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Abstract

We develop a new methodology for estimating time-varying factor loadings and conditional al-
phas based on nonparametric techniques. We test whether long-run alphas, or averages of condi-
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Gibbons, Ross and Shanken (1989) test arises as a special case when there is no time variation
in the factor loadings. As applications of the methodology, we estimate conditional CAPM and
Fama and French (1993) models on book-to-market and momentum decile portfolios. We reject
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1 Introduction

Under the null of a factor model, an asset's expected excess return should be zero after controlling
for that asset's systematic factor exposure. Consequently, a popular time-series speci�cation test of a
factor model consists of testing whether the intercept term, or alpha, is equal to zero when the asset's
excess return is regressed onto tradeable factors. Traditional tests of whether an alpha is equal to
zero, like the widely used Gibbons, Ross and Shanken (1989) test, crucially assume that the factor
loadings are constant. However, there is overwhelming evidence that factor loadings, especially for
the standard CAPM and Fama and French (1993) models, vary substantially over time even at the
portfolio level (see, among others, Fama and French, 1997; Lewellen and Nagel, 2006; Ang and
Chen, 2007). The time variation in factor loadings distorts the standard factor model tests, which
assume constant betas, for whether the alphas are equal to zero and, thus, renders traditional statistical
inference for the validity of a factor model to be possibly misleading in the presence of time-varying
factor loadings.
We introduce a new methodology that tests for the signi�cance of conditional alphas in the pres-

ence of time-varying betas. The tests can be run for an individual stock return, or jointly across
assets. We build on the insights of Merton (1980), Foster and Nelson (1996), and Lewellen and Nagel
(2006), among others, to use high frequency data to estimate factor loadings. We consider a class of
models where as data are sampled at higher frequencies, estimates of variances and covariances, and
hence betas, converge to their true values. Our insight is that, while high-frequency data characterize
the distribution of covariances and hence betas, high-frequency data can also be used to characterize
the distribution of conditional alphas. Unlike previous approaches which separate inference of con-
ditional alphas and betas, our methodology derives their joint distribution, both at each moment in
time and their long-run distributions across time. The tests can be applied to single assets or jointly
speci�ed across a system of assets.
In our methodology, tests of conditional alphas take into account the sampling variation of the

conditional betas. These make our tests similar to the traditional maximum likelihood tests of the
original CAPM developed by Gibbons (1982) and Gibbons, Ross and Shanken (1989). In the max-
imum likelihood set-up, the sampling variation of beta directly enters the standard error of the alpha
when both the alpha and beta are estimated simultaneously.1 The in�uential work by Gibbons, Ross
and Shanken derived a statistic and distribution for testing whether the alphas of a set of base assets
are jointly equal to zero and their tests of alphas take into account the sampling uncertainty of the fac-
tor loadings. Our tests can be viewed as the conditional analogue of the Gibbons, Ross and Shanken
tests when the betas are time varying.
Our approach is most related to Lewellen and Nagel (2006) who �rst suggest using short windows,

over which betas are assumed to be constant, to estimate time-varying factor loadings and hence infer
1 In a case with just one asset this is exactly the same as the standard error of a regular OLS intercept term depending on

the mean and variance of the independent variable.
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conditional alphas. Our work extends Lewellen and Nagel in several important ways. First, by using
a nonparametric kernel to estimate time-varying betas we are able to use all the data ef�ciently. The
nonparametric kernel allows us to estimate conditional betas at any moment in time. Naturally, our
optimal kernels can be adjusted to use one-sided, equal-weighted weighted �lters which nest the
approach of French, Schwert and Stambaugh (1986), Andersen et al. (2006), Lewellen and Nagel
(2006), and others, as a special case.
Second, Lewellen and Nagel's (2006) procedure identi�es the time variation of conditional betas

and provides period-by-period estimates of conditional alphas. Lewellen and Nagel use only the time-
series variation of these conditional alphas when conducting statistical tests of the alphas. But, since
the alphas are a function of conditional betas which are also estimated, any inference on conditional
alphas should take into account the sampling error of the time-varying factor loadings. Our procedure
does precisely that. Our estimates of the sampling variation of conditional betas directly affect, and
are simultaneously estimated with, the standard errors of the implied conditional alphas.
Third, we derive both univariate and joint tests of conditional alphas in the presence of time-

varying betas. Similar to Gibbons, Ross and Shanken (1989) we are able to test for the signi�cance
of long-run alphas jointly over a set of portfolios. This is important because portfolios constructed
by sorting over various characteristics are extensively used in �nance to test factor models and it is
common to test the ef�ciency of various small sets of investable assets. Following Fama and French
(1993), and many others, a joint test over portfolios is useful for investigating whether a relation
between conditional alphas and �rm characteristics strongly exists across many portfolios.
Our tests are straight forward to apply, powerful, and are based on no more than standard nonpara-

metric estimates of OLS regression coef�cients. We derive the asymptotic distribution of conditional
alphas and betas to take into account the ef�ciency gains both from increasing the total length of
the sample and from sampling at higher frequencies. With appropriate technical conditions, we de-
rive a joint asymptotic distribution for the conditional alphas and betas at every point in time. We
then construct a test statistic that averages the conditional alphas or factor loadings across time, both
for a single portfolio and for the multi-asset case. We also derive a test for constancy of the condi-
tional alphas or factor loadings. Interestingly, while nonparametric estimators generally converge at
slower rates than maximum likelihood estimators, we show that tests involving average or long-run
conditional alphas converge at the same rate as classical estimators. Consequently, in the special
case where betas are constant and there is no heteroskedasticity, our tests for whether the average
conditional alpha equals zero are asymptotically equivalent to Gibbons, Ross and Shanken (1989).
We apply our tests to portfolios of stocks sorted on their book-to-market ratios and past returns.

These sets of portfolios are of special interest to asset pricers because of their large differentials
in expected returns. In particular, while it has long been noted since Basu (1983) that stocks with
high book-to-market ratios generate higher returns than stocks with low book-to-market ratios after
adjusting for risk using an unconditional CAPM, it is still a disputed question whether time variation
in factor loadings in a conditional CAPM can explain the book-to-market effect. Theoretical models
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of risk predict that betas on value stocks should vary over time and be highest during times when
marginal utility is high (see for example, Gomes, Kogan and Zhang, 2003; Zhang, 2005). Petkova and
Zhang (2005) and Ang and Chen (2007) argue that risk from time-varying market betas is enough to
account for a substantial amount of the value premium. On the other hand, Lewellen and Nagel (2006)
argue that the book-to-market effect cannot be explained by a conditional CAPM. The motivation for
examining portfolios sorted on past returns is that the momentum effect of Jegadeesh and Titman
(1993) is one of the most robust patterns of expected returns and so far no widely accepted factor
model can explain the momentum effect, including the Fama-French model (see Fama and French,
1996). We �nd for both decile portfolios sorted by book-to-market ratios and past returns, long-run
alphas are jointly signi�cantly different from zero both for conditional versions of the one-factor
market model and the three-factor Fama and French (1993) model. We also overwhelmingly reject
the null that the conditional betas do not vary over time for both sets of portfolios.
The rest of this paper is organized as follows. Section 2 lays out our empirical methodology of

estimating time-varying alphas and betas of a conditional factor model. We develop tests of long-run
alphas and factor loadings and tests of constancy of the conditional alphas and betas. We apply our
methodology to investigate if conditional CAPM and Fama-French (1993) models can price portfolios
sorted on book-to-market ratios and past returns. Section 3 discusses our data. In Sections 4 and
5 we investigate tests of conditional CAPM and Fama-French models on the book-to-market and
momentum portfolios, respectively. Section 6 concludes. We relegate all technical proofs to the
appendix.

2 Statistical Methodology

In Section 2.1, we lay out the conditional factor model. Section 2.2 develops general unrestricted
estimators and their distributions. We develop a test for long-run alphas in Section 2.3 and tests for
constancy of the conditional alphas and factor loadings in Section 2.4. Section 2.5 discusses the
optimal bandwidth choice. We discuss other related �nance literature in Section 2.6.

2.1 The Model

Let Ri;t be the excess return of asset i at time t, for i = 1; ::::; N assets and t = 1; :::; T periods.
We wish to explain the returns through a set of J common tradeable factors, ft = (f1;t; :::; fJ;t)0. We
consider the following empirical speci�cation:

Ri;t = �i;t + �i1;tf1;t + :::+ �iJ;tfJ;t + "i;t

= �i;t + �
0
i;tft + "i;t; (1)
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where �i;t 2 R is the conditional alpha for stock i, �i;t =
�
�i1;t; :::; �iJ;t

�0 2 RJ is the vector of
time-varying factor loadings for stock i, and the vector of error terms "t = ("1;t; :::; "N;t)0 satis�es

E ["tjft; �t] = 0 and E
�
"t"

0
tjft; �t

�
= 
t;

where 
t 2 RN�N , t = 1; :::; T , is a sequence of covariance matrices. For convenience, we express
equation (1) in vector notation:

Rt = �t + �
0
tft + "t; (2)

where Rt = (R1;t; :::; RN;t)
0 is the vector of returns, �t = (�1;t; :::; �N;t)

0 2 RN is the vector of
conditional alphas across stocks i = 1; :::; N , and �t =

�
�1;t; :::; �N;t

�0 2 RJ�N is the corresponding
matrix of conditional betas. We collect the alphas and betas in t = (�t; �0t)0 2 R(J+1)�N .
We are interested in the time series estimates of the conditional alphas, �t, and the conditional

factor loadings, �t, along with their standard errors. Under the null of a factor model, the conditional
alphas are equal to zero, or �t = 0. In equations (1) and (2), the time-varying conditional factor
loadings can be random processes in their own right as long as they are weakly independent of the
factors.
The model in equation (1) is strictly a conditional factor model in which betas vary over time

but the factor premia do not exhibit time-varying expected returns. This setup has the advantage
of avoiding the bias of Boguth et al. (2007) when both factor loadings and risk premia vary con-
temporaneously. However, the methodology we develop also applies to conditional factor models
with time-varying factor premia. Jagannathan and Wang (1996) show that a conditional CAPM with
time-varying factor premia is equivalent to an unconditional factor model by suitably expanding the
set of unconditional factors. The expanded set of factors can be interpreted as managed returns (see
Ferson and Harvey, 1991; Cochrane, 2001). Our framework applies to these settings if we can place
additional factors on the RHS of equation (1) to capture the effect of time-varying risk premia.
In our empirical work, we consider two speci�cations of conditional factor models: a conditional

CAPM where there is a single factor which is the market excess return and a conditional version of
the Fama and French (1993) model where the three factors are the market excess return,MKT , and
two zero-cost mimicking portfolios, which are a size factor SMB, and a value factor HML.
We de�ne the long-run alphas and betas for asset i to be

�LR;i = lim
T!1

1

T

TX
t=1

�i;t 2 R and �LR;i = lim
T!1

1

T

TX
t=1

�i;t 2 RJ ; (3)

for i = 1; :::; N . We use the terminology �long run� to distinguish the conditional alpha at a point in
time, �i;t, from the conditional alpha averaged over the sample, �LR;i. We are particularly interested
in examining the hypothesis that the long-run alphas are jointly equal to zero across N assets:

H0 : �LR;i = 0; i = 1; :::; N: (4)
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In a setting with constant factor loadings and constant alphas, Gibbons, Ross and Shanken (1989)
develop a test of the nullH0. Our methodology can be considered to be the conditional version of the
Gibbons-Ross-Shanken test in a setting where both conditional alphas and betas vary over time.
An important comment is that the model does not have a direct interpretation as a continuous-

time model sampled at increasing frequency with an increasing sample length T . A continuous-time
speci�cation similar to equation (2) would be

dst = �tdt+ �
0
tdXt +
tdWt;

where st = log(St), St is the vector of asset prices at time t, and Xt are the factors. This is the
ANOVAmodel considered in Andersen et al. (2006) and Mykland and Zhang (2006). A discrete-time
approximation of this continuous-time model takes the form of equation (1) where Rt = s(t+1)� �
st�, �t = �(t+1)� � �t�, fn;t = X(t+1)� �Xt�, and "t = 
t

�
W(t+1)� �Wt�

�
, where � is the

discretization interval. However, an important difference between the continuous-time model and the
model in equation (2) is that in continuous time, the variance of "t decreases as jti � ti�1j ! 0. This
has the implication that in the continuous-time model, we cannot estimate the alpha's from a sample
in [0; T ] with T > 0 �xed (see Kristensen, 2008a, Theorem 5).2 In contrast, we assume that the
variance of "t remains constant, which allows us to estimate both the alphas and betas within a �xed
time span [0; T ]. Thus, our model should be viewed as a sequence of discrete-time models sampled at
increasing frequency over a �xed horizon T . Our asymptotics are derived when the sampling interval
tends to zero. This is the case in practice as an econometrician is given a sample of length T and can
sample at monthly, weekly, daily, or higher intra-day frequencies. In our empirical work, we sample
at the daily frequency.

2.2 Unrestricted Estimators

Suppose we have observed returns and factors observed over time t = 1; :::; T . We propose the
following local least-squares estimators of �i;� and �i;� in equation (1) at any point � in the time
interval 1 � � � T :

(�̂i;� ; �̂
0
i;� )

0 = arg min
(�;�)

TX
t=1

KhiT (t� �)
�
Ri;t � �i � �0ft

�2
; (5)

for each asset i = 1; :::; N , where KhiT (z) = K (z= (hiT )) = (hiT ) with K (�) being a kernel and
hi > 0 a bandwidth. The estimators are simply kernel-weighted least squares and it is easily seen that

(�̂i;� ; �̂
0
i;� )

0 =

"
TX
t=1

KhiT (t� �)XtX 0
t

#�1 " TX
t=1

KhiT (t� �)XtR0i;t

#
; (6)

2 In continuous time we have to assume T ! 1 to estimate limT!1
1
T

R
�tdt under the assumption of stationarity.

This is related to the result of Merton (1980), who shows that sampling at increasing frequencies does not improve the

estimate of the average return whereas increasing the length of the sample does.
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where Xt = (1; f 0t)
0.

The proposed estimator gives weights to the individual observations according to how close in
time they are to the time point of interest, � . The shape of the kernelK determines how the different
observations are weighted. For most of our empirical work we will choose the Gaussian density as
kernel,

K(z) =
1p
2�
exp

�
�z

2

2

�
;

but also examine one-sided and uniform kernels that have been used in the literature by Andersen et
al. (2006) and Lewellen and Nagel (2006), among others.
The bandwidth hi > 0 controls the time window used in the estimation for the ith stock, and as

such effectively controls how many observations are used to compute the estimated coef�cients �̂i;�
and �̂i;� at time � . A small bandwidth means only observations close to � are weighted and used in
the estimation. We discuss the bandwidth choice in Section 2.5.
We run the kernel regression (5) separately stock by stock for i = 1; :::; N . This is a generalization

of the regular OLS estimators, which are also run stock by stock in the tests of unconditional factor
models like Gibbons, Ross and Shanken (1989). If the same bandwidth h is used for all stocks, our
estimator of alphas and betas across all stocks take the simple form of a weighted multivariate OLS
estimator,

(�̂� ; �̂
0
� )
0 =

"
TX
t=1

XtKTh (t� �)X 0
t

#�1 " TX
t=1

XtKTh (t� �)R0t

#
:

In practice, it is not advisable to use one common bandwidth across all assets. We use different
bandwidths for different stocks because the variation and curvature of the conditional alphas and
betas may differ widely across stocks and each stock may have a different level of heteroskedasticity.
We show below that for book-to-market and momentum test assets, the patterns of conditional alphas
and betas are very dissimilar across portfolios. Choosing stock-speci�c bandwidths allows us to
better adjust the estimators for these effects. However, in order to avoid cumbersome notation, we
will present the asymptotic results for the estimators �̂� and �̂� assuming one common bandwidth,
h, across all stocks. The asymptotic results are identical in the case with bandwidths under the
assumption that all the bandwidths converge at the same rate as T !1.
Our model falls into a large statistics literature on nonparametric estimation of regression models

with varying coef�cients (see, for example, Fan and Zhang, 2008, for an overview). However, this lit-
erature generally focuses on I.I.D. models where an independent regressor is responsible for changes
in the coef�cients. In contrast to most of this literature, our regressor is a function of time, rather
than a function of another independent variable. We build on the work of Robinson (1989), further
extended by Robinson (1991), Orbe, Ferreira and Rodriguez-Poo (2005), and Cai (2007), who origi-
nally proposed to use kernel methods to estimate varying-coef�cients models where the coef�cients
are functions of time. We utilize these results to obtain the asymptotic properties of the estimator.
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We �rst state a result regarding the asymptotic properties of the local least-squares estimator. This
is a direct consequence of Kristensen (2008b, Theorem 1).

Theorem 1 Assume that (A.1)-(A.4) given in the Appendix hold and the bandwidth is chosen such

that nh!1 and nh5 ! 0. Then, for any 1 � � � T , ̂� = (�̂� ; �̂
0
� )
0 satis�es

p
Th(̂� � � )

d! N
�
0; �2�

�1
� 
 
�

�
; (7)

where �� = E [X�X 0
� ], X� = (1; f 0� )

0, and �2 =
R
K2 (z) dz = 0:2821 for the normal kernel.

Furthermore, for any two �1 6= �2,

Cov
�p
Th
�
̂�1 � �1

�
;
p
Th
�
̂�2 � �2

�� p! 0: (8)

A simple estimator of the asymptotic variance is obtained by substituting in the sample estimates

�̂� =
1

T

TX
t=1

KhT (t� �)XtX 0
t and 
̂� =

1

T

TX
t=1

KhT (t� �) "̂t"̂0t; (9)

where "̂t = Rt � �̂t � �̂
0
tft, t = 1; :::; T , are the �tted residuals. Due to the independence across

different values of � , pointwise con�dence bands can easily be computed.
In Theorem 1 the rate of convergence is

p
Th as is standard for a nonparametric estimator. This

is slower than the classical convergence rate of
p
T since h! 0. However, below, we show that a test

for an average alpha across the sample equal to zero converges at the
p
T rate. A major advantage

of our procedure in contrast to most other nonparametric procedures is that our estimators do not
suffer from the curse of dimensionality. Since we only smooth over the time variable t, increasing the
number of regressors, J , or the number of stocks, N , do not affect the performance of the estimator.
A further advantage is that the point estimates �̂i;� and �̂i;� are estimated stock by stock, making the
procedure easy to implement. This is similar to the classical Gibbons, Ross and Shanken (1989) test
where the alphas and betas are also separately estimated asset by asset.
A closing comment is that bias at end points is a well-known issue for kernel estimators. Likewise,

when a symmetric kernel is used, our proposed estimator suffers from excess bias when � is close to
either 1 or T . In particular, the estimator is asymptotically biased when evaluated at the end points,

E [̂1]!
1

2
1 and E [̂T ]!

1

2
T as h! 0:

This can be handled in a number of different ways. The �rst and easiest way, which is also the
procedure we follow in the empirical work, is that we simply refrain from reporting estimates close to
the two boundaries. That is, we assume our sample has been observed in the time interval [�a; T + a]
for some a > 0. In particular, we do not report the time-varying alphas and betas during the �rst and
last year of our post-1963 sample. Second, adaptive estimators which control for the boundary bias
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could be used. Two such estimators are boundary kernels and locally linear estimators. The former
involves exchanging the �xed kernel K for another adaptive kernel which adjusts to how close we
are to the boundary, while the latter uses a local linear approximation of �� and �� instead of a local
constant one. Usage of these kernels do not affect the asymptotic distributions we derive for long-run
alphas and betas below. We leave these technical extensions to future work.

2.3 Tests for Long-Run Alphas

To test the null of whether the long-run alphas are equal to zero (H0 in equation (4)), we construct
an estimator of the long-run alphas in equation (3) from the estimators of the conditional alphas, �� ,
and the conditional betas, �� , at any point in time 1 � � � T . A natural way to estimate the long-run
alphas and betas would be to simply plug the pointwise kernel estimators into the expressions found
in equation (3):

�̂LR;i =
1

T

TX
t=1

�̂i;t; �̂LR;i =
1

T

TX
t=1

�̂i;t: (10)

The proposed long-run alpha and beta estimators can be interpreted as two-step semiparametric
estimators and as such share some features with other semiparametric estimators found in the liter-
ature. Two particular estimators that are closely related are nonparametric estimators of consumer
surplus (Newey and McFadden, 1994, Section 8) and semiparametric estimation of index coef�cients
(Powell, Stock and Stoker, 1989). These estimators can be written as integrals over a ratio of two
kernel estimators. Our long-run alpha and beta estimators �t into this class of estimators since the
�rst-step estimators ̂� = (�̂� ; �̂

0
� )
0 in equation (6) are ratios of kernel functions and the long-run

alpha and betas are integrals (averages) of these kernel estimators.
The following theorem states the joint distribution of ̂LR = (�̂LR; �̂

0
LR)

0 2 R(J+1)�N where
�̂LR = (�̂LR;1; :::; �̂LR;N )

0 2 RN and �̂LR = (�̂LR;1; :::; �̂LR;N )0 2 RJ�N :

Theorem 2 Assume that (A.1)-(A.6) given in the Appendix hold. Then,

p
T (̂LR � LR)

d! N (0; VLR) ; (11)

where

VLR = lim
T!1

1

T

TX
t=1

��1t 
 
t:

In particular,
p
T (�̂LR � �LR)

d! N (0; VLR;��) ; (12)

where VLR;�� are the �rst N �N components of VLR:

VLR;�� = lim
T!1

1

T

TX
t=1

��1��;t 
 
t:
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with

���;t = 1� E [ft]0E
�
ftf

0
t

��1
E [ft] :

The asymptotic variance can be consistently estimated by:

V̂LR;�� =
1

T

TX
t=1

�̂�1t 
 
̂t; (13)

where �̂� and 
̂� are given in equation (9).
An important observation is that the long-run estimators converge with standard parametric ratep
T despite the fact that they are based on preliminary estimators ̂� that converge at the slower,

nonparametric rate
p
Th. That is, inference of the long-run alphas and betas involves the standard

Central Limit Theorem (CLT) convergence properties even though the point estimates of the condi-
tional alphas and betas converge at slower rates. Intuitively, this is due to the additional smoothing
taking place when we average over the preliminary estimates in equation (6), as is well-known from
other studies of semiparametric estimators; see, for example, Newey and McFadden (1994, Section 8)
and Powell, Stock and Stoker (1989).
We can test H0 : �LR = 0 by the following Wald-type statistic:

W0 = �̂
0
LRV̂

�1
LR;���̂LR 2 R+; (14)

where V̂LR;�� is an estimator of the variance of �̂LR,

V̂LR;�� =
1

T

TX
t=1

�̂�1��;t
̂t; (15)

with
�̂�1��;t = 1� Ê [ft]

0 Ê
�
ftf

0
t

��1
Ê [ft] ;

and

Ê [ft] =
1

T

TX
s=1

KhT (s� t) fs and Ê
�
ftf

0
t

�
=
1

T

TX
s=1

KhT (s� t) fsf 0s:

As a direct consequence of Theorem 2, we obtain

W0
d! �2N : (16)

This is the conditional analogue of the Gibbons, Ross and Shanken (1989) test and tests if long-run
alphas are jointly equal to zero across all i = 1; :::; N portfolios.
A special case of our model is when the factor loadings are constant with �t = � 2 RJ�N for

all t. Under the null that beta is indeed constant, �t = �, and with no heteroskedasticity, 
t = 


for all t, the asymptotic distribution of
p
T (�̂LR � �LR) is identical to the standard Gibbons, Ross

and Shanken (1989) test. This is shown in Appendix C. Thus, we pay no price asymptotically for the
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added robustness of our estimator. Furthermore, only in a setting with constant betas is the Gibbons-
Ross-Shanken estimator of �LR consistent. This is not surprising given the results of Jagannathan
and Wang (1996) and others who show that in the presence of time-varying betas, OLS alphas do not
yield estimates of conditional alphas.

2.4 Tests for Constancy of the Alphas and Betas

In this section, we derive test statistics for the hypothesis that the conditional alphas or the betas, or
both, are constant over time. The test can be applied to a subset of the full set of conditional alphas
and betas. Since the proposed tests for constant alphas and betas are very similar, we treat them in a
uni�ed framework.
Suppose we wish to test for constancy of a subset of the time-varying parameters of stock i,

i;t =
�
�i;t; �

0
i;t

�0 2 RJ+1. We �rst split up the set of regressors, Xt = (1; f 0t)
0 and coef�cients,

i;t , into two components (after possibly rearranging the regressors): i1;t 2 Rm, which is the set
of coef�cients we wish to test for constancy with X1;t 2 Rm the associated regressors, and i2;t 2
RJ+1�m the remaining coef�cients with X2;t 2 RJ+1�m the remaining regressors, respectively.
Using this notation we can rewrite our model as:

Ri;t = 
0
i1;tX1;t + 

0
i2;tX2;t + "i;t: (17)

We consider the following hypothesis:

H1 : i1;t = i1 for all 0 � t � T: (18)

Under the null hypothesis, m of the J + 1 coef�cients are constant whereas under the alternative
hypothesis all J + 1 coef�cients vary through time. Our hypothesis covers both the situation of
constant alphas,

H 0
1 : �it = �i 2 R with X1;t = 1; X2;t = ft; i1;t = �i;t; i2;t = �i;t;

and constant betas,

H 00
1 : �i;t = �i 2 RJ with X1;t = ft; X2;t = 1; i1;t = �i;t; i2;t = �i;t:

Under H1, we obtain an estimator of the constant parameter vector 1 by using local pro�ling.
First, we treat i1 as known and estimate i2;� by

̂i2;� = argmini2

TX
t=1

KhiT (t� �)
�
Ri;t � 0i1X1;t + 0i2X2;t

�2
= m̂Ri;� � m̂1;�i1; (19)

where

m̂Ri;� =

"
TX
t=1

KhT (t� �)X2;tX 0
2;t

#�1 " TX
t=1

KhT (t� �)X2;tR0i;t

#
2 RJ+1�m

m̂1;� =

"
TX
t=1

KhT (t� �)X2;tX 0
2;t

#�1 " TX
t=1

KhT (t� �)X2;tX 0
1;t

#
2 R(J+1�m)�m;

10



are estimators of

mRi;� = E
�
X2;�X

0
2;�

��1
E
�
X2;�R

0
i;�

�
(20)

m1;� = E
�
X2;�X

0
2;�

��1
E
�
X2;�X

0
1;�

�
:

In the second stage, we obtain an estimator of the constant component i1. We do this by substi-
tuting the conditional estimator ̂2i;� into the weighted least-squares criterion QT (i1) given by:

QT (i1) =

TX
t=1


̂�1ii
�
Ri;t � 0i1X1;t + ̂0i2;tX2;t

�2
=

TX
t=1


̂�1ii

h
R̂i;t � 0i1X̂1;t

i2
;

where X̂1;t = X1;t � m̂0
1;tX2;t 2 Rm and R̂i;t = Ri;t � m̂0

Ri;t
X2;t 2 R. Our estimator minimizes

QT (i1), which is again a simple least-squares problem with solution:

̂i1 =

"
TX
t=1


̂�1ii;tX̂1;tX̂
0
1;t

#�1 " TX
t=1


̂�1ii;tX̂1;tR̂i;t

#
: (21)

The above estimator is akin to the residual-based estimator of Robinson (1988). It is also similar to
the local linear pro�le estimator of Fan and Huang (2005) who demonstrate that in a cross-sectional
framework with homoskedastic errrors, the estimator of i1 is semiparametric ef�cient. Substitut-
ing equation (21) back into equation (19), the following estimator of the nonparametric component
appears:

̂i2;� = m̂Ri;� � m̂1;� ̂
0
i1: (22)

Once the restricted estimators have been computed, we testH1 by comparing the unrestricted and
restricted model with a Wald test. Introducing the rescaled errors under the full model and under H1
respectively as,

ẑt = 
̂
�1=2
ii;t "̂it and ẑ1;t = 
̂

�1=2
ii;t "̂i1;t;

where
"̂it = Ri;t � ̂0i1;tX1;t + ̂0i2;tX2;t

are the residuals under the alternative and

"̂i1;t = Ri;t � ̂0i1X1;t + ̂0i2;tX2;t

are the residuals under the null, we can compute the sums of (rescaled) squared residuals by:

SSR =

TX
t=1

ẑ0i;tẑi;t and SSR1 =

TX
t=1

ẑ0i1;tẑi1;t:

The Wald test then takes the following form:

W1 =
T

2

SSR1 � SSR
SSR

: (23)

The proposed test statistic is related to the generalized likelihood-ratio test statistics advocated in Fan,
Zhang and Zhang (2001):
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Theorem 3 Assume that (A.1)-(A.6) hold. Under H1:
p
T (̂i1 � i1)

d! N
�
0;��1ii

�
; (24)

where, with V̂t = X1;t �m0
1;tX2;t,

�ii = lim
T!1

TX
t=1


�1ii;tVtV
0
t : (25)

The test statistic satis�es

W1
d! �2q�=q; (26)

where

q =
K (0)� 1=2�2R

[K (z)� 1=2 (K �K) (z)]2 dz
and � =

2m

h
[K (0)� 1=2�2] :

For Gaussian kernels, q = 2:5375 and � = 2mc=h where c = 0:7737.

The above result is in accordance with the results of Fan, Zhang and Zhang (2001). They demon-
strate in a cross-sectional setting that test statistics of the form of W1 are, in general, not dependent
on nuisance parameters under the null and asymptotically converge to �2-distributions under the null.
They further demonstrate that these statistics are asymptotically optimal and can even be adaptively
optimal. The above test procedure can easily be adapted to construct joint tests of parameter con-
stancy across multiple stocks. For example, to test for joint parameter constancy jointly across all
stocks, simply set Ri;t = Rt in the above expressions.

2.5 Choice of Kernel and Bandwidth

As is common to all nonparametric estimators, the choice of the kernel and the bandwidth are impor-
tant. Our theoretical results are based on using a kernel centered around zero and our main empirical
results use the Gaussian kernel. In comparison, previous authors using high frequency data to esti-
mate covariances or betas, such as Andersen et al. (2006) and Lewellen and Nagel (2006), have used
one-sided �lters. For example, the rolling window estimator employed by Lewellen and Nagel (2006)
corresponds to a uniform kernel on [�1; 0] withK (z) = I f�1 � z � 0g.
We advocate using two-sided symmetric kernels because, in general, the bias from two-sided

symmetric kernels is lower than for one-sided �lters. In our data where T is over 10,000 daily obser-
vations, the improvement in the integrated root mean squared error (RMSE) using a Gaussian �lter
over a backward-looking uniform �lter can be quite substantial. For the symmetric kernel the inte-
grated RMSE is of order O

�
T�2=5

�
whereas the corresponding integrated RMSE is at most of order

O
�
T�1=3

�
. We provide further details in Appendix D.

There are two bandwidth selection issues unique to our estimators that we now discuss: Sec-
tion 2.5.1 discusses bandwidth choices for the conditional estimates of alphas and betas while Sec-
tion 2.5.2 treats the problem of specifying the bandwidth for the long-run alpha and beta estimators.
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2.5.1 Bandwidth for Conditional Estimators

We choose one bandwidth for the point estimates of conditional alphas and betas and a different
bandwidth for the long-run alphas and betas. The two different bandwidths are necessary because in
our theoretical framework the conditional estimators and the long-run estimators converge at different
rates. In particular, the asymptotic results suggest that for the integrated long-run estimators we need
to undersmooth relative to the point-wise conditional estimates; that is, we should choose our long-
run bandwidths to be smaller than the conditional bandwidths. Our strategy is to determine optimal
conditional bandwidths and then adjust the conditional bandwidths for the long-run alpha and beta
estimates.
We choose a plug-in method to estimate the conditional bandwidths. When a symmetric kernel

is used, the leading pointwise bias and variance terms are given in equations (D-1) and (D-2), re-
spectively. As a consequence, for the symmetric kernel the optimal bandwidth that minimizes RMSE
is

h�i =

�
jjvijj
4jj�ijj2

�1=5
T�1=5; (27)

where �i = T�1
PT
t=1 �i;t and vi = T�1

PT
t=1 vi;t are the integrated versions of the time-varying

bias and variance components. Ideally, we would then compute vi and �i in order to obtain the optimal
bandwidth given in equation (D-4). However, these depend on unknown components, �t, t, and 
t.
In order to implement this bandwidth choice we therefore propose to obtain preliminary estimates of
these through the following two-step method:3

1. Assume that �t = � and 
t = 
 are constant, and t = a0 + a1t+ :::+ aptp is a polynomial.
We then obtain parametric least-squares estimates �̂, 
̂ and ̂i;t = â0;i + â1;it + ::: + âp;it

p.
Compute for each stock (i = 1; :::; N )

v̂i = �2�̂
�1 
 
̂ii and �̂i =

1

2T

TX
t=1

̂
(2)
i;t ;

where ̂(2)i;t = 2â2;i+6â3;it+ :::+ p (p� 1) âp;itp�2. Then, using these estimates we compute
the �rst-pass bandwidth

ĥi;1 =

24 jjv̂ijj�
4jj�̂ijj2

�
351=5 � T�1=5: (28)

2. Given hi;1, compute the kernel estimators ̂i;t = �̂
�1
t

PT
t=1KhT (t� �)XtR0i;t, �̂t and 
̂t as

given in Section 2.2. We use these to obtain for each stock (i = 1; :::; N ):

v̂i = �2
1

T

TX
t=1

�̂�1t 
 
̂t and �̂i =
1

2T

TX
t=1

�̂�1t

h
�̂t̂

(2)
i;t + 2�̂

(1)
t ̂

(1)
i;t

i
:

3 Ruppert, Sheather and Wand (1995) discuss in detail how this can done in a standard kernel regression framework.
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These are in turn used to obtain a second-pass bandwidth:

ĥi;2 =

24 jjv̂ijj�
4jj�̂ijj2

�
351=5 � T�1=5: (29)

Our motivation for using a plug-in bandwidth is as follows. We believe that the betas for our
portfolios vary slowly and smoothly over time as argued both in economic models such as Gomes,
Kogan and Zhang (2003) and from previous empirical estimates such as Lewellen and Nagel (2006)
and Ang and Chen (2007), and others. The plug-in bandwidth accommodates this prior information
by allowing us to specify a low-level polynomial order. In our empirical work we choose a polynomial
of degree p = 6, and �nd little difference in the choice of bandwidths when p is below ten.4

One could alternatively use (generalized) cross-validation (GCV) procedures to choose the band-
width. These procedures are completely data driven and, in general, yield consistent estimates of the
optimal bandwidth. However, we �nd that in our data these produce bandwidths that are extremely
small, corresponding to a time window as narrow as 3-5 days with corresponding huge time variation
in the estimated factor loadings. We believe these bandwidth choices are not economically sensi-
ble. The poor performance of the GCV procedures is likely due to a number of factors. First, it is
well-known that cross-validated bandwidths may exhibit very inferior asymptotic and practical per-
formance even in a cross-sectional setting (see, for example, Härdle, Hall, and Marron, 1988). This
problem is further enhanced when GCV procedures are used on time series data as found in various
studies.

2.5.2 Bandwidth for Long-Run Estimators

To estimate the long-run alphas and betas we re-estimate the conditional coef�cients by undersmooth-
ing relative to the bandwidth in equation (29). The reason for this is that the long-run estimates are
themselves integrals and the integration imparts additional smoothing. Using the same bandwidth as
the conditional alphas and betas will result in over-smoothing.
Ideally, we would choose an optimal long-run bandwidth to minimize the mean-squared error

E
�
jĵLR;i � LR;ijj2

�
, which we derive in Appendix E. As demonstrated there, the bandwidth used

for the long-run estimators should be chosen to be of order hLR;i = O
�
T�2=(1+2r)

�
, where r is the

number of derivatives required for the alpha and beta functions (or the degree of required smoothness).
Thus, the optimal bandwidth for the long-run estimates is required to shrink at a faster rate than the
one used for pointwise estimates where the optimal rate is T�1=(1+2r).
In our empirical work, we select the bandwidth for the long-run alphas and betas by �rst comput-

ing the optimal second-pass conditional bandwidth ĥi;2 in equation (29) and then scaling this down
4 The order of the polynomial is an initial belief on the underlying smoothness of the process; it does not imply that a

polynomial of this order �ts the estimated conditional parameters.
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by setting
ĥLR;i = ĥi;2 � T�1=(1+2r); (30)

with a choice of r = 1.

2.6 Related Finance Literature

By taking advantage of nonparametric techniques to estimate latent quantities, we follow several pa-
pers in �nance also using nonparametric estimators. Stanton (1997), Aït-Sahalia (1996), and Johannes
(2004), among others, estimate drift and diffusion functions of the short rate using nonparametric es-
timators. Bansal and Viswanathan (1993), Aït-Sahalia and Lo (1998), and Wang (2003), among
others, characterize the pricing kernel by nonparametric estimation. Brandt (1999) and Brandt and
Aït-Sahalia (2007) present applications of nonparametric estimators to portfolio choice and consump-
tion problems. Our work is the �rst, to our knowledge, to use nonparametric techniques to jointly
estimate conditional alphas and betas in conditional factor models and, most importantly, to derive
distributions of long-run alphas and factor loadings.
Our work is most related to Lewellen and Nagel (2006). Like Lewellen and Nagel our estimators

of conditional alphas and betas use only information from high frequency data and ignore condition-
ing information from other instrumental variables. Alternative approaches taken by Shanken (1990)
and Ferson and Harvey (1991, 1993), among many others, estimate time-varying factor loadings by
instrumenting the factor loadings with macroeconomic and �rm-speci�c variables. As Ghysels (1998)
and Harvey (2001) note, the estimates of the factor loadings obtained using instrumental variables are
very sensitive to the variables included in the information set. Furthermore, many conditioning vari-
ables, especially macro and accounting variables, are only available at coarse frequencies. Instead,
only high frequency return data is used to obtain consistent estimates of alphas and betas. Thus, our
estimator is in the same spirit of Lewellen and Nagel and uses local high frequency information, but
we exploit a nonparametric structure.
Our kernel speci�cation used to estimate the time-varying betas nests several special cases in the

literature. For example, French, Schwert and Stambaugh (1987) use daily data over the past month
to estimate market variance. Lewellen and Nagel (2005) use daily returns over the past quarter or
six months to estimate betas. Both of these studies use only truncated, backward-looking windows
to estimate second moments. Foster and Nelson (1996) derive optimal two-sided �lters to estimate
covariance matrices under the null of a GARCH data generating process. Foster and Nelson's expo-
nentially declining weights can be replicated by special choice kernel weights. An advantage of using
a nonparametric procedure is that we obtain ef�cient estimates of betas without having to specify a
particular data generating process, whether this is GARCH (see for example, Bekaert and Wu, 2000)
or a stochastic volatility model (see for example, Jostova and Philipov, 2005; Ang and Chen, 2007).
Because we use high frequency data to estimate second moments at lower frequencies, our esti-

mator is also related to the realized volatility literature (see the summary by Andersen et al., 2003).
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These studies have concentrated on estimating variances, but recently Andersen et al. (2006) esti-
mate realized quarterly-frequency betas of 25 Dow Jones stocks from daily data. Andersen et al.'s
estimator is similar to Lewellen and Nagel (2006) and uses only a backward-looking �lter with con-
stant weights. Within our framework, Andersen et al. (2006) and Lewellen and Nagel (2006) are
estimating integrated or averaged betas,

���;t =

Z t

t��
�sds;

where � > 0 is the window over which they compute their OLS estimators, say a month. Integrated
betas implicitly ignore the variation of beta within each window as they are the average beta across
the time period of the window. Our estimators accommodate integrated betas as a special case by
choosing a �at kernel and a �xed bandwidth.

3 Data

We apply our methodology to decile portfolios sorted by book-to-market ratios and decile portfolios
sorted on past returns constructed by Kenneth French.5 The book-to-market portfolios are rebalanced
annually at the end of June while the momentum portfolios are rebalanced every month sorting on
prior returns from over the past two to twelve months. We use the Fama and French (1993) factors,
MKT , SMB, and HML as explanatory factors. All our data is at the daily frequency from July
1963 to December 2007. We use this whole span of data to compute optimal bandwidths. However,
in reporting estimates of conditional factor models we truncate the �rst and last years of daily ob-
servations to avoid end-point bias, so our conditional estimates of alphas and factor loadings and our
estimates of long-run alphas and betas span July 1964 to December 2006. Our summary statistics in
Table 1 cover this sample, as do all of our results in the next sections.
Panel A of Table 1 reports summary statistics of our factors. We report annualized means and

standard deviations. The market premium is 5.32% compared to a small size premium for SMB at
1.84% and a value premium for HML at 5.24%. Both SMB and HML are negatively correlated
with the market portfolio with correlations of -23% and -58%, respectively. In Panel B, we list
summary statistics of the book-to-market and momentum decile portfolios. We also report OLS
estimates of a constant alpha and constant beta in the last two columns using the market excess
return factor. The book-to-market portfolios have average excess returns of 3.84% for growth stocks
(decile 1) to 9.97% for value stocks (decile 10). We refer to the zero-cost strategy 10-1 that goes long
value stocks and shorts growth stocks as the �book-to-market strategy.� The book-to-market strategy
has an average return of 6.13%, an OLS alpha of 7.73% and a negative OLS beta of -0.301. Similarly,
for the momentum portfolios we refer to a 10-1 strategy that goes long past winners (decile 10) and
goes short past losers (decile 1) as the �momentum strategy.� The momentum strategy's returns are

5 These are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

16



particularly impressive with a mean of 17.07% and an OLS alpha of 16.69%. The momentum strategy
has an OLS beta close to zero of 0.072.
We �rst examine the conditional and long-run alphas and betas of the book-to-market portfolios

and the book-to-market strategy in Section 4. Then, we test the conditional Fama and French (1993)
model on the momentum portfolios in Section 5.

4 Portfolios Sorted on Book-to-Market Ratios

4.1 Tests of the Conditional CAPM

We report estimates of bandwidths, conditional alphas and betas, and long-run alphas and betas in
Table 2 for the decile book-to-market portfolios. The last row reports results for the 10-1 book-to-
market strategy. The columns labeled �Bandwidth� list the second-pass bandwidth ĥi;2 in equation
(29). The column headed �Fraction� reports the bandwidths as a fraction of the entire sample, which
is equal to one. In the column titled �Months� we transform the bandwidth to a monthly equivalent
unit. For the normal distribution, 95% of the mass lies between (�1:96; 1:96). If we were to use a
�at uniform distribution, 95% of the mass would lie between (�0:975; 0:975). Thus, to transform
to a monthly equivalent unit we multiply by 533 � 1:96=0:975, where there are 533 months in the
sample. We annualize the alphas in Table 2 by multiplying the daily estimates by 252.
For the decile 8-10 portfolios, which contain predominantly value stocks, and the value-growth

strategy 10-1, the optimal bandwidth is around 20 months. For these portfolios there is signi�cant
time variation in beta and the relatively tighter windows allow this variation to be picked up with
greater precision. In contrast, growth stocks in deciles 1-2 have optimal windows of 51 and 106
months, respectively. Growth portfolios do not exhibit much variation in beta so the window esti-
mation procedure picks a much longer bandwidth. Overall, our estimated bandwidths are somewhat
longer than the commonly used 12-month horizon to compute betas using daily data (see, for exam-
ple, Ang, Chen and Xing, 2006). At the same time, our 20-month window is shorter than the standard
60-month window often used at the monthly frequency (see, for example, Fama and French, 1993,
1997).
We estimate conditional alphas and betas at the end of each month, and for these monthly esti-

mates compute their standard deviations over the sample in the columns labeled �Stdev of Conditional
Estimates.� Below, we further characterize the time variation of these monthly conditional estimates.
The standard deviation of book-to-market conditional alphas is small, at 0.035. In contrast, condi-
tional betas of the book-to-market strategy have much larger time variation with a standard deviation
of 0.206. The majority of this time variation comes from value stocks, as decile 1 betas have a
standard deviation of only 0.056 while decile 10 betas have a standard deviation of 0.191.
Lewellen and Nagel (2006) argue that the magnitude of the time variation of conditional be-

tas is too small for a conditional CAPM to explain the value premium. The estimates in Table 2
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overwhelmingly con�rm this. Lewellen and Nagel suggest that an approximate upper bound for the
unconditional OLS alpha of the book-to-market strategy, which Table 1 reports as 0.644% per month
or 7.73% per annum, is given by �� � �Et[rm;t+1], where �� is the standard deviation of conditional
betas and �Et[rm;t+1] is the standard deviation of the conditional market risk premium. Conservatively
assuming that �Et[rm;t+1] is 0.5% per month following Campbell and Cochrane (1999), we can explain
at most 0:206 � 0:5 = 0:103% per month or 1.24% per annum of the annual 7.73% book-to-market
OLS alpha. We now formally test for this result by computing long-run alphas and betas.
In the last two columns of Table 2, we report estimates of long-run annualized alphas and betas,

along with standard errors in parentheses. The long-run alpha of the growth portfolio is -2.19% with
a standard error of 0.008 and the long-run alpha of the value portfolio is 4.64% with a standard error
of 0.011. Both growth and value portfolios reject the conditional CAPM with p-values of their long-
run alphas of 0.000. The long-run alpha of the book-to-market portfolio is 6.74% with a standard
error of 0.015. Clearly, there is a signi�cant long-run alpha after controlling for time-varying market
betas. The long-run alpha of the book-to-market strategy is very similar, but not precisely equal,
to the difference in long-run alphas between the value and growth deciles because of the different
smoothing parameters applied to each portfolio. There is no monotonic pattern for the long-run betas
of the book-to-market portfolios, but the book-to-market strategy has a signi�cantly negative long-run
beta of -0.217 with a standard error of 0.008.
We test if the long-run alphas across all 10 book-to-market portfolios are equal to zero using

the Wald test of equation (14). The Wald test statistic is 32.95 with a p-value of 0.0003. Thus, the
book-to-market portfolios overwhelmingly reject the null of the conditional CAPMwith time-varying
betas.
Figure 1 compares the long-run alphas with OLS alphas. We plot the long-run alphas using

squares with 95% con�dence intervals displayed in the solid error bars. The point estimates of the
OLS alphas are plotted as circles with 95% con�dence intervals in dashed lines. Portfolios 1-10 on
the x-axis represent the growth to value decile portfolios. Portfolio 11 is the book-to-market strategy.
The spread in OLS alphas is greater than the spread in long-run alphas, but the standard error bands
are very similar for both the long-run and OLS estimates, despite our procedure being nonparametric.
For the book-to-market strategy, the OLS alpha is 7.73% compared to a long-run alpha of 6.74%.
Thus accounting for time-varying betas has reduced the OLS alpha by approximately only 1%.

4.2 Time Variation of Conditional Alphas and Betas

In this section we characterize the time variation of conditional alphas and betas from the one-factor
market model. We begin by testing for constant conditional alphas or betas using the Wald test of
Theorem 3. Table 3 shows that for all book-to-market portfolios, we fail to reject the hypothesis that
the conditional alphas are constant, with Wald statistics that are far below the 95% critical values.
Note that this does not mean that the conditional alphas are equal to zero, as we estimate a highly
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signi�cant long-run alpha of the book-to-market strategy and reject that the long-run alphas are jointly
equal to zero across book-to-market portfolios. In contrast, we reject the null that the conditional betas
are constant with p-values that are effectively zero.
Figure 2 charts the annualized estimates of conditional alphas and betas for the growth (decile 1)

and value (decile 10) portfolios at a monthly frequency. We plot 95% con�dence bands in dashed
lines. In Panel A the conditional alphas of both growth and value stocks have fairly wide standard
errors, which often encompass zero. These results are similar to Ang and Chen (2007) who cannot
reject that conditional alphas of value stocks is equal to zero over the post-1926 sample. Conditional
alphas of growth stocks are signi�cantly negative during 1975-1985 and reach a low of -7.09% in
1984. Growth stock conditional alphas are again signi�cantly negative from 2003 to the end of our
sample. The conditional alphas of value stocks are much more variable than the conditional alphas
of growth stocks, but their standard errors are wider and so we cannot reject that the conditional al-
phas of value stocks are equal to zero except for the mid-1970s, the early 1980s, and the early 1990s.
During the mid-1970s and the early 1980s, estimates of the conditional alphas of value stocks reach
approximately 15%. During 1991, value stock conditional alphas decline to below -10%. Interest-
ingly, the poor performance of value stocks during the late 1990s does not correspond to negative
conditional alphas for value stocks during this time.
The contrast between the wide standard errors for the conditional alphas in Panel A of Figure

2 compared to the tight con�dence bands for the long-run alphas in Table 2 is due to the following
reason. Conditional alphas at a point in time are hard to estimate as only observations close to that
point in time provide useful information. In our framework, the conditional estimators converge at the
nonparametric rate

p
Th, which is less than the classical rate

p
T and thus the conditional standard

error bands are quite wide. This is exactly what Figure 2 shows and what Ang and Chen (2007) pick
up in an alternative parametric procedure.
In comparison, the long-run estimators converge at the standard rate

p
T causing the long-run al-

phas to have much tighter standard error bounds than the conditional alphas. The tests for constancy
of the conditional estimators also converge at rate

p
T . Intuitively, the long-run estimators exploit

the information in the full conditional time series: while the standard errors for a given time point
� are wide, the long-run and constancy tests recognize and exploit the information from all � . Note
that Theorem 1 shows that the conditional alphas at different points in time are asymptotically uncor-
related. Intuitively, as averaging occurs over the whole sample, the uncorrelated errors in individual
point estimates are allowed to diversify away as the sample size increases.
Panel B of Figure 2 plots conditional betas of the growth and value deciles. Conditional factor

loadings are estimated relatively precisely with tight 95% con�dence bands. Growth betas are largely
constant around 1.2, except after 2000 where growth betas decline to around one. In contrast, con-
ditional betas of value stocks are much more variable, ranging from close to 1.3 in 1965 and around
0.45 in 2000. From this low, value stock betas increase to around one at the end of the sample. We
attribute the low relative returns of value stocks in the late 1990s to the low betas of value stocks at
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this time.
In Figure 3, we plot conditional alphas and betas of the book-to-market strategy. Since the con-

ditional alphas and betas of growth stocks are fairly �at, almost all of the time variation of the con-
ditional alphas and betas of the book-to-market strategy is driven by the conditional alphas and betas
of the decile 10 value stocks. Figure 3 also overlays estimates of conditional alphas and betas from
a backward-looking �at 12-month �lter. Similar �lters are employed by Andersen et al. (2006) and
Lewellen and Nagel (2006). Not surprisingly, the 12-month uniform �lter produces estimates with
larger conditional variation. Some of this conditional variation is smoothed away by using the longer
bandwidths of our optimal estimators.6 However, the unconditional variation over the whole sam-
ple of the uniform �lter estimates and the optimal estimates are similar. For example, the standard
deviation of end-of-month conditional beta estimates from the uniform �lter is 0.276, compared to
0.206 for the optimal two-sided conditional beta estimates. This implies that Lewellen and Nagel's
(2007) analysis using backward-looking uniform �lters is conservative. Using our optimal estimators
reduces the overall volatility of the conditional betas making it even more unlikely that the value
premium can be explained by time-varying market factor loadings.
Several authors like Jagannathan and Wang (1996) and Lettau and Ludvigson (2001b) argue that

value stock betas increase during times when risk premia are high causing value stocks to carry a
premium to compensate investors for bearing this risk. We investigate this in Table 4, which regresses
conditional betas of the value-growth strategy onto various macro factors. We �nd relatively weak
evidence that the book-to-market strategy betas increase during bad times. Regressions I-IX examine
the covariation of conditional betas with individual macro factors known to predict market excess
returns. When dividend yields are high, the market risk premium is high, and regression I shows that
conditional betas covary positively with dividend yields. However, this is the only variable that has
a signi�cant coef�cient with the correct sign. When bad times are proxied by high default spreads,
high short rates, or high market volatility, conditional betas of the book-to-market strategy tend to be
lower. During NBER recessions conditional betas also go the wrong way and tend to be lower. The
industrial production, term spread, Lettau and Ludvigson's (2001a) cay, and in�ation regressions
have insigni�cant coef�cients. The industrial production coef�cient also has the wrong predicted
sign.
In regression X, we �nd that book-to-market strategy betas do have signi�cant covariation with

many macro factors. This regression has an impressive adjusted R2 of 55%. Except for the positive
and signi�cant coef�cient on the dividend yield, the coef�cients on the other macro variables: the
default spread, industrial production, short rate, term spread, market volatility, and cay are either in-
signi�cant or have the wrong sign, or both. In regression XI, we perform a similar exercise to Petkova
and Zhang (2005). We �rst estimate the market risk premium by running a �rst-stage regression of
excess market returns over the next quarter onto the instruments in regression X measured at the be-

6 The standard error bands of the uniform �lters (not shown) are also much larger than the standard error bands of the

optimal estimates.
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ginning of the quarter. We de�ne the market risk premium as the �tted value of this regression at
the beginning of each quarter. We �nd that in regression XI, there is small positive covariation of
conditional betas of value stocks with these �tted market risk premia with a coef�cient of 0.37 and
a standard error of 0.18. But, the adjusted R2 of this regression is only 0.06. This is smaller than
the covariation that Petkova and Zhang (2005) �nd because they specifying betas as linear functions
of the same state variables that drive the time variation of market risk premia. In summary, although
conditional betas do covary with macro variables, there is little evidence that betas of value stocks are
higher during times when the market risk premium is high.

4.3 Tests of the Conditional Fama-French (1993) Model

In this section, we examine alphas and factor loadings of a conditional version of the Fama and
French (1993) model estimated on the book-to-market portfolios and the book-to-market strategy.
Table 5 reports long-run alphas and factor loadings. After controlling for the Fama-French factors
with time-varying factor loadings, the long-run alphas of the book-to-market portfolios are still sig-
ni�cantly different from zero and are positive for growth stocks and negative for value stocks. The
long-run alphas monotonically decline from 2.03% for decile 1 to -1.67% for decile 10. The book-to-
market strategy has a long-run alpha of -3.75% with a standard error of 0.010. The joint test across all
ten book-to-market portfolios for the long-run alphas equal to zero decisively rejects with a p-value
of zero. Thus, the conditional Fama and French (1993) model is overwhelmingly rejected.
Table 5 shows that long-run market factor loadings have only a small spread across growth to

value deciles, with the book-to-market strategy having a small long-run market loading of 0.192. In
contrast, the long-run SMB loading is relatively large at 0.450, and would be zero if the value effect
were uniform across stocks of all sizes. Value stocks have a small size bias (see Loughran, 1997)
and this is re�ected in the large long-run SMB loading. We expect, and �nd, that long-run HML
loadings increase from -0.670 for growth stocks to 0.804 for value stocks, with the book-to-market
strategy having a long-runHML loading of 1.476. The previously positive long-run alphas for value
stocks under the conditional CAPM become negative under the conditional Fama-French model. The
conditional Fama-French model over-compensates for the high returns for value stocks by producing
SMB andHML factor loadings that are relatively too large, leading to a negative long-run alpha for
value stocks.
In Table 6, we conduct constancy tests of the conditional alphas and factor loadings. We fail to

reject for all book-to-market portfolios that the conditional alphas are constant. Whereas the condi-
tional betas exhibited large time variation in the conditional CAPM, we now cannot reject that the
conditional market factor loadings are constant. Table 6 reports rejections at the 99% level that the
SMB loadings and HML loadings are constant for the extreme growth and value deciles. For the
book-to-market strategy, there is strong evidence that the SMB and HML loadings vary over time.
Consequently, the time variation of conditional betas in the one-factor model is now absorbed by
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time-varying SMB and HML loadings in the conditional Fama-French model.
We plot the conditional factor loadings in Figure 4. Market factor loadings range between zero

and 0.5. The SMB loadings generally remain above 0.5 until the mid-1970s and then decline to
approximately 0.2 in the mid-1980s. During the 1990s the SMB loadings strongly trended upwards,
particularly during the late 1990s bull market. This is a period where value stocks performed poorly
and the high SMB loadings translate into larger negative conditional Fama-French alphas during this
time. After 2000, the SMB loadings decrease to end the sample around 0.25.
Figure 4 shows that theHML loadings are well above one for the whole sample and reach a high

of 1.91 in 1993 and end the sample at 1.25. Value strategies performed well coming out of the early
1990s recession and the early 2000s recession, and HML loadings during these periods actually
decrease for the book-to-market strategy. One may expect that theHML loadings should be constant
because HML is constructed by Fama and French (1993) as a zero-cost mimicking portfolio to go
long value stocks and short growth stocks, which is precisely what the book-to-market strategy does.
However, the breakpoints of the HML factor are quite different, at approximately thirds, compared
to the �rst and last deciles of �rms in the book-to-market strategy. The fact that the HML loadings
vary so much over time indicates that growth and value stocks in the 10% extremes covary quite
differently with average growth and value stocks in the middle of the distribution. Put another way,
the 10% tail value stocks are not simply levered versions of value stocks with lower and more typical
book-to-market ratios.

5 Portfolios Sorted on Past Returns

In this section we test the conditional Fama and French (1993) model on decile portfolios sorted by
past returns. These portfolios are well known to strongly reject the null of the standard Fama and
French model with constant alphas and factor loadings. In Table 7, we report long-run estimates of
alphas and Fama-French factor loadings for each portfolio and the 10-1 momentum strategy. The
long-run alphas range from -6.50% with a standard error of 0.014 for the �rst loser decile to 3.85%
with a standard error of 0.010 to the tenth loser decile. The momentum strategy has a long-run
alpha of 11.0% with a standard error of 0.018. A joint test that the long-run alphas are equal to zero
rejects with a p-value of zero. Thus, a conditional version of the Fama-French model cannot price the
momentum portfolios.
Table 7 shows that there is no pattern in the long-run market factor loading across the momentum

deciles and the momentum strategy is close to market neutral in the long run with a long-run beta
of 0.065. The long-run SMB loadings are small, except for the loser and winner deciles at 0.391
and 0.357, respectively. These effectively cancel in the momentum strategy, which is effectively
SMB neutral. Finally, the long-run HML loadings are noticeably negative at -0.171 for the winner
portfolio. The momentum strategy long-runHML loading is -0.113 and the negative sign means that
controlling for a conditionalHML loading exacerbates the momentum effect, as �rms with negative
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HML exposures have low returns on average.
We can judge the impact of allowing for conditional Fama-French loadings in Figure 5 which

graphs the long-run alphas of the momentum portfolios 1-10 and the long-run alpha of the momentum
strategy (portfolio 11 on the graph). We overlay the OLS alpha estimates which assume constant
factor loadings. The momentum strategy has a Fama-French OLS alpha of 16.8% with a standard
error of 0.026. Table 7 reports that the long-run alpha controlling for time-varying factor loadings is
11.0%. Thus, the conditional factor loadings have lowered the momentum strategy alpha by almost
7% but this still leaves a large amount of the momentum effect unexplained. Figure 5 shows that
the reduction of the absolute values of OLS alphas compared to the long-run conditional alphas is
particularly large for both the extreme loser and winner deciles.
In Table 8 we test for constancy of the Fama-French conditional alphas and factor loadings. Like

the book-to-market portfolios, we cannot reject that conditional alphas are constant. However, for
the momentum strategy all conditional factor loadings vary signi�cantly through time. Table 8 shows
that it is generally the loser and winner extreme quintiles that exhibit signi�cant time-varying factor
loadings and the middle quintiles generally fail to reject the null that theMKT , SMB, and HML
loadings vary through time. We plot the time variation of these factor loadings for the momentum
strategy in Figure 6.
Figure 6 shows that all the Fama-French conditional factor loadings vary signi�cantly through

time and their variation is larger than the case of the book-to-market portfolios. Whereas the standard
deviation of the conditional betas is around 0.2 for the book-to-market strategy (see Table 2), the
standard deviations of the conditional Fama-French betas are 0.386, 0.584, and 0.658 for MKT ,
SMB, and HML, respectively. Figure 6 also shows a marked common covariation of these factor
loadings, with a correlation of 0.61 between conditionalMKT and SMB loadings and a correlation
of 0.43 between conditional SMB and HML loadings. During the early 1970s all factor loadings
generally increased and all factor loadings also generally decrease during the late 1970s and through
the 1980s. Beginning in 1990, all factor loadings experience a sharp run up and also generally trend
downwards over the mid- to late 1990s. At the end of the sample the conditionalHML loading is still
particularly high at over 1.5. Despite this very pronounced time variation, conditional Fama-French
factor loadings still cannot completely price the momentum portfolios.

6 Conclusion

We develop a new nonparametric methodology for estimating conditional factor models. We derive
asymptotic distributions for conditional alphas and factor loadings at any point in time and also for
long-run alphas and factor loadings averaged over time. We also develop a test for the null hypothesis
that the conditional alphas and factor loadings are constant over time. The tests can be run for single
assets and also jointly for a system of assets. Like the classical time-series factor model tests which
assume constant betas, the distributions of conditional alphas depend on, and are simultaneously

23



estimated with, the distributions of conditional factor loadings. In the special case where there is no
time variation in the factor loadings, our tests reduce to the well-known Gibbons, Ross and Shanken
(1989) statistics.
We apply our tests to decile portfolios sorted by book-to-market ratios and past returns. We �nd

signi�cant variation in factor loadings, but overwhelming evidence that a conditional CAPM and a
conditional version of the Fama and French (1993) model cannot account for the value premium or
the momentum effect. Joint tests for whether long-run alphas are equal to zero in the presence of time-
varying factor loadings decisively reject for both the conditional CAPM and Fama-French models.
We also �nd that conditional market betas for a book-to-market strategy exhibit little variation with
market risk premia. However, even though the book-to-market and momentum portfolios reject the
conditional models, accounting for time-varying factor loadings does reduce the OLS alphas from the
CAPM and Fama-French regressions which assume constant betas.
Our tests are easy to implement, powerful, and can be estimated asset-by-asset, just as in the

traditional classical tests like Gibbons, Ross and Shanken (1989). There are many further empirical
applications of the tests to other conditional factor models and other sets of portfolios. Theoretically,
the tests can also be extended to incorporate adaptive estimators to take account the bias at the end-
points of the sample. While our empirical work refrained from reporting conditional estimates close
to the beginning and end of the sample and so did not suffer from this bias, boundary kernels and lo-
cally linear estimators can be used to provide conditional estimates at the endpoints. Such estimators
can also be adapted to yield estimates of future conditional alphas or factor loadings that do not use
forward-looking information.
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Appendix

A Technical Assumptions
Our theoretical results are derived by specifying the following sequence of (vector) models:

RT;t = 
0
tXT;t +


1=2
t zT;t;

where t = (�t; �
0
t)
0 and XT;t =

�
1; f 0T;t

�0. We assume that we have observed data in the interval [�a; T + a] for
some �xed a > 0 to avoid any boundary issues and keep the notation simple. Let Cr [0; 1] denote the space of r times
continuously differentiable functions on the unit interval, [0; 1]. We impose the following assumptions:

A.1 The kernelK satis�es:
There exists B;L < 1 such that either (i) K (u) = 0 for kuk > L and jK (u)�K (u0)j � B ku� u0k, or (ii)
K (u) is differentiable with j@K (u) =@uj � B and, for some � > 1, j@K (u) =@uj � B kuk�� for kuk � L.
Also, jK (u)j � B kuk�� for kuk � L. For some r � 2:

R
RK (z) dz = 1,

R
R z

iK (z) dz = 0, i = 1; :::; r � 1,
and

R
R jzj

rK (z) dz <1.
A.2 The sequence fRT;t; XT;t; zT;tg is �-mixing where the mixing coef�cients are bounded, �T (t) � � (t), with the

bounding sequence � (t) satisfying � (t) = O
�
t�b
�
for some b > 2 (s� 1) = (s� 2). The following moment

conditions hold: supT�1 supt�T E [kXT;tks] <1 and supt�T E [kzT;tk
s] <1 for some s > 8.

A.3 E [zT;tjXT;t] = 0 and E
�
zT;tz

0
T;t+kjXT;t

�
= IN if k = 0 and zero otherwise for all 1 � t � T , T � 1.

A.3 The sequence t is given by t =  (t=T ) + o (1) for some function  : [0; 1] 7! R(J+1)�N which lies in Cr [0; 1].
A.4 The matrix sequences �t � E [XtX

0
t] and 
t satisfy �t = �(t=T ) + o (1) and 
t = 
(t=T ) + o (1) for functions

� : [0; 1] 7! R(J+1)�(J+1) and 
 : [0; 1] 7! RN�N which are positive de�nite and with their individual elements
lying in Cr [0; 1].

A.5 The covariance matrix � de�ned in equation (25) is non-singular.

A.6 The bandwidth satis�es Th2r ! 0, log2 (T ) =
�
Th2

�
! 0 and 1=

�
T 1��h7=4

�
! 0 for some � > 0.

The assumption (A.1) imposed on the kernel K are satis�ed by most kernels including the Gaussian and the uniform
kernel. For r > 2, the requirement that the �rst r � 1 moments does however not hold for these two standard kernels.
This condition is only needed for the semiparametric estimation and in practice the impact of using such so-called higher-
order kernels is negligible. The mixing and moment conditions in (A.2) are satis�ed by most standard time-series models
allowing, for example, ft to solve an ARMA model. The requirement that 8th moments exist can be weakened to 4th
moments in Theorem 1, but for simplicity we maintain this assumption throughout. The smoothness conditions in (A.3)-
(A.4) rule out jumps in the coef�cients; Theorem 1 remains valid at all points where no jumps has occurred, and we
conjecture that Theorems 2 and 3 remain valid with a �nite jump activity since this will have a minor impact as we smooth
over the whole time interval. The requirement in (A.5) that� > 0 is an identi�cation condition used to identify the constant
component in t under H1; this is similar to the condition imposed in Robinson (1988). The conditions on the bandwidth
is only needed for the semiparametric estimators and entails undersmoothing in the kernel estimation.

B Proofs
Proof of Theorem 1. The proof follows along the exact same lines as in Kristensen (2008b, Proof of Theorem 1), except
that the response variable here is multivariate. This does not change any of the steps though.

Proof of Theorem 2. We write Kst = Kh ((s� t) =T ) with similar notation for other variables. De�ne �̂t =
T�1

P
sKstXsX

0
s and m̂t = T

�1P
sK�;iXiR

0
i such that:

̂t � t = �̂
�1
t m̂t � ��1t mt;

wheremt = E [XtR
0
t] = �tt. By a second-order Taylor expansion of the right hand side,

̂t � t = ��1t [m̂t �mt]� ��1t
h
�̂t � �t

i
t

+O
�
jjm̂t �mtjj2

�
+O

�
jj�̂t � �tjj2

�
:

25



By Kristensen (2009, Theorem 1), we obtain that uniformly over 1 � t � T ,

m̂t = mt +OP (h
r) +OP

�p
log (T ) = (Th)

�
�̂t = �t +OP (h

r) +OP
�p

log (T ) = (Th)
�
;

such that the two remainder terms are both oP (1=
p
T ) given the conditions imposed on h.

Using this result,

̂LR � LR =
1

T

TX
t=1

n
��1t [m̂t �mt]� ��1t

h
�̂t � �t

i
t

o
+ oP (1=

p
T )

=
1

T 2

TX
s=1

TX
t=1

�
��1t

�
KstXsR

0
s �mt

�
� ��1t

�
KstXsX

0
s � �t

�
t
	
+ oP (1=

p
T )

=
1

T 2

TX
s=1

TX
t=1

a (Zs; Zt) + oP (1=
p
T );

where Zt = ("t; Xt; t) and

a (Zs; Zt) = ��1t
�
KstXsR

0
s �mt

�
� ��1t

�
KstXsX

0
s � �t

�
t

= Kst�
�1
t Xs

�
R0s �X 0

st
�

= Kst�
�1
t Xs

�
X 0
ss + "s �X

0
st
�

= Kst�
�1
t Xs"

0
s +Kst�

�1
t XsX

0
s [s � t] :

De�ning
� (Zs; Zt) = a (Zs; Zt) + a (Zt; Zs) ;

we may write
1

T 2

TX
s=1

TX
t=1

a (Zs; Zt) =
T � 1
T

UT +
1

T 2

TX
t=1

� (Zt; Zt) ;

where UT =
P

s<T � (Zs; Zt) = [T (T � 1)]. Here,
PT

t=1 � (Zt; Zt) =T
2 = OP (1=T ), while, by the Hoeffding decom-

position, UT = 2
PT

t=1
�� (Zt) =T +�T . The projection function �� (z), z = (e; x; �), is given by

�� (z) = E [� (z; Zt)] = E [a (z; Zt)] + E [a (Zs; z)] ;

where

E [a (z; Zt)] =

Z T

0

Kh (� � t) ��1 (t)xe0dt

+

Z T

0

Kh (� � t) ��1 (t)xx0 [ (s)�  (t)] dt

= ��1� xe0 + ��1� xx0(r)� � hr + o (hr) ;

E [a (Zs; z)] =

Z T

0

Kh (s� �) ��1 (�)E
�
Xs"

0
s

�
ds

+

Z T

0

Kh (s� �) ��1 (�)E
�
XsX

0
s

�
[ (s)�  (�)] ds

= (r)� � hr + o (hr) :

where (r)t = (r) (t=T ) with (r) (�) denoting the rth order derivative of  (�). In total,

�� (Zt) = �
�1
t �Xt"

0
t + �

�1
t XtX

0
t
(r)
t � hr + (r)t � hr + o (hr) :
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ByDenker and Keller (1983, Proposition 2), the remainder term of the decomposition,�T , satis�es�T = OP
�
T�1+�=2sT;�

�
for any � > 0, where sT;� � sups;t E

h
j� (Zs; Zt)j2+�

i1=(2+�)
. Thus,

s2+�T;� � sup
s;t
E
h
j� (Zs; Zt)j2+�

i
� 2 sup

s;t
E
h
ja (Zs; Zt)j2+�

i
� 2

Z T

0

Z T

0

jKh (s� t)j2+�
��1 (s)2+� E hkXtk2+�

i
E
h
k" (t)k2+�

i
dsdt

+2

Z T

0

Z T

0

jKh (s� t)j2+�
��1 (s)2+� E hkXtk2+�

i
j (t)�  (s)j2+� dsdt

� C

h1+�

Z T

0

��1 (t)2+� E hkXtk2+�
i
E
h
k"tk2+�

i
dt+O (1)

= O
�
h�(1+�)

�
:

Choosing � = 6, we obtain
p
T�T = OP

�
T (�1+�)=2h�7=8

�
. In total,

p
T (̂LR � LR) =

p
T

TX
t=1

��1t Xt"t +OP
�p
Thr

�
+OP

�
log (T ) =

�p
Th
��
+OP

�
1=
�
T (1��)=2h7=8

��
;

where, applying standard CLT results for heterogenous mixing sequences, see for example Wooldridge and White (1988),

p
T

TX
t=1

��1t Xt"t !d N (0; VLR) :

Proof of Theorem 3. This follows from Kristensen (2008b, Theorem 2).

C Gibbons, Ross and Shanken (1989) as a Special Case
First, we derive the asymptotic distribution of the Gibbons, Ross and Shanken (1989) [GRS] estimators within our setting.
The GRS estimator which we denote ~LR = (~�LR; ~�LR) is a standard least squares estimator of the form

~LR =

"
NX
i=1

XtX
0
t

#�1 " NX
i=1

XtR
0
t

#

=

"
NX
i=1

XtX
0
t

#�1 NX
i=1

XtX
0
tt +

"
NX
i=1

XtX
0
t

#�1 NX
i=1

Xt"
0
t

= �LR + U;

where

�LR =

�Z T

0

� (s) ds

��1 Z T

0

� (s)  (s) ds;

and
p
TUT !d N

 
0;

�Z T

0

� (s) ds

��1�Z T

0

� (s)
 
 (s) ds
��Z T

0

� (s) ds

��1!
:

To separately investigate the performance of ~�LR, we note that �LR =
�
��LR; ��LR

�0 can be written as
��LR =

�Z T

0

Var (fs) ds

��1 Z T

0

Cov (fs; Rs) ds;
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��LR =

Z T

0

�
E [Rs] ds� ��LRE [fs]

�
ds;

while LR = (�LR; �LR)
0 can be written as

�LR =

Z T

0

[Var (fs) ds]
�1 Cov (fs; Rs) ds;

�LR =

Z T

0

(E [Rs]� �sE [fs]) ds:

From these two sets of expressions, we see that in general the GRS estimator will be inconsistent since it is centered around
�LR 6= LR. However, in the case where �s = � is constant, ��LR = �LR which in turn implies that ��LR = �LR. Thus,
when the betas exhibit no time variation, ~LR is a consistent estimator of LR.

Finally, we note that in the case of constant alphas and betas and homoskedastic errors, 
s = 
, the variance of our
proposed estimator of LR is identical to the one of the GRS estimator.

D Two-Sided versus One-Sided Filters
One can show that with a two-sided symmetric kernel where �1 =

R
K (z) zdz = 0 and �2 =

R
K (z) z2dz < 1, the

�nite-sample variance is

Var
�
̂i;t
�
=

1

Th
vi;t + o (1= (Th)) with vi;t = �2�

�1
t 
ii;t; (D-1)

while the bias is given by

Bias
�
̂i;t
�
= h2�symi;t + o

�
h2
�

with �symi;t = �2�
�1
t

�
1

2
�t

(2)
i;t + �

(1)
t 

(1)
i;t

�
; (D-2)

where we have assumed that �t and i;t are twice differentiable with �rst and second order derivatives �
(k)
t and (k)i;t ,

k = 1; 2. In this case the bias is of order O
�
h2
�
. When a one-sided kernel is used, the variance remains unchanged, but

since �1 6= 0 the bias now takes the form

Bias
�
̂i;t
�
= h�onei;t + o (h) ; with �onei;t = �1�

(1)
t 

(1)
i;t : (D-3)

The bias is in this case of order O (h) and is therefore larger compared to when a two-sided kernel is employed.
As a consequence, for the symmetric kernel the optimal bandwidth is

h�i =

�
jjvijj

4jj�symi jj2

�1=5
T�1=5; (D-4)

where �symi = T�1
PT

t=1 �
sym
i;t and vi = T�1

PT
t=1 vi;t are the integrated versions of the time-varying bias and variance

components. With this bandwidth choice, the integrated RMSE is of order O
�
T�2=5

�
, where the integrated RMSE is

de�ned as �Z
E[
̂i;� � i;�2]d�� 1

2

:

If on the other hand a one-sided kernel is used, the optimal bandwidth is

h�i =

�
jjvijj

2jj�onei jj2

�1=3
T�1=3;

with the corresponding integrated RMSE being of order O
�
T�1=3

�
. Thus, the symmetric kernel integrated RMSE is

generally smaller and substantially smaller if T is large.7

7 The two exceptions are if one wishes to estimate alphas and betas at time t = 0 and t = T . In these cases, the
symmetric kernel suffers from boundary bias while a forward- and backward-looking kernel estimator, respectively, remain
asymptotically unbiased. We avoid this case in our empirical work by omitting the �rst and last years in our sample when
estimating conditional alphas and betas.
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E Bandwidth Choice for Long-Run Estimators
We here follow the arguments of Härdle, Hall and Marron (1992), Stoker (1993) and Powell and Stoker (1996) to derive an
optimal bandwidth for estimating the integrated or long-run gammas. We �rst note that, c.f. Proof of Theorem 2,

̂LR � LR =
1

T (T � 1)

TX
t=1

X
s<t

� (Zs; Zt) + oP
�
1=
p
T
�
;

where Zt = ("t; Xt; t), � (Zs; Zt) = a (Zs; Zt) + a (Zs; Zt), and

a (Zs; Zt) = Kh (s� t) ��1t Xt"
0
t +Kh (s� t) ��1t XtX

0
t [s � t] :

Thus, our estimator is approximately on the form of a U -statistic and the general result of Powell and Stoker (1996,
Proposition 3.1) can be applied if we can verify their Assumptions 1 and 2. Their Assumptions 1-2 state that the function
a (Zs; Zt) has to satisfy (PS.i) E [� (z; Zi)] = s (z)ha1 + o (ha1) and (PS.ii) E

�
k� (z; Zi)k2

�
= q (z)h�a2 + o

�
h�a2

�
for some a1; a2 > 0 and some functions s (z) and q (z).8

First, we verify (PS.i): De�ne

�� (z) = E [� (z; Zi)] = E [a (z; Zj)] + E [a (Zi; z)] :

With z = (e; x; �), it follows from the proof of Theorem 2 that

E [a (z; Zt)] = �
�1 (�)xe0 + ��1 (�)xx0(r) (�)� hr + o (hr) ;

E [a (Zs; z)] = 
(r) (�)� hr + o (hr) ;

where (r) (t) is the rth order derivative of  (t). In total,

�� (Zt) = �
�1
t Xt"

0
t + �

�1
t XtX

0
t
(r)
t � hr + (r)t � hr + o (hr) :

Thus, (PS.i) holds with a1 = r and
s (Zt) = �

�1
t XtX

0
t
(r)
t + 

(r)
t :

To verify (PS.ii), note that

E
�
� (Zs; z)� (Zs; z)

0� = E
�
a (Zs; z) a (Zs; z)

0�+ E �a (z; Zt) a (z; Zt)0�
=

Z
K2
h (s� �) ds��2� xx0ee0 +

Z
K2
h (s� �) ��2�

xx02 ks � �k2 ds
+

Z
K2
h (� � t) ��2t E [XtXt]E

�
"t"

0
t

�
dt

+

Z
Kh (� � t) ��1t E

hXtX
0
t

2i k� � tk2 dt
= h�1�2 �

�
��2� xx0ee0 + ��1� 
�

�
+ o

�
h�1

�
:

Thus, (PS.ii) holds with a2 = 1 and
q (Zt) = �2�

�2
t

�
XtX

0
t"t"

0
t + �t
t

�
:

It now follows from Powell and Stoker (1996, Proposition 3.1) that an approximation of the optimal bandwidth is given
by

hLR;i =

�
jjE [qi (Z)] jj
rjjE [si (Z)] jj2

�1=(1+2r)
�
�
1

T

�2=(1+2r)
;

where r � 1 is the number of derivatives (or the degree of smoothness of the alphas and betas) and

E [qi (Z)] = 2�2 � lim
T!1

1

T

TX
t=1

��1t 
ii;t and E [si (Z)] = 2 lim
T!1

1

T

TX
t=1


(r)
i;t :

8 Their results are derived under the assumption of I.I.D. observations, but can be extended to hold under our assumptions
(A.1)-(A.5).
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Table 1: Summary Statistics of Factors and Portfolios

Panel A: Factors

Correlations

Mean Stdev MKT SMB HML

MKT 0.0532 0.1414 1.0000 -0.2264 -0.5821
SMB 0.0184 0.0787 -0.2264 1.0000 -0.0631
HML 0.0524 0.0721 -0.5812 -0.0631 1.0000

Panel B: Portfolios

OLS Estimates

Mean Stdev �̂OLS �̂OLS

Book-to-Market Portfolios

1 Growth 0.0384 0.1729 -0.0235 1.1641
2 0.0525 0.1554 -0.0033 1.0486
3 0.0551 0.1465 0.0032 0.9764
4 0.0581 0.1433 0.0082 0.9386
5 0.0589 0.1369 0.0121 0.8782
6 0.0697 0.1331 0.0243 0.8534
7 0.0795 0.1315 0.0355 0.8271
8 0.0799 0.1264 0.0380 0.7878
9 0.0908 0.1367 0.0462 0.8367
10 Value 0.0997 0.1470 0.0537 0.8633

10-1 Book-to-Market Strategy 0.0613 0.1193 0.0773 -0.3007

Momentum Portfolios

1 Losers -0.0393 0.2027 -0.1015 1.1686
2 0.0226 0.1687 -0.0320 1.0261
3 0.0515 0.1494 0.0016 0.9375
4 0.0492 0.1449 -0.0001 0.9258
5 0.0355 0.1394 -0.0120 0.8934
6 0.0521 0.1385 0.0044 0.8962
7 0.0492 0.1407 0.0005 0.9158
8 0.0808 0.1461 0.0304 0.9480
9 0.0798 0.1571 0.0256 1.0195
10 Winners 0.1314 0.1984 0.0654 1.2404

10-1 Momentum Strategy 0.1707 0.1694 0.1669 0.0718

We report summary statistics of Fama and French (1993) factors in Panel A and book-to-market and momen-
tum portfolios in Panel B. Data is at a daily frequency and spans July 1964 to December 2006 and are from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. We annualize means and standard deviations
by multiplying the daily estimates by 252 and

p
252, respectively. The portfolio returns are in excess of the daily Ib-

botson risk-free rate except for the 10-1 book-to-market and momentum strategies which are simply differences between
portfolio 10 and portfolio 1. The last two columns in Panel B report OLS estimates of constant alphas (�̂OLS) and betas
(�̂OLS). These are obtained by regressing the daily portfolio excess returns onto daily market excess returns.
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Table 2: Alphas and Betas of Book-to-Market Portfolios

Stdev of
Bandwidth Conditional Estimates Long-Run Estimates

Fraction Months Alpha Beta Alpha Beta

1 Growth 0.0474 50.8 0.0121 0.0558 -0.0219 1.1721
(0.0077) (0.0040)

2 0.0989 105.9 0.0028 0.0410 -0.0046 1.0563
(0.0067) (0.0034)

3 0.0349 37.4 0.0070 0.0701 0.0001 0.9938
(0.0071) (0.0035)

4 0.0294 31.5 0.0136 0.0727 0.0031 0.9456
(0.0076) (0.0035)

5 0.0379 40.6 0.0113 0.0842 0.0084 0.8990
(0.0082) (0.0039)

6 0.0213 22.8 0.0131 0.0871 0.0185 0.8865
(0.0079) (0.0038)

7 0.0188 20.1 0.0148 0.1144 0.0270 0.8777
(0.0083) (0.0039)

8 0.0213 22.8 0.0163 0.1316 0.0313 0.8444
(0.0081) (0.0039)

9 0.0160 17.2 0.0184 0.1497 0.0374 0.8966
(0.0092) (0.0046)

10 Value 0.0182 19.5 0.0232 0.1911 0.0464 0.9568
(0.0110) (0.0055)

10-1 Book-to-Market Strategy 0.0217 23.3 0.0346 0.2059 0.0674 -0.2170
(0.0153) (0.0077)

Joint test for �LR;i = 0, i = 1; :::; 10
Wald statisticW0 = 32:95, p-value = 0.0003

The table reports conditional bandwidths (ĥi;2 in equation (29)) and various statistics of conditional and long-run alphas
and betas from a conditional CAPM of the book-to-market portfolios. The bandwidths are reported in fractions of the
entire sample, which corresponds to 1, and in monthly equivalent units. We transform the fraction to a monthly equivalent
unit by multiplying by 533�1:96=0:975, where there are 533 months in the sample, and the intervals (�1:96; 1:96) and
(�0:975; 0:975) correspond to cumulative probabilities of 95% for the unscaled normal and uniform kernel, respectively.
The conditional alphas and betas are computed at the end of each calendar month, and we report the standard deviations
of the monthly conditional estimates in the columns labeled �Stdev of Conditional Estimates� following Theorem 1
using the conditional bandwidths in the columns labeled �Bandwidth.� The long-run estimates, with standard errors in
parentheses, are computed following Theorem 2 and average daily estimates of conditional alphas and betas. The long-
run bandwidths apply the transformation in equation (30) with T = 11202 days. Both the conditional and the long-run
alphas are annualized by multiplying by 252. The joint test for long-run alphas equal to zero is given by the Wald test
statisticW0 in equation (14). The full data sample is from July 1963 to December 2007, but the conditional and long-run
estimates span July 1964 to December 2006 to avoid the bias at the endpoints.
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Table 3: Tests of Constant Conditional Alphas and Betas of Book-to-Market Portfolios

Alpha Beta

Critical Values Critical Values

W1 95% 99% W1 95% 99%

1 Growth 82 232 242 515�� 232 242
2 17 116 123 512�� 116 123
3 46 311 322 476�� 311 322
4 83 367 378 496�� 367 378
5 55 287 298 630�� 287 298
6 96 501 515 695�� 501 515
7 131 566 581 769�� 566 581
8 136 502 516 850�� 502 516
9 156 659 675 1047�� 659 675
10 Value 209 583 598 1162�� 583 598

10-1 Book-to-Market Strategy 212 491 505 951�� 491 505

We test for constancy of the conditional alphas and betas in a conditional CAPM using the Wald test of Theorem 3. In
the columns labeled �Alpha� (�Beta�) we test the null that the conditional alphas (betas) are constant. We report the test
statisticW1 given in equation (23) and 95% and 99% critical values of the asymptotic distribution. We mark rejections
at the 99% level with ��.
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Table 5: Long-Run Fama-French (1993) Alphas and Factor Loadings of Book-to-Market Portfolios

Alpha MKT SMB HML

1 Growth 0.0203 0.9781 -0.1781 -0.6701
(0.0055) (0.0042) (0.0061) (0.0075)

2 0.0118 0.9693 -0.0650 -0.2776
(0.0060) (0.0044) (0.0065) (0.0080)

3 0.0056 0.9698 -0.0202 -0.1136
(0.0067) (0.0050) (0.0074) (0.0089)

4 -0.0054 0.9976 0.0178 0.1535
(0.0072) (0.0052) (0.0076) (0.0095)

5 -0.0014 0.9671 0.0021 0.2599
(0.0075) (0.0055) (0.0082) (0.0101)

6 -0.0014 0.9827 0.0637 0.2996
(0.0072) (0.0053) (0.0079) (0.0096)

7 -0.0119 1.0053 0.0871 0.4252
(0.0071) (0.0051) (0.0077) (0.0093)

8 -0.0132 1.0361 0.1057 0.7108
(0.0057) (0.0041) (0.0062) (0.0076)

9 -0.0163 1.1021 0.1369 0.7738
(0.0068) (0.0050) (0.0077) (0.0092)

10 Value -0.0167 1.1699 0.2717 0.8040
(0.0090) (0.0066) (0.0098) (0.0121)

10-1 Book-to-Market Strategy -0.0375 0.1924 0.4501 1.4756
(0.0102) (0.0075) (0.0111) (0.0136)

Joint test for �LR;i = 0, i = 1; :::; 10
Wald statisticW0 = 78:92, p-value = 0.0000

The table reports long-run estimates of alphas and factor loadings from a conditional Fama and French (1993) model
applied to decile book-to-market portfolios and the 10-1 book-to-market strategy. The long-run estimates, with standard
errors in parentheses, are computed following Theorem 2 and average daily estimates of conditional alphas and betas.
The long-run alphas are annualized by multiplying by 252. The joint test for long-run alphas equal to zero is given by
the Wald test statisticW0 in equation (14). The full data sample is from July 1963 to December 2007, but the long-run
estimates span July 1964 to December 2006 to avoid the bias at the endpoints.
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Table 6: Tests of Constant Conditional Fama-French (1993) Alphas and Factor Loadings of Book-to-
Market Portfolios

Alpha MKT SMB HML

W1 95% W1 95% W1 95% W1 95%

1 Growth 102 518 499 518 782�� 518 3285�� 518
2 117 635 431 635 478 635 1090�� 635
3 77 516 230 516 256 516 491 516
4 68 429 254 429 263 429 451�� 429
5 55 391 245 391 230 391 713�� 391
6 67 436 243 436 357 436 831�� 436
7 92 644 256 644 483 644 1220�� 644
8 119 673 278 673 547 673 3485�� 673
9 74 492 234 492 548�� 492 3173�� 492
10 Value 79 440 420 440 649�� 440 2237�� 440

10-1 Book-to-Market Strategy 85 467 338 467 1089�� 467 4313�� 467

The table reportsW1 test statistics from equation (23) of tests of constancy of conditional alphas and factor loadings from
a conditional Fama and French (1993) model applied to decile book-to-market portfolios and the 10-1 book-to-market
strategy. Constancy tests are done separately for each alpha or factor loading on each portfolio. We report the test statistic
W1 and 95% critical values of the asymptotic distribution. We mark rejections at the 99% level with ��. The full data
sample is from July 1963 to December 2007, but the conditional estimates span July 1964 to December 2006 to avoid the
bias at the endpoints.
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Table 7: Long-Run Fama-French (1993) Alphas and Factor Loadings of Momentum Portfolios

Alpha MKT SMB HML

1 Losers -0.0650 1.1836 0.3913 -0.0560
(0.0135) (0.0093) (0.0134) (0.0164)

2 -0.0061 1.0442 0.0944 0.0292
(0.0100) (0.0073) (0.0103) (0.0128)

3 0.0118 0.9754 -0.0266 0.0495
(0.0086) (0.0062) (0.0090) (0.0111)

4 0.1284 0.9622 -0.0525 0.0778
(0.0082) (0.0060) (0.0087) (0.0106)

5 -0.0054 0.9360 -0.0564 0.0575
(0.0081) (0.0058) (0.0084) (0.0103)

6 -0.0045 0.9579 -0.0344 0.1081
(0.0076) (0.0055) (0.0081) (0.0099)

7 -0.0171 0.9831 -0.0255 0.0960
(0.0074) (0.0054) (0.0079) (0.0096)

8 0.0131 1.0228 -0.0270 0.0944
(0.0073) (0.0053) (0.0079) (0.0096)

9 -0.0018 1.0868 0.0758 0.0331
(0.0076) (0.0056) (0.0083) (0.0102)

10 Winners 0.0385 1.2501 0.3572 -0.1705
(0.0100) (0.0075) (0.0107) (0.0134)

10-1 Momentum Strategy 0.1101 0.0653 -0.0341 -0.1127
(0.0184) (0.0128) (0.0184) (0.0228)

Joint test for �LR;i = 0, i = 1; :::; 10
Wald statisticW0 = 159:7, p-value = 0.0000

The table reports long-run estimates of alphas and factor loadings from a conditional Fama and French (1993) model
applied to decile momentum portfolios and the 10-1 momentum strategy. The long-run estimates, with standard errors in
parentheses, are computed following Theorem 2 and average daily estimates of conditional alphas and betas. The long-
run alphas are annualized by multiplying by 252. The joint test for long-run alphas equal to zero is given by the Wald test
statisticW0 in equation (14). The full data sample is from July 1963 to December 2007, but the long-run estimates span
July 1964 to December 2006 to avoid the bias at the endpoints.
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Table 8: Tests of Constant Conditional Fama-French (1993) Alphas and Factor Loadings of Momen-
tum Portfolios

Alpha MKT SMB HML

W1 95% W1 95% W1 95% W1 95%

1 Losers 195 677 743�� 677 1178�� 677 611�� 677
2 165 734 776�� 734 603 734 730� 734
3 134 620 586 620 460 620 473 620
4 85 476 340 476 356 476 429 476
5 52 321 224 321 263 321 340�� 321
6 60 324 141 324 224 324 277 324
7 77 399 187 399 287 399 270 399
8 129 707 389 707 512 707 466 707
9 142 786 655 786 689 786 657 786
10 Winners 157 631 848�� 631 1090�� 631 897�� 631

10-1 Momentum Strategy 245 748 1000�� 748 945�� 748 906�� 748

The table reportsW1 test statistics in equation (23) of tests of constancy of conditional alphas and factor loadings from
a conditional Fama and French (1993) model applied to decile book-to-market portfolios and the 10-1 book-to-market
strategy. Constancy tests are done separately for each alpha or factor loading on each portfolio. We report the test statistic
W1 and 95% critical values of the asymptotic distribution. We mark rejections at the 95% and 99% level with � and ��,
respectively. The full data sample is from July 1963 to December 2007, but the conditional estimates span July 1964 to
December 2006 to avoid the bias at the endpoints.
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Figure 1: Long-Run Conditional CAPM Alphas versus OLS Alphas for the Book-to-Market Portfo-
lios
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We plot long-run alphas implied by a conditional CAPM and OLS alphas for the book-to-market portfolios. We plot the
long-run alphas using squares with 95% confidence intervals displayed by the solid error bars. The point estimates of the
OLS alphas are plotted as circles with 95% confidence intervals in dashed lines. Portfolios 1-10 on the x-axis represent
the growth to value decile portfolios. Portfolio 11 is the book-to-market strategy. The long-run conditional and OLS
alphas are annualized by multiplying by 252.
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Figure 2: Conditional Alphas and Betas of Growth and Value Portfolios

Panel A: Conditional Alphas
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Panel B: Conditional Betas

1965 1970 1975 1980 1985 1990 1995 2000 2005
0.4

0.6

0.8

1

1.2

1.4
Growth

1965 1970 1975 1980 1985 1990 1995 2000 2005
0.4

0.6

0.8

1

1.2

1.4
Value

The figure shows monthly estimates of conditional alphas (Panel A) and conditional betas (Panel B) from a conditional
CAPM of the first and tenth decile book-to-market portfolios (growth and value, respectively). We plot 95% confidence
bands in dashed lines. The conditional alphas are annualized by multiplying by 252.
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Figure 3: Conditional Alphas and Betas of the Book-to-Market Strategy
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The figure shows monthly estimates of conditional alphas (top panel) and conditional betas (bottom panel) of the book-
to-market strategy. We plot the optimal estimates in bold solid lines along with 95% confidence bands in regular solid
lines. We also overlay the backward one-year uniform estimates in dashed lines. NBER recession periods are shaded in
horizontal bars.
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Figure 4: Conditional Fama-French (1993) Loadings of the Book-to-Market Strategy
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The figure shows monthly estimates of conditional Fama-French (1993) factor loadings of the book-to-market strategy.
We plot the optimal estimates in bold lines along with 95% confidence bands in regular lines. NBER recession periods
are shaded in horizontal bars.
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Figure 5: Long-Run Fama-French (1993) Alphas versus OLS Alphas for the Momentum Portfolios
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We plot long-run alphas from a conditional Fama and French (1993) model and OLS Fama-French alphas for the mo-
mentum portfolios. We plot the long-run alphas using squares with 95% confidence intervals displayed in the error bars.
The point estimates of the OLS alphas are plotted as circles with 95% confidence intervals in dashed lines. Portfolios
1-10 on the x-axis represent the loser to winner decile portfolios. Portfolio 11 is the momentum strategy. The long-run
conditional and OLS alphas are annualized by multiplying by 252.
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Figure 6: Conditional Fama-French (1993) Loadings of the Momentum Strategy
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The figure shows monthly estimates of conditional Fama-French (1993) factor loadings of the momentum strategy. We
plot the optimal estimates in bold lines along with 95% confidence bands in regular lines. NBER recession periods are
shaded in horizontal bars.
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