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Abstract

Asymptotic properties of jump tests rely on the property that any jump occurs within

a single time interval no matter what the observation frequency is. Market microstructure

e�ects in relation to news-induced revaluation of the underlying variable is likely to make

this an unrealistic assumption for high-frequency transaction data. To capture these mi-

crostructure e�ects, this paper suggests a model in which market prices adjust gradually

to jumps in the underlying e�cient price. A case study illustrates the empirical relevance

of the model, and the performance of di�erent jump tests is investigated here and in a

simulation study. Evidence indicates that tests based on the largest of scaled price incre-

ments perform better than tests comparing measures of variability. Resolving the matter

by testing at lower frequencies turns out to be less straightforward.
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Introduction

This paper argues that otherwise discontinuous changes in an economic variable may easily be

disguised by market microstructure e�ects in high frequency observations of the variable, such

that jumps will be di�cult to detect using recently developed tests.

Discontinuous movement in �nancial variables have important implications for central is-

sues such as risk management and derivatives pricing. If the variable of interest occasionally

moves in jumps, perfect hedges and risk-less replication will only be feasible in exceptional

cases, since some risk no longer can be removed by trading frequently enough as in purely

continuous models, see Merton (1976) and Naik & Lee (1990). The relevance of including

jumps in models of asset prices and interest rates has among others been studied by Bakshi

et al. (1997) and Johannes (2004). Deciding whether jumps are needed in the underlying

continuous-time model is not a trivial task, since we only have discrete-time observations. Dif-

ferent inference techniques for determining whether the observed movement of a variable is

su�ciently described by continuous behavior alone or should include a jump component have

therefore appeared in recent literature, see Barndor�-Nielsen & Shephard (2006), Mancini

(2006), A��t-Sahalia & Jacod (2009), Jiang & Oomen (2008), and Lee & Mykland (2008).

Inference methods to detect jumps rely on the property that at any discrete observation

frequency, no matter how high, a jump will always be included in a single increment of the

observed variable. As continuous variation, on the other hand, decreases with the length of the

interval, jumps become asymptotically identi�able as the observation frequency is increased.

The recent advent of high-frequency data with observations on all transactions or quotations

therefore potentially improves empirical implementation of the di�erent testing methods.

Dealing with high-frequency observations is complicated by the possibility that variables

may not be perfectly observed. If observations include additive white noise, and this is ne-

glected in the model and estimation method, then the resulting error committed will typically

be negligible for observations at low frequency. However, with the amount of noise in an in-

crement not depending on interval length, the signal-to-noise ratio decreases as the frequency

of observations is increased. Therefore, the desirability of using as frequent observations as

possible is in this case countered by noise becoming an increasing part of observed movements.

Market microstructure, the �ne structure of how prices are formed in markets, may a�ect

prices and lead to deviations from the price described by asset pricing theory, the e�cient

price. For instance, white noise may arise in transactions prices as a consequence of a bid-ask

spread set by a market maker to cover operating costs of maintaining a liquid market, cf. Roll

(1984). This type of noise and its potential of biasing tests at high frequencies is recognized in

the jump testing literature. For example, A��t-Sahalia & Jacod (2009) discuss it in relation to

their test, while Jiang & Oomen (2008) and Podolskij & Ziggel (2008) suggest ways to obtain

robustness to such noise.
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Microstructure e�ects leading to more complicated noise properties than white noise have

received limited attention in relation to testing for jumps. This is in contrast to the situation

in the microstructure literature, in which the trading process generally is not seen as indepen-

dent from changes in the underlying price, thus opening the potential for price related noise.

Classical examples of models with microstructure e�ects related to underlying price movements

are the asymmetric information models by Glosten & Milgrom (1985) and Easley & O'Hara

(1992), in which buy and sell orders convey private information about asset value and therefore

a�ect the market price permanently.

More relevant in relation to jump tests, though, are microstructure e�ects that limit the

adjustment speed of market prices to changes in the e�cient price. Such e�ects may be related

to the market clearing process, e.g. stale limit orders and requirements on the market maker to

maintain price continuity. They may be related to agent repositioning, such as time to revaluate

the asset, to determine the desired position, and to update orders, or they may be related to

dissemination of information, which need not be immediately known by all agents. Some of

these e�ects are discussed by Goldman & Beja (1979), who suggest a model to describe the

movement of market prices when such e�ects are present, and by Hasbrouck (1991) as e�ects

that may cause the trade innovation not to be entirely due to private information. Hasbrouck

& Ho (1987) use a model that combines gradual price adjustment with white noise to match

the observed autocorrelation pattern in transaction prices, which is negative at �rst lag and

positive for a couple of lags above one. Amihud & Mendelson (1987) investigate di�erences

between clearing house and dealership market types, in relation to a model with gradual price

adjustment.

If the speed of market adjustment to changes in the e�cient price is limited, then a jump

in this underlying price is not re
ected in only a single transaction price increment. Since this

property is central to jump tests, such e�ects are likely to cause problems for the tests.

To investigate the impact of e�ects that limit market adjustment speed on jump tests, I

suggest a model inspired by Goldman & Beja (1979), but where gradual adjustment in market

prices occurs only in relation to discontinuous movements in the underlying price. Such jumps

are mainly due to new information and this model therefore emphasizes e�ects related to

information dissemination and agent repositioning. The behavior of the observed log price, Y ,

follows a model that is a modi�cation of a standard jump-di�usion model

dYt = �tdWt + dJt;

dJt = � (J�t � Jt) dt+ �td ~Wt; J0 = J�0 :

The drift term in Y is omitted as the model is applied to short time periods for which this

is less relevant, whereas the di�usion term is standard with a stochastic volatility process �.

The jump term is where the model di�ers from the usual jump-di�usion model. J� is the
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compound Poisson process that captures discontinuous changes in the underlying price, but

at high-frequency these are only observed in a gradual fashion described by J that enters the

log-price Y . As shown by the second equation the observed part of the jump moves toward

the underlying jump term with an average speed proportional to the distance of these terms

and with some disturbances governed by �. The coe�cient � determines the speed of price

adjustment and can be seen as a measure of market e�ciency. Although the high e�ciency

of asset markets implies a high value for �, the suggested model may still produce signi�cant

deviations from a standard jump-di�usion model in high-frequency observations.

Jumps in the underlying price enter observed prices only through a jump in the drift

term, and the suggested model for market prices therefore remains continuous even when the

underlying jump term is active. It is then relevant to consider whether this model should be

seen as an alternative for which we want to reject the null model of a standard continuous

di�usion. The large � implied by e�cient markets leads to a large, short-lived drift term

following an underlying jump, and as a consequence to price behavior that is very di�erent from

that in a di�usion model with conventional drift term. The practical implication of accepting

that a variable can be described by a continuous model is that one then approximately can

trade at every intermediate price when it changes from one level to another, but this may seem

as an unreasonable approximation for the suggested model. Thus when the underlying jump

term is active, we would most likely want to conclude that this is indeed an alternative model,

although it per se is continuous.

A case study illustrates that stock price behavior well described by the suggested model

occurs empirically. In the case, transaction prices appear at �rst glance to jump, but going to

the highest frequency, the move turns out to be a series of small changes in the same direction

in line with the gradual price adjustment model.

Three jump tests are investigated in relation to gradual price adjustment. The �rst two

compare di�erent estimates of variability of the underlying process over the sample. Thus,

Barndor�-Nielsen & Shephard (2006) consider bipower variation relative to quadratic variation,

while A��t-Sahalia & Jacod (2009) compare variability at di�erent time scales. Central to these

tests is the comparison of consecutive increments in the sample. The third test is inspired

by Lee & Mykland (2008) and uses extreme value theory to test if an increment is too big

relative to local variation. This test depends less directly on the relation between neighboring

increments than the other two tests. In this paper's application the Lee & Mykland (2008)

test is modi�ed slightly such that it is directly applicable as a test for jumps in the full series

of observations, and small sample extreme value theory, rather than asymptotic, is used to

obtain critical values.

The performance of the three jump tests is illustrated in the empirical transaction price

data and investigated further in a simulation study, both under standard speci�cations for the

price and with the suggested model. Tests are applied to increments that are sampled from
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the full record of transactions at a given time interval, �, starting from an initial point, t0.

The variation in test results over these parameters in the empirical case illustrates the issue of

whether a jump can be observed at any short time interval. The simulation study con�rms the

tests' problems of detecting a jump in the underlying price when the observed price is a�ected

by the microstructure e�ects in question. Tests on comparisons of consecutive increments are

most a�ected by the noise, while the test using the largest of scaled increments has higher

power against this alternative to continuity. It would still be relevant, though, to develop a

test methodology aggregating results over starting points.

The next section sets up the testing framework. Section 2 describes tests that compare

variability measures, while tests based on the size of the largest increments are discussed in

section 3. The empirical case is presented in section 4. Microstructure noise is discussed in

section 5, leading to the proposed model, and a re-evaluation of empirical results in this light.

The Monte Carlo simulation study is in section 6, while section 7 concludes.

1 Setting

The goal of jump tests is to determine if a continuous model can adequately describe discrete-

time observations, or whether it is necessary to include a jump component in the model.

The continuous-time price behavior is never fully observed, so the goal of the tests cannot

be to decide about continuity objectively. Indeed, su�cient �ne-tuning of model parameters

can produce sudden changes in continuous models to the same degree as jumps over discrete

observation intervals. Therefore, any test to infer from discrete observations about continuity

must impose restrictions on the possible processes in the continuous model. A continuous

model implies the ability to trade at any intermediate price when the price moves from one

level to another, which for example have implications for hedging possibilities. Thus also for

practical reasons it makes sense to impose restrictions on the possible continuous model, such

that inability to reject continuity is not caused by the possibility that a di�usion model with

wild parameter behavior may be able to explain the discrete observations.

For the alternative to continuity, I only consider �nite jump activity, although some of the

discussed tests have been shown to have power also against in�nite active jump terms. This

focus is relevant in relation to microstructure e�ects that may limit market adjustment to

news-induced price changes.

The jump tests are presented in the following framework. Let the process Yt be driven by

Brownian Motion, Wt, and a compound Poisson process, Jt, such that

YT = Y0 +

Z T

0
atdt+

Z T

0
�tdWt + JT : (1)

Here a and � are progressively measurable processes guaranteeing that (1) has a unique strong

5



solution, which is adapted and right continuous with left limits. The compound Poisson process

can be written as JT =
PNT
j=1 cj , where Nt is a Poisson process with intensity �t <1, and cj

are the jump sizes, which are nonzero random variables.

Over a time period [0; T ], we observe Yt at evenly spaced intervals of length �. This gives a

record of observations, fYt0 ; Yt1 ; :::; Ytng, where t0 2 [0; �), ti � ti�1 = � and n = b(T � t0) =�c.
The main quantities to be analyzed are the observed changes in Y , therefore write the i'th

observed increment over an interval of length � as y�i = Yti�Yti��. Evenly spaced observations
is clearly a simplifying assumption in many applications, e.g. such as for a stock price with

observations on either trades or quotes, which in reality occur at random, irregularly spaced

times. Therefore, to get evenly spaced observations, a calendar time conversion is necessary

from the full data set. This will be discussed when used in the empirical section.

To restrict the possible continuous models, I follow Lee & Mykland (2008) and assume that

the drift and volatility functions do not vary too quickly over time,

sup
i
sup
s��

jati+s � ati j = O
�
�1=2�"

�
(2)

sup
i
sup
s��

j�ti+s � �ti j = O
�
�1=2�"

�
; (3)

for some " > 01. These assumptions are also su�cient for the tests by Barndor�-Nielsen

& Shephard (2006) and A��t-Sahalia & Jacod (2009), although these authors allow for more


exibility.

The restriction on the volatility function ensures that any large change in discretely ob-

served prices may not equally well be the result of a sudden large increase in volatility and

thus come from continuous movement rather than from a jump. The set-up allows for the

leverage e�ect, since nothing constrains price and volatility from being negatively correlated,

but as volatility cannot change too quickly, a leverage e�ect by opposite simultaneous jumps in

price and volatility is excluded. It may already now be noted that the price adjustment model

hinted at in the introduction violates the assumptions (2)-(3) as the drift includes a jump, and

thus presents a di�erent alternative than jumps to a nicely behaved continuous model. The

power of the tests against this non-standard alternative will be investigated later. First the

jump tests are introduced to test against the standard alternative hypothesis in which jumps

are perfectly observed.

It is standard to de�ne the null and alternative hypotheses for the jump tests as

H0 : NT = 0 vs: HA : NT > 0: (4)

1Note, the inclusion of " allows for functions behaving like �1=2 log (1=�) as � ! 0, while still not including
functions with changes decreasing at the slower order �� for � > 1=2. As seen from (12) this matters for letting
drift and volatility themselves be driven by Brownian Motion.
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Thus, the tests are for whether the realized path includes jumps, not for whether a jump term

is present in Y . This way of de�ning the hypotheses for jump tests di�er from conventional

testing methodology, since it is not a test of a property of the hypothesized population from

which data is a realization. In theory we should test if a jump component, J , is included in

Y or not, but a continuous model can never be distinguished from one with a jump term that

has not jumped yet, NT = 0. Thus the best we can do is to test for jumps up to T , though

�nding NT = 0 does not preclude the presence of a so far inactive jump term. The next two

sections present the jump tests.

2 Tests Comparing Measures of Variability

2.1 Quadratic and Bipower Variation

While quadratic variation measures variation from both continuous movements and jumps,

bipower variation is designed to only capture variation from the continuous part. Therefore,

when estimators of these quantities are properly compared, the jump component can be sepa-

rated out and a test of continuity is obtained.

The quadratic variation of YT in (1) is the integral of squared volatility plus the sum of

squared jumps. Realized quadratic variation, the sum of squared increments, is a consistent

estimator, as it can be shown to converge in probability to quadratic variation as � ! 0,

[Y�]T =
nX
i=1

�
y�i

�2 P!
Z T

0
�2tdt+

NTX
j=1

c2j : (5)

As an estimator of integrated variance robust to jumps, Barndor�-Nielsen & Shephard

(2004) introduced realized bipower variation, the sum of the product of consecutive absolute

increments. In a process with �nitely many jumps, the probability of jumps in consecutive

increments goes to zero as the time interval is decreased. Therefore, possible jump increments

get multiplied by neighboring small increments from continuous movement, and in the limit

jumps do not a�ect bipower variation. It is therefore possible to show that realized bipower

variation converges in probability to scaled integrated variance,

fY�g[1;1]T =
nX
i=2

���y�i ��� ���y�i�1��� P! �21

Z T

0
�2tdt; (6)

as � ! 0. The constant �1 is the �rst absolute moment in the standard normal distribution.

Comparing the two variability estimators, we see that the jump term becomes asymptot-

ically identi�ed. The probability limit under respectively the null and alternative hypotheses
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for the ratio between the two estimators scaled by ��21 can be seen from (5) and (6) to be

R̂ (�) =
��21 fY�g[1;1]T

[Y�]T

P!

8>>><>>>:
1 H0

1�
PNT
j=1 c

2
jR T

0 �2tdt+
PNT
j=1 c

2
j

HA:

(7)

Barndor�-Nielsen & Shephard (2006) obtain results for the asymptotic distribution for both

this statistic, as well as for a linear di�erence statistic, and construct feasible tests. Since the

adjusted ratio test seems to perform best in their Monte Carlo study, I will focus on this test.

Appropriately scaled, the ratio statistic converges in distribution to a N (0; 1) variable

under the null of no jumps. From (7) small values are critical to the null and a one-sided

approximate con�dence interval can be constructed. At signi�cance level � the critical value

for the ratio statistic is

C�R = 1� z1��

0B@�#max
8><>:T�1; fY�g

[1;1;1;1]
T�

fY�g[1;1]T

�2
9>=>;
1CA

1
2

:

Here # =
�
�2=4

�
+ � � 5, z1�� is the 1� � quantile of the standard normal distribution, and

we have to compute the realized quadpower variation, fY�g[1;1;1;1]T = ��1
PbT=�c
i=4

Q3
j=0

���y�i�j���.
2.2 Variability at Di�erent Sampling Frequencies

Consider the sum of absolute increments to the p'th power,

B̂ (p; �)T =

nX
i=1

���y�i ���p : (8)

The test suggested by A��t-Sahalia & Jacod (2009) exploits that the limit for p > 2 of the sum

in (8), as � goes to zero, is di�erent with and without jumps in the process. When jumps

are present B̂ converges to a �nite, non-zero limit, whereas if the process is continuous the

limit is zero and the convergence speed depends on the sequence of �'s going to zero. The idea

is therefore to compare (8) at di�erent interval lengths, �. If the sums are of same size, the

evidence points toward jumps in the process, whereas if they are su�ciently di�erent, it points

toward continuity.

B̂ is equal to realized quadratic variation for p = 2, B̂ (2; �)T = [Y�]T , in which case we

just saw that both continuous and jump variation are captured by the statistic. On the other
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hand, when p > 2 discontinuous movements will dominate as � decreases,

B̂ (p; �)T
P!

NTX
j=1

jcj jp for p > 2: (9)

When there are no jumps, the limit in (9) is clearly zero, but by scaling appropriately a positive,

�nite limit is obtained. We have that

�1�p=2

�p
B̂ (p; �)T

P!
Z T

0
j�tjp dt = A (p)T under H0; (10)

as � ! 0, where �p is the p'th absolute moment in the standard normal distribution.

Now compare the B̂ statistic at two time-scales, � and m�, for some integer m > 1. Based

on the convergence properties in (9) and (10), the ratio of B̂ at the slower time-scale to that

at the faster satis�es

Ŝ (p;m; �) =
B̂ (p;m�)T
B̂ (p; �)T

P!

8>><>>:
�1�p=2

(m�)1�p=2
= mp=2�1 H0

1 HA;

(11)

and therefore gives a statistic, Ŝ, that can be used to discriminate between jumps and conti-

nuity. The design parameters p and m are set to p = 4 and m = 2 as suggested by A��t-Sahalia

& Jacod (2009).

To determine whether Ŝ is far enough from the asymptotic value under H0 to reject this

hypothesis, the distribution of the statistic under the null is needed. A��t-Sahalia & Jacod

(2009) show that with appropriate scaling Ŝ converges in distribution to an N (0; 1) variable

as � ! 0 when there are no jumps. For �xed �, this is used as an approximate distribution for

Ŝ, and from (11) small values are critical for the null hypothesis. At � level of signi�cance the

critical value can be found to be

C�
Ŝ
= 2� z1��

 
�M (4; 2)

Â (8; �)T
Â (4; �)2T

!1=2
;

Again, z1�� is the 1 � � quantile of the standard normal distribution, M (4; 2) = 204, and

Â (p; �)T =
Pn
i=1

��y�i ��p I���y�i �� �  �$
	
is the realized truncated p'th variation, which for con-

stants  > 0 and $ 2
�
0; 12
�
estimates A (p)T . The choice of  and $ is important for �nite

sample properties of the test, since Â (p; �)T should only include y
�
i 's that are due to continuous

movement. Recommended values are  at about 3� 5 times of average � and $ close to 1
2 .
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3 Tests Based on Largest Increments

The possible variation due to continuous movement decreases with the length of the time

interval. Thus for su�ciently small intervals, jumps can be detected as increments, y�i , that

are numerically too large to come from continuous variation. To base a test on this observation,

it's necessary to determine how much the process can move continuously, or equivalently, to

determine the distribution of the largest increments generated by continuous movement alone.

Results about this distribution ultimately come from the independent, normally distributed

increments of the Wiener process, but a crucial element is to account appropriately for scaling

by the volatility term, which may be time-varying.

Identi�cation as large increments Over short enough time periods, the di�usion term

of the process (1) is much larger than the drift term. The �rst step to �nding an upper limit

on continuous movement is therefore to determine how much Brownian Motion can move. The

modulus of continuity, wf (�), of a function f measures the the largest change in function value

over intervals less than or equal to �. For Brownian Motion this is a random quantity, which

can be shown to have the property

sup jWt �Wsjp
2� log (1=�)

! 1 (a:s:) for � ! 0; (12)

for 0 � s < t � 1 and jt� sj � �. Therefore, for short time intervals Brownian movements will

approximately be of size
p
2� log (1=�).

Allowing for volatility, when this is bounded, will not change the convergence order of the

di�usion term, Op

�p
� log (1=�)

�
, and this dominates the drift term. In contrast, given that

there is a jump in the interval (ti � �; ti], the size of the jump movement does not depend on
the length of the interval, it is of order Op (1).

Together, these results con�rm that jumps can be observed as increments at su�ciently

short time periods that are too large relative to that of Brownian increments times a constant

to adjust for volatility. Further results on almost sure identi�cation of jumps by this method

are given in Mancini (2004) and Mancini & Reno (2006), who apply this to clean for jumps

in truncated quadratic variation estimators of volatility. For inference on whether the process

included jumps, we need distributional results.

Approximate normality The independent, normal increments of the Wiener process are

perturbed by the general stochastic volatility term in the process (1) to more general distri-

butions for the increments of the di�usion term. For short time intervals and well behaved

volatility, though, the normal distribution remains a valid approximation. De�ne the set of

i's for which the process has no jumps in the interval (ti � �; ti] as G�. Then for short time
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intervals we have approximately that

y�i
a� N

�Z ti

ti��
asds; IV

�
i

�
for i 2 G�;

for integrated variance, IV �i =
R ti
ti�� �

2
sds. With estimates of integrated drift and variance, the

increments, y�i , can be scaled to get a series of approximately standard normal variables. It

is then relatively straightforward to obtain results for the largest scaled increments in G� by

using available results for extremes in the standard normal distribution.

For any reasonable drift term in (1), changes in Y due to this term over short time intervals

are much smaller than changes in the di�usion term. Also, relatively large errors in estimation

of the drift will decrease the precision in estimates of integrated variance. Therefore, for

standardizing observed increments, the drift is set to zero, and the focus will be on adjusting

for integrated variance. This follows Lee & Mykland (2008), and standard practice in many

applications with short time intervals.

Estimation of Integrated Variance Scaled bipower variation, ��21 fY�gT was discussed
in (6) as a jump robust estimator of integrated variance over the period [0; T ]. Here, we need

the estimate over a short time interval of length � and cannot rely on observations within the

interval. Instead, due to the assumption that volatility doesn't change too quickly, IV �i can

be estimated using a local window around the interval of interest. Speci�cally, let the local

window be K increments to either side of the i'th, such that we consider a window of 2K + 1

increments,
�
y�i�K ; :::; y

�
i ; :::; y

�
i+K

	
. Then the estimator based on bipower variation is

cIV �i = ��21
2K � 1

i+KX
j=i�K+1

���y�j ��� ���y�j�1��� : (13)

For this to be a consistent estimator, for � ! 0, the window length parameter K must be

adjusted to satisfy K 2 Op
�
���
�
, for � 2

�
1
2 ; 1
�
. This condition ensures that the window

length decreases with �, since K� ! 0, while the number of increments still increases fast

enough.

Scaled Increments With the estimate of integrated variance in place, the increments can

be scaled to obtain a series of variables whose distribution is approximately equivalent to a

series of independent N (0; 1) variables for non-jump intervals,

ẑ�i = y�i =

qcIV �i a� N (0; 1) for i 2 G�: (14)
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This approximation follows from the asymptotic result in theorem 1 of Lee & Mykland (2008),

from which it follows that

sup
i

���ẑ�i � zi��� = Op

�
�3=2�����"

�
for i 2 G�; (15)

where the zi's are independent N (0; 1) random variables. The constant � is from the condition

on the estimation window for integrated variance, � is a constant satisfying 0 < � < 3=2 � �,

and (15) holds for all " > 0. In other words, the condition holds for positive exponents, so the

largest distance between ẑ�i and zi goes to zero with �, and the approximation error in (14)

decreases as time intervals become shorter.

To detect jumps we can, as argued above, use the property that conditional on a jump in

(ti � �; ti], the size of the jump movement does not decrease with �. Since IV �i ! 0 for � ! 0,

the scaled increments tend to in�nity for jump intervals,���ẑ�i ���!1 for � ! 0 and i =2 G�: (16)

Comparing this to (14) a test for jumps should check if the largest scaled increments are abnor-

mally large relative to extremes in independent draws from the standard normal distribution.

Results from Extreme Value Theory For a series of n independent variables with sym-

metric distribution around zero, fX1; :::; Xng, de�ne the largest absolute value as Q (n) =
maxi=1;:::;n jXij. The probability of no Xi's numerically larger than u is the probability of
no successes in n independent draws with probability equal to that of jXij > u. Hence, the

distribution function for the largest absolute value of n independent N (0; 1) variables can be

calculated as

P (Q (n) � u) = P
�
Vn;2(1�F (u)) = 0

�
; (17)

where Vn;p � Bin (n; p) and F is the cdf. for each Xi, see the appendix for details.

Instead of the exact extreme value result in (17), Lee & Mykland (2008) use asymptotic

theory. Properly scaled, extremes of samples from the normal distribution converge in distri-

bution to the Gumbel distribution, also called the double exponential distribution, which has

cdf. � (x) = exp (� exp (�x)). Using this asymptotic result to approximate the distribution in
�nite samples gives the distribution function in closed form and therefore simpli�es calculation

of critical values. On the other hand, the convergence rate of normal extremes to the Gum-

bel distribution is very slow. Even for optimal choices of normalizing constants, the rate of

convergence will not exceed (log n)�1. This is slower than the power convergence obtained for

ẑ�i to standard normal variables in (15). So despite the relatively large number of increments

obtained from high-frequency data, using the Gumbel distribution will be a further approxima-

tion. Though (17) is not in closed form, evaluation and inversion is straightforward on standard
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numerical software, which must be applied anyway to handle the large high-frequency data set.

3.1 Extreme Value Test

The results in the previous subsections are now collected to a test for jumps in the path of Y

up to T . Under the null hypothesis of no jumps, all i 2 G�, so from (15) the sequence ẑ�1; :::; ẑ
�
n

is approximately independent, standard normally distributed. Therefore, the largest absolute

value in this sequence,

Q̂ (�) = max
i=1;:::;n

���ẑ�i ��� ; (18)

has a distribution approximately equal to that of Q (n) in (17) with F = �. Note that � is used

to indicate the length of the sequence, since for a given time period this implicitly determines

the number of observations, n = b(T � t0) =�c. Under the alternative hypothesis some interval
has a jump, i =2 G�, and then from (16), the Q̂ statistic will be large relative to the distribution
under the null hypothesis. The extreme value test (EV test) for jumps is then a one-sided test,

for which the critical value for Q̂ (�) at � level can be found from

C�Q = fu : P (Q (n) � u) = 1� �g :

This is solved numerically, using (17), for example for � = 5% and n = 760, corresponding to

a trading day with observations every 30 seconds, the critical value would be C�Q = 2:88.

The test in Lee & Mykland (2008) is, in contrast to the formulation here, a test for jumps

in each individual time interval. Their test thus compares each
��ẑ�i �� to the distribution of the

maximal absolute increment over the full period. By this method the test in each interval will

be conservative, i.e. have lower probability of spuriously detecting a jump than the chosen

signi�cance level. The full sample path can be tested for jumps by applying the individual

test to all increments, but as seen in their table 4, the resulting size is much lower than the

chosen one. By directly focusing on a global test, the method in the present paper implies

that the size of the global test is approximately the one chosen for the critical value, as will be

con�rmed in the simulation study. This makes the comparison to other jump tests more even.

4 Empirical Case

The performance of the jump tests is now studied in relation to a case of intraday transaction

price observations for a single stock on the New York Stock Exchange. This series was chosen

to investigate the performance of tests in a case where the price appears to change abruptly

following a company news announcement.
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4.1 GM October 6, 2006

Data Tick-by-tick data for General Motors (GM) on October 6, 2006 is collected from the

NYSE trades and quotes (TAQ) database. This gives the full record of intraday transactions,

including price, volume, and time stamp for each trade. In total 128,702 trades were observed

during this day.

I refer to Brownlees & Gallo (2006) for a discussion of data handling issues in dealing

with this type of ultra high-frequency data. First, wrong or inaccurate ticks are removed as

indicated by the CORR and COND �elds in the TAQ database. This removes 376 trades.

Next, a �lter is applied to remove records that do not seem to come from plausible market

activity. These are trades with prices signi�cantly di�erent from the prices of the surrounding

trades. I use the �lter suggested by Brownlees & Gallo (2006) to identify these trades: For each

observation i, calculate the d-trimmed mean and standard deviation, si (k; d), in a window of

k=2 observations to either side. Then remove observation i if the price is further away from

the trimmed mean than 3si (k; d) + �, where � is a granularity parameter set to avoid very

small thresholds due to a sequence of trades at the same price. With parameter values at

k = 60, d = 10%, and � = :02, the �lter removes 432 observations, leaving a cleaned data set

of 127,894 observations.

The time stamp of each transaction is recorded in seconds, so during the 6:5 hour trading

day, corresponding to 23,400 seconds, several trades have the same time stamp. For seconds

with multiple trades, I choose to use the median of the recorded prices, and when an even

number of di�erent prices are observed, volume decides which of the middle prices to use. This

reduces the data set to 15,060 observations with di�erent time stamps, which will be considered

as the basic, cleaned data set. Figure 1 illustrates the �ltering procedure over an interval of

four minutes with high activity. The �gure shows all observations, with those removed by the

�lter marked by a circle, and the �nal series with a single price for each second that has an

observation shown as a line.

The top panel in �gure 2 shows the cleaned price process over the full day, clearly showing

that the abrupt price drop at around 12PM stands out. The accumulated volume is shown

in the bottom panel of �gure 2. Notice the increase in speed of trade following the price

drop. New information about the company was released at about 12PM that day, when it was

announced that a central member of the board had chosen to resign, citing concerns over the

company's ability to compete in the market among other reasons for the resignation.

Tests To avoid adjusting tests to account for unevenly spaced observations, the price series

will be subsampled at intervals of length � to get data in proper format. This calendar time

conversion also facilitates the study of how the tests perform at di�erent observation frequen-

cies as � is easily adjusted. Thus, for starting point t0, the subsampling procedure selects
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observations at seconds ft0; t0 + �; t0 + 2�; :::g. If for some t0 + i� there is no observation,

the most recently recorded transaction prior to this time is used, similarly to the method in

Andersen, Bollerslev, Diebold & Ebens (2001). Since the GM data set has observations at

about 2=3 of the seconds during the trading day and the shortest sampling interval used is 15

seconds, the approximation implied by the procedure seems acceptable.

It is important to check results over di�erent sample starting points, t0. For a time step

of � seconds, there are � possible starting points, f0; 1; :::; � � 1g, that give rise to completely
di�erent sets of increments. For the BNS and EV tests, this is also the number of starting

points to consider, while for the AJ test, one also samples at intervals of length 2�, and thus

must check twice as many starting points.

To estimate integrated variance, cIV �i in (13), for the EV test, the window size parameter
is set to K =

l
120
p
30=�

m
, where � is measured in seconds. This implies, e.g., that a local

window of 2 hours is used for � at 30 seconds. For ti with less than K observations to either

side, the window is shifted to keep the same length, while for the most infrequent sampling

method, � at 10 minutes, a constant IV estimate over the full day is used.

The AJ, BNS, and EV jump test statistics, Ŝ (4; 2; �), R̂ (�), and Q̂ (�), were calculated for

intervals of length 15 and 30 seconds, and 1, 2, 5, and 10 minutes. Due to the large number

of tests considered, the results are shown graphically in �gures 3 and 4 together with critical

values for signi�cance level � = 5%. R̂ and Ŝ statistics below their critical values and Q̂

statistics above its critical value indicate evidence of jumps.

Results The AJ test does not reject the null hypothesis at 5% signi�cance level at any

frequency considered, and this holds independently of the chosen starting point. For interval

lengths up to 2 minutes, the Ŝ (4; 2; �) statistic is close to or above 2, the asymptotic limit under

continuity. For 5 and 10 minute intervals, the statistic is for many starting points close to 1,

the limit if there are jumps. For these longer time intervals, though, an even lower statistic is

required for signi�cance at the 5% level, since the resulting small number of increments reduces

the power of the test. Large variability in test statistics over the starting point of the sample is

seen in general, but the e�ect is most pronounced for longer time intervals, where some values

are close to 1 and others far above 2.

Apart from a few signi�cant values for 15 second intervals, the BNS test also does not

show evidence against continuity for interval lengths up to 2 minutes. In general for these

frequencies, the ratio statistic is close to 1, its asymptotic value under the null. For the two

longest time intervals, the BNS test does show some evidence of jumps in the observed data

series, as the statistic is signi�cant for many starting points. For other starting points though,

the statistic is close to 1, so the conclusion depends on where the sample is started.

The EV test statistic is signi�cant at the 5% level for all frequencies and over all starting

points, apart from a few values for 1 minute intervals. Accordingly, this test rejects the
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continuous model at the 5% level for practically all the speci�cations considered. Still, the

values of the test statistic depend on the starting point. Notice that the pattern over starting

points is similar to that for the BNS test for the two longest time intervals, recalling that

respectively high and low values are critical for these two tests. For example, for 5 minute

intervals, starting point t0 in the range of 150 � 200 seconds show least evidence of jumps,

while values in the ranges 0� 100 and 250� 300 show more evidence of jumps for both tests.

5 Microstructure Noise

The results in the case study are di�cult to reconcile with perfect discrete-time observations

of a price that follows a process of the jump-di�usion type given in equation (1), regardless of

whether the jump term is active or not. In particular is it di�cult to explain the large variation

in results over di�erent sample starting points, and the fact that some statistics deviate from

their asymptotic value under continuity in the opposite direction of what they should in the

case of jumps. This section argues that noise in price observations may be the reason for these

test results. To this end, a model is introduced, under which test statistics are likely to behave

as observed in the case study. In the proposed model, noise arises from �nite speed of market

adjustment.

Underlying the model (1) is an assumption of perfect observations of prices as described

by asset pricing theory. Observed transaction prices, though, are a�ected by frictions arising

from the trading process, i.e. market microstructure e�ects. Examples of such e�ects include

price discreteness and the bid-ask spread, but also e�ects arising from the manner in which

information gets incorporated into prices, e.g., the way a market maker adjusts quotes taking

the possibility of privately informed traders into account. Microstructure e�ects lead to tran-

sitory deviations from the e�cient price, the price given by asset pricing theory. Therefore,

in some applications the frictions may be disregarded, while in others, such as applications

using high-frequency data, microstructure e�ects may be a �rst order important factor driving

results.

A standard way to incorporate microstructure e�ects in observed prices is to separate them

into a noise term around the e�cient price described by asset pricing theory. In an additive

noise model for log-prices, Yt would thus be the sum of the e�cient log-price, Y �t , and a noise

term, "t, that captures the e�ect of microstructure,

Yt = Y �t + "t: (19)

Now, it is the e�cient price, Y �t , that follows the model in (1), while di�erent types of market

frictions imply di�erent statistical properties of the noise term, "t, regarding its own serial

dependence and its relation to Y �t . This section �rst discusses microstructure e�ects related
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to the standard statistical assumption of white noise in observed prices. Then microstructure

e�ects particularly relevant to the observation of discontinuous price changes is discussed,

leading to a suggestion of related properties for the noise term in observed prices.

White Noise The simplest illustration of microstructure e�ects is white noise around the

e�cient price. Thus, "t in (19) has zero mean and is serially uncorrelated and independent

of Y �t . Noise with these statistical properties may result from a setting with a market maker

that maintains a bid-ask spread to cover inventory and order processing costs, as in the model

by Roll (1984). When the spread is set only to cover operating costs, symmetrically around

the e�cient price, then random buy and sell trades at respectively the bid and ask prices will

include noise that is uncorrelated over time and with the e�cient price. Roll (1984) argued

that these bounces between bid and ask prices would lead to negatively correlated observed

returns and therefore to violation of the random walk model for observed prices.

White noise complicates inference about properties of Y �t from observed prices. The bene�t

of getting more frequent price observations no longer holds, since serially uncorrelated noise

tends to become the dominant cause of price changes at high observation frequencies. That is,

the size of the noise term in an observed �-period price increment, "t � "t��, doesn't decrease

when the time interval is shortened, while Y �t � Y �t�� goes to zero if there are no jumps in the
interval. One can say that the signal relative to noise in observed price changes goes to zero

as interval length goes to zero.

This e�ect is important in the related task of volatility estimation. Here, realized quadratic

variation, a consistent estimator of integrated variance with perfect observations and no jumps,

instead converges as � ! 0 to a term proportional to the variance of the noise term, if such

is present, as shown by Zhang et al. (2005) and Bandi & Russell (2008). The straightforward

solution is to choose interval lengths to balance noise e�ects against the advantages of frequent

observations, e.g. by using 5 minute intervals as in Andersen, Bollerslev, Diebold & Labys

(2001). Other methods that yield robust estimates using all data are argued to have better

properties, though, such as the two-scale estimator of Zhang et al. (2005), and the pre-averaging

approach of Jacod et al. (2007).

The possibility of microstructure e�ects leading to white noise in observed prices and its

dominating e�ect on price changes at high observation frequencies is recognized in the jump

testing literature. For example, A��t-Sahalia & Jacod (2009) show that their test has the

limit 1=m when prices are observed with white noise. As this is even less than the no-noise

asymptotic value with jumps, the test will reject continuity too often at high frequencies. The

other tests considered here also rely on estimators of volatility that become biased at high

frequencies when observations include white noise, and thus these test are likely to be a�ected,

as well. As discussed in relation to volatility estimation, the issue can be dealt with by using

lower observation frequency, so that noise is only a negligible part of observed price movements.
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Alternatively, tests may be corrected to obtain robustness against i.i.d. noise, such as in Jiang

& Oomen (2008), while Podolskij & Ziggel (2008) use the pre-averaging approach to construct

a robust test.

The e�ect of a small white noise term on the jump tests considered is investigated further

in the simulation study in the next section, along with the e�ect of prices being recorded

discretely, i.e., in whole cents. The latter e�ect is similar to white noise in that it also becomes

an increasing problem with higher observation frequency. To mitigate the e�ect of these noise

types, tests in the GM case were discussed only for intervals longer than 15 seconds. The

simulation study indicate that if shorter observation intervals are used then the actual size

of tests starts to deviate from the chosen size when prices include a small white noise term

or are observed in discrete values. Signs of these noise types were seen in the GM data. If

tests were applied to intervals shorter than 15 seconds, all tests showed strong rejection of

continuity, but this was not the case for intervals longer than 15 seconds for the AJ and BNS

tests, as seen from results included in �gure 3. Since statistics for 30 and 60 second intervals

are practically never on the jump side of the value under continuity, the rejection at higher

frequencies thus seems more likely to come from these noise types than just from higher power.

These noise types, though, do not explain the unconventional values obtained for statistics at

longer intervals, i.e., they do not explain why the AJ and to a lesser extent the BNS statistic

often are larger than the their limit under continuity, whereas jumps actually should cause

them to be lower. Further, nothing in these noise types has the potential to cause all statistics

to vary over starting points to the extent observed.

Asymmetric Information Models More complicated microstructure e�ects than those

leading to white noise in observed prices are necessary to explain results in the empirical case

study. Fortunately in this regard, most microstructure literature argues that trades do not

arrive independently of changes in the value of the asset. This allows for the possibility of

microstructure e�ects related to changes in the e�cient price. If changes in the underlying

price a�ect the trade pattern, then the noise term in observed prices may not be white noise.

In asset pricing theory price changes are primarily driven by changes in information. Mod-

elling the microstructure of how prices adjust to re
ect new information through the trade

process is therefore likely to relate microstructure e�ects to price changes. Such models nec-

essarily must weaken to some extent the assumption of strong-form e�cient markets that

incorporate all information in prices. The �rst step is to let some agents have private informa-

tion not re
ected by market prices, while maintaining that prices re
ect public information, i.e.

are semi-strong form e�cient. The models then study the process of how private information

is learned by other agents through trades, leading to subsequent price adjustments. Classical

among these asymmetric information models are the sequential trade models by Glosten &

Milgrom (1985) and Easley & O'Hara (1992), which I discuss as an illustration of how price
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changes related microstructure e�ects may arise.

In the Roll (1984) model there is no private information, and the spread is set entirely to

cover the market maker's operating costs. In the Glosten & Milgrom (1985) model on the other

hand, some traders have information that is unknown by other liquidity traders and the market

maker. As the marker maker doesn't know with which type of investor he trades, a spread

is maintained to cover losses of trading with informed investors. That is, it covers adverse

selection costs, as informed traders, in contrast to liquidity traders, only trade in the side of

the market that is advantageous according to their superior information. There is information

in trades then, and the likelihood for an uninformed trader that private information is positive

or negative changes as trades arrive. The market maker takes this into account when setting

bid and ask quotes by having these re
ect current public information as well as the information

revealed by another buy or sell. Gradually through the overweight of trades in one side of the

market, the beliefs of the uninformed adjust toward private information, and quotes, and thus

trade prices, converge to the valuation of the privately informed. Easley & O'Hara (1992)

add event uncertainty to this setup by making it random whether an information event has

occurred. As uninformed investors don't trade with some probability, and all investors are

uninformed when no event has occurred, lack of trade reveals information by decreasing the

likelihood that an event has happened. This model therefore can be used to connect trade

volume to the amount of new information.

In sequential trade models where the spread is due to adverse selection costs alone, trans-

action prices are martingales with respect to public information. This follows as quotes set by

the market maker include current public information plus information in respectively a buy or

a sell trade. The trade price therefore changes as result of gradual increases in public informa-

tion inferred from trades, or from externally arriving public information, which is assumed to

immediately a�ect prices. Thus, the trade price process is a martingale with respect to public

information. Indeed, the models only consider microstructure e�ects in relation to how private

information gets incorporated into markets. Therefore their implications about deviations in

market prices from the underlying private information price are particularly relevant. Arrival

of new private information changes private valuation immediately, but only a�ects market

prices gradually through the trading process as uninformed agents observe increased volume

on one side of the market and quotes adjust accordingly. In relation to explaining empirical

results of the jump tests, this illustrates e�ects that obstruct the otherwise discontinuous price

change that would occur if all had received the information, and it illustrates a mechanism

governing how market prices over time move toward a price otherwise reached instantaneously.

To further consider mechanisms that limit the immediate market reaction and to also allow

for e�ects in relation to new public information, I turn to models of gradual price adjustment.
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Price adjustment This subsection discusses the adjustment of market prices to changes in

the underlying e�cient price. Inspiration is obtained from price adjustment models starting

with Goldman & Beja (1979) and the microstructure e�ects discussed in this literature. In

addition I discuss possible microstructure e�ects related to sudden changes in the underlying

e�cient price, e.g. arising due to new information.

In asset pricing theory prices are e�cient with respect to publicly available information.

Thus prices generate equilibrium between supply and demand of agents given available infor-

mation and allocations that are e�cient relative to agents' preferences and constraints. For

prices that incorporate all available information changes must be unexpected, compensation

for risk and time aside, and this leads to a martingale model for prices such as (1). When this

model is used for observed prices, the assumption is that the mechanism through which market

prices are formed does not signi�cantly a�ect the properties of the model. As argued by Gold-

man & Beja (1979), for prices to be in the above described equilibrium at all times requires

a strong price adjustment mechanism to changes in the environment, e.g. new information,

that lead to changes in the e�cient price. If this adjustment is less than perfect, discrepancies

between market prices and e�cient prices may exist temporarily. When jumps are thought of

as changes in the environment, resulting in discontinuous changes in the e�cient price, such

discrepancies could a�ect jump tests. Though asset markets are very e�cient, the question

is whether the adjustment mechanism is so e�ective that discontinuous changes are perfectly

observed at high-frequency.

Di�erent elements of the adjustment mechanism, such as information dissemination, agent

repositioning, and market clearing may all have e�ects which impede the immediate adjustment

of market prices to changes in the e�cient price. The speed with which information reaches

agents may be limited, such that otherwise publicly available information relevant to the

valuation of the asset is not immediately known to all agents. It may take time for agents

to revalue assets in light of new information, for agents to chose their desired positions at

di�erent prices, and to update their buy and sell orders. These e�ects cause the order book

to only gradually change in the direction of the full impact from released information. A

speci�c consequence is that limit orders, which would have been removed by the originators

had they been able to adjust immediately to new information, will instead generate trade. The

time it takes for the market to move from one price level to another may be further a�ected

by requirements on the market maker to maintain price continuity and avoid excessive price

swings. In specialist markets, like the New York Stock Exchange, the market maker is usually

required to maintain an orderly market, among other things meaning that the price should not

be allowed to 
uctuate dramatically from one trade to the next.2

The microstructure models discussed in the previous two subsections assume e�ciency with

2In the NYSE rule 104: Dealings by Specialists, part 10, the specialist is required to ensure "the maintenaince
of a fair and orderly market", after which it is stated that this "implies the maintenaince of price continuity".
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respect to public information in the sense that quotes are immediately adjusted, and therefore

trades only occur due to liquidity reasons or private information. Building on the asymmetric

information models, Hasbrouck (1991) suggests a way to measure the information e�ect of

trades. He argues that his method only measures private information if quotes indeed fully

re
ects public information and discusses several of the market clearing e�ects mentioned above

as likely reasons that quote revision would be impaired.

The result of the discussed microstructure e�ects in relation to the price adjustment mecha-

nism is to limit its speed to a gradual instead of immediate adjustment. Whenever discrepancies

exist between the e�cient price and the market price, agents will gradually update their orders,

driving aggregate demand toward the perfect market level. Trades will be closed throughout

this process due to stale orders and market maker smoothing, thus producing a gradual change

in transaction prices. Goldman & Beja (1979) reasonably argue that the rate of price adjust-

ment is increasing in the distance between market price and e�cient price and propose that

to a �rst approximation, this is a linear relation. This leads to the model

dYt = � (Y �t � Yt) dt+ �td ~Wt; (20)

where Yt is the quote midpoint and Y
�
t is the e�cient price, both in logarithms. The di�usion

term allows for some random imperfection in the adjustment process.

Di�erent papers argue for the empirical relevance of a speci�cation like (20). In an in-

vestigation of NYSE transaction data Hasbrouck & Ho (1987) �nd evidence of negative auto-

correlation at �rst lag, but also positive autocorrelation at lags above one. They argue that

a model speci�cation similar to (20) together with a spread in the style of Roll (1984) can

be used to generate the observed statistical properties. Amihud & Mendelson (1987) investi-

gate the implications that di�erent trading mechanisms have for price behavior. In dealership

markets the market makers continuously post quotes at which they are willing to trade, while

in clearing house markets limit and market orders are accumulated and cleared periodically.

An important part of their comparison uses a model like (20) to discuss di�erent statistical

properties of returns in these two market types. Damodaran (1993) suggests a way to mea-

sure the price adjustment coe�cient � in (20) and �nds evidence of lagged adjustment to new

information in short period return intervals. Though not speci�cally related to an adjustment

model, Hansen & Lunde (2006) more recently use a cointegration study of quotes and trans-

action prices from the TAQ data base for Dow Jones 30 stocks to recover the e�cient price as

the common stochastic trend. They �nd that noise in transaction prices is negatively related

to e�cient returns, which would be consistent with imperfect adjustment to changes in the

e�cient price.
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Finite speed of market adjustment to news The model of Goldman & Beja (1979) fo-

cuses on general sluggishness in adjustment of market prices and less on the underlying types

of changes in the e�cient price. In fact, their formulation only includes continuous underly-

ing changes. I instead wish to focus on microstructure e�ects that limit market adjustment

speed when something has caused the e�cient price to move discontinuously. The primary

reason for discontinuous changes in the e�cient price is arrival of new information relevant

for valuation of the asset. Thus, the e�ects discussed in the previous subsection, stemming

from limits to how quickly agents can obtain information and to how quickly they evaluate it

and readjust their orders, are even more relevant here than in relation to continuous e�cient

price movements. The discussed impediments to market clearing are less related to the type

of underlying movement, but nevertheless still relevant. In the change to the Goldman & Beja

(1979) model that I propose, market prices adjust gradually to jump movements in the e�cient

price but instantaneously to continuous changes. This is justi�ed by assuming that continuous

changes don't arise due to externally arriving information that agents must analyze, but re
ect

small changes in the environment, such as di�erent changes to individual agents that a�ect

their demand. The remainder of the market is then assumed to be able to react without delay

based on information revealed by price changes, without time-consuming analysis of external

information being necessary.

The above discussion leads to a model for observed prices that adjust to new information

with �nite speed. The log of the underlying e�cient price, Y �t , follows a jump-di�usion model

as in (1), here written in stochastic di�erential equation form,

dY �t = �tdWt + dJ
�
t : (21)

The drift term has been excluded, since it will be negligible for the short time periods considered

in the paper. An asterisk has been added to the compound Poisson jump term, J�t , to indicate

that it's unobserved, similarly to the notation for Y . The behavior of the log of the market

price3, Yt, is given by

dYt = �tdWt + � (Y
�
t � Yt) dt+ �td ~Wt; Y0 = Y �0 : (22)

The last two terms are similar to the model (20) of Goldman & Beja (1979). That is, the

adjustment speed of Yt toward Y �t is on average linear in the distance between these two

prices, with the last di�usion term allowing for some imperfections in the adjustment process.

� is the coe�cient determining the speed of market adjustment, while �t, assumed to go to zero

3More precisely Yt models the quote midpoint. Similarly to Hasbrouck & Ho (1987) a white noise term would
have to be added to the adjustment model to obtain the bid-ask bounce e�ect in transaction prices described
by Roll (1984). This could easily be added to the model, but the focus here is on jump related e�ects, while
e�ects from the bid-ask bounce are mitigated by not using the highest data frequencies.
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as Yt tends to Y
�
t , governs how smooth the adjustment is. Relative to (20) it is assumed that

continuous e�cient price movements don't require adjustment, and thus �tdWt enters directly

into the market price.

The adjustment model can be reformulated to emphasize that it's the jumps in e�cient

price that lead to gradual adjustment in market prices. By de�ning a term Jt as the observed

part of jumps at time t, the model (21) - (22) can be written4

dYt = �tdWt + dJt; (23)

dJt = � (J�t � Jt) dt+ �td ~Wt; J0 = J�0 : (24)

This illustrates that when a jump occurs in J�t , it only becomes observed over time as the term

Jt gradually moves toward J
�
t with randomness governed by �t.

Alternatively, the model can be cast in the e�cient price plus noise framework of (19),

Yt = Y �t + "t;

d"t = ��"tdt+ �td ~Wt � dJ�t "0 = 0; (25)

where the e�cient price still follows (21). Thus, noise that enters market prices shoots up in

the opposite direction in the event of a jump in Y �t . It then reverts back toward zero at a

speed proportional to the size of the noise itself with disturbances determined by �t.

To illustrate the model, an example of how the noise term, "t, behaves is given in �gure

5. A reasonable value for the adjustment speed parameter could be � = 50; 000, which implies

that on average about 92% of a jump is observed after 5 minutes. �t is assumed to be �"t with

� = 50. This gives signi�cant disturbances in the adjustment initially, while also ensuring that

these die out as the noise term, "t, goes to zero.

Jump test when market adjustment speed is �nite Asymptotic identi�cation of jumps

relies on observing possible jumps, Y �s �Y �s� 6= 0, in single increments, y�i , for s 2 (ti � �; ti], no
matter how small � > 0 becomes. In the gradual price adjustment model this is impossible, and

we cannot expect to get better power to detect underlying jumps by increasing the observation

frequency. As clearly illustrated by (23) - (24), observed prices in this model follow a continuous

process with a jump in the drift term. Properties of tests under continuity depend on the

drift term being asymptotically negligible relative to the di�usion term. As the drift term,

� (Y �t � Yt), is very large following an underlying jump, the interval lengths that this holds for
may be far shorter than empirically relevant intervals5. Thus, if observed prices are described

4From (21) and (23) dY �
t � dYt = dJ�t � dJt, and since Y �

0 � Y0 = J�0 � J0, we have Y �
t � Yt = J�t � Jt.

5Consider 15 second intervals, parameter values used in the simulations, � = 50; 000,
p
� = 0:4, and � = 50,

and a jump size at 2% of the price, J�s � Js = 0:02. Then using an Euler discretization, the drift term will be
about 8 bp. of the price, while a one standard deviation in respectively the �tdWt and �"tdŴt terms will be
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by the gradual price adjustment model, tests may have problems detecting jumps, as they

are not observed in single intervals, and they may behave quite di�erently from asymptotic

properties under continuity, due to a temporarily very large drift term. Indeed, the latter

leads to a series of consecutive discrete-time increments that are relatively large and in the

same direction following an underlying jump. How this would a�ect the individual tests is now

discussed.

A series of consecutive increments in the same direction increase B̂ (p; 2�)t relative to

B̂ (p; �)t, since
��y2�i ��p will then be large relative to ��y�i ��p+ ��y�i�1��p. For the AJ test this not only

pushes Ŝ away from the jump value, 1, toward the continuous value, 2, but has the potential

to drive it to even larger values.

The BNS test is based on the property that
��y�i �� ��y�i�1�� will be small relative to �y�i �2 when

there is a jump in y�i . If a jump is observed distributed across a series of consecutive changes

in the same direction, then this e�ect will not be present, such that realized bipower variation,

fY�g[1;1]T , will not be low relative to realized quadratic variation, [Y�]T . This may in �nite

samples even push the R̂ statistic above 1, since
��y�i �� ��y�i�1�� for the dominating increments

around the jump will be of the same size as
�
y�i
�2
, but the �rst is scaled by ��21 > 1 in the

numerator of the ratio statistic, (7).

If a jump is spread across several increments due to noise, these will be smaller and whether

the EV test then detects a jump depends on its magnitude and how it's split. Consecutive

large increments increase the bipower variation estimate of integrated variance, but some of

the now several jump increments may still stand out relative to estimated volatility over the

entire local window.

The joint setting in section 1, under which the jump tests were introduced, followed Lee

& Mykland (2008), while in A��t-Sahalia & Jacod (2009) and Barndor�-Nielsen & Shephard

(2006) the drift term is only assumed to be cadlag. Thus, the jump term in the drift of the

gradual price adjustment model doesn't satisfy the assumptions in section 1, but does satisfy

those in the last two papers, in which it falls under the null hypothesis. A consequence of

concluding that a continuous model is a good description of data is the ability to trade at

all intermediate values when the price changes, which has implications e.g. for hedging and

pricing. In the price adjustment model the reaction to an underlying jump is still quick, and

the behavior after the jump is quite di�erent from usual continuous movement, where the

di�usion term dominates the drift at reasonably short intervals. Thus, if the purpose is to test

whether a well behaved continuous model is su�cient to explain discrete-time observations,

with its practical implications, it makes sense to exclude a model like the gradual adjustment

model from the null hypothesis.

about 7 and 18 bp. of the price.
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The GM case revisited A zoom on the crucial period of the GM case is given in the panels

of �gure 6, which show respectively price and accumulated volume from 12:00 to 12:15, the

period with the large price decline. Instead of an immediate drop, the price changes gradually

over about 5 minutes with many trades at intermediate price levels and with increasing volume.

This behavior illustrates the proposed price adjustment model with a jump in underlying

e�cient price and gradual adjustment to the new level over a 5 � 8 minute period. The

observed increases in trade speed are also consistent with new information being released that

leads investors to adjust their positions, and the sustained high volume indicates that this is a

prolonged process.

Test results in the empirical case make sense when viewed in relation to how tests should

behave in data from the price adjustment model, (21) and (22), with an active jump term. For

intervals of 30 seconds to 2 minutes, the AJ statistic is larger than its asymptotic limit under

continuity, 2, as it was argued to be if jumps are observed gradually. The BNS statistic is close

to 1 and sometimes slightly above, which is also consistent with the proposed model. The EV

test generally produces evidence against continuity in this interval range. As discussed above,

against a price process that adjusts to underlying jumps in a gradual but quick fashion, the

EV test may still have power to reject the null hypothesis of continuity.

When long intervals of 5 or 10 minutes are used, there is large variation in all three test

statistics over the sample starting point, which matches gradual adjustment to an underlying

jump that is cut di�erently into the longer increments. For 5 minute intervals, �gure 7 illus-

trates the details of how the AJ and BNS statistics come out very di�erently for two di�erent

starting points. In one of the illustrated cases, the large price change arrives in a single in-

crement, and thus
��y�i ��p + ��y�i+1��p has the same size as ��y�i + y�i+1��p, and �y�i �2 is larger than

��21
��y�i �� ��y�i+1��, which implies that test statistics have values that indicate a jump. In the other

case, the large price change is split in two increments, and thus
��y�i ��p+ ��y�i+1��p is much smaller

than
��y�i + y�i+1��p, while ��21 ��y�i �� ��y�i+1�� is no longer smaller than �y�i �2. This leads to a value

indicating continuity and one that deviates from the continuity value in the opposite direction

from the jump value. Thus, attempting to improve the ability to detect jumps by testing at

longer intervals, where the full e�ect of a jump may be observed in a single interval, leads to

dependence on the starting point.

Many of the e�ects that lead to gradual adjustment of the market price are probably more

pronounced for surprising �rm speci�c events than for regular macro announcements. Though

news are released in either case, the market will be more ready to a fast reaction in the second

case, while a longer and more gradual response is reasonable when not only the news, but also

the release of news is a surprise. This would explain why the speci�c case of GM, where �rm

speci�c news were released at the day of the study, turns out to be a good illustration of the

adjustment model, while one in other cases one may �nd market behavior with more readily

observed discontinuous price movements.
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6 Monte Carlo Study

The properties of the jump tests are now investigated in a Monte Carlo study. The �rst step

is to consider performance under the no noise case, in which observed prices follow a jump-

di�usion model satisfying (1). Both size, simulating under the null hypothesis, and power,

simulating under the alternative, of the tests are checked. Next, I consider robustness toward

white noise in the additive noise model (19) and price discreteness. Then the test performance

in the price adjustment model (25) is investigated in more detail.

To mimic the form of the high-frequency data in the GM case, I simulate an intraday data

series with observations every second. This gives 23,400 observations in each basic data set,

which one can then subsample from in the same manner as in the empirical study. For each

speci�cation of the data generating process that I consider, a total of 10,000 sample paths are

simulated. I report the mean and standard deviation of the test statistics over the simulations

together with the observed relative rejection frequency of the null hypothesis for the tests at a

signi�cance level of 5%.

Continuous Price Behavior As the baseline model of continuous price behavior I use

a stochastic volatility model in which the instantaneous variance follows a mean reverting

square-root process,

dYt = �tdW1t;

d�2t = !
�
� � �2t

�
dt+ 
�tdW2t: (26)

The drift has been set to zero, since this term will be negligible over the short time intervals to

be studied. The Wiener processes are allowed to be correlated, satisfying E [dW1tdW2t] = �dt,

which allows for the leverage e�ect, i.e. a negative relation between asset price and volatility.

Since realizations for the process are generated as frequently as every second, I choose a simple

Euler discretization to obtain the conditional distribution for YtjYt��. Parameters are set to
realistic values inspired by A��t-Sahalia & Jacod (2009), see notes to the tables for speci�c

values.

For each simulation of the model in (26), the test is applied to increments obtained by

sampling at di�erent intervals lengths from 1 second to 10 minutes. The results in table 1

comply with the theoretical results for the test statistics under the null hypothesis. The Ŝ and

R̂ statistics are close to respectively 2 and 1, their asymptotic values under the null, and the

average rejection rates of all three tests are close to the chosen 5% level. The AJ test rejects a

little less than 5% of the time when the price is observed less frequently, while the other two

tests reject slightly more often than the chosen size.
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White Noise and Price Discreteness This section discusses the robustness of size results

to respectively adding a small price independent noise term and to rounding o� prices to whole

cents. With respect to white noise an error term is added to prices generated according to (26)

of size 0:5 � 10�4, which is either positive or negative with equal probability. This illustrates
the e�ect of a small bid-ask spread of 1 bp. of the price, i.e. 1 cent on a price level of $100,

and trades that are initiated by buyers or sellers with equal probability. With respect to price

discreteness the prices generated by (26) are rounded o� to one of the nearest 100'th decimals,

randomly up or down with equal probability6. This thus also leads to a 1 cent spread with

random trades at either side, but where it is included that prices must be quoted in whole

cents. Test results for these two cases are shown in tables 2 and 3.

The white noise term leads to high rejection rates for the AJ test for 1 and 5 second

intervals in line with the e�ect discussed theoretically by A��t-Sahalia & Jacod (2009). The

BNS and the EV tests instead have lower size at the highest applied frequency, likely due to

in
ated estimates of volatility. For price discreteness both the AJ and BNS tests show too

high rejection rates at 1 and 5 second intervals, while the EV test does not seem to be a�ected.

The di�erent e�ect on the BNS test likely arises as the spread that can only lie on whole cents

leads to many increments with zero price changes, thus decreasing bipower variation relative

to quadratic variation and indicating jumps. This did not happen in the pure white noise case,

in which the underlying price moves the spread even if the next trades are on the same side of

the marked.

The spread that the market maker maintains to cover operating costs may be larger than

the 1 cent used in the simulations here and thus the e�ects may be stronger. Thus the results

show that at least tests applied to intervals shorter than 15 seconds should be interpreted with

care. These simulation results were the reason that the shortest interval length applied in the

empirical case study was 15 seconds, though results for this frequency were still interpreted

with the possibility of e�ects from these noise types in mind. In the study of the e�ects of other

noise types in the simulations from now on white noise will not be added, but only intervals

of at least 15 seconds will be considered.

Jumps in observed price The power to detect jumps is investigated by adding a compound

Poisson term, Jt, to the baseline stochastic volatility model, such that the observed log-price

follows

dYt = �tdW1t + dJt; (27)

in which volatility is the same as in (26). Writing the jump component as Jt =
PNt
j=1 cj ,

the Poisson process Nt has intensity �, and the distribution of jump sizes, cj , is uniform on

6Generated prices are in logs, but the round o� is done in levels and then transfered back to logs to get data
for the tests.
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c ([�2;�1] [ [1; 2]). Here, c is a constant chosen to set the total variance from jumps, � (7=3) c2,
at some fraction, �, of average variance from the continuous part, which is approximately equal

to �.

The jump size distribution ensures that jumps are bounded away from zero, and the de-

termination of c lets frequent jumps be small relative to infrequent jumps. With variance of

the jump term at half of average continuous variance, � = 0:5, jumps at the two considered

intensities, � = 1 and � = 10, are of absolute sizes in respectively the range [1:17; 2:33]% and

[:37; :74]% of the price. Only simulated paths with Nt > 0 are used, as we cannot distinguish

the case with Nt = 0 from continuity, see the discussion below (4). This implies that � is

slightly higher in the resulting set of samples paths. Results of the simulations are in table 4.

For series with few jumps, � = 1, all tests have power close to 1 for short time intervals.

The power of tests decreases with the length of the intervals, but this happens faster for the

AJ test compared to the other two, and slightly faster for the BNS test relative to the EV test.

When smaller but more frequent jumps are considered, the power of the AJ test disappears for

intervals longer than 15 seconds, while the BNS and EV tests retain high power for interval

lengths up to about 2 minutes.

Gradual price adjustment Data is simulated from the gradual price adjustment model to

check the power of the tests against this alternative to the standard continuous model. The

additive noise term in observed prices thus follows (25), such that jumps in the observed series

are realized gradually as in (23)-(24). The speed of market adjustment parameter � is set

to 50,000, implying that about 92% of the jump impact is observed after 5 minutes, and the

adjustment disturbance parameter � is set to 50. An example of a simulated path for observed

prices is shown in �gure 8, and results for jump tests at di�erent frequencies are in table 5.

Results con�rm that the tests have di�culties rejecting the null hypothesis when the de-

viation is due to jumps in the underlying price that are not fully observed in a single price

increment. First, note that the Ŝ statistic is pushed above 2, the asymptotic value under the

null, instead of toward 1, the asymptotic value with jumps. This e�ect was explained in the

previous section and is caused by large neighboring increments in the same direction. For

similar reasons, the R̂ statistic is close to and sometimes above 1 for shorter intervals. The

EV statistic should be increasing for shorter intervals but has largest mean for � at 2 minutes,

since noise then splits the jump into several observed increments, decreasing the size of the

largest one. To sum up, the AJ test practically never rejects the null, the BNS test does so

about 40% of the time for long intervals, 5 to 10 minutes, where most of the jump is allowed

to impact observed prices, while the EV test rejects continuity for a large fraction of simulated

paths all the way down to 15 second intervals. Results thus show that the EV test has most

power of the three tests considered against this alternative to the standard continuous model.
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Robustness to Starting Point In the empirical case study test results for longer time

intervals were very dependent on the starting point, t0. This is now investigated in the sim-

ulation study by repeating for di�erent starting values the tests in the two cases with jumps,

respectively with and without limits to price adjustment. For the results in table 6 and 7, the

reported means and standard deviations are respectively the mean over both starting values

and simulations, and the square root of the average variance over starting values. The rejection

rates give the frequencies of simulated series for which at least 95%, respectively 50%, of the

starting values lead to rejection of the null at 5% signi�cance level. These rejection rates can

help judge whether rejection rates in table 4 and 5 for constant t0 result mainly from variations

over di�erent realizations of the randomness, or mainly from variation in the starting point

relative to the jump time.

Results for the reference case without noise in observations are in table 6. Just requiring

rejection for most starting points, more than 50% of t0's, gives rates similar to those in table 4,

which is expected, since t0 = 0 used there is also random relative to the jump time. Requiring

rejection almost independently of the starting point, for at least 95% of the t0's, reduces

rejection rates considerably in cases where the power in table 4 was not close to one. This

shows that the rejection rates for longer time intervals in table 4 are not only a result of

variation of di�erent realizations of randomness, but also depends on how observations fall

relative to the jump, even when the jump is observed in a single increment.

Results for the case with gradual price adjustment are in table 7. Clearly, tests that almost

never reject continuity for single starting points in table 5 will also not be able to do this when

also some uniformity over starting points is required. Rejection rates for the BNS test for

intervals of length 5 to 10 minutes fall from about 40% almost to 0% when respectively 50%

and 95% uniformity over starting points is required. This shows that the indication in table

5 that the BNS test despite noise still has reasonable a 40% ability to detect jumps if long

enough intervals are used did not arise as a result of rejecting continuity almost independently

of the starting point for this fraction of sample paths, but from starting at the right point

relative to the jump. The rejection rates for the EV test also decline when stability over t0 is

required, especially so for the longer intervals. At medium length intervals, though, the test

still has power to detect jumps in about 50% of the simulated series almost independently of

the starting point.

7 Conclusion

This paper demonstrates the di�culty in detecting jumps if microstructure e�ects cause dis-

continuous changes in the underlying price to a�ect observed prices only in a gradual fashion

over time, and a model of prices when such e�ects are present is suggested. A case study

illustrates how a negative news announcement is followed in the market by a period with many
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small price changes, almost only in the same direction, instead of by an immediate adjustment

between two observed prices. Though gradual price adjustment makes observed prices move

continuously, the price behavior following underlying jumps with many moves almost uniquely

in the same direction are very unlikely in standard di�usion models and thus has di�erent

implications for practical purposes related to the price behavior. Therefore, although the al-

ternative is not a perfectly observed jump, we would still like tests to tell us that the standard

continuous di�usion model is not an adequate description of data.

As jump tests depend on detecting the jump in a single increment, it is no surprise that

observing jumps gradually makes it di�cult for tests to detect the deviation from usual con-

tinuous behavior. There are di�erences among tests, though, as tests that build their inference

on comparisons of neighboring increments have the largest di�culties. The extreme value test

based on Lee & Mykland (2008) relies less on such comparisons and thus has better power to

detect this type of deviation from normal continuous price behavior.

If jumps are not observed immediately at high frequency, a simple suggestion would be to

base tests on observations at a frequency for which jumps have time to fully impact observed

prices. This solution is shown to be 
awed, as the low frequency observations can be extracted

from the full record of observations in many di�erent ways. Test results will then be very

dependent on the starting point from which increments are calculated, as shown both in the

empirical case and in the simulation study.

It would be relevant to further study the generality of whether reactions to news are

observed gradually in high frequency data due to microstructure e�ects. Di�erences may be

expected over markets and types of news announcements, e.g. this pattern may be more

common for speci�c news concerning single stocks relative to news released in regular macro

announcements, where the release of news is expected. It would also be relevant to develop

a way to remove the randomness in outcomes arising due to many possible points in the full

record of observations from which increments at lower frequency can be calculated. A method

could be to repeat the test for all possible starting points at the chosen frequency and then

use a proper aggregation method to arrive at a single test for this frequency. Alternatively,

one could test at high frequency with adjustments of the tests that account for noise due to

microstructure e�ects.
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Appendix

Extreme Value Theory

Consider a sample of i.i.d. random variables fX1; :::; Xng with symmetric distribution around
zero described by the distribution function F . The statistic that counts how many X variables

are numerically larger than a threshold u is

Hu (n) =

nX
i=1

I fjXij > ug .

Due to the symmetric distribution, P (jXij > u) = 2 (1� F (u)), and since the Xi's are inde-
pendent Hu (n) � Bin (n; 2 (1� F (u))). For large n and small p the Binomial distribution is
very well approximated by the Poisson distribution, so it may sometimes be convenient to use

Hu (n)
a� Poi (2n (1� F (u))).

Name the k'th largest jXij variableQk (n). The relation between this extreme order statistic
and the number of exceedences over a threshold is described by equivalence of the events fthe
k'th largest value less than ug and fat most k � 1 values larger than ug, i.e.,

fQk (n) � ug = fHu (n) � k � 1g : (28)

From this it follows immediately that the probability that the k'th largest absolute value is

less than u can be written as the binomial probability of up to k� 1 successes in n trials with
probability p = 2 (1� F (u)),

P (Qk (n) � u) = P (Hu (n) � k � 1) =
k�1X
r=0

�
n

r

�
2r [1� F (u)]r [2F (u)� 1]n�r :

De�ne the value that the k'th largest variable doesn't exceed with probability 1� � as

C�Q (k) = fu : P (Qk (n) � u) = 1� �g : (29)

Since the extreme value test statistic Q̂ (�) in (18) approximately follows the same distribution

as Q1 (n) under the null hypothesis, the value (29) will be the critical value at � signi�cance

level for tests against alternatives where high extremes are critical to the null hypothesis.

Jump Term Parameters

Jt is a compound Poisson process, Jt =
PNt
j=1 cj , where the Poisson process Nt has intensity �

at 1 or 10 per day, and jump sizes cj are uniform on c ([�2;�1] [ [1; 2]). Here, c is a constant
chosen to set the total variance from jumps, � (7=3) c2, at a fraction, � = 0:5, of average
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variance from the continuous part, which is approximately � = 0:16. The way c is chosen

implies that jumps tend to be smaller when they are more frequent.

For cj uniform on c ([��;�1] [ [1; �]), the variance of jump sizes is

var (cj) = 2

Z �c

c

v2

2c (� � 1)dv =
1

c (� � 1)

�
v3

3

��c
c

=
c2

3

�3 � 1
� � 1 = c2

�
�2 + � + 1

�
=3:

This implies that the jump variance in a small increment is

var (J�) = ��c2
�
�2 + � + 1

�
=3;

and speci�cally for � = 2 the jump variance per time unit is c2� (7=3). The average variance

of the continuous part per time unit is approximately the level of mean reversion for �2 which

is �. Therefore, to set jump variance at � fraction of continuous variance, c must be set to

�� = �c2
�
�2 + � + 1

�
=3

c =
q
3��=

�
�
�
�2 + � + 1

��
:
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Table 1:

Levels of tests. Simulation under the null hypothesis.

Mean and std: deviation Rejection rate; � = 5%

� n Ŝ R̂ Q̂ AJ BNS EV

1 sec 23; 400 2:000
:048

1:000
:005

4:219
:285

:049 :049 :052

5 sec 4; 680 1:999
:107

1:000
:012

3:845
:311

:043 :057 :055

15 sec 1; 560 2:001
:188

:999
:020

3:561
:335

:046 :057 :055

30 sec 780 2:002
:262

:999
:028

3:371
:347

:038 :055 :054

1min 390 1:996
:361

:997
:040

3:172
:367

:039 :058 :055

2min 156 2:004
:565

:993
:062

2:896
:395

:033 :064 :055

5min 78 2:035
:783

:988
:088

2:670
:412

:029 :068 :053

10min 39 1:966
1:023

:973
:122

2:432
:440

:032 :079 :059

Note: This table reports results from 10,000 simulations of the AJ, BNS, and EV tests under
the null hypothesis of no jumps. The means and standard deviations of the test statistics
over simulations are shown together with the relative frequencies at which the test statistics
are critical to the null at 5% signi�cance level. The data generating process is the stochastic
volatility model: dYt = �tdW1t, in which squared volatility follows d�

2
t = !

�
� � �2t

�
dt +


�tdW2t, and E [dW1tdW2t] = �dt. Parameters are set to realistic values for stocks,
p
� = 0:4,


 = 0:5, ! = 5, and � = �0:5, following A��t-Sahalia & Jacod (2009). In calculation of realized
truncated p'th variation, necessary for critical values in the AJ test, parameters are set to
 = 4

p
� and $ = 0:47.
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Table 2:

Levels of tests when prices include white noise.

Mean and std: deviation Rejection rate; � = 5%

� n Ŝ R̂ Q̂ AJ BNS EV

1 sec 23; 400 1:711
:044

1:002
:005

4:164
:272

1:000 :021 :035

5 sec 4; 680 1:931
:105

1:000
:012

3:838
:310

:158 :051 :052

15 sec 1; 560 1:975
:181

:999
:020

3:559
:333

:054 :057 :055

30 sec 780 1:991
:260

:999
:028

3:368
:350

:045 :056 :052

1min 390 1:998
:363

:998
:040

3:168
:366

:039 :057 :054

Note: This table reports results from 10,000 simulations of the AJ, BNS, and EV tests under
the null hypothesis of no jumps, but when prices include white noise. The data generating
process for the raw prices is the same as that used to generate results in table 1, but an error
term of :5 � 10�4 is added or subtracted randomly with equal probability for each observation.
This is meant to re
ect a small bid-ask spread of 1 bp. of the price, i.e. 1 cent on a price of
$100, and trades that are randomly initiated by either a buyer or seller.
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Table 3:

Levels of tests when prices are observed in discrete values.

Mean and std: deviation Rejection rate; � = 5%

� n Ŝ R̂ Q̂ AJ BNS EV

1 sec 23; 400 1:634
:043

:955
:006

4:255
:292

1:000 1:000 :052

5 sec 4; 680 1:908
:103

:988
:012

3:865
:317

:212 :275 :061

15 sec 1; 560 1:965
:181

:995
:020

3:575
:336

:059 :084 :059

30 sec 780 1:988
:260

:997
:028

3:373
:346

:047 :065 :053

1min 390 1:996
:361

:996
:039

3:174
:366

:035 :063 :056

Note: This table reports results from 10,000 simulations of the AJ, BNS, and EV tests under
the null hypothesis of no jumps, but when prices are observed in discrete values. The data
generating process for the prices is the same at that used to generate results in table 1, but
prices are rounded o� whole cents, randomly up or down with equal probability, to re
ect a
trade initiated by either a buyer or seller.
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Table 4:

Ability to reject the null hypothesis when paths contain jumps.

Mean and std: deviation Rejection rate; � = 5%

� n Ŝ R̂ Q̂ AJ BNS EV

� = 1 jump per day

15 sec 1; 560 1:018
:147

:626
:126

26:293
4:721

:999 1:000 1:000

30 sec 780 1:036
:220

:639
:126

18:589
3:427

:987 1:000 1:000

1min 390 1:067
:293

:659
:126

13:104
2:509

:894 :995 1:000

2min 156 1:129
:430

:686
:130

9:244
1:878

:624 :953 :999

5min 78 1:300
:682

:730
:145

5:860
1:371

:163 :784 :967

� = 10 jumps per day

15 sec 1; 560 1:143
:210

:759
:064

10:800
1:202

:928 :999 1:000

30 sec 780 1:257
:308

:789
:064

7:805
1:028

:274 :994 1:000

1min 390 1:414
:410

:828
:066

5:741
:892

:070 :945 :997

2min 156 1:598
:546

:872
:076

4:324
:788

:035 :661 :827

5min 78 1:828
:785

:920
:101

3:183
:633

:022 :247 :301

Note: This table reports results from 10,000 simulations of the AJ, BNS, and EV tests when
the paths include jumps. The data generating process is dYt = �tdW1t+ dJt, where �t follows
the same stochastic volatility process used in table 1. Jt is a compound Poisson process,
Jt =

PNt
j=1 cj , where the Poisson process Nt has intensity � at 1 or 10 per day, and jump sizes

cj are uniform on c ([�2;�1] [ [1; 2]). Here, c is a constant chosen to set the total variance
from jumps, � (7=3) c2, at some fraction, � = 0:5, of average variance from the continuous part,
which is approximately � = 0:16. The way c is chosen implies that jumps tend to be smaller
when they are more frequent. Simulated paths without jumps are removed as tests don't have
power against potential but unrealized jumps.
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Table 5:

Rejection rates in gradual price adjustment model

Mean and std: deviation Rejection rate; � = 5%

� n Ŝ R̂ Q̂ AJ BNS EV

15 sec 1560 2:555
:611

1:004
:022

4:866
1:094

:012 :041 :704

30 sec 780 2:864
:876

1:007
:033

4:847
1:146

:013 :047 :747

1min 390 3:076
1:149

1:003
:048

4:860
1:184

:021 :065 :800

2min 156 2:785
1:304

:968
:075

4:880
1:243

:039 :184 :837

5min 78 2:132
1:228

:875
:133

4:474
1:222

:040 :404 :793

10min 39 1:783
1:166

:834
:166

3:659
1:032

:028 :393 :635

Note: This table reports results from 10,000 simulations of the AJ, BNS, and EV tests when
the price follows the gradual adjustment model. Thus, observed log-prices are Yt = Y �t + "t,
where Y �t follows the data generating process in table 4 with jump intensity � = 1 per day, and
the noise term satis�es (25), d"t = ��"tdt+ �"td ~Wt � dJ�t . Parameters are set to � = 50; 000,
corresponding to approximately 8% noise left after 5 minutes, and � = 50, introducing some
randomness in the way jumps disseminate to observed prices.
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Table 6:

Ability to reject the null hypothesis when paths contain jumps.
Tests are repeated for di�erent sample starting points.

Mean and std: deviation
Rejection for min: 95%
(50%) of t0's; � = 5%

� n Ŝ R̂ Q̂ AJ BNS EV

15 sec 1; 560 1:018
:126

:626
:020

26:220
1:344

:995
1:000

:999
1:000

:999
1:000

30 sec 780 1:038
:187

:640
:028

18:513
1:075

:915
:999

:997
:999

:999
:999

1min 390 1:074
:260

:660
:038

13:062
:913

:525
:966

:967
:997

:997
:998

2min 156 1:137
:363

:686
:053

9:210
:787

:088
:680

:845
:969

:992
:997

5min 78 1:297
:571

:732
:081

5:802
:671

:001
:071

:473
:807

:892
:970

10min 39 1:474
:787

:774
:111

4:032
:619

:000
:001

:146
:539

:495
:792

Note: This table reports results from 10,000 simulations of the AJ, BNS, and EV tests when
paths include jumps. The data generating process is the same as that used in table 4 with
jump intensity � at 1 per day. The sensitivity of the results to changing the point from which
increments are calculated is illustrated. Thus, for each simulation of a price path, the tests
using increments at a given time interval, �, are performed for all starting values that lead to a
di�erent set of increments. The mean is taken over both simulations and starting points, while
the standard deviation is the square root of the simulation mean of variances over starting
points. Rejection rates indicate the number of simulations for which the null hypothesis is
rejected at the 5% level for at least 95%, respectively 50%, of the starting values.
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Table 7:

Rejection rates in gradual price adjustment model
Tests are repeated for di�erent sample starting points.

Mean and std: deviation
Rejection for min: 95%
(50%) of t0's; � = 5%

� n Ŝ R̂ Q̂ AJ BNS EV

15 sec 1560 2:551
:438

1:003
:019

4:875
:672

:000
:000

:000
:003

:331
:741

30 sec 780 2:878
:672

1:007
:026

4:848
:677

:000
:000

:000
:004

:423
:782

1min 390 3:052
:972

1:003
:038

4:877
:718

:000
:000

:000
:008

:495
:841

2min 156 2:794
1:178

:968
:060

4:872
:814

:000
:001

:002
:083

:527
:885

5min 78 2:099
1:111

:876
:107

4:453
:873

:000
:001

:018
:372

:334
:869

10min 39 1:834
1:040

:836
:130

3:613
:720

:000
:000

:013
:363

:084
:697

Note: This table reports results from 10,000 simulations of the AJ, BNS, and EV tests when
prices follow the gradual adjustment model. The speci�cations are the same as in table 5,
but the sensitivity of results to changing the point from which increments are calculated is
illustrated. Thus, for each simulation of a price path, the tests using increments at a given
time interval, �, are performed for all starting values that lead to a di�erent set of increments.
The mean is taken over both simulations and starting points, while the standard deviation
is the square root of the simulation mean of variances over starting points. Rejection rates
indicate the number of simulations for which the null hypothesis is rejected at the 5% level for
at least 95%, respectively 50%, of the starting values.
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Figure 1:

Illustration of the Filtering Procedure

Note: The crosses mark all recorded transaction prices, while those with a circle around
are removed by the �lter. The dark line is the median of remaining transaction prices
for each second. This is the series used for the jump tests.
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Figure 2:

General Motors, October 6, 2006.

Note: The top �gure shows observed transaction prices, while the bottom �gure
shows accumulated volume over the trading day.
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Figure 3:

Jump tests in GM data sampled at 15 and 30 second as well as 1 minute intervals.
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Note: Each panel shows results of a given test applied to increments at a given interval length. The rows are
di�erent time intervals: 15 and 30 seconds, and then 1 minute intervals, from top to bottom. The columns
are the AJ, BNS and EV tests, from left to right. For each test at a given frequency results are shown for
all relevant di�erent sample starting values. The dots are values of the test statistics, Ŝ (2; 4; �), R̂ (�) and
Q̂ (�) respectively, and the lines are critical values at 5% signi�cance level. The AJ and BNS tests must be
less than their critical values to be critical for the null, while the EV test must exceed it.
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Figure 4:

Jump tests in GM data sampled at 2, 5, and 10 minute intervals.
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Note: Each panel shows results of a given test applied to increments at a given interval length. The rows are
di�erent time intervals: 2, 5, and 10 minute intervals, from top to bottom. The columns are the AJ, BNS
and EV tests, from left to right. For each test at a given frequency results are shown for all relevant di�erent
sample starting values. The dots are values of the test statistics, Ŝ (2; 4; �), R̂ (�) and Q̂ (�) respectively, and
the lines are critical values at 5% signi�cance level. The AJ and BNS tests must be less than their critical
values to be critical for the null, while the EV test must exceed it.
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Figure 5:

Illustration of Jump Noise
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Note: Example of a path for the noise term in the gradual price adjustment
model. The graph shows how much the observed price, Yt, deviates from the
underlying price Y �t , following a jump in Y

�
t . The noise term is given by d"t =

��"tdt + �"td ~Wt � dJ�t , where parameters are set to � = 50; 000 and � = 50.
As the model is for log-prices the jump corresponds to about 2% of the price
level.
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Figure 6:

General Motors, 12 : 00 to 12 : 15, October 6th, 2006.

Note: Top �gure shows observed transaction prices, while the bottom �gure
shows accumulated volume during the selected period.
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Figure 7:

Illustration of variation in test statistics over starting points
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BNS, t0 = 170s
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Note: Figures illustrate how the AJ and BNS test results arise in the empirical case study for � = 5
minutes when increments are sampled from two di�erent starting points. For the AJ test in �rst row,
the bars are respectively

��y�i ��p and ��y�i + y�i+1��p, while the dotted lines are the accumulated values. The
Ŝ statistic, the ratio of the second graph to �rst in each panel, is thus almost 8 for t0 = 170, and about
1 for t0 = 550. These values are also seen in �gure 4. For the BNS test in second row, the bars are

respectively
�
y�i
�2
and ��21

��y�i �� ��y�i+1��, and again dotted lines are accumulated values. The R̂ statistic is
similarly the ratio of the second graph to �rst in each panel. It is about 1 for t0 = 170, and about 0:6 for
t0 = 250, values that also are seen in �gure 4. These tests therefore show evidence of jumps for starting
values in the second column, while for starting values in the �rst column, the statistics respectively point
to continuity and fall far from asymptotic values under either hypothesis.
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Figure 8:

Examples of Simulated Paths

Note: The �gures show examples of simulated price series in levels for di�erent models. In
the top row to the left is the model under H0, (26), while the �gure to the right is from the
same simulation but with a jump included according to the model (27). The bottom left �gure
adds noise around the jump following the gradual price adjustment model (25). The �nal
�gure zooms in on observations around the jump and illustrates how the price change enters
immediately in the unobserved underlying price, but gradually in the observed price at this
high observation frequency.
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