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Abstract

The expected value of sums of squared intraday returns (realized variance)

gives rise to a least squares regression which adapts itself to the assumptions of

the noise process and allows for a joint inference on integrated volatility (IV),

noise moments and price-noise relations. In the iid noise case we derive the

asymptotic variance of the regression parameter estimating the IV, show that

it is consistent and compare its asymptotic efficiency against alternative consis-

tent IV measures. In case of noise which is correlated with the efficient return

process, we postulate a new“asymptotically increasing” type of dependence and

analyze its ability to cope with the empirically observed price-noise dependence

in quote data. In the empirical section of the paper we apply the LS method-

ology to estimate the integrated volatility as well as the noise properties of 25

liquid stocks both with midquote and transaction price data. We find that while

iid noise is an oversimplification, its non-iid characteristics have a decidedly neg-

ligible effect on volatility estimation within our framework, for which we provide

a sound theoretical reason. In terms of noise-price endogeneity, we are not able

to find empirical support for simple ad hoc theoretical models and we provide

an alternative explanation for the observed patterns in midquote data, based

on market microstructure theory.



1 Introduction

We provide a least-squares (LS) estimation framework for the integrated variance (IV)

of stochastic volatility martingale price processes in the presence of general market

microstructure (MMS) noise. For the simplest case of iid noise we derive the asymp-

totic variance of the estimator, show how it can be minimized, and compare it to the

variance of other consistent integrated volatility estimators. The analysis shows that

the precision of our estimator compares very favorably to that of competing method-

ologies. While we do not achieve the fastest possible rate of convergence, the minimal

variance of the asymptotic distribution is much smaller that that of estimators con-

verging at the fastest rate.1 In typical empirically-relevant situations our simulations

confirm that the LS approach provides estimates which are at least as precise as

compared to other consistent estimation techniques.

A further attractive feature of the LS framework is that it simultaneously provides

inference on the dependence structure of the MMS noise and sheds light on the impact

of non-iid noise on the estimation of IV, for which we find interesting differences

between quote and trade data. We also allow for dependence between the noise and the

latent returns (endogenous noise) and show that estimation of IV still remains possible,

while at the same time we obtain some insights on the nature of the endogeneity.

The estimator we propose can be classified as a subsampling estimator, very much in

the spirit of the two-scales realized volatility (TSRV) of Zhang, Mykland & Äıt-Sahalia

(2005) and the multi-scales realized volatility (MSRV) of Zhang (2006). We also

consider the realized kernels (RK) of Barndorff-Nielsen, Hansen, Lunde & Shephard

(2008a), which have been shown to be related to the multi-scale approach. The

comparative attractiveness of our methodology, however, lies not only in its strong

statistical properties, but mainly in its flexibility: it adapts naturally to a variety of

noise specifications, while remaining easy to handle and estimate. Furthermore, we

view the methodology not only as a way of estimating IV, but also as a powerful tool

in analyzing MMS phenomena and their impact on stock prices at high frequencies, a

research area which has generated a wealth of theoretical and empirical MMS literature

and is also of interest in relation to volatility estimation as shown by the works of

Hansen & Lunde (2006), Bandi & Russell (2006) and Oomen (2005).

1By asymptotic distribution, we mean the distribution properly standardized by a function of the

number of observations so that it does not degenerate. Of course, faster converging estimators with

a higher asymptotic variance will eventually dominate the slower converging one. Furthermore,

comparing asymptotic distributions might be rather misleading for slowly converging estimators in

“smallish” samples.
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The LS approach is not only flexible in terms of accommodating various noise specifica-

tions, but it can also be easily adapted to covariance estimation with non-synchronous

observations and MMS noise. To our knowledge, the multivariate extension of the

above mentioned estimation techniques has only been considered for the realized ker-

nel, which is provided by Barndorff-Nielsen, Hansen, Lunde & Shephard (2008b). We

undertake a detailed analysis of LS-based covariance estimation in a subsequent paper.

It should be noted, that the possibility of OLS estimation of IV has been addressed

in an independent study of Corsi & Curci (2006). Their main focus, however, remains

on the discrete sine transform of multi-scale volatility measures and on iid noise spec-

ifications.

The paper is structured as follows: in Section 2 we introduce the notation and the

theoretical framework and the estimation methodology, Sections 3 and 4 contain our

simulation and empirical results and Section 5 concludes. Proofs are collected in the

Appendix.

2 Theoretical Setup

Our basic assumption is that we have irregularly spaced, non-synchronous observations

of a one-dimensional continuous time process pt, t ≥ 0, which is a noisy signal for an

underlying process p∗t :

pt = p∗t + ut,

where ut is the noise term. The process p∗t satisfies the following assumption:

Assumption 1. The process p∗t is a stochastic volatility martingale process satisfying

p∗t =

t∫

0

σudWu

where σ is a cádlág2 stochastic process and W is a standard Brownian motion.

The integrated variation process of p∗ is given by

IVt =

t∫

0

σ2
udu.

2The acronym cádlág stands for “continue à droite, limite à gauche”. This condition ensures that the

integral with respect to W exists.
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Our aim is to estimate the increment of integrated variation

IV(a,b) =

b∫

a

σ2
udu = IVb − IVa.

for some predetermined choice of (a, b), e.g., a trading day. Henceforth, we assume

that the period of interest is a trading day with a = 0 and b = 1, and we will omit a

and b in the notation.

2.1 IID Noise

With respect to the market microstructure noise process, we start off with the following

assumption:

Assumption 2. The noise process ut satisfies the following conditions

(i) p∗s⊥⊥ ut, for all s and t; (Exogeneity)

(ii) us⊥⊥ ut, for all s 6= t; (Independence)

(iii) E [ut] = 0, ω2 ≡ E [u2
t ] < ∞, and µ4 ≡ E [u4

t ] < ∞, for all t.

While this assumption is highly unrealistic from an empirical point of view, it is

a convenient starting point for analyzing our methodology, comparing it to other

existing methods for estimation of IV , and establishing an asymptotic theory.

Consider an asset with N observations (ticks, transactions, quote updates) within

the period of interest. The grid of observations {tj}j=1,...,N is divided into subgrids

{tjs+h}j=0,...,⌊N−h
s ⌋, where s = 1, . . . , S and h = 1, . . . , s. Here {tjs+h}j=0,...,⌊N−h

s ⌋
denotes the h-th subgrid for a sampling frequency of s ticks (e.g., with s = 2 we can

have two subgrids, the first one comprising the times {t1, t3, t5, . . .} and the second –

the times {t2, t4, t6, . . .}). For each subgrid, we can define the corresponding observed

and efficient s-tick returns as

rtjs+h
= pt(j−1)s+h

− ptjs+h
, j = 1, . . . ,

⌊
N − h

s

⌋

r∗tjs+h
= p∗t(j−1)s+h

− p∗tjs+h
, j = 1, . . . ,

⌊
N − h

s

⌋
,

and the noise returns as

etjs+h
= ut(j−1)s+h

− utjs+h
, j = 1, . . . ,

⌊
N − h

s

⌋
.
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Denote the number of returns for the h-th s-tick subgrid as Nh,s =
⌊

N−h
s

⌋
− 1. We

define the realized variance (RV) as a function of the number of returns on this subgrid

as:

RV h,s(Nh,s) =

Nh,s∑

j=1

r2
tjs+h

.

Under Assumptions 1 and 2 it holds that

E
[
RV h,s(Nh,s)

]
= IV + 2Nh,sω

2, (1)

a result which appears in Hansen & Lunde (2006). On the basis of the theoretical

relationship in Equation (1), we can easily derive an OLS regression of the form

yh,s = c + β0Nh,s + εh,s, s = 1, . . . , S, h = 1, . . . , s (2)

where yh,s = RV h,s(Nk
h,s).

3

It is interesting to note that the above OLS regression has a close relation to the so-

called volatility signature plot introduced by Andersen, Bollerslev, Diebold & Labys

(2003), which is a graphical description of the effect of sampling frequency on realized

volatility. In the above regression, the estimated constant ĉ is an estimate of the

integrated variance IV , while β̂0 is an estimate of 2ω2. Hence, as a by-product of this

estimation we obtain the variance of the noise process, which is of interest in is own

right.

Theorem 1. Let N → ∞ and S = αNβ for α > 0 and β ∈ [0.5, 1). Under Assump-

tions 1 and 2, the asymptotic variance of ĉ is given by

Var[ĉ] =
2(π2a − 6(γ2

0 + 2γ1)a
∗)N

3S2(ln S)2

︸ ︷︷ ︸
noise term

+
8IQS

15N︸ ︷︷ ︸
discretization term

,

where a = 12κω4, a∗ = 12κω4 − 4ω4, IQ =
∫ 1

0
σ4

sds, γ0 is the Euler-Mascheroni

constant, γ1 is the first Stieltjes constant, and κ = µ4/3ω4. The value of β determines

which term dominates the expression.

Proof. See the Appendix.

We discuss two corollaries of Theorem 1. First we look at the effect of the value of β.

3Note that in contrast to the MSRV estimator, we do not average over h for each s.
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Corollary 1.

1. Let S = αN1/2. Then the asymptotic variance of ĉ is given by

Var[ĉ] =
8(π2a − 6(γ2

0 + 2γ1)a
∗)

3α2(ln(N))2
.

2. Let S = αN2/3. Then the asymptotic variance of ĉ is given by

Var[ĉ] =
8IQα

15N1/3
.

3. Let Ñ solve Ñ(ln(Ñ))2/3 = N2/3 and set S = αÑ . Define p such that Ñ
N

= 1
Np .

Then the asymptotic variance of ĉ is given by

Var[ĉ] =

(
10(π2a − 6(γ2

0 + 2γ1)a
∗) + 8IQα3

15α2

)
1

Np
.

Note that 1/2 > p > 1/3.

Choosing S = αÑ balances the order of the noise and discretization induced terms in

the asymptotic variance and achieves the fastest speed of convergence for our estimator

which is in this case Np/2. In terms of its asymptotic efficiency our approach can

be ranked between the two-scale RV (TSRV) of Zhang et al. (2005) which is 6
√

N -

consistent, and the multi-scale RV (MSRV) by Zhang (2006) as well as the realized

kernels of Barndorff-Nielsen et al. (2008a) which are 4
√

N -consistent. At the expense of

some loss of asymptotic efficiency, the number of subgrids can be chosen proportional

to N2/3 achieving N1/6-consistency. This has the appealing feature that the noise term

becomes asymptotically negligible and thus the estimator achieves some robustness to

misspecifications in the noise process.

Corollary 2. Assume a normal distribution for the noise process, so that κ = 1. Set

S = αÑ . The asymptotic variance of ĉ is given by

Var[ĉ] =

(
8ω4(π2 − 4(γ2

0 + 2γ1))

α2
+

8IQα

15

)
1

Np
.

The minimum of the expression in the brackets is attained for α∗ = 3

√
30ω4(π2−4(γ2

0+2γ1))

IQ

and is equal to 2.16IQ2/3ω4/3.

We are now in a position to compare the asymptotic variance of our OLS-IV esti-

mator to other consistent estimators for IV. Comparing to the two-scale RV (TSRV)

of Zhang et al. (2005) we have a faster rate of convergence, and interestingly the
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same type of constant involving a factor times IQ2/3ω4/3. The smallest factor they

obtain is approximately 4.58, as given in the equation which immediately follows their

Equation (63). Thus, even after ignoring the faster speed of convergence our estima-

tor has an asymptotic variance which is more than twice lower than the variance of

the TSRV. A comparison to the faster converging multi-scale RV (MSRV) by Zhang

(2006) and the realized kernels of Barndorff-Nielsen et al. (2008a) is somewhat more

involved. Barndorff-Nielsen et al. (2008a) show that the theoretically smallest asymp-

totic variance achievable for a 4
√

N -consistent estimator in this setting is 8ωIQ3/4N−1/2

which corresponds to the efficiency of the parametric maximum likelihood estimator.

The minimal asymptotic variance of our OLS-IV estimator has been shown to be

2.16ω4/3IQ2/3N−p. The factors 8ωIQ3/4 and 2.16ω4/3IQ2/3 are not directly compa-

rable and depend on the values of ω and IQ. Furthermore, in finite samples, the

variance is likely to be affected by smaller order terms which vanish in the asymptotic

limit. Therefore, in order to have some meaningful comparison of the estimators we

conduct a small Monte Carlo simulation study in section 3 which shows that for any

reasonable sample size the OLS-IV estimator compares quite favorably to the other

consistent estimation approaches.

2.2 Dependent Noise

We consider two types of dependence: in calendar (or physical) time, and in tick time.

2.2.1 Dependence in Calendar Time

The calendar time dependent noise satisfies the following assumption

Assumption 3. The noise process ut satisfies the following

(i) p∗s⊥⊥ ut, for all s and t;

(ii) E [ut] = 0 for all t;

(iii) The noise process u is covariance stationary with autocovariance function given

by γ(q) = E [utut−q].

Under Assumptions 1 and 3 it holds that

E
[
RV h,s(Nh,s)

]
= IV +

Nh,s∑

j=1

Var
[
etjs+h

]
= IV + 2

∞∑

q=1

Nh,s(q) (γ(0) − γ(q))

≈ IV + 2Nh,sγ(0) − 2

Q∑

q=1

Nh,s(q)γ(q), (3)
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where Nh,s(q) counts the number of q-time-units (e.g., seconds) returns for the (h, s)-

subgrid given by

Nh,s(q) =
∑

j

1l {tjs+h−t(j−1)s+h=q}.

This result is a straightforward extension of the result in Equation (1) and the fact that

under Assumption 3, Var
[
etjs+h

]
= 2(γ(0) − γ(q)), where q = tjs+h − t(j−1)s+h. The

approximation in Equation (3) results from truncating the autocorrelation function at

lag Q. This is reasonable, since for a covariance stationary process the autocovariance

function tends to zero for large lags. Alternatively, the equation could be made exact if

one explicitly assumes γ(q) = 0 for q > Q, for some positive Q. In terms of estimation,

Q has to be chosen by the econometrician. On the basis of the theoretical relationship

in Equation (3) and the above assumptions, we can derive the corresponding pooled

OLS regression

yh,s = c + β ′xh,s + εh,s, s = 1, . . . , S, h = 1, . . . , s (4)

where yh,s = RV h,s(Nh,s) and xh,s is the Q-dimensional vector given by

xh,s = (Nh,s, Nh,s(1), . . . , Nh,s(Q))′. The estimated constant ĉ is an estimate of the in-

tegrated variance IV , while β̂0, β̂1, . . . , β̂Q are estimates of 2γ(0),−2γ(1), . . . ,−2γ(Q).

2.2.2 Dependence in Tick Time

The tick time dependent noise satisfies the following assumption

Assumption 4. The noise process ut satisfies the following

(i) p∗s⊥⊥ ut, for all s and t;

(ii) E [ut] = 0 for all t;

(iii) The noise process u is covariance stationary with autocovariance function given

by γ(q) = E
[
utjutj−q

]
.

The assumption of tick time dependence creates some difficulties as now we have under

Assumptions 1 and 4 that

E
[
RV h,s(Nh,s)

]
= IV +

Nh,s∑

j=1

Var
[
etjs+h

]
= IV + 2Nh,s (γ(0) − γ(s)) ,
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and thus γ(0)− γ(s) cannot be identified without additional assumptions, either as a

sum or separately. A possible identifying assumption is to postulate that γ(q) = 0 for

q ≥ Q̄ for some Q̄ > 0. Then for s ≥ Q̄ we will have that

E
[
RV h,s(Nh,s)

]
= IV +

Nh,s∑

j=1

Var
[
etjs+h

]
= IV + 2Nh,sγ(0), s ≥ Q̄. (5)

Thus, an OLS regression which can identify IV and γ(0) is

yh,s = c + β0Nh,s + εh,s, s = Q̄, . . . , S, h = 1, . . . , s. (6)

This essentially is the iid noise framework (since in this case γ(0) = ω2), where we

have assumed that the noise in Q̄-tick returns can be considered to be iid. Given the

evidence in Hansen & Lunde (2006), Q̄ can be chosen so that there is approximately

one minute between returns. The iid noise theory can then be applied to the resulting

Q̄-tick returns. As an alternative, if Q̄ is too large compared to an optimally selected S,

we recommend to use some sparse sampling (as the approximately 1 minute sampling

in Barndorff-Nielsen et al. (2008a)) and apply the OLS regression for the iid noise case

to the sparse returns.

2.3 Endogenous Noise

In order to introduce dependence between the noise and the price process, we follow

an idea in Hansen & Lunde (2006), which we develop further. In Hansen & Lunde

(2006) a possible way to generate such dependence is provided by assuming that the

noise is given by:

utj = φr∗tj + νtj , (7)

where νtj is a sequence of iid random variables with mean zero and variance ω2. We

augment this assumption as follows:

utj = φ∆
−δ/2
j r∗tj + νtj , (8)

where ∆j = tj − tj−1 and δ > 0. The reason for this augmentation is that if Equation

(7) holds, then as a direct implication of the result in Hansen & Lunde (2006) we

would have that

E
[
RV h,s(Nh,s)

]
= IV + 2φ(1 + φ)IV + 2Nh,sω

2. (9)

The resulting bias 2φ(1 + φ)IV + 2Nh,sω
2 would not disappear as the term 2Nh,sω

2

becomes negligible as we sample less and less frequently. In the volatility signature
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plots in their Figure 1, however, the RV calculated using midquotes appears to even-

tually settle to some unbiased value as the sampling frequency decreases. Therefore, it

seems more plausible that the type of dependence between the noise and the efficient

price process is what we will call “asymptotically increasing”, i.e., it becomes stronger

as ∆j becomes smaller. This is achieved by adding the term ∆
−δ/2
j in Equation (8).

Then we obtain

E
[
RV h,s(Nh,s)

]
= IV + 2φ

Nh,s∑

j=1

∆
−δ/2
j,s σ2

j,s + 2φ2

Nh,s∑

j=1

∆−δ
j,sσ

2
j,s + 2Nh,sω

2 + op(1)

where σ2
j,s =

∫ tj
tj−s

σ2
sds and ∆j,s = tj−s − tj. In order to continue, we make some

assumptions on the regularity of ∆j, namely that

HN(s) := N−δ/2
∑

j:tj≤s

∆
1−δ/2
j −→ H(s) (uniformly)

for some differentiable function H , and

N∑

j=1

tj∫

tj−1

|H ′(s) − (N∆j)
δ/2|ds = o(N−δ/2).

Then

2φ
N∑

j=1

∆
−δ/2
j σ2

j = 2φN δ/2

1∫

0

σ2
sH

′(s)ds + op(1). (10)

Similarly, assume that

GN(s) := N−δ
∑

j:tj≤s

∆1−δ
j −→ G(s) (uniformly)

for some differentiable function G, and

N∑

j=1

tj∫

tj−1

|G′(s) − (N∆j)
δ|ds = o(N−δ).

Then we have

2φ2
N∑

j=1

∆−δ
j σ2

j = 2φ2N δ

1∫

0

σ2
sG

′(s)ds + op(1). (11)

Under a regular sampling scheme for which ∆j = 1/N (implying here that G(x) =

H(x) = x) we would obtain as a direct correspondence to Equation (9):4

E
[
RV h,s(Nh,s)

]
= IV + 2φ2N δ

h,sIV + 2φN
δ/2
h,s IV + 2Nh,sω

2 + op(1). (12)

4We are indebted to Mark Podolskij for pointing to us the more general version, as it appears in

Equations (10) and (11).
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Since the parameters φ and δ are unknown and enter nonlinearly, we unfortunately

lose the possibility of OLS estimation in this case, but we can still estimate IV , δ and

ω2 by non-linear least squares. If φ < 0, then as N increases and ω2 is very small (as

found in quote data) there will be a range of values for N , for which the volatility

signature plot will be decreasing before the dominating noise term eventually kicks

in. Furthermore, we now have that as we sample less frequently (N goes to zero), the

realized volatility tends to the integrated volatility, which we would expect. In the

empirical section of the paper we estimate of equation (12) with trade and quote data.

As in the case of exogenous noise, the iid assumption on the νtj ’s can be relaxed. If

νtj conforms to Assumption 3, for example, we could simply add Nh,s(q) as regressors

in the same way as in Equation (3).

3 Simulation Evidence

In order to compare the performance of the OLS-IV estimator to other consistent

estimation techniques we run a set of simple Monte Carlo experiments. As alternative

estimation techniques, we employ the MSRV of Zhang (2006), the TSRV of Zhang

et al. (2005) and the realized kernels (RK) of Barndorff-Nielsen et al. (2008a) using

the modified Tukey-Hanning2 kernel. We employ an iid noise setup, since in this case

we have an asymptotic theory for all estimators and a theoretically founded way of

choosing an optimal number of subgrids or kernel length. The notation S is used to

denote both the number of subgrids or the number of realized autocovariances (kernel

length) in the realized kernel framework. We simulate

dp∗t = σtdWt, (13)

where Wt is a standard Brownian motion. The volatility follows a GARCH diffusion

processes: dσ2
t = θ(̟ − σ2

t )dt +
√

2λθσtdW(σ)t, where W(σ)t is a Brownian motion

independent of Wt. We use λ = 0.296, ̟ = 0.636 and θ = 0.035. The noise is iid

normal with mean zero and variance ω2 = 0.001 and we employ 5000 simulation runs.

We run three experiments, which can be summarized as follows:

1. Set N = 23400 (corresponding to 6.5 hours of second-by-second data), vary S

(the number of subgrids, or kernel length) from 2 to 50;

2. Set N = 86400 (corresponding to 24 hours of second-by-second data), vary S

(the number of subgrids, or kernel length) from 2 to 100;

3. Let N vary from 1 000 to 100 000 with a step of 1 000, for a total of 100

values. For each of the four estimators choose S in an optimal way, given the
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corresponding asymptotic theory.5

The results of the first two simulation experiments are summarized in Table 1, while

the outcome of the third Monte Carlo experiment is illustrated in Figure 1. In the

figure we plot the standard deviations, since root mean squared errors (RMSE’s) are

almost identical to the standard deviations due to the unbiasedness of all estimators,

which is evident in Table 1. All simulation experiments show that the OLS methodol-

ogy compares quite well with the other approaches. We can also conclude that there

is evidence that the OLS-IV estimator outperforms the MSRV and TSRV (at least for

sample sizes up to 100 000 observations per day), while it seems to behave similarly

to the realized kernels. Generally, this confirms our expectations that with iid noise,

the OLS-IV method provides very precise measures of ex-post integrated volatility.

It is worth emphasizing, that we have not constructed the estimator in a way to ex-

plicitly minimize the RMSE (as is the case with the MSRV and TSRV), but we have

rather been motivated by having a flexible method which easily adapts to various

noise specification. Thus, the precision we obtain in this simple scenario comes as a

nice complement to the flexibility of our estimation framework.

N = 23400 N = 86400

S∗ V (S∗) Ŝ∗ V (Ŝ∗) S∗ V (S∗) Ŝ∗ V (Ŝ∗)

St.dev.

OLS-IV 26 4.583 21 4.672 OLS-IV 60 3.421 52 3.456

MSRV 19 4.835 17 4.882 MSRV 41 3.566 35 3.651

TSRV 28 5.105 24 5.187 TSRV 71 4.081 63 4.120

RK 30 4.697 33 4.703 RK 67 3.468 69 3.469

RMSE

OLS-IV 26 4.583 21 4.673 OLS-IV 60 3.422 52 3.457

MSRV 19 4.889 17 4.932 MSRV 41 3.662 35 3.736

TSRV 28 5.132 24 5.188 TSRV 71 4.083 63 4.132

RK 30 4.697 33 4.703 RK 67 3.469 69 3.469

Table 1: Standard deviations (St.dev.) and RMSE’s for the OLS-IV, MSRV, TSRV and RK

estimators in percent of the true value of IV . S∗ denotes the number of subsamples (kernel

length) for which the corresponding minimum is achieved across the values of S considered in

the simulation, Ŝ∗ denotes the asymptotically optimal number of subsamples (kernel length),

and V (x) is the value of the statistic (St.dev. or RMSE) at x.

5In the iid noise case, the optimal S is provided explicitly for each estimator. Since it depends on

unknown quantities, such as ω2 and IQ, whose estimation could render the comparison less sharp,

we set these quantities to their true values to avoid estimation noise affecting the optimal choice of

S.
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Figure 1: Standard deviations in percent of the true value of IV across different values for

the sample size, N , ranging from 1000 to 100 000. For each N , the number of subsamples

(kernel length) is chosen optimally according to the corresponding asymptotic theory for each

estimator.

4 Empirical Analysis

In this section we apply the LS estimation framework to high-frequency data (trades

and quotes) to a set of 25 stocks traded on the NYSE for the period 01.01.2004 to

31.07.2008.6

An empirical application of the LS estimation methodology as proposed in this paper

requires a choice of Q and S. While we provide an indication of how to choose S

in Corollary 2, the choice of Q should be data-driven as it depends on the strength

of the serial dependence of the noise process. In order to analyze this dependence

we propose a graphical tool very similar to the volatility signature plots mentioned

in Section 2, which we name Q-plots. A Q-plot is a plot of the estimate of IV (the

6We are grateful to Asger Lunde for providing us with the data and refer the reader to Barndorff-

Nielsen, Hansen, Lunde & Shephard (2009) for a description of the dataset and cleaning procedures.

The ticker symbols of the stocks in our study are AA, AIG, AXP, BA, BAC, C, CAT, CVX, DD,

DIS, GE, GM, HD, IBM, JNJ, JPM, KO, MCD, MMM, MRK, PG, UTX, VZ, WMT and XOM.
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intercept) against Q from the regression in Equation 4, arising from the relation:

E
[
RV h,s(Nh,s)

]
= IV +

Nh,s∑

j=1

Var
[
etjs+h

]
= IV + 2

∞∑

q=1

Nh,s(q) (γ(0) − γ(q))

≈ IV + 2Nh,sγ(0) − 2

Q∑

q=1

Nh,s(q)γ(q).

Here we use an arbitrary large enough value of S = 50, and we note that while a

suboptimally chosen S might increase the variance of the estimator, it cannot lead to

biases. The Q-plots are a guide for the value of Q which should be chosen in practice

so that the resulting estimate of IV is (at least approximately) unbiased. If Q is

chosen too large relative to the strength of the dependence in u, then the estimate will

be unbiased but its standard error will be increased (inclusion of irrelevant regressors).

If, on the contrary, Q is chosen too small relative to the strength of the dependence

in u, then the estimate will be biased (omitted variable bias).

Figures 2 and 3 are collections of Q-plots for the 25 stocks in our study for the trade

and quote data, respectively. For comparison, we also compute the realized Parzen

kernel as recommended in Barndorff-Nielsen et al. (2009) with data sampled at ticks at

approximately Q seconds apart for Q = 1, 5, 10, 15, 20, 25, 30 (Barndorff-Nielsen et al.

(2009) recommend using all data, which corresponds in our plots to the kernel at

Q = 1). While there is not a direct correspondence between the kernel with sampling

at approximately Q seconds and the OLS-IV estimator with Q noise autocovariances,

they are closely related. As a benchmark we also report the standard realized volatility

using all data which is plotted for convenience at Q = −1.
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AA AIG AXP BA BAC

C CAT CVX DD DIS

GE GM HD IBM JNJ

JPM KO MCD MMM MRK

PG UTX VZ WMT XOM

Figure 2: Q-plots with transaction data. Plots of the estimated IV from the regression in Equation 4

against values of Q ranging from 0 to 30 (pluses). The realized volatility estimator using all available

data is plotted for comparison at −1 (square). Realized kernels with data sampled at approximately Q

seconds using the Parzen kernel are plotted for values of Q = 1, 5, 10, 15, 20, 25, 30 (triangles). All plots

are averages over the whole sample (1152 days).
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AA AIG AXP BA BAC

C CAT CVX DD DIS

GE GM HD IBM JNJ

JPM KO MCD MMM MRK

PG UTX VZ WMT XOM

Figure 3: Q-plots with midquote data. Plots of the estimated IV from the regression in Equation 4

against values of Q ranging from 0 to 30 (pluses). The realized volatility estimator using all available

data is plotted for comparison at −1 (square). Realized kernels with data sampled at approximately Q

seconds using the Parzen kernel are plotted for values of Q = 1, 5, 10, 15, 20, 25, 30 (triangles). All plots

are averages over the whole sample (1152 days).
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The first striking difference between the plots based on transaction data against the

plots based on quote data, is that both the OLS-IV estimator and the realized kernel

are considerably more stable when applied to transaction data. Furthermore, the RV

is always upward biased with trade data, while it is almost always downward biased

with midquote data. A clear message from Figure 2 is that Q = 0 is a very reasonable

choice with trade data, which is also confirmed by the close match with the realized

kernel using all data. Choosing a larger value of Q hardly changes the estimate while

it most likely increases the variance as discussed above. Thus, while noise in trade

data might not be iid, it seems that its iid component is overwhelmingly dominating

in terms of biasing the RV at very high frequencies. Fine-tuning the estimator to take

account of potential non-iid components of the noise appears redundant.

Figure 3 is more puzzling. Firstly, the simple RV estimator is almost always down-

ward biased, which is completely at odds with the exogenous noise assumption. Note,

however, that while this renders the interpretation of the βq coefficients as noise au-

tocovariances meaningless, it does not suggest that the estimated constant fails as

an estimator of IV. In fact, the OLS estimate of IV is more stable across Q than

the realized kernel estimate. Barndorff-Nielsen et al. (2009) perform an analysis of

the coherence between IV kernel estimates based on trade versus midquote data by

regressing them on each other and evaluating the fit. We perform the same analysis

for our estimator and compare the results to the kernel estimates. Scatterplots of the

data, the OLS fit and the 45◦ line for the OLS-IV estimator and the realized Parzen

kernel are plotted in figures 4 and 5, respectively. Table 2 contains descriptive statis-

tics for the coherence between the midquote-based and trade-based IV estimates for

the OLS-IV estimator and the Parzen kernel. As in Barndorff-Nielsen et al. (2009) we

find that the realized kernel provides a very good match between both estimates. The

OLS-IV estimates are not so well aligned but do agree with each other satisfactorily

for all stocks. Generally, our recommendation would be to use trade data, as it seems

to deliver clearer results both for the OLS-IV approach and the realized kernels.
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AA AIG AXP BA BAC

C CAT CVX DD DIS

GE GM HD IBM JNJ

JPM KO MCD MMM MRK

PG UTX VZ WMT XOM

Figure 4: Plots of the logarithm of the OLS-IV estimate using quote data against the one using trade

data along with the OLS fit (solid line) and the 45◦ line (dashed line). For clarity, only every tenth point

is plotted.
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AA AIG AXP BA BAC

C CAT CVX DD DIS

GE GM HD IBM JNJ

JPM KO MCD MMM MRK

PG UTX VZ WMT XOM

Figure 5: Plots of the logarithm of the Parzen kernel IV estimate using quote data against the one using

trade data along with the OLS fit (solid line) and the 45◦ line (dashed line). For clarity, only every tenth

point is plotted.
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OLS-IV Parzen kernel

Stock R2 Int. Slope Dist. R2 Int. Slope Dist.

AA 0.970 -0.007 (0.006) 1.010 (0.005) 0.170 0.990 0.027 (0.003) 0.987 (0.003) 0.096

AIG 0.990 -0.052 (0.003) 1.022 (0.003) 0.108 0.997 0.002 (0.002) 0.999 (0.002) 0.066

AXP 0.983 -0.038 (0.004) 1.015 (0.004) 0.111 0.987 -0.002 (0.003) 0.999 (0.003) 0.057

BA 0.958 -0.027 (0.004) 1.018 (0.006) 0.095 0.984 0.007 (0.002) 0.994 (0.004) 0.053

BAC 0.988 -0.033 (0.003) 1.012 (0.003) 0.070 0.997 -0.008 (0.002) 1.002 (0.002) 0.041

C 0.994 -0.025 (0.002) 1.012 (0.002) 0.064 0.998 0.004 (0.001) 1.000 (0.001) 0.042

CAT 0.961 -0.026 (0.004) 1.018 (0.006) 0.110 0.990 0.001 (0.002) 1.000 (0.003) 0.056

CVX 0.985 -0.002 (0.003) 0.994 (0.004) 0.074 0.996 0.007 (0.001) 0.996 (0.002) 0.036

DD 0.957 -0.045 (0.004) 1.003 (0.006) 0.107 0.989 0.000 (0.002) 0.998 (0.003) 0.050

DIS 0.962 -0.062 (0.004) 1.031 (0.006) 0.091 0.988 0.003 (0.002) 1.005 (0.003) 0.047

GE 0.987 -0.004 (0.002) 1.017 (0.003) 0.038 0.996 0.010 (0.001) 0.999 (0.002) 0.026

GM 0.987 -0.016 (0.005) 1.006 (0.003) 0.235 0.996 0.015 (0.003) 0.995 (0.002) 0.158

HD 0.980 -0.027 (0.004) 1.025 (0.004) 0.116 0.986 0.006 (0.003) 0.994 (0.004) 0.062

IBM 0.974 -0.034 (0.003) 1.009 (0.005) 0.061 0.991 0.000 (0.002) 1.004 (0.003) 0.034

JNJ 0.968 -0.032 (0.004) 1.036 (0.006) 0.041 0.988 0.010 (0.003) 1.012 (0.003) 0.022

JPM 0.991 -0.028 (0.003) 1.018 (0.003) 0.080 0.997 -0.001 (0.002) 1.002 (0.002) 0.050

KO 0.964 -0.048 (0.004) 1.017 (0.006) 0.051 0.988 0.007 (0.002) 1.003 (0.003) 0.028

MCD 0.956 -0.007 (0.004) 1.007 (0.006) 0.089 0.987 0.016 (0.002) 0.999 (0.003) 0.049

MMM 0.950 -0.051 (0.004) 1.004 (0.007) 0.081 0.985 -0.002 (0.002) 1.005 (0.004) 0.042

MRK 0.974 -0.029 (0.004) 1.017 (0.005) 0.122 0.991 0.003 (0.002) 1.009 (0.003) 0.075

PG 0.960 -0.025 (0.004) 1.000 (0.006) 0.049 0.988 0.009 (0.002) 0.999 (0.003) 0.027

UTX 0.945 -0.077 (0.004) 1.029 (0.007) 0.095 0.983 -0.010 (0.002) 1.009 (0.004) 0.047

VZ 0.972 -0.043 (0.003) 1.024 (0.005) 0.082 0.991 0.007 (0.002) 1.000 (0.003) 0.046

WMT 0.981 -0.019 (0.002) 1.026 (0.004) 0.057 0.994 0.005 (0.001) 1.000 (0.002) 0.030

XOM 0.989 -0.015 (0.002) 1.006 (0.003) 0.050 0.989 0.006 (0.002) 0.992 (0.003) 0.031

Table 2: Descriptive statistics for the coherence of the OLS-IV (left panel) and Parzen kernel

(right panel) estimates using midquote and trade data. “R2” is the R2 of the a regression of log

estimates based on trade data on log estimates based on midquotes. “Int.” and“Slope”refer to the

intercept and slope coefficients of this regression with standard errors in brackets. “Dist.” is the av-

erage distance of the fit from the 45 ◦ line given by 1
D

∑D

d=1

√
(ÎV T,d − ÎV d)2 + (ÎV Q,d − ÎV d)2,

where ÎV T,d and ÎV Q,d are the IV estimates using trade and midquote data, respectively, ÎV d is

their average on day d and D = 1152 is the total number of days in the sample.

Another interesting quantity of interest in the regressions we suggest is the coefficient

β0 which under the assumption of exogenous noise is an estimator of 2γ0 ≡ 2ω2. If

noise is iid, then a plot of β0 against Q should remain flat, as it will be unbiased for all

Q. If, for example, the noise follows an MA(Q̃) process, then the estimate of β0 will

be biased in all regressions for which Q < Q̃, due to omission of relevant variables.

Figures 6 and 7 are collections of plots of β̂0/2 against Q for the 25 stocks in our study

for the trade and quote data, respectively.
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AA AIG AXP BA BAC

C CAT CVX DD DIS

GE GM HD IBM JNJ

JPM KO MCD MMM MRK

PG UTX VZ WMT XOM

Figure 6: Plots of β̂0/2 from the regression in Equation 4 against values of Q ranging from 0 to

30 using transaction data. The dashed line is at zero for each plot. All plots are averages over the

whole sample (1152 days).
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AA AIG AXP BA BAC

C CAT CVX DD DIS

GE GM HD IBM JNJ

JPM KO MCD MMM MRK

PG UTX VZ WMT XOM

Figure 7: Plots of β̂0/2 from the regression in Equation 4 against values of Q ranging from 0 to 30

using midquote data. The dashed line is at zero for each plot. All plots are averages over the whole

sample (1152 days).
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From the plots it is evident that noise does not seem to be iid, and not even ex-

ogenous for the case of midquotes, where the estimates are consistently negative for

many of the stocks. This is in fact not surprising given that with midquote data the

RV is downward biased as we saw in Figure 3. Given these results we refrain from

interpreting the plots using midquote data. The plots with transaction data reveal

that the iid assumption is an oversimplification, as the estimate of ω2 is increasing in

Q. In particular for smaller values of Q, β̂0 is downward biased. From the theory of

omitted variables, we know that the bias is determined by the sign of the correlation

of the omitted variable with the included variable and the sign of the coefficient on

the omitted variable. Given that the regressor related to β0, Nh,s, is positively related

to the regressors Nh,s(q) (the more observations there are, the more counts there will

be for each q), and the omitted variables have coefficients −2γ(q), we conclude that

γ(q) is positive. While this seems to be the general pattern, for some of the stocks we

observe a downward slope of the plot for small values of Q, indicating that for γ(q)

could also be negative for small q.

Comparing the Q-plots for the integrated variance against the Q-plots for ω2 (Figures

2 and 6), there seems to be a contradiction: IV is largely unaffected by increasing

Q beyond 0, while ω2 is rather sensitive. We provide two explanations to resolve

this issue: firstly, we argue that magnitude plays a role. While ω2 is of the same

order of magnitude as the autocovariances γ(q), the integrated variance is of much

larger magnitude; typically the ratio IV/ω2 is larger than 104. The fact that MMS

noise is “small” has been documented in a very comprehensive empirical study by

Hansen & Lunde (2006). Interestingly, Barndorff-Nielsen et al. (2008a) have a section

dedicated to local-to-0 ω2 asymptotics, where they look at the case ω2 = ω2
0N

−α for

some 0 ≤ α < 1 and a constant ω2
0. Secondly, which is a more compelling theoretical

argument, omitted variable bias can be decomposed as the product of the coefficients

of the regression of the omitted variables on the included variables and the coefficients

on the omitted variables. Let us consider what happens when we move from Q = 0

to Q = 1. The biases of ĉ and β̂0 then depend on the coefficients of the regression of

Nh,s(1) (the omitted variable) on a constant and Nh,s (the included variables). The

intercept of this regression will in population be zero, as for Nh,s = 0, any Nh,s(q),

q > 0 will necessarily be zero as well, while the slope coefficient will be positive, since

as mentioned above Nh,s, is positively related to the regressors Nh,s(q). Thus, there

is a strong theoretical reason why the estimate of ω2 is biased, while the estimate of

integrated variance, ĉ, is not. This type of argument naturally carries over for any

Q > 0.
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In order to analyze the endogeneity of MMS noise as described in Section 2.3 we

employ non-linear least squares to estimate a regression of the form

RV h,s(Nh,s) = c + β0Nh,s + φN δ
h,s + εh,s. (14)

which corresponds to Equation (12), where we do not impose the parameter restric-

tions implied in the equation and include only the leading non-linear term in Nh,s.

The parameters of interest here are in particular φ and δ, since these two parameters

characterize the relationship between the noise process u and the efficient price p∗. In

tables 3 and 4 we present summarized results for the parameter estimates of the above

regressions for trade and quote data, respectively. For each coefficient we report the

5%-, median and 95%-quantile across the days in the sample. The 5%- to 95%-quantile

range can be seen as a kind of 90% confidence interval under the assumption that the

corresponding parameter is constant across days. While for c ≡ IV and β0 ≡ 2ω2 this

does not seem a reasonable assumption, there is substantial evidence that φ and δ are

quite stable across days and in fact also across stocks. One of the main findings is that

the so-constructed confidence intervals for φ always contain zero, both for trades and

quotes, and for all stocks which is an indication that we do not find endogeneity of

the form we have assumed in Equation (8). It should be emphasized that we are not

ruling out endogeneity, but rather that we are unable to confirm that it is generated

as the model would suggest.
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Parameter c ω2 φ δ

Quantile 0.05 0.5 0.95 0.05 0.5 0.95 0.05 0.5 0.95 0.05 0.5 0.95

AA 0.95 2.50 10.16 -1.96 1.61 7.92 -0.46 -0.02 0.29 0.22 0.38 0.95

AIG 0.28 1.06 9.30 -1.49 0.39 2.59 -0.04 -0.01 0.29 0.22 0.33 0.66

AXP 0.28 1.00 8.46 -2.49 0.47 3.22 -0.04 -0.01 0.38 0.23 0.34 0.81

BA 0.51 1.26 3.99 -1.27 0.46 3.20 -0.04 -0.01 0.04 0.24 0.35 0.66

BAC 0.24 0.81 9.05 -0.33 0.55 2.53 -0.03 -0.01 0.04 0.21 0.32 0.72

C 0.37 1.00 11.30 -0.35 0.53 4.19 -0.03 -0.01 0.26 0.20 0.33 0.98

CAT 0.74 1.71 5.28 -1.92 0.61 4.83 -0.15 -0.02 0.04 0.25 0.40 0.72

CVX 0.55 1.62 5.10 -2.01 0.46 3.78 -0.05 -0.01 0.10 0.26 0.41 0.89

DD 0.49 1.30 4.41 -1.53 0.73 3.65 -0.04 -0.02 0.04 0.23 0.36 0.68

DIS 0.46 1.13 3.40 -0.53 1.29 3.22 -0.04 -0.01 0.04 0.21 0.32 0.61

GE 0.34 0.80 3.29 0.30 1.09 1.78 -0.03 -0.02 0.03 0.22 0.31 0.55

GM 0.80 3.96 20.28 -2.08 2.38 81.78 -1.23 -0.02 0.56 0.19 0.38 0.99

HD 0.62 1.59 7.68 -0.64 1.01 4.16 -0.12 -0.02 0.04 0.21 0.33 0.68

IBM 0.35 0.95 3.12 -0.66 0.32 1.42 -0.03 -0.01 0.03 0.24 0.33 0.61

JNJ 0.16 0.57 1.41 -0.02 0.41 0.81 -0.03 0.00 0.03 0.22 0.31 0.48

JPM 0.29 1.07 10.80 -1.85 0.73 2.22 -0.04 -0.01 0.50 0.21 0.32 0.65

KO 0.21 0.65 1.84 -0.13 0.68 1.17 -0.03 0.01 0.04 0.20 0.29 0.50

MCD 0.44 1.21 3.81 -0.67 0.98 3.75 -0.04 -0.02 0.03 0.22 0.35 0.65

MMM 0.36 1.04 3.04 -1.28 0.38 2.65 -0.04 -0.01 0.03 0.25 0.35 0.66

MRK 0.51 1.44 5.05 -0.75 0.99 4.24 -0.04 -0.02 0.03 0.23 0.35 0.67

PG 0.28 0.71 1.97 -0.52 0.42 1.44 -0.03 -0.01 0.03 0.24 0.33 0.59

UTX 0.35 1.07 2.89 -1.96 0.41 1.69 -0.03 0.01 0.04 0.23 0.34 0.63

VZ 0.33 1.15 4.02 -0.46 0.98 2.55 -0.04 -0.01 0.04 0.22 0.32 0.62

WMT 0.43 1.09 3.58 -0.25 0.65 2.18 -0.03 -0.02 0.03 0.21 0.33 0.62

XOM 0.44 1.42 4.37 -2.10 0.35 3.43 -0.03 -0.01 0.20 0.27 0.43 0.97

Table 3: Estimation results for the parameters in Equation 14 with transaction data. The estimates

of ω2 are scaled by 104. For each parameter we report the 5%, median and 95% quantile of the

distribution across days for the full sample of 1152 days.
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Parameter c ω2 φ δ

Quantile 0.05 0.5 0.95 0.05 0.5 0.95 0.05 0.5 0.95 0.05 0.5 0.95

AA 0.82 2.22 8.56 -1.26 0.07 1.41 -0.20 -0.01 0.58 0.21 0.37 0.68

AIG 0.33 1.13 9.97 -1.15 0.01 1.14 -0.03 -0.01 0.22 0.22 0.35 0.65

AXP 0.27 0.96 7.99 -1.59 0.01 0.72 -0.02 -0.01 0.66 0.21 0.34 0.62

BA 0.55 1.31 4.01 -0.59 0.03 1.00 -0.02 -0.01 0.02 0.29 0.37 0.61

BAC 0.22 0.76 9.02 -0.69 0.00 0.75 -0.02 0.00 0.02 0.23 0.34 0.67

C 0.35 1.03 12.00 -0.93 0.02 23.91 -0.02 -0.01 0.19 0.22 0.35 0.99

CAT 0.69 1.67 4.94 -1.07 0.06 1.35 -0.09 -0.01 0.22 0.24 0.39 0.63

CVX 0.39 1.54 4.89 -1.10 0.03 1.01 -0.17 -0.01 0.47 0.22 0.38 0.62

DD 0.40 1.27 4.18 -1.05 0.03 0.94 -0.02 -0.01 0.26 0.25 0.36 0.60

DIS 0.45 1.13 3.33 -0.65 -0.01 0.46 -0.02 0.01 0.02 0.24 0.35 0.58

GE 0.28 0.73 3.29 -0.36 0.00 0.13 -0.02 0.00 0.02 0.22 0.34 0.51

GM 0.82 3.52 21.04 -1.99 0.11 40.14 -0.81 -0.01 0.63 0.20 0.37 0.99

HD 0.61 1.59 6.44 -0.92 0.03 0.96 -0.03 -0.01 0.24 0.24 0.36 0.61

IBM 0.39 1.00 3.25 -0.52 0.00 0.58 -0.02 0.00 0.02 0.27 0.35 0.59

JNJ 0.17 0.58 1.38 -0.23 -0.01 0.09 -0.02 0.00 0.02 0.24 0.34 0.47

JPM 0.31 1.07 11.05 -1.25 0.00 0.65 -0.02 0.00 0.43 0.21 0.35 0.64

KO 0.26 0.67 1.93 -0.33 -0.01 0.12 -0.02 0.00 0.02 0.29 0.34 0.48

MCD 0.38 1.11 3.48 -0.69 0.03 0.78 -0.02 0.00 0.02 0.26 0.35 0.57

MMM 0.36 1.06 2.96 -0.68 0.03 0.98 -0.02 -0.01 0.02 0.29 0.37 0.60

MRK 0.53 1.39 4.80 -0.76 0.00 0.83 -0.02 0.00 0.03 0.23 0.35 0.61

PG 0.26 0.71 2.01 -0.51 0.01 0.26 -0.02 0.00 0.02 0.26 0.35 0.54

UTX 0.35 1.11 2.88 -0.94 -0.02 0.77 -0.02 0.00 0.18 0.27 0.36 0.59

VZ 0.34 1.13 4.13 -0.71 0.00 0.50 -0.02 0.00 0.03 0.25 0.35 0.57

WMT 0.45 1.03 3.45 -0.60 0.02 0.33 -0.02 0.00 0.02 0.24 0.35 0.57

XOM 0.17 1.36 4.71 -1.06 0.01 0.95 -0.07 -0.01 0.45 0.23 0.39 0.67

Table 4: Estimation results for the parameters in Equation 14 with midquote data. The estimates

of ω2 are scaled by 104. For each parameter we report the 5%, median and 95% quantile of the

distribution across days for the full sample of 1152 days.

While we did not expect to find strong endogeneity effects in the trade data, for

which the bid-ask bounce dominates as a noise component, it is somewhat surprising

to see that midquote data does not exhibit these effects either. We would like to put

forward an alternative explanation for the behavior of midquotes, which we believe can

be attributed to sluggish adjustment of the either or both of the bid and ask prices.

A model in these lines is Lo & MacKinlay (1990) who show that sluggish information

assimilation can lead to spurious autocorrelation in observed returns.

On the NYSE there are certain institutional features that can lead to sluggish ad-

justment of bid and ask quotes. In particular, NYSE Rule 104.10(1) states that the

“maintenance of a fair and orderly market implies the maintenance of price continu-

ity with reasonable depth, and the minimizing of the effects of temporary disparity
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between supply and demand”. Furthermore, NYSE Rule 104.10(2) states that “it is

commonly desirable that a member acting as a specialist engage to a reasonable degree

under existing circumstances in dealing for his own account when lack of price conti-

nuity, lack of depth, or disparity between supply and demand exists or is reasonably

to be anticipated”.

We illustrate the effect of sluggish quote adjustment on realized volatility by a simple

example. Consider a case in which the fundamental price, p∗ moves upward by one

cent between two ticks. Assume that the ask price adjusts immediately (by exactly

the same amount) due to immediate buying pressure, while the bid only adjust some

time (say a tick) later. This is rather plausible, as it usually takes some time for

the liquidity suppliers (limit order submissions or specialist posting a new quote) to

post a competitive quote on the other side of the market. In general we often observe

quote updates where only one of the bid or ask prices change. In our example, the

move of 1 cent will be realized as two midquote moves of half a cent. Thus the

realized variance of the midquote moves will be 2 · 0.52 = 0.5 which is only half of the

contribution to the variance of the efficient price. In a more general model where ask

and bid prices are allowed to adjust slowly to new information, one can expect that

by sampling more and more frequently one would capture more and more of these

fragmented midquote moves which will underestimate the variation of the true price

process. This can naturally lead to the observed downward sloping volatility signature

plots generated with midquote data. We believe that a model of sluggish adjustment

of bid and ask prices can potentially be very interesting and informative about the

behavior of midquotes but we do not pursue a formal analysis here.

5 Conclusion

In the present paper, we propose a flexible way of estimating the integrated volatility of

noisy stochastic volatility martingales and analyze the dependence structure between

efficient prices and market microstructure noise. We show that in the case of iid noise,

the least-squares approach we propose has good statistical properties and compares

very well to other existing consistent estimators of IV.

Besides the simple and straightforward way of implementing our estimator within a

Least Squares framework, we argue that the value added of our approach is its flexibil-

ity of adapting to various noise dependence structures and its ability to simultaneously

estimate second moments of the noise process as well as possible correlation between

the process and the efficient return process.
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The Monte Carlo studies we carry out confirm the statistical precision of our approach,

while its ability to explain empirically relevant price-noise relationships is deferred for

later study.
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A Appendix: Proofs

A.1 Preliminaries

Under Assumptions 1 and 2, we have that

E
[
RV h,s(Nh,s)

]
= IV + 2Nh,sω

2,

and hence we have the regression

yh,s = c + β0Nh,s + εh,s, s = 1, . . . S, h = 1, . . . , s,

where yh,s = RV h,s(Nh,s) and the total number of observations in the regression is Ntot =

S(S + 1)/2. Set Nh,s = Ns as Nh,s ≈ N
s , s = 1, . . . , S up to a rounding error. The above

regression can be written in a matrix form as

Y = Xθ + ε,

where θ = (c, β0)
′. From now on, we condition on the trading times tj , j = 1, . . . , N , which

is equivalent to conditioning on the regressor matrix X.

Set Var [ε] = Ξ = Ξ(N,S) (we will usually suppress the dependence on N and S). Hansen

& Lunde (2006) (Equation 2) show that

Var [yh,s] = Var [εh,s] = 12κω4Ns + 8ω2

1∫

0

σ2
sds − (6κ − 2)ω4 +

2

Ns

1∫

0

σ4
sds + o

(
1

Ns

)
, (15)

which is a diagonal element of Ξ. Denoting the OLS estimator θ̂ = (ĉ, β̂0)
′ we have that

Var[θ̂] = (X ′X)−1X ′ΞX(X ′X)−1.

Denote by X1 the first row of (X ′X)−1X ′. Then

Var[ĉ] = X1ΞX ′
1.

A.2 Auxiliary Lemma

Lemma 1. It holds that

Cov[RV h,s(Nh,s), RV h′,s′(Nh′,s′)] =






2IQ min(s,r)
N , if (⋆)

2IQ min(s,r)
N + 4ω2

∫
O σ2

sds + Nω4(12κ−4)
lcm(s,r) , otherwise

,

where (⋆) : {tjs+h}j=1,...,Nh,s

⋂
{tis′+h′}i=1,...,Nh′,s′

= ∅ and the set O is defined in the fol-

lowing proof. lcm(s, r) stands for the least common multiplier of s and r.7

7It holds that max(s, r) ≤ lcm(s, r) ≤ sr. For coprime s and r, lcm(s, r) = sr.
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Proof. Write the covariance Cov[RV h,s(Nh,s), RV h′,s′(Nh′,s′)] explicitly as

Cov[RV h,s(Nh,s), RV h′,s′(Nh′,s′)] = Cov




Nh,s∑

j=1

r2
tjs+h

,

Nh′,s′∑

i=1

r2
tis′+h′



 .

This expression can be decomposed as

Cov




Nh,s∑

j=1

r
2
tjs+h

,

N
h′,s′∑

i=1

r
2
t
is′+h′




= Cov




Nh,s∑

j=1

r
∗2
tjs+h

,

N
h′,s′∑

i=1

r
∗2
t
is′+h′


 + 2 Cov




Nh,s∑

j=1

r
∗2
tjs+h

,

N
h′,s′∑

i=1

r
∗

t
is′+h′

et
is′+h′


 + Cov




Nh,s∑

j=1

r
∗2
tjs+h

,

N
h′,s′∑

i=1

e
2
t
is′+h′




+ 2 Cov




Nh,s∑

j=1

r
∗

tjs+h
etjs+h

,

N
h′,s′∑

i=1

r
∗2
t
is′+h′


 + 4 Cov




Nh,s∑

j=1

r
∗

tjs+h
etjs+h

,

N
h′,s′∑

i=1

r
∗

t
is′+h′

et
is′+h′


 + 2 Cov




Nh,s∑

j=1

r
∗

tjs+h
etjs+h

,

N
h′,s′∑

i=1

e
2
t
is′+h′




+ Cov




Nh,s∑

j=1

e
2
tjs+h

,

N
h′,s′∑

i=1

r
∗2
t
is′+h′


 + 2 Cov




Nh,s∑

j=1

e
2
tjs+h

,

N
h′,s′∑

i=1

r
∗

t
is′+h′

et
is′+h′


 + Cov




Nh,s∑

j=1

e
2
tjs+h

,

N
h′,s′∑

i=1

e
2
t
is′+h′




= Cov




Nh,s∑

j=1

r
∗2
tjs+h

,

N
h′,s′∑

i=1

r
∗2
t
is′+h′


 + 4 Cov




Nh,s∑

j=1

r
∗

tjs+h
etjs+h

,

N
h′,s′∑

i=1

r
∗

t
is′+h′

et
is′+h′


 + Cov




Nh,s∑

j=1

e
2
tjs+h

,

N
h′,s′∑

i=1

e
2
t
is′+h′


 ,

where the last equation follows because all other terms are zero. Consider the first term,

which is the covariance between two estimators for IV. Using Lemma 2.1 in Hausman (1978)

it follows that the covariance between them is equal to the variance of the more efficient

one, i.e.,

Cov




Nh,s∑

j=1

r∗2tjs+h
,

Nh′,s′∑

i=1

r∗2tis′+h′



 =





Var

[∑Nh,s

j=1 r∗2tjs+h

]
, if Nh,s ≥ Nh′,s′

Var
[ ∑Nh′,s′

i=1 r∗2tis′+h′

]
, otherwise.

=
2

max(Nh,s, Nh′,s′)

1∫

0

σ4
sds =

c∗ min(s, r)

N

The second term vanishes if {tjs+h}j=1,...,Nh,s

⋂{tis′+h′}i=1,...,Nh′,s′
= ∅, since then the sum-

mands are uncorrelated. In the remaining cases we have {tjs+h}j=1,...,Nh,s

⋂{tis′+h′}i=1,...,Nh′,s′
=

A, which is a set with N
lcm(s,r) elements. For {{{tjs+h} ∈ A}⋃{{tis′+h′} ∈ A}}, de-

note t∗ = max(t(j−1)s+h, t(i−1)s′+h′) and t∗ = min(tjs+h, tis′+h′), where the dependence on

i, j, s, h, s′, h′ is deliberately suppressed. Since etjs+h
= ut(j−1)s+h

− utjs+h
, we have that for

each individual summand in the second term, there are 3 possibilities:

Cov
[
r∗tjs+h

etjs+h
, r∗tis′+h′

etis′+h′

]
=






0, if tjs+h 6= tis′+h′ and t(j−1)s+h 6= t(i−1)s′+h′

ω2
∫ tjs+h

t∗
σ2

sds, if tjs+h = tis′+h′

ω2
∫ t∗

t(j−1)s+h
σ2

sds, if t(j−1)s+h = t(i−1)s′+h′

.

It follows that

4 Cov




Nh,s∑

j=1

r∗tjs+h
etjs+h

,

Nh′,s′∑

i=1

r∗tis′+h′
etis′+h′



 = 4ω2
∑

A




tjs+h∫

t∗

σ2
sds +

t∗∫

t(j−1)s+h

σ2
sds




= 4ω2
∑

A




t∗∫

t∗

σ2
sds



 = 4ω2

∫

O

σ2
sds,
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where O =
⋃

tjs+h∈A,tis′+h′∈A[t∗, t
∗]. Since the set A has N

lcm(s,r) elements and each of the

integrals
∫ t∗
t∗ σ2

sds is of order O
(

1
max(Nh,s,Nh′,s′)

)
and 1

max(Nh,s,Nh′,s′ )
= min(r,s)

N , it follows that
∫
O σ2

sds is of order O
(

min(s,r)
lcm(s,r)

)
.

The third term is also zero whenever {tjs+h}j=1,...,Nh,s

⋂{tis′+h′}i=1,...,Nh′,s′
= ∅. In the

remaining cases we have that for each j, i : tjs+h ∈ A, tis′+h′ ∈ A there are four correlated

pairs of noise terms, e.g., if tjs+h = tis′+h′ , then the following four pairs are correlated:

e2
tjs+h

, e2
tis′+h′

; e2
t(j−1)s+h

, e2
tis′+h′

; e2
tjs+h

, e2
t(i−1)s′+h′

and e2
t(j−1)s+h

, e2
t(i−1)s′+h′

. Take, for example,

the first pair and consider its covariance:

Cov
[
e2
tjs+h

, e2
tis′+h′

]
= E

[
e2
tjs+h

e2
tis′+h′

]
− E

[
e2
tjs+h

]
E
[
e2
tis′+h′

]

= E
[
u2

tjs+h
u2

tis′+h′

]
+ E

[
u2

t(j−1)s+h
u2

tis′+h′

]
+ E

[
u2

tjs+h
u2

t(i−1)s′+h′

]

+ E
[
u2

t(j−1)s+h
u2

t(i−1)s′+h′

]
− E

[
e2
t(js+h

]
E
[
e2
tis′+h′

]

= µ4 + 3ω4 − 4ω4 = µ4 − ω4 = (3κ − 1)ω4.

The remaining three pairs can be similarly shown to have the same covariance. Thus it

follows

Cov




Nh,s∑

j=1

e2
tjs+h

,

Nh′,s′∑

i=1

e2
tis′+h′



 =
Nω4(12κ − 4)

lcm(s, r)
.

A.3 Proof of Theorem 1

Calculating X1

We have

X ′X =




Ntot
∑
s,h

Ns

∑
s,h

Ns
∑
s,h

N2
s


 ,

and in the following we suppress the double summation indices s, h when unambiguous.

Then

det(X ′X) = Ntot

∑
N2

s −
(∑

Ns

)2
,

and

(X ′X)−1 =
1

det(X ′X)

( ∑
N2

s −∑Ns

−∑Ns Ntot

)
.

The first row of (X ′X)−1 is
( ∑

N2
s

Ntot

∑
N2

s −(
∑

Ns)
2 −

∑
Ns

Ntot

∑
N2

s−(
∑

Ns)
2

)
.
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Set

A =
1

NtotB − C2
, with B =

∑
N2

s and C =
∑

Ns.

We then have:

X1 =




AB − ACN1

AB − ACN2

AB − ACN2

}
2 times

...

AB − ACNS

...

AB − ACNS





S times




′

.

Calculating Var[ĉ]

Given the block structure of X1 and Ξ, we can write

X1ΞX ′
1 =

S∑

s=1

S∑

r=1

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij .

where ξ
(s,r)
ij is the ij element in the (s, r)-block of Ξ. Let us look at the terms A, B and C.

For B we have

lim
S→∞

B = lim
S→∞

∑
N2

s = lim
S→∞

S∑

s=1

s∑

h=1

N2
s = lim

S→∞

S∑

s=1

sN2
s = N2 lim

S→∞

S∑

s=1

1

s
= N2 lim

S→∞
(ln(S) + γ0)

with γ0 the Euler-Mascheroni constant. Similarly, we can derive C = NS. It follows that

lim
S→∞

A = lim
S→∞

1
S(S+1)

2 N2(ln(S) + γ0) − N2S2

= lim
S→∞

2

N2(S2 ln(S) + S2(γ0 − 2) + S ln(S) + Sγ0)

The expression

Var[ĉ] = X1ΞX ′
1 =

S∑

s=1

S∑

r=1

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij

can be decomposed as

S∑

s=1

S∑

r=1

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij

=

S∑

s=1

s∑

i=1

s∑

j=1

(
X

(s)
1

)2
ξ
(s,s)
ij +

S∑

s=1

S∑

r 6=s

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij

=
S∑

s=1

s∑

i=1

(
X

(s)
1

)2
ξ
(s,s)
ii +

S∑

s=1

s∑

i=1

s∑

j 6=i

(
X

(s)
1

)2
ξ
(s,s)
ij +

S∑

s=1

S∑

r 6=s

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij
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The Term
∑S

s=1

∑s
i=1

(
X

(s)
1

)2

ξ
(s,s)
ii

Since X
(s)
1 does not depend on i we have

S∑

s=1

s∑

i=1

(
X

(s)
1

)2
ξ
(s,s)
ii =

S∑

s=1

(
X

(s)
1

)2
s∑

i=1

ξ
(s,s)
ii

We have that (ignoring the o
(

1
Ns

)
term)

ξ
(s,s)
ii = aNs + b︸ ︷︷ ︸

noise error

+
c

Ns︸︷︷︸
discretization error

,

where by comparing to Equation (15) we see that

a = 12κω4, b = 8ω2

1∫

0

σ2
sds − (6κ − 2)ω4, c = 2

1∫

0

σ4
sds

The inner sum is

s∑

i=1

ξ
(s,s)
ii =

s∑

i=1

(
a
N

s
+ b +

cs

N

)
= aN + bs +

cs2

N
.

Further

(
X

(s)
1

)2
=

(
AB − AC

N

s

)2

= A2B2 − 2A2BC
N

s
+ A2C2N2

s2

Finally, we have

S∑

s=1

s∑

i=1

(
X

(s)
1

)2
ξ
(s,s)
ii =

S∑

s=1

(
aN + bs +

cs2

N

)(
A2B2 − 2A2BC

N

s
+ A2C2 N2

s2

)
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Since

S∑

s=1

s2 =
1

6
(2S3 + 3S2 + S)

S∑

s=1

s =
1

2
(S2 + S)

lim
S→∞

(
S∑

s=1

1

s
− ln(S)

)
= γ0

lim
S→∞

(
S∑

s=1

1

s2
− π2

6

)
= 0

A2B2 ∈ O

(
1

S4

)

A2BC ∈ O

(
1

NS3 ln(S)

)

A2C2 ∈ O

(
1

N2S2(ln(S))2

)
,

we obtain that as S → ∞ and N → ∞,
∑S

s=1

∑s
i=1

(
X

(s)
1

)2
ξ
(s,s)
ii is dominated by

2π2aN
3(S(ln(S)+γ0)+(ln(S)+γ0)−2S)2

which is of order O
(

N
S2(ln(S))2

)
.

The Term
∑S

s=1

∑s
i=1

∑s
j 6=i

(
X

(s)
1

)2

ξ
(s,s)
ij

For this term we need the covariance between two realized variances computed at the same

sampling frequency (within an (s, s)-block) but with non-overlapping grids. As we are

working under an i.i.d. noise framework, this covariance is not affected by the noise. Using

the same arguments as Barndorff-Nielsen & Shephard (2002), it follows that this covariance

is equal to

ξ
(s,s)
ij = Cov

[
RV h(Ns), RV h′

(Ns)
]

=
2

Ns

1∫

0

σ4
sds + o

(
1

Ns

)
=

c

Ns
+ o

(
1

Ns

)
, h, h′ = s.

Then we have

S∑

s=1

s∑

i=1

s∑

j 6=i

(
X

(s)
1

)2
ξ
(s,s)
ij =

S∑

s=1

(
X

(s)
1

)2
s∑

i=1

s∑

j 6=i

cs

N
=

S∑

s=1

(
X

(s)
1

)2 s2(s − 1)c

N
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Substituting in
(
X

(s)
1

)2
yields

S∑

s=1

(
X

(s)
1

)2 s2(s − 1)c

N
=

S∑

s=1

(
A2B2 − 2A2BC

N

s
+ A2C2 N2

s2

)
s2(s − 1)c

N

=

S∑

s=1

cA2B2 s2(s − 1)

N
− 2cA2BCs(s − 1) + cA2C2N(s − 1).

This sum is of order O
(

1
N

)
and thus negligible.

The Term
∑S

s=1

∑S
r 6=s

∑s
i=1

∑r
j=1 X

(s)
1 X

(r)
1 ξ

(s,r)
ij

For this term we use Lemma 1. The covariance ξ
(s,r)
ij is affected by whether the numbers

s and r are coprime or not. Consider first the case (I) when s and r are coprime. This

implies that the number of common observations in an s-subgrid and r-subgrid is N
sr for all

s-subgrids and r-subgrids. From Lemma 1, it follows that in this case the covariance ξ
(s,r)
ij

can be written as

ξ
(s,r)
ij = a∗

N

sr
+ b∗

∫

O

σ2
sds +

c∗ min(s, r)

N
,

where

a∗ = 12κω4 − 4ω4, b∗ = 4ω2, c∗ = 2

1∫

0

σ4
sds.

There are two main differences to be mentioned with respect to a diagonal element ξ
(s,s)
ii .

First a and a∗ are slightly different, but this is just a technical result. More subtly, we have

a term 4ω2
∫
O σ2

sds of order O
(

1
max(s,r)

)
which looks similar to b, but unlike it, is decreasing

in s and r.

In the second case (II) s and r are not coprime. In such an (s, r)-block there are two

possibilities: (II.1) in lcm(s, r) out of the sr elements in the block, the number of common

points on both subgrids is N
lcm(s,r) , (II.2) in the remaining sr − lcm(s, r) cases the subgrids

do not share observations. In case (II.1) we have

ξ
(s,r)
ij = a∗

N

lcm(s, r)
+ b∗

∫

O

σ2
sds +

c∗ min(s, r)

N
,

while in case (II.2) it holds that

ξ
(s,r)
ij =

c∗ min(s, r)

N
.
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As in all cases (I, II.1 and II.2), ξ
(s,r)
ij does not depend on i and j and because for coprime

s and r, lcm(s, r) = sr, we can write in general that

s∑

i=1

r∑

j=1

ξ
(s,r)
ij =



a∗
N

lcm(s, r)
+ b∗

∫

O

σ2
sds +

c∗ min(s, r)

N



 lcm(s, r) +
c∗ min(s, r)

N
(sr − lcm(s, r))

= a∗N + b∗
∫

O

σ2
sds lcm(s, r) +

c∗sr min(s, r)

N

≈ a∗N + b∗ min(s, r) +
c∗sr min(s, r)

N

where the last approximation is employed for operational reasons in the sense that
∫
O σ2

sds

term is of order O
(

min(s,r)
lcm(s,r)

)
(and as we show in the sequel, terms involving b∗ are asymp-

totically negligible). As the matrix Ξ is diagonal we express

S∑

s=1

S∑

r 6=s

X
(s)
1 X

(r)
1

s∑

i=1

r∑

j=1

ξ
(s,r)
ij = 2

S∑

s=1

S∑

r>s

X
(s)
1 X

(r)
1

s∑

i=1

r∑

j=1

ξ
(s,r)
ij .

Substituting in the above derived equation for
∑s

i=1

∑r
j=1 ξ

(s,r)
ij , X

(s)
1 and X

(r)
1 results in

2

S∑

s=1

S∑

r>s

X
(s)
1 X

(r)
1

s∑

i=1

r∑

j=1

ξ
(s,r)
ij = 2

S∑

s=1

S∑

r>s

A2

(
B − C

N

s

)(
B − C

N

r

)(
a∗N + b∗s +

c∗s2r

N

)

= 2

(
S(S − 1)

2
a∗A2B2N + b∗A2B2

S∑

s=1

S∑

r>s

s +
c∗A2B2

N

S∑

s=1

S∑

r>s

s2r

− a∗A2BCN2
S∑

s=1

S∑

r>s

(
1

r
+

1

s

)
− b∗A2BCN

S∑

s=1

S∑

r>s

(
1 +

s

r

)
− c∗A2BC

S∑

s=1

S∑

r>s

(
s2 + sr

)

+a∗A2C2N3
S∑

s=1

S∑

r>s

1

rs
+ b∗A2C2N2

S∑

s=1

S∑

r>s

1

r
+ c∗A2C2N

S∑

s=1

S∑

r>s

s

)
.

We first show that the terms involving b∗ are asymptotically negligible. This can be

confirmed by considering that
∑S

s=1

∑S
r>s s ∈ O

(
S3
)
,
∑S

s=1

∑S
r>s

(
1 + s

r

)
∈ O

(
S2
)

and
∑S

s=1

∑S
r>s

1
r ∈ O (S). The term b∗A2B2

∑S
s=1

∑S
r>s s is dominant and of order O

(
1
S

)
and

hence asymptotically negligible. Next, we look at limits (we implicitly mean S → ∞ in all

equations below) of terms involving a∗. To this end consider the sums

S∑

s=1

S∑

r>s

(
1

r
+

1

s

)
=

S∑

s=1

(
S∑

r=1

1

r
−

s∑

r=1

1

r

)
+

S∑

s=1

1

s
(S − s)

= 2

S∑

s=1

(ln(S) + γ0) −
S∑

s=1

(ln(s) + γ0) − S = S(ln(S) + γ0) − 0.5 ln(S) − 0.5 ln(2π).

S∑

s=1

S∑

r>s

1

rs
=

S∑

s=1

1

s

(
S∑

r=1

1

r
−

s∑

r=1

1

r

)
=

S∑

s=1

1

s
(ln(S) + γ0) −

S∑

s=1

1

s
(ln(s) + γ0)

= (ln(s) + γ0)
2 − 0.5 (ln(S))2 − γ1 − γ0(ln(S) + γ0) = 0.5 (ln(S))2 + γ0 ln(S) − γ1.
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where we have used that lim
S→∞

(∑S
s=1 ln(s) − ln

(√
2πS

(
S
e

)S))
= 0 by Sterling’s approx-

imation and lim
S→∞

(∑S
s=1

ln(s)
s − 0.5 (ln(S))2

)
= γ1, where γ1 is the first Stieltjes constant

equal to approximately −0.0728 (see, e.g., Havil (2003)). Thus we obtain

S(S − 1)

2
A2B2N =

1

2

4N(S2 − S)(ln(S) + γ0)
2

(S2(ln(S) + γ0) + S(ln(S) + γ0) − 2S2)2

=
2N(S2 − S)

(
S2 + S − 2S2

ln(S)+γ0

)2 =
2N

(
S + 1 − 2S

ln(S)+γ0

)2 + O

(
N

S3

)
.

−A2BCN2
S∑

s=1

S∑

r>s

(
1

r
+

1

s

)
= −4NS(ln(S) + γ0) (S(ln(S) + γ0) − 0.5 ln(S) − 0.5 ln(2π))

(S2(ln(S) + γ0) + S(ln(S) + γ0) − 2S2)2

= − 4N
(
S + 1 − 2S

ln(S)+γ0

)2 + O

(
N

S3

)
.

a∗A2C2N3
S∑

s=1

S∑

r>s

1

rs
=

4NS2
(
0.5 (ln(S))2 + γ0 ln(S) − γ1

)

(S2(ln(S) + γ0) + S(ln(S) + γ0) − 2S2)2

=
NS2

(
2 (ln(S) + γ0)

2 − 2γ2
0 − 4γ1

)

(S2(ln(S) + γ0) + S(ln(S) + γ0) − 2S2)2

=
2N

(
S + 1 − 2S

ln(S)+γ0

)2 − N(2γ2
0 + 4γ1)

(S(ln(S) + γ0) + (ln(S) + γ0) − 2S)2
.

Summing up the three terms we obtain − (2γ2
0+4γ1)N

(S(ln(S)+γ0)+(ln(S)+γ0)−2S)2
+O

(
N
S3

)
. It remains to

calculate the terms with c∗. We have
∑S

s=1

∑S
r>s s2r = 1/15S5+1/24S4−1/12S3−1/24S2+

1/60S,
∑S

s=1

∑S
r>s

(
s2 + sr

)
= 5/24S4 + 1/12S3 − 5/24S2 − 1/12S, and

∑S
s=1

∑S
r>s s =

1/6S3 −1/6S. Considering the order of the terms A2B2, A2BC and A2C2, the leading term

turns out to be

c∗A2B2

N

S∑

s=1

S∑

r>s

s2r =
4Sc∗

15N
(
1 − 2

ln(S)+γ0
+ 1

S

)2 + O

(
1

N

)
.

Final Result

Let N → ∞ and S = αNβ for α > 0 and β ∈ [0.5, 1). Summing everything up together

results in

Var[ĉ] =
2(π2a − 6(γ2

0 + 2γ1)a
∗)N

3 (S(ln(S) + γ0) + (ln(S) + γ0) − 2S)2
+

4Sc∗

15N
(
1 − 2

ln(S)+γ0
+ 1

S

)2 + O
(
N−1/2

)
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Recalling that a = 12κω4, a∗ = 12κω4 − 4ω4, c∗ = 2
∫ 1
0 σ4

sds, denoting IQ =
∫ 1
0 σ4

sds and

setting κ = 1 (normal noise) we can rewrite the above equation as

Var[ĉ] =
8(π2 − (4γ2

0 + 8γ1))ω
4N

(S(ln(S) + γ0) + (ln(S) + γ0) − 2S)2
+

8SIQ

15N
(
1 − 2

ln(S)+γ0
+ 1

S

)2 + O
(
N−1/2

)
.
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