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Abstract

This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson au-
toregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed
values of the Poisson process. This also applies to the conditional variance, making an interpretation as an integer
valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear
function of its past values and a nonlinear function of past observations. As a particular example an exponential
autoregressive Poisson model for time series is considered. Under geometric ergodicity the maximum likelihood
estimators of the parameters are shown to be asymptotically Gaussian in the linear model. In addition we provide
a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric ergodicity pro-
ceeds via Markov theory and irreducibility. Finding transparent conditions for proving ergodicity turns out to be
a delicate problem in the original model formulation. This problem is circumvented by allowing a perturbation
of the model. We show that as the perturbations can be chosen to be arbitrarily small, the differences between
the perturbed and non-perturbed versions vanish as far as the asymptotic distribution of the parameter estimates
is concerned.

Keywords: asymptotic theory, count data, generalized linear models, geometric ergodicity, integer GARCH, likelihood, non-
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1 Introduction

In this paper we study ergodicity and likelihood inference for a specific class of GARCH type Poisson time series
models. The necessity for such an investigation arises from the fact that count dependent sequences appear in sev-
eral diverse scientific fields, including medical, environmental or financial applications. As an illustrative example,
consider the upper plot of Figure 4 which depicts the number of transactions per minute for some stock during a
specific day. These data consist of a count time series and therefore statistical methodology should be developed
for time series modeling, estimation, inference and prediction.

Models for time series of counts have been considered by many authors—for a comprehensive account see Ke-
dem and Fokianos (2002, Ch. 4), for instance. The most popular choice among several authors is the log—linear
model. In other words, if it is assumed that Y; is conditionally Poisson distributed with mean \;, then most exist-
ing models are based upon regressing log A;—the canonical link parameter—on past values of the response and/or
covariates. As it has been developed by Fokianos and Kedem (2004), these models fall within the broad class of
generalized linear time series models, and their analysis is based on partial likelihood inference. Estimation, diag-
nostics, model assessment, and forecasting are implemented in a straightforward manner where the computation is
carried out by a number of the existing statistical computing environments. In addition, empirical evidence shows
that both positive and negative association can be taken into account by a suitable parametrization of the model,
see e.g. Zeger and Qaqish (1988) and Davis et al. (1999).

A largely missing element in these developments has been the possibility of an autoregressive feedback mech-
anism in {\;}. Such a feedback is a key feature in state space models. One example is the GARCH model for
volatility. These models are generally expected to be more parsimonious. The purpose of this paper is to study
autoregressive models of \; both linear and nonlinear. More specifically, ); is regressed on past values of the
observed process and past values of \; itself—this model has been considered by Rydberg and Shephard (2000),
Streett (2000) and more recently by Ferland et al. (2006). Two classes of models are actually proposed in the
present paper. The first class is a simple linear model and it is given by expression (1) in Section 2.1. This model
states that the conditional mean of the Poisson observed time series is a linear function of its past values and lagged
values of the observations. The model can be motivated by the arguments of Rydberg and Shephard (2000) who
show that it is a reasonable approximation for inference about the number of trades within a small time interval.
Furthermore, model (1) is similar to the GARCH models (Bollerslev (1986)) in the sense that for the Poisson dis-
tribution the conditional mean equals the conditional variance. In fact, this is a generalized linear model for time
series of counts but with an identity link—that is a non canonical link function.

The second class of models generalizes (1) by imposing a non linear structure on both past values of \; and
lagged values of Y;. Accordingly this is a non-linear model for Poisson time series and can be cast as a generalized
non-linear model for time series of counts, see equation (4) in Section 2.3. A specific example which falls within
this framework is the Poisson analogue of the so called exponential autoregressive model, see Haggan and Ozaki
(1981). In the Poisson time series framework, this model is formulated in (5).

The contribution of this article is to study ergodicity and likelihood inference for both types of models. A

fundamental complication with the analysis of these models is the proof of the geometric ergodicity of both the



observed {Y;} and latent process {\;}. This problem is bypassed by showing that the slightly perturbed models
(3) and (6) are geometrically ergodic under simple restrictions on the parameter space. The perturbation idea is
a form of regularization—an idea similar in spirit to the analysis of ill-posed problems. Likelihood inference is
developed in detail for the linear model by showing that the difference between the perturbed and unperturbed
model can be made arbitrarily small provided that the perturbation decreases. It is shown that the corresponding
maximum likelihood estimator is asymptotically normal. The results are applied to real and simulated data and
several guidelines for the development of algorithms for numerical maximization of the log likelihood for both
type of models are given. Non linear models for count time series have not been discussed in the literature and
their development adds an additional tool to the analysis of count time series.

The organization of the presentation is as follows. Section 2 introduces the reader to the relevant models and
discusses the link between their perturbed and unperturbed versions. In addition, Propositions 2.1-2.4 show the
joint ergodicity of both the observed and unobserved process for linear and non linear perturbed models. Section
3 develops likelihood inference for the linear model (3) and discusses some aspects of inference for the non linear
model (6) with a special focus on the exponential autoregressive model (7). Several simulations and some real
data analysis are presented in Section 3 while the presentation concludes with a discussion and an appendix which
contains the proofs of the theoretical results.

2 Model Specification & Ergodicity Results

Suppose that {Y; } is a time series of counts and assume that ]-"tY A stands for the o—field generated by {Yy, . . ., Vs, Ao}
thatis 7" = o(Ys, s < t, \o), where {\,} is a Poisson intensity process to be introduced below. Initially, a linear
Poisson GARCH type model is considered and then a non linear model is proposed.

2.1 Linear Model

Consider the following model given by,
Y: | ff—/} ~ Poisson(A;), At =d+a\_1 +bY; 1, (1)

for ¢ > 1 and where the parameters d, a, b are assumed to be positive. In addition assume that A\g and Y} are
fixed. Recall that for the Poisson distribution, the conditional mean is equal to the conditional variance, that
is E[Y; | F2)] = Var[V; | F,°}] = As. Therefore it is tempting to call (1) an INGARCH(1,1)—that is integer
GARCH-model since its structure parallels that of the customary GARCH model, see Bollerslev (1986). However,
although such a definition is quite plausible for this particular case, the proposed modeling is based on the evolution
of the mean of the Poisson instead of its variance. In other words, model (1) specifies a conditional mean relation
to the past values of both \; and Y;.

For technical reasons having to do with the proofs of asymptotic normality of parameter estimates, it turns
out that it is advantageous to rephrase the model formulation (1). More specifically, it is desirable to express the
sequence of independent Poisson drawings—that is the first equation of (1)-more explicitly in terms of random



variables, like the observational equation in a state space model, or like the defining equation in a GARCH model
giving the relationship between the observations and the conditional variance. To achieve this, for each time point
t, introduce a Poisson process N;(-) of unit intensity. Then, the first equation of (1) can be restated in terms of
these Poisson processes by assuming that Y; is equal to the number of events Ny (\;) of N;(-) in the time interval
[0, \¢]. Let therefore {N:(-),t =1,2,...} be a sequence of independent Poisson processes of unit intensity and

rephrase (1) as
Y = Ne(MNe), M =d+ a1+ DY, 2

for t > 1 and with Yp, Ag fixed. This notation will be used throughout the paper, and it is emphasized that we can
always recover (1) by (2).

Model (1) (or its rephrasing (2)) is related to the theory of generalized linear models for time series, see Kedem
and Fokianos (2002, Ch. 1 & 4). In particular, the driving random component of the model corresponds to the
Poisson distribution which belongs to the exponential family of distributions. The link function is taken to be
the identity while the systematic component is the time dependent random vector (1, A;_1, Yt,l)/. Hence, (2)
is a non canonical link model for time series of counts. Furthermore, notice that even though the vector of time
dependent covariates that influences the evolution of (1) is composed by the unobserved process \;, the linear
model still belongs to the class of observation driven models as defined by Cox (1981). This is so because the
unobserved process A; can be expressed as a function of past values of the observed process Y;, after repeated
substitution. Observation driven models for time series of counts have been studied by several authors including
Zeger and Qaqish (1988), Li (1994) and more recently by Brumback et al. (2000), Fahrmeir and Tutz (2001),
Davis et al. (2003) and Jung et al. (2006). However, a log-linear model for the mean of the observed process is
usually assumed and its structure is composed by past values of the response, moving average terms and other
explanatory variables. With the exception of Davis et al. (2003), who considers a simple but important case of
a log-linear model, all the other references do not discuss the problem of ergodicity of the joint process (Y, A¢)
which is instrumental in developing asymptotic estimation theory.

Second order properties of model (1) have been studied by Rydberg and Shephard (2000) while Streett (2000)
shows existence and uniqueness of a stationary distribution. In a recent contribution, Ferland et al. (2006) consid-
ered model (1) in a more general form and it was shown that the process Y; is stationary provided that 0 < a+b < 1,
by employing a different technique from that of Streett (2000). In particular, E[Y;] = E[\] = p=d/(1 —a — b)
and its autocovariance function is given by

1—(a+b?*+b*)u
1—(a+b)2 7’

h =0,

Cov [V, Yign] =
b(1—ala+0b)(a+b)""u

> 1.
1—(a+10)? » R

In addition, it was shown that all moments of model (1) are finite if and only if 0 < a + b < 1. Upon noticing that

Var[Y;] = i (1 + 1_(22_‘_@2) ,
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we conclude that Var[Y;] > E[Y;] with equality when b = 0. Thus, the inclusion of the past values of Y} in the
evolution of )\; leads to overdispersion—a phenomenon that occurs frequently in count time series data. In what
follows, we discuss some properties of the linear model and show ergodicity for a modification of (2).

2.2 Ergodicity of a perturbed model

We first note that {\;} defined by (2) is a Markov chain. Consider the skeleton Ay = d + aX;_; of (2). Then
A* = d/(1 — a) is the solution of A = d + al, i.e. a fix point of the mapping f(\) = d + aA. In Streett (2000)
it was shown that if 0 < a + b < 1, there exists a stationary initial distribution for {\;} by showing that the point
A\* is reachable, where (cf. Meyn and Tweedie (1993, p.131)) a point A! in the state space A is reachable if for
every neighborhood O of A1, Y P"(X\,0) > 0, A € A. Here P"(\, A) = P(\, € A | Ao = \), is the n’th step
transition probability of {\;,¢ > 0}.

In the course of the proof of Lemma A-1 in the appendix, it will be shown that every point in [A*,00) is
reachable, if 0 < a < 1,1.e. {A+} is open set irreducible on [A*, c0). However, in our approach to show geometric
ergodicity we need ¢—irreducibility, where ¢ is the Lebesgue measure with support [k, 0o), for some k > \*.
Establishing ¢—irreducibility is equivalent to showing that > P" (X, A) > 0if ¢(A) > 0. The problem is that
there are sets A of positive Lebesgue measure that are not open sets, for example the set of all irrationals in [A\*, 00),
and Lemma A-1 cannot be used directly to handle such sets. One could add an assumption stating that the chain is
not allowed to stay on sets of Lebesgue measure zero, but since it is not clear how restrictive such an assumption
is, we have decided to avoid that issue by resorting to the perturbed chain (Y,”, A}*) defined by

V" =Ne(N), N =d+aNy + Y e, 3
with A\§*, Y;" fixed, and
Et)m:cml(}/;’ﬁl :1)Ut7 Cm >0, ¢ — 0, as m — oo,

where 1(-) is the indicator function, and where {U;} is a sequence of iid uniform random variables on (0, 1) and
such that the {U,} is independent of {/V;(-)}. Note that the introduction of {U;} makes it possible to establish
irreducibility, see the proofs of Lemma A-1 and Proposition 2.1 Another possibility would be to try an approach
to prove ergodicity that does not depend on ¢-irreducibility, see, e.g Aue et al. (2006), Mikosch and Straumann
(2006). But the structure of our model is different, and we have not succeeded in using such an approach. Note
that {\7"} is still a Markov chain. Our strategy is to prove geometric ergodicity of {Y;™, A\[*} defined by (3). Then
to use this to obtain asymptotic normality for the likelihood estimators of (3), and finally by letting c,,, — 0 obtain
asymptotic normality of the likelihood estimates of (2).

The perturbation in (3) is a purely auxiliary device to obtain ¢—irreducibility. The U,’s could be thought of as
pseudo observations generated by the uniform law. As will become clear in the subsequent proofs, the perturbation
can be introduced in many other ways. For, instance, it is enough to set {U;} to be an i.i.d sequence of positive
random variables with bounded support possessing density on the positive real axis with respect to the Lebesgue
measure and finite fourth moment. In addition, the form of the likelihood functions for {Y;} and {Y;"} as far as



dependence on {\;} is concerned will be the same for both models (2) and (3). Note that both {Y;} and {Y;™}
can be identified with the observations in the likelihood, but they cannot be identified as stochastic variables since
they are generated by different models. Technically speaking, with the introduction of {&;,, }, the process {\}"}
is made into a T'-chain with a continuous component, where open set irreducibility implies measure theoretic
irreducibility.

We have the following results concerning ergodicity of model (3). Their proof is postponed to the Appendix.
There it is first proved that the unobserved process { A"} is geometrically ergodic.

Proposition 2.1 Consider model (3) and suppose that 0 < a + b < 1. Then the process {\{*,t > 0} is a
geometrically ergodic Markov chain with finite moments of order k, for an arbitrary k.

The above proposition is useful in obtaining geometric ergodicity of the joint process (Y;™, Uz, AT*). In fact, it
can been shown that the joint process is V{y, 7, x)—geometrically ergodic with Vy,y 1 (Y, U, A) = 1+ Y* + \F + UF,
for a definition see Meyn and Tweedie (1993, p.355). In particular, Proposition 2.2 shows the existence of moments
of (Y;™, U, AT"), for any k. In addition, the ergodicity result is employed in the next section where the large
sample estimation theory is studied. Note that inferential results for the {Y;™} process depend upon proving that
geometric ergodicity of the {A}*} series implies geometric ergodicity of the chain {(Y,™, Uy, Aj*)}. The proof of
the following proposition follows closely the arguments of Meitz and Saikonnen (2008) (see also Carrasco and
Chen (2002)) and its proof is indicated in the appendix.

Proposition 2.2 Consider model (3) and suppose that the conditions of Proposition 2.1 hold. Then the process
{(Y™, N, Uy), t = 0} is a Viy,p \)—geometrically ergodic Markov chain with Vy,y (Y, U, A) = 14+ Y 4 AP+ U*.

The following lemma quantifies the difference between (2) and (3), as m — oo such that ¢,,, — 0, and shows
that essentially the perturbed model can be made arbitrarily close to the unperturbed model. The crucial condition
is that the sum of a and b must be less than one —this as seen from Proposition 2.1 was also the natural condition
for proving ergodicity of (3). It is in the proof of this lemma that the rephrasing of model (1) as model (2) is very
useful. The proof is in the appendix.

Lemma 2.1 Suppose that (Y, \¢) and (Y™, A\[") are defined by (2) and (3) respectively. If 0 < a 4+ b < 1, then
the following statements hold:

L EOY = A)| = [E(¥ = Y| < 81ms
2. EQA™ — A)? < 6am,
3. E(th - Yt)2 < 63,m7

where §; ,, — 0 as m — oo for i = 1,2, 3. Furthermore, almost surely, with m large enough

MY — A < dand |V — Y| <6, forany ¢ > 0.



2.3 Non Linear Models

A simple generalization of the linear model (2) is given by
Y = Ne(M), Ao = f(Ai1) +0(Yioa), 4)

for t > 1, and where f(-) and b(-) are known functions up to an unknown finite dimensional parameter vector. In
addition both functions are defined and take values on the positive real line, that is f,b : R™ — R™. The initial
values Y and )\ are fixed. It is seen that (2) is a special case of (4) upon defining f(x) = d 4 ax and b(z) = bz,
with d,a,b > 0,and z > 0.

There are many examples of non-linear time series models, see Tong (1990) and Fan and Yao (2003) for
comprehensive reviews. Such models have not been considered in the literature earlier in the context of generalized
linear models for count time series, and they provide a flexible framework for studying dependent count data. For

example, consider the so called exponential autoregressive model which is described below.
Example 2.1 The exponential autoregressive model is defined by
Yy = Ni(Ae), A= (a+cexp(—yA7_1)) M1 + bY;1. )

The model parallels the structure of the traditional exponential autoregressive model, see Haggan and Ozaki (1981).
Comparing recursions (4) and (5) it is clear that f(z) = (a + cexp(—wa)) z and b(z) = bz, a,c, b,y > 0 and
x = 0.

Reiterating previous arguments, notice that model (4) is related to a time series following generalized linear
models as described in Kedem and Fokianos (2002). Specifically, for model (5), the Poisson assumption guarantees
that the conditional random component of the model belongs to the exponential family of distributions, while the
link function is equal to the identity, as before. If  is known, then the systematic component of the model consists
of the vector (A_1, A1 exp(—yAZ ), Y;_1)’; otherwise, (5) does not belong to the class of generalized linear
models.

Assume the following conditions hold for f(-) and b(-):

Assumption NL

1. There exists a unique solution of the equation A = f(\) and denote it by A*.

2. With X positive real and « a positive integer, f(\) is increasing in A for A > A* and b(k) is increasing in x
such that b(k) > 5*k, 6* > 0.

3. For some as > 0, f()\g) — f(/\l) < 042()\2 — )\1), for all )\1, Ao = A% with Ay > Aq.
4. For some [ > 0 such that ais + 2 < 1, b(k2) — b(k1) < P2(k2 — K1), K2 = K1.
To prove ¢—irreducibility we again introduce an e—perturbed model

Y™ =N (A"), A= FN2) + () +eem 21, ©)



where €, ,,, has been defined as in (3). The following proposition shows that the process {\[",¢ > 0}, as given by
(6) is geometrically ergodic. Its proof parallels the proof of Proposition 2.1 and is given in the appendix.

Proposition 2.3 Consider model (6) and suppose that Assumption NL holds true. Then the process {A}*,¢ > 0}

is a geometrically ergodic Markov chain with finite moments of order k, for an arbitrary k.

In addition, we obtain the joint geometric ergodicity of the process {(Y;", U, A*),t > 0}. The proof is
omitted.

Proposition 2.4 Assume model (6) and suppose that the conditions of Proposition 2.3 hold true. Then the process
{(Y;™, Uy, \i), t = 0} is a Viy,p, \)—geometrically ergodic Markov chain with Vy,y 5 (Y, U, A) = 14+Y +U* AR,

We conclude this section with the following corollary for the perturbed exponential AR model
Y= Ny ), AP = (a+ cexp(—y (A y)2)) Ay + BY™ + e £ 1. ™

Corollary 2.1 Assume the exponential autoregressive model (7). Suppose that 0 < a + b < 1. Then the process
{(Y7™, Uy, \i), t = 0} is a Viy,p, \)—geometrically ergodic Markov chain with Vy,y 5 (Y, U, X) = 14+Y +U*AF,

3 Likelihood Inference

Denote by 6 the three dimensional vector of unknown parameters, that is 8 = (d, a, b)/ and the true value of the
parameter as 8y = (dg, ao, bo)'. Then the conditional likelihood function for @ based on (2) and given the starting

value )\ in terms of the observations Y7, ..., Y], is given by

L(0) = [ EREMON )

Y;!
t=1 t

Here we have used the Poisson assumption, \;(60) = d + aA—1(0) + bY;—1 by (2) and Ay = A¢(6y). Hence, the
log—likelihood function is given up to a constant, by

1(0) =D 1(6) =D (Yilog\(6) — (0)). ®
t=1 t=1
and the score function is defined by
0l(6)  ~OuO) (Y O(6)
(@) = = = -1 ,
5 (6) 00 1::21 00 t:z1 A (0) 00 ©)
where 0A;(0)/00 is a three-dimensional vector with components given by
Ot OX—1 O\ OA—1 Ol OAt—1
— =1 — =M\ — =Y 10
Y B P e PR R Y (10



The solution of the equation S,,(0) = 0, if it exists, yields the conditional maximum likelihood estimator of 6
which is denoted by 6. Furthermore, the Hessian matrix for model (2) is obtained by further differentiation of the
score equations (9),

B 91,6
Ha(6) = Z aeae

SR SR o

If the process {(Y:, A) } is a geometrically ergodic Markov chain, then an asymptotic theory for the maximum

likelihood estimator of @ can be developed directly. A problem is that at present we do not know precisely what
conditions guarantee ergodicity of (2). However, the assumptions of Proposition 2.2 guarantee geometric ergodicity
of the perturbed model (Y;™, A\7"). In addition, Lemma 2.1 shows that A} approaches X, for large m. Hence, it is
rather natural to use the ergodic properties of the perturbed process (Y;™, A]") to study the asymptotic properties
of the maximum likelihood estimators analogous to (9) and then use Lemma 2.1. Towards this goal, we define the
counterparts of expressions (8)-(11) for model (3).

The likelihood function, say L™, including the pseudo observations Uy, Us, .. ., U,, is given by
mig _ TT SPAT(O) (A (0)"
(o) = [ 22RO T 0
t=1

by the Poisson assumption and the asserted independence of U; from (thu 7 ,). Here, f,,() denotes the uniform
density and A\7*(0) = d + aA]"1(0) + bY;"; + €4, as given by (3). The log likelihood function is given up to a
constant by

Zlm )= (Y™ log A7 (6) — A7"(8)) + > _log fu(Uh), (12)
t=1 t=1
whereas the score function is equal to
m _om(e) alm - N/ ()
SO) = g = Z( ) TR (13)

t=1 t=1
and is seen to have exactly the same form as (9), but with \:(0) replaced by A\/*(0). Note that the vector
OA]"(0)/00 consists now of
oA ON, A ON, A ON™ 4
— 1 — m — Y’ln
T B TR e PR e T

The solution of the equation S} (6) = 0 is denoted by 6" Similarly, the Hessian matrix for model (3) is obtained

(14)

as

Hm(e) B ZaQZm
" 9006’

) gwﬁz))? (752 (557 -2 (F ) e 09




3.1 Asymptotic Theory

To study the asymptotic properties of the maximum likelihood estimator 6, for the linear model (2) we derive and
use the asymptotic properties of the maximum likelihood estimator 6" for the perturbed linear model (3). The
main tool in linking B0 is the following:

Proposition 3.1 (Brockwell and Davis (1991, Prop. 6.3.9)) Let X,,, n = 1,2,...and Y,,,, m = 1,2,...,
n =1, 2,...berandom k-vectors such that

1. Yonm gYm, asn — oo, foreachm =1,2,...,
2.Y,, gY,asm—w)o,and
3. lim, o0 limsup,, . P[| Xy — Yom| > €] =0, for every € > 0.

Then

D
X, =Y as n — oo.

Accordingly, we first show that 6" is asymptotically normal where for the proof of consistency and asymptotic
normality we take advantage of the fact that the log—likelihood function is three times differentiable applying
Jensen and Rahbek (2004, Lemma 1). Then we show that the score function, the information matrix and the
third derivatives of the perturbed likelihood function (12) tend to the corresponding quantities of the unperturbed
likelihood function (8) which enable us to employ Proposition 3.1. To formulate the end result, introduce lower
and upper values of each component of 8, §;, < dy < 0y, ap < ag < ay < land By, < by < Py, and in terms
of these define,

0(00):{0|0<6L<d<5[], O<ar<a<ay <1 and 0<6L<b<6U} (16)
Then the following theorem regarding the properties of the maximum likelihood estimator 6 holds true.

Theorem 3.1 Consider model (2) and suppose that at the true value 8y, 0 < ag + by < 1. Then, there exists a
fixed open neighborhood O = O(0y) of Bp—see (16)—such that with probability tending to one, as n — oo, the log
likelihood function (8) has a unique maximum point 6. Furthermore, 6 is consistent and asymptotically normal,

vn (é - 00) LN, G,
where the matrix G is defined in Lemma 3.1. A consistent estimator of G is given by G,,,(é), where

oin-Foel22150] - g (5) (5

10



To prove the above theorem, we need a series of results. Lemma 3.1 shows that the limiting conditional information
matrix of model (3) tends to another matrix that plays the role of the conditional information matrix for model (2).
In Lemmas 3.2-3.4 the conditions (A.1), (A.2) and (A.3) of Lemma 1 of Jensen and Rahbek (2004) are verified
for the perturbed model (3). In addition, these lemmas show that the score function, the Hessian matrix and the
third derivative of the log likelihood function of the perturbed model tend to their counterparts of the unperturbed
model. These results are proved in the appendix.

Lemma 3.1 Define the matrices

-n(3 (25) (59)) o3 (39 ()

Under the assumptions of Theorem 3.1, the above matrices evaluated at the true value 8 = 0 satisfy G — G,

as m — oo. In addition, G™ and G are positive definite.

Lemma 3.2 Under the assumptions of Theorem 3.1, the score functions defined by (9) and (13) and evaluated at
the true value 8 = 6 satisfy the following:

— Sy = B gm =N (0,G™),asn — ooforeachm=1,2...,
\/>
2. 8™ B N(0,G) as m — o,
3. limy,— oo limsup, o P (||S — Spl| > ey/n) = 0, for every € > 0.
Lemma 3.3 Under the assumptions of Theorem 3.1, the Hessian matrices defined by (11) and (15) and evaluated
at the the true value 8 = 0 satisfy the following:
1
1. —H £ G™ as n — oo for each m = 1,2...,
n
2. G — G,asm — oo,

3. limy, o0 limsup,, o P (|| H, — H,| > en) =0, for every € > 0.

Lemma 3.4 With the neighborhood O (6) defined in (16), it holds under the assumptions of Theorem 3.1, that,

Y

where 0; fori = 1,2,3 refers to @ = d, @ = a and 8 = b, respectively. In addition,

1. 3 (6)
< 00,00,00),

max sup
i,5,k=1,2,3 960(90)

my = C (YtMSt + pae + Yipoepae + Ytﬂ?t)

i = Bud kjiod Y. Kja=j kja=j(G+1) andkis=j(+1)(+2).
Define correspondingly M, m;" and p} in terms of Y. Then

11



P
1. M* - M™,asn — ooforeachm =1,2...,
2. M™—M, as m — oo, where M is a finite constant,

3. limpy, o0 limsup,, o P (|M* — M,| > en) = 0, for every € > 0.

3.2 Some Remarks about the Exponential Autoregressive Model

Study of asymptotic properties of the maximum likelihood estimator for the non linear model (6) proceeds along
the previous lines but the corresponding analysis is more cumbersome. For instance, consider the exponential
autoregressive model (5) and put @ = (a, ¢,b)’ and assume that the parameter - is known. Then the recursions for

calculation of the score are given by

oA I\ OAi—
87; = (1 — 2vehia eXP(_’Y)\?l)(;al) A1+ (a+ cexp(—vkt{l)) 3ta x
oA N OAi—
e - (1 - 2%&15@1> exp(=A-)Ae-1 + (a+ cexp(=yA7 1) =5
oA OAi— OAi—

aibt = a atb ! + (1 - 2’7>‘%71) CeXp(—’y)\?il) 8tb - + Y;:*l

If the parameter v is assumed to be unknown, then the following additional recursion is needed to obtain the score
equations for the enlarged vector of parameters which includes ~:

o\ OAi—1

0y oy
We remark that when ¢ = 0 the parameter v is not identifiable. Therefore testing the hypothesis that ¢ = 0

A1

0
= —cexp(—yAZ_)A\? | ()\tl + 2y ) + (a + cexp(—’y)\?,l))

by means of the likelihood ratio test, for instance, is more involved but it can be accomplished by means of the
methodology outlined by Davies (1987). Although we do not study in detail the asymptotic properties of the
maximum likelihood estimator for the exponential autoregressive model, we believe that analogous results can be
proved for models (4) and (6) under assumption NL. In particular, when ay + B2 < 1, see NL4, then Lemma 2.1
can be restated in terms of the non-linear processes. We report some simulation findings in the next section which
indicate that the asymptotic normality should hold also for this case.

4 Simulation and Data Analysis

A few simulation results are reported for illustration of the asymptotic normality of the maximum likelihood
estimator for both the linear and non linear model. Calculation of the maximum likelihood estimators is carried
out by optimizing the log—likelihood function (8) employing a quasi—-Newton method—details are available by the
authors. The simple linear model (2) is generated with (dg, ag, bp) = (0.3,0.4,0.5) for different sample sizes. For
this choice of parameter values, ag + by = 0.9 which is close to the sum a + b of the estimates obtained from the
real data example reported in Section 4.3. Results for different set of parameter values were similar, provided that
the condition ag + by < 1 is satisfied, and therefore we omit them.
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4.1 Simulations for the Linear Model

In Ferland et al. (2006) it was shown that (2) possesses moments up to second order identical to those of an
ARMAC(1,1) process which satisfies the difference equation

(Y —p) = (a+b)(Yicr — p) = e; — aep_1,

where e; is a white noise process with with E[e;] = Var[e;] = d/(1—a—b). This observation points to the potential
use of the least squares theory for estimation of the parameter vector (d, a,b). We compare the least squares esti-
mators with the maximum likelihood estimators in what follows. To initiate the algorithm for optimization of the
log-likelihood function (8) using the recursions (10), starting values for (d, a, b) are obtained by the ARIMA(1,1)
fit to the data.

Table 4.1 shows the results of the comparison between maximum likelihood and least squares estimators. The
table reports the estimates of the parameters obtained by averaging out the results from all runs together. In
addition, it reports the ratio of the mean square error (MSE) of the conditional least squares estimator (CLSE) to
the mean square error of the MLE—see fifth column. The MSE has been calculated by using the simulation output.
In all cases the MSE of MLE is lower than that of the MSE of CLSE. In addition, we use a likelihood ratio test to
examine whether the ratio is equal to 1. In other words, we consider the simulated estimators from both methods as
a sample from the bivariate normal with known mean vector and unknown covariance matrix. Testing whether the
diagonal elements are equal—that is the ratio of the mean square error of the CLSE to the mean square error of MLE
is equal to 1- the likelihood ratio test yielded very small p-values in all cases and therefore the CLSE has greater
MSE than that of the MLE. Furthermore, the last three columns of Table 4.1 show some summary statistics of the
sampling distribution of the standardized MLE. When n is large, the asserted asymptotic normality is supported.
Notice that for n = 500, d is not approaching normality satisfactorily but the approximation is improving for larger
sample sizes. Figure 1 shows histograms and qq-plots for the sampling distribution of the standardized maximum
likelihood estimators indicating the adequacy of the normal approximation although there are some deviations in
the upper plot for d. This is consistent with the findings from Table 4.1.

4.2 Simulations for the Exponential Autoregressive Model

Table 2 shows some empirical results from estimation of the exponential autoregressive model (5) with (ag, co, by) =
(0.25,1,0.65) and for different values of . Note that the standard errors have been obtained by the standard de-
viation of the simulated estimators, as in the case of the linear model. Initially it is assumed that the parameter ~y
is known. Maximization of the log likelihood function (8) under (5) is carried out as it was discussed in the case
of the linear model. Initial values for the parameters a and b are obtained by the fit of a linear model (2), while the
initial value of c is fixed at 0.50. The results of Table 2 show that for large sample sizes, the maximum likelihood
estimators are approaching the true parameter values when the parameter vy is known. Figure 2 shows qq—plots and
histograms of the simulated estimators, when v = 1 and n = 500. The asserted normality appears as an adequate

approximation.
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Parameters  Sample Size =~ MLE CLSE Efficiency Skewness Kurtosis p-value
do 200 0.3713  0.3909 1.3139 1.5910 9.8186  0.0000
ao 0.3756  0.3790 1.2209 -0.2856 3.9471 0.6426
bo 0.4967  0.4863 1.2915 -0.0696 3.2534  0.5233
do 500 0.3271 0.3318 1.3957 0.8644 4.5069  0.0012
ao 0.3923  0.3922 1.4299 -0.0202 3.1440  0.8296
bo 0.4971 0.4932 1.4610 -0.0268 28811 09711
do 1000 0.3148 0.3180 1.5651 0.4410 3.3538  0.2820
ao 0.3954 0.3951 1.4111 0.0726 3.1183  0.8832
bo 0.4985  0.4965 1.4204 -0.0714 29575  0.8375

Table 1: Results of simulation for model (2) when (do, ao, bo) = (0.3,0.4,0.5). The third and fourth column report the mean
of estimators obtained by maximum likelihood and conditional least square methods, respectively. The fifth column reports
the ratio of the MSE of CLSE to the MSE of MLE. The other three columns report sample skewness, sample kurtosis and the
p-value of a Kolmogorov-Smirnov test statistic (for testing normality) for the standardized MLE obtained by the simulation.

Results are based on 1000 simulations.

Application of the exponential autoregressive model (5) becomes more involved when the parameter v is
unknown, which is the most interesting case in applications. To estimate jointly the parameter vector (a, ¢, b, v) of
(5) the following procedure is proposed.

o Fit the linear model (2) to the data to obtain starting values for both @ and b.

o Set the initial value of ¢ equal to some constant.

o Generate a grid of values for v and for each of these values fit model (5) with known ~.

e To maximize the log likelihood function over all (a, ¢, b,~y), get as a starting value the y—value that yields
the maximum log-likelihood from the previous step together with the corresponding coefficients.

Maximization is carried out numerically as described before. Table 3 reports the results of the above method and it
is observed that the sample size should be reasonably large for an adequate approximation of both ¢ and . Some

further evidence regarding asymptotic normality is given in Figure 3.
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Figure 1: From top to bottom: Histograms and qq-plots of the sampling distribution of the standardized estimators
of @ = (dA7 a, 3) for the linear model (2) when the true values are (do, ag, bg) = (0.3,0.4,0.5). Superimposed is
the standard normal density function. The results are based on 500 data points and 1000 simulations.

Maximum Likelihood Estimators ~ Sample Size

a ¢ b n y

0.2470 1.0241 0.6468 500 2
(0.0465) (0.1282)  (0.0472)

0.2486 1.0128 0.6475 1000
(0.0339) (0.0898)  (0.0344)

0.2504 1.0300 0.6440 500 1
(0.0472) (0.1416)  (0.0473)

0.2488 1.0140 0.6484 1000
(0.0336) (0.0943)  (0.0324)

0.2510 1.0262 0.6457 500 0.50
(0.0496) (0.1429)  (0.0469)

0.2517 1.0106 0.6465 1000

(0.0327)  (0.0987)  (0.0313)

Table 2: Estimates and their standard error (in parentheses) for the exponential autoregressive model (5) when
(ag, co,bo) = (0.25,1,0.65) and for different sample sizes by maximum likelihood. The parameter + is assumed
to be known. Results are based on 1000 simulations.
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Figure 2: From top to bottom: Histograms and qq-plots of the sampling distribution of the standardized estimators

of @ = (a,¢, 5) for the exponential autoregressive model (5) when the true values are (do, ag, bo) = (0.25,1,0.65)

and the parameter + is assumed to be known and equal to 1. Superimposed is the standard normal density function.

The results are based on 500 data points and 1000 simulations.

Maximum Likelihood Estimators

Sample Size  True

a ¢ b o n y
0.2504 1.1645 0.6430 1.8655 500 1.50
(0.0537) (0.5348) (0.0487) (1.2573)
0.2491 1.0593 0.6456 1.6357 1000
(0.0364) (0.2498) (0.0343) (0.7684)
0.2500 1.1190 0.6426 1.1542 500 1
(0.0521) (0.4431) (0.0485) (0.6919)
0.2490 1.0278 0.6475 1.0325 1000
(0.0355) (0.1690) (0.0334) (0.2886)
0.2467 1.1025 0.6472  0.5419 500 0.50
(0.0514) (0.3813) (0.0463) (0.2341)
0.2481 1.0322 0.6493 0.5064 1000
(0.0337)  (0.1590) (0.0305) (0.1087)

Table 3: Estimates and their standard errors (in parentheses) for the exponential autoregressive model (5) when

(ag, co,bo,v0) = (0.25,1,0.65,79) where 79 € {0.5,1,1.5} and for different sample sizes by maximum likeli-

hood. Results are based on 500 simulations.
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Figure 3: From top to bottom: Histograms and qq-plots of the sampling distribution of the standardized estima-
tors of 6 = (a,¢, b, %) for the exponential autoregressive model (5) when the true values are (do, ag, bo,v0) =
(0.25,1,0.65,1). Superimposed is the standard normal density function. The results are based on 1500 data points
and 500 simulations.
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4.3 Data Example

For an illustration of the methodology, models (2) and (5) are applied to the number of transactions per minute for
the stock Ericsson B during July 2nd 2002. This is a part of a larger data set which includes all the transactions of
this specific stock for the time period between July 2nd and July 22nd, 2002. There are 460 available observations
conveying eight hours of transactions, approximately. Notice that the first and last minutes transactions are not
taken into account. Figure 4 shows both the data and the respective autocorrelation function. Even though the
data are counts, the plot of the usual autocorrelation functions reveals the high dependence between transactions.
Note that the mean number of transactions for these particular data is equal to 9.909 while their sample variance

is given by 32.836. This is a case of overdispersion, as it was discussed in Section 2.1. To model these data, set

10 20 30
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T T T T T
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Empirical Autocorrelation Function
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ACF
0.4

0.0

Lag

Figure 4: Number of transactions per minute for the stock Ericsson B during July 2nd, 2002. The bottom plot
shows their autocorrelation function

Ao = 0 and 9\y/06 = 0 for initialization of the recursions and consider the linear model (2). Maximization of the

log—likelihood function (8) yields the following results:

M= 0.588 +0.7445 \_;+ 0.1986 Y, ;
(0.1628)  (0.0264) (0.0167)

where the standard errors underneath the estimated parameter are computed by using the robust sandwich matrix

H,(0)G;'(6)H,, (), where G,,(8) has been defined in Theorem 3.1 and H ,,(8) is given by (11).
It is rather interesting to observe that a + b is close to unity. In fact, an approximate 95% confidence interval
for the parameter a + b is given by (0.9097,0.9765). This is a very similar phenomenon to the unit-root case

in autoregressive time series in econometric analysis of most financial data, and moreover, akin to the IGARCH
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literature where high-persistence is often discovered in the conditional variance. Analogous findings can be derived
from Rydberg and Shephard (2000) where transaction data were also examined.

To examine the adequacy of the fit, consider the so called Pearson residuals defined by e; = (Y; — \¢)/v/As.
Under the correct model, the sequence e; is a white noise sequence with constant variance, see Kedem and Fokianos
(2002, Sec. 1.6.3). To estimate the Pearson residuals, substitute \; by )\t(é). Figure 5 demonstrates that the
predicted values defined by Y, = )\t(é) approximate the observed process reasonably well. The bottom plot of the
same figure illustrates the whiteness of the Pearson residuals by depicting the cumulative periodogram plot, see
Brockwell and Davis (1991, Sec. 10.2).
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Figure 5: Top: Observed and predicted (grey) number of transactions per minute using (2). Bottom: Cumulative
periodogram plot of the Pearson residuals.

Consider now the application of the Poisson exponential autoregressive model (5) to the same data. The
following model is fitted

A= (08303 +7.030 exp(—0.1675A2 ) A1 + 0.1551 Y4
(0.0232) (3.0732) (0.0592) (0.0218)

where the stated standard errors refer to those of @, ¢ d and 4, respectively. The starting value for carrying out
the estimation of ~ is implemented by the suggested profiling procedure. To be more specific, a grid of values is
generated and the corresponding log-likelihood value is evaluated at these points. For these data, the values of the
parameter -y were generated from 0.001 to 10 by increments of 0.20, that is 50 values were obtained. The upper
plot of Figure 6 shows a graph of  versus the corresponding log—likelihood function for a part of the generated
grid, and it shows that at the value 0.205, approximately, the corresponding maximum value is obtained. Using
this value as a starting point for v, model (5) is fitted to the data. The other graphs of Figure 6 show the predicted
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response—notice again that Y, = A\—and the cumulative periodogram plot of the Pearson residuals. To compare
the models, we calculate the mean square error of the Pearson residuals defined by Zi\; L€2/(N — p), where p
is the number of estimated parameters, see Kedem and Fokianos (2002, Sec. 1.8). It turns out that for the linear
model the mean square error of the Pearson residuals is approximately equal to 2.367 while for the non linear
model it is equal to 2.392—that means both of the models yield similar conclusions. This fact is supported further
by the sample correlation coefficient for the Pearson residuals from both models which is equal to 0.991. As a
final remark, we note that the numerical results, in particular for (f, are sensitive to the choice of the initial value
Ao similar to classic GARCH model estimation.
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Figure 6: Top: Obtaining an estimator for . Center: Observed and predicted (grey) number of transactions per
minute using (5). Bottom: Cumulative periodogram plot of the raw residuals.
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Appendix

Recall that A\* = d/(1 — a) is a fix point of the skeleton Ay = d + a\;—1 of (2) and (3). We start by proving that
{At}, defined by (2) or (3), is open set irreducible on [A*, 00). The proof of the following lemma does not require
the e-perturbation of (3), but it is valid in the presence of such a perturbation.

Lemma A-1 Let {\;} be a Markov chain defined by (2) or (3). If 0 < a < 1, then every point in [A*, 00) is
reachable.

Proof: To simplify notation, we state the proof for model (2). Consider a point ¢ € [A*,00). We may assume
that A; > c, since otherwise we may start from \; = d 4 aX;j_1 + bY;_; > c. Consider a path such that
Y1 = ... =Y, = 0. Then \; approaches \* as ¢ increases and @ < 1 and this proves that c is reachable if
¢ = \*. (This was already proved by Streett (2000)). The proof is more difficult if ¢ > A*. The intuitive idea
is to consider realizations where Y7 = N, and where subsequent {Y;,7 > 1} are zero. Then, if (¢1,¢2) is an
open interval containing ¢, A; will approach this interval from above in successively smaller steps. By choosing N
appropriately, one of these steps will be contained in (c1, ¢2). Equivalently, we can prove that one of these steps
will be arbitrarily close to c. Therefore, let Y; = N and Y5 =0,Y5 =0, .... Then, forj > 1

1—a?

>\1+j = )\1+j(N) = ajfl(a)\l + bN) + 1 d.

Let NV := Nj be the least integer such that
AMi(N) >e, Aigj(N—-1)<e.

(Note that we can always choose A; such that N — 1 > 1 so that the reasoning is exactly the same for the e—
perturbed chain given in (3)). We have A\1;(N) — A14;(N — 1) = a/~!b. For any § > 0, since a < 1, we can
choose a j such that a?~'b < §, that is ¢ € [A14;(N — 1), \14;(N)] where the width of the interval is less than d.
Since ¢ is arbitrary, ¢ can be approximated arbitrarily closely, and c is reachable if ¢ € [A*, 00). O

To prove Proposition 2.1 we need to show that {A\}*,¢ > 0} is aperiodic and ¢—irreducible. In addition we

show the existence of a small set C' and a test function V'(-) which satisfies
EVOAZL DN = A < (1= k)V(A) + ka1(A € O) (A-D)

for some constants kq, ko such that 0 < ky < 1, 0 < ko < oo. This implies that the chain {A\}*,¢ > 0} is
geometrically ergodic and with a proper choice of V, the £’th moment of A} exists for an arbitrary k, see Meyn
and Tweedie (1993). The inequality (A-1) and uniform open set reachability from a compact set [A\*, K|, K > \*,
can be established for both (2) and (3), but the e—perturbation is used to establish ¢—irreducibility and uniform
¢—reachability required to establish the existence of a small set.
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Proof of Proposition 2.1

From Lemma A-1 we have that {\}*,¢ > 0} as defined by (3) is open set irreducible on [A\*, 00). Let A be a set
in [k, 00) in the support of ¢, for some k > A*, where ¢ is the Lebesgue measure, and such that ¢(A) > 0. Let
¢ bea point in A. Then using the technique of proof of Lemma A-1, for some j, AY 1 will be arbitrarily close to
(¢ —d —b)/a, where (¢ —d —b)/a > \* by choosing k large enough. In particular, j can be chosen so that
| d+a)\T\ ) +b— ¢ |< €/2. Therefore if D = AN B with B = (¢ —§/2,¢ + 6/2) for some small 6, and f, ()
the density of Uy, then the probability of being in A in the next step is

P(A) > P(D) = /D fulw)du > inf f,(u)o(D) > 0.

which implies ¢-irreducibility. (Note that it follows from this proof that the e—perturbation need not be introduced
for Y = 1 but may in fact be inserted for any Y'.) It remains to prove the existence of a small set, aperiodicity and
the inequality (A-1).

Existence of a small set can be proved by extending and modifying the technique of Lemma A-1. Let C be a
compact set, C' = [A\*, K] for a finite K’ > A\*. Since a < 1 and K is finite, there exists an integer n = n(n) such
that for given > 0, and with a path where Y = --- =Y, | = 0, AT* = X\, A" — \*| = a™|A — X*| < 7 for all
A€ C.ThenwithY” = N,Y ", =0,Y1,=0,...,

1—al

A =ad A+ a’TTON + . d=al (A" — \*) +a?7'bN 4+ "

Similarly to the proof of Lemma A-1, consider an open interval (c;, co) with ¢; > A*, and let N be the least integer
such that
i (N) = a? 710N + X* > co,

where with no loss of generality we may assume that N > 2. By choosing j large enough and by the previous
arguments, for any § > 0, there exists an j such that a’~'b < §. Therefore

ca—0 < ,un+j(N — 1) < Ca.

But A7"

(N —1) = pip4j(N — 1) + a? (N — \*) where by choosing 7 small enough
Co — o< ,un_,_j(N — 1) < )\nm_,'_j(N — 1) < Cc2
so that for these choices of n, j, N, A7 ;(N — 1) € (c1,¢2) forall A € C and

Ailgf‘CP"*’“(A, (c1,¢2)) ZP(Y[" =0,...Y,", =0,V =N, Y1, =0,...,Y, ;. ; =0) >0.

This means that the interval (¢q, ¢2) is uniformly reachable from all A € [A\*, K], and arguing as in the above proof
of ¢—irreducibility it follows that an n can be found such that

inf P"*(\, A) > 0,
AeC
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for a set A of positive Lebesgue measure. This implies that the set C'is a small set.

We now show that {\]*,¢ > 0} is aperiodic. Consider the small set C' = [\*, K]. Note that ¢(C) > 0 and
let \7*1 = X € C. Then \]* = d + aX\ + Y™ + €. Y[, =0, then A" = d+aX =N (1 —a) +aX =
A* 4 a(A— A*) = A since a > 0. On the other hand A7 — A = A" (1—a) — A1 —a) =—(1—a)(A—A*) <0
for a < 1. Itis concluded thatif 0 < a < 1, then A € C and Y;*; = 0 imply that A\]* € C, which in turn implies
P(\,C) = P(Y/", =0 | X"y = \) = P(N;(\) = 0) > 0. Similarly, P*(\,C) > P(Y;" = Y/", =0 | \[*; =
A) > 0. It follows that {\[*, ¢ > 0} is aperiodic by Chan (1990, Prop. Al.1).

Finally, we prove the existence of a test function V/(-) such that (A-1) holds true. Consider V' (z) = 1 + z*.
Then

EVOMIAL =Al = E[(1+ NN = A

= 1+E[(d+aX + 0V +em) N2y = A
= 1+ Zk: <k) (aX) (BN~ + kz_:l N
im0 \! =0 !
k—1
= 1+ (a+b) N+ N,
7=0

for some constants c; depending on a, b, d and €. Consider the small set C' = [A\*, K] and write

A1 = (a+b)"]

1+<a+b>kAk:[1_ 1+ M

} 1+ XN eC)+1()\ e 9.

For \ € C*, we obtain

A1 — (a+b)"]

} 11— (@t = (at D)
AeCe

as K increases. Similarly, by making K large enough

k=1

N\

Zj:l i

sup ————

< 6,
rxece 14+ AP

where 0 < § < (a + b)*. Buton C, 1+ (a + b)F\F + 2;:11 ;N is bounded. Therefore, it follows that there
exists constants kq and ks such that (0 < k1 < 1,0 < kg < 00)
E(V(A)INL = A) < (1= k)V(A) + k21(A € O)

and this implies that the chain {\]",¢ > 0} is geometrically ergodic, and that the kth moment of A} exists for an
arbitrary k.

Proof of Proposition 2.2

We will use the method of Meitz and Saikonnen (2008) to show that geometric ergodicity of the {\"} process
implies geometric ergodicity of the chain {(Y;™, Uz, A*)}, defined by (3). Denote the o-algebra generated by the
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past of U411 and Ny(-) process by F;_1, thatis Fy = 0(Ugy1, Ni, k < t). We will use the method of Meitz and
Saikonnen (2008) to show that geometric ergodicity of the { A} } process implies geometric ergodicity of the chain
{(Y™, U, A7")}, defined by (3). Denote the o-algebra generated by the past of U1 and Ny () process by F;_1,
that is F; = G(Uk+17 Ni, k < t).

Note that conditional distribution of Y;™ given F;_; depends only on A}". In addition, the conditional dis-
tribution function of Y;™ given A}* = X does not depend on ¢. Further, given the initial state (Yy", A\j", Uy ), we
have \[* = d 4+ a)§" + Y™ + €1, and since the conditional distribution of Y{™ given {Yy", U1, A\j", A"} is
Poisson(A]"), conditionally on {Y", U1, Aj", \T*} we have A5* = d + aAT* + bN1(A") + £2,, Where N1 (AT")
is Poisson(A]"). Hence, {A]"} considered as component of the trivariate chain {(Y;™, U, A"} from ¢ > 2 has the

same structure as the one—dimensional chain { A" }, where conditionally on F;_1
X = d+ aN, + BNt (X)) + 2o

with N;_1 (A" ;) being Poisson(A}" ;). It follows that Assumption 1 in the paper by Meitz and Saikonnen (2008)
is fulfilled. Therefore, Prop. 1 of Meitz and Saikonnen (2008) shows that {Y;", U;, A7)} inherits the geometric
ergodicity of {\;"}. Moreover, since we can take E,, [1+ (d+ A" + Y™ +&1,m)*] < oo, where y is the distribution

of the initial value (Y7, Uy, A}"), and since for some constant C'(k)

E[1+ A"+ (V) +ef A=Al = C(k) + A+ BV (A1 = )]
k—1
= Ck)+ N+ X+ e\
=1

< R+,
it follows from Thm. 2 of Meitz and Saikonnen (2008)-see also Prop.2—that {(Y;™, U, A{") } is Viy,u,x)- geomet-
rically ergodic with Viy g ) (Y, U, ) = 1 + Yk 4 UF 4+ )\
Proof of Lemma 2.1
It follows from the defining equations (1) and (2)
M =M=a (A — X—1) 0 (V) = Yio1) + tms (A-2)

and by taking conditional expectation and using the properties of the Poisson process we obtain that

EON" — ) =(@+0)EN"; —No1) +E(erm) = Y (a+0) E(er—im)-

%

|
—

I
o

Since (a + b) < 1 and |E (g4,1n)] < ¢, With ¢, — 0 as m — o0,

C
EQOM - M) < — ™ o5y,
| (t t)| 1—(a+b) 1,

which proves the first assertion.
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Next consider the second statement. By using (A-2) again,

E(\™ — \p)? a®E (AL — A1)’ + DE (Y — Yiy)?
+  2abE (V" = Yie1) (A2 — Me—1) +E (7,,)
+ 2aB [(A1 = Mic1) €0m] + 20B [(Y/" = Yioa) €] -
However, for A\{" > ¢
E((Y/" =Y) (N =) = EE(Y" —Y) (A" = M) [Fia]
= E[" = A) (E(NV: A, A = E(" — )2,

where F;_1 is the o-algebra generated by {Uj41, Nk, k < t — 1} and Ni[A¢, A7"] is the number of events between
A¢ and A} for the unit intensity Poisson process N;. (If A\]* < A, we work along the same lines). By using again
the properties of the Poisson process, we find that

E(Y" = Y)> SEW" = A)° +2|E(A" = A)| SEO — M) + 261 1. (A-3)
Finally, with « a positive constant,

E (Eim) + 2aE (( .- )\t,l) Et’m) + 2bE ((Ygﬁl — Yt,l) 5t,m) < FLC?n.
Therefore, by simple recursion

m 2 2 m 2 2 2
E (>‘t - )\t) < (a + b) E ()‘t—l — )\t—l) + RCy, + 2b (51’m < 5277”,

where 6 ,,, — 0 as m — oo. This establishes the second assertion and hence the last statement of the Lemma. As
to third statement this follows by (A-3) and the second assertion of the Lemma. Il
Proof of Proposition 2.3

Using the techniques of Lemma A-1 we first show that every point of [A*, 00) is reachable. This part of the proof
is equally valid for the unperturbed model (4), and for simplicity of notation we phrase it in terms of this model.
We note that since ais < 1, the function f is a contraction and therefore the skeleton sequence defined by

At = f(Ae-1)
converges for Ay > A\* towards A*, the fix point of f, and it follows that A* is reachable since b(Y;) = 0 for Y; = 0.
Consider a point ¢ € [A*,;00). ThenwithY; = N, Yy =Y, =...=Y,, =0,

A (N) = fUTD(F(A1) + b(N))

with ) (z) = f(fCV(z)), fO(x) = f(z). Since f()) is monotone upwards, f(*)(\) is monotone upwards as
well, and because of (NL2) there exists an integer /N such that

)\1+j(N) > c, )\1+j(N — 1) < e
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Using (NL3) repeatedly and then (NL4)

At (N) = Mgy (N — 1) FUE2( ) +DIN))) = FLID(f(A1) + (N = 1))
ar(FUD(f (A1) +b(N)) = FU=D(f(A + BN —1)]
o) THB(N) = b(N — 1)) < o' 3,

and the proof of reachability of c is concluded as in the proof of Lemma A-1. Subsequently, ¢—irreducibility is

NN

proved by a modification of the arguments in the first part of the proof of Proposition 2.1.
Switch notation to follow (6) and consider now the existence of a small set. The candidate set is given by
C = [X\*, K], as before. Using ay < 1, there exists an n such that
[A7r — A < aj|A = N < aj| K — A <n.

which implies that |f(A]") — A*| < nforall Ao = A € C. As before,

A (N) = FITDFOR) + b(N)).
Consider

pntg (N) = fUD (B(N)) + X*

and an open interval (c1, c2), and let NV be the least integer with fi,4+;(IN) > ca. Then

,U"rb-‘rj(N) - ,un-‘rj(N - 1) < O‘g_lﬂQ
which can be made smaller than any § > 0 by choosing j large enough, such that c; — 6 < pp4; (N — 1) < ca.
Moreover,

Anss (N =1) = g (N =D = [FI7DFOR) + BN = 1)) = fUTD (BN — 1) = )]
< o [fO) =N < ad M,

and the derivation is concluded as in the proof of Proposition 2.1 to show that (c1, ¢2) is uniformly reachable from
C. As in the proof of Proposition 2.1, it is concluded that C' is a small set. Aperiodicity is also proved analogously
to the proof of Proposition 2.1.
We now turn to the existence of a test function. Let V' (x) = 1 + z*. Then
E[(VA)A = Al E[(1+ (\M)O)IAE = A
= 1+ E[(f(/\) + b(thl) +e&t m) |)‘ -1 = >‘]

k
1+> k) b(N;_1(N) + ee.m) "

=0

It follows that

Ut \k

EVOPN =X < 1+ 5

(17) (FON) = FO) + FOS) B BN (M) +

7

(f) (o \) (B N)F 7 +§ch1.

A

N

1+

s_
o (=)
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Therefore, using the arguments of Proposition 2.1, the conclusion holds.

Proof of Lemma 3.1

We consider here the squared terms (0\;/ 80)2 individually for 8y = dy, ag and by respectively. The evaluation
of these imply that identical arguments apply to the cross-product terms.

With 6y = ag, which is the most complicated part, we need to evaluate the difference (1/\") (AN /da)’
(1/As) (8X¢/Da)’. From (10) and (14) we obtain

ON]Y O aam My
( 3; 6;)2()‘;”1_)\:&1)-{-%( 5‘tal_ ata )
Using this recursion it follows that,
oAF 9 Oy O
E’aé aat < E|/\l’11/\t_1|+a0E‘ atalthal
ON L OM—1

g Y1,m>

”52’m+a0E’ da  da

where 71 ., — 0 as m — oo from the second assertion of Lemma 2.1 and a < 1. The last display implies that

ON 0N
<7 as. A-4
’ da Ba |7 s (A-4)
with v > 0 arbitrarily small. Next, using recursion and Cauchy—Schwartz inequality,
NP AN 2 Ny AN\
E t — E /\m — N 2E t—1
( da 0a> (A1 = Ae)” +ap ( Ja da
m oY O
+2a0E (A" — Ai—1) ( L aat>

O OX—1

< Gom ) S S 2007/ 0. m <
2, +a0 <8a aa)+a07 2, Y

where 4 > 0 can be chosen arbitrarily small. Now turn to the evaluation of (1/A7") (9A7/da)>—(1/\;) (9, /Da)’:

1o/axm\? 1 fon\? MNP\ (O .

AP ( da > Y ( da Bl A Oa — da [N,
oA oA A

<>\t (( > < t) ) ((’)cj) (At — AT)) [AA

E

= E

< - ‘<3Am> (a ) —E @f;) (A — A7)
) ) G mre )
< dlolﬁ—FIig\/(? q,
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where 7 can be chosen arbitrarily small and «; some constants. Here we have used (2) and (3) (which guarantee
that Ay > dp and A\* > dy, (A-4), the second conclusion of Lemma 2.1, and finite moments of (OA)*/0a),
(8X¢/8a) and (DA /Da)*. The latter holds by finite moments of A, and A" using the expressions in (10) and (14)
and ap < 1.

With 6y = dy, it follows that,

ON' 0NN (DAL 9
ad  ad )~ ad ad ) ST

with + arbitrarily small. Next, as for the case of 8y = ay,

1 /aAm\> 1 [or)\° MNP\ (o .
v (o) % (a) v (%) (i) )
1 NP ) ONP O\ 2 o (ON)
< = - = = = —m =
< el - ) ((55) = ()| = oo ()

< dlfﬁ + k2v/02.m <7
0

using the second conclusion of Lemma 2.1.

E =E

With 8¢ = by,
oA O m O OA—
( o _6'bt> = (Kl_nl)”O( P atal>'
Using this recursion it follows that,
O O\ O\ ONi—
R e =
ONLy 0N

N

X V1,m»

V53”"+“°E‘ b o

and the result follows as before.

To see that G is positive definite, then with v # 0 € R3, is sufficient to show that 2’9\, /98 > 0 with positive
probability. By (10) v/0X; /00 # 0 as A, /0d > 1 while Y; and \; are non-zero, for some ¢. The same reasoning
holds for G™.

Proof of Lemma 3.2

Equation (13) shows that the score is given by S, () = Y, 9l (@) /06, with martingale difference terms
defined by

mi _ (Y,;m - 1) oA .: Zma)\;”
00 AP 00 T
where O} /06 is defined by (14). It follows that at @ = 8, E (91} /06| F,_1) = 0and E ((Z]")?|F—1) = 1/A7"
where F;_1 is the o-algebra generated by {Uy11, Nk, k < t — 1}. Furthermore, from (3) and (14),
t—1 t—1

O im ON 1 —al oA im
da :Zao/\t—l—iv od 1—ag and b :ZaoYt—l—i-

1=0 1=0
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Observe that, as ag, by < 1, E(Ym)2 < 00,and E ()\m)2 < 00, then (8)\m/8d)2 (('9)\7”/&1)2 and E (8)\;"/8b)2
are all finite. Also 1/A* < 1/ (dg — n1) for any small 7, > 0, where for m large enough,
Et,m = Cm]- (Y;Tl = 1) Ut € [*7’1’771]~

From Holders inequality we conclude that E |01} /00| < oo. Thus 9l}* /00 is a martingale difference sequence
with respect to ; and an application of the CLT (Hall and Heyde, 1980, Cor. 3.1), gives n~ /28 o is asymptoti-

cally Gaussian with covariance given by the limit,

DIV VAN P o
ZE<22< )(aé) |]-"t_1>—>G ,

by the LLN for geometrically ergodic process in Jensen and Rahbek (2007). That the conditional Lindeberg’s

condition holds follows by noting
LS E (ot /061 1 (1017 061 > Vi) |71 ) < —3 S E (100706 1y} — 0
n t=1 ' I I TL2(52 t=1 ,

since E |01}/ 80\\4 < oo. This proves the first assertion of the Lemma. The second assertion follows by Lemma
3.1.
We consider the last conclusion of the Lemma. Define Z; in an analogous way as Z;". Then

o N 1 N[ ON 0N
IZ<‘60>‘¢%;<Zt 90 Ztae)

fg{ <ax" %};)+(Z zt)%ﬂ

‘>5\/ﬁ> < P(vm

< 7‘“"ZEnzmu < O = 0,

% (8™~ 8,)

But for the first summand

(IS (o %)

as m — oo. For the second summand, the same arguments apply because E ||\, /90||> < co. In addition, for

i ZtTYL

t=1

> 6\/ﬁ>

A (V" = Yi) = Vi (A — M)

Ztm - Zt = )\t/\m )
t

we have | Z]" — Z,|| < y.,m — 0as m — oco. To see this, observe

g| " —Y) Vi (A7 — \p)
AT

AN

dmE |V

do (do —m)

CENY — Vil /(o —m) < Corm and E\

using Lemma (2.1) and the fact that E|Y};| < oc.
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Proof of Lemma 3.3

The Hessian matrix H ,, is given by (11) and can be decomposed as

lI_In:‘V’n+'jna
n
IS 2NN
V”_nzv(ao> (30)
t=1 "t
7 __lz":z A
" ne=""\ 0000 )’

with Z; defined in proof of Lemma 3.2. Similarly we can define V" and J},' for H' given by (15). Notice that

the (i, j)'th element of .J,, consists of function of

where

and

Y Y U V) VR
o2~ o2 ~ " Baod - od 9ad
92\, A, 2\, O\ %Ny
pr— P— p— 2 A_6
obod _ “obed " a2 9a % 9a2 (A-6)
Ph Oy Pha Ph_ Pha
990 b oa o o

upon using (10). Similar results but with A} are obtained by (14).
The LLN of Jensen and Rahbek (2007) shows that V' converges in probability to G™ defined by Lemma 3.1

since
RN AN ' gL (o (N '
(A2 \ 00 00 AP\ 008 00 ’
by simple application of the law of iterated expectations. The result then follows by establishing that J' tends to
zero in probability. Using again the LLN of Jensen and Rahbek (2007) ,

m " a2>\m
J7 —>E<Zt (aaa@)) =0,

in probability. That the LLN applies follows by establishing that (E HZtm (92N /0000") H)2 < (E(Z)?) -
E|[|(9?A"/0606") H2 < oo using similar arguments as in the proof of Lemma 3.2. For instance

t—1 t—i—2

92\ . :
8&5 :22(16 Z a{])\ﬁQ—ja

i=0 =0

by (A-6) and working as in the proof of Lemma 3.2 we can show that E (62>\;§” / 8a2)2 < oo since ag < 1 and all

moments of A\[" are finite. Likewise for the remaining terms.

30



Hence the first result has been established. The second result repeats the conclusion of Lemma 3.1. To prove
the third statement, note that

1 n
P(|H, — H,|| >en) = P< ﬁZ(VZ’—FJf)—(Vn—FJn) >5> .
t=1
Rewrite
- A 0PN ON}
Jr—J,=—= I | /% - —— ZM— 7)) ——|.
n t; |t <aoae’ aeae’) +2" = 2y) aeao’}
The conclusion holds by showing first that
OV _ N\ <
0000’ 96006’ || = ™

Equations (10) for the perturbed model show that this is implied by [|OA]* /06 — O\ /00| < ~2,m analogous to
the proof of Lemma 3.1. In addition, we have that || Z]" — Z;|| < vp,m from the proof of Lemma 3.2. Likewise
rewriting,

m YA (AN Yy (oA (oA
Vi = Va ;W)z(ae)(ae) v (20 ) (G0

[ () () - () (30 - (=-3) (3 (3]

t=1

the result follows.

Proof of Lemma 3.4

By (11), the third order derivative of the terms [; (0) in the log-likelihood function, 93I; (8)/90;00;00) with
1,7,k = 1,2, 3 referring to d, a and b respectively, is given by
»FlLO) (Y 9 X (0) 0N (0) i X (0) 0N (0) n X (0) 9N (0)
00,060,060, A7 (6) 00;00; 00, 00,00, 00, 00;00;, 00,

1) (pRZD LN o (2o ) i

It is simple to see that Y;/\Z () < Y;/62, Y, /A3 (0) < Y;/63 and |Yy /A () — 1| < Y; /6L + 1. Next, turn to
the derivatives where the first and second order derivatives are given by (10) and (A-6).

The most involved ones are the derivatives with respect to the parameter a and we focus on these here without
loss of generality as identical arguments for the remaining derivatives gives the desired uniform upper bounds. By
(2) and (10) and with )\ fixed,

t—1 t—1
. 1—at .
M(0)=bY a'Yi i+ T—d+a'do < por =Py Y _ayYi-i-i+co

=0 =0
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where co = 0y /(1 —ay) +dpandt =1,2,..,T. Fort =2,..T and ¢c; = ¢o/(1 — ay)

o (0) 2, =
ek ;aut,ki (0) < par = ﬁU;mU Yy 1itep
Likewise,
% - QSGiW < poe = Pu ti ((i+1)43) al Yo i + co,
=0 i=1
% B 32“%;@ < pige = ﬂUtzj((i +2)(i4+1)i)al Y, 5 + cs,

where c3 = 2¢o/(1 — ay)? and c3 = 6¢y/(1 — ay)®. Hence with 8; = 6; = 0, = a, and M* a constant,

931, (0 *
’ +(0) <my = M* (Yipse + pse + Yapioepar + Yapd,) -

06,00,00,,

It follows that Em; < oo by consider each term in m; separately. For example, for some constant C, using that
EYtk is finite for all k, such that in particular max E |Y;_;Y;_| is bounded by a finite constant, one finds
t—

Eud, <O ((i+2)(i+1)i)° ap

i

w

= < o
b

Il
_

as ay < 1. Thus Eus;, and EY; s, are finite. Likewise for the other terms.
That M 2 M ™, with M™ = Em{", holds by the LLN for geometrically ergodic processes in Jensen and
Rahbek (2007). That M™— M = Em, as m — o0, holds by evaluating

B Y"1y — Yepsel . Elpsy — psel, E[Y; iy — Yiporpne| , and B Y ud, — Yipd?|
Consider the first term,
E[Y"ug; — Yipae| S E[(Y" — Vi) pge| + B Y™ (gt — prae)] -

But |Y;™ — Y| < &y, and E|use| < 00, E Y| < oo and finally,

t—1

gy — psel = (Bu Y kjaads (V" = Yic1-j) | < m — 0.

j=1
Similarly for the remaining terms. Finally it can be shown that
> en) — 0

Z (my"* — my)

t=1

P(|M™ — M,| > en) :P<

as before.
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