.659 1.044 1.180 1.271 1.308 0.988 1.010 1.025 1.070 1.112 1.078 1.027 1.031 1.106 1.370 1.074 1.030 1.059 1.079 1.080 1.079
ANN 1.013 1.000 0.993 0.966 0.843 1.021 1.111 1.125 1.116 0.881 0.993 1.000 0.995 0.921 0.816 1.021 1.010 1.034 1.189 1.020 1.000 1.000 1.000 1.000 1.000
EBF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.038 1.067 1.075 1.189 0.931 1.000 1.000 1.000 1.000 1.000
EQ(All) 0.992 0.985 0.980 0.961 0.838 1.005 1.029 1.032 1.010 0.826 0.981 0.964 0.939 0.896 0.849 1.006 1.019 1.062 1.249 0.979 1.001 1.001 1.007 1.010 1.022
EQ(NL) 0.996 0.984 0.978 0.954 0.830 0.999 1.039 1.058 1.043 0.840 0.988 0.979 0.968 0.934 0.882 1.007 1.018 1.055 1.233 0.977 1.007 1.019 1.028 1.042 1.049
EQ(UA) 0.996 0.983 0.973 0.944 0.814 1.011 1.079 1.106 1.084 0.911 0.992 0.999 1.013 1.004 0.951 1.014 1.024 1.064 1.246 1.001 1.006 1.015 1.022 1.020 1.022
WAA(cB) 0.992 0.985 0.980 0.960 0.834 1.005 1.029 1.031 1.005 0.825 0.981 0.964 0.939 0.894 0.842 1.006 1.019 1.062 1.241 0.977 1.001 1.001 1.007 1.010 1.023
WAA(cL) 0.990 0.985 0.974 0.910 0.746 1.005 1.016 1.002 0.914 0.718 0.981 0.960 0.899 0.763 0.629 1.008 1.020 1.078 1.297 1.002 1.001 1.001 1.006 1.006 1.046
WAA(1) 0.989 0.984 0.977 0.906 0.743 1.004 1.007 0.997 1.019 0.725 0.981 0.956 0.869 0.732 0.606 1.012 1.041 1.128 1.334 1.000 1.001 1.000 1.006 1.004 1.052
MSE(All) 0.991 0.986 0.982 0.960 0.819 1.001 1.004 1.013 0.980 0.786 0.980 0.961 0.921 0.816 0.723 1.006 1.021 1.075 1.274 0.965 1.001 1.001 1.006 1.010 1.030
MSE(6) 0.992 0.987 0.982 0.961 0.832 1.002 1.016 1.044 1.013 0.830 0.980 0.962 0.918 0.814 0.732 1.008 1.019 1.074 1.266 0.944 1.002 1.000 1.009 1.003 1.031
Last 0.975 1.000 0.985 0.977 0.930 1.060 1.063 1.019 1.158 0.882 0.977 0.950 0.916 0.730 0.588 1.022 1.079 1.119 1.371 1.018 1.002 1.001 1.037 1.046 1.072

Inflation Industrial Production Interest Rate Money Supply Unemployment

Denmark 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.256] [0.416] [0.634] [1.048] [1.472] [0.197] [0.394] [0.573] [0.920] [1.272] [1.307] [2.705] [3.655] [5.303] [6.379] [0.098] [0.197] [0.359] [0.774] [1.944]
NC 0.937 0.857 0.782 0.715 0.609 0.834 0.850 0.824 0.731 0.628 1.121 1.104 1.210 1.372 1.469 1.059 1.109 1.117 1.042 0.861
STR 1.000 0.902 0.752 0.706 0.629 1.121 1.050 1.036 1.027 1.016 0.993 0.991 1.048 1.121 1.086 1.016 1.055 1.107 1.101 1.106
KG 0.993 0.826 0.752 0.632 0.534 1.006 1.076 1.434 1.727 1.911 0.964 0.914 0.958 1.218 1.202 1.024 1.042 1.020 1.020 0.938
ANN 0.920 0.858 0.734 0.675 0.610 1.022 1.317 1.646 1.701 1.629 1.015 1.045 1.054 1.155 1.149 1.004 1.016 1.003 1.001 0.978
EBF 0.977 0.905 0.847 0.771 0.681 0.929 0.900 0.881 0.805 0.723 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EQ(All) 0.952 0.864 0.774 0.707 0.640 0.900 0.969 1.061 1.118 1.111 0.975 0.974 1.006 1.118 1.125 0.996 1.004 1.008 1.003 0.969
EQ(NL) 0.950 0.851 0.747 0.676 0.603 0.906 1.010 1.170 1.272 1.296 0.964 0.968 0.993 1.108 1.096 1.001 1.015 1.016 1.016 0.999
EQ(UA) 0.942 0.841 0.750 0.669 0.596 0.876 1.011 1.225 1.359 1.393 0.967 0.969 0.983 1.108 1.100 1.000 1.009 0.997 0.999 0.969
WAA(cB) 0.952 0.863 0.770 0.697 0.622 0.900 0.969 1.051 1.070 1.002 0.975 0.974 1.005 1.111 1.116 0.996 1.004 1.008 1.003 0.969
WAA(cL) 0.942 0.843 0.785 0.698 0.605 0.893 0.931 0.868 0.763 0.669 0.981 0.969 1.013 1.016 1.046 0.996 1.006 1.016 1.042 0.965
WAA(1) 0.950 0.849 0.758 0.682 0.596 0.887 0.909 0.852 0.746 0.646 1.040 1.023 1.048 1.038 1.033 0.996 1.009 1.035 1.095 0.977
MSE(All) 0.947 0.857 0.759 0.679 0.599 0.886 0.932 0.933 0.853 0.749 0.975 0.982 1.012 1.107 1.091 0.997 1.007 1.019 1.032 0.980
MSE(6) 0.951 0.869 0.781 0.723 0.590 0.896 0.947 0.951 0.843 0.754 0.980 0.986 1.023 1.129 1.117 0.995 0.993 0.999 1.026 1.015
Last 0.956 0.889 0.828 0.829 0.601 0.952 1.076 0.918 0.806 0.660 1.096 1.021 1.027 1.274 1.168 0.994 1.011 1.020 1.041 1.023

Table 2. Root Mean Square Forecast Error ratios of each model with the linear autoregression being the benchmark. The first row in
each table holds the Root Mean Square Forecast Error of the linear autoregression in sharp parentheses.



Inflation Industrial Production Interest Rate Money Supply Unemployment

Finland 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.320] [0.544] [0.794] [1.277] [1.329] [3.489] [4.751] [5.154] [5.176] [6.058] [0.100] [0.224] [0.344] [0.446] [0.945]
NC 0.945 0.869 0.792 0.748 1.324 0.964 1.032 1.262 1.535 1.278 0.894 0.911 0.940 1.272 1.309
STR 0.998 0.919 0.799 0.733 1.114 0.987 0.986 1.081 1.152 0.978 0.826 0.984 1.033 1.102 1.381
KG 1.014 0.946 0.815 0.734 1.095 1.001 0.991 1.015 1.045 1.115 0.901 0.900 0.865 0.899 0.846
ANN 1.000 1.022 1.016 1.036 1.300 0.956 0.966 1.026 1.095 1.015 1.004 1.064 1.187 1.444 1.494
EBF 1.000 1.000 1.000 1.000 1.000 0.950 0.939 0.976 1.027 1.002 1.000 1.000 1.000 1.000 1.000
EQ(All) 0.982 0.943 0.865 0.794 0.924 0.939 0.953 1.031 1.122 1.033 0.885 0.931 0.945 1.018 1.118
EQ(NL) 0.997 0.962 0.878 0.807 0.952 0.944 0.947 1.004 1.067 1.019 0.879 0.955 0.977 1.015 1.119
EQ(UA) 0.997 0.980 0.917 0.864 0.965 0.955 0.957 0.998 1.047 1.037 0.957 0.973 0.988 1.041 1.063
WAA(cB) 0.982 0.942 0.861 0.795 1.161 0.939 0.954 1.029 1.102 1.033 0.885 0.931 0.944 1.018 1.117
WAA(cL) 0.979 0.914 0.802 0.751 1.328 0.968 0.999 1.063 1.042 1.003 0.885 0.930 0.937 1.003 1.067
WAA(1) 0.979 0.914 0.802 0.750 1.328 1.003 0.993 1.068 1.045 0.997 0.881 0.923 0.943 1.019 1.137
MSE(All) 0.984 0.935 0.833 0.753 1.038 0.938 0.956 1.030 1.088 1.032 0.876 0.921 0.901 0.988 1.102
MSE(6) 0.985 0.942 0.837 0.729 1.061 0.938 0.975 1.030 1.103 1.044 0.875 0.929 0.905 0.942 1.048
Last 1.015 0.944 0.887 0.707 1.138 0.948 1.024 1.208 1.096 1.185 0.880 1.029 0.887 0.928 1.067

Inflation Industrial Production Interest Rate Money Supply Unemployment

France 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.319] [0.534] [0.621] [0.774] [1.103] [1.426] [1.811] [2.246] [2.396] [2.008] [0.154] [0.327] [0.485] [0.764] [0.976] [0.061] [0.114] [0.222] [0.480] [1.018]
NC 0.939 0.821 0.707 0.632 0.591 1.044 1.011 0.971 1.041 1.187 0.992 0.935 0.876 0.797 0.733 1.061 1.194 1.163 1.063 0.927
STR 0.930 0.810 0.693 0.663 0.654 1.010 0.987 0.986 0.959 0.887 0.993 0.994 0.986 0.965 0.937 1.034 1.035 1.009 0.924 0.901
KG 0.997 0.821 0.689 0.622 0.610 0.998 0.933 0.819 0.795 0.806 0.989 0.957 0.968 0.958 0.979 1.497 1.251 1.176 1.223 1.377
ANN 0.916 0.798 0.705 0.637 0.591 0.959 0.880 0.778 0.756 0.791 1.000 1.000 1.000 1.000 1.000 1.003 1.004 1.006 1.003 1.001
EBF 0.926 0.805 0.694 0.697 0.639 0.972 0.949 0.877 0.896 0.924 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EQ(All) 0.936 0.825 0.726 0.685 0.656 0.967 0.907 0.840 0.816 0.809 0.991 0.975 0.965 0.945 0.921 1.014 1.008 1.007 1.000 1.018
EQ(NL) 0.929 0.799 0.683 0.646 0.620 0.959 0.894 0.814 0.790 0.784 0.992 0.983 0.984 0.976 0.969 1.040 1.023 1.020 1.015 1.056
EQ(UA) 0.930 0.797 0.683 0.643 0.610 0.958 0.901 0.805 0.794 0.811 0.993 0.980 0.984 0.981 0.982 1.063 1.033 1.036 1.057 1.113
WAA(cB) 0.936 0.824 0.722 0.678 0.646 0.967 0.907 0.840 0.815 0.805 0.991 0.975 0.964 0.944 0.919 1.014 1.008 1.007 1.000 1.018
WAA(cL) 0.932 0.813 0.689 0.659 0.618 0.974 0.920 0.841 0.789 0.759 0.991 0.973 0.947 0.876 0.779 1.012 1.008 1.018 1.016 1.036
WAA(1) 0.933 0.811 0.690 0.654 0.616 0.992 0.947 0.850 0.768 0.789 0.991 0.972 0.926 0.842 0.762 1.013 1.008 1.016 1.014 1.029
MSE(All) 0.936 0.826 0.708 0.683 0.645 0.968 0.916 0.844 0.816 0.791 0.991 0.972 0.955 0.917 0.854 1.011 1.007 1.012 1.008 1.040
MSE(6) 0.938 0.829 0.705 0.679 0.646 0.971 0.911 0.836 0.849 0.815 0.991 0.971 0.950 0.923 0.859 1.012 1.014 1.021 0.998 1.006
Last 0.953 0.893 0.778 0.795 0.729 1.021 0.985 0.846 0.958 0.946 0.982 0.984 0.938 0.873 0.733 1.106 1.123 1.134 1.105 1.041

Table 3. Root Mean Square Forecast Error ratios of each model with the linear autoregression being the benchmark. The first row in
each table holds the Root Mean Square Forecast Error of the linear autoregression in sharp parentheses.



Inflation Industrial Production Interest Rate Money Supply Unemployment

Germany 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.316] [0.426] [0.536] [0.714] [0.534] [1.464] [1.976] [2.837] [2.512] [2.836] [0.155] [0.342] [0.543] [0.913] [1.292] [2.255] [3.323] [2.544] [3.160] [3.141] [0.122] [0.301] [0.521] [0.967] [1.896]
NC 0.976 0.980 0.950 0.912 1.406 1.086 1.069 1.126 1.312 1.241 0.988 0.892 0.785 0.664 0.539 1.039 1.119 1.331 1.539 1.499 1.025 1.017 0.992 0.987 0.965
STR 1.011 1.021 1.015 0.987 1.187 1.015 1.043 1.055 1.379 1.118 0.982 0.936 0.861 0.755 0.638 1.035 1.100 1.113 1.141 1.001 0.943 0.997 1.015 1.022 0.982
KG 1.068 1.046 1.044 1.010 1.168 1.044 1.006 1.004 1.041 0.930 0.985 0.897 0.848 0.790 0.763 1.031 1.074 1.073 1.052 0.966 1.173 1.003 0.937 0.946 0.861
ANN 1.001 1.001 1.001 1.000 1.000 1.030 1.019 1.017 1.016 0.974 1.000 1.000 1.000 1.000 1.000 1.043 1.098 1.080 1.064 1.045 0.995 0.971 0.955 0.962 0.953
EBF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.975 1.011 1.047 1.033 1.033
EQ(All) 1.005 1.002 0.991 0.965 1.035 0.997 0.994 1.001 1.063 1.008 0.968 0.933 0.889 0.831 0.736 1.010 1.037 1.048 1.118 1.052 0.978 0.959 0.956 0.969 0.954
EQ(NL) 1.016 1.013 1.007 0.984 1.020 0.997 0.986 0.985 1.063 0.986 0.977 0.938 0.901 0.849 0.752 1.012 1.040 1.016 1.056 0.999 0.984 0.957 0.955 0.968 0.946
EQ(UA) 1.019 1.011 1.007 0.988 0.990 1.013 0.999 1.000 1.010 0.961 0.981 0.950 0.934 0.910 0.860 1.012 1.033 1.008 1.032 0.999 1.006 0.950 0.941 0.954 0.935
WAA(cB) 1.005 1.002 0.991 0.966 1.037 0.997 0.994 1.001 1.065 1.009 0.968 0.933 0.888 0.827 0.730 1.010 1.038 1.037 1.076 1.032 0.978 0.959 0.956 0.969 0.957
WAA(cL) 1.003 1.001 0.997 1.010 1.334 1.001 1.035 1.077 1.354 1.001 0.968 0.926 0.829 0.697 0.564 1.015 1.068 1.000 1.000 1.000 0.979 0.963 0.963 0.985 0.988
WAA(1) 1.002 1.001 1.002 1.025 1.360 1.013 1.046 1.015 1.377 1.007 0.968 0.923 0.816 0.682 0.557 1.026 1.060 1.000 1.000 1.000 0.980 0.967 0.972 0.975 1.005
MSE(All) 1.005 1.001 0.992 0.974 1.103 0.996 0.991 0.992 1.073 0.987 0.963 0.925 0.865 0.767 0.626 1.012 1.026 1.030 1.065 1.008 0.981 0.963 0.959 0.972 0.964
MSE(6) 1.005 1.002 0.991 0.986 1.078 1.001 0.991 0.983 1.094 1.022 0.965 0.921 0.865 0.766 0.648 1.012 1.027 1.045 1.094 1.043 0.985 0.964 0.951 0.967 0.972
Last 1.008 1.049 0.999 1.024 1.347 1.029 1.038 0.999 1.194 1.181 1.017 0.982 0.880 0.761 0.572 1.057 1.077 1.155 1.185 1.142 0.946 1.088 1.039 0.946 1.042

Inflation Industrial Production Interest Rate Money Supply Unemployment

Italy 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.160] [0.281] [0.545] [1.010] [1.874] [1.261] [2.118] [3.026] [2.817] [3.6039 [0.147] [0.321] [0.502] [0.806] [0.992]
NC 0.810 0.725 0.544 0.406 0.286 0.923 0.943 0.947 1.054 0.792 1.014 0.945 0.874 0.792 0.721
STR 0.994 0.822 0.627 0.425 0.297 1.164 1.217 1.222 1.555 0.791 0.997 0.998 0.986 0.945 0.846
KG 0.944 0.792 0.642 0.508 0.497 1.058 0.977 0.953 0.918 0.877 1.025 1.017 0.970 0.954 0.982
ANN 0.949 0.863 0.693 0.491 0.421 1.026 0.950 0.956 0.921 0.831 0.996 0.993 0.993 1.007 0.997
EBF 0.985 0.827 0.630 0.474 0.411 1.057 1.028 0.988 0.906 0.877 1.000 1.000 1.000 1.000 1.000
EQ(All) 0.930 0.791 0.642 0.507 0.459 0.988 0.963 0.946 0.930 0.791 0.989 0.980 0.956 0.930 0.862
EQ(NL) 0.957 0.795 0.617 0.448 0.394 1.030 0.993 0.980 1.010 0.830 0.999 0.995 0.976 0.957 0.888
EQ(UA) 0.948 0.797 0.628 0.471 0.435 1.033 0.977 0.958 0.896 0.848 1.001 0.996 0.976 0.963 0.905
WAA(cB) 0.930 0.791 0.641 0.499 0.437 0.988 0.962 0.947 0.939 0.788 0.989 0.980 0.956 0.930 0.862
WAA(cL) 0.927 0.780 0.608 0.440 0.301 0.964 0.996 1.154 1.417 0.768 0.989 0.980 0.952 0.914 0.808
WAA(1) 0.924 0.772 0.601 0.437 0.291 0.950 1.071 1.175 1.432 0.814 0.989 0.977 0.917 0.829 0.742
MSE(All) 0.926 0.785 0.620 0.455 0.319 0.976 0.964 0.953 0.949 0.784 0.985 0.975 0.942 0.896 0.811
MSE(6) 0.926 0.790 0.624 0.468 0.326 0.964 0.954 0.944 0.915 0.759 0.986 0.975 0.944 0.904 0.877
Last 0.881 0.873 0.810 0.488 0.356 0.983 0.978 1.015 1.094 0.774 1.035 1.016 0.949 0.903 0.873

Table 4. Root Mean Square Forecast Error ratios of each model with the linear autoregression being the benchmark. The first row in
each table holds the Root Mean Square Forecast Error of the linear autoregression in sharp parentheses.



Inflation Industrial Production Interest Rate Money Supply Unemployment

Japan 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.257] [0.443] [0.601] [0.794] [1.161] [1.615] [2.870] [4.807] [4.804] [3.7869 [0.132] [0.243] [0.337] [0.466] [0.3309 [2.057] [4.723] [7.800] [8.905] [7.355] [0.129] [0.197] [0.295] [0.530] [1.083]
NC 0.969 0.912 0.837 0.812 0.551 1.064 1.180 1.186 1.422 0.808 0.985 0.991 0.982 0.973 1.117 0.996 1.032 1.064 1.207 0.692 1.009 0.928 0.873 0.706 0.629
STR 1.003 0.937 0.823 0.830 0.642 1.134 1.224 1.208 1.301 0.630 1.002 0.991 1.010 1.005 1.415 1.173 0.912 0.887 1.077 0.937 1.127 1.117 1.104 0.987 0.966
KG 1.026 0.963 1.057 0.869 0.543 1.011 1.006 1.004 1.004 0.966 1.118 1.161 0.998 0.961 0.597 1.438 1.126 0.954 0.941 1.244 1.112 1.110 1.063 0.871 0.777
ANN 1.051 1.026 0.938 0.734 0.532 1.030 1.019 1.038 1.191 0.670 1.462 1.306 1.133 1.173 1.000 1.013 1.011 1.007 1.054 1.000 0.998 1.002 0.983 0.928 0.900
EBF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.007 1.020 1.036 1.123 0.938 1.000 1.002 1.004 1.006 1.011 1.009 1.004 0.999 0.980 0.955
EQ(All) 0.971 0.910 0.853 0.724 0.478 1.012 1.032 1.034 1.075 0.750 1.014 0.939 0.955 0.960 0.733 0.987 0.946 0.957 1.025 0.956 0.995 0.989 0.961 0.875 0.856
EQ(NL) 0.973 0.910 0.863 0.717 0.462 1.030 1.044 1.044 1.083 0.776 1.044 0.941 0.953 0.970 0.634 1.015 0.931 0.930 1.001 1.044 1.008 1.016 0.991 0.902 0.881
EQ(UA) 0.976 0.949 0.945 0.779 0.549 1.010 1.004 1.007 1.028 0.839 1.083 0.969 0.971 1.017 0.608 1.045 0.977 0.965 0.988 1.080 0.998 1.001 0.974 0.888 0.861
WAA(cB) 0.971 0.910 0.853 0.719 0.465 1.012 1.033 1.038 1.093 0.725 1.014 0.939 0.956 0.961 0.742 0.986 0.953 0.964 1.039 1.039 0.995 0.989 0.961 0.877 0.858
WAA(cL) 0.976 0.924 0.864 0.826 0.568 1.014 1.028 1.044 1.359 0.666 1.011 0.962 0.986 1.017 1.146 1.143 1.101 1.083 1.061 1.056 0.994 0.982 0.958 0.918 1.011
WAA(1) 0.977 0.926 0.860 0.826 0.567 1.011 1.039 1.036 1.370 0.676 1.008 0.988 1.009 1.019 1.274 1.147 1.111 1.096 1.062 1.087 0.994 0.985 0.962 0.913 0.983
MSE(All) 0.979 0.919 0.806 0.748 0.512 1.012 1.031 1.035 1.090 0.716 1.005 0.971 0.968 0.971 0.996 0.985 0.952 0.960 1.026 0.995 0.995 0.988 0.954 0.904 0.941
MSE(6) 0.985 0.904 0.843 0.813 0.599 1.010 1.021 1.033 1.083 0.703 1.000 0.994 0.969 0.974 0.941 0.995 0.970 0.957 0.996 0.850 1.000 0.992 0.922 0.855 0.941
Last 1.032 0.994 0.894 0.989 0.683 1.054 1.042 1.061 1.370 0.752 1.106 1.114 1.009 1.040 1.268 1.083 0.980 0.995 1.108 0.774 1.051 1.037 0.948 0.829 0.983

Inflation Industrial Production Interest Rate Money Supply Unemployment

Norway 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.621] [1.283] [1.646] [2.132] [1.813] [4.569] [5.003] [5.962] [6.788] [6.501] [0.248] [0.491] [0.684] [1.165] [1.076] [0.109] [0.231] [0.408] [0.758] [1.283]
NC 1.000 0.978 0.960 0.939 0.934 1.073 1.136 1.075 1.233 0.860 0.967 0.950 0.973 0.957 1.036 1.005 1.006 1.002 1.000 0.997
STR 1.006 1.011 0.983 0.957 0.949 1.023 1.170 1.256 1.397 0.881 1.044 1.069 1.068 1.056 1.275 0.988 0.986 0.980 0.976 0.964
KG 1.034 1.016 1.004 0.993 1.002 1.051 1.009 1.012 1.038 0.956 1.161 1.079 1.120 1.074 1.427 0.985 0.994 0.998 0.975 0.830
ANN 1.022 1.004 0.972 0.896 0.928 1.192 1.018 0.991 1.051 0.881 1.360 1.161 1.185 1.065 1.097 0.992 0.985 0.972 0.974 0.948
EBF 1.000 1.000 1.000 1.000 1.000 0.996 0.971 0.972 0.992 0.912 1.028 1.038 1.045 1.032 1.068 1.012 1.019 1.018 1.008 1.003
EQ(All) 1.001 0.993 0.973 0.942 0.882 0.971 0.978 0.979 1.058 0.817 1.025 1.009 1.030 1.008 1.103 0.989 0.989 0.986 0.981 0.952
EQ(NL) 1.008 1.000 0.977 0.942 0.899 1.002 0.996 1.018 1.097 0.873 1.059 1.035 1.060 1.028 1.162 0.984 0.985 0.981 0.974 0.931
EQ(UA) 1.012 1.001 0.986 0.955 0.944 1.051 0.985 0.983 1.020 0.904 1.088 1.044 1.075 1.033 1.162 0.984 0.987 0.983 0.975 0.921
WAA(cB) 1.001 0.993 0.976 0.930 0.909 0.970 0.977 0.978 1.034 0.789 1.025 1.009 1.030 1.008 1.110 0.989 0.989 0.986 0.982 0.955
WAA(cL) 1.006 1.000 0.995 0.903 0.967 1.014 1.011 1.031 1.000 0.860 1.021 1.001 1.032 1.049 1.240 0.989 0.992 0.997 1.004 1.001
WAA(1) 1.002 1.001 0.992 0.911 0.965 1.038 1.013 1.041 0.996 0.860 1.018 0.995 1.031 1.061 1.265 0.989 0.993 0.998 1.005 1.002
MSE(All) 1.001 0.994 0.975 0.940 0.891 0.969 0.979 0.985 1.035 0.769 1.022 1.007 1.029 1.015 1.114 0.989 0.990 0.986 0.984 0.967
MSE(6) 1.001 0.995 0.978 0.957 0.877 0.974 0.973 1.000 1.042 0.780 1.023 1.003 1.027 1.006 1.136 0.988 0.984 0.982 0.981 0.969
Last 0.985 1.037 0.980 1.017 0.863 1.069 1.057 1.225 1.112 0.872 1.034 1.080 0.997 1.048 1.268 0.975 0.949 0.924 0.955 0.966

Table 5. Root Mean Square Forecast Error ratios of each model with the linear autoregression being the benchmark. The first row in
each table holds the Root Mean Square Forecast Error of the linear autoregression in sharp parentheses.



Inflation Industrial Production Interest Rate Money Supply Unemployment

Sweden 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.356] [0.617] [0.887] [1.369] [1.656] [2.588] [2.435] [2.437] [2.778] [4.086] [0.165] [0.351] [0.560] [0.9449 [1.394] [1.818] [2.379] [2.998] [3.650] [4.009] [0.215] [0.349] [0.541] [0.895] [1.323]
NC 0.973 0.904 0.816 0.797 1.048 1.189 1.196 1.325 1.525 1.270 1.006 0.919 0.866 0.770 0.660 1.028 1.062 1.063 1.252 1.307 1.034 0.989 1.004 0.992 0.992
STR 1.007 0.963 0.869 0.842 1.080 1.003 1.005 1.050 1.114 1.071 0.996 0.989 0.971 0.952 0.896 1.022 1.053 1.084 1.299 1.047 1.067 1.167 1.310 1.408 1.093
KG 0.992 0.923 0.848 0.811 0.941 1.037 1.037 1.007 1.018 1.082 1.039 1.024 0.984 0.969 1.042 1.056 1.008 0.988 1.045 1.090 1.206 1.263 1.175 1.251 1.057
ANN 0.995 0.940 0.852 0.826 1.015 1.047 1.038 0.971 1.045 1.085 1.000 1.000 1.000 1.000 1.000 1.042 1.113 1.000 1.016 1.017 1.002 1.004 1.000 1.004 0.985
EBF 1.000 1.000 1.000 1.000 1.000 1.027 1.021 1.049 1.128 1.085 0.984 0.972 0.977 0.966 0.973 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EQ(All) 0.990 0.943 0.874 0.840 0.934 1.032 1.022 1.033 1.120 1.083 0.989 0.967 0.949 0.926 0.894 1.011 1.017 0.990 1.059 1.031 0.999 0.995 0.997 0.990 0.924
EQ(NL) 0.994 0.946 0.873 0.838 0.947 1.019 1.012 1.001 1.063 1.076 0.991 0.981 0.967 0.958 0.945 1.015 1.022 0.990 1.060 1.024 1.016 1.040 1.045 1.039 0.914
EQ(UA) 0.993 0.945 0.881 0.848 0.927 1.028 1.023 0.994 1.054 1.082 0.991 0.982 0.971 0.964 0.963 1.016 1.021 0.977 1.003 1.023 1.018 1.035 1.025 1.033 0.928
WAA(cB) 0.990 0.943 0.874 0.841 0.954 1.032 1.022 1.032 1.111 1.080 0.989 0.967 0.949 0.926 0.891 1.011 1.017 0.990 1.059 1.032 0.999 0.995 0.997 0.986 0.924
WAA(cL) 0.990 0.944 0.872 0.824 1.110 1.018 1.013 1.004 1.022 1.052 0.989 0.967 0.940 0.886 0.707 1.011 1.017 0.996 1.072 1.060 0.999 0.987 0.982 0.989 1.090
WAA(1) 0.990 0.948 0.871 0.810 1.112 1.019 1.040 1.025 1.022 1.031 0.989 0.965 0.913 0.853 0.674 1.016 1.033 1.007 1.123 1.148 0.999 0.984 0.991 1.027 1.074
MSE(All) 0.988 0.944 0.874 0.820 0.994 1.030 1.020 1.026 1.076 1.067 0.990 0.967 0.941 0.923 0.773 1.011 1.018 0.993 1.060 1.068 1.001 1.000 1.007 1.002 0.887
MSE(6) 0.987 0.942 0.872 0.797 1.006 1.030 1.021 1.029 1.088 1.095 0.990 0.968 0.935 0.904 0.780 1.013 1.021 1.003 1.090 1.071 1.001 1.007 1.015 1.012 0.911
Last 0.991 0.943 0.872 0.802 1.058 1.148 1.128 1.229 1.132 1.207 1.073 0.991 0.930 0.870 0.660 1.013 1.108 1.107 1.252 1.193 1.092 1.089 1.224 1.233 0.991

Inflation Industrial Production Interest Rate Money Supply Unemployment

UK 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.264] [0.502] [0.694] [1.060] [1.347] [1.290] [1.576] [1.953] [2.004] [1.806] [0.147] [0.329] [0.450] [0.706] [0.841] [0.045] [0.072] [0.121] [0.263] [0.656]
NC 0.892 0.779 0.655 0.522 0.571 1.063 0.995 0.934 1.159 0.964 1.021 0.935 0.863 0.772 0.617 1.011 1.052 1.016 0.749 0.464
STR 0.980 0.904 0.776 0.535 0.575 1.025 1.104 1.089 1.219 0.797 0.987 0.959 0.914 0.856 0.713 0.973 0.938 0.900 0.700 0.423
KG 0.955 0.823 0.703 0.593 0.579 1.020 0.926 0.879 0.896 0.777 1.054 1.122 1.226 1.286 1.489 1.062 1.029 0.995 0.804 0.783
ANN 0.974 0.799 0.731 0.604 0.537 1.106 1.078 1.043 1.026 0.854 1.000 0.998 0.997 1.002 1.042 1.015 1.097 1.189 1.081 0.902
EBF 0.995 0.992 1.005 1.034 0.887 1.038 0.932 0.891 0.917 0.950 1.014 1.020 1.034 1.021 1.012 1.051 1.111 1.141 0.991 0.782
EQ(All) 0.941 0.843 0.730 0.584 0.604 1.007 0.948 0.913 0.948 0.788 0.993 0.988 0.975 0.947 0.905 0.988 0.940 0.892 0.741 0.637
EQ(NL) 0.951 0.844 0.735 0.596 0.586 1.010 0.955 0.936 0.972 0.827 1.001 1.009 1.017 1.007 1.016 1.007 0.987 0.951 0.766 0.626
EQ(UA) 0.949 0.837 0.745 0.642 0.603 1.027 0.947 0.921 0.929 0.843 1.009 1.035 1.070 1.083 1.158 1.022 1.015 0.994 0.828 0.719
WAA(cB) 0.941 0.843 0.729 0.584 0.590 1.008 0.948 0.912 0.947 0.785 0.993 0.988 0.974 0.945 0.888 0.988 0.940 0.892 0.741 0.635
WAA(cL) 0.941 0.831 0.699 0.620 0.567 1.021 0.971 0.999 1.038 0.772 0.993 0.982 0.933 0.862 0.625 0.988 0.941 0.894 0.743 0.564
WAA(1) 0.938 0.820 0.673 0.644 0.570 1.036 1.000 1.041 1.029 0.776 0.993 0.978 0.904 0.819 0.626 0.988 0.941 0.899 0.748 0.532
MSE(All) 0.942 0.839 0.706 0.628 0.568 1.009 0.948 0.913 0.951 0.776 0.993 0.983 0.949 0.864 0.701 0.989 0.948 0.909 0.732 0.515
MSE(6) 0.944 0.845 0.718 0.624 0.564 1.014 0.948 0.919 0.948 0.767 0.997 0.993 0.953 0.898 0.691 0.991 0.943 0.886 0.737 0.527
Last 1.026 0.919 0.771 0.768 0.600 1.084 1.051 1.036 1.203 0.898 1.062 1.082 1.038 0.932 0.653 1.054 1.017 0.968 0.899 0.644

Table 6. Root Mean Square Forecast Error ratios of each model with the linear autoregression being the benchmark. The first row in
each table holds the Root Mean Square Forecast Error of the linear autoregression in sharp parentheses.



Inflation Industrial Production Interest Rate Money Supply Unemployment

US 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

AR [0.406] [0.709] [0.912] [1.209] [1.030] [0.729] [1.439] [2.294] [1.722] [1.417] [0.215] [0.425] [0.524] [0.727] [0.612] [1.348] [2.031] [2.544] [3.179] [4.996] [0.117] [0.218] [0.346] [0.500] [0.846]
NC 0.923 0.931 0.981 1.007 1.223 1.026 1.077 1.056 1.782 1.300 1.029 0.979 0.942 0.898 0.867 0.948 1.006 1.009 0.984 1.081 1.064 1.144 1.224 1.037 0.855
STR 1.002 0.976 1.003 1.030 1.247 0.999 0.940 0.863 1.315 1.114 1.004 0.992 0.962 0.901 0.787 1.065 1.039 1.025 1.016 1.035 1.019 1.069 1.149 1.139 0.921
KG 1.076 0.995 0.969 0.971 1.120 0.968 0.968 0.948 1.520 1.131 1.136 1.033 1.042 1.046 1.038 1.372 1.042 1.041 0.997 1.057 0.999 1.060 1.109 0.941 0.840
ANN 0.996 0.965 0.958 0.948 0.950 0.964 0.929 0.895 1.365 0.984 1.004 1.001 1.000 1.000 0.994 1.062 1.057 1.033 1.005 1.023 1.000 1.000 1.000 1.000 1.000
EBF 0.973 0.929 0.980 0.931 1.000 0.985 0.923 0.890 1.060 0.949 1.000 1.000 1.000 1.000 1.000 1.035 1.034 1.029 1.008 1.078 1.004 1.009 1.011 1.000 1.000
EQ(All) 0.986 0.958 0.974 0.971 1.062 0.970 0.933 0.885 1.195 1.002 0.999 0.993 0.977 0.953 0.866 1.020 1.007 1.006 0.986 1.035 0.990 1.006 1.036 0.964 0.930
EQ(NL) 1.002 0.958 0.971 0.964 1.064 0.972 0.922 0.878 1.298 1.019 1.011 1.001 0.991 0.973 0.927 1.057 1.016 1.015 0.995 1.045 0.991 1.015 1.042 0.986 0.936
EQ(UA) 1.004 0.955 0.964 0.945 1.012 0.966 0.922 0.887 1.295 1.001 1.017 1.006 1.008 1.009 1.007 1.097 1.027 1.019 0.993 1.050 0.989 1.007 1.025 0.967 0.943
WAA(cB) 0.985 0.958 0.974 0.972 1.069 0.970 0.934 0.892 1.172 1.004 0.999 0.993 0.977 0.952 0.847 1.019 1.007 1.006 0.987 1.035 0.991 1.006 1.036 0.967 0.938
WAA(cL) 0.963 0.945 0.981 0.983 1.124 0.975 0.956 0.995 1.044 0.917 0.999 0.992 0.967 0.924 0.882 1.011 1.016 1.010 1.013 1.011 0.992 1.024 1.074 1.022 1.000
WAA(1) 0.967 0.947 0.981 0.984 1.125 0.976 0.975 1.001 1.048 0.924 0.999 0.993 0.972 0.936 0.884 1.141 1.047 1.001 1.038 1.000 0.992 1.023 1.074 1.022 1.000
MSE(All) 0.982 0.957 0.973 0.973 1.079 0.971 0.931 0.902 1.167 0.987 0.993 0.993 0.975 0.945 0.835 1.017 1.006 1.006 0.987 1.035 0.994 1.021 1.060 0.963 0.958
MSE(6) 0.983 0.957 0.974 0.972 1.106 0.967 0.935 0.932 1.193 0.970 0.996 0.994 0.979 0.950 0.829 1.023 1.008 1.002 0.986 1.036 0.991 1.009 1.055 0.947 0.922
Last 0.988 0.948 1.009 1.019 1.188 0.978 0.895 1.017 1.557 1.001 1.152 1.044 0.999 0.973 0.949 1.013 1.032 1.028 0.988 1.092 1.029 1.054 1.091 0.917 0.924

Table 7. Root Mean Square Forecast Error ratios of each model with the linear autoregression being the benchmark. The first row in
each table holds the Root Mean Square Forecast Error of the linear autoregression in sharp parentheses.
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