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Abstract

We introduce a novel estimator of the quadratic variation that is based on the the-
ory of Markov chains. The estimator is motivated by some general results concerning
�ltering contaminated semimartingales. Speci�cally, we show that �ltering can in prin-
ciple remove the e¤ects of market microstructure noise in a general framework where
little is assumed about the noise. For the practical implementation, we adopt the dis-
crete Markov chain model that is well suited for the analysis of �nancial high-frequency
prices. The Markov chain framework facilitates simple expressions and elegant analyti-
cal results. The proposed estimator is consistent with a Gaussian limit distribution and
we study its properties in simulations and an empirical application.
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1 Introduction

The advent of high-frequency �nancial data brought the scope for highly accurate measures

of volatility over short periods of time, such as an hour or a day. The main obstacle in

obtaining precise estimators has been the fact that high-frequency returns do not conform

with conventional no-arbitrage models. The apparent contradiction can be explained by

market microstructure noise, which give rise to the notion that the observed price is a noisy

measure of the e¢ cient price.

The leading example of high-frequency based measure of volatility is the realized vari-

ance, see e.g. Andersen, Bollerslev, Diebold & Labys (2001), Meddahi (2002) and Barndor¤-

Nielsen & Shephard (2002). The realized variance is simply the sum of squared returns which

is sought to estimate the quadratic variation. A drawback of the realized variance is that

it strongly relies on a semi-martingale assumption. While this assumption is an intrinsic

feature of standard no-arbitrage models, it is also known to be at odds with the empirical

properties of high-frequency prices. So the extent to which the realized variance can utilize

high-frequency returns is limited. This has motivated a number of robust estimators, such

as the two-scale estimator by Zhang, Mykland & Aït-Sahalia (2005) and the realized kernels

by Barndor¤-Nielsen, Hansen, Lunde & Shephard (2008a). Common for these estimators

is an assumption that market microstructure noise is iid, either at the tick-by-tick level or

when sampling only includes every k-th price observation, for some k:

In this paper, we introduce a novel estimator that is build on the theory of Markov

chains. The MC estimator has three distinct features. First, it utilizes the discreteness

of high-frequency data. Second, the estimator permits a high degree of serial dependence

in the noise as well as dependence between the e¢ cient price and the noise. The latter

is important because it allows us to compute the estimator with all available tick-by-tick

data. There is no need to �skip�observations in order to meet speci�c assumptions about

the noise. Third, simplicity is another characteristic of the Markov chain estimator. It

only takes simple counting and basic matrix operations to compute the estimator and its

con�dence intervals.

To illustrate our estimator consider the sample of high frequency prices, XT0 ; : : : ; XTn ;

where price increments, �XTi 2 fx1; : : : ; xSg; are distributed as a homogeneous Markov
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chain of order one. The S � S transition matrix, P; is here given by

Pr;s = Pr
�
�XTi+1 = xsj�XTi = xr

�
; r; s = 1; : : : ; S;

and its stationary distribution, � = (�1; : : : ; �S)0; is characterized by �0P = �0: We de�ne

�� = diag(�1; : : : ; �S) and the fundamental matrix Z = (I � P +�)�1 where � = ��0 with
� = (1; : : : ; 1)0 2 RS : The Markov estimator is given by

MC =
x0��̂(2Ẑ � I)x
n�2

Pn
i=1X

2
Ti

;

where �̂ and Ẑ are estimates of � and Z, respectively, and x = (x1; : : : ; xS)0. Many proper-

ties of Markov chains can be linked to the fundamental matrix, Z; that also plays a central

role in our analysis. A useful feature of our Markov framework is that standard errors for

the MC estimator are readily available.

The main contribution of the present paper are as follows: First, we show that �ltering

can resolve the problems caused by market microstructure noise under weak assumptions

that only require the noise process to be ergodic with �nite �rst moment. A consequence

is that the theory in Barndor¤-Nielsen & Shephard (2002) applies to tick-by-tick returns

of the �ltered price process. This may sound too good to be true, and �from a practical

viewpoint � it is. The reason is that the ideal �lter requires more knowledge about the

data generating process than is available in practice. This is where the Markov chain

framework is e¤ectual. Second, we derive expressions for the returns of �ltered prices

within a homogeneous Markov chain framework. This leads to a consistent estimator of the

quadratic variation and we derive a feasible limit theory for the estimator. In fact, we show

that con�dence intervals are easy to compute, either from analytical expressions or by the

use of bootstrap methods. Third, our estimator is derived within a homogeneous Markov

framework. We show that a homogeneous model is justi�ed when prices are generated

by a continuous time Markov process, provided that certain conditions are meet. More

importantly, we show that the Markov chain estimator is robust to situations where the

underlying process is Inhomogeneous. Fourth, we apply the Markov chain framework to

high-frequency data of an exchange traded fund that tracks the S&P 500 index.

The discreteness of �nancial date is a product of the so-called tick size, which de�nes the

coarseness of the grid that prices are con�ned to. For example, the tick-size is currently 1

cent for most of the stocks that are listed on the New York Stock Exchange. The implication
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is that all transaction and quoted prices are in whole cents. The Markov estimator can also

be applied to time series that do not live on a grid, by forcing the process onto a grid. While

this will introduce rounding error, it will not a¤ect the long-run variance of the process.

Delattre & Jacod (1997) studied the e¤ect of rounding on realized variances for a standard

Brownian motion, and Li & Mykland (2006) extended this analysis to log-normal di¤usions.

In contrast to our framework, the existing literature has largely treated the discreteness

of prices as a bad form of noise. An important exception is Large (2006) who was one of

the �rst to take advantage of the discreteness of return data. He proposed an �alternation�

estimator that is applicable when prices can only change by a �xed amount, e.g. 1 cent, and

the noise has a particular form. We will show that the framework of Large (2006) is a special

case of our Markov chain framework �speci�cally a Markov chain of order one with two

states. The Markov framework used in this paper permits a larger number of price changes

and is less restrictive in terms of assumptions made about the noise. Furthermore, the use

of higher-order Markov chains will be shown to be essential for robustness to inhomogeneity.

The present paper adds to the a growing literature on volatility estimation using high-

frequency data, dating back to Zhou (1996, 1998). Well known estimators include the

realized variance, see Andersen, Bollerslev, Diebold & Labys (2001) and Barndor¤-Nielsen &

Shephard (2002); the two-scale and multi-scale estimators, see Zhang et al. (2005) and Zhang

(2006); the realized kernels, see Barndor¤-Nielsen, Hansen, Lunde & Shephard (2008a,

2008b). The �nite sample properties of these estimators are analyzed in Bandi & Russell

(2006, 2008), and the close relation between multi-scale estimators and realized kernels is

established in Barndor¤-Nielsen, Hansen, Lunde & Shephard (2008d). Other estimators

include those based on moving average �ltered returns, see Andersen, Bollerslev, Diebold &

Ebens (2001), Maheu & McCurdy (2002), and Hansen, Large & Lunde (2008); the range-

based estimator, see Christensen & Podolskij (2007); the pre-averaging estimator, see Jacod,

Li, Mykland, Podolskij & Vetter (2008); the quantile-based estimator Christensen, Oomen

& Podolskij (2008); and the duration-based estimator, see Andersen, Dobrev & Schaumburg

(2008).

The stochastic properties of market microstructure noise are very important in this

context. Estimators that are robust to iid noise can be adversely a¤ected by dependent

noise. Hansen & Lunde (2006) analyzed the empirical features of market microstructure

noise and showed that serial dependence and endogenous noise are pronounced in high-
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frequency stock prices. Endogenous noise refers to dependence between the noise and the

e¢ cient price. A major advantage of the Markov chain estimator is that dependent and

endogenous noise is permitted in the framework. So estimation and inference can be done

under a realistic set of assumptions about the noise.

The outline of this paper is as follows. We derive the generic results for �ltering a

contaminated semimartingale in Section 2. We apply the Markov chain framework to �lter

high-frequency returns and derive our Markov chain based estimator in Section 3. The

asymptotic properties of the estimator are established in Section 4, where we provide the

details needed for conducting inference with the delta-method or the bootstrap. In Section 5,

we show that the Markov chain framework is easily adapted for estimation of the volatility

of log-prices, which is typically the object of interest. In Section 6 we consider the case

where the underlying process is a continuous time Markov chain. This analysis gives an

argument in favor of dropping the zero-increments from the analysis. We show that the

Markov chain based estimator is robust to inhomogeneity in Section 7. In Section 8 we

discuss various empirical issues related to jumps and computational aspects. Section 9

presents our empirical analysis and Section 10 various extensions, Section 11 concludes.

2 Filtering a Contaminated Semimartingale

In this Section we analyze theoretical aspects of �ltering observed prices in a general frame-

work. The Section established the theoretical foundation for the Markov chain estimator

that we introduce in the next Section. Readers who are primarily interested in aspects of

the Markov chain estimator and its implementation can skip this Section. We show that

the ideal (but infeasible) �lter preserves the key features of the latent e¢ cient price. This

is true under very mild assumptions on the e¢ cient price and the noise.

Suppose that Yt is a semimartingale, so that

Yt =Mt + FVt;

where Mt is a local martingale and FV t is a process that has �nite variation almost surely.

We denote the observed process by Xt; and denote the di¤erence between Xt and the

latent process, Yt; by Ut; so that

Xt = Yt + Ut:
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Market imperfections, rounding errors, and data errors are some of the sources for the

measurement error, Ut; which we will refer to as market microstructure noise, or simply

noise.

Let Gt be some �ltration so that (Yt; Ut) is adapted to Gt; and consider the �ltered
process

E(Xt+hjGt) = E(Mt+hjGt) + E(FVt+hjGt) + E(Ut+hjGt):

An objective of this Section is to �lter out Ut, so that the properties of Yt can be inferred

from those of the �ltered Xt:

We make the following assumption:

Assumption 1 The �ltration Gt is continuous1 and for Yt =Mt + FVt we assume:

(i) fMt;Gtg is a martingale with �nite quadratic variation;

(ii) FVt is continuous with locally integrable variation; and

(iii) ~Ut = limh!1E (Ut+hjGt) is a continuous �nite variation process almost surely.

Assumption 1 is quite mild. For instance, (ii) holds if Yt is a quasimartingale. Further-

more, (iii) holds if E (Ut+hjGt)
L1! � as h!1; for some � 2 R; which in turn is implied by

the uniform mixing condition, formulated in the following Lemma.

Lemma 1 If Ut is stationary with EjUtj <1 and �-mixing with respect to Gt; that is

�(m) = supfjP (AjB)� P (B)j : A 2 �(Ut+s; s � m); B 2 Gtg ! 0; as m!1:

Then E(Ut+hjGt)
L1! E(Ut) as h!1:

Note that we assume that Ut is �-mixing with respect to Gt, which is larger than the
natural �ltration for Ut; �(fUsg; s � tg:

When Yt is a Brownian semimartingale, written Yt 2 BSM; we have

Mt =

Z t

0
�udBu:

More generally we have Mt =
R t
0 �udBu +

P
s�t Js where Js is a pure jump component.

1A �ltration is continuous if Gt� = Gt = Gt+ ; where Gt� = �([Gs; s < t) and Gt+ = \s>tGs: This

assumption is only used to show that limh!1 E(FVt+hjGt) is continuous.
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Theorem 1 Given Assumption 1, then

lim
h!1

E(Xt+hjGt) =Mt + FV
�
t ;

where FV�t is a continuous �nite variation process.

The proof is based on the decomposition, E(Xt+hjGt) = E(Mt+hjGt) + E(FVt+hjGt) +
E(Ut+hjGt); where the only obstacle is to show that ~FVt = E(FVt+hjGt) is a �nite variation
process.

2.1 Filtered Estimator of Quadratic Variation

Let

0 = T0 < T1 < � � � < Tn = T;

be the times where Xt is observed, and we will establish asymptotic results using an in-�ll

asymptotic scheme, where sup1�i�n jTi � Ti�1j ! 1; as n!1: This asymptotic design is
standard in this literature.

First we note that in the absence of noise, Ut = 0; there is no need for �ltering because

Xt = Yt: So if we take h = 0; and have E(XTi jGTi) = YTi : Next we consider the situation
where noise is present.

2.1.1 A Special Case

Consider the special case where E(UTi+1 jGTi) = 0: This assumption is far more restrictive

than Assumption 1 (iii); yet weaker than the assumption that fUTig is iid, which is often
used in this literature. Our framework does not rely on this restrictive form of noise, but

the simpli�ed framework o¤ers valuable intuition about the general situation.

With E(UTi+1 jGTi) = 0 it follows by Theorem 1 that the �ltered price process, E(XTi+1 jGTi);
only di¤ers from YTi by a �nite variation process. So the one-step �ltered realized variance

RV
(1)
F =

nX
i=1

�
E(XTi+1 jGTi)� E(XTi jGTi�1)

	2
;

is consistent for the quadratic variation, and we recover the same asymptotic framework

as that in Barndor¤-Nielsen & Shephard (2002) (henceforth BNS). We see that �ltering

entirely removes the unfortunate features of noise.
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Note that RV(1)F depends on the conditional expectation, E(XTi+1 jGTi); which is unknown
in most practical situations. So the �ltered realized variance is, in this sense, not an

estimator.

Naturally we have E(XTi+1 jGTi) = XTi +E(�XTi+1 jGTi); where �XTi+1 = XTi+1 �XTi :
So returns of the �ltered prices can be expressed as

E(XTi+1 jGTi)� E(XTi jGTi�1) = �XTi + E(�XTi+1 jGTi)� E(�XTi jGTi�1):

The implication is that the �ltered realized variance, can be rewritten in the more instructive

form:

RV
(1)
F =

nX
i=1

�
�XTi + E(�XTi+1 jGTi)� E(�XTi jGTi�1)

	2
: (1)

This expression reveals how the �ltering operates on the observed intraday returns. We see

that the estimator corrects each increment by adding and subtracting anticipated changes

in �XTi and �XTi+1 :

Comment. An important insights from our analysis is that one should use returns of the

�ltered price, �E(XTi+1 jGTi) rather than �ltered returns, E(�XTi+1 jGTi); when computing
the realized variance. The reason is that the sum of squares of E(�XTi+1 jGTi) = �YTi�UTi ;
will not estimate the quadratic variation of Yt: This is also evident from the fact thatPn
i=1fE(�XTi+1 jGTi)g2 will only simplify to the expression in (1) if�XTi�E(�XTi jGTi�1) =

0; which requires UTi = E(UTi jGTi�1):
This results generalized a result in Hansen et al. (2008). For the special case where

returns are �ltered by a moving average model, Hansen et al. (2008) have shown that

the sum of squared �ltered returns do not estimate the object of interest. Consider the

case where the noise is iid and the volatility is constant, so that intraday returns follow a

moving average process of order one. The sum-of-squared residuals,
Pn
i=1 "̂

2
i ; obtained from

estimating �XTi = "i � �"i�1; is not consistent for the volatility. The proper estimator in
this framework is (1� �̂)2

Pn
i=1 "̂

2
i ; see Hansen et al. (2008).

2.1.2 The General Case

When we �lter XTi+h by GTi we obtain the h-steps �ltered realized variance,

RV
(h)
F =

nX
i=1

�
E(XTi+h jGTi)� E(XTi+h�1 jGTi�1)

	2
;
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and analogous to (1) we rewrite this expression as

RV
(h)
F =

nX
j=1

(
�XTi +

hX
l=1

E(�XTj+l jGTj )�
hX
l=1

E(�XTj+l�1 jGTj�1)
)2
: (2)

This de�nes the class of h-steps �ltered RV, and it is natural to ask which h should we use?

The increments depend on h only through an expectation, so we need not observe XTi+h in

order to compute E(XTi+h jGTi): So there is no obstacle in using a large h. In fact, we can
take h =1 which o¤ers robustness to the most general form of noise. In our Markov chain

implementation we will use h =1.

2.2 Feasible Filtration

Before the quantity RVF = limh!1RV
(h)
F can be put into practical use, we need to specify

E(�jGTi): In practice we must use a �ltration based on observables, such as

Ft = �(Xs; s � t);

and the Markov chain framework is well suited for computing conditional expectations such

as E(XTi+h jFTi): However, substituting F for G is not innocuous, as shown by Li & Mykland
(2007). Speci�cally we have

E(XTi+h jFTi) = E
�
E(XTi+h jGTi)jFTi

	
= E

�
YTi + E(UTi+h jGTi)jFTi

	
;

which converges to E(YTi jFTi) as h!1; and the quadratic variation of Yt need not equal
that of E(YtjFt); see Li & Mykland (2007).

The potentially harmful di¤erence between Yt and E(YtjFt); can be expressed as

E(YTi jFTi) = E(XTi � UTi jFTi) = YTi + UTi � E(UTi jFTi):

So the relevant question is whether UTi�E(UTi jFTi) contributes to the quadratic variation.
In our analysis we make substantially weaker assumption about Ut than do Li & Mykland

(2007). So our discussion in this Section shows that the results by Li & Mykland (2007)

hold quite generally. Though the results in Li & Mykland (2007) concern smoothen returns,

E(XTi+h jFTn); contrary to the �ltered returns discussed here. We believe that the focus on
UTi � E(UTi jFTi) is a useful way to think about this issue.
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3 Markov Chain Estimator

In this Section we show how the observed price process can be �ltered in a Markov chain

framework, using the natural �ltration for fXtg ; Ft = �(Xs; s � t): The realized variance
of the Markov chain �ltered prices de�nes our novel estimator of the quadratic variation,

and we establish the asymptotic properties of the estimator. The estimator takes advantage

of the fact that price increments are con�ned to a grid. We will initially assume that the

observed price increments follow a homogeneous Markov chain, and later show that our

estimator is robust to inhomogeneity. The Markov chain framework used in this Section

is related to that in Russell & Engle (2006), see also Campbell, Lo & Mackinlay (1997,

pp.107�147), but our objective and analysis are entirely di¤erent.

We seek the �ltered price, E(XTi+h jFTi); and preferably the �ltered price as h ! 1:
Fortunately, (2) shows that the returns of the �ltered price can be constructed from �l-

tered increments, E(�XTi+h jFTi). The Markov chain framework conveniently enables us to
compute E(�XTi+h jFTi), for any h; in as simple way.

Quoted and traded prices are typically con�ned to be on a grid. For instance on the

New York Stock Exchange the typical tick size is currently 1 cent, which implies that prices

move in multiples of 1 cents.2 Naturally, we can always force the price data to live on a

grid at the expense of rounding error. We make the following assumptions.

Assumption 2 The increments
�
�XTi+1

	n
i=1

are ergodic and distributed as a homogeneous

Markov chain of order k <1; with S <1 states.

The homogeneity is a restrictive assumption and likely to be at odds with high-frequency

returns over longer intervals of time, such as a day. In Section 6 we analyze the case where

the underlying process is a continuous time Markov chain, and formulate assumptions that

will generate returns that are distributed as a homogeneous Markov chain in discrete time.

More importantly, in Section 7 we show that the Markov chain estimator is surprisingly

robust to inhomogeneity. Robustness is achieved by increasing the order of the Markov

chain that is being estimated.

2Some stocks are now quoted and traded at prices that are multiples of half a cent. In the foreign

exchange market the terminology is di¤erent, as exchange rates are quoted in pips. The Euro-Dollar is

currently trading with a pip size of 1/100 of a cent.
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3.1 Notation

The transition matrix for price increments is denoted by P: For a Markov chain of order

k with S basic states, P will be an Sk � Sk matrix. We use � to denote the stationary
distribution associated with P , i.e. �0P = �0: The fundamental matrix is de�ned by

Z = (I � P +�)�1;

where � = ��0 is a square matrix and � = (1; : : : ; 1)0; (so all rows of � is �0): For a vector

b 2 Rm; we let �b denote the diagonal matrix

�b = diag(b1; : : : ; bm);

and for vectors, a and b; of proper dimensions we de�ne the inner product

ha; bi� = a0��b:

We use (b)r to denote the r-th element of the vector b; and write �i;j = 1fi=jg where 1f�g is

the indicator function.

3.2 Markov Chain Filtering

Let fx1; : : : ; xSg be the support for�XTi ; and suppose that�XTi is distributed as a Markov
chain of order k: We consider the k-tuple, �XTi = (�XTi�k+1 ; : : : ;�XTi); and index the

possible values for�XTi by xs; s = 1; : : : ; Sk, where xs 2 fx1; : : : ; xSgk � Rk: The transition
matrix, P; is given by

Pr;s = Pr(�XTi+1 = xsj�XTi = xr):

Regardless of the order of the Markov chain, there are at most S possible transitions from

any given state xr: So P will have many zeros when k > 1; and speci�cally we have

Pr;s =

�
Pr(�XTi+1 = xs1 j�XTi�1 = xr) if (xs1 ; : : : ; xsk�1) = (xr2 ; : : : ; xrk);
0 if (xs1 ; : : : ; xsk�1) 6= (xr2 ; : : : ; xrk):

We use the vector f 2 RSk to keep track of the value of�XTi ; as we let fs be the last element
of xs; s = 1; : : : ; Sk: For a particular realization of �XTi ; the conditional expectation of
�XTi+1 can be expressed as

E(�XTi+1 j�XTi = xr) =
SkX
s=1

Pr;sfs = (Pf)r:
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More generally we have E(�XTi+h j�XTi = xr) = (P hf)r: So the return of the h-steps

�ltered price is given by

y(h)(�XTi�1 ;�XTi) = �XTi +
hX
l=1

E(�XTi+l j�XTi)�
hX
l=1

E(�XTi+l�1 j�XTi�1);

where the conditional expectation is E(�XTi+h j�XTi) =
PS
r=1(P

hf)r1f�XTi=xrg: The con-

tribution to RVF ; when (�XTi�1 ;�XTi) = (xr;xs); is simply given by y(h)(xr;xs)2: So we
obtain the following expression for Markov �ltered realized variance:

RV
(h)
F =

X
r;s

nr;sfy(h)(xr;xs)g2; where nr;s =
nX
i=1

1f�XTi�1=xr;�XTi=xsg:

We have the following expressions for the �ltered returns.

Lemma 2 Let er denote the r-th unit vector. Then

y(h)(xr;xs) = e
0
r(I � Z(h))f + e0sZ(h)f;

with Z(h) = I +
Ph
l=1(P

l ��) and

y(xr;xs) = lim
h!1

y(h)(xr;xs) = e
0
r(I � Z)f + e0sZf;

where Z = limh!1 Z(h) = (I � P +�)�1:

Lemma 2 shows that it is straightforward to use h = 1: This is convenient because
h =1 o¤ers the greatest degree of robustness to dependent noise. We will primarily focus

on this case and the corresponding �ltered realized variance is given by

RVF =
X
r;s

nr;sy
2
(r;s); with y(r;s) = y(xr;xs):

Conditional expectations, such as those that are used in the expression for y(h)(xr;xs);

cannot be evaluated without knowledge of P: Consequently, RVF is not an empirical quantity

in the realistic situation where P is unknown. The empirical transition matrix P̂ is given

by P̂r;s = nr;s=nr;�; where nr;� =
P
s nr;s; and by substituting P̂ for P we obtain the feasible

estimator

RVF̂ =
X
r;s

nr;sŷ
2
(r;s); with ŷ(r;s) = e

0
r(I � Ẑ)f + e0sẐf; (3)

and Ẑ = (I � P̂ + �̂)�1: We derive the asymptotic properties of RVF and RVF̂ in the next
Section and show that the latter is essentially equal to MC# = nhf; (2Ẑ � I)fi�̂:
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4 Asymptotic Analysis

In the previous Section we established a feasible �ltering of high frequency prices with

Markov chain methods. This lead to the quantities, RVF ; RVF̂ ; and (as we shall see)

MC# = nhf; (2Ẑ � I)fi�̂: Now we now seek the asymptotic properties of these quantities.
We shall derive limit results using the following asymptotic scheme, which is similar to

the one in Delattre & Jacod (1997) and Li & Mykland (2006).

Assumption 3 (asymptotic design)

As n!1 we have: f = 1p
n
�; where � 2 RS is held constant. (4)

It may seem odd to �ddle with the state-space as n!1: Yet, the assumption is quite
natural in the present context with in�ll asymptotics, and analogous to local-to-unity and

local-to-zero asymptotics that are commonly seen in the literature. The asymptotic design

in (4) can be motivated by the following scenario. Suppose that price changes of 10 cents

in the stock price are common if we sample 100 times per day. Whereas if we sample

3,000 times per day, the typical size of a price change will be around 2 cents. To reconcile

the two asymptotic theories, we need to assume that the state-values shrink towards zero

with the sampling frequency. Furthermore, (4) makes our asymptotic analysis compatible

with the standard BNS framework. In the BNS framework, squared intraday returns are

�Y 2Ti = Op(n
�1) and the corresponding situation in the Markov framework in the absence of

noise (absence of autocorrelation �YTi) is that where P = ��
0: So in this Markov framework

we have

E(�Y 2Ti) =
SkX
s=1

�sx
2
s = x

0��x = hx; xi�;

and in order for the RV =
Pn
i=1�Y

2
Ti
not to diverge to in�nity as n ! 1; we need

x0��x _ n�1: This is achieve by (4). Alternatively one could �ddle with P; so that the

stationary distribution becomes concentrated about zero as n!1: However, this approach
seems more complicated because Pn would be speci�c to the state vector x; and will require

one to introduce additional states as n!1 �states that were not observed in the sample.

4.1 Asymptotic Properties of Filtered Realized Variance

First, we derive the asymptotic properties of the infeasible �ltered realized variance. This

will form the basis for the analysis of the feasible estimator.
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Theorem 2 (Consistency of RVF ) For the Markov �ltered realized variance we have

RVF
a:s:! h�; (2Z � I) �i�; as n!1:

where Z = (I � P +�)�1:

We now turn to the limit distribution of RVF : A classical result within the theory of

Markov chains is the following.

Proposition 1 Let fVig be an ergodic Markov chain with states fv1; : : : ; vSg; and let PV
and �V denote the transition matrix and stationary distribution, respectively. For any real

function, g(�); we have

p
n

(
1

n

nX
i=1

g(Vi)� hg;�V i
)

d! N
n
0; hg;(2ZV��V�I)gi�V

o
;

where g = (g(v1); : : : ;g(vS))0; ZV = (I � PV +�V )�1; and �V = ��0V :

The central limit theorem for ergodic Markov chains is valid quite generally, see e.g. Du-

�o (1997, theorem 8.3.21) for the case with positive recurrent Markov chains on measurable

spaces. In its most general formulation, the variance of the limiting normal distribution

is given implicitly from a solution to a Poisson equation. For �nite spaces, such as the

present one, most of the formulas can be elegantly written in closed form in terms of the

fundamental matrix, Z; of Kemeny & Snell (1976). In this paper we follow the presentation

of Brémaud (1999, chapter 6).

An interesting observation that can be made from Proposition 1 is that our estimator,

RVF is related to the long-run variance. This is evident from

p
n

 
1

n

nX
i=1

p
n�XTi � h�;�i

!
d! N f0; h�;(2Z ��� I)�i�g ;

where h�;(2Z ��� I)�i� = h�;(2Z � I)�i� � h�;��i� = h�;(2Z � I)�i� � (�0�)2: So in the
absence of a drift, �0� = 0; the long-run variance coincides with the probability limit of

RVF ; see Theorem 2. This is a common feature of estimators in this literature.

We will now apply Proposition 1 to obtain the asymptotic distribution of the �ltered re-

alized variance, RVF =
Pn
i=1

�
y(�XTi�1 ;�XTi)

	2
: First we note that

�
y(�XTi�1 ;�XTi)

	2
only depends on the k + 1-tuple, (�XT�k; : : : ;�XTi)

0: So we have

RVF =
nX
i=1

�
y(�XTi�1 ;�XTi)

	2
=

nX
i=1

g(�XT�k; : : : ;�XTi);
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for some real function g: In our asymptotic framework, fn1=2�XTig is (for any �xed
n) an ergodic Markov chain with state-values given by the vector �: So it follows that

ZTi = (n1=2�XT�k; : : : ; n
1=2�XTi)

0 is also an ergodic Markov chain, and we denote the

corresponding Sk+1 � Sk+1 transition matrix PZ ; and let �Z denote the corresponding

stationary distribution. Next we note that

g(�XT�k; : : : ;�XTi) =
1

n
g(n1=2�XT�k; : : : ; n

1=2�XTi) =
1

n
g(ZTi):

So we can apply Proposition 1 to RVF = n�1
Pn
i=1 g(ZTi); which yields the expression for

the asymptotic variance,

�RVF = hg;(2ZZ��Z�I)gi�Z ;

where ZZ is the fundamental matrix associates with PZ and �Z = ��Z : The vector g 2
RSk+1 is here de�ned by gs = g(zs); for s = 1; : : : ; Sk+1 where zs is the state value of ZTi
that corresponds to the s-th row of PZ : So g contains all the possible values of the squared

�ltered returns,
�
y(n1=2�XTi�1 ; n1=2�XTi)

	2
= n

�
y(�XTi�1 ;�XTi)

	2
: In Theorem 3 we

derive a more transparent expression for �RVF :

Because the underlying process for ZTi is a Markov chain of order k; its transition
matrix, PZ ; has a particular structure, where each element of P appears S times: Naturally

we have ZTi = (�XT�k;�XTi)0 = (�XT�1;�XTi)0; so for z = (xr; xs) and ~z = (xj ;xr); we
have

Pr(ZTi+1 = zjZTi = ~z) = Pr(�XTi+1 = xsj�XTi = xr):

This is true for any xj 2 fx1; : : : ; xSg which simply re�ects that the underlying process is a
Markov chain of order k; so that the (k + 1)-th lagged value, �XTi�k ; is redundant for the

conditional probability.

Theorem 3 (Limit distribution for RVF ) For the infeasible realized variance, RVF ; we

have
p
n fRVF � h�; (2Z � I) �i�g

d! N f0;�RVF g ;

where �RVF =
P
r;s;u;v �nr;s;nu;v fe0r(I � Z)� + e0sZ�g

2 fe0u(I � Z)� + e0vZ�g
2 ; with �nr;s;nu;v =

Pr;sPu;v(�rZs;u + �uZv;r � 3�r�u) + �rPr;s�r;u�s;v:

Comment. Theorem 3 is stated for a homogeneous Markov chain with �xed parameters.

However, in relation to Section 2 the exact speci�cation of the Markov chain is de�ne ex-

post to the realization of fYt; Utg; so both the probability limit, h�; (2Z � I) �i�; and the
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asymptotic variance �RVF ; may be thought of as random quantities, as is common in this

literature.

4.2 Asymptotic Properties of Markov Chain Estimator

So far we have established results for RVF that cannot be computed in practice because it

depends on the unknown transition matrix, P . Substituting an estimate P̂ for P leads to

the feasible estimator,

RVF̂ =
X
r;s

nr;sŷ
2
(r;s); where ŷ(r;s) = e

0
r(I � Ẑ)f + e0sẐf:

We will derive the asymptotic properties of this estimator and another estimator de�ned

by,

MC# = �0��̂(2Ẑ � I)�:

We use the #-superscript to indicate thatMC# is a volatility estimator for prices (in levels)

that live on a grid. The notation MC will be reserved for our estimator of the volatility

for log-prices. Next, we derive some intermediate results that serve two purposes. First to

establish that RVF̂ and MC
# are asymptotically equivalent; and second, to derive the limit

distribution of MC# (and hence that of RVF̂ ):

4.2.1 Asymptotic Distribution by Delta Method

Since MC# = h�;(2Z � I)�i� is a di¤erentiable function of P alone, we can obtain a closed
form expression for the asymptotic variance by the delta method. We will need the derivative

of h�;(2Z � I)�i� with respect to P , and the asymptotic distribution for P̂ : The latter is
well known and stated in the following Proposition.

Proposition 2 Given Assumptions 2 and 3, the asymptotic distribution P̂ is given by

p
n(P̂ � P ) d! N(0;�P );

where (�P )(r;s)(u;v) = 1fr=ug
1
�r

�
(�Pr;� � P 0r;�Pr;�)

	
s;v
:

The analogy with the covariance of the maximum likelihood estimator of a multinomial

distribution is obvious, with �sn playing the role of the number of trials.

Next, we derive the di¤erential that is needed for the delta method, and then the limit

distribution of MC#:
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Lemma 3 Let � = h�; �i: The di¤erential of h�;(2Z � I)�i� is given by�
@h�;(2Z � I)�i�

@P

�0
= Zf��(I + P ��)� 2�IgZ��0 + 2Z��0��Z:

The di¤erential in Lemma 3 is not a partial derivative in the usual sense, due to the

constraints on the transition matrix P . In particular, we have
P
s dPr;s = 0 for all r:

Theorem 4 Let MC# = h�;(2Ẑ � I)�i�̂ then

p
n
n
MC# � h�;(2Z � I)�i�

o
d! N(0;�MC);

where

�MC =

�
@h�;(2Z � I)�i�

@P

�0
�P
@h�;(2Z � I)�i�

@P
:

with �P de�ned as in Proposition 2.

Using Lemma 3 and the expression for �P given in Proposition 2, we can now write the

variance �MC in the following way.

Corollary 1 The asymptotic variance of MC# can be expressed as,

�MC =
X
r

�ru
0
rVrur; (5)

with Vr = �Pr;� � P 0r;�Pr;� and ur = Zf��(I + P ��)� 2�IgZ� + 2Z��0��Z��1� er:

The following result shows that the two estimators, RVF̂ and MC
#; are asymptotically

equivalent to �rst order. This is convenient because it shows that our asymptotic results

for MC# apply equally to RVF̂ :

Theorem 5 RVF̂�MC
# = Op(n

�1): Furthermore, if the �rst observed state coincides with

the last observed state then RVF̂ = MC
#:

In Theorem 3 we obtained an expression for the asymptotic variance of the infeasible

quantity RVF : The di¤erence between these two asymptotic variances, steams from the

estimation error of P̂ : By replacing the true transition matrix with the empirical one we

introduce an extrinsic variance that adds extra variation to the estimator.
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4.2.2 Limit distribution of log(MC)

Several studies have shown that the Gaussian limit distribution can be a poor approxima-

tion to the �nite sample distribution of the realized variance, see e.g. Barndor¤-Nielsen &

Shephard (2005) and Goncalves & Meddahi (2008). To improve the �nite sample properties

Barndor¤-Nielsen & Shephard (2002) advocated the use of the log transform, and Goncalves

& Meddahi (2006) highlight the bene�ts of the log transform and related transformations.

For the Markov chain estimator, the asymptotic distribution of the log-transformed estima-

tor is simple to derive.

Corollary 2 The limit distribution of log(MC#) is given by,

n1=2
n
logh�; (2Ẑ � I)�i�̂ � logh�; (2Z � I)�i�

o
d! N

�
0;

�MC
h�; (2Z � I)�i2�

�
:

In our framework, the log transformation need not improve the �nite sample coverage

probability to the same extend as is the case for the realized variance. The reason is that

the Markov based estimator can utilize all observations, unlike the realized variance that

typically is limited to less than 100 intraday returns, in order to avoid the problems arising

from market microstructure noise.

4.2.3 Asymptotic Distribution by Bootstrap Methods

Bootstrap method for conducting inference about the realized variance are analyzed and

discussed in Goncalves & Meddahi (2008). In this Section, we discuss how bootstrap meth-

ods can be used to conduct inference about MC#: Fortunately, bootstrap results for our

Markov chain framework are readily available. There are two standard ways to bootstrap

the transition matrix of a discrete Markov chain given the empirical transition matrix P̂n,

see Shao & Tu (1995) for an introduction. The conventional scheme is to generate synthetic

samples of length n using P � = P̂n, and then re-estimate the transition matrix P̂ �n . It can

be shown that P̂ �n �P � will have the same asymptotic distribution as P̂n�P . We can then
plug it into our expression for MC#. A more e¢ cient bootstrap method is the conditional

bootstrap of Basawa & Green (1990). Instead of sampling a whole run, it is recommended to

bootstrap each row of the transition matrix separately, using a multinomial with parameters

(nr;�; P̂r;1; : : : ; P̂r;S):
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We compare con�dence intervals based on the bootstrap with those based on the delta

method in Section 9.2. In our empirical application we �nd the three to produce almost

identical con�dence intervals.

5 Quadratic Variation of Log Prices

Up to now, we have assumed that the observed price XTi lives on a discrete grid. This is

true in practice, but the object of interest is typically the quadratic variation of log-prices,

and logXt does not live on a grid. The implication is that MC# is estimating the wrong

quantity. Let yTi = log YTi : We are estimating

plim
n!1

nX
i=1

(YTi � YTi�1)2 = plim
n!1

nX
i=1

�
exp(�yTi + yTi�1)� exp(yTi�1)

	2
= plim

n!1

nX
i=1

�
[exp(�yTi)� 1] exp(yTi�1)

	2
= plim

n!1

nX
i=1

�
�yTiYTi�1

	2
;

which equals
R T
0 �

2
uY

2
u du when the observations are equidistant, i.e. Ti � Ti�1 = T=n:

Fortunately, the Markov chain framework can be adapted to estimate the appropriate

quantity. We consider two ways to address this issue: An exact correction method and

a simpler approximation. The drawback of the �exact� estimator is that its expression is

path dependent, so that our asymptotic results of the previous Section do not apply. The

approximate method simply amount to a scaling of MC#; and our asymptotic distribution

theory is directly applicable to this estimator.

5.1 Exact Method

At the expense of having a closed form expression for the estimator, we can get an exact

formula by computing the �ltered log-increments as follows. The �ltered realized variance

we seek is given by,

plim
h!1

nX
i=1

�
log E(XTi+h jFTi)� log E(XTi+h�1 jFTi�1)

	2
:

First we observed that

E(XTi+h jXTi = y0; XTi�1 = y�1; : : :) = y0+
hX
l=1

E(�XTi+l j�XTi = �y0;�XTi�1 = �y�1; : : :);
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where �yi = yi� yi�1: In our Markov framework the conditional expectation only depends
on the k most recent price changes, �XTi = (�XTi�k+1 ; : : : ;�XTi): Using that XTi+h =

XTi +
Ph
l=1�XTi+l we have

log E(XTi+h jFTi) = log
�
XTi +

X
s

Xh

l=1
(P lf)s1f�XTi=xsg

�
;

which leads to the following result.

Lemma 4 Let �h = h � h�; fi: Then we have

lim
h!1

log
�
E(XTi+h � �hjFTi)

	
= log

�
XTi +

XSk

s=1
f(Z � I)fgs 1f�XTi=xsg

�
:

When computing log-increments of the �ltered price series, we need to subtract the drift,

�h:
3 The reason is that

lim
h!1

E(XTi+hhj�XTi = xs)
E(XTi+h�1 j�XTi�1 = xr)

= lim
h!1

Ph
l=1(P

lx)sPh
l=1(P

lx)r
= 1; when h�; fi 6= 0:

Previously, where we compute increments in �ltered prices (in levels), it was not nec-

essary to subtract the drift, because the constant, �h; cancels out, since E(XTi+h jFTi)
� E(XTi+h�1 jFTi�1) = E(XTi+h � �hjFTi) � E(XTi+h�1 � �hjFTi�1): By substituting our
empirical estimate Ẑ for Z; we obtain the exact expression

MC� =
nX
i=1

24log XTi +
PS
s=1f(Ẑ � I)fgs1f�XTi=xsg

XTi�1 +
PS
r=1f(Ẑ � I)fgr1f�XTi�1=xrg

352 : (6)

We note that the expression for the log increments is path dependent. So our asymptotic

result in Section 4 are not easily adapted to this problem.

5.2 Approximate Method

Consider the case where �XTi�1 = xr and �XTi = xs (so that �XTi = fs): Then

log

�
XTi+f(Ẑ�I)fgs
XTi�1+f(Ẑ�I)fgr

�
= log

�
1 + fẐfgs�f(Ẑ�I)fgr

XTi�1+f(Ẑ�I)fgr

�
� fZfgs�f(Ẑ�I)fgr

XTi�1+f(Ẑ�I)fgr
;

where we have used a Taylor expansion of log(1 + x): The numerator is simply ŷ(r;s); see

(3), and the denominator is roughly equal to XTi�1 , because (Z � I)f = O(n�1=2): Since

3This is a minor issue in practice because empirically we �nd that �0f � 0:
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Pn
i=1 ŷ

2
(r;s)1

n
�XTi�1=xr;�XTi=xs

o = RVF̂ and RVF̂ �nhf;(2Ẑ � I)fi�̂ = Op(n�1), we should
expect MC� to be roughly equal

MC =
n2hf;(2Ẑ � I)fi�̂Pn

i=1X
2
Ti

:

In fact this approximation is very good as longs as XTi does not �uctuate dramatically

over the estimation period. The advantage of the estimator, MC; is that it allows for faster

computations and it preserves the elegant asymptotic theory that we derived for MC#. In

the data we have analyzed, we found that MC and MC� are empirically indistinguishable,

and the di¤erence between the two quantities is trivial compared to the con�dence intervals

we obtain for MC:

6 Continuous Time Markov Chain and Zero Returns

In this Section we consider the case where the underlying process is a continuous time

Markov chain (CTMC). We formulate conditions under which the increments of the dis-

cretely sampled process are stationary and homogeneous. Interestingly, in this framework

we �nd an argument for discarding all zero-increments when estimating the discrete time

Markov chain. Interesting aspects of zero-increments, also known as �at pricing, are ana-

lyzed in Phillips & Yu (2008).

Three types of time scales for the discretely sampled process are often used in this

literature. Calendar time sampling refers to the case where prices are sampled equidistant

in time, e.g. every 60 seconds. Event time (or tick time) is the case where we sample

every K-th price observation. Volatility time (or business time) is a theoretical time scale

with the characteristic that returns are homogeneous when sampled equidistant in volatility

time. We will assume that there exist a suitable time change so that volatility time is well

de�ned.

Sampling returns that are equidistant in volatility time is the ideal sampling scheme,

because volatility time minimizes the asymptotic variance of RV, see Hansen & Lunde (2006,

section 3). This provides an argument for sampling in event time rather than calendar time,

because the former is thought to better approximate volatility time. This is consistent with

studies that have shown that realized variance behaves much better in event time, see e.g.

Gri¢ n & Oomen (2006). The CTMC framework used in this Section will give an elegant

explanation to this phenomenon. We will, under certain conditions, show that event time
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and volatility time coincide as n!1: One of the requirements is that zero increments be
discarded.

Suppose that the observed process, Xt; is a CTMC with a countable state space. In

calendar time, this chain is inhomogeneous with an in�nitesimal generator, A(t), that may

be random. So Pr(Xt+h = jjXt = i) = h[A(t)]ij + o(h), and Pr(Xt+h = ijXt = i) =

1 + h[A(t)]ii + o(h): In matrix form we can formulate this with the transition matrix from

Xs to Xt, which has the form

P (s; t) = E
�
e
R t
s A(u)dujFs

�
:

In the most general formulation, the time varying generator is in�nitely dimensional, which

makes it an arduous task to estimate the integrated variance without imposing some struc-

ture. A major simpli�cation is achieved by assuming the existence of a volatility time scale,

because it imposes a one dimensional time structure on the generator, i.e. A(t) = �tA.

When A(t) only depends on time through �t; the �nite state CTMC is uniformisable, which

enable us to represent the chain as two independent processes: a counting process Nt with

intensity �t and jump times � i; and the embedded discrete time Markov chain, X̂i = X� i ;

with transition matrix P: In this situation, P; A(t), and �t are linked by the relationship

A(t) = �t(P � I), and we have Xt
d
= X̂Nt :

In our sample, we do not know if the times where we observe transactions/quotes,

T 00; T
0
1; : : : ; T

0
N 0 , coincide with actually jump times, �1; : : : ; �N ; of the CTMC. However, by

discarding zero increments we know that we have a subset of all the values taken by the

underlying CTMC. For the resulting discrete time Markov chain to be homogeneous in the

limit we further need that sampling becomes exhaustive as N ! 1; such that we do not
miss a price change in the limit. This result is formulated the following theorem.

Theorem 6 Let Xt be a CTMC on a countable state space, with generator A(t) = �tA

that is adapted to Ft: Let the observation times T 0i ; 0 � i � N 0; be jump times from a

Poisson process with continuous intensity �t, and suppose that �t = �t(�) and �t = �t(�)

are functions of a parameter �; (� can be tied to the grid size for instance): If �t(�)�t(�)
! 0,

uniformly in t; as �!1; then with (T0; T1; : : : ; Tn) given by,

fTi : Ti = T 0j 6= T 0j�1 for some 0 � j � N 0g;
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Figure 1: A continuous time Markov chain with three states. Jump times are identi�ed

by circles and observation times by crosses. These are generated by independent Poisson

processes with intensities � and �, respectively, where �=� = 1=2:

(XT0 ; XT1 ; : : : ; XTn)
d
= (x0; x1; : : : ; xn) where xi is a homogeneous Markov chain with tran-

sition distribution given by Pi;j =
Ai;j
Ai;i

for i 6= j and Pi;i = 0:

Comment. The asymptotic result is driven by �!1 that causes the number of jumps in

the CTMC, N !1; while the number of observation times, N 0 grows at a uniformly faster

rate. The implication is that the sequence of observed states (excluding zero increments)

will be identical to that of the latent CTMC, as �!1:
The assumption that �t(�)�t(�)

! 0 uniformly in t looks very stringent. In practice this is not

an issue, because the observed sample will be indistinguishable from the sample obtained
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by sampling exactly at jump times that led to a price change, as long as �t
�t
� 1. This is

illustrated in Figure 1 where we have simulated a CTMC with three states. The circles are

the jump times from the Markov chain (with intensity �t), whereas the red crosses are the

observation times. Notice that the CTMC can �jump�without changing its value. The

observation intensity �t is such that
�t
�t
= 1

2 : The sampling only misses one change of state,

so even moderate frequencies can lead to quasi time-homogeneous sampling.

Homogeneous intraday returns arises naturally in the CTMC framework laid out above.

However this is within an speci�c framework and the homogeneity is established as an

asymptotic feature of returns. So it is natural to ask what happens when the reality is

far from this idealized setting. We address this in the next Section where we analyze the

properties of MC# when the underlying process is inhomogeneous.

7 Robustness to Inhomogeneous

The analysis of quantities estimated with high frequency data, are typically derived from

assuming local constancy of volatility. A general treatment of this approach and its validity

is analyzed in Mykland & Zhang (2008), for the case without market microstructure noise.

In this Section we analyze the situation with an inhomogeneous Markov chain using this

approach. Unlike the general analysis in Mykland & Zhang (2008), our analysis will be

speci�c to Markov chain processes, but an advantage of our framework is that it allows for

the presence of market microstructure noise. Local constancy of volatility and related quan-

tities translate into a locally homogeneous Markov chain in our framework. So we consider

the situation where the Markov chain is locally homogeneous, but globally inhomogeneous.

Naturally, if the Markov chain is piecewise homogeneous, then we can simply compute the

MC# over the homogeneous subintervals, and add these estimates up. By increasing the

number of subintervals as n ! 1; this type of local estimation scheme can accommodate
more general forms of inhomogeneity. We shall see that a local estimation approach is not

needed here, because the full sample Markov chain estimator turns out to be surprisingly ro-

bust to inhomogeneity. The robustness is achieved by arti�cially increasing the order of the

Markov chain that is being estimated with the full sample. After theoretical argument for

the robustness, we consider a simple example where the data generating process is a Markov

chain of order one with a transition matrix that is subject to structural changes. A simula-
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tion study shows that estimating a Markov chain of order two yields an accurate estimate

despite the Markov chain of order two being grossly misspeci�ed. Due to misspeci�cation,

the framework is likely to produce poor estimates of many population quantities, but for-

tunately it will accurately estimated the quantity we seek. Somewhat surprisingly, we �nd

that MC#2 estimated over the full sample can be more accurate than an �oracle�estimator

that adds up the MC#1 estimates that are computed over homogeneous subsamples.

7.1 Theoretical Insight about Robustness

In this section we provide a heuristic argument for the robustness of the Markov chain

estimator, by showing that an inhomogeneous Markov chain is well approximated by a

homogeneous Markov chain of higher order, in the sense that the two are observationally

equivalent when we let the order of the approximating Markov chain grow at a suitable

rate.

If the true model is a homogeneous Markov chain of order k; but we estimate the

Markov chain of an higher order, k0 > k; then the estimator MC#k0 will still be consistent.

The drawback of using too large an order is that the asymptotic variance of the estimator

increases with k:

A Markov chain of order k is characterized by the reduced form transition matrix,

Qi1;:::;ik+1 = Pr
�
�XTi+1 = ik+1j�XTi = (i1; : : : ; ik)0

	
:

Suppose that the true order of the chain is of lower order, k � 1 say, then it is simple to
verify that Qi1;:::;ik+1 = ~Qi2;:::;ik+1 ; where ~Q is the reduced form transition matrix of the

Markov chain of order k� 1: For instance, if the true order is one with transition matrix P;
then

Q̂i1;:::;ik+1 =
Nn(i1; : : : ; ik+1)

Nn(i1; : : : ; ik)

p! Pik�1;ik :

Consider now the case where the transition matrix is inhomogeneous, so that P (t) = P 1

for t � !n and P (t) = P 2 for !n < t � n; for some ! 2 (0; 1): Let Nn(i1; : : : ; ik) be the
number of time state (i1; : : : ; ik) is observed in the full sample, and let N

j
nj (i1; : : : ; ik) be the

corresponding counts for the j-th subsample, j = 1; 2, where n1 = b!nc; and n2 = n� n1:
The empirical (reduced form) transitions probabilities are given by

Q̂x1;:::;xk+1 =
Nn(x1; : : : ; xk+1)

Nn(x1; : : : ; xk)
=
N1
n1(x1; : : : ; xk+1) +N

2
n2(x1; : : : ; xk+1)

N1
n1(x1; : : : ; xk) +N

2
n2(x1; : : : ; xk)

;
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which has the probability limit,

Qx1;:::;xk+1 =
!�1x1P

1
x1;x2 � � �P

1
xk;xk+1

!�1x1P
1
x1;x2 � � �P 1xk�1;xk + (1� !)�2x1P 2x1;x2 � � �P 2xk�1;xk

(7)

+
(1� !)�2x1P

2
x1;x2 � � �P

2
xk;xk+1

!�1x1P
1
x1;x2 � � �P 1xk�1;xk + (1� !)�2x1P 2x1;x2 � � �P 2xk�1;xk

where �j� denotes the stationary distribution associated with P j ; j = 1; 2: We de�ne Dk =
1
k

Pk
j=1 log

P 1xj;xj+1
P 2xj;xj+1

and rewrite (7) as

Qx1;:::;xk+1 =
P 1xk;xk+1

1 + 1�!
!

�2x1
�1x1

exp f�kDkg
+

P 2xk;xk+1

1 + !
1�!

�1x1
�2x1

exp fkDkg
:

By the law of large numbers we have as k !1 that

Dk
p! D(P 1kP 2) under P

1 and Dk
p! �D(P 2kP 1) under P 2;

where

D(P ikP j) = EP i

(
log

P ixl;xl+1

P jxl;xl+1

)
=

SX
r=1

 
SX
s=1

log
P ir;s

P jr;s
P ir;s

!
:

Observe that the constant, D(P ikP j); is a sum of S Kullback-Leibler divergence measures for

pairs of multinomial distributions. Consequently D(P ikP j) � 0; with D(P ikP j) = 0, P ir;s =

P jr;s for all r; s: So for large k we note that the Radon-Nikodym derivative is such that

L1k =
Qx1;:::;xk+1
P 1xk;xk+1

' 1

1 + 1�!
!

�2x1
�1x1

exp
�
�kD(P 1kP 2)

	 ' 1� 1� !! �2x1
�1x1

exp
�
�kD(P 1kP 2)

	
:

Consider the two stochastic processes with the labels �homogeneous� and �inhomo-

geneous�. The �homogeneous� process, Yk;n = (Yk;n1 ;Yk;n2); where Yk;n1 and Yk;n2 are
both generated by Q; with Yk;n1 being n1 observations with an initial observation drawn
from �(P 1); whereas the �rst of then n2 observations in Yk;n2 are drawn from �(P 2). The

�inhomogeneous� process, Zn = (Zn1 ;Zn2); is such that Zn1 consists of n1 observations
generated by P 1 starting with a draw from �1� ; and Zn2 denotes n2 observations generated
by P 2 where the initial observation is drawn from �2� :

Let ' be an arbitrary bounded function, then by a change of measure, we have

E fg(Yk;n)g = E
�
g(Zn)

�
L1k
�n1 �L2k�n2	 :
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When we set k = � log n we �nd that

�
L1k
�n1 ' �1� 1� !

!

�2x1
�1x1

n
��D(P1kP2)

�n1
' exp

�
�1� !

!

�2x1
�1x1

n
1��D(P1kP2)

�
; as n!1:

So when � is su¢ ciently large, � > max
n

1
D(P1kP2)

; 1
D(P2kP1)

o
; we have

�
L1k
�n1 �L2k�n2 ! 1

as n ! 1; which establishes the weak convergence. So Yk;n is observational equivalent to
Zn; in an asymptotic sense, provided that k satis�es the requirement above.

The argument we have given in this Section can be generalized to piecewise constant

non-homogeneous transition matrices.

7.2 Simulation Results

To analyzed the robustness of MC# we consider a simple simulation design, where the

transition matrix changes over time. Consider the class of transition matrices,

P (�) =
1

2

�
1 + � 1� �
1� � 1 + �

�
; with � 2 (�1; 1);

so that � = (12 ;
1
2)
0 for all �:When � = (�;��)0 it can be shown that V (�) = h�;(2Z(�)� I)�i� =

�2 1+�1�� ; where Z(�) is the fundamental matrix for P (�):

Suppose that � = (1;�1)0 and we have a single break in the middle of the sample, where
the transition matrix in the �rst and second half of the sample are

P (�1
2) =

�
1
4

3
4

3
4

1
4

�
; and P (14) =

�
5
8

3
8

3
8

5
8

�
;

respectively. The object of interest is here given by,

QV = 1
2V (�

1
2) +

1
2V (

1
4) =

1
2

�
1
3 +

5
3

�
= 1:

When estimating a Markov chain of order one, the expected frequencies of the possible

transitions are given by

1
2

�
1
8

3
8

3
8

1
8

�
+ 1

2

�
5
16

3
16

3
16

5
16

�
=

�
7
32

9
32

9
32

7
32

�
;

which shows that the estimated transition matrix is such that

P̂(k=1)
p!
�

7
32=(

7
32 +

9
32)

9
32=(

7
32 +

9
32)

9
32=(

9
32 +

7
32)

7
32=(

9
32 +

7
32)

�
=

�
7
16

9
16

9
16

7
16

�
;

from which it follows that MC#1
p! 7

9 = 0:7778: So the estimator based on a homogeneous

Markov chain of order one is inconsistent for QV:
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Oracle MC#1 MC#2 MC#3 MC#4 MC#5 MC#6 MC#7

plimMC#k 1.0000 0.7778 1.0370 1.0256 0.9910 0.9926 1.0055 1.0026

Simulation (n = 1; 000)

Average 0.9986 0.7777 1.0378 1.0290 0.9968 1.0024 1.0168 1.0168

Std.dev. 0.0793 0.0460 0.0988 0.1315 0.1505 0.1695 0.1917 0.2110

RMSE 0.0793 0.2270 0.1057 0.1346 0.1505 0.1695 0.1924 0.2117

Analytical

Std.dev. 0.0789 0.0496 0.1028 0.1386 0.1594 0.1796 0.2027 0.2217

Simulation (n = 23; 400)

Average 1.0000 0.7778 1.0371 1.0257 0.9912 0.9930 1.0060 1.0032

Std.dev. 0.0163 0.0095 0.0203 0.0269 0.0305 0.0340 0.0381 0.0415

RMSE 0.0163 0.2224 0.0423 0.0372 0.0317 0.0347 0.0386 0.0416

Analytical

Std.dev. 0.0163 0.0102 0.0213 0.0286 0.0329 0.0371 0.0419 0.0458

Table 1: Simulate and analytical quantities of, MC#k , estimated with the full (inhomoge-

neous) sample, when returns are driven by di¤erent Markov chains in the �rst and second

half of the sample. With n = 1; 000 observations the most accurate estimator is MC#2 (ex-

cluding the infeasible �oracle�estimator). With n = 23; 400 observation MC#4 is the most

accurate. The results are based on 50,000 simulations.

Suppose instead we estimate a Markov chain of order two. We order the four states as

follows, (1; 1); (1;�1); (�1; 1); and (�1;�1); so that � = (1;�1; 1;�1)0: Now, the Markov
chains for the two subsamples imply di¤erent stationary distributions, (18 ;

3
8 ;
3
8 ;
1
8)
0 and

( 516 ;
3
16 ;

3
16 ;

5
16)

0; respectively, and the expected ratios of the various transition in the full

sample are given by

1

2

0BB@
1
32

3
32 0 0

0 0 9
32

3
32

3
32

9
32 0 0

0 0 3
32

1
32

1CCA+ 12
0BB@

25
128

15
128 0 0

0 0 9
128

15
128

15
128

9
128 0 0

0 0 15
128

25
128

1CCA :
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So that the probability limit for the estimated transition matrix is

P̂(k=2)
p!

0BB@
29
56

27
56 0 0

0 0 5
8

3
8

3
8

5
8 0 0

0 0 27
56

29
56

1CCA ;
that implies the �stationary� distribution, � = ( 732 ;

9
32 ;

9
32 ;

7
32)

0; and MC#2
p! 28

27 = 1:037;

which is far closer to one than the limit for MC#1 : By further increasing k; the plim of MC
#
k

approaches QV = 1: In Table 1 we have listed the theoretical limit of MC#k ; for k = 1; : : : ; 7

along with the analytical standard deviation, where the latter is given as the square-root

of �MC; see (5). Table 1 also reports an �Oracle�estimator. This estimator is de�ned by

Oracle = MC
#(1)
1 +MC

#(2)
1 ; where MC#(j)1 is the Markov chain estimator computed with

the j-th subsample, j = 1; 2: This estimator has the advantage of knowing that a structural

change occurs in the middle of the sample, and computesMC#(j)1 with homogeneous returns

from the two subsamples.

Importantly, do we see that the analytical and simulation-based standard deviations are

largely in agreements. So computing the asymptotic variance for MC#k ; as if the Markov

chain was homogeneous continues to be valid even if the chain is, in fact, homogeneous,

provided that the estimator is robusti�ed by increasing k: Not only is the estimator robust

to inhomogeneity, so is our expressions for its standard deviation.

Next we study a less homogeneous process, where the transition matrix alternates be-

tween, �
1
2

1
2

1
2

1
2

�
;

�
3
4

1
4

1
4

3
4

�
;

�
4
5

1
5

1
5

4
5

�
; and

�
1
5

4
5

4
5

1
5

�
;

which correspond to � = 0; 12 ;
3
5 ; and �

3
5 ; respectively. In the �rst simulation design

we divide the sample into four subsamples using the following ratios, 1
4 ;

1
4 ;

7
30 ; and

8
30 ,

respectively. With � = (1=
p
2;�1=

p
2)0 the object of interest is normalized to one, because

1
2(
1
4 +

1
4
1+0:5
1�0:5 +

7
30
1+0:6
1�0:6 +

8
30
1�0:6
1+0:6) = 1:

In a second design we have 16 regimes, i.e. 15 structural changes. These are obtained

by shorten each of the four subintervals by a factor of four and repeating the sequence of

subintervals four times. Since each of the four transition matrices are �active�in the same

fraction of the sample, the object of interest is also one in this design.

The simulation results are reported in Table 2 for n = 400; 1; 000; and 10; 000. TheMC#

estimator applied to the full sample is denoted by MC#k ; where we consider k = 1; : : : ; 4:
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4 Regimes 16 Regimes

Oracle MC#1 MC#2 MC#3 MC#4 MC#1 MC#2 MC#3 MC#4

n
=
40
0 Average 0.9740 0.6128 0.9880 1.0228 1.0099 0.6031 0.9465 0.9685 0.9554

Std.dev. 0.1593 0.0544 0.1505 0.2123 0.2536 0.0529 0.1406 0.1933 0.2268

RMSE 0.1612 0.3894 0.1509 0.2137 0.2539 0.3955 0.1487 0.1951 0.2303

Oracle MC#1 MC#2 MC#3 MC#4 MC#1 MC#2 MC#3 MC#4

n
=
1
;0
00 Average 0.9886 0.6151 0.9916 1.0223 1.0028 0.6099 0.9710 0.9963 0.9796

Std.dev. 0.0969 0.0343 0.0945 0.1328 0.1564 0.0339 0.0912 0.1260 0.1491

RMSE 0.0975 0.3858 0.0948 0.1348 0.1564 0.3856 0.0941 0.1261 0.1498

Oracle MC#1 MC#2 MC#3 MC#4 MC#1 MC#2 MC#3 MC#4

n
=
10
;0
00 Average 0.9989 0.6171 0.9945 1.0222 0.9987 0.6167 0.9927 1.0200 0.9968

Std.dev. 0.0302 0.0109 0.0298 0.0415 0.0486 0.0109 0.0298 0.0416 0.0486

RMSE 0.0303 0.3830 0.0303 0.0470 0.0486 0.3832 0.0306 0.0462 0.0486

Table 2: Estimation results for inhomogeneous Markov chains. The accuracy of the estima-

tor, MC2, that is based on a highly misspeci�ed model, is on par with the Oracle estimator.

The results are based on 50,000 simulations.

We also compute the oracle estimator for the case with four regimes. With four regimes,

we again see that MC#1 fails at estimating QV; but interestingly, we �nd that the oracle

estimator is inferior to MC#2 : Thus, in this design, the misspeci�ed Markov chain or order

two yields a more accurate estimate than the oracle estimator, that is based on a correctly

speci�ed models. This shows that even if we know that the Markov chain is inhomogeneous,

there may not be an advantage from estimating the volatility by adding up estimators

computed over homogeneous subsamples. It would be interesting to study this issue in

more depth in future research.

The properties of MC#k for the case with 16 regimes approaches those seen with 4

regimes. This is consistent with our theoretical results, because each of the four transition

matrices are �active�in the same fraction of the sample.
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8 Empirical and Computational Issues

8.1 Jumps and Infrequently States

Jumps in the form of large price changes are not uncommon in high-frequency returns.

Jumps of this kind have implications for the analysis, essentially because one cannot rely

on asymptotics with a single observation. In the absence of noise it is well known that the

�nite activity jump contributions to the quadratic variation is consistently estimated by the

di¤erence between the realized variance and the bipower variation (or a related multipower

variation), see Barndor¤-Nielsen & Shephard (2004).

In the present context we suggest a simple ad-hoc method for classifying intraday returns

as jumps. Speci�cally, we can de�ne jumps to be price changes whose absolute value

exceeds a certain threshold. (In our empirical application we use a 10 cents threshold).

The idea is then to estimate the Markov chain with the remaining intraday returns. The

contribution to the quadratic variation from the increments classi�ed as jumps, Jt; can

then be added separately. One possibility is to model the jumps separately if the number

of jumps is relatively large. For instance, one could model positive jumps and negative

jumps as two independent compound Poisson processes J+t and J
�
t , with rates �

+
t and �

�
t ,

and exponentially distributed jump sizes. A simpler approach is to compute the realized

variance of the jumps separately (i.e.
P
t J

2
t ). However, it is our experience that many of

the price changes that are classi�ed as jumps are caused by outliers, where a large increment

in one direction is followed by a large increment in the opposite direction. So an alternative

measure is (
P
t Jt)

2 that o¤ers robustness to outliers. A potential drawback of this measure

is that it will also o¤set real jumps that happened to have opposite signs. Naturally this is

only an issue if the number of real jumps is two or more.

Infrequent medium large returns can be aggregated in to a single state. For instance in

our empirical application we bundle increments between 5 and 10 cents into a single state

with their average as the common state value (increments between �10 and �5 cents are
combined similarly). This aggregations can be justi�ed by viewing the medium large returns

as a single state where the actual increment is drawn from a multinomial distribution. The

aggregations help reduce the number of states which is particular bene�cial when estimating

higher order chains. In our empirical application we found that the aggregation had a

negligible impact on the MC estimator.
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8.2 Dimension Reduction

The number of distinct states in a Markov chain of order k is Sk: So the dimension of the

transition matrix, P; which is Sk �Sk; increases dramatically with k: However, in practice,
most states will not be observed, so the dimension of the matrix that must be dealt with can

be quite manageable even if k is large. In such cases we de�ne ~P to be the submatrix of P;

that results from deleting the s-th row and s-th column if state s were not observed in the

sample. In our empirical analysis we analyze high-frequency data for an exchange traded

fund for each of the trading days in June 2008. On June 1st, 2007 we have n = 4; 065 non-

zero intraday returns with price changes ranging from �5 cents to +4 cents. With S = 9
basic states, the potential number of distinct states, Sk; is given in Table 3 for k = 1; : : : ; 7:

The number of observed states, Sk; is given right below and we see that for k = 4 we only

observe 391 out of the 6,561 possible states, which simpli�es the computational burden

substantially.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Sk 9 81 729 6,561 59,049 531,441 4,782,969

Sk 9 44 151 391 801 1,370 2,022

Table 3: The number of potential states, Sk, and that number of observed states, Sk, with

the n = 4; 065 high frequency returns we have in our June 1st, 2007 sample.

8.3 The Empirical Stationary Distribution and Ergodicity

Computing the empirical stationary distribution, �̂; for a high-dimensional transition matrix

can be computationally burdensome, in particular in simulation studies where this must be

done repeatedly. A simple modi�cation that makes the computation of � a simple matter

is to ensure that the �rst observed state and last observed state are identical. This can be

done by arti�cially extending the sample with k (or less) observations. For instance, with

k = 2 and the sample is x1; x2; : : : ; xn�1; xn; we extend the sample with two observation,

and use the sample x1; x2; : : : ; xn�1; xn; x1; x2 to estimate P; etc. Let nr;s be the number of

transitions from state r to state s: There will be exactly n observed transitions, where the

�rst transition is the one from state (x1; x2) to state (x2; x3) and the last observe transition

is that from (xn; x1) to (x1; x2): Our estimator of P is given by P̂r;s = nr;s=nr;�; where
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nr;� =
P
s nr;s: Because the �rst and last observed states are identical, we have the same

number of transitions in and out of every state, i.e. nr;� = n�;s =
P
r nr;s: In is now simple

to verify that the stationary distribution associated with P̂ is given by �̂ = (n1;�n ; : : : ;
n
Sk;�
n )0,

because

(�̂0P̂ )s =
X
r

�̂sP̂r;s =
X
r

ns;�
n

nr;s
nr;�

=
ns;�
n

n�;s
nr;�

= �̂s;

since nr;� = n�;s by construction.

Another advantage from this sample extension is that no state will be absorbing under

P̂ ; which is reasonable to rule out in this context. This guarantees that the empirical

transition matrix is within the class of ergodic transition matrices almost surely.

8.4 Order Selection

Selecting the order of the Markov chain, k; is not a simple matter in practice. While

selection methods, such as AIC and BIC, can be justi�ed as n!1 they are not useful in

the present context where the number of free parameters is large relative to the sample size.

Even with thousands of high-frequency returns to estimate the Markov chain, the number

of free parameters becomes large, even with k = 2 or k = 3: The reason is that the number

of parameters grows exponentially with k, and the number of free parameters is a very poor

indicator of the �e¤ective� degrees of freedom in this context. We are currently working

on theoretically sound methods for choosing k for the present problem. In our empirical

application we recommend k = 3 or k = 4 because Markov chains of higher orders produce

similar estimates which suggests that a higher order is not needed in order to capturing the

dependence structure.

9 Empirical Analysis

In this Section we apply the MC estimator to high-frequency data for the SPDR Trust,

Series 1 (AMEX:SPY) which is an exchange traded fund that tracks the S&P 500 index.

We use transaction prices and bid and ask quotes for the 21 trading days in June 2007. The

data were extracted from the TAQ data base, using the cleaning procedures advocated by

Barndor¤-Nielsen, Hansen, Lunde & Shephard (2008c). We will focus on several aspects of

our estimator, speci�cally:

� How the MC estimator compares with our exact estimator, MC�:
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� Sensitivity to the choice of k (the order of the Markov chain).

� Compare the three methods for constructing con�dence intervals for MC:

Some summary statistics are computed in Table 4. We see that the majority of the

price changes are small, between -2 and +2 cents. In terms of trade and quote data, the

main di¤erence is the larger number of zero intraday returns for the quote data. In fact the

larger sample sizes for quote data are largely due to a larger number of zero returns. Thus

by omitting zero returns the three price series will result in similar sample sizes.
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Date 10� 5� �4 �3 �2 �1 0 1 2 3 4 5+ 10+ min max RV5min

T 0 1 5 26 297 1684 3795 1756 263 26 7 0 0 -5 4 0.2066
20070601 B 0 2 1 25 217 1477 16091 1593 176 17 3 0 0 -6 4 0.2267

A 0 0 3 14 172 1564 16129 1506 184 27 2 1 0 -4 6 0.2267
T 0 1 0 21 203 1353 3287 1445 194 20 1 0 0 -5 4 0.1375

20070604 B 0 0 2 14 135 1116 16089 1232 123 5 2 1 0 -4 5 0.1636
A 0 0 1 11 103 1219 16017 1223 128 16 1 0 0 -4 4 0.1643
T 0 3 6 46 333 2045 4433 1978 337 52 9 2 0 -6 7 0.2769

20070605 B 0 2 2 26 258 1893 16086 1953 224 23 1 1 0 -6 5 0.2902
A 0 1 2 22 201 1962 16235 1724 278 41 3 0 0 -5 4 0.2900
T 0 0 2 41 318 2045 4645 1980 320 33 3 0 0 -4 4 0.2834

20070606 B 0 0 0 26 250 1900 16381 1971 188 15 1 0 0 -3 4 0.2845
A 0 0 1 17 225 1994 16357 1885 229 23 1 0 0 -4 4 0.2834
T 0 4 16 118 642 2854 5773 2747 627 88 19 3 0 -6 6 0.7413

20070607 B 0 2 3 68 478 2983 15236 2822 468 45 10 2 0 -5 5 0.6297
A 0 1 10 61 458 3003 15263 2804 440 66 10 1 0 -7 5 0.6276
T 0 8 14 80 467 2400 5016 2414 512 91 20 8 0 -7 6 0.4776

20070608 B 0 2 2 69 398 2354 15308 2510 406 57 9 1 0 -5 6 0.5157
A 0 1 5 42 352 2498 15324 2371 435 81 6 1 0 -5 5 0.5180
T 0 1 2 25 210 1895 4286 1768 265 42 4 0 0 -5 4 0.2735

20070611 B 0 0 0 8 176 1674 16242 1602 217 17 0 0 0 -3 3 0.2881
A 0 0 0 7 161 1712 16244 1563 218 29 2 0 0 -3 4 0.2891
T 0 0 9 57 478 2624 5833 2534 464 63 4 4 0 -4 6 0.5528

20070612 B 0 1 6 41 396 2350 15869 2434 317 36 4 1 0 -7 5 0.5764
A 0 1 3 40 352 2436 15960 2214 388 55 6 0 0 -6 4 0.5772
T 0 5 9 80 417 2243 4651 2306 438 95 12 3 0 -6 6 0.4532

20070613 B 0 3 9 51 388 2142 15643 2360 376 46 5 1 0 -6 5 0.4359
A 0 0 6 44 323 2364 15530 2276 409 63 9 0 0 -4 4 0.4373
T 0 0 7 21 245 2047 4927 1956 309 28 7 1 0 -4 5 0.2177

20070614 B 0 0 1 28 219 1616 16687 1772 183 21 1 0 0 -4 4 0.2378
A 0 0 1 17 181 1726 16681 1676 211 31 4 0 0 -4 4 0.2395
T 0 0 2 13 231 1889 4891 1914 203 17 1 0 0 -4 4 0.1550

20070615 B 0 0 1 21 167 1474 16670 1548 140 9 0 0 0 -4 3 0.1574
A 0 0 0 16 141 1566 16630 1502 154 19 2 0 0 -3 4 0.1583
T 0 0 3 17 133 1520 4148 1469 148 12 0 0 0 -4 3 0.1526

20070618 B 0 0 0 13 136 1207 16483 1225 106 9 2 0 0 -3 4 0.1547
A 0 0 0 7 118 1185 16622 1120 112 16 1 0 0 -3 4 0.1537
T 0 0 2 13 194 1783 4574 1853 181 20 0 0 0 -4 3 0.2103

20070619 B 0 0 0 18 159 1380 16979 1502 136 11 1 0 0 -3 4 0.2178
A 0 0 0 7 149 1400 17041 1427 140 18 4 0 0 -3 4 0.2180
T 0 1 8 61 408 2487 5261 2370 368 50 3 0 0 -6 4 0.4735

20070620 B 0 2 6 59 341 2194 16168 2254 246 26 1 1 0 -5 6 0.4338
A 0 2 5 34 317 2335 16145 2117 302 38 2 1 0 -7 6 0.4327
T 0 5 25 108 619 2724 5270 2696 661 116 25 6 0 -5 8 0.7131

20070621 B 0 1 10 81 462 2558 15045 2752 444 63 3 4 0 -5 5 0.7327
A 0 1 6 55 409 2807 14946 2621 464 100 10 4 0 -5 6 0.7349
T 0 13 19 125 575 2525 5363 2431 551 124 33 6 0 -7 7 0.6890

20070622 B 0 8 34 79 489 2471 14718 2697 398 54 15 3 0 -6 9 0.7888
A 0 1 16 78 449 2762 14579 2491 470 91 20 9 0 -5 10 0.7859
T 0 8 24 102 551 2631 5765 2590 560 105 17 4 0 -7 5 0.8449

20070625 B 0 12 19 90 435 2495 15104 2609 412 74 13 1 0 -8 6 0.8479
A 0 9 14 69 395 2706 15065 2436 436 111 14 9 0 -8 8 0.8427
T 0 5 20 118 653 2677 5549 2724 595 104 23 2 0 -5 5 0.7170

20070626 B 0 4 20 109 501 2473 15462 2666 448 60 9 2 0 -6 6 0.7140
A 0 4 6 68 479 2764 15368 2426 516 99 19 5 0 -6 6 0.7116
T 0 1 6 56 435 2610 5595 2546 542 76 11 1 0 -5 5 0.6057

20070627 B 0 0 10 49 334 2348 15779 2461 403 43 7 2 0 -4 5 0.5414
A 0 1 6 38 305 2512 15698 2366 415 83 10 2 0 -5 6 0.5477
T 1 8 24 110 455 2242 4555 2171 488 126 25 9 0 -46 6 0.5483

20070628 B 1 11 26 80 428 2089 14457 2274 376 90 15 9 0 -47 8 0.5697
A 1 4 16 89 363 2235 14557 2004 443 115 18 11 0 -48 6 0.5718
T 0 8 23 118 564 2486 5137 2505 568 99 16 6 0 -8 5 0.7242

20070629 B 0 9 33 109 459 2416 14930 2511 422 95 23 7 0 -6 7 0.6679
A 0 3 22 79 444 2612 14895 2326 501 107 12 13 0 -5 8 0.6656

Table 4: Some descriptive statistics for the high-frequency data.
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9.1 Exact vs Approximate

First we will compare the two estimators, MC andMC�. We compute both estimators using

three price series, transaction prices, ask quotes, and bid quotes, and six di¤erent orders

for the Markov chain. This leads to 18 pairs of estimates for each of the 21 trading days.

These estimates are given in Table 5.

The two estimators are empirically indistinguishable. So we will recommend the MC

estimator, because its expression is given in closed form and therefore much faster to com-

pute.

Next we compare the estimates across di¤erent values for k: We note that MC1 (and in

some cases both MC1 and MC2) can be quite di¤erent from those based on a larger k: We

attribute the to inhomogeneity, that cannot be accounted for by small k.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

20
07
06
01 T 0.2395 0.2394 0.2558 0.2557 0.2393 0.2392 0.2313 0.2313 0.2327 0.2326 0.2142 0.2142

B 0.2393 0.2393 0.2535 0.2534 0.2381 0.2381 0.2224 0.2224 0.2221 0.2223 0.2178 0.2176

A 0.2397 0.2396 0.2584 0.2583 0.2307 0.2307 0.2210 0.2211 0.2120 0.2119 0.2054 0.2053

20
07
06
04 T 0.1663 0.1664 0.1784 0.1785 0.1686 0.1686 0.1652 0.1652 0.1757 0.1757 0.1828 0.1828

B 0.1638 0.1638 0.1832 0.1832 0.1746 0.1746 0.1644 0.1644 0.1564 0.1564 0.1549 0.1550

A 0.1681 0.1681 0.1943 0.1944 0.1685 0.1685 0.1823 0.1823 0.1734 0.1735 0.1739 0.1738

20
07
06
05 T 0.3299 0.3295 0.3157 0.3155 0.2900 0.2900 0.2882 0.2888 0.2938 0.2953 0.2831 0.2843

B 0.2948 0.2948 0.3101 0.3102 0.2825 0.2826 0.2718 0.2721 0.2683 0.2684 0.2561 0.2564

A 0.2946 0.2945 0.2968 0.2967 0.2731 0.2731 0.2791 0.2791 0.2737 0.2737 0.2607 0.2604

20
07
06
06 T 0.2877 0.2877 0.3088 0.3088 0.2856 0.2857 0.2928 0.2928 0.2846 0.2847 0.2814 0.2816

B 0.2917 0.2917 0.2922 0.2921 0.2677 0.2677 0.2796 0.2795 0.2667 0.2667 0.2645 0.2645

A 0.2876 0.2876 0.2949 0.2949 0.2585 0.2585 0.2705 0.2704 0.2768 0.2766 0.2924 0.2920

20
07
06
07 T 0.6197 0.6196 0.6581 0.6579 0.6053 0.6051 0.5798 0.5795 0.5666 0.5664 0.5836 0.5839

B 0.6632 0.6632 0.6635 0.6635 0.6016 0.6017 0.5794 0.5795 0.5542 0.5544 0.5468 0.5467

A 0.6677 0.6676 0.6722 0.6722 0.6009 0.6009 0.5665 0.5666 0.5780 0.5777 0.5832 0.5829

Table 5: A comparison of MC and MC� estimated with six di¤erent orders, k, using SPY

trade and quote data for the the �rst �ve trading days of June, 2007.
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Confidence intervals for MC by delta and bootstrap methods
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Figure 2: Three 95% con�dence intervals (CI) for each daily estimate of MC4: The �rst two

CIs are computed with the �-method, using the central limit results for MC and logMC,

respectively. The last CI is based on the bootstrap with B = 5; 000:

9.2 Con�dence Interval by the �-Method and the Bootstrap

We construct 95% con�dence intervals for MC using the three methods we discussed in

Section 4. These are the two con�dence intervals based on the central limit theorems we

obtained for MC and log(MC); which basically amounts to computing estimate of their

asymptotic variance. The third con�dence interval is constructed with the bootstrap, using

B = 5; 000 resamples. The con�dence intervals for the estimator based on transaction data

with k = 4 are plotted in Figure 2. We see a remarkable agreement between the three

con�dence intervals. So in situations, such as the present one, with thousands of intraday

returns, we recommend to use one of the asymptotic methods for constructing con�dence

intervals, because these can be compute from analytical expressions.
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Numerical values for the end point of the con�dence intervals are given in a table (Table

7) in a separate appendix, both for the case k = 3 and k = 4. The con�dence intervals for

the estimator based on k = 3 are very similar to those for k = 4:

9.3 Sensitivity to Censoring

The jump on June 28, 2007, changes the transaction price from 151.00 to 150.54, corre-

sponding to a log-return of �0:3051%, that would contribute about 0:093 to the quadratic
variations. Figure 3 displays the MC3 estimator using di¤erent state censoring schemes.

The �rst estimator is the one presented earlier, where the jump on June 28th is omitted

and infrequent states are aggregated into fewer states, speci�cally �XTi 2 [+5;+10] cents
are combined into a single state, and similarly for �XTi 2 [�10;�5]: The second estimator
is computed with intraday returns, excluding the jump, but without any aggregation of

the infrequent states. The third and last estimator is computed with all intraday returns,

including the jump. The similarity across the estimators shows that the aggregations has

little e¤ect on the MC estimator, and by adding the squared jump to the �rst two estimates

on 6/28 (as illustrated in Figure 3) make these two estimates quite similar to the third MC

estimate that is computed with all intraday returns, including the jump.

10 Extensions and Related Estimators

10.1 Quadratic Form Expression

Our Markov chain estimator for the volatility of log-prices is given by

MCk =
n2hf;(2Ẑ � I)fi�̂Pn

i=1X
2
i

= clogf
0f��̂(2Ẑ � I)gf; with clog =

n2P
X2
i

;

where k refers to the order of the Markov chain. First we note that

f 0f��̂(2Ẑ � I)gf = f 0f12��̂(2Ẑ � I) +
1
2(2Ẑ

0 � I)��̂gf = f 0f��̂Ẑ + Ẑ 0��̂ � ��̂gf:

Recall that fs = f(xs) is the last element of the k-dimensional vector, xs. Thus, if we de�ne

the matrix

Di;j = 1ffi=xjg; for i = 1; : : : ; Sk and j = 1; : : : ; S;

then f = Dx: Consequently MCk = x0Mx; where

M = n2P
X2
i

D0
n
��̂Ẑ + Ẑ

0��̂ � ��̂
o
D;
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The Impact of Censoring on the MC Estimator
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Figure 3: The MC estimator is barely in�uenced by reducing the state space by combining

infrequent states into fewer states. Adding the jump on June 28th to the data increases the

estimator by about the same amount as the jump�s contribution to the quadratic variation.

is a symmetric S � S matrix. We could, for example, study how M = Mk varies as we

increase the order of the Markov chain, k:

10.2 The Simplest Case (S = 2 and k = 1) and the Alternation Estimator

In this Section we consider the simplest case with two states and a Markov chain of order

one. We consider the case where the state vector is f = (�;��)0 so that �XTi = ��: The
transition matrix is here

P =

 
p 1� p

1� q q

!
;

where p; q < 1 ensures that P is ergodic, and leads to the stationary distribution � =�
1�q
2�p�q ;

1�p
2�p�q

�0
: Over a short interval of time, such as a day, is reasonable to assume that
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the price process is drift-less, E(�XTi) = 0: This leads to the requirement that p = q so

that � = (12 ;
1
2)
0: The eigenvalues of P are then 1 and � = 2p� 1 and it is simple to verify

that4

cov(�Xj ;�Xj+h) = �
h�2: (8)

It is well known that the RV =
Pn
i=1(�XTi)

2 = n�2 su¤ers from autocorrelation in the

returns, and here we note that f�XTig is autocorrelated unless � 6= 0: With p = q it is

convenient to write the transition matrix as

P = 1
2

�
1 + � 1� �
1� � 1 + �

�
:

The fundamental matrix is in this notation given by

Z = 1
1��

�
1� �=2 ��=2
��=2 1� �=2

�
; so that ��(2Z � I) = 1

1��

�
1=2 ��=2
��=2 1=2

�
:

So the Markov-based estimator is simply given by

MC# = hf; (2Ẑ � I)fi�̂ =
1 + �̂

1� �̂
n�2; (9)

where �̂ is an estimator of �: Not surprisingly is the RV = n�2 biased (unless � = 0); so the

scaling-factor, 1+�̂
1��̂ ; serves to o¤sets the bias that is induced by serial correlation in f�XTig:

10.2.1 The Alternation Estimator

Large (2006) was one of the �rst paper to propose an estimator that takes advantage of the

discreteness of return data. He counts the number of consecutive increments in the same

direction as continuations, c, and consecutive changes in opposite directions as alternations,

a; so that n = a+ c:5 The alternation estimator by Large (2006) is given by

ALT =
c

a
n�2:

We now show that the alternation estimator by Large (2006) is identical to MC#, with

the implicit assumptions that k = 1 and the particular requirements that S = 2 with

f = (+�;��)0.
4An exercise in Campbell et al. (1997, p. 145) asks the reader to derive properties of returns in this

model.
5A common terminology for c and a is concordant and discordant, respectively.
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The maximum likelihood estimator of P; subject to the constraint that p = q is

P̂ =

�
c
n

a
n

a
n

c
n

�
;

so that (by invariance) the maximum likelihood estimator of � is �̂ = det P̂ = c2�a2
n2

: The

implication is that
1 + �̂

1� �̂
=
n2 + c2 � a2
n2 � c2 + a2 =

2ac+ 2c2

2ac+ 2a2
=
c

a
;

which shows that ALT is a special case of the Markov estimator, (9). The noise permitted in

Large�s framework is limited by the requirement that f�XTig has an AR(1) autocorrelation
structure, see (8). The framework of the present paper allows for higher-order Markov chains

and more than two states.

10.3 Markov Estimator by Eigenvalues and Eigenvectors

In the simple two-state Markov chain of order one the estimator of the quadratic variation

is simply the realized variance scaled by a constant that depends on �; which is the second

eigenvalue of P , see (9). Thus an interesting question is whether the Markov estimator

can be expressed in terms of the eigenvalues of P in general. The answer is yes when P is

diagonalizable.

Let �1 = 1 > �2 � : : : �S > �1 be the eigenvalues of P and suppose that P = V �W 0

where � = diag (�1; : : : ; �S) : It can then be shown that

MC# = h�; �i� + 2
SX
s=2

�s
1� �s

h�; vsw0s�i�;

where V = (v1; : : : ; vS) and W = (w1; : : : ; wS): However, MC# = h�; (2Z � I)�i� is simpler
to compute and can be applied even in the case where P cannot be diagonalized.

11 Conclusion

In this paper we have established some general results concerning �ltering a semimartingale

that is contaminated with measurement errors. We have shown that �ltering with a theoret-

ical information set, can eliminate the problems that are caused by market microstructure

noise, under very weak assumptions. However, while the realized variance computed with

returns of the �ltered price produce a good estimator, the realized variance of the �ltered
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returns will not be a proper estimator of the quadratic variation. We have shown that the

Markov chain framework o¤ers a convenient and simple way to implement the �ltering of

high frequency data. Fortunately, the Markov chain estimator is easily adapted to esti-

mate volatility of log-prices, which is usually the object of interest. The estimator does

not appear to be hurt by the vast number of parameters that are estimated in higher-order

Markov chains, and the estimator is surprisingly robust to inhomogeneity, and the presence

of infrequent states, such as jumps.

The Markov chain estimator has many attractive features. It is very simple to compute

and the same can be said about our estimator of the asymptotic variance. A choice variable

is the order of the Markov chain, k: Information criteria may o¤er useful guidance about

the choice for k; but k = 3 has worked well in all our simulations and empirical studies. De-

veloping a data dependent procedure for selecting k is an interesting problem that we leave

for future research. Further experience gained from applying the estimator to additional

data, including other types of data, will o¤er useful guidance to this problem. Selecting k

is similar to selecting the bandwidth parameter that is needed for the implementation of

related estimators. Empirical methods for selecting the bandwidth are rather complex, and

depend on preliminary estimates of features of the noise and the underlying process. Here,

we have found the Markov chain estimator to be quite insensitive to the choice of k; once

k � 2: In empirical situations where the estimator is found to be very sensitive to the choice
for k; beyond the case k = 1; we recommend computing MC locally over time-intervals

where inhomogeneity is less of an issue, and then combine the subsample estimates into an

estimate for the whole period.

We have discussed that jumps can be dealt with by censoring large price changes, using

an ad-hoc threshold. Price increments that are classi�ed as jumps in this way can then be

modelled separately as we discussed in Section 8.1.

It is our experience that the Markov chain estimator is remarkable resilient to inhomo-

geneity and the presence of jumps. In fact, removing the most extreme values does not a¤ect

the estimator much. We are only aware of one issue that can seriously a¤ect the Markov

chain estimator. The problem arises when the empirical transition matrix has an absorbing

state, which happens when the last observed state is the only observation of that state.

This phenomenon is increasingly relevant as we increase the order of the Markov chains.

Fortunately, the remedy for this problem is very simple. By arti�cially extending the sam-
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ple with k observations, as explained in Section 8.3, we can make the last observed state

identical to the �rst observed state, which eliminates the possibility of P̂ having absorbing

states.

There are several interesting extensions of the analysis presented here. For instance, the

Markov chain �ltered price may be used to compute other quantities, including properties of

the implied noise process, or semi-variance, see Barndor¤-Nielsen, Kinnebrock & Shephard

(2008). Though we suspect that estimators of such quantities will be more sensitive to

inhomogeneity than is the case for our estimator of the volatility. There are a number of

ways that the Markov chain framework can be extended to estimate covolatility, that would

enable the estimation of quadratic variation of multivariate processes. We will pursue this

extensions in future research.
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Appendix of Proofs

Proof of Lemma 1. We need to show that E jE(Ut+hjGt)j � E(Ut)j ! 0 when h!1:

E jE(Ut+hjGt)� E(Ut+h)j =

Z
jE(Ut+hjd!)� E(Ut+h)j�(d! 2 Gt)

=

Z
j
Z
Ut+h(!

0)(Pr(Ut+h 2 d!0jd!)

�Pr(Ut+h 2 d!0))�(d!0)j�(d! 2 Gt) � E(jUt+hj)�(h);

which converges to 0 as h!1; by the de�nition of �-mixing. �
Proof of Theorem 1. By the martingale property E(Mt+hjGt) =Mt we have,

E(Xt+hjGt) =Mt + E(FVt+hjGt) + E(Ut+hjGt);

where the last term is assumed to be continuous �nite variation process. Now complete the
proof by showing that E(FVt+hjGt) is a continuous �nite variation process.

Let 0 = T0 < � � � < Tn = T be a partition of [0; T ]: We need to show thatXn

i=2

��E(FVTi jGTi�1)� E(FVTi�1 jGTi�2)�� <1;
when sup1�i�n jTi � Ti�1j ! 0: First we note that��E(FVTi jGTi�1)� E(FVTi�1 jGTi�2)�� �

��E(FVTi jGTi�1)� FVTi�1��+ ��FVTi�1 � FVTi�2��
+
��FVTi�2 � E(FVTi�1 jGTi�2)�� :

By summing over i we get:

nX
i=2

��E(FVTi jGTi�1)� E(FVTi�1 jGTi�2)�� � 2
nX
i=1

E(
��FVTi � FVTi�1�� jGTi�1)
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+

nX
i=1

��FVTi � FVTi�1�� :
The last term is �nite, since FVt has �nite variation, and if

Pn
i=1 E(

��FVTi � FVTi�1�� jGTi�1) �
1 would imply E(

Pn
i=1

��FVTi � FVTi�1��) �1 which contradicts the fact that FVt has lo-
cally integrable variation. Next we address continuity.

jE(FVt+�+hjGt+�)� E(FVt+h)jGt)j � jE(FVt+�+hjGt+�+h)� E(FVt+hjGt+�+h)j
+ jE(FVt+hjGt+�+h)� E(FVt+hjGt+h)j ;

where the �rst term of the right hand side is bounded by

jE(FVt+�+hjGt+�+h)� E(FVt+hjGt+�+h)j � E(jFVt+h+� � FVt+hjjGt+h+�);

which vanishes because lim�!0 jFVt+h+� � FVt+hj = 0 by continuity of FVt: For the second
term we have jE(FVt+hjGt+�+h)� E(FVt+hjGt+h)j ! 0 by continuity of Gt at t+ h: �

Proposition A.1 Some properties of Z(h) = I +
Ph
j=1(P

j � �); when P generates an

ergodic Markov chain.

(i) (P ��)j = P j �� so that Z(h) = I +
Ph
j=1(P ��)j.

(ii) Z = limh!1 Z(h) = (I � P +�)�1:

(iii) Z� = �; �0Z = �0; and PZ = ZP = Z � I +�:

Proof. We prove (i) by induction. The identity is obvious for j = 1: Now suppose that the
identity holds for j: Then

(P ��)j+1 = (P ��)(P j ��) = P j+1 ��P j +�2 � P� = P j+1 ��;

where the last identity follows from �P j = �2 = P� = �:
(ii) Since the chain is ergodic we have kP ��k < 1. By the Perron-Frobenius theorem, P h
converges geometrically to � with rate given by the second largest eigenvalue of P , namely

P h ��

 = O(j�2jh): The series I +

P1
j=1(P

j � �) = I +
P1
j=1(P � �)j is therefore

absolutely convergent with I +
P1
j=1(P ��)j = (I � (P ��))�1 = Z.

(iii) P j� = � and �0P j = �0 for any j 2 N; and �� = � and �0� = �0; so that have
(P j ��)� = �0(P j ��) = 0: The �rst two results follow from Z = I+

P1
j=1(P

j ��): Next,
PZ = ZP = P +

P1
j=1(P

j+1 ��) and

P +

1X
j=1

(P j+1 ��) = P +
1X
j=1

(P j ��)� P +� = Z � I +�:

Proof of Lemma 2. We have E(�XTi+h j�XTi = xr) = (P hx)r = e0rP
hx so that for

(�XTi ;�XTi�1) = (xr; xs) we have

y(h)(xr;xs) = fs +
hX
l=1

E(�XTi+l j�XTi = xs)�
hX
l=1

E(�XTi+l�1 j�XTi�1 = xr)
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=

"
e0s + e

0
s

hX
l=1

P l � e0r
hX
l=1

P l

#
f

=

"
e0s + e

0
s

hX
l=1

(P l ��)� e0r
hX
l=1

(P l ��)
#
f

=
h
e0r + e

0
sfI +

Ph
l=1(P

l ��)g � e0rfI +
Ph
l=1(P

l ��)g
i
f

=
h
e0r + e

0
sZ

(h) � e0rZ(h)
i
x;

and the result follows. �
Proof of Theorem 2. Since�XTi is ergodic, then so is the overlapping chain (�XTi ; : : : ;�XTi�k).
So by the ergodic theorem, we simply need to compute the expected value, as this will be
the limit almost surely. The stationary distribution of (�XTi ; : : : ;�XTi�k) is given by

Pr
��
�XTi+1 ;�XTi

�
= (xs;xr)

	
= �rPr;s:

Now we will show that RV(h)F
a:s:! h�; (2Z(h) � I)�i� + 2h(I � Z(h))�;(P h+1 ��)�i�: To sim-

plify our expressions, we write �YTi = y(h)(�XTi�1 ;�XTi); and recall that y(h)(xr;xs) =
e0r(I � Z(h))f + e0sZ(h)f; such that

Ef(�YTi)
2g =

X
r;s

�rPr;sfy(h)(xr;xs)g2

= f 0(I � Z(h))0
X
r;s

�rPr;sere
0
r(I � Z(h))f

+2f 0(I � Z(h))0
X
r;s

�rPr;sere
0
sZ

(h)f + f 0Z(h)0
X
r;s

�rPr;sese
0
sZ

(h)f:

The identitiesX
r;s

�rPr;sere
0
r =

X
r;s

�rPr;sese
0
s = ��; and

X
r;s

�rPr;sere
0
s = ��P;

simpli�es our expression to

Ef(�YTi)
2g = h(I � Z(h))f; (I � Z(h))fi� + 2h(I � Z(h))f; PZ(h)fi� + hZ(h)f; Z(h)fi�

= h(I � Z(h))f; (I � 2Z(h))fi� + hf; Z(h)fi� + 2h(I � Z(h))f; PZ(h)fi�
= hf; Z(h)fi� + h(I � Z(h))f; (I + 2(P � I)Z(h))fi�:

Next we note that

PZ(h) = P +

hX
l=1

(P l+1 ��) = �+
h+1X
l=1

(P l ��) = �+ Z(h+1) � I;

and that h(I � Z(h))f;�fi� =f 0(I � Z(h))
0
����

0f=f 0(I � Z(h))0��0f= 0 since

�0Z(h) = �0 + �0
hX
l=1

(P ��)l = �0:
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So

Ef(�YTi)
2g = hf; Z(h)fi� + h(I � Z(h))f; (I + 2(�� I + Z(h+1) � Z(h))fi�

= hf; Z(h)fi� + h(I � Z(h))f; (�I + 2Z(h+1) � 2Z(h))fi�
= hf; (2Z(h) � I)fi� + h(I � Z(h))f; 2(Z(h+1) � Z(h))fi�;

and since Z(h+1)�Z(h) = P h+1 ��; we have established that RV(h)F
a:s:! h�; (2Z(h) � I)�i�+

2h(I � Z(h))�;(P h+1 ��)�i�:
Finally, RVF = limh!1RV

(h)
F , follows from



Z(h) � Z

 = 

Pl>h P
l ��



 = O(j�2jh),
where �2 is the second largest eigenvalue of P , so that Z(h) converges to Z geometrically.
�

Lemma A.1 Asymptotic distribution of the empirical stationary distribution.

Let ns;� =
Pn
i=1 1f�XTi

=xsg. Then

p
n
n�n1;�

n ; : : : ;
nS;�
n

�0 � �o d! N(0;��Z + Z
0�� � ��0 � ��):

Proof of Lemma A.1 By a Cramér-Wold argument it follows by Proposition 1 that the
limiting distribution is Gaussian, because any linear combination of

�n1;�
n ; : : : ;

nS;�
n

�
can be

expresses as a function
p
n�XTi using the indicator functions, 1f�XTi

=xsg; s = 1; : : : ; S: So
we simply need to derive the asymptotic variance. Denote the asymptotic variance matrix
by �: For the s-th diagonal element, we use g(

p
n�XTi) = 1f�XTi

=xsg; so that the state
vector is the s-th unit vector, g = es. By Proposition 1 we obtain the asymptotic variance

�s;s = hes; (2Z � I ��)esi� = 2�sZs;s � �s(1 + �s):

Next, for r 6= s; we consider g(
p
n�XTi) = 1f�XTi

=xrg + 1f�XTi
=xsg; which leads to

g = er + es; and the asymptotic variance,

her + es; (2Z � I ��)(er + es)i�:

Similarly with g(
p
n�XTi) = 1f�XTi

=xrg � 1f�XTi
=xsg we obtain the asymptotic variance

her � es; (2Z � I ��)(er � es)i�:

We now obtain the covariances by the identity cov(X;Y ) = 1
4 fvar(X + Y )� var(X � Y )g ;

so that

�r;s = 1
4fher + es; (2Z � I ��)(er + es)i� � her � es; (2Z � I ��)(er � es)i�g

= 1
4f2her; (2Z � I ��)esi� + 2hes; (2Z � I ��)eri�g

= 1
4f2her; (2Z ��)esi� + 2hes; (2Z ��)eri�g

= �rZr;s + �sZs;r � �r�s:

This completes the proof. �
We have the following results for nr;s; which is used extensively in our proofs.
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Proposition A.2 Let

�nr;s;nu;v = lim
n!1

cov
�
nr;sp
n
;
nu;vp
n

�
and �nr;s;nu;� = lim

n!1
cov

�
nr;sp
n
;
nu;�p
n

�
:

Then

�nr;s;nu;v = Pr;sPu;v(�rZs;u + �uZv;r � 3�r�u) + �rPr;s�r;u�s;v; (A.1)

�nr;s;nu;� = �rPr;sZs;u � 2�r�uPr;s + �uPr;sZu;r: (A.2)

The results is due to Derman (1956). Here we state and prove the results with a modern
notation, such as the fundamental matrix, Z.
Proof of Proposition A.2. We have

cov(nr;s; nu;v)

n
= n�1

P
i<j
�rPr;s(P

j�i�1)s;uPu;v + �rPr;s�r;u�s;v

+n�1
P
j<i
�uPu;v(P

j�i�1)v;rPr;s � n�rPr;s�uPu;v

= �rPr;s
n�2P
l=0

n�l�1
n (P l ��)s;uPu;v + �rPr;s�r;u�s;v

+�uPu;v
n�2P
l=0

n�l�1
n (P l ��)v;rPr;s � 3�rPr;s�uPu;v

! �rPr;sZs;uPu;v + �uPu;vZv;rPr;s + �rPr;s�r;u�s;v � 3�rPr;s�uPu;v;

as n!1: This proves (A.1). Next, summing (A.1) over v yieldsP
v Pr;sPu;v(�rZs;u + �uZv;r � 3�r�u) + �rPr;s�r;u�s;v

= �rPr;sZs;u + �uPr;s
P
v Pu;vZv;r � 3�r�uPr;s + �rPr;s�r;u

and the identity
P
v Pu;vZv;r = (PZ)u;r = (Z � I +�)u;r leads to

�rPr;sZs;u + �uPr;sZu;r � �uPr;s�r;u + �u�rPr;s � 3�r�uPr;s + �rPr;s�r;u;

which simpli�es to (A.2). �
Proof of Theorem 3. The Gaussian limit follows from Proposition 1 that also yields the
expression, hg; (2ZZ��Z�I) gi�Z ; for the asymptotic variance. To obtain the expression
for �RVF that is stated in the Theorem, we note that the variance of RVF =

PSk

r;s=1 nr;sy
2
(r;s)

is given from the variance-covariance of (nr;s)r;s=1;:::;Sk that are denoted by �nr;s;nu;v : The
expression for �nr;s;nu;v are derived in Proposition A.2. �
Proof of Proposition 2. We know that

p
nf(nr;sn ;

nr;�
n ;

nu;v
n ;

nu;�
n )

0� (Pr;s�r ; �r;
Pu;v
�r
; �u)

0g d!
N(0; A); where the elements of A is given from Proposition A.2. Since P̂r;s =

nr;s
n =

nr;�
n ; we can

obtain the asymptotic variance by the delta method. Applying the mapping (x; y; z; w)0 7!
(xy ;

z
x)
0 to (nr;sn ;

nr;�
n ;

nu;v
n ;

nu;�
n ); leads to the following gradient:

r0 =
�
��1r ���1r Pr;s 0 0
0 0 ��1u ���1u Pu;v

�0
:
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The asymptotic covariance of P̂r;s =
nr;s
nr;�

and P̂u;v =
nu;v
nu;�

is given as the upper-right (or

lower-left) element of r0Ar; which is given by

(�P )(r;s)(u;v) =
�
��1r ;���1r Pr;s

�� �nr;s;nu;v �nr;s;nu;�
�nr;�;nu;v �nr;�;nu;�

��
��1u

���1u Pu;v

�
=

1

�r�u
(1;�Pr;s)

�
�nr;s;nu;v �nr;s;nu;�
�nr;�;nu;v �nr;�;nu;�

��
1

�Pu;v

�
:

Next, we substitute the expressions we determined in Proposition A.2. This yields

=
1

�r�u
fPr;sPu;v(�rZs;u + �uZv;r � 3�r�u) + �rPr;s�r;u�s;v

�Pu;v(�rPr;sZs;u � 2�r�uPr;s + �uPr;sZu;r)
�Pr;s(�uPu;vZv;r � 2�u�rPu;v + �rPu;vZr;u)
+Pr;sPu;v(�rZr;u + �uZu;r � �r�u � �r;u�r)g

=
Pr;s�r;u�s;v

�r
+
Pr;sPu;v
�r�u

f�rZs;u + �uZv;r � 3�r�u

�(�rZs;u � 2�r�u + �uZu;r)
�(�uZv;r � 2�u�r + �rZr;u)
+�rZr;u + �uZu;r � �r�u � �r;u�rg

=
Pr;s�r;u�s;v

�r
+
Pr;sPu;v
�r�u

f��r;u�rg =
Pr;s
�r
�r;u(�s;v � Pr;v):

So we immediately see that (�P )(r;s);(u;v) = 0 if r 6= u, (�P )(r;s);(r;v) = � 1
�r
Pr;sPr;v, if s 6= v,

and and that (�P )(r;s);(r;s) =
1
�r
Pr;s(1� Pr;s): This completes the proof. �

Proof of Lemma 3. Schweitzer (1968) perturbs �nite Markov chains and computes, in
particular, the derivatives of the stationary distribution and of the fundamental matrix with
respect to P;

@�v
@Pr;s

= �rZs;v and
@Zu;v
@Pr;s

= Zu;rZs;v � �r(Z2)s;v:

So we have,
@h�;Z�i�
@Pk;l

=
X
i

(Z�)i�i
@�i
@Pk;l

+
X
i

X
j

�i�i�j
@Zi;j
@Pk;l

:

The �rst term can we expressed asX
i

(Z�)i�i
@�i
@Pk;l

= �k
X
i

(Z�)iZl;i�i = �k[Z ��Z�]l;

and the second term can be written asX
i

X
j

�i�i�j
@Zi;j
@Pk;l

=
X
i;j

�i�i�jZi;kZl;j �
X
i;j

�i�i�k(Z
2)l;j�j

= h�;Z�;ki�(Z�)l � �k(Z
2�)lh�; �i:
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Next we �nd that @h�;�i�@Pk;l
= �k

P
i Zl;i�

2
i = �k(Z�

2)l: Adding up the three terms and de�ning
� = h�;�i; we have

@h�; (2Z � I)�i�
@Pk;l

= 2f�k[Z��Z�]l + (Z�)lh�;Z�ki� � �k�(Z
2�)lg � �k(Z�2)l

=
�
�k2Z��Z� + 2�

0��Z�kZ� � 2�k�ZZ� � �kZ���
�
l

=
�
Z
�
��(2I � Z�1)� 2�I

	
Z��k + 2Z��

0��Z�k
�
l
;

and the results follows from 2Z � I = (2I � Z�1)Z = f2I � (I � P +�)gZ; and picking
the l-th row and k-th column of the matrix stated in the Lemma. �
Proof of Corollary 1. To simplify notation set �r;s = @h�; (2Z � I)�i�=@Pr;s: From
Proposition 2 we �nd

�MC =
X
r;s;u;v

�r;s (�P )(r;s)(u;v) �u;v =
X
r;s;v

�r;s

n
1
�r

�
�Pr;� � P 0r;�Pr;�

�
s;v

o
�r;v

=
X
r;s;v

1
�r
�r;�

�
�Pr;� � P 0r;�Pr;�

�
�r;�;

and the result follows from the expression derived in Lemma 3. �
Proof of Theorem 5. We �rst prove that RVF̂ = MC

# when the �rst and last observed
state coincide. In this event it follows that �̂r =

P
s nr;s=n; so that nr;s = �̂rP̂r;sn; and

hence

RVF̂ =
X
r;s

nr;sŷ
2
(r;s) =

X
r;s

�̂rP̂r;sn
n
e0r(I � Ẑ)f + e0sẐf

o2
=
X
r;s

�̂rP̂r;s

n
e0r(I � Ẑ)f + e0sẐ�

o2
:

Following the same steps as those used in the proof of Theorem 2, we �nd (with h = 1)
that RVF̂ = h�; (2Ẑ � I)�i�̂ = MC#. Next, we turn to the general situation, where we
establish the asymptotic equivalence of RVF̂ and MC

# by relating both estimators to a

third estimator. The third estimator is de�ned by gMC = �0�~�(2 ~Z � I)�; where ~� and ~Z
are associated with the transition matrix, ~P : Here ~P is the maximum likelihood estimator
of P; that is compute with the extended sample

(x1; x2; : : : ; xn�1; xn; x1; : : : ; xk):

In comparison, P̂ is computed with the sample (x1; x2; : : : ; xn�1; xn): Arti�cially adding
a �nite number of observations implies that P̂ � ~P = Op(n

�1): The two estimators are
given by g(P̂ ) and g( ~P ) for some continuous function g; and we derived the di¤erential
@g(P )=@P in Lemma 3 from which it follows that MC# �gMC = Op(n�1): Finally we show
that RVF̂ �gMC = Op(n�1): Since the �rst and last observed state in the extended sample
are identical, we have gMC = RV~F =

P
r;s ~nr;s~y

2
(r;s); where ~y(r;s) = e0r(I � ~Z)f + e0s ~Zf and

~nr;s is the number of transitions from r to s in the extended sample. Since f = n�1=2� we
have ~y2(r;s) = Op(n

�1) so that

RV~F =
X
r;s

~nr;s~y
2
(r;s) �

X
r;s

nr;s~y
2
(r;s) = Op(n

�1):
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So the proof is completed by showing
P
r;s nr;s(~y

2
(r;s) � y

2
(r;s)) = Op(n

�1): First we note

that fe0r(I � Ẑ) + e0sẐg � fe0r(I � ~Z) + e0s ~Zg = Op(n
�1) because Z = Z(P ) is continuous

di¤erentiable in P . Since G(x) = xx0 is also �smooth� we have Gfe0r(I � ~Z) + e0s ~Zg �
Gfe0r(I � Ẑ) + e0sẐg = Op(n�1): It now follows that

X
r;s

nr;s(~y
2
(r;s) � y

2
(r;s)) =

X
r;s

nr;sf
0
h
Gfe0r(I � ~Z) + e0s ~Zg �Gfe0r(I � Ẑ) + e0sẐg

i
f

=
X
r;s

nr;s
n
�0
h
Gfe0r(I � ~Z) + e0s ~Zg �Gfe0r(I � Ẑ) + e0sẐg

i
�;

is Op(n�1); which completes the proof. �
Proof of Corollary 2. Follows by the delta method. �
Proof of Theorem 6. To simplify notation, write �

R
�as short for �

R Tk+h
Tk

�. First notice
that

Pr(XTk+h = jjXTk = i) =
h
E
n
eA
R
�udujFTk

oi
i;j
;

so by Bayes�formula we have for i 6= j,

Pr(XTk+h = jjXTk = i;XTk+h 6= i) =
Pr(XTk+h = j;XTk+h 6= ijXTk = i)

Pr(XTk+h 6= ijXTk = i)

=
Pr(XTk+h = j 6= ijXTk = i)
1� Pr(XTk+h = ijXTk = i)

=

�
E
�
eAs�udujFTk

	�
i;j

1� [E feAs�udujFTkg]i;i
:

Since E
�
eAs�udujFTk

	
= I + �TkA+ o(h), we have (for i 6= j)

Pr(XTk+h = jjXTk = i;XTk+h 6= i) =
[I + �TkA+ o(h)]i;j 6=i
[�TkA+ o(h)]i;i

! Ai;j
Ai;i

;

as h ! 0: Consider two observations at time Tk and Tk+1, and recall that Pr(Tk+1 � Tk 2
dhjFTk) = E

�
�Tk+he

�s�udujFTk
	
: So that

Pr(XTk+1 = jjXTk = i;XTk+h 6= i) =
[P (Tk; Tk+1)]i;j

1� [P (Tk; Tk+1)]i;i
;

where P (Tk; Tk+1) = E(
R1
0 e

As�udu�Tk+he
�s�ududhjFTk): Next we use that eA s �udu =P1

k=0
Ak

k! (s�udu)
k, so thatZ 1

0

(s�udu)k

k!
�Tk+he

�s�ududh =

Z 1

0
�Tk+h

(s�udu)k�1

(k � 1)! e�s�ududh;

and 



Z 1

0
eAs�udu�Tk+he

�s�ududh�I �A
Z 1

0
�Tk+he

�s�ududh
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�
X
k�2

kAkk

(k � 1)!

Z 1

0
�Tk+h (s�udu)

k�1 e�s�ududh

Having assumed that �t(n)
�t(n)

! 0 uniformly, we know that there exists Cn ! 1, such that
�t(n) � Cn�t(n):X

k�2

kAkk

(k � 1)!

Z 1

0
�Tk+h (s�udu)

k�1 e�s�ududh

�
X
k�2

kAkk

(k � 1)!

Z 1

0
�Tk+h (s�udu)

k�1 e�Cn s�ududh

=
X
k�2

kAkk

(k � 1)!

Z 1

0
vk�1e�Cnvdv =

X
k�2

kAkk

Ckn
=

kAk2

C2n � Cn kAk
= O(

1

C2n
):

Thus,
R1
0 eAs�udu�Tk+he

�s�ududh = I + A
R1
0 �Tk+he

�s�ududh + o
�
1
Cn

�
; and taking ex-

pected value we have

P (Tk; Tk+1) = I +AE(

Z 1

0
�Tk+he

�s�ududhjFTk) + o
�
1

Cn

�
:

Finally we can conclude that

Pr(XTk+1 = jjXTk = i;XTk+h 6= i) =
h
I+AEfR10 �Tk+he

�s�ududhjFTkg+o( 1
Cn
)
i
i;j

1�
h
I+AEfR10 �Tk+he

�s�ududhjFTkg+o( 1
Cn
)
i
i;i

! Ai;j
Ai;i

:

This completes the proof. �
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

20
07
06
01 T 0.2395 0.2394 0.2558 0.2557 0.2393 0.2392 0.2313 0.2313 0.2327 0.2326 0.2142 0.2142

B 0.2393 0.2393 0.2535 0.2534 0.2381 0.2381 0.2224 0.2224 0.2221 0.2223 0.2178 0.2176

A 0.2397 0.2396 0.2584 0.2583 0.2307 0.2307 0.2210 0.2211 0.2120 0.2119 0.2054 0.2053

20
07
06
04 T 0.1663 0.1664 0.1784 0.1785 0.1686 0.1686 0.1652 0.1652 0.1757 0.1757 0.1828 0.1828

B 0.1638 0.1638 0.1832 0.1832 0.1746 0.1746 0.1644 0.1644 0.1564 0.1564 0.1549 0.1550

A 0.1681 0.1681 0.1943 0.1944 0.1685 0.1685 0.1823 0.1823 0.1734 0.1735 0.1739 0.1738

20
07
06
05 T 0.3299 0.3295 0.3157 0.3155 0.2900 0.2900 0.2882 0.2888 0.2938 0.2953 0.2831 0.2843

B 0.2948 0.2948 0.3101 0.3102 0.2825 0.2826 0.2718 0.2721 0.2683 0.2684 0.2561 0.2564

A 0.2946 0.2945 0.2968 0.2967 0.2731 0.2731 0.2791 0.2791 0.2737 0.2737 0.2607 0.2604

20
07
06
06 T 0.2877 0.2877 0.3088 0.3088 0.2856 0.2857 0.2928 0.2928 0.2846 0.2847 0.2814 0.2816

B 0.2917 0.2917 0.2922 0.2921 0.2677 0.2677 0.2796 0.2795 0.2667 0.2667 0.2645 0.2645

A 0.2876 0.2876 0.2949 0.2949 0.2585 0.2585 0.2705 0.2704 0.2768 0.2766 0.2924 0.2920

20
07
06
07 T 0.6197 0.6196 0.6581 0.6579 0.6053 0.6051 0.5798 0.5795 0.5666 0.5664 0.5836 0.5839

B 0.6632 0.6632 0.6635 0.6635 0.6016 0.6017 0.5794 0.5795 0.5542 0.5544 0.5468 0.5467

A 0.6677 0.6676 0.6722 0.6722 0.6009 0.6009 0.5665 0.5666 0.5780 0.5777 0.5832 0.5829

20
07
06
08 T 0.5166 0.5173 0.5288 0.5288 0.5179 0.5177 0.4710 0.4707 0.4647 0.4672 0.5039 0.5061

B 0.5581 0.5584 0.5745 0.5746 0.5143 0.5141 0.4934 0.4926 0.4838 0.4815 0.4986 0.4989

A 0.5310 0.5312 0.5610 0.5612 0.4967 0.4968 0.4861 0.4862 0.4740 0.4736 0.4842 0.4839

20
07
06
11 T 0.2452 0.2453 0.2585 0.2587 0.2582 0.2583 0.2685 0.2688 0.2833 0.2837 0.2869 0.2872

B 0.2508 0.2508 0.2725 0.2725 0.2554 0.2555 0.2708 0.2706 0.2743 0.2744 0.2982 0.2986

A 0.2419 0.2420 0.2768 0.2768 0.2564 0.2564 0.2657 0.2658 0.2866 0.2867 0.2915 0.2916

20
07
06
12 T 0.4627 0.4629 0.5500 0.5501 0.5526 0.5528 0.5649 0.5654 0.5699 0.5708 0.5951 0.5958

B 0.4921 0.4922 0.5500 0.5501 0.5636 0.5638 0.5763 0.5764 0.5638 0.5638 0.5533 0.5528

A 0.4820 0.4822 0.5557 0.5557 0.5577 0.5577 0.5912 0.5908 0.5958 0.5953 0.6178 0.6181

20
07
06
13 T 0.4609 0.4612 0.4785 0.4785 0.4324 0.4322 0.4178 0.4172 0.3959 0.3954 0.4046 0.4049

B 0.4841 0.4842 0.4863 0.4865 0.4235 0.4237 0.4059 0.4060 0.4053 0.4055 0.4025 0.4022

A 0.4827 0.4829 0.4977 0.4978 0.4572 0.4574 0.4253 0.4254 0.4090 0.4091 0.4080 0.4085

20
07
06
14 T 0.2496 0.2496 0.2644 0.2645 0.2447 0.2448 0.2391 0.2392 0.2342 0.2344 0.2377 0.2379

B 0.2550 0.2551 0.2626 0.2626 0.2362 0.2362 0.2291 0.2292 0.2186 0.2188 0.2139 0.2139

A 0.2484 0.2484 0.2653 0.2654 0.2313 0.2313 0.2270 0.2270 0.2079 0.2080 0.2106 0.2107

20
07
06
15 T 0.1831 0.1831 0.1917 0.1916 0.1777 0.1777 0.1609 0.1609 0.1598 0.1599 0.1512 0.1515

B 0.1725 0.1724 0.1735 0.1735 0.1514 0.1514 0.1479 0.1479 0.1377 0.1377 0.1444 0.1445

A 0.1750 0.1751 0.1716 0.1716 0.1596 0.1596 0.1582 0.1582 0.1475 0.1472 0.1555 0.1556

Table continued on next page...
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
20
07
06
18 T 0.1445 0.1445 0.1604 0.1604 0.1458 0.1458 0.1547 0.1547 0.1599 0.1599 0.1584 0.1584

B 0.1542 0.1542 0.1532 0.1532 0.1490 0.1491 0.1540 0.1535 0.1580 0.1583 0.1607 0.1609

A 0.1521 0.1521 0.1494 0.1494 0.1447 0.1447 0.1544 0.1543 0.1639 0.1637 0.1636 0.1635

20
07
06
19 T 0.1842 0.1842 0.2200 0.2200 0.2154 0.2156 0.2192 0.2196 0.2178 0.2180 0.2188 0.2191

B 0.1897 0.1897 0.2279 0.2277 0.2157 0.2156 0.2230 0.2229 0.2158 0.2161 0.2219 0.2222

A 0.1968 0.1968 0.2277 0.2276 0.2215 0.2214 0.2145 0.2144 0.2251 0.2251 0.2180 0.2177

20
07
06
20 T 0.3815 0.3819 0.4367 0.4373 0.4289 0.4294 0.4151 0.4155 0.4377 0.4382 0.4094 0.4101

B 0.4025 0.4029 0.4397 0.4401 0.4310 0.4313 0.4417 0.4416 0.4476 0.4478 0.4642 0.4641

A 0.4014 0.4017 0.4470 0.4473 0.4354 0.4354 0.4367 0.4360 0.4528 0.4522 0.4512 0.4506

20
07
06
21 T 0.5986 0.5993 0.6622 0.6630 0.6556 0.6567 0.6577 0.6587 0.6680 0.6691 0.6804 0.6816

B 0.6315 0.6318 0.6780 0.6783 0.6715 0.6717 0.6581 0.6584 0.6777 0.6782 0.6630 0.6632

A 0.6269 0.6271 0.6847 0.6850 0.6819 0.6821 0.6825 0.6826 0.6883 0.6884 0.7190 0.7191

20
07
06
22 T 0.6940 0.6947 0.7669 0.7685 0.7608 0.7621 0.7478 0.7485 0.7604 0.7606 0.7789 0.7780

B 0.6956 0.6962 0.7908 0.7918 0.7717 0.7727 0.7758 0.7757 0.7702 0.7716 0.7588 0.7615

A 0.7020 0.7026 0.7650 0.7654 0.7470 0.7474 0.7474 0.7461 0.7536 0.7531 0.7823 0.7841

20
07
06
25 T 0.6179 0.6190 0.7452 0.7466 0.7694 0.7709 0.7982 0.7992 0.8371 0.8372 0.8241 0.8248

B 0.6360 0.6378 0.7245 0.7270 0.7471 0.7470 0.7494 0.7491 0.7682 0.7682 0.8481 0.8494

A 0.6370 0.6390 0.7401 0.7427 0.7382 0.7383 0.8119 0.8117 0.8098 0.8102 0.7896 0.7895

20
07
06
26 T 0.6933 0.6935 0.8068 0.8069 0.7447 0.7448 0.7446 0.7446 0.7094 0.7096 0.7058 0.7050

B 0.7097 0.7099 0.7499 0.7501 0.7409 0.7410 0.7605 0.7602 0.7355 0.7353 0.7071 0.7070

A 0.7004 0.7006 0.8169 0.8171 0.7619 0.7617 0.7422 0.7417 0.7224 0.7222 0.7556 0.7552

20
07
06
27 T 0.5035 0.5039 0.5673 0.5676 0.5648 0.5653 0.5177 0.5168 0.5048 0.5030 0.5018 0.5003

B 0.5165 0.5168 0.5571 0.5574 0.5488 0.5492 0.5376 0.5379 0.4884 0.4887 0.4964 0.4965

A 0.5171 0.5175 0.5546 0.5550 0.5527 0.5531 0.5311 0.5314 0.5118 0.5118 0.5144 0.5141

20
07
06
28 T 0.5927 0.5928 0.6433 0.6434 0.6457 0.6463 0.6123 0.6120 0.6167 0.6183 0.5425 0.5431

B 0.6018 0.6029 0.6658 0.6651 0.6227 0.6210 0.5750 0.5767 0.5433 0.5433 0.4809 0.4833

A 0.6203 0.6202 0.6919 0.6917 0.6388 0.6403 0.6106 0.6115 0.5830 0.5858 0.5746 0.5916

20
07
06
29 T 0.6442 0.6451 0.7258 0.7262 0.7055 0.7066 0.7044 0.7040 0.6841 0.6839 0.6902 0.6910

B 0.6680 0.6691 0.7215 0.7224 0.6855 0.6854 0.6782 0.6794 0.6536 0.6546 0.6541 0.6557

A 0.6704 0.6720 0.7149 0.7167 0.7027 0.7047 0.6899 0.6911 0.6642 0.6647 0.6664 0.6679

Table 6: A comparison of MC and MC� for 21 trading days of high-frequency data, using

six di¤erent orders for the Markov chain being estimator.
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Date k = 3 k = 4

MC Delta LogDelta Bootstrap MC Delta LogDelta Bootstrap

20070601 0.239 0.209 0.269 0.211 0.271 0.210 0.272 0.231 0.197 0.266 0.199 0.269 0.199 0.271

20070604 0.169 0.146 0.192 0.147 0.193 0.147 0.193 0.165 0.141 0.190 0.143 0.191 0.141 0.190

20070605 0.290 0.258 0.322 0.260 0.324 0.260 0.322 0.288 0.252 0.324 0.254 0.327 0.254 0.324

20070606 0.286 0.257 0.314 0.259 0.315 0.259 0.315 0.293 0.259 0.327 0.261 0.329 0.260 0.329

20070607 0.605 0.549 0.662 0.552 0.664 0.552 0.664 0.580 0.520 0.639 0.523 0.642 0.521 0.641

20070608 0.518 0.463 0.573 0.465 0.576 0.465 0.576 0.471 0.418 0.524 0.421 0.527 0.419 0.527

20070611 0.258 0.228 0.288 0.230 0.290 0.229 0.292 0.269 0.232 0.305 0.235 0.307 0.234 0.307

20070612 0.553 0.496 0.609 0.499 0.612 0.498 0.614 0.565 0.500 0.629 0.504 0.633 0.502 0.635

20070613 0.432 0.390 0.475 0.392 0.477 0.391 0.476 0.418 0.370 0.465 0.373 0.468 0.372 0.466

20070614 0.245 0.217 0.272 0.219 0.274 0.218 0.273 0.239 0.207 0.271 0.209 0.273 0.209 0.274

20070615 0.178 0.158 0.198 0.159 0.199 0.158 0.198 0.161 0.141 0.180 0.143 0.182 0.143 0.181

20070618 0.146 0.127 0.164 0.128 0.166 0.128 0.165 0.155 0.131 0.178 0.133 0.180 0.132 0.180

20070619 0.215 0.189 0.242 0.191 0.243 0.190 0.243 0.219 0.188 0.250 0.190 0.253 0.190 0.253

20070620 0.429 0.385 0.473 0.387 0.475 0.386 0.473 0.415 0.369 0.461 0.372 0.463 0.371 0.463

20070621 0.656 0.593 0.718 0.596 0.721 0.596 0.722 0.658 0.589 0.726 0.593 0.730 0.591 0.728

20070622 0.761 0.683 0.839 0.687 0.843 0.684 0.839 0.748 0.663 0.832 0.668 0.837 0.668 0.837

20070625 0.769 0.684 0.854 0.689 0.859 0.687 0.858 0.798 0.694 0.903 0.700 0.910 0.699 0.910

20070626 0.745 0.677 0.812 0.680 0.815 0.679 0.813 0.745 0.664 0.825 0.668 0.830 0.665 0.829

20070627 0.565 0.511 0.618 0.514 0.621 0.514 0.620 0.518 0.463 0.572 0.466 0.575 0.465 0.573

20070628 0.646 0.571 0.721 0.575 0.725 0.572 0.724 0.612 0.534 0.691 0.538 0.696 0.536 0.696

20070629 0.706 0.636 0.775 0.639 0.779 0.639 0.777 0.704 0.619 0.790 0.624 0.795 0.621 0.793

Table 7: A comparison of 95% con�dence intervals for MC using three di¤erent methods:

The �-method applied to MC and log(MC) and the bootstrap method, here computed with

B = 5; 000 resamples. We present results for k = 3 and k = 4. The point estimates are

listed in bold font and the upper end of the 95% con�dence intervals are identi�ed by a

gray background. We note that the three types of con�dence intervals are very similar in

all cases.
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