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Abstract

Economy-wide effects of shocks to the US federal funds rate are esti-
mated in a state space model with 120 US macroeconomic and financial
time series driven by the dynamics of the federal funds rate and a few dy-
namic factors. This state space system is denoted a factor-augmented VAR
(FAVAR) by Bernanke et al. (2005). I estimate the FAVAR by the fully
parametric one-step EM algorithm as an alternative to the two-step prin-
cipal component method and the one-step Bayesian method in Bernanke
et al. (2005). The EM algorithm which is an iterative maximum likelihood
method estimates all the parameters and the dynamic factors simultane-
ously and allows for classical inference. I demonstrate empirically that the
same impulse responses but better fit emerge robustly from a low order
FAVAR with eight correlated factors compared to a high order FAVAR
with fewer correlated factors, for instance four factors. This empirical re-
sult accords with one of the theoretical results from Bai & Ng (2007) in
which it is shown that the information in complicated factor dynamics may
be substituted by panel information.
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1 Introduction

This paper estimates the "economy-wide" response to shocks to the US federal
funds rate using an iterative maximum likelihood estimation method. The data
description of the US economy is confined to a large cross-section of 120 macro-
economic and financial time series and the comovement of these time series over
time is shown to be adequately described in terms of a few dynamic latent driving
forces (dynamic factors) and the US federal funds rate. Technically, the 120 time
series constitute the measured part in a state space system. The state transition
part of this system contains the dynamics of the driving forces and is represented
as a vector autoregression of the federal funds rate augmented by a few dynamic
factors extracted from the large cross-section of time series. The complete state
space system in turn allows for an empirical study of the response of each of the

120 observed variables following a shock to the federal funds rate.

This setup is what Bernanke et al. (2005) denote a factor-augmented vec-
tor autoregressive (FAVAR) approach and this paper is closely related to both
their approach and the data used. While Bernanke et al. (2005) estimate their
FAVAR using both a two-step semi-parametric principal component method and
a one-step Bayesian likelihood method, this paper contributes to the literature by
estimating the FAVAR by a one-step fully parametric iterative maximum likeli-
hood method, the Expectation Maximization (EM) algorithm. In fact, several of
the future research issues that Bernanke et al. (2005) address in their conclusion
are cited below and discussed in this paper:

"Future work should investigate more fully the properties of FAVARs, alter-
native estimation methods and alternative identification schemes. In particular,
further comparison of the estimation methods based on principal components and
on Gibbs sampling is likely to be worthwhile. Another interesting direction is to
try to interpret the estimated factors more explicitly”. Bernanke et al. (2005)
page 415, §3.

Specifically, the issue of alternative estimation methods is adressed by the
above-mentioned EM algorithm and the issue of alternative identification schemes
is addressed by allowing for correlated dynamic factors in contrast to the typical

application of uncorrelated dynamic factors'. Finally, a thorough investigation

!The issue of interpretation of the estimated factors is addressed in Bork et al. (2008) in



of the properties of the FAVARs is undertaken by estimating a large number of
econometric specifications of FAVARs and subsequently evaluating these in terms
of statistical fit, specification tests and implications for monetary policy analysis.

Consider each of these three contributions in turn.

Similar to the one-step Bayesian method, the EM algorithm estimates all the
parameters and the dynamic factors simultaneously in contrast to the two-step
principal component method. The last-mentioned method extracts the factors
non-parametrically from the data without imposing any dynamic properties on
the factors in the first step. The second step estimates the dynamic properties
of the factors through a vector autoregression treating the factors as observed?.
One complication in the principal component method is how to separate the
observed federal funds rate from the latent factors in the extraction of these
factors, which in contrast is handled in a straightforward manner in the one-
step method. However, the advantage of the principal component method is its
computational simplicity. Finally, the fully parametric likelihood approach of the

EM algorithm allows for classical inference.

The alternative identification scheme allows the factors to be correlated which
is relevant if macroeconomic interpretation is to be attached to these latent fac-
tors. For instance, if the first factor is interpreted as an industrial production
factor and the second is interpreted as an unemployment factor, then we would
expect these factors to be negatively correlated. The correlated factor approach

in this paper allows for this feature.

Finally, the robustness of the preferred econometric model is evaluated against
several model specifications in terms of the number of factors included in the
FAVAR and the number of lags of these factors using various information criteria.
Specifically, careful model selection leads to a preferred model characterized by
eight factors with a particular parsimonious factor dynamics. This model yields
an eleven percentage point better fit of the panel and reaches the same conclusions
from the empirical monetary policy analysis as the benchmark model with four

factors but a complicated VAR(13) factor dynamics. This finding accords with

which the EM algorithm is also applied.
2The difference between the estimated factors and the true factors vanishes as the cross-
section dimension and the time series dimension approach infinity, cf. Bai & Ng (2002).



one of the theoretical results from Bai & Ng (2007) in which it is shown that
complicated factor dynamics may be substituted by panel information (in terms
of more factors). The eight correlated factors are found to be closely related
to observed variables; for instance, the first and most important latent factor is
interpreted as an industrial production factor, the second as an unemployment
factor, the third as a NAPM? factor, and so on.

Factor models have a long tradition in applied economics, finance and other
sciences and hence only a few observations may be needed to motivate why we
should continue to be interested in variants of factor models.

Firstly, factor models enable a reduction in the number of explanatory vari-
ables (factors) when the variation of a cross-section of variables can be decom-
posed into a low-dimensional common component reflecting the common sources
of variation and a variable specific idiosyncratic component; cf. Ross (1976),
Chamberlain (1983), Chamberlain & Rothschild (1983) and Geweke & Zhou
(1996) for cross-section applications within finance. Macroeconomic variables
tend to comove over the business cycle and therefore their common variation
over time may be explained by a few dynamic factor(s); cf. Geweke (1977),
Sargent & Sims (1977) and Geweke & Singleton (1981) for the first generation
of the dynamic factor (index) models estimated by spectral density maximum
likelihood methods. Engle & Watson (1981) propose a time domain maximum
likelihood method and Watson & Engle (1983) and Quah & Sargent (1993) apply
the Expectation Maximization (EM) algorithm introduced by Dempster et al.
(1977).

Secondly, large cross-sections of time series are nowadays available to re-
searchers and policy makers, including central bankers that "follow literally hun-
dreds of data series", as expressed by Bernanke et al. (2005). The potential gains
of using large information sets are more precise forecasts and a better under-
standing of the dynamics of the economy. In the context of the FAVAR, a much
richer information set is utilized in the econometric model than in the standard
vector autoregressive (VAR) model, leaving less scope for the omitted variable
problem. Moreover, because macroeconomic data are prone to measurement er-

rors*, dynamic factor analysis of large panels may help to filter out the observed

3Related to surveys by National Association of Purchasing Management.
4Sargent (1989) shows how the existence of measurement error leads to a dynamic factor



counterpart of a theoretical variable, like "inflation", which may not be well rep-

resented by a single observed time series.

Recently, a considerable amount of research has been devoted to the econo-
metric theory and empirical analysis of large dimensional approximate® dynamic
factor models, notably the generalized dynamic factor model by Forni et al. (2000,
2004, 2005) and the static representation of the dynamic factor model by Stock
& Watson (2002a,b). Both approaches allow for a general error structure and
facilitate dynamic factor analysis of large panels through a few dynamic factors
that are extracted from the panel X using non-parametric dynamic and static
principal component methods, respectively®. A vector autoregression of the fac-
tors may be considered as a second step treating the factors as observed if one is

interested in structural VAR analysis; see for instance Stock & Watson (2005).

Note at this stage that in the FAVAR of Bernanke et al. (2005), the common
variation of the panel dataset is not limited to being explained by a set of latent
dynamic factors, as in the Stock & Watson model, but also observed variables (the
federal funds rate) may enter into this set and accordingly interact dynamically
with the factors.

Econometric theory of the determination of the number of factors has recently
been developed, notably by Hallin & Liska (2007), Stock & Watson (2005) and
Bai & Ng (2007) for the Forni, Hallin, Lippi & Reichlin class of models and by Bai
& Ng (2002) for the class of dynamic factor models in the static representation.
Including more factors in the factor model increases the statistical fit of the panel
but at the cost of parsimony, whereas choosing too few factors means that the
factor space is not sufficiently spanned by the estimated factors. The papers
propose various information criteria to guide us in the selection of the number

of factors but they do not provide information about the number of lags in the

index model.

5In the first generation ezact factor models like Ross (1976) or Geweke (1977), Sargent &
Sims (1977) and Geweke & Singleton (1981), the idiosyncratic components are orthogonal. How-
ever, the approximate factor models allow for some "local" correlation among the idiosyncratic
components.

6Stock & Watson (2002a) show that the space spanned by the true number of factors, F,
can be consistently estimated by the non-parametric principal component method when the
cross-section dimension (V) and the time dimension (T) of the panel are large and the number
of principal components is at least as large as the true number of factors.



VAR. Consequently, the model selection problem in this paper is solved using the
above-mentioned information criteria, and for a given number of factors, also the

standard Akaike and Schwartz information criteria.

Since the initial work of Forni, Hallin, Lippi & Reichlin and Stock & Wat-
son, dynamic factor models have been used in an increasing number of applica-
tions’ starting with the construction of coincident indicator indices as in Forni
et al. (2001), forecasting where dynamic factors enter the forecasting equation,
cf. Stock & Watson (2002a,b, 2006), and very recently nowcasting as in Giannone
et al. (2008) where dynamic factor analysis of large panels is used to assess the
current-quarter economic conditions. The use of dynamic factors in financial asset
pricing applications includes the estimation of the conditional risk-return rela-
tion in Ludvigson & Ng (2007) and bond market applications by Monch (2008)
and Ludvigson & Ng (2008). Finally, a number of papers to which this paper is
particularly related adopt the factor approach for monetary policy analyses with
at least two advantages over the traditional VAR.

Firstly, the curse of dimensionality in the VAR is turned into a "blessing"
of dimensionality in the factor models as expressed by Stock & Watson (2006)
which is particularly useful for representing the data-rich environment in which
central banks and professional forecasters actually operate.

Secondly, to assess the current and expected future state of the economy in
policy decision making, the central banks are faced with a variety of data in
different frequencies, with missing observations and in a preliminary or revised
form. Therefore, it can be argued that empirical policy analysis researchers should
look at the real-time data that the central bank had at its disposal instead of the
revised data and this can be achieved by the dynamic factor model, cf. the
approach by Giannone et al. (2008).

Giannone et al. (2004) perform a real-time monetary policy study and find
that the US economy is driven by two stochastic shocks (real and nominal) which
implies that the federal funds rate should mainly track these two shocks, they
argue. Bernanke & Boivin (2003) also consider a real-time dataset in addition
to a larger cross-section of revised time series. They find that the scope of the

dataset (the number of variables in the cross-section, N) is more important for

TA detailed account of empirical applications can be found in Reichlin (2003) and Breitung
& Eickmeier (2006).



the forecasting performance of expected inflation and real activity in the forward-
looking Taylor rule than the real-time feature. In a similar setup, Favero et al.
(2005) study a revised cross-section of US and Euro area data. Common for these
studies is the estimation of the factors by principal component methods which
are then included in a low-order VAR in the second step to allow for impulse
response analysis of monetary policy shocks and these responses are found to
be more in line with the predictions from theory. However, a critical step in
the empirical monetary policy analysis is a proper disentanglement of the federal
funds rate from the estimated factors and the paper by Bernanke et al. (2005) is
particularly clear about this identification issue.

As an alternative to the two-step principal component estimation method,
one-step Bayesian estimation techniques are applied in Bernanke et al. (2005)
as well as in Banbura et al. (2008). The former choose thirteen lags in their
FAVAR specification while the latter also estimate this variant in addition to
lag specifications determined by the BIC criterion. The fully parametric one-step
EM algorithm method has recently been applied to large panels in Jungbacker
& Koopman (2008) that estimate a dynamic factor model with a VAR(1) in the
orthogonal factors and in Reis & Watson (2008) that estimate pure inflation with
a VAR(4) in absolute-price and relative-price components.

Based on this selective literature overview there seems to be a need for explor-
ing the consequences of model selection for not only policy evaluation but also
in terms of statistical significance of parameters and statistical fit of the various
components in the economy such as inflation, employment, production etc. This
issue is taken up in this paper and consequently several model specifications rang-
ing from a few correlated factors with only one lag to many correlated factors with
rich factor dynamics are estimated in an EM algorithm setup. I show how identi-
fying restrictions can easily be imposed on the parameters including restrictions
on the VAR parameters, if needed. This is in contrast to the Bayesian approach
where these kind of restrictions seemingly lead to excessive computational cost,
cf. Bernanke et al. (2005).

Furthermore, though the EM algorithm finds the vicinity of the maximum
quickly, the convergence to the maximum is almost excruciatingly slow (linear
convergence rate) and consequently hybrid methods combining the EM algorithm

and the BFGS have been proposed in the literature. Therefore, I also apply the



hybrid EM-BFGS as described by Jungbacker & Koopman (2008) in order to

speed up the convergence.

The rest of the paper is organized as follows. The factor-augmented VAR
is presented in section 2 while identification issues and the estimation method
are presented in section 3. Section 4 details the empirical results and section 5
concludes. The appendices contain details on the Kalman filter and smoother as
well as the EM algorithm.

2 Model framework: The factor-augmented VAR

Two ingredients need to be combined to set up the FAVAR. The first ingredient
is the dynamic factor model and the second ingredient is the standard VAR with
observed variables. Before mixing the ingredients, one thing is important to
note: the federal funds rate (FFR) is both part of the observed variables in the
panel (the measured part of the state space system) and also part of the state
variables (the state transition equation in the state space system) which include
the dynamic latent factors. Therefore, to allow for this feature the standard
dynamic factor model is modified and this is described in detail below.

This section will center around the static representation of the dynamic fac-
tor model in state space form which can be seen as a special case of the large
dimensional generalized dynamic factor model; see Bai & Ng (2007) for a clear
exposition. Following the presentation of the dynamic factor model, the FFR is
properly identified in the panel and then added to the state transition variables.
This may sound like a backward description of the factor-augmented VAR but
nevertheless I find this the most intuitive route towards the FAVAR.

The key implication of the dynamic factor model is that the variation of each of
the N observed variables in the panel X can be decomposed into two orthogonal
components, that is a component y common to all variables and an idiosyncratic
component ¢ specific to each variable. The common component is driven by a few
common factors and this component accounts for the covariation of the observed

variables at all lags and leads. Consequently, the ith variable in the panel X® at

8 All variables in the panel are transformed into stationary variables with mean zero and unit
variance. See section 4.1.



time ¢ can be written as:
Tit = Xi + Eut (1)

fori=1,..,Nandt=1,..,T with E [Xitgjs] =0V1,j,t,s but with a potentially
limited amount of correlation among the idiosyncratic components in the new
generation of dynamic factor models. The following description encompasses
the dynamic factor model which is characterized by the dynamic loading on the
common factors as well as the static representation of the dynamic factor model
characterized by the static loadings. The distinguishing features of the models

will become useful in later discussions.

Consider as in Forni et al. (2005), the specification of the N x 1 vector of
the common component at time ¢ to be dynamically explained by the ¢ common
factors f; such that x, = A (L) f;, where A(L) is a N X ¢ matrix polynomial

9. To facilitate an interpretation of the

in the lag-operator L of finite order s
panel being driven entirely by ¢ primitive iid shocks, the common component is
sometimes written as x, = (5 (L) &;, where (3 (L) represents the impulse-response
functions and accordingly for each variable records the responses in terms of
sign, magnitude and lag-structure following a shock to the underlying primitive
shocks, ¢;'°. Inserting the specification of the common component in (1) results

in a dynamic factor model driven by ¢ dynamic factors:
i = A (L) fi + &, (2)

where \; (L) = N\jo+ A1 L+ -+ \; L. Stacking contemporaneous and s lagged
values of f; in the ¢ (s 4+ 1) dimensional vector F; and the matching values of \; in

q (s + 1) dimensional vector A; results in the static representation of the dynamic

nfinite order of the lag-polynomiums is considered in the generalized dynamic factor model
of Forni et al. (2000).

10Rewrite the factors in terms of the primitive shocks, f; = a(L)e; and as a result 3 (L) =
A(L)a (L) . See Forni et al. (2007) for a thorough discussion.



factor model in (2), which is driven by r = ¢ (s + 1) factors, F; :

i = N F+¢, (3)
T
)\i,O [t
>‘i,1 Ji—1
= . . + Sit
>\i,s ft—s

Notice how the dimension of Fy,r = ¢(s+ 1) depends on the heterogeneity
in the response of the data to the factors f; through A (L) or equivalently to the
primitive shocks ¢; through 5 (L).

Furthermore, F; is governed by a dynamic process which depends on how
complicated the process governing f; is relative to the response heterogeneity of
the panel. Assuming that f; is an AR(h) process, Bai & Ng (2007)!! show that
F, can be represented as a VAR(p) process with p = max (1, h — s) . Intuitively, if
the dynamic process of f; is particular simple then a VAR(1) should be sufficient.
Interestingly, a sufficiently heterogeneous dynamic response of the data may sub-
stitute for some otherwise complicated dynamics of f;, cf. the term (h — s) in
max (1, h — s). I will refer to this result later in the discussion of the empirical
results.

The static representation of the dynamic factor model is now closed and can

be written in state space form:

Xy = AF, + &,

B (4)
E = (L) Ft,1 + Tgt

where X; = (214, 2n0) s & = (€ Exy) | is 1id N (0,R)2 and A =
[A], ...,AMT is a N x r loading matrix. The state transition equation is sta-
tionary so that the pth order matrix polynomial ® (L) has roots outside the unit

circle, T is a r X ¢ matrix and ¢; is i.i.d N (0, Q). The unknowns in this Gaussian

" They also discuss MA(h) and ARMA processes.

2Note that the assumption of i.i.d idiosyncratic components in (4) defines an ezact dynamic
factor model. This is certainly a strong assumption, particularly in the case of large panel data
where local cross-sectional correlation within a group of similar variables should be expected.
As such, equation (4) represents a misspecified model. However, Doz et al. (2006) generate data
under the assumption of an approzimate factor model and show, for large N and T, that the
exact factor model consistenly estimates the factors by a Gaussian (quasi)maximum likelihood
method. Specifically, they propose to use the EM algorithm.

10



state space model are the parameters in © = {A, R, ® (L), YT, Q} and the latent

dynamic factors Fj.

The final step towards the FAVAR is the inclusion of the FFR in both X; and
F, (FFR is added to and ordered last in F}). Specifically, the FFR in X, loads
with unity on the last factor in F; and zeros on the remaining latent factors,
such that the corresponding row in A for FFR is [0,...,0,1]. In principle, an
idiosyncratic error could be attached to the FFR to capture the transition between
discretionary changes in the policy rate. In line with Bernanke et al. (2005), I
argue that the FFR is indeed measured without error whereas the other variables
may be measured with error. Applying these minor changes to the state space
form in (4) leads to the preferred FAVAR specification. However, some identifying
restrictions need to be imposed on the econometric formulation to achieve distinct
factors, which, together with the estimation procedure is the topic of the following

section.

3 Identification and estimation by the EM algo-

rithm

This section starts with a discussion of identification schemes and then proceeds
to a brief description of the estimation procedure, that is the EM algorithm. I
also demonstrate how linear parameter restrictions can easily be imposed. Fi-
nally, a hybrid estimation method that combines the EM algorithm and the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with analytical derivatives

is described.

The FAVAR model is highly over-parameterized as it stands in (4) and we
are not able to estimate a unique set of parameters, © with the data unless
identifying restrictions are imposed on ©. This is a well-known problem of classical
factor analysis including the principal component approach to dynamic factor
analysis by Stock & Watson. Typically, these models are identified by restricting
the covariance matrix of the factors to be an identity matrix, F'"F/T = I but
sometimes also ATA/N = I is used. Neither of these identification schemes is
sufficient in the one-step estimation of the state space model because the factors

are identified by both the measurement equation and state transition equation

11



in (4). Briefly, for any orthogonal matrix P where PP = I, it is possible to
construct an observationally equivalent model with A = AP~ and F' = PF that

still satisfies the condition F'TF = I, and therefore more restrictions are needed.

Starting from a rank condition for the loading matrix, Geweke & Zhou (1996)
propose an identification scheme that uniquely identifies the loadings and the
factors by imposing additional r (r — 1) /2 restrictions on the loading matrix A
while maintaining uncorrelated factors. Essentially, the upper r» x r block of A
is lower triangular with r positive diagonal elements. Aguilar & West (2000)
restrict this diagonal to unity and then allow for a diagonal covariance matrix for
the factors. These approaches are often termed "hierarchical" because the first
factor is only allowed to load on the first variable in the panel, the second factor
on the first two variables etc. Therefore, the ordering may potentially influence
the statistical fit and will be discussed in detail in the empirical section; Aguilar
& West (2000) present a similar discussion.

It should be noted that this "hierarchical" approach is in fact similar to the
identification scheme stated in Proposition 1 in Geweke & Singleton (1981) in
their frequency domain analysis of a first generation dynamic factor model. In-
terestingly, Proposition 2 in Geweke & Singleton (1981) allows for an alternative
identification scheme where the factors are correlated, which is a feature preferred
in this paper. The reason for this preference is that if economic interpretation
is to be attached to the estimated factors, for instance a "real activity factor"
or an "employment factor", then it makes more sense to have correlated fac-
tors because theoretically but also empirically such economic quantities should
be correlated and not orthogonal. Yet another argument for correlated factors
is found in the typical view of the monetary transmission mechanism which is
investigated empirically in section 4. According to this view, a contractionary
monetary policy shock is expected to decrease production and employment with
some time lags and then even later also inflation. More precisely, the inclusion
of more correlated factors in a low order VAR in the state transition equation
combined with different loadings on these factors in the measurement equation is

able to produce an empirically plausible monetary transmission mechanism.
The identifying restrictions in this paper can be summarized as follows:

1. The FFR in X; with row index /¢, in A loads only on the last dynamic factor

12



in F; which is a monetary policy factor (the FFR itself). Hence, for the r

elements in row ¢, in A, the restricted loading is:

2. The remaining (r — 1) latent dynamic factors ordered before the monetary
policy factor in the VAR each load with unit restriction on a single "slow-
moving" variable (see below) which is assumed to respond with a lag to
changes in the FFR. Let the selected slow-moving variables with restricted
loadings be indexed by row {/y,..,¢,_1} of X, which means that the re-

stricted rows of A can be written as:
. [ 1 0 0 ]
G IX1  1x(r—2)

£ 1
A, = [ 1x(9—1) 1x1 1x(9—j) } (5)

P 0 1 0
A= [ Ix(r-2) 1x1 1x(r—j) }
where it should be noted that the last columns of A7, ...,A}';(T_U always

contain a zero corresponding to the monetary policy factor.

This identification scheme allows for correlated factors and the zero restric-
tions on A ensure that the factors explain distinct parts of the variation in the
panel. A separate identification issue which is relevant for the identification of the
monetary policy shocks in the VAR by a recursive identification scheme requires
the factors to be associated with slow-moving variables such that ¢; € {{1,..,¢,_1}
should be chosen from this group of variables. Therefore, Bernanke et al. (2005)
propose to categorize the variables into "slow-moving" variables such as pro-
duction and unemployment variables and "fast-moving" variables like financial

market variables'?; see section 4.1 for more details.

13Notice, that if the factors also are allowed to be fast-moving then a simultaneity problem
arise in the identification of the monetary policy factor in the sense that both the monetary
policy factor and the fast-moving factor(s) should be allowed to respond contemporaneously to
either of these shocks. Bjgrnland & Leitemo (2009) solve this by long-run restrictions.

13



3.1 The EM algorithm

The linear Gaussian state space model in (4) with its latent factors F} is well
represented in a Kalman filter setting. However, the Kalman filter needs the pa-
rameters © = {A, R, ® (L), YT, Q} as input and therefore does not estimate these.
Building on the seminal work by Dempster et al. (1977), Shumway & Stoffer
(1982) introduce the Expectation Maximization (EM) algorithm to estimate the
parameters in state space models as the model above. Essentially, the EM al-
gorithm is an iterative maximum likelihood procedure applicable to models with

"missing data", which in this context are the unobserved factors.

The complete data likelihood of the Gaussian state space model in equation (4)
is given in equation (18) in Appendix C.3. However, the complete data likelihood
cannot be calculated due to the unobserved F}, but it is possible to calculate the
expectation of the complete data likelihood conditional on the observed data and
input of parameter estimates (denoted ©1)); see Appendix C.3. Essentially, this
expectation depends on smoothed moments of the unobserved variables from the
Kalman smoother and hence on the data and ©U). The Maximization step results

in the following closed form estimators at iteration j

vec (AY) = vec (DC™) (6)
RY = %(E—DC"lDT) (7)
vec (@9) = vec (BA™!) (8)
QU — %[C—BA‘lBT} (9)

where the following moments are available from the Kalman smoother (indicated
by subscript ¢|7'):

A= ZtT:1 Ft—l\TFtTfl\T + pt—llT> B = ZtT:1 (Ft\TFttl\T + p{t,t—1}|T>
T AOf ~ T r

C=> Ft\TF;tTT + Pt\T> D=3, XtFt—\rT

E= Ele XtXtT

and where F; is approximated by FﬂT = E[F|Xr]. Xr = {X1,.., X7} de-

notes the information set, ]3t|T = var (F| Xr) is the variance and ﬁ{t,t—l}\T =

14



cov (Fy, Fy_1| Xr) is the lag-one covariance.

These estimates can then be used in the Expectation step to compute a new set
of moments from the Kalman smoother. Subsequently, the estimates are supplied
to the maximization step above and the procedure continues until convergence of
the likelihood.

In practical implementation, a VAR(1) usually does not pose any problem and
neither should a VAR(p) because any lags of F; can be included in an augmented
state vector if the autoregressive parameters in ® (L) are represented in a com-
panion matrix as in Hamilton (1994) chapter 10. The autocovariances in the B
matrix needed in the ® estimate should then follow automatically. However, this
paper follows a slightly different route similar to Koopman et al. (1999) but with
an implementation in MATLAB', where the smoothed autocovariance matrix of
the state variables is constructed directly and explicitly, cf. de Jong & Mackin-
non (1988), de Jong (1989) and Koopman & Shephard (1992). For instance, the
lag-one covariance smoother needed for the ®; estimate in a VAR(1) is defined

in the latter-mentioned paper as:
Pyyyr = [[ - Ptaff—th—l} Lt—lpffm_z
and the lag-two covariance smoother needed for the &, estimate in a VAR(2) is:

Py oyr = [1 — pt\t—th—l] Li1Li—2Py o3

where NV;_; and L;_; in Appendix C.2 page 43 are matrices defined recursively
in the Kalman smoother and Kalman filter, respectively. Furthermore, the state

smoothing recursions are also stated in the appendix.

3.1.1 Parameter restrictions in the EM algorithm

In order to implement the identifying restrictions in (5), the estimators in (6) —(9)
subject to linear restrictions need to be derived. Shumway & Stoffer (1982) and
Wu et al. (1996) present the restricted ®*'* and Bork et al. (2008) show how the

A small dynamic factor model with N = 12 observed variables, r = 2 factors and p = 4
lags, was simulated and subsequently estimated with noisy initial estimates of the parameters
to check the code.

shown in the appendix.
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restricted A* estimator subject to a linear restriction in the form Hy vec A = Ky

can be derived:

vec (A*) = vec (DC™)
+(C @ R) H] [Hy (C' @ R) H]] ™ {ra — Hy vec (DC™1)}
(10)

where k, is a X 1 vector and the restriction matrix Hy is of dimension 1 x Nr.
Notice that the unrestricted estimator in (6) appears if 7 = 0 restrictions are

imposed.

3.2 The hybrid EM-BFGS optimization method

The EM algorithm is known to converge rather slowly due to its linear conver-
gence rate. However, the EM algorithm robustly finds the vicinity of the maxi-
mum quickly and therefore it has been proposed by for instance Lange (1995) to
combine the good properties of the EM algorithm in the early stage of the opti-
mization process with the fast convergence properties of quasi-Newton methods in
the late stage of the optimization process. This hybrid requires analytical deriva-
tives and in an application by Jungbacker & Koopman (2008), these are derived.
Moreover, whereas I often experience computing time in hours for the heavily pa-
rameterized models presented here, they report computing time in minutes. The
analytical derivatives from Jungbacker & Koopman (2008) in terms of Kalman

smoothed quantities are given Appendix D.

The performance of this hybrid method is here somewhat mixed. Often it
is found that the EM algorithm has to get very near the optimum before it is
reliably to shift to the BFGS method; otherwise the BFGS method fails to find
an optimal solution. However, when the hybrid is succesful, it is indeed relatively

fast and therefore continued research into this hybrid is worthwhile.

4 Empirical results

In this section, I present empirical evidence that a factor model with more factors

but fewer lags performs equally well, if not better, in terms of statistical fit (in-
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creased R?). Moreover, the empirical monetary policy analysis results in equally
plausible impulse responses. For instance, the price puzzle is almost eliminated
and comparable to Bernanke et al. (2005). Moreover, unemployment responds
more negatively to contractionary monetary policy shocks but still reverts to the
baseline within four years (similar to Bernanke et al. (2005)). Finally, I also
show that the empirical evidence accords with the theoretical insight from sec-
tion 2: that complicated factor dynamics (many lags) may be substituted by

cross-sectional information (more factors).

Throughout this section natural benchmarks are the principal component
FAVAR and the Bayesian FAVAR by Bernanke et al. (2005) as I use the same
dataset as well as the same model as these authors. The differences in the empir-
ical results may then be attributed to the differences in the estimation methods,
i.e. the EM algorithm versus the methods of the Bernanke et al. (2005)'¢ as well
as the factor configuration in terms of the number of factors, r, and the number
of lags, p. Accordingly, an EM algorithm equivalent to the preferred model by
Bernanke et al. (2005) with four factors including the monetary policy factor and
thirteen lags is calculated (abbreviated BBE-EM ) and makes up a first step in
the comparison. The second step in the comparison is then made with reference
to the preferred model in this paper with eight factors and three lags, a model
choice that is explained below. I find that the results from the BBE-EM model
are comparable to the results by Bernanke et al. (2005) in the sense that a sim-
ilar overall R? for the panel seems to be achieved as well as similar and equally
plausible impulse responses. Furthermore, the preferred eight factor model with
three lags improves the results significantly in the sense that a ten percentage
point increase in the overall R? for the panel is achieved without compromising

the plausibility of the impulse responses.

It should be emphasized that the part of this paper that involves the empirical
monetary policy analysis focuses on the identification of monetary policy shocks
and the economy-wide responses to these shocks while remaining agnostic about
the interpretation of other structural shocks. Hence, the focus is on the determi-
nation of the number of static factors including the monetary policy factor, which

amounts to r = 8 factors in this paper, rather than on the determination of the

16 Although seemingly unreported by the authors, it seems that they employ uncorrelated
factors in contrast to the correlated factors employed in this paper.
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g dynamic factors driven by ¢ < r structural shocks'”. Accordingly, I do not
specify the matrix T in (4) to select g shocks; rather r = ¢ and T is an identity

matrix.

The preferred model with eight factors and three lags is the outcome of a care-
ful model selection process where a large number!® of estimated FAVAR models
were evaluated in terms of information criteria, test statistics and model parsi-
mony considerations to be detailed below. The motivation for evaluating a large
number of models is twofold: 1) What is the sensitivity of the empirical policy
analysis to the number of lags included in the VAR? The monthly frequency of the
data asks for several lags, but is the thirteen lags chosen by Bernanke et al. (2005)
necessary across different number of factors? Fortunately not. Nearly identical
impulse responses emerge from a factor model with eight factors and three lags
and from a factor model with four factors and thirteen lags'®. I ascribe this ob-
servation to the theoretical result mentioned previously, that complicated VAR
dynamics in terms of many lags can be substituted by cross-section information
in terms of more factors. 2) Obviously, more factors imply a better statistical fit
of the panel, but what is the optimal number of factors for this panel and which
part of the panel gains from including more factors? Price indices for instance
are far better explained when more than five factors are added, at least in this
paper. That more factors need to be included for a proper explanation of the
price indices seems to be a special feature of the correlated factor approach in this
paper in contrast to the orthogonal factor approach. The reason is that although
the fit is not inferior, it involves more correlated factors before the model picks

up to the price dimension in the dataset.

The rest of this section now presents detailed results behind some of the con-

1"For example, fi: and f1:-1 count as r = 2 static factors in the static representation of
the factor model whereas in the dynamic factor model, they represent the contemporanenous
and lagged values of ¢ = 1 dynamic factor driven by one structural shock. Accordingly, r is
the rank of the covariance matrix of the common component y whereas ¢ is the rank of the
spectral density matrix of y. For further discussion of structural factor models, refer to Forni
et al. (2007) and Stock & Watson (2005).

18] programmed the estimation procedure as a MATLAB function that takes the dataset, r and
p as arguments and then looped over this function from r = 3,..,10 and p = 1, ..,13. To make
this excercise computationally feasible, a maximum of 10,000 iterations in the EM algorithm
were allowed, which explains the few missing factor models.

19Notice that both models involve approximately the same number of autoregressive coeffi-
cients in the VAR.
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clusions stated above. Firstly, the data and the transformation of the data are
described followed by an account of how the identifying restrictions are imposed.
Secondly, a number of panel information criteria from Bai & Ng (2002) are calcu-
lated as well as the usual AIC/SIC information criteria and a multivariate Port-
manteau test tailored to latent variables in a VAR. Moreover, the autocorrelation
function for the VAR residuals and an average R-square for each factor model
are plotted. All these measures guide me in the model selection choice. Thirdly,

impulse responses and forecast error variance decompositions are calculated.

4.1 Data description and data transformation

The dataset used in this paper is exactly the same as the dataset that Bernanke
et al. (2005)%" analyze. The data consist of N = 120 monthly time series covering
a large part of the US economy over the period 1959:1 to 2001:8; see Appendix
A for a description of the dataset and in particular the classification into slow-
moving variables and fast-moving variables. The time series in the panel are
transformed into stationarity by taking logs and /or differencing®'. The next step
involves standardizing the transformed data so that all series have mean zero
and unit variance, which is typical especially for principal component analysis.
Denote by X; the transformed and standardized data at time ¢ consistent with
equation (4) page 10. However, when studying impulse responses, the interest
centers around the observed variables in levels (e.g. the price level) rather than
the transformed variables (e.g. inflation) and therefore a reverse transformation
of the responses is required, denoted by D (L) such that the reverse-transformed
data X, = D (L) X,*.

20T thank Jean Boivin for kindly making the data set available on his website, HEC Montréal,
Canada

21The data are already transformed by Bernanke et al. (2005) to reach stationarity; see
Bernanke et al. (2005) for details on the data set and on the transformation which results in
a sample size of T = 511. The data transformation decisions are similar to Stock & Watson
(2002b) and based on judgemental and preliminary data analysis of each series, including unit
root tests.

22For instance, if the data in X; are in growth rates, the diagonal elements of D (L) would
need to be multiplied by ﬁ in order to have the data in levels in X;.
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4.2 The imposition of the identifying restrictions

A number of identifying restrictions need to be imposed on r rows of the loading
matrix A as explained in equation (5) page 5 and it should be emphasized that
it is not completely unimportant which variables are selected to have restricted
loading. Consider the case where the use of principal components as consistent
estimators reveals that the first and most important factor can be interpreted as
an industrial production factor. Then it makes sense to impose the restriction
Ay, = (1,0,..,0) on an industrial production variable and not on for instance a
price level variable, which would lead to a bad fit for the particular price level
variable and not really change the characteristics of the first factor. The reason
is that the single 71”7 in the first column corresponding to the particular price
level variable does not really affect the loadings on the industrial production
variables??. This is important because I argue that the outcome of the estimated
factors is not determined by the single unit restriction in a particular column in A

but rather by how important this factor is for the fraction of variance explained.

Consequently, a pre-study is undertaken to reveal which variables each fac-
tor is primarily associated with. Specifically, this pre-study reveals that the first
factor is robustly associated with industrial production. Interestingly, the second
factor is often related to Moody’s BAA yield spread (variable number 91 (#91)
in Appendix A) which is a fast-moving variable. However, the correlation co-
efficient between this spread and the slow-moving help-wanted employment ads
(#23) is 0.6 and similar correlation for unemployment measures. Consequently,
restrictions are imposed on these slow-moving variables instead. The third factor
is associated with NAPM indices (production or employment), the fourth factor
with production hours and the fifth factor with price indices. Based on these find-
ings, the restrictions are imposed on the following list of variables in increasing

order of the number of factors included:
{01,065, .., Lo} = {11,27,18,47,112, 23,17, 50, 16}

where numbers refer to the variable number listed in Appendix A page 38. Notice

that the restrictions are not imposed on variables that are deemed a priori to be

23This was actually done in the first estimations and the imposition of a single "1" for CPI-U
changed absolutely nothing. See Bork et al. (2008) for an oblique transformation of the factors
towards a target loading matrix such that the first factor becomes an "inflation factor".
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particularly important variables such as the unemployment rate for all workers
(#26), the consumer price index all items (#108) etc. Instead, a variable that is
closely related or correlated with this variable is selected such that the potentially
most important variables are maximally explained and minimally restricted. Ad-
mittedly, an alternative restriction index, /1, ..,¢,_; may improve the overall fit

although the improvement is deemed to be modest.

4.3 Model selection: information criteria and test statis-

tics

An important choice in factor analysis concerns the unknown number of factors
r that span the factor space. A number of papers mentioned in the introduc-
tion address this challenge and in this paper different panel information criteria
developed by Bai & Ng (2002) are applied. Essentially, the proposed informa-
tion criteria reflect the usual trade-off between model parsimony and statistical
fit using a penalty function. However, this penalty function depends on both T
and N so that the usual AIC/SIC cannot readily be applied and furthermore
the information criteria should also take account of the fact that the factors are
unobserved. However, the criteria by Bai & Ng (2002) do not address the number
of lags in the VAR and therefore the AIC/SIC will have a comeback when the
VAR order needs to be determined.

Principal component analysis with r factors extracted from dataset in X al-
lows for the calculation of the sum of squared residuals V (r) = (NT) ™" 31, étéj :
where ét is a N x 1 vector of the estimated idiosyncratic errors. Based on this
quantity Bai & Ng (2002) suggest a number of information criteria of which some
of the most popular are shown below:

min/Cpe (r) = In(V (r)) +r (N il T) In C%p
r NT
In CJ2VT)

2
C1NT

mrinIC'pg (r) = In(V(r))+r (

where the sequence of constants C%, = min { N, T} represents the convergence

rate for the principal component estimator. Furthermore, the following panel
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information criteria are also calculated:

) R N+T
mrmPCpg (ry = V(r)+ ré? < T

) In Cyp

minPCp3 (r) = V (r) +7r6° (hlchQ\/T)
" NT
where 62 = (NT) ' S2N ST E¢,) is a penalty function scaling term and
usually calculated using some maximum number of factors rpay.

Application of the ICy,; and IC),3 however points towards a large number of
factors (r = 16), which is similar to what Bernanke & Boivin (2003) and Forni
et al. (2007) experience with this criterion. Nevertheless, instead of relying on the
estimation of the sum of squared residuals from principal component analysis, I
calculate V (r), 6% from the actually estimated models using the EM algorithm
and then calculate the above information criteria?*. These calculations point
strongly towards r = 8 which can be seen in figure 1 page 52. [C)q, PC) and

PC,3 lead to exactly the same result and are therefore not shown.

An alternative and less formal method consists of calculating the average
explained variation of the variables in the panel relative to the total variation,
the average R? measure, which is primarily influenced by the number of factors
and less by the number of lags in the VAR. Based on the average R? measure
adjusted for degrees of freedom, denoted R?, this alternative measure could be
used to evaluate the incremental value of adding more factors. Figure 2 shows
R? for each estimated model and it can be seen that the incremental value of R?
diminishes as more and more factors are included in the FAVAR. A decision on
when to stop adding factors is subjective, but based on these results, I maintain

that » = 8 seems to be a good choice.

The R? weights each variable equally in the panel so that for instance in-
dustrial production, e.g. mining (#14), receives the same weight as the total
industrial production index (#16) even though the former is probably of less in-
terest. In other words, improved fit for some variables does not show up clearly
in R2. The purpose of Figure 3 is to show that the fit of some variables such

as unemployment and inflation, improves dramatically when more factors are

24T used C%; to represent the imperfect convergence rate for the EM algorithm estimator.
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added whereas others such as industrial production, e.g. mining and foreign ex-
change rates, are never well explained. More details about the preferred model

are provided later.

4.3.1 Towards a well-specified VAR

Ultimately, the preferred model is to be used for impulse response analysis of
shocks to the monetary policy factor and therefore a well-specified VAR is sought
for. In the previous paragraphs, I argue for eight factors but the number of lags
in the VAR also needs to be determined. For this purpose, the Akaike (AIC),
Schwarz (SIC) and Hannan & Quinn (HQIC) information criteria are calculated
in Tables 1, 2 and 3 respectively. The maximum number of lags to be included
does not exceed six, which is somewhat surprising. An alternative procedure
would be to test if the pth autoregressive coefficient matrix is significant in terms
of a likelihood ratio test. Apparently, for the preferred model with eight factors,

the number of lags should be either three or six.

Given the different {r, p} factor model specifications, the VAR residuals are
also inspected to see if they are approximately white noise by tailoring the multi-
variate Portmanteau test to latent variables and by inspecting the VAR residuals
visually. Consider the multivariate Portmanteau test which tests whether the Ath
order residual autocorrelation is zero. However, recall that we approximate the
true factors F; by the smoothed factors FHT, ie. F, = FﬂT + (Ft — FﬂT), which
means that it is the residuals of the true factors that interest centers around.
Accordingly, I modify the standard Portmanteau test to use smoothed quantities
instead. The standard multivariate Portmanteau test statistic (see Liitkepohl
(2007)) is:

which are replaced by the (auto)covariances of the smoothed residuals from the
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Kalman smoother, cf. (17) page 44:

_ 2 AT €
C() = €t|T€t|T+Pt\T

2 ~T e
Ci = eyréy_yr + P

The upper panel of Table 4 shows that all factor models reject the null hypoth-
esis of absence of residual autocorrelation when the smoothed quantities from a
VAR(1) are used. However, the lower panel of the same table shows that when
a VAR(2) is considered, the null is not rejected when a sufficient number of lags
is employed (r > 8). Table 5 shows that whiteness of the residuals is further
improved when a VAR(3) is considered and that the null of absence of residual
autocorrelation cannot be rejected for a FAVAR model with eight factors, whereas
a model with four factors is rejected. However, when a VAR(4) is considered, also
r = 4 cannot be rejected for most h. An overall conclusion from these tests, is
that the number of lags needed in the VAR seems to be decreasing in the number
of factors. This is particularly pronounced for » > 8 where a maximum of three
lags is needed. For the benchmark FAVAR with four factors, a VAR with six or

seven lags seems to do well, which is also what Bernanke & Boivin (2003) find.

Finally, a visual inspection of the autocorrelation functions of the smoothed
residuals is also performed and combined with the multivariate Portmanteau test,
and R? the best FAVAR specification among r = {3,4, .., 10} is selected. Atten-
tion to model parsimony influences the choice when competing FAVAR specifi-
cations are encountered®®. This selection of best specifications will be used in an
evaluation of the robustness and sensitivity of different factor model specifications

for the empirical monetary policy analysis.

To facilitate the interpretation of the following results, I introduce some short-
hand notation for the various models. The notation r8p3 means r = 8 factors
including the monetary policy factors with p = 3 lags in the FAVAR. The no-
tation r8p3 (2) indicates a special focus on factor number two among the total
of eight factors. Likewise, r4p13(4) indicates a special focus on the last factor

among the four factors each with thirteen lags; in fact, this is the monetary pol-

25For instance the specification with eight factors and three lags is preferred to the specifica-
tion with eight factors and six lags. Similarly, the specification with six factors and four lags is
preferred to the specification with six factors and eight lags.
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icy factor as this is always the last factor. The best specifications model among
r=1{3,4,..,10} is {r3p7, rdp7, r5p6, r6p4, r7p5, r8p3, r9p3, r10p2} with the over-
all preferred model in bold. Figure 4 shows the autocorrelation functions for best
specifications versus their VAR(1) counterpart. These autocorrelation functions
are calculated for the monetary policy factor residuals and it should be noted that
the improvement for the other variables in the VAR is often more pronounced

than for the policy factor itself.

The list of best FAVAR specifications is shortened marginally by remov-
ing r3p7 because of inferior fit and because of less plausible impulse responses.
Also r10p3 is removed because of computational complexity and because this
model does not add anything in terms of fit or interpretation. The revised list
{rdp7,r5p6, r6p4, r7p5, r8p3,r9p3} is now used in the empirical monetary policy
analysis against the benchmark BBE-EM model denoted r4p13.

Figure 5 illustrates the gain in terms of increased fit for each obserserved
variable of using the preferred model versus the BBE-EM and the preferred model
by Bernanke et al. (2005).

For the sake of brevity, the parameter estimates are not presented in detail.
However, it should be mentioned that the estimates of the loadings are generally
as expected in terms of signs and magnitude. For instance, the industrial produc-
tion variables all load positively on the first "industrial production" factor with a
coefficient close to unity. The unemployment variables generally load positively
on the second "unemployment" factor whereas the largest loadings for the em-
ployment variables are generally negativ. For the monetary policy factor it should
be noted that the bond yields are positively related to this factor with loadings
for the short-duration bonds close to unity, as expected. For the autoregressive
parameters in ® it should be noted that all eigenvalues of ® are less than 1 in

modulus.implying that the system is stationary.

4.4 A look at the factors

Given the choice of the preferred model that involves eight factors, the following
offers some description and "labeling" of these latent dynamic factors. Figures 6
and 7 show the time series properties of the factors. Figures 8, 9, 10 and 11 show

the correlation coefficients with the panel.
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Factor one is clearly an industrial production factor with a correlation with in-
dustrial production variables often exceeding 85%. Factor two is primarily related
to unemployment with a correlation often exceeding 70% and secondarily related
to Moody’s BAA yield spread. Factor three is labeled a NAPM factor because it
is primarily related to NAPM production, PMI, NAPM employment and NAPM
orders, where correlation often exceeds 80%. Factor four is an "(overtime) hours
in production" factor that is negatively related to dividend yield (proxy for risk
aversion) and positively related to consumer expectations. Factor five is an infla-
tion factor with correlation with inflation variables often exceeding 80%. Factor
six is an employment factor closely related to help-wanted ads. and of course neg-
atively related to unemployment, though this factor picks up something different
from the unemployment, which can be seen from the correlations in Figure 10.
Factor seven is a capacity utilization factor?® and factor eight is the monetary

policy factor.

4.5 Impulse response analysis

Having estimated the FAVAR model, we would like to study the dynamic re-
sponses of the variables in the panel following a shock to the federal funds, i.e. a
shock to the VAR innovation for the monetary policy factor. However, to iden-
tify this innovation as a structural monetary policy shock, identifying restrictions
need to be imposed and I follow Bernanke et al. (2005) by applying a recur-
sive identification scheme proposed by Sims (1980). The recursive identification
scheme (sometimes called a Wold causal ordering) implies that the first factor in
the VAR is only affected by its own shock. The second factor is affected by its
own shock and the first shock and so on. The monetary policy shock is influenced
by all r shocks, so that if we for a minute interpret the first factor as output, the
second as employment and so on, then output and employment shocks affect the
monetary policy shock contemporaneously. However, monetary policy shocks do
not affect output and employment shocks contemporaneously because monetary

policy affects these with a lag.

26This factor is quite correlated with the employment factor number six. Although the
correlation coefficient is 0.83 the capacity utilization factor is still different from factor six,
which is apparent in the beginning of the period. Admittedly, this may be a weakness of the
correlated factor approach, that factors can become quite correlated.
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This recursive structure can be achieved by specifying the VAR innovations
¢ in terms of a new set of orthogonal residuals multiplied by a lower triangular
matrix, such that ¢, = Pe;. This particular example corresponds to a Cholesky
decomposition of the covariance of ;, i.e. Q = PP'. However, shocks of size one
rather than size one standard deviation are sought for, so consider instead the
decomposition Q = WE.WT, where ¥, = DDT is diagonal and W = PD~! has
ones along the diagonal. Accordingly, for the VAR in F' the response of the jth

element of F' at time t + ¢ due to a change in the kth element of F' at time ¢ is:

OF [Fjviil Fs, Fro1, Fya, .. _ OF [Fjvsil Fre, Fr1, Frs, ...) Oziy — o,
aFkJ 8Fk,t 06;€7t v
fort=1,.2,...... h, where 1; is the VAR moving average coefficient matrix and w;

is the jth column of the matrix W. ¢, can be calculated recursively?” from ® (L)
in the stationary system in (4), and monetary policy shocks corresponding to
25 basis point are now simply a matter of multiplying w; by this (standardized)
shock size. However, interest centers around the observed variables in levels X
rather than the transformed and standardized variables in X and therefore a
multiplication of the loadings A is required, followed by a reverse transformation
of the responses, i.e. D (L) [Ay,w,], cf. section 4.1. Consequently, the figures in
the following correspond to a plot of {D (L) [A@/Jiwj]}?zl which tracks the dynamic
responses of the observed variables measured in standard deviation units to a 25
basis point shock to the FFR.

Figure 12 shows that the FAVAR model estimated by the EM algorithm de-
livers robust results in terms of impulse responses. Impulse responses for each of
the best specifications in {rdp7, r5p6, r6p4, r7p5, r8p3,r9p3} are plotted against
the benchmark BBE-EM (r4p13) for key macroeconomic variables. Moreover,
the responses are very much in line with the results of Bernanke et al. (2005), al-
though including confidence intervals around the impulse responses would further

sharpen the conclusions.

Each model delivers the same shape of the impulse response functions, i.e.
the industrial production decreases by 0.6-0.7 standard deviations within one
year following a contractionary monetary policy shock, and it can be seen that

the preferred model r8p3 returns more quickly to the starting point than BBE-

Mp; =y, _;®; for i =1,2,.... and ¢y = I. See Liitkepohl (2007) chapter 2.
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EM. However, the speed of reversion is similar to the results in Figure II in
Bernanke et al. (2005). For the price index, we see that the price puzzle noted by
Sims?® is almost eliminated as there is a pronounced decrease in the price level
following a contractionary monetary policy shock. The response is similar for all
models but the preferred model has a particularly small initial positive effect and
a pronounced negative response after one year, which is in line with Bernanke
et al. (2005). The unemployment increases more than in the aforementioned
example and most in the preferred model after one year but reverts to the starting
point within four years. Furthermore, the response of NAPM commodity prices,
capacity utilization rate and average hourly earnings is also more pronounced
than in Bernanke et al. (2005).

To summarize the impulse response analysis, I conclude that the FAVAR mod-
els deliver robust results across different specifications. Moreover, the preferred
model eliminates the price puzzle and yields plausible impulse responses as in
Bernanke et al. (2005). Compared to the aforementioned result some differences
in the impulse responses following a contractionary policy shock can be noted.
Firstly, the NAPM variables such as commodity price index, employment, new
orders and also capacity utilization rate are comparably affected more negatively,
i.e. the impulse response shapes are "deeper". Similarly, unemployment peaks
at a comparably higher level. However, comparably the same magnitude of the

responses is seen for industrial production, CPI and the federal funds rate.

4.6 Forecast error variance decomposition

An alternative way of evaluating monetary policy shocks is to consider what role
these shocks play in forecast errors. Specifically, in a forecast error variance de-

composition, I calculate for a given forecast horizon what fraction of the total

28 A typical finding in standard VAR analysis of monetary policy is an increase in the price
level following a contractionary monetary policy shock - hence the notion of a price puzzle,
because we would expect a decrease. This can be explained as follows. Consider a simple
policy rule that is linear in current inflation, current output gap and the Fed’s expectations
about future inflation. If the Fed expects future inflation to rise, it will accomodate this partly
by increasing the federal funds rate. Consider now a VAR in the federal funds rate, inflation
and output gap. Here, the information about the Fed’s expectations is for obvious reasons not
included in the VAR and is left in the residuals as a positive shock which happens alongside an
increase in the price level (under the assumption that the Fed predict the rise in the price level
correctly.)
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forecast error variance for a particular variable is due to a specific shock, for
instance the monetary policy shock. Hence, the forecast error variance decompo-
sition is similar to the R? measure but for forecast errors at different horizons.
The proportion of the forecast error variance at horizon h of variable X; due to

the kth innovation ey, is given by:

h—1
wip (h) = dik D iso (‘I’?ko +U L+t qj?k,h—l)
J - N
MSE (Xj,t+h|t> + 1y,

where the N xr matrix ¥ ; is the (7, k) element of (A;1,1V) as a function of hori-
zon i € h, d3, is the (k, k) element of the diagonal matrix DD, MSE ()A(j’ﬁh‘t)

~

is the mean square error of <X jitth — X j,Hh‘t) and R, ; is the variance of the jth

idiosyncratic term. Details about the derivation are given in Appendix B.

The percentage of the forecast error variance explained by a monetary pol-
icy shock for the group of key macroeconomic variables is shown in Figure 13.
Generally, a monetary shock rarely explains more than 10% of the forecast error
variance, except for capacity utilization rate, (un)employment and new orders
where forecast error variance is roughly doubled. The results are in line with
similar findings in the literature, with only minor differences to be explained

below.

As only one structural shock, the monetary policy shock, is identified in this
paper, it makes little sense to comment on impulse responses and variance de-
compositions for the other shocks. Nevertheless, the purpose of the upper panel
of Table 6 is to illustrate that the fraction of the total forecast error variance of all
the factors accounts for 40-50% and that the idiosyncratic component accounts
for a significant fraction, on average 50-60%. This is also what Stock & Watson
(2005) report. The difference between employing correlated versus uncorrelated
factors as in the aforementioned result also shows up in the variance decompo-
sition in the lower panel of Table 6. Whereas 93% of all of the forecast error
variance for industrial production is explained by the first out of their seven fac-
tors in Stock & Watson (2005), only 50% shows up in the first correlated factor in
this paper and the remaining 47% is spread evenly between the remaining seven

factors.
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Stock & Watson (2005) also estimate a principal component variant of Bernanke
et al. (2005) and despite minor differences in the dataset, some comparisons with
the two aforementioned papers, the closely related paper by Ahmadi & Uhlig
(2008), and this one can be made. Generally, the monetary policy shocks play a
larger role in the forecast error variance in this paper than in Stock & Watson
(2005), except for the FFR and the bond yields, see below. Further, the fore-
cast error variance decompositions in this paper are generally similar to those in
Ahmadi & Uhlig (2008), although in this paper we see the largest influence of
monetary policy shocks on the forecast error variance of unemployment peaking
around 24 months at 35% but also the NAPM related variables such as new or-
ders and employment are highly influenced. In contrast, the numbers in Stock &
Watson (2005) are almost zero for the same variables, whereas in Bernanke et al.
(2005) the corresponding numbers are somewhere in between. Moreover, in this
paper, we see the smallest influence of the monetary shock on the FFR itself and
in particular on the bond yields, although the variance decomposition in Ahmadi
& Uhlig (2008) is roughly similar. In contrast, Bernanke et al. (2005) report that
the fraction of the total forecast error variance of the FFR explained by its own
shock is 45% compared to 3% in this paper, around 5% in Ahmadi & Uhlig (2008)
and 7% in Stock & Watson (2005) for the long horizon. Strikingly, the fraction
increases to 20% and 40% for the three-month T-bill and the five-year T-bond
in the last-mentioned result. Finally, it can be noted that for all four papers,
the forecast error variance of consumption and money supply is generally never

explained by more than roughly 5%.

5 Conclusion

Three important issues are addressed in this paper. Firstly, an alternative iden-
tification scheme is applied that allows for correlated factors, which is desirable
if one seeks a macroeconomic interpretation of the latent factors. For instance,
in the correlated factor approach here, the industrial production factor and the
unemployment factor are allowed to be correlated, and they are estimated to have
a correlation of 0.23.

Secondly, I investigate the EM algorithm as an alternative estimation method

to the two-step principal component method and the one-step Bayesian method.
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In general, it is easy to impose parameter restrictions on both the measure equa-
tion and the state transition equation, which is illustrated plentifully in Bork
et al. (2008) where explicit interpretation of the factors is achieved through iden-
tification.

Thirdly, the sensitivity of the statistical fit and impulse response analysis to
different factor specifications is evaluated as well as a careful model selection.
The combination of the panel information criteria by Bai & Ng (2002) for the
number of factors and the standard Akaike, Schwarz or Hannan-Quinn informa-
tion criteria for the VAR order results in a preferred FAVAR model with eight
factors and only three lags. This model naturally delivers a better fit than mod-
els with fewer factors without compromising well-specified factor dynamics or
the plausibility of the impulse response analysis. Interestingly, some of the key
macroeconomic variables such as industrial production and employment seem to
respond somewhat more in the preferred model compared to the EM algorithm
equivalent of Bernanke et al. (2005) with four factors and thirteen lags. Further-
more, the NAPM indices (commodity price, new order and employment) as well
as unemployment respond somewhat more to a monetary policy shock than in

the aforementioned model(s).

Generally, it is found that the FAVAR models investigated here deliver robust
results in terms of fit, impulse responses and forecast error variance decomposi-
tions across the best-specified models for the different numbers of factors included.
I find that the fewer the factors used in the FAVAR the more lags are needed
to achieve a well specified model and vice versa. Hence, it seems possible to
trade off a model with a few factors but necessarily many lags for a model with
more factor but fewer lags; specifically, it is possible to trade off a four-factor and
seven-lag model for an eight-factor and three-lag model with the benefit of a ten
percentrage point increase in the overall R2. This observation accords with the
theoretical result that complicated factor dynamics may be substituted by the
information in the panel dataset. One objection might be that more factors are
the result of the correlated factor approach in contrast to the uncorrelated factor
approach. However, besides the above-mentioned theoretical result, it should be
noted that the four-factor and thirteen-lag benchmark model performs equally
well in terms of fit and plausibility of the impulse responses to the uncorrelated

factor approach in Bernanke et al. (2005). On this basis there is no clear sign
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that the correlated factor approach needs relatively more factors to achieve the

same fit.
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A Data description

Data are from Bernanke et al. (2005).

First column: A superscript indicates that an identifying restrictions has been

imposed on this variable, e.g. 11[ indicates that an identifying restriction has

been imposed on this variable for the first factor; similarly, 27 indicates an

identifying restriction for the second factor. Note that the last factor is always
restricted to be the federal funds rate in 77.

The second column is a mnemonic and a * indicates a "slow-moving" vari-

able.

The fourth column contains transformation codes.

"level" indicates an

untransformed variable, say z;. "In" means In z; and "AIn" means Inz; —Inx;_1.

Real output and income

© 00 g O Ul R W N

—_
=]

1111
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15
16(9]
17171
18(3]
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21

IPP*
IPF*
IPC*
IPCD*
IPCN*
IPE*

IPT*
IPM*
IPMD*
IPMND*
IPMFG*
IPD*
IPN*
IPMIN*
IPUT*
IP*
IPXMCA*
PMI*
PMP*
CMPYQ*
CMYXPQ*

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
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1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
level
level
level
Aln
Aln
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Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:
Industrial production:

Industrial production:

products, total (1992 = 100,SA)

final products (1992 = 100,SA)
consumer goods (1992 = 100,SA)
durable cons. goods (1992 = 100,SA)
nondurable cons. goods (1992 = 100,SA)
business equipment (1992 = 100,SA)
intermediate products (1992 = 100,SA)
materials (1992 = 100,SA)

durable goods materials (1992 = 100,SA)
nondur. goods materials (1992 = 100,SA)
manufacturing (1992 = 100,SA)

durable manufacturing (1992 = 100,SA)
nondur. manufacturing (1992 = 100,SA)
mining (1992 = 100,SA)

utilities (1992 = 100,SA)

total index (1992 = 100,SA)

Capacity util rate: manufac., total (% of capacity,SA) (frb)

Purchasing managers’ index (SA)

NAPM production index (percent)

Personal income (chained) (series #52) (bil 928,SAAR)

Personal inc. less trans. payments (chained) (#51) (bil 928,SAAR)



(Un)employment and hours

22 LHEL*
23[6]  LHELX*
24 LHEM*
25 LHNAG*
26 LHUR¥*
27021 LHUG80*
28 LHUS5*
29 LHU14*
30 LHU15*
31 LHU26*
32 LPNAG*
33 LP*
34 LPGD*
35 LPMI*
36 LPCC*
37 LPEM*
38 LPED*
39 LPEN*
40 LPSP*
41 LPTU*
42 LPT*
43 LPFR*
44 LPS*
45 LPGOV*
46 LPHRM*
47M4] LPMOSA*
48 PMEMP*
Consumption
49 GMCQ*
50(8] GMCDQ*
51 GMCNQ*
52 GMCSQ*
53 GMCANQ¥*

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
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1959:01-2001:08

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

Housing starts and sales

ot Ot
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57
58
59
60

HSFR
HSNE
HSMW
HSSOU
HSWST
HSBR
HMOB

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

Aln
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Aln
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level
level
level
level
Aln
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Aln
level
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level

Aln
Aln
Aln
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Index of help-wanted advertising in newspapers (1967 = 100;SA)
Employment: ratio; help-wanted ads: no. unemployed clf
Civilian labor force: employed, total (thous.,SA)

Civilian labor force: employed, nonag. industries (thous.,SA)
Unemployment rate: all workers, 16 years and over (%,SA)
Unemploy.

by duration: average (mean) duration in weeks (SA)

Unemploy. by duration: pers unempl. less than 5 wks (thous.,SA)

Unemploy. by duration: pers unempl. 5 to 14 wks (thous.,SA)

Unemploy. by duration: pers unempl. 15 wks = (thous.,SA)
pers unempl. 15 to 26 wks (thous.,SA)
total (thous.,SA)

total, private (thous.,SA)

Unemploy. by duration:

Employees on nonag. payrolls:
Employees on nonag. payrolls:

Employees on nonag. payrolls: goods-producing (thous.,SA)

Employees on nonag. payrolls: mining (thous.,SA)

Employees on nonag. payrolls: contract construc. (thous.,SA)

Employees on nonag. manufacturing (thous.,SA)
durable goods (thous.,SA)
nondurable goods (thous.,SA)
service-producing (thous.,SA)
trans. and public util. (thous.,SA)
wholesale and retail (thous.,SA)

finance, ins. and real est (thous.,SA)

payrolls:
Employees on nonag. payrolls:
Employees on nonag. payrolls:
Employees on nonag. payrolls:
Employees on nonag. payrolls:
Employees on nonag. payrolls:
Employees on nonag. payrolls:

Employees on nonag. payrolls: services (thous.,SA)

Employees on nonag. payrolls: government (thous.,SA)
Avg. weekly hrs. of production wkrs.: manufacturing (sa)
Avg. weekly hrs. of prod. wkrs.: mfg., overtime hrs. (sa)

NAPM employment index (percent)

Pers cons exp (chained)—total (bil 928,SAAR)
Pers cons exp (chained)—tot. dur. (bil 96$,SAAR)
Pers cons exp (chained)—mondur. (bil 92$,SAAR)
Pers cons exp (chained)—services (bil 928,SAAR)

Personal cons expend (chained)—new cars (bil 968,SAAR)

Housing starts: nonfarm (1947-1958); tot.

Housing starts: northeast (thous.u.)s.a.
Housing starts: midwest (thous.u.)s.a.
south (thous.u.)s.a.

west (thous.u.)s.a.

Housing starts:
Housing starts:
Housing authorized: total new priv housing (thous.,SAAR)

Mobile homes: manufacturers’ shipments (thous. of units,SAAR)



Real inventories, orders and unfilled orders

61
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PMDEL
MOCMQ
MSONDQ

Stock prices
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Foreign exchange rates

73
74
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Interest
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EXRSW
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EXRUK
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1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

rates and spreads
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FYGMG6
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NAPM inventories index (percent)

NAPM new orders index (percent)

NAPM vendor deliveries index (percent)

New orders (net)—consumer goods and materials, 1992 $ (bci)

New orders, nondefense capital goods, in 1992 $s (bci)

NYSE composite (12/31/65 = 50)
S&P’s composite (1941-1943 = 10)
S&P’s industrials (1941-1943 = 10)
S&P’s capital goods (1941-1943 = 10)
S&P’s utilities (1941-1943 = 10)

S&P’s composite common stock: dividend yield (% per annum)

S&P’s composite common stock: price-earnings ratio (%,NSA)

Foreign exchange rate: Switzerland (Swiss franc per US$)

Foreign exchange rate: Japan (yen per USS$)

Foreign exchange rate: United Kingdom (cents per pound)

Foreign exchange rate: Canada (Canadian $ per US$)

Interest rate:
Interest rate:
Interest rate:
Interest rate:
Interest rate:

Interest rate:

federal funds (effective) (% per annum,nsa)
us thill,sec mkt,3-mo. (% per ann,nsa)
us thill,sec mkt,6-mo. (% per ann,nsa)
ust const matur., 1-yr. (% per ann,nsa)

=

ust const matur., 5-yr. (% per ann,nsa)

ust const matur., 10-yr. (% per ann,nsa)

Bond yield: Moody’s AAA corporate (% per annum)

Bond yield: Moody’s BAA corporate (% per annum)
Spread fygM3—{fyff

Spread fygm6—{fyff

Spread fygtl—fyff

Spread fygth—fyff

Spread fygtl0—fyff

Spread fyaaac—{fyff

Spread fybaac—{fyff



Money and credit quantity aggregates

92 FM1
93 FM2

94 FM3

95 FM2DQ
96 FMFBA
97 FMRRA
98 FMRNBA
99 FCLNQ

100 FCLBMC
101 CCINRV

Price indexes

102 PMCP

103 PWFESA*
104 PWFCSA*
105 PWIMSA*
106 PWCMSA*
107 PSM99Q*
108 PUNEW*
109 PU83*

110 PU84*

111 PU85*

112081 pUCH
113 PUCD*
114 PUS*

115 PUXF*
116 PUXHS*
117 PUXM*

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

Average hourly earnings

118 LEHCC*
119 LEHM*

Miscellaneous

120 HHSNTN

1959:01-2001:08
1959:01-2001:08

1959:01-2001:08

Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
level
Aln

level
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln

Aln
Aln

level
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Money stock: M1 (bil$,SA)

Money stock: M2 (bil$,SA)

Money stock: M3 (bil$,SA)

Money supply—M2 in 1992 $s (bci)

Monetary base, adj for reserve requirement changes (mil$,SA)
Depository inst reserves: total, adj for res. req chgs (mil$,SA)
Depository inst reserves: nonbor., adj res req chgs (mil$,SA)
Commercial and indust. loans outstanding in 1992 $s (bci)

Wkly rp lg com. banks: net change com and ind. loans (bil§,SAAR)

Consumer credit outstanding nonrevolving g19

NAPM commodity prices index (%)

PPI: finished goods (82 = 100,SA)

PPI: finished consumer goods (82 = 100,SA)

PPI: intermed mat. sup and components (82 = 100,SA)
PPI: crude materials (82 = 100,SA)

Index of sensitive materials prices (1990 = 100) (bci-99a)
CPI-u: all items (82-84 = 100,SA)

CPI-u: apparel and upkeep (82-84 = 100,SA)

CPI-u: transportation (82-84 = 100,SA)

CPI-u: medical care (82-84 = 100,SA)

CPI-u: commodities (82-84 = 100,SA)

CPI-u: durables (82-84 = 100,SA)

CPI-u: services (82-84 = 100,SA)

CPI-u: all items less food (82-84 = 100,SA)

CPI-u: all items less shelter (82-84 = 100,SA)

CPI-u: all items less medical care (82— 84 = 100,SA)

Avg hr earnings of constr wkrs: construction ($,SA)

Avg hr earnings of prod wkrs: manufacturing ($,SA)

U. of mich. index of consumer



B Appendix: Forecast error variance decompo-

sition

Consider the forecast error of the optimal h—step ahead forecast for the jth

observed variable:
h—1
Xjirn — Xjrnp = Z [ A, W ] errh—i t & irn

> o
—_

= Wietih—i + &
1

1

M)~

(Vjko€kitn + Win1€rirn-1 + . + Vipp1€ri41) + §jttn

=
Il
—

where e; is the orthogonal residual defined from the VAR residuals, ¢, = Pe;
where P is the Cholesky factor from the decomposition of the covariance of &,
into Q = PPT. This covariance matrix is further rewritten as explained in section
4.5 as Q = WX W', where ¥, = DD' is diagonal and W = PD~! has ones
along the diagonal. Moreover, ¥; = A, IV is a N x r matrix and &, is the

jth idiosyncratic term. The mean square error of <X jtth — X j7t+h‘t> is denoted

MSE (Xj,t+h|t> and given by:

MSE (Vipen) =

K
(‘I’?k,odzk + W?k,ldzk +...+ ‘I’?k,hqdik) + R;,;
k=1

where d2, is the (k, k) element of the diagonal matrix DD and R;; is the vari-
ance of the jth idiosyncratic term. The proportion of the forecast error variance

at horizon h of variable X; due to the kth innovation ey, is given by:

h—1
_ ik D s (‘I’?k,o + Ut \Ij?’k,h—l)

wik (h) -
MSE (Xjoim) + R
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C Appendix: Kalman filter, Kalman smoother
and the EM algorithm

C.1 The Kalman filter

The Kalman filter is an algorithm for sequentially updating a linear projection
for a dynamic system. Denote the information set X; = {X3,..., X;} and by
Ftﬂ‘t = F[F11]| Xy the linear projection of F;; on A;. The variance is denoted
f’tﬂ‘t = var ( Fyy1| X)) . The Kalman filter recursions for ¢ = 1,..,7T can then be

written as:

Ft+1|t = (I)Ft\tfl + K <Xt — AFt|t71>
pt+1|t = q)f)t\t—lL;r +Q

where
gt = Xy — AFt|t71

nx1

PEf

tlt—1
nxn

N N —1
Kt = @Pt‘tflAT <Apt|t,1AT + R)
kxn

Lt - (I) - KtA

kxk

= AP, AT+ R

C.2 Kalman smoothing

Kalman smoothing reconstructs the full state sequence {F}, .., Fr} given the ob-
servations { X1, .., X7}. Smoothing provides us with more accurate inference on
the state variables since it uses more information than the basic filter. The
Kalman smoother recursions are based on the efficient smoother by de Jong &
Mackinnon (1988) and de Jong (1989) which is used in Koopman & Shephard
(1992) and given by:
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R ) ) ) -1 R
Fyr = Fy1+ P AT [Rﬁf_l} & + Py L r{12)

= E|t71+]5t|t,17"t_1 (alternatively)

Pyr = Py — Py 1N 1Py (13)

Puinyr = (I - Pt|t—1Nt71> Li 1 Pr1jioa, (14)

fort = T-1,..,1 (15)

cov <Ft — By, Fy - Fle) = PyaL/LL, - L], [I — N1 Pya|  (16)
forj > t

where:

e = AT [

~1
t|t—1i| &+ Lir, for 1<t <Tandry =0

N, = AT [ps&

tlt—1

1
} A+LIN,Lfor1<t<T and Ny =0

R R —1

The smoothed residuals given by Koopman (1993) are used in for instance the

Portmanteau test:

ét|T = I [&e’ XT] = Ft\T - q)thl\T
= QY'r, t=1,..,T (17)

and variance and covariance:

var (&) = Q — QY N, YQ
cov (e —eyr.ej—&jr) = —QY'LL, - LI LIN;YQ, j=t+1,..T

with the convention that L] --- L] , = I, whent =Tand L] --- L} _, = L.,

when t =T — 1.
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C.3 The complete data likelihood and the incomplete data
likelihood

Under the Gaussian assumption including Fy ~ N (u,, Py) and ignoring the con-
stant, the complete data likelihood of equation (4) page 10 assuming a VAR(1)

for simplicity and ignoring T is written as:

2 Lry (0) = W|Py| + (Fo— pp) By (Fo— o)

T
+T - [Q+ > (B, — ®F_y) Q7 (F, — ®F_y)
t=1

T
+T-In|R|+ ) (X, - AF)' R (X, — AF))
t=1

(18)

given that we can observe the states Fr = {Fy,.., Fr} as well as the observa-
tions Xr = {Xy,.., Xr}. However, given X and initial values of the parameter
estimates (denoted ©U~1), the conditional expectation of the complete data, like-

lihood can be written as:

Q018 ) = E[-2InLryx(©)|Xr, 00V V]

= In|P| +tr {Pol {(FOT — ,LLO) (F0|T - ,uo>T + P()TH

+7 - |Q|+tr [Q ' {C — B®" —®B" + ®Ad' }]

R i { <Xt - AFtIT) (Xt - AFtIT>T + APtITAT}
t=1

(19)

+T - In|R| + tr

where the following moments can be calculated from the Kalman smoother listed

above:

A= 23:1 ﬁ;f—1|TFtT—1|T + Pt—l\T> B = 23:1 (Ft|TFtT—1|T + P{tt—l}IT)
T Ap 3 T > T
C=>ia FtITFt\TT + PtIT) D=3%,, XtFt|TT E=3% XtXtT

A wuseful trick to arrive at (19) is to consider the decomposition of the true

state variable F; = Ft‘T + <Ft — Ft|T> , which explains the terms in for instance
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C, where:

“ R R T
Pr=E [(Ft - FﬂT) (E - FHT)

x|

The estimator of ®* subject to linear restrictions is:

vec (@) = vec (BA™)
+ (A" ® Q) Hy [He (A ®@ Q) HY] ' {ke — Hy vec (BA™)}
(20)

where kg is a o X 1 vector and the restriction matrix Hg is of dimension o x 72.

D Appendix: Analytical derivatives of the log

likelihood function

The following is primarily from Jungbacker & Koopman (2008) and Koopman
& Shephard (1992). A key result alo—gaLQ& = %&6*) is from Louis
Q=Q* Q=Q*
(1982).
Consider the following derivatives of the log likelihood function for the state

space model with incomplete data:

dlog Ly (©) _99(e[e) e v Lo
Q) oo 0Q Q:Q*—Q NS -T-Q) Q™! 2dlag(Q YS-T-Q)Q™")
where:

S=C—-Bd" —®B" + AP

and where () is the covariance matrix of the innovation error in the transition

equation:

dlog Ly (©) _ 02(6[6)
oD TR I

where ¢ contains the autoregressive parameters in the transition equation. More-

— Q7' (B—®4)

over, the derivative with respect to A is:
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OlogLy(©)]  _ 092(0]9%)
N |, oA

A=

T
= R (Z vy — AC)
Ax t=1

where A is the loading matrix, R is the covariance of the measurement errors,

y; is the data in the panel data set at time ¢ and F, t‘TT is the smoothed dynamic

factor. Finally, the derivative with respect to the covariance of the measurement

errors is:
Olog Ly (©) 09 (0]6%) _1 1 1 1
R . R R*(M-T-R)R 5 diag (R (M R)R )
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Table 1: Akaike information criterion for a given number of factors.

,_
)
© 00 O Ui W —wm

10
11
12
13

number of factors

3 4 ) 6 7 8 9 10

- 11467  -13.271  -17.625  -24.756 - 22.658 - -30.480 -43.801
-11.634 - 14.151 - 23.221  -27.482 -24.302 -35.706 -35.812 - 45.512
-11.616 - 16.646 - 19.462 - - -37.692 - 40.605 - 50.218
-11.663  -16.182 - 18.741 - 28.607 - -36.904 -38.251  -48.553
- 11.562 - -19479  -26.748 - 30.378 - 37.673 - -
-11.904 -15.653 -20.636 -26.683 -24.834 - 38.726 -37.483 -48.733
-11.784  -15918  -19.039 - - -37302 -37.034 -
-10.627  -14.955 -18.993 - 28.004 - -37.888 - -
-10.671  -15.037 -19.456  -26.212 - 26.262 - - -
-10.670 - 15.257  -20.138 - 25987 - 26.582 - - -
-10.898  -15.212  -19.939 - - - - -
-11.459 - 15.112 - - - - - -
- -15.045 -20.121 - - - - -

A bold number represents a minimum.

Table 2: Schwarz information criterion for a given number of factors.

,_.
G
© 00 O Ui W N W

10
11
12
13

number of factors

3 4 ) 6 7 8 9 10
-11.392 -13.139 - 17418  -24.457 - 22.252 - -29.809  -42.972
- 11.485 -13.886 - 22.806 -26.885 -23.490 -34.645 -34.469 - 43.854
-11.393 - 16.248 - 18.841 - - -36.100 - 38.590 - 47.731
-11.365 - 15.651 -17912 - 27.413 - -34.782  -35.565 - 45.237
- 11.189 - -18.443  -25.255 - 28.347 - 35.020 - -
-11.456 - 14.857 -19.392  -24.893 -22.397 -35.543 -33.454 -43.759
-11.262  -14.990 - 17.588 - - -33.588  -32.333 -
-10.030 -13.894 -17.335 - 25.616 - -33.643 - -
-9.999 -13.843 -17.590  -23.526 - 22.606 - - -
-9924  -13930 -18.066 - 23.002 - 22.520 - - -
-10.0v8  -13.753 - 17.659 - - - - -
-10.563 - 13.520 - - - - - -
- -13.320 - 17.426 - - - - -

Table 3: Hannan and Quinn information criterion for a given number

of factors.
number of factors

lags 3 4 5 6 7 8 9 10
1 -11.438 - 13.219 - 17.544 - 24.639 - 22.499 - - 30.217 - 43.476

2 - 11.576 -14.047 - 23.058 - 27.248 - 23.984 - 35.290 - 35.285 - 44.862

3 -11.529 - 16.490 -19.219 - - -37.068 - 39.815 - 49.243

4| -11.546 -15.974 -18416 - 28.139 - -36.072 -37.198  -47.253

5 - 11.416 - -19.073 - 26.163 - 29.582 - 36.633 - -

6 |-11.729 - 15.341 - 20.148 - 25.981 -23.879 - 37.478 - 35.904 - 46.783

7| -11.580 -15.554 - 18.470 - - -35.846  -35.191 -

8 - 10.393 - 14.539 - 18.343 - 27.068 - - 36.224 - -

9 - 10.408 - 14.569 - 18.724 - 25.159 - 24.829 - - -
10 - 10.378 - 14.737 - 19.326 - 24817 -24.990 - - -
11 - 10.577 - 14.640 - 19.045 - - - - -
12 - 11.108 - 14.488 - - - - - -
13 - - 14.369 - 19.064 - - - - -
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Table 4: Multivariate Portmanteau tests.

Test statistics based on smoothed residuals from a VAR(1)

h r=3 r=4 r=>5 r==6 r=7 r=3=8 r=9 r=10

1| 140.00* 218.04* 252.36* 304.13* 312.15% 362.92* 360.50* 384.54*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

2 | 161.83*  250.56* 294.05* 363.69* 387.10* 442.70* 450.37* 471.28*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

3| 181.62* 276.12* 329.30* 419.71* 460.05* 505.91* 532.32* 548.44*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

4 | 188.83* 296.30* 361.72* 480.70* 531.55* 558.04* 623.72* 630.75*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

5| 210.70* 324.65* 401.96* 535.43* 607.16* 613.96* 731.48* 742.25%
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

6 | 230.42* 347.53* 444.24* 593.32* 685.95* 675.11* 825.78* 837.65*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

7| 243.14*  368.32* 482.16* 650.24* 755.09* 734.22* 906.11* 922.48*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

8 | 288.93* 418.07* 540.25* 732.82* 866.36* 799.02*  1,024.43* 1,045.57*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} £0.000} {0.000}

9 | 308.38* 440.20* 573.01* 782.47* 927.33* 849.77*  1,094.50* 1,123.82*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} £0.000} £0.000}

10 | 320.56* 459.57* 598.82* 819.95* 991.55* 884.62* 1,182.08* 1,210.20*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} £0.000} £0.000}

12 | 344.19* 497.36* 643.14* 869.03* 1,043.41* 942.27* 1,272.57* 1,302.48*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

13 | 377.01* 539.93* 702.67* 935.97* 1,108.93* 1,011.22* 1,359.05* 1,386.90*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

14 | 404.69* 576.69* 738.00* 990.09* 1,174.94* 1,064.53* 1,442.79* 1,470.31*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.001}

15 | 425.71* 617.82* 788.63* 1,040.62* 1,240.25* 1,122.43* 1,515.66* 1,549.43*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.003}

Test statistics based on smoothed residuals from a VAR(2)

h r=3 r=4 r=>5 r==6 r="7 r=2=8 r=29 r=10

1] 58.66* 59.48* 88.26* 88.05* 120.09* 127.29* 150.73* 158.01*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

2| 69.11% 72.03*  105.40* 110.30* 162.96* 178.34* 227.23* 220.72

{0.000} {0.000}  {0.000} {0.003} {0.000} {0.002} {0.001} {0.150}

3| 73.66% 90.34*  138.02* 161.16* 222.99* 240.76* 313.06* 297.66

{0.000} {0.000}  {0.000} {0.001} {0.000} {0.010} {0.002} {0.527}

41 93.25* 113.36* 180.74* 209.08* 287.91* 303.90* 397.97* 393.07

{0.000}  {0.000} {0.000} {0.000} {0.000} {0.021} {0.003} {0.588}

5| 118.35* 139.77* 218.54* 250.64* 342.75% 360.20 466.35* 457.32

{0.000} {0.000} {0.000} {0.000} {0.000} {0.060} {0.019} {0.915}

6 | 128.73* 154.08* 244.03* 284.04* 391.37* 402.32 519.99 526.91

{0.000} {0.000} {0.000} {0.001} {0.000} {0.250} {0.139} {0.986}

7 | 166.25* 185.86* 277.94* 333.40* 475.13* 477.40 609.53 633.67

{0.000} {0.000} {0.000} {0.000} {0.000} {0.163} {0.105} {0.965}

8 | 185.63* 204.51* 299.97* 366.12* 521.55* 528.66 663.27 688.64

{0.000} {0.000} {0.000} {0.001} {0.000} {0.296} {0.330} {0.998}

9 | 193.90* 221.42* 322.41* 393.23* 570.79* 579.33 731.97 782.77

{0.000} {0.000} {0.000} {0.005} {0.000} {0.453} {0.462} {0.998}

10 | 216.72* 246.77* 352.08* 439.60* 624.22* 612.92 810.22 858.89

{0.000} {0.000} {0.000} {0.003} {0.000} {0.773} {0.491} {1.000}

12 | 242.06* 279.14* 402.61* 492.10* 679.98* 658.83 872.45 943.96

{0.000} {0.000} {0.000} {0.001} {0.000} {0.887} {0.665} {1.000}

13 | 257.49* 294.25% 421.62* 532.21* 730.13* 711.68 935.29  1,020.73
{0.000} {0.000} {0.000} {0.001} {0.000} {0.927} {0.796} {1.000}

14 | 270.65* 319.49* 460.12* 567.78* 782.21* 757.77 995.82  1,084.72
{0.000} {0.000} {0.000} {0.001} {0.000} {0.969} {0.895} {1.000}

The rows represent test statistics of residual autocorrelation up to order h. Hy: Residual

autocorrelation up to lag h is zero. p-values in {}. * indicates rejection on 5 pct. level.
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Table 5: Multivariate Portmanteau tests.

Test statistics based on smoothed residuals from a VAR(3)

h r=3 r=4 r=5 r==6 r=7 r=28 r=9 r=10

1 26.30* 52.15* 49.16* failed max. iterations 64.70 100.79 97.81

{0.002} {0.000} {0.003} {0.452} {0.068}  {0.543}

2| 31.197 71.02* 87.50* - - 102.85  178.52 160.17

{0.027} {0.000} {0.001} {0.950} {0.178}  {0.983}

3| 46.73" 92.27*  118.99* - - 156.50  247.82 239.47

{0.011} {0.000}  {0.001} {0.972} {0.402}  {0.996}

41 64.98* 106.51* 147.55* - - 194.08  306.45 299.03

{0.002}  {0.001} {0.001} {0.999} {0.751}  {1.000}

5| 74.80* 123.08* 174.07* - - 224.64 34481 367.33

{0.004}  {0.001} {0.003} {1.000} {0.986}  {1.000}

6 | 99.72* 155.54* 212.95* - - 284.73  419.23  446.80

{0.000}  {0.000} {0.001} {1.000} {0.987}  {1.000}

7| 114.30* 166.46 231.74* - - 32848  468.23 496.79

{0.000} {0.001} {0.003} {1.000} {0.999}  {1.000}

8 | 120.55* 185.85*  260.84* - - 370.56  527.45 574.34

{0.000} {0.001} {0.003} {1.000} {1.000}  {1.000}

9 | 134.73* 199.94* 279.82* - - 404.49  593.54 636.62

{0.000} {0.001} {0.008} {1.000} {1.000}  {1.000}

10 | 167.52*  212.42* 301.64" - - 446.82  653.77 709.65

{0.000} {0.004} {0.014} {1.000} {1.000}  {1.000}

11 | 170.53* 239.61* 345.27* - - 490.68  708.49 783.20

{0.000} {0.001} {0.003} {1.000} {1.000}  {1.000}

12 | 183.29* 253.33* 377.71* - - 527.04 763.42 841.09

{0.000} {0.002} {0.002} {1.000} {1.000}  {1.000}
Test statistics based on smoothed residuals from a VAR(4)

h r=3 r=4 r=5 r==6 r=7 r=8 r=9 r=10

1| 21.00* 28.82% 60.72*  24.66 - 6446 125.89* 105.20

{0.013} {0.025} {0.000}  {0.924} {0.460}  {0.001}  {0.341}

2| 37.59" 43.90 92.43*  52.71 - 9492 171.86  176.64

{0.004} {0.078} {0.000}  {0.957} {0.987} {0.283}  {0.882}

3| 60.32% 63.89  121.33*  75.17 - 141.01  216.79 230.63

{0.000} {0.062}  {0.001}  {0.993} {0.998} {0.886}  {0.999}

4| 67.40% 75.83  139.58*  89.52 - 166.00  256.54 288.91

{0.001} {0.148}  {0.006}  {1.000} {1.000} {0.998}  {1.000}

5| 90.86* 104.85* 175.20* 126.35 - 219.22 31499 351.50

{0.000}  {0.033} {0.002}  {0.999} {1.000} {1.000}  {1.000}

6 | 103.86*  110.88 191.64* 140.07 - 257.89  372.87 404.90

{0.000} {0.142}  {0.012}  {1.000} {1.000} {1.000}  {1.000}

7 | 109.69* 126.97 218.54* 162.72 - 29205  447.16 478.20

{0.000} {0.158}  {0.014}  {1.000} {1.000} {1.000}  {1.000}

8| 121.38*  145.09 239.23* 185.96 - 32348  512.27 535.13

{0.000} {0.143}  {0.030}  {1.000} {1.000} {1.000}  {1.000}

9| 143.21*  165.07 265.68* 217.70 - 363.93  570.38  599.09

{0.000} {0.110}  {0.033}  {1.000} {1.000} {1.000}  {1.000}

10 | 155.96* 196.74* 314.68* 267.49 - 41206 635.52 677.01

{0.000} {0.026} {0.003}  {1.000} {1.000} {1.000}  {1.000}

11 | 167.10* 212.70* 332.92* 284.29 - 44743 685.14 728.51

{0.000} {0.031} {0.010}  {1.000} {1.000} {1.000}  {1.000}

The rows represent test statistics of residual autocorrelation up to order h. Hy: Residual
autocorrelation up to lag h is zero. p-values in {}. * indicates rejection on 5 pct. level.
Unreported numbers show that a VAR(5) fixes the residual autocorrelation for r = 5,
whereas for r = 3, the problem remains.
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Table 6: Forecast error

nomic variables.

variance decompositions for key macroeco-

F(8,1) F(8,2) F(8,3) F(8,4) F(8,5) F(8,6) F(87 FFR) F —total Idio.

6m  0.06 0.03 0.02 0.06 0.07 0.07 0.04 0.04 0.39 0.61

12m 0.06 0.03 0.04 0.07 0.07 0.06 0.06 0.05 0.43 0.57

24m 0.06 0.03 0.06 0.07 0.07 0.06 0.08 0.05 0.47 0.53

60m 0.06 0.03 0.10 0.07 0.07 0.05 0.09 0.04 0.51 0.49
60-month horizon F(8,1) F(8,2) F(8,3) F(84) F(8,5 F(8,6) F(87 FFR
77) Federal funds rate 0.03 0.06 0.35 0.23 0.03 0.08 0.19 0.03
16) IP: total index 0.50 0.03 0.05 0.11 0.03 0.10 0.09 0.07
108) CPI-U: all items 0.02 0.07 0.20 0.09 0.42 0.02 0.09 0.02
78) US Thbill, 3m. 0.03 0.06 0.35 0.20 0.03 0.10 0.18 0.02
81) Tbond const 5yr. 0.04 0.07 0.38 0.17 0.05 0.18 0.09 0.01
96) Monetary base 0.00 0.02 0.02 0.02 0.01 0.01 0.03 0.00
93) Money stock: M2 0.01 0.06 0.03 0.01 0.03 0.03 0.06 0.01
74) FX: Japan 0.01 0.01 0.01 0.00 0.00 0.01 0.03 0.00
102) NAPM commodity prices 0.02 0.06 0.17 0.05 0.10 0.07 0.11 0.06
17) Capacity util rate 0.03 0.01 0.17 0.12 0.09 0.04 0.21 0.12
49) Pers cons exp: total 0.01 0.00 0.01 0.01 0.04 0.00 0.01 0.00
50) Pers cons exp: tot. dur 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
51) Pers cons exp: nondur. 0.01 0.00 0.01 0.00 0.03 0.00 0.01 0.00
26) Unempl. rate: all wrks 0.05 0.02 0.21 0.10 0.19 0.05 0.21 0.15
48) NAPM Empl. Index 0.02 0.01 0.20 0.12 0.07 0.10 0.22 0.15
118) Avg hr earnings constr. 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00
54) Housing starts: nonfarm 0.02 0.07 0.14 0.04 0.07 0.04 0.20 0.06
62) NAPM new orders 0.03 0.02 0.18 0.10 0.04 0.11 0.23 0.14
71) SP500: dividend 0.05 0.08 0.30 0.03 0.08 0.03 0.14 0.02
120) Consumer expec. (Mich.) 0.02 0.05 0.15 0.09 0.21 0.03 0.04 0.05

The upper panel illustrates the total fraction that the eight factors can explain of the

forecast error variance at varying horizons. "Idio.

n

means idiosyncratic variance. FFR

means federal funds rate, which is the shock in focus. The lower table shows the 60-

month ahead forecast error variance decomposition for key macroeconomic variables.
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Figure 1: The panel information criterion /C,; of Bai & Ng (2002).
The criterion does not provide information about the number of lags in the VAR so
the criterion as a function of the number of static factors, r, is calculated for a given
number of lags. On top of each bar the number of factors is plotted. Eight factors
seem to be a good choice when model parsimony is taken into account.
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Figure 2: Adjusted average R? of all variables in the panel for all

models. B
For each FAVAR model with r factors and p lags in the VAR, the R? is calculated.

The number on top of each bar represents the number of lags in the VAR with r
factors. Note how the incremental value of R? diminishes as more factors are added.
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Figure 4: Autocorrelation functions for the preferred specification ver-
sus a VAR(1).
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The smoothed residual autocorrelation functions for the preferred specifications for
FAVARs with 3,4,...,10 factors versus their VAR(1) counterpart are plotted to em-
phasize that VAR(1) dynamics are not sufficient for whiteness in the monetary policy
factor residuals. Unreported results show that there is virtually no difference in the
autocorrelation function for r4p7(4) versus BBE-EM version rdp13(4).
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Figure 5: R? for the preferred model versus the BBE-EM

Bernanke, Boivin and Eliaz.
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ies of factors 1-4 from the preferred model versus related observed variables.

The time ser

Figure 6
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Figure 8: "Industrial production factor" and "unemployment factor".
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1

Major categories of the 120 variables in the panel. See appendix.

Correlation between factor 1 and each of the variables as a function of (®,Q,A).
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Major categories of the 120 variables in the panel. See appendix.

Correlation between factor 2 and each of the variables as a function of (®,Q,A).
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Figure 9: "NAPM factor" and "(overtime)hours factor".
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3 Major categories of the 120 variables in the panel. See appendix.

Correlation between factor 3 and each of the variables as a function of (®,Q,A).
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4 Major categories of the 120 variables in the panel. See appendix.

Correlation between factor 4 and each of the variables as a function of (®,Q,A).
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Figure 10: "Inflation factor" and "employment factor".
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5 Major categories of the 120 variables in the panel. See appendix.

Correlation between factor 5 and each of the variables as a function of (®,Q,A).
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D Major categories of the 120 variables in the panel. See appendix.

Correlation between factor 6 and each of the variables as a function of (®,Q,A).
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Figure 11: "Capacity utilization factor" and "Monetary policy factor".
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7 Major categories of the 120 variables in the panel. See appendix.

Correlation between factor 7 and each of the variables as a function of (®,Q,A).
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8 Major categories of the 120 variables in the panel. See appendix.

Correlation between factor 8 and each of the variables as a function of (®,Q,A).
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Figure 13: Contribution of the monetary policy shock to forecast error
variance decomposition.
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The figure plots the forecast error variance decomposition along the forecast horizon
(the horizontal axis). Dashed gridlines indicate a larger scale compared to the dotted
gridlines.
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