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1 Introduction

While the Black-Scholes-Merton (BSM) model of Black and Scholes (1973) and Merton

(1973) remains a standard tool for practitioners, when it comes to option pricing many at-

tempts have been made on extending the model to obtain a better fit to actually observed

prices. In particular, several studies have shown that the BSM model, which assumes con-

stant volatility and Gaussian returns, severely underprices out of the money put options,

particularly those with short maturity. In terms of implied volatilities, this leads to the

well-known smile or smirk across moneyness, which is found to be particularly pronounced

for index options. Intuitively, such findings can be the result of either non constant volatility

or non Gaussian returns, or a combination of the two. Thus, extensions to the BSM model

have been developed focusing on relaxing these assumptions.

Several studies have examined models which allow for more flexible specifications of the

volatility process compared to the BSM model. In particular, the stochastic volatility (SV)

models have successfully been applied, see Hull and White (1987), Johnson and Shanno

(1987), Scott (1987), Stein and Stein (1991), Wiggins (1987), Amin and Ng (1993), and

Heston (1993). When comparing these models to the BSM model, empirically support is

found for the stochastic volatility specification. This is documented in Bakshi, Cao, and Chen

(1997), Bates (2000), and Nandi (1996) when considering options on the S&P 500 index or

the index futures. In addition to the SV models, the generalized autoregressive conditional

heteroskedasticity (GARCH) framework has been used for option pricing using the model of

Duan (1995). This model has also been used with success for empirical option pricing by,

among others, Christoffersen and Jacobs (2004), Heston and Nandi (2000), and Hsieh and

Ritchken (2005). A recent contribution is Christoffersen, Jacobs, Ornthanalai, and Wang

(2008) where the volatility is allowed to have both short and long run components. These

studies have all analyzed options on the S&P 500 index and found that the GARCH models

diminish the mispricings found when using the constant volatility BSM model. Stentoft

(2005) documents the same using a sample individual stock options and options on the S&P

100 index.

However, while the improvements in option pricing performance of SV and GARCH mod-
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els are important, mispricings still exist when comparing these models to actual option data

as documented by Nandi (1996). This has led to the development of option pricing models

which rely on alternative conditional distributions in addition to having non constant volatil-

ity. In the SV literature, jumps have been introduced in the return and volatility processes.

Classical references are, among others, Bakshi, Cao, and Chen (1997), Bakshi, Cao, and

Chen (2000), Bates (1991), Bates (2000), Pan (2002), and Eraker (2004). When examining

the empirical performance of these models, most of the above papers find support for the

existence of jumps again when looking at S&P 500 index options. One exception is Bakshi,

Cao, and Chen (2000) which, however, analyzes long term options and finds only small gains

of allowing for jumps. In addition to the jump-diffusion processes, models based on infinite

activity Lévy processes have been proposed in Barndorff-Nielsen and Shephard (2001) and

Carr, Geman, Madan, and Yor (2003), and on time changed Lévy processes in Carr and

Wu (2004) with applications to currency options in Carr and Wu (2007) and Bakshi, Carr,

and Wu (2008). Within the GARCH literature extensions include the use of distributions

which are either skewed or leptokurtic, or both, as is done in Duan (1999) and Christof-

fersen, Elkamhi, Feunou, and Jacobs (2008). For empirical applications of this framework,

see Christoffersen, Heston, and Jacobs (2006), Christoffersen, Jacobs, Dorion, and Wang

(2008) and Stentoft (2008). Although Christoffersen, Jacobs, Dorion, and Wang (2008) find

little improvement for the non-normal models Christoffersen, Heston, and Jacobs (2006) ob-

serve that allowing for non-normal innovations is important when pricing out of the money

put options on the S&P 500 index. Moreover, Stentoft (2008) documents improvements for

both call and put options in terms of fitting the smile across moneyness for a sample of

individual stock options as well as for options on the S&P 100 index. In addition to models

with non Gaussian innovations, GARCH models with jumps have been developed by Duan,

Ritchken, and Sun (2006) and Christoffersen, Jacobs, and Ornthanalai (2008). The latter of

these papers also examines the empirical performance and shows that jumps are important

empirically when pricing S&P 500 index options.

The discussion above documents that important advances have been made in the em-

pirical option pricing literature when it comes to extending the BSM model. However, it

is also clear that there is still much room for improvements as discussed in the reviews by
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Bates (2003) and Garcia, Gysels, and Renault (2009). In particular, the existing research has

shown that there are large differences between the conditional distribution of the underlying

asset and the distribution implied from option pricing. One difference is that the volatility

implied by at the money options is significantly different from that observed over the life

of the option. However, much more importantly is the finding that the implied volatility

curve, that is the implied volatility plotted against moneyness, is not only asymmetric but

also changes through time. The first of these findings implies substantial negative skewness,

more than is often found in the underlying process, whereas the latter indicates that mo-

ments of higher order are time varying. In the present paper, we price options using mixed

normal heteroskedasticity models, and we argue that our proposed model can address the

above points. In particular, the type of finite mixture model we use is flexible enough to

approximate arbitrarily well any kind of conditional distribution, for example highly skewed

and leptokurtic, and to allow for stochastic volatility of the returns on the underlying asset

of the option contract. We suggest a feasible way for option pricing within this general

framework and we derive the appropriate risk neutral dynamics. In our application, we find

pronounced differences between the risk neutral distribution and the conditional distribution

of the underlying asset given the significant risk premium. We show that our model allows

for significant negative skewness and time varying higher order moments.

Finite mixture models, which are convex combinations of densities, are becoming a stan-

dard tool in financial econometrics. They are attractive because of the parsimonious flexi-

bility they provide in the specification of the distribution of the underlying random variable,

which gives them a semiparametric flavor. In this framework, each distribution in the mixture

can have its own mean and conditional variance process. Moreover, if required by the data,

some conditional variance processes may even be weakly nonstationary, for example to cap-

ture turbulent periods, while the overall conditional variance remains weakly stationary. Fi-

nite mixture textbooks are for example McLachlan and Peel (2000) and Frühwirth-Schnatter

(2006). Early applications are Kon (1982) and Kim and Kon (1994) who investigate the sta-

tistical properties of stock returns using mixture models. Boothe and Glassman (1987),

Tucker and Pond (1988), and Pan, Chan, and Fok (1995) use mixtures of normals to model

exchange rates. Recent examples are Wong and Li (2000) and Wong and Li (2001) who
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model the conditional return distribution, extended by Haas, Mittnik, and Paolella (2004)

with an application of value at risk prediction, and Bauwens and Rombouts (2007a) for the

clustering of financial time series. Durham (2007) investigates the power of finite mixtures

of normal densities with stochastic volatility to model the return of the S&P 500 index.

Using statistical criteria such as QQ-plots, goodness-of-fit tests and information criteria he

finds that the finite mixture does a good job of capturing the salient features of the data.

We extend his work by analyzing the performance of finite mixtures in out-of-sample option

pricing. Hence, we focus mostly on the financial properties of the finite mixture instead of its

statistical properties. In doing so, we examine both the physical and risk neutral measures,

which are shown to be very different.

The main advantages of the Bayesian approach are twofold. Firstly, we avoid the max-

imization of the involved likelihood function of the mixture model. Instead, we compute

posterior moments of the model parameters by sampling from the posterior density. This

is possible thanks to data augmentation, a technique that includes latent variables in the

parameter space, so that they also can be drawn using the Bayesian sampler. Secondly, the

predictive price densities, we compute for evaluating the option prices, are easily obtained

as a by-product of the Bayesian sampler and take into account parameter uncertainty, be-

cause we integrate over the entire parameter space. This is unlike classical inference that

almost always conditions on maximum likelihood estimates. Another interesting advantage

of the Bayesian approach is that our procedure can be applied directly to the raw returns

instead of percentage returns without running into problems of numerically stability. This is

particularly convenient when pricing options since the riskneutralization procedure involves

nonlinear transformations of the model parameters and the data. We note that Bayesian

inference combines data information and prior information. However, the priors we use in

this paper are diffusive, so that we give most of the weight to the data to learn about the

model parameters.

Our results show that the added flexibility of the finite mixture model in terms of both

skewness and excess kurtosis provides important improvements in terms of predicted option

prices. We use our model to forecast out-of-sample prices of 8,637 call and put options on

the S&P 500 index in 2006 and compute dollar losses and implied standard deviation losses.
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Using dollar losses the results are quite similar for call options, but for put options the

losses are approximately 16% or $0.34 smaller. Moreover, improvements are found for most

categories of moneyness and maturity. The largest improvement in dollar terms is $1.92

for the deep out of the money call options with very long maturity, and $1.71 for the deep

in the money put options also with very long maturity. In percentage of the mean option

prices, the improvement is largest for the shorter term options which are out of the money.

For the call options it is as high as 37% for options which are deep out of the money with

short maturity. Finally, using implied volatility losses, we also show that the mixed normal

heteroskedasticity model performs significantly better for options far away from being at

the money. Moreover, when the losses are considered across moneyness for various maturity

categories, it is observed that our model does a much better job than the GARCH model

in explaining the smirk found in our sample of options. The improvements are particularly

pronounced for the short term options.

It should be noted that we use only historical data on the underlying asset to obtain the

parameters to be used for option valuation. However, it is very likely that historical option

prices themselves contain important information on the model parameters. Therefore, an

alternative approach is to infer these parameters either from historical option data alone or

by using both returns and options data, by calibrating the option pricing model to existing

option data, as detailed in Chernov and Ghysels (2000). This is for example the procedure

used in Jacquier and Jarrow (2000), who incorporates parameter uncertainty and model error

in the BSM model, and in Eraker (2004), who develops an option pricing model allowing

for stochastic volatility with jumps in both the return and the volatility processes. In both

of these papers, option pricing models within the affine class are considered, a choice which

is motivated by the existence of closed or semiclosed form pricing formulas. However, this

class of models could be considered as restrictive since many of the well known specifications

within for example the GARCH framework are non-affine. An important exception is Heston

and Nandi (2000). Moreover, research has shown that in terms of option pricing, non-affine

models often perform better than affine models, see for example Hsieh and Ritchken (2005)

and Christoffersen, Jacobs, Dorion, and Wang (2008). In the framework of the mixed normal

heteroskedasticity model considered here, closed or semiclosed form solutions for option
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prices do not exist. Thus, using option data for estimation purposes along the lines above

becomes extremely cumbersome if at all possible.

The rest of the paper is organized as follows: Section 2 presents the mixed normal

heteroskedasticity model. In Section 3 we discuss the risk neutral dynamics, and in Section

4 we explain how options can be priced using the mixed normal heteroskedasticity model.

Section 5, explains how to conduct Bayesian inference and compute predictive price densities

taking into account parameter uncertainty. Section 6, reports the results on the empirical

application to options on the S&P 500 index. Finally, Section 7 contains the conclusion.

2 Mixed normal heteroskedasticity

Building on the finite mixtures with autoregressive means and variances of Wong and Li

(2000) and Wong and Li (2001), Haas, Mittnik, and Paolella (2004) develop a mixture of

normals coupled with the GARCH specification to capture, for example, conditional kurtosis

and skewness. They define a mixture model on a demeaned series εt = yt−E(yt|Ft−1) where

Ft−1 is the information set up to time t and the conditional mean does not depend on the

mixture. The conditional distribution of εt is a combination of K densities

F (εt|Ft−1) =

K∑
k=1

πkΦ

(
εt − μk

σk,t

)
, (1)

where

σ2
k,t = ωk + αkε

2
t−1 + βkσ

2
k,t−1, (2)

and Φ(·) is the standard Gaussian distribution. We denote this the mixed normal het-

eroskedasticity (MNGARCH) model. For each t in this finite mixture framework, εt is drawn

from one of the K conditional distributions with probabilities π1, . . . , πK . Consequently, the

parameter πk is restricted to be positive for all k and
∑K

k=1 πk = 1, which is imposed by

setting πK = 1 −∑K−1
k=1 πk. The zero mean assumption on εt is ensured by the restriction

μK = −
K−1∑
k=1

πkμk

πK
. (3)
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Note that this zero mean restriction does not imply a symmetric distribution. The latter

would only happen if all μK ’s are zero, something that can be tested. Indeed, the fact that

our model is able to generate substantial skewness is an important advantage as documented

also in Durham (2007).

Conditional moments of εt for the MNGARCH model are combinations of the K distri-

bution moments in (1). The conditional variance of εt is given by

σ2
t =

K∑
k=1

(
πkμ

2
k + πkσ

2
k,t

)
. (4)

The conditional third moment is given by

Et−1(ε
3
t ) =

K∑
k=1

(
πkμ

3
k + 3πkσ

2
k,tμk

)
, (5)

and the conditional fourth moment is given by

Et−1(ε
4
t ) =

K∑
k=1

(
πkμ

4
k + 6πkμ

2
kσ

2
k,t + 3πkσ

4
k,t

)
, (6)

where Et−1(·) means the expectation conditional on Ft−1. These formulas illustrate that

we can have flexible dynamics compared to the classical GARCH model which arises when

K = 1. For example, the skewness of the conditional distribution of returns would be forced

to zero in the latter case.

The MNGARCH model defined here is substantially different from the component volatil-

ity models introduced by Ding and Granger (1996) and Engle and Lee (1999). The compo-

nent volatility model incorporates in a convenient way long range dependence in volatility.

Each component allows the variance innovations to decay at a different rate, however there is

only one conditional variance process. It can easily be shown that the component volatility

model is a GARCH model with more lags in the squared innovations and the conditional

variances than the conventional GARCH(1,1) model. For example, in Engle and Lee (1999),

one component captures the long run movements in volatility while a second component

accounts for the short run volatility movements. Skewness in the conditional return distri-

bution is only possible when the innovation distribution is skewed. However, it is possible to

have skewness in the unconditional return distribution if there is a time varying conditional

mean in the model, see He, Silvennoinen, and Terasvirta (2008) for more details.
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What makes the mixture model attractive from an econometric point of view is the

common innovation term εt that feeds in the K conditional variance equations. Therefore,

evaluation of the likelihood function is possible since there is no path dependence problem

as would be the case in a Markov switching GARCH model. Note that to have an overall

variance process that is weakly stationary, only one of the conditional variance processes is

required to be weakly stationary. The other K−1 conditional variance processes are allowed

to be explosive (αk + βk > 1) as long as their combined probability is not too high. More

formally, the weak stationarity condition for the model is[ K∑
k=1

πk

(1 − βk)

(
1 − αk − βk

)] K∏
k=1

(1 − βk) > 0. (7)

More details on the unconditional moments of the mixed normal heteroskedasticity model

can be found in Haas, Mittnik, and Paolella (2004).

The parameters of the mixture model are not identified as such because of the label

switching problem which leaves the model likelihood unchanged when we change the order

of the distributions in the finite mixture. This is not a problem if the objects of interest are

label invariant, an example would be the predictive density of future returns. However, if

we want to give a financial interpretation of the parameters, like in this paper, we add an

identification restriction like π1 ≥ π2 ≥ . . . > πK . Other restrictions, for example on the

mean of the distributions, are possible as explained in Hamilton, Zha, and Waggoner (2007).

Finally, we note that the mixture model can incorporate extreme events by having a

distribution with very low probability and with a large mean and a small constant variance

for example. Moreover, the model can be made even more general by considering other

conditional variance models than the GARCH model of Bollerslev (1986) used here. Exam-

ples include, but are not restricted to, the NGARCH model of Engle and Ng (1993), the

GJR-GARCH model of Glosten, Jagannathan, and Runkle (1993), or the EGARCH model of

Nelson (1991) all of which allow for asymmetries in the volatility process. Furthermore, other

distributions than the normal can be considered in the finite mixture like the exponential

power distribution proposed by Bouaddi and Rombouts (2009).
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2.1 Asset return dynamics with mixed normal heteroskedasticity

In this paper, we use the dynamics above as the driving innovation for asset returns. To be

specific, we assume that the underlying return process Rt ≡ ln (St/St−1) can be characterized

by

Rt = μt − Ψt (−1) + εt, (8)

where St is the index level on day t and where εt follows (1). In (8), the term Ψt (·) denotes

the conditional cumulant generating function which corresponds to the logarithm of the

conditional moment generating function. The conditional moment generating function (also

called the conditional Laplace transform) of εt in (1) is given by

Et−1 exp(−uεt) =

K∑
k=1

πi exp

(
−uμk +

u2σ2
k,t

2

)
. (9)

In fact, this is just a convex combination of Gaussian moment generating functions and thus

very easy to calculate. For option pricing purposes, the logarithm of this function will be

used extensively, and the fact that it may easily be calculated is therefore convenient.

Using (9), the conditional cumulant generating function evaluated at u = −1 is now

simply given by

ln (Et−1 [exp (εt)]) = Ψt (−1) . (10)

Substituting this into (8), we see that

Et−1 [St/St−1] = Et−1 [exp (μt − Ψt (−1) + εt)]

= exp (μt) . (11)

It makes indeed sense to define the return process as above since with this particular speci-

fication, since μt can be interpreted as the expected gross rate of return.

3 Risk neutral dynamics

Once the conditional distribution of Rt is specified, the proposed system can be taken to

the data. However, when the ultimate goal is that of option pricing some further work
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is needed. In particular, for option pricing to proceed an equivalent martingale measure

(EMM) is needed. While technically complicated, intuitively what we are looking for is a

”transformation” to the distribution of εt. This transformation, however, has to be special

in the sense that the two measures, the original and the transformed one, have the same null

sets, i.e. they are equivalent. Furthermore, under the transformed measure, the expected

gross rate of returns should equal the risk free rate, i.e. discounted returns are martingales.

The new conditional distribution is distinguished from the original density F by adding a

superscript Q. We will refer to this as either the distribution under Q, the distribution under

the risk neutral measure, or simply as the risk neutral distribution.

In this paper, we follow the approach of Christoffersen, Elkamhi, Feunou, and Jacobs

(2008) which involves the specification of a candidate EMM through a specification of a

Radon-Nikodym derivative. A similar method, which would provide an equal set of condi-

tions, specifies a candidate stochastic discount factor directly as is done in Gourieroux and

Monfort (2007). For a discussion of the relationship between the two probability measures F

and Q and the corresponding stochastic discount factor see Bertholon, Monfort, and Pego-

raro (2008). Note that an alternative method is to work within a general equilibrium setup

as is done in Duan (1999). While this method also yields the dynamics to be used for option

pricing, the specification is generally less explicit and an actual application of the method

computationally complex (see e.g. Stentoft (2008)). Thus, this approach appears to be more

restrictive.

Once a candidate EMM is obtained, European options may be priced as the expected

value, under the EMM, of future cash flows discounted using the risk free interest rate. For

example, the price of a European call option at time T with maturity T ∗ and strike price K

can be computed as

CT (S, T ∗, K) = e−r(T ∗−T )

∫ ∞

0

max(ST ∗ − K, 0)fQ(ST ∗)dST ∗ (12)

where fQ(ST ∗) is the density of the underlying asset price at expiration under the EMM, i.e.

the risk neutral density.
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3.1 Specification of a candidate EMM

We specify a candidate EMM from the following Radon-Nikodym derivative

dQ

dF

∣∣∣∣Ft = exp

(
−

t∑
i=1

(νiεi + Ψi (νi))

)
, (13)

where Ψt (u) is the conditional cumulant generating function specified above. It is immedi-

ately observed that by using a Radon-Nikodym of this type we are guaranteed that the two

measures are equivalent as they have the same null sets. To ensure that discounted asset

prices are martingales under the risk neutral measure it can be shown that the sequence νt

has to satisfy the following equation

0 = Ψt (νt − 1) − Ψt (νt) − Ψt (−1) + μt − rt. (14)

Moreover, we have that under the risk neutral measure the conditional cumulant generating

function of εt is given by

ΨQ
t (u) = Ψt (νt + u) − Ψt (νt) . (15)

Using the Inversion Theorem (see for example Billingsley (1995, Theorem 26.2) or Davidson

(1997, Theorem 11.12)) this can be used to obtain (15) the distribution under Q.

The two above equations completely characterize the risk neutral process and hence

this is, in fact, all that is needed for option pricing purposes. In particular, equation (15)

characterizes the risk neutral distribution in terms of the sequence ν and equation (14)

provides the link between this sequence and the properties under the original measure F . In

order to apply the method for pricing, however, all that is left is to derive these dynamics

explicitly. To do this, we simply use (14) and (15) in the mean equation in (8). Doing so,

we obtain the following specification of the risk neutral dynamics

RQ
t = rt − ΨQ

t (−1) + εQ
t , (16)

where the superscript Q indicates that the variables are considered under the risk neutral

distribution. Using this specification, we can calculate the gross rate of return on assets

under Q as

EQ
t−1 [St/St−1] = EQ

t−1

[
exp

(
rt − ΨQ

t (−1) + εt

)]
= exp (rt) . (17)
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Thus, it equals the risk free interest rate as required.

As it was noted in Christoffersen, Elkamhi, Feunou, and Jacobs (2008), the above method

is only one of several ways to derive the risk neutral dynamics to be used for option pricing.

In fact, in the present setting markets are incomplete and hence in general no unique EMM

exists as is the case in for example the constant volatility BSM model. However, in this setup

the obtained option prices are in fact unique conditional on the choice of Radon-Nikodym

derivative.

3.2 A strategy for riskneutralization

Based on the above, the strategy to follow for option pricing is clear and consists of the

following three steps:

• First, a sequence νt which satisfy (14) has to be specified. If possible, this can be done

directly by inverting the conditional cumulant generating function. Below, we propose

an alternative and somewhat indirect way of specifying this sequence which can be

used in general.

• Secondly, given the sequence for νt the conditional cumulant generating function for εt

under the risk neutral density can be obtained from (15). With this the distribution

of εt under the Q measure can be obtained.

• Finally, the return process under the risk neutral measure can be obtained from (16)

and this then specifies the dynamics to be used for option pricing purposes. Note that

if the conditional variance depends on the innovations, as it is the case in for example

the GARCH specification, it is the innovations from this distribution which should be

used.

It is immediately seen, that the procedure we use riskneutralizes by changing the distri-

bution of the innovations. This is in line with the procedure used in the BSM model and in

most of the SV literature. It also corresponds to the method used in Duan (1999), although

the obtained distribution is given somewhat implicitly in this framework as mentioned above.

However, the method differs from the procedure used in Barone-Adesi, Engle, and Mancini
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(2008), where it is the actual parameters of the mean and variance process, that are changed

under Q.

3.2.1 The Gaussian special case

We now consider the Gaussian special case for illustrative purposes. In this case, the condi-

tional cumulant generating function of εt is given by

Ψt (u) =
1

2
σ2

t u
2. (18)

We now proceed with the three steps outlined above for risk neutralization:

• Substituting the conditional cumulant generating function into (14), we can rewrite

the EMM restriction as

0 =
1

2
σ2

t (νt − 1)2 − 1

2
σ2

t (νt)
2 − 1

2
σ2

t (−1)2 + μt − rt

= −σ2
t νt + μt − rt. (19)

Thus, in this case, there is an exact and analytically tractable mapping between μt

and the required νt. In particular, for any choice of μt, the corresponding νt process is

given by

νt =
μt − rt

σ2
t

. (20)

• Substituting (20) into (15) and using the specification of the cumulant generating

function, we obtain

ΨQ
t (u) =

1

2
σ2

t

(
μt − rt

σ2
t

+ u

)2

− 1

2
σ2

t

(
μt − rt

σ2
t

)2

= (μt − rt)u +
1

2
σ2

t u
2. (21)

This, however, is recognized as the cumulant generating function of a Gaussian variable

with mean equal to − (μt − rt) and variance equal to σ2
t . Thus, it follows that εt is

distributed as N (rt − μt, σ
2
t ) under Q.
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• The risk neutral dynamics may now be obtained as

RQ
t = rt − ΨQ

t (−1) + εQ
t

= μt − 1

2
σ2

t + εQ
t . (22)

To be even more specific, we take as an example the particular choice of mean specification

used in Duan (1995) where μt = rt + λσt. Substituting this into (22), the risk neutral

dynamics are obtained as

RQ
t = rt + λσt − 1

2
σ2

t + εQ
t . (23)

Moreover, assume that the conditional variance is of the GARCH type given by

σ2
t = ω + αε2

t−1 + βσ2
t−1. (24)

Then, under the risk neutral dynamics the conditional variance is given by

σ2
t = ω + α(εQ

t−1)
2 + βσ2

t−1. (25)

4 Option pricing under general assumptions

In the previous section, we outlined a strategy for riskneutralization and we provided an

example on how this can be implemented in the Gaussian special case. In this section, we

show how this can be done under more general assumptions and we interpret the effect of

riskneutralization on the model parameters. We first provide a general method for obtaining

a solution to the restriction in equation (14) used in the first step. We then derive the

risk neutral distribution in the mixed normal heteroskedasticity model from the conditional

cumulant generating function obtained in the second step from (15).

4.1 Feasible option pricing

As mentioned above, we effectively choose the appropriate EMM by solving (14) for νt given

μt and the assumed distribution of εt. However, this is potentially complicated due to the

nonlinearity of this relationship and an analytical expression for νt may therefore not be
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available in general. In particular, this is the case with the mixed normal heteroskedasticity

model used here, and it may thus seem to be impossible to derive the EMM given μt for this

model.

However, (14) may equally well be solved for μt given νt and the assumed distribution of

εt as

μt = rt − Ψt (νt − 1) + Ψt (νt) + Ψt (−1) . (26)

From this, we note that for any choice of νt a closed form expression exist for μt given that

the cumulant generating function exists. Substituting this into the return equation in (8)

we obtain

Rt = rt − Ψt (νt − 1) + Ψt (νt) + εt, (27)

which can be used for estimation directly. This way of implying μt, given a particular

specification of νt, is used in Stentoft (2008) in the Normal Inverse Gaussian framework

using the option pricing model of Duan (1999). However, it is equally applicable here.

It should be noted that, depending on the specification of νt and the assumed distribution

of εt, we may interpret the specification in (27) differently. We next illustrate this for the

Gaussian case and then for the general case.

4.1.1 Interpreting νt in the Gaussian special case

With the Gaussian distribution, we obtain the following in (27) above

Rt = rt − Ψt (νt − 1) + Ψt (νt) + εt

= rt − 1

2
σ2

t (vt − 1)2 +
1

2
σ2

t (vt)
2 + εt

= rt − 1

2
σ2

t + νtσ
2
t + εt. (28)

Hence, we see that νt is related to the assumption of the unit risk premium. In particular, if

we were to specify νt = ν, that is as a constant, the implied mean specification corresponds

to assuming a unit risk premium proportional to the level of the variance. Alternatively,

if νt = ν/σt, the unit risk premium becomes proportional to the level of the standard

deviation, and finally with νt = ν/σ2
t a constant unit risk premium independent of the level
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of the variance is obtained. Thus, while it may appear that we, by implying the mean, are

constraining the potential mean specification in an unreasonably way from an econometric

point of view, this is in fact not the case.

4.1.2 Interpreting νt in the general case

In the Gaussian case, the sequence νt was immediately interpreted as determining the unit

risk premium. In the mixed normal heteroskedasticity model this is less obvious. However,

we may analyze the effect of νt using a Taylor series expansion in (27). To do this, we first

note that the two terms involving the log moment generating functions may be approximated

by

Ψt(νt − 1) ≈ Ψt(0) + Ψ′
t(0) (νt − 1) +

1

2
Ψ′′

t (0) (νt − 1)2

+
1

6
Ψ′′′

t (0) (νt − 1)3 +
1

24
Ψ′′′′

t (0) (νt − 1)4 (29)

and

Ψt(νt) ≈ Ψt(0) + Ψ′
t(0)νt +

1

2
Ψ′′

t (0)ν2
t +

1

6
Ψ′′′

t (0)ν3
t +

1

24
Ψ′′′′

t (0)ν4
t , (30)

respectively. Furthermore, by the definition of εt as a zero mean random variable with

conditional variance σ2
t we have that Ψ′

t(0) = 0 and Ψ′′
t (0) = σ2

t . Moreover, by the definition

of Ψt(u), we have that Ψ′′′
t (0) = −skewtσ

3
t and Ψ′′′′

t (0) = exkurttσ
4
t , where skewt and exkurtt

denotes the conditional skewness and excess kurtosis at time t respectively.

With the above expressions, (27) may be rewritten as

Rt ≈ rt −Ψt(−1) + νtσ
2
t +

(3ν2
t − 3νt)

6
(−skewt)σ

3
t +

(4ν3
t − 6ν2

t + 4νt)

24
exkurttσ

4
t + εt, (31)

where we have collected all the terms which do not involve νt in Ψt(−1). Equation (31)

shows that even in the more general setting it makes sense to interpret νt as the unit risk

premium. In particular, it may be observed that for reasonable values of νt, say larger than

1, the coefficients above are all positive. In Figure 4.1.2, we plot in panels (a) through

(c) the coefficients of the variance term, the skewness term, and the excess kurtosis term

as a function of νt. Thus, in a general setting, the premium is increasing in the variance,

decreasing in the skewness, and increasing in the excess kurtosis.
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Figure 1: Unit risk premium effects

This figure plots the coefficients of the variance term, the skewness term, and the excess kurtosis
term in (31) as a function of νt in panels (a) through (c). Panel (d) plots the combined effect.

In the case of our model for the S&P 500 index, for which we obtain negative skewness

and significantly excess kurtosis, equation (31) shows that the higher the value of νt the

larger the premium required by investors for holding this particular risky asset. Panel (d) of

Figure 4.1.2 plots the combined effect of the three terms with a solid line. Note also, that if

we were to neglect these higher order moment properties of the return process and assume

them equal to zero, then to compensate for this a higher value of νt would be required to

generate the same overall level of compensation for risk. This is clear from the dotted line

in Panel (d) of Figure 4.1.2 which shows the effect without the higher order terms.
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4.2 Risk neutral distribution in the mixed normal heteroskedas-

ticity model

Once a sequence νt has been obtained, in the second step in the riskneutralization strategy,

the risk neutral distribution are obtained from (15). For this, we need the conditional cumu-

lant generating function for the mixed normal heteroskedastic model which from equation

(9), becomes

Ψt(u) = ln

(
K∑

k=1

πi exp

(
−uμk +

u2σ2
k,t

2

))
. (32)

Using this, the conditional cumulant generation function of εt under the risk neutral measure

Q is easily obtained as

ΨQ
t (u) = Ψt(νt + u) − Ψt(νt)

= ln

⎛⎝∑K
k=1 πi exp

(
−(νt + u)μk +

(νt+u)2σ2
k,t

2

)
∑K

k=1 πi exp
(
−νtμk +

ν2
t σ2

k,t

2

)
⎞⎠

= ln

(
K∑

k=1

π∗
i exp

(
−uμ∗

k +
u2σ2

k,t

2

))
, (33)

where

μ∗
k,t = μk − νtσ

2
k,t, (34)

and

π∗
k,t =

πk exp
(
−νtμk +

ν2
t σ2

k,t

2

)
∑K

k=1 πk exp
(
−νtμk +

ν2
t σ2

k,t

2

) , (35)

for k = 1, .., K. Thus, the risk neutral distribution of εt remains within the family of normal

mixtures. In fact, in the special case with no unit risk premium, the above equations show

that the risk neutral distribution correspond to the original distribution. In general, however,

under Q the distribution of εt will have changed means and probabilities.

We remark that for the risk neutral distribution, the weak stationarity condition in (7)

is not appropriate anymore, since the finite mixture under Q has time varying distribution
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probabilities π∗
t . Therefore, it can in principle occur, that the physical distribution is weakly

stationary, but the risk neutral distribution is not.

4.2.1 Interpreting the impact of riskneutralization

For simplicity, we now consider the special case where K = 2. With respect to the risk

neutral means from (34), it is immediately seen that the correction is very similar to what is

obtained with the Gaussian model, where the mean of εt under Q is equal to rt−μt = −νtσ
2
t .

The intuition behind this is the following: If volatility risk carries a positive premium, then

in the risk neutral world the mean of the innovations is shifted downwards to compensate

for this.

With respect to the risk neutralized probabilities, the relationship is somewhat less

straightforward. However, when K = 2 (35) simplifies to

π∗
t =

π exp
(
−νtμ1 +

ν2
t σ2

1,t

2

)
π exp

(
−νtμ1 +

ν2
t σ2

1,t

2

)
+ (1 − π) exp

(
−νtμ2 +

ν2
t σ2

2,t

2

) . (36)

Moreover, by dividing through with exp
(
−νtμ1 +

ν2
t σ2

1,t

2

)
, it is seen that

π∗
t � π if exp

(
−νtμ1 +

ν2
t σ

2
1,t

2

)
� exp

(
−νtμ2 +

ν2
t σ

2
2,t

2

)
. (37)

Thus, if we further assume that the variance term
ν2

t σ2
k,t

2
is negligible compared to the mean

term −νtμk, for k = 1, 2, this restriction simplifies to

π∗
t � π if νtμ2 � νtμ1. (38)

However, by construction μ2 < μ1 and hence the effect on the probabilities depends entirely

on the sign of the unit risk premium. Since we expect this premium to be positive, it follows

that we will in general have that π∗
t < π. The intuition behind this result is the following:

If volatility risk carries a positive premium then the probability attributed to the explosive

part, that is 1 − π∗
t , is increased in the risk neutral world to compensate appropriately for

this.
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5 Bayesian Inference

Bayesian inference is an approach to statistics that describes the model parameters as well

as the data by probability distributions. It has become of widespread use in economics

since Zellner (1971), van Dijk and Kloek (1978) and Geweke (1989a). Recent introductions

to Bayesian inference are Koop (2003) and Geweke (2005), whereas the last chapter of

Tsay (2005) treats inference for some particular models often used in financial econometrics.

Polson and Johannes (2009) explain how to estimate equity price models, driven for example

by stochastic volatility and jumps, using Markov Chain Monte Carlo (MCMC) methods.

In order to learn about the model parameters of the mixed normal heteroskedasticity

model and to forecast out-of-sample option prices, we need to draw from the posterior den-

sity. Unfortunately, the posterior density is too involved to sample from directly because it

is nonstandard. We implement a MCMC procedure known as Gibbs sampling which is an

iterative procedure to sample sequentially from the posterior distribution, see Gelfand and

Smith (1990). Each iteration in the Gibbs sampler produces a draw from a Markov chain.

Under regularity conditions, see for example Robert and Casella (2004), the simulated dis-

tribution converges to the posterior distribution. The Markov chain is generated by drawing

iteratively from lower dimensional distributions, called blocks or complete conditional distri-

butions, of this joint target distribution. These complete conditional distributions are easier

to sample from because either they are known in closed form or approximated by a lower

dimensional additional sampler.

In the next section, we explain the Gibbs sampler and its blocks to perform inference

on the parameters of the mixed normal heteroskedasticity model. Then we explain how to

compute predictive densities and to price options.

5.1 Gibbs sampling

The mixture model is defined in (1) for the innovations εt only to leave the specification of

the conditional mean for option pricing. As required by (27), the model for the returns is
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defined as

Rt = rt − Ψt (νt − 1) + Ψt (νt) + εt

= ρt(ν) + εt. (39)

That is, we consider νt as constant although this can be specified otherwise if desired by the

econometrician. Note that a constant ν does not imply a constant risk premia as (31) shows.

The likelihood of the model for T observations is given by

L(ξ | R) =

T∏
t=1

K∑
k=1

πkφ(Rt|μk + ρt(ν), θk), (40)

where ξ is the vector regrouping the parameters ν and πk, μk, and θk for k = 1, . . . , K, R

denotes the vector of returns i.e. R = (R1, R2, . . . , RT )′, and φ(·|μk + ρt(ν), θk) denotes a

normal density with mean μk + ρt(ν) and variance σ2
k,t that depends on θk = (ωk, αk, βk).

A direct evaluation of the likelihood function is difficult because it consists of a product of

sums. It is this function that is maximized in the classical inference framework. To alleviate

this evaluation, in the Bayesian framework, we introduce for each observation a state variable

Gt ∈ {1, 2, . . . , K} that takes the value k if the observation Rt belongs to distribution k.

The vector GT contains the state variables for the T observations. We assume that the state

variables are independent given the distribution probabilities. Then, the probability that Gt

is equal to k is equal to πk which can be written as

ϕ(GT |π) =

T∏
t=1

ϕ(Gt|π) =

T∏
t=1

πGt , (41)

where π = (π1, π2, . . . , πK). Given GT and R, the likelihood function is

L(ξ | GT , R) =
T∏

t=1

πGtφ(Rt|μGt + ρt(ν), θGt), (42)

which is easier to evaluate than (40) since the sum has disappeared. Since GT is not observed,

we treat it as an extra parameter of the model. This technique is called data augmentation,

see Tanner and Wong (1987) and Albert and Chib (1993) for more details, and Jacquier,

Polson, and Rossi (1994) for a well known application in stochastic volatility modeling.

Although the augmented model contains more parameters, the initial parameters plus the

states, inference becomes easier by making use of MCMC methods as we will see next.
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Since the posterior density of the mixed normal heteroskedasticity model is too involved

to sample from directly, we implement a hybrid Gibbs sampling algorithm that allows to

sample from the posterior distribution by sampling from its conditional posterior densities,

see also Bauwens and Rombouts (2007b) for more details. The blocks of the Gibbs sampler,

and the prior densities are explained next using the parameter vectors GT = (G1, . . . , GT )′,

π = (π1, π2, . . . , πK), μ = (μ1, μ2, . . . , μK), θ = (θ1, θ2, . . . , θK) and the parameter ν. The

joint posterior distribution is given by

ϕ(GT , ν, μ, θ, π|R) ∝ ϕ(ν) ϕ(μ) ϕ(θ) ϕ(π)
T∏

t=1

πGtφ(Rt|μGt + ρt(ν), θGt), (43)

where ϕ(ν), ϕ(μ), ϕ(θ), ϕ(π) are the corresponding prior densities. Thus, we assume prior

independence between ν, π, μ, and θ. This makes the construction of the Gibbs sampler

easier. It does, however, not imply posterior independence between the parameters.

• ϕ(GT |ν, μ, θ, π, R)

Given ν, μ, θ, π and y, the posterior density of GT is proportional to L(ξ | GT , R). Since

the Gt’s are mutually independent, we can write the relevant conditional posterior

density as

ϕ(GT |ν, μ, θ, π, R) =
T∏

t=1

ϕ(Gt|ν, μ, θ, π, R). (44)

As the sequence {Gt}T
t=1 is equivalent to a multinomial process, we simply have to

sample from a discrete distribution where the K probabilities are given by

P (Gt = k|ν, μ, θ, π, R) =
πkφ(Rt|μk + ρt(ν), θk)∑K
j=1 πjφ(Rt|μj + ρt(ν), θj)

, (k = 1, . . . , K). (45)

To sample Gt, we draw one observation from a uniform distribution on [0, 1] and decide

which group k to take according to (45).

• ϕ(π|GT , ν, μ, θ, R)

The full conditional posterior density of π depends only on GT and is given by

ϕ(π|GT ) ∝ ϕ(π)
K∏

k=1

πxk
k , (46)
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where xk is the number of times that Gt = k. The prior ϕ(π) is chosen to be a

Dirichlet distribution, Di(a10, a20 · · ·aK0) with parameter vector a0 = (a10, a20 · · ·aK0)
′.

As a consequence, ϕ(π|GT ) is also a Dirichlet distribution, Di(a1, a2 · · ·aK) with ak =

ak0 + xk, k = 1, 2, . . . , K.

• ϕ(μ|GT , ν, π, θ, R)

The conditional distribution of μ̃ = (μ1, μ2, . . . , μK−1)
′ is Gaussian with mean −A−1b

and covariance matrix A−1 where

A = diag

⎛⎝∑
(1)

1

σ2
1,t

, . . . ,
∑

(K−1)

1

σ2
K−1,t

⎞⎠+
π̃π̃′

π2
K

∑
(K)

1

σ2
K,t

, (47)

and

b =

⎡⎢⎢⎢⎣
π1

πK

∑
(K)

εt

σ2
K,t

−∑(1)
εt

σ2
1,t

...

πK−1

πK

∑
(K)

εt

σ2
K,t

−∑(K−1)
εt

σ2
K−1,t

⎤⎥⎥⎥⎦ , (48)

where π̃ = (π1, . . . , πK−1) and
∑

(k) means summation over all t for which Gt = k,

Once μ̃ has been drawn, the last mean μK is obtained from (3).

• ϕ(θ|GT , ν, μ, π, R)

By assuming prior independence between the θk’s, that is ϕ(θ) =
∏K

k=1 ϕ(θk), it follows

that

ϕ(θ|GT , ν, μ, π, R) = ϕ(θ|GT , ν, μ, R)

= ϕ(θ1|ν, μ1, R̃
1)ϕ(θ2|ν, μ2, R̃

2) · · ·ϕ(θK |ν, μK, R̃K) (49)

where R̃k = {Rt|Gt = k} and

ϕ(θk|ν, μk, R̃
k) ∝ ϕ(θk)

∏
t∈Gt=k

φ(Rt|μk + ρt(ν), θk). (50)

Since we condition on the state variables, we can simulate each block θk separately. We

do this with the griddy-Gibbs sampler (for further details, see Bauwens, Lubrano, and

Richard (1999)). We take bounded uniform supports for ωk, αk and βk. The choice

of these bounds are finely tuned in order to cover the relevant posterior parameter

support. Doing so, we only impose diffuse priors.
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• ϕ(ν|GT , μ, π, θ, R)

The conditional posterior distribution for this block does not belong to a known family

of distributions. Since ν is a scalar, we can sample directly numerically by drawing

one observation from a uniform distribution on [0, 1] and finding the corresponding

quantile of the conditional posterior distribution of ν. We use a diffuse prior for ν.

Convergence of the Gibbs sampler is checked with CUMSUM plots of the parameter

draws as explained for example in Bauwens, Lubrano, and Richard (1999). To ensure a good

precision of posterior moments in this paper, we take N = 20, 000 and a warm up of 5, 000

draws to ensure convergence to the target joint posterior distribution and to eliminate the

impact of the starting values on the final results.

5.2 Predictive densities and option prices

To compute option prices, we first need to have predictive return densities under the Q

measure. The predictive density of RT+1 under the risk neutral measure Q is given by

fQ(RT+1 | R) =

∫
fQ(RT+1 | ξ, R) ϕ(ξ | R) dξ (51)

where fQ(RT+1 | ξ, R) =
∑K

k=1 π∗
kφ(RT+1|μ∗

k + ρT+1(ν), θk) as implied by the finite mixture

distribution defined in (1). Unlike prediction in the classical framework, note that predic-

tive densities take into account parameter uncertainty by construction while integrating the

predictive likelihood over the parameter space. An analytical solution to (51) is unavailable

but extending the algorithm of Geweke (1989b), it can be approximated by

f̂Q(RT+1 | R) =
1

N

N∑
j=1

(
K∑

k=1

π
∗(j)
k φ

(
RT+1|μ∗(j)

k + ρT+1(ν), θ
(j)
k , R

))
(52)

where the superscript (j) indexes the draws generated with the Gibbs sampler and N is the

number of draws. Therefore, simultaneously with the Gibbs sampler where we simulate N

times ξ(j) ∼ ϕ(ξ | R), we simulate R
(j)
T+1 ∼ fQ(RT+1 | ξ(j), R). A similar algorithm is used

by Bauwens and Lubrano (2002). Extending the idea used for RT+1, the predictive density
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for RT+s under the Q measure may be written as

fQ(RT+s | R) =

∫ [∫ ∫
. . .

∫
fQ(RT+s | RT+s−1, . . . , RT+1, R, ξ) ×

fQ(RT+s−1 | RT+s−2, . . . , RT+1, R, ξ) ×
. . . ×
fQ(RT+1 | R, ξ)dRT+s−1dRT+s−2dRT+1]ϕ(ξ | R) dξ, (53)

for which draws can be obtained by extending the above algorithm to a (s+1)-step algorithm.

The draw of RT+1 serves as conditioning information to draw RT+2, both realizations serve to

draw RT+3, etc. These draws are generated from the finite mixture of normal densities with

adjusted parameters to sample under the Q measure. A non Bayesian procedure typically

proceeds by conditioning on a point estimate of ξ, which ignores the estimation uncertainty.

The predictive densities described until here are return densities. To obtain predictive

option prices, we need price densities at the maturity date of the option contract. This

predictive price density is obtained by aggregating the predicted returns until maturity for

each of the N draws. For the European option example in (12), we obtain

CT (S, T ∗, K) ≈ e−r(T ∗−T ) 1

N

N∑
j=1

max

(
ST exp

(
T ∗∑
i=T

R
(j)
i

)
− K, 0

)
, (54)

which can be evaluated rapidly. Using the Bayesian inference approach, we have the complete

predictive price density at maturity. In fact, once we have the N draws from the predictive

densities until maturity T ∗, we can price any contract defined on the underlying S until that

maturity.

6 Pricing S&P 500 options

We now take our model to the data and evaluate its out-of-sample forecast performance by

pricing a large sample of options. We compare the performance to a benchmark Gaussian

GARCH model, which is a special case of our MNGARCH model with K = 1. This bench-

mark model has been used extensively in the literature, and it has been shown to improve

significantly on the performance of the constant volatility BSM model for example. Note
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that the constant volatility mixture model, which allows for non zero skewness and excess

kurtosis, also performs worse than this benchmark. We therefore refrain from reporting

results on these two unconditional models.

Until now, we have considered the general formulation of the MNGARCH model without

fixing K, the number of distributions in the finite mixture. However, when applying the

model empirically a choice has to made about K, and this is the first issue we investigate. It

turns out that for our sample, there is no evidence for adding a third distribution. In fact,

we find that the probability to be in the last distribution is found to be indistinguishable

from zero for K = 3. Therefore, K = 2 is considered as optimal, and in the following we

report results for this case only.

In the next section, we describe the option data as well as the data we use for inference

purposes in detail. We then proceed to report detailed results for the parameter estimates

for the first week for which option data is available. The last section contains the overall

pricing results using the full sample of 8, 637 option contracts on the S&P 500 index in 2006.

6.1 Data

In the present paper, we use option data from the CBOE provided by Market Data Express,

return and dividend data for the S&P 500 index from Datastream, and interest data from

the H.15 Federal Reserve Statistical Release, all of which we now describe in detail.

6.1.1 Option data

The option data set contains one daily observation for each option contract on the S&P 500

index traded at the CBOE. We work with option data for 2006 for which approximately

180, 000 observations are available. Thus, for this to be manageable we impose the following

restrictions. First, we consider weekly data and choose the options traded on Wednesdays.

This choice is made to balance the tradeoff between having a long time period against the

computational complexity. We choose Wednesdays as these options are least affected by

weekend effects. Secondly, we choose to work only with those contracts which had a daily

volume of trades larger than or equal to 5. Thirdly, we exclude options which have a midquote
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Table I: Properties of the S&P 500 index options data set (Calls)

Mean price in USD, mean ISD, and number of contracts in the cells of this table. The maturity
(columns) and moneyness (lines) are defined in the text.

Time to maturity in days

VST ST MT LT VLT ALL

DOTM - $ 0.86 $ 1.76 $ 5.20 $ 12.33 $ 4.54
- 0.0988 0.0946 0.1021 0.1090 0.1001
0 60 135 103 68 366

OTM $ 1.32 $ 2.84 $ 6.69 $ 17.86 $ 29.81 $ 7.50
0.0898 0.0910 0.0969 0.1103 0.1181 0.0967
107 350 229 93 68 847

ATM $ 11.67 $ 17.45 $ 25.34 $ 39.30 $ 51.13 $ 21.70
0.0969 0.1041 0.1120 0.1223 0.1281 0.1072
363 450 360 127 68 1368

ITM $ 42.87 $ 45.81 $ 52.21 $ 63.11 $ 76.54 $ 52.40
0.1225 0.1231 0.1253 0.1307 0.1370 0.1261
148 144 109 65 70 536

DITM $ 117.41 $ 117.46 $ 135.02 $ 125.57 $ 122.61 $ 123.65
0.1342 0.1448 0.1561 0.1534 0.1485 0.1475

81 136 115 65 80 477

ALL $ 28.95 $ 27.60 $ 33.87 $ 42.94 $ 60.76 $ 24.95
0.1056 0.1070 0.1128 0.1209 0.1289 0.1122
699 1140 948 453 354 3594

below half a dollar, and we use the midquote as the price. Finally, we eliminate options in

the LEAPS series as the contract specifications for these options do not correspond to that

of the standard options. In total, we end up with a sample of 8, 637 options of which 3594

are calls and 5043 are puts.

In Table I, we provide descriptive statistics for the call option in terms of the number

of options, the average prices as well as average implied standard deviations (ISD) from

the BSM model. We tabulate data for various categories of maturity measured in trading

days, T ∗, and moneyness measured as M = S/ (K exp (−rT ∗)), where S is the value of the
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underlying, K is the strike price, and r is the risk free interest rate. The maturity categories

are divided into very short term (VST), with T ∗ < 22, short term (ST), with 22 ≤ T ∗ < 43,

medium term (MT), with 43 ≤ T ∗ < 85, long term (LT), with 85 ≤ T ∗ < 169, and very

long term (VLT), with T ∗ ≥ 169. For the call options, the moneyness categories are divided

into deep out of the money (DOTM), with M < 0.95, out of the money (OTM), with

0.95 ≤ M < 0.98, at the money (ATM), with 0.98 ≤ M < 1.02, in the money (ITM),

with 1.02 ≤ M < 1.05, and deep in the money (DITM), with M ≥ 1.05. Table II contains

similar descriptive statistics for these categories for the put options. For the put options,

the moneyness categories are inverted, for example the DOTM put options have M ≤ 1.05.

Besides the overrepresentation of DOTM put options, Tables I and II show that our

sample contains a diverse sample of traded options. First of all, in terms of the number of

contracts even the VLT category contains a large number and so does the DITM category.

Naturally, most of the options in our sample are ATM options with ST maturity. Next, in

terms of option prices, the two tables show that the mean of these vary from $0.86 to $135.02

for the call options and from $1.20 to $142.04 for the put options thus spanning a very large

interval. Finally and most importantly, we observe the well known volatility smirk which is

present for both call and put options. To be specific, Table I shows that the mean ISD is

higher for DITM options than for DOTM options and Table II shows that the mean ISD is

higher for DOTM options than for DITM options.

It should be noted that we use both call and put options unlike many other studies

considering the S&P 500 index options which use only call options. A recent exception to

this is Barone-Adesi, Engle, and Mancini (2008) which however only use out of the money

options and data from an earlier period. In our view, it seems more natural to use both call

and put options, since our aim is to consider flexible distributions with skewness and excess

kurtosis, which may have very different effects on put and call options respectively. As the

tables show, there are generally more put options available than call options which meet the

criteria for selection. Thus, by using only call options important information is potentially

neglected. This is particularly so in the DOTM put category which would be unfortunate

since these options are likely affected by extreme market behavior such as crashes.
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Table II: Properties of the S&P 500 index options data set (Puts)

Mean price in USD, mean ISD and number of contracts in the cells of this table. The maturity
(columns) and moneyness (lines) are defined in the text.

Time to maturity in days

VST ST MT LT VLT ALL

DITM $ 99.12 $ 123.69 $ 140.04 $ 132.87 $ 142.04 $ 127.23
0.0999 0.0936 0.0839 0.0955 0.1020 0.0937

24 24 32 20 16 116

ITM $ 43.37 $ 49.33 $ 57.75 $ 74.83 $ 94.64 $ 53.98
0.0746 0.0966 0.1054 0.1104 0.1111 0.0931

87 82 45 31 12 257

ATM $ 13.13 $ 20.21 $ 28.20 $ 49.07 $ 68.49 $ 24.22
0.0985 0.1090 0.1170 0.1256 0.1282 0.1100
352 398 306 103 39 1198

OTM $ 2.73 $ 8.03 $ 15.84 $ 34.41 $ 50.37 $ 14.28
0.1280 0.1285 0.1295 0.1338 0.1357 0.1297
251 315 229 120 58 973

DOTM $ 1.20 $ 2.52 $ 5.20 $ 11.42 $ 21.85 $ 7.69
0.1775 0.1711 0.1713 0.1745 0.1663 0.1718
267 715 637 521 359 2499

ALL $ 12.00 $ 12.63 $ 18.13 $ 25.29 $ 34.80 $ 18.00
0.1255 0.1410 0.1457 0.1575 0.1561 0.1432
981 1534 1249 795 484 5043

6.1.2 Return, dividend and interest rate data

As return data, we use a total return index (Datastream data type RI), which is calculated

under the assumption that dividends are re-invested. Figure 2 displays the sample path, the

normal quantile plot, and the autocorrelation functions for returns and for squared returns.

Panel (a) of this figure shows the well known pattern of time varying volatility with periods

of high volatility levels followed by periods of low levels of volatility, which is often observed

in financial data. Panel (b) clearly shows that returns are far from being Gaussian and

instead have fat tails. Finally, Panel (c) provides evidence of the lack of persistency in raw
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Figure 2: Properties of the S&P 500 returns

This figure plots the sample path, QQ plot, ACF’s of returns and squared returns using a sample
period from September 11, 1990 to December 27, 2006 (4,252 observations).

returns, i.e. the first moment of the series, whereas Panel (d) provides evidence of the strong

persistency in squared returns, i.e. a proxy of the second moment of the series.

Table III provides the standard descriptive statistics for the S&P 500 index return series.

The numbers in this table show that the return data is slightly negatively skewed and very

leptokurtic. The classical Jarque-Bera test rejects the null of normality at any level of

significance due to the high level of kurtosis. However, the individual test for skewness

results in a p-value of 1.15%.

For pricing purposes, we need an estimate of future dividend payments since options are

written on the actual index value and not on the total return index. For this, we choose

to use the Dividend Yield (Datastream data type DY). This series is calculated as a rolling

average of the daily yields for the previous year. Panel (a) of Figure 3 displays the sample

paths for this series. From this, it is seen that while the dividend yield changes through
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Table III: Descriptive statistics for S&P 500 index percentage returns

Sample period: September 11, 1990 to December 27, 2006 (4,252 observations)

Mean 0.042963 Maximum 5.5754
Standard deviation 0.97980 Minimum -7.1130
Skewness -0.094923 Kurtosis 7.2501
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Figure 3: Sample paths of the dividend yield and interest rate

This figure plots the sample paths of the dividend yields and interest rates using a sample period
from September 11, 1990 to December 27, 2006 (4,252 observations).

time, for the last part of the period which is used for pricing, it is quite stable. Thus, in the

pricing part, we simply set the future dividend equal to the historical dividend yield at the

day of pricing.

Finally, in order to perform inference and forecast option prices, we need a series of

interest rates. We use the series of one month Eurodollar deposit rates provided by the H.15

Federal Reserve Statistical Release. Panel (b) of Figure 3 displays the sample paths for the

daily interest rates. While the plot clearly shows that this series changes over time, it may

also be observed that during the last part of the sample, it remains relatively constant. Since

this is the period over which we will be pricing options, we simply assume that the interest

rate remains constant over the life of the option, and set it equal to the prevailing rate at

the day of pricing.
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Table IV: Posterior means and standard deviations

Week 1. September 5, 1990 to January 3, 2006 (4,000 observations). A -
symbol means that the parameter is set to 0. Posterior moments based
on 20,000 draws from the Gibbs sampler defined in Section 5.

GARCH MNGARCH

mean standard deviation mean standard deviation

ν 6.139 (1.081) 4.534 (1.348)

μ - - 0.001 (0.0001)

π - - 0.754 (0.082)

ω1 5.1E-7 (9.9E-7) 6.8E-8 (5.8E-8)
α1 0.054 (0.007) 0.018 (0.006)
β1 0.941 (0.008) 0.970 (0.008)

ω2 - - 4.3E-6 (2.0E-6)
α2 - - 0.237 (0.071)
β2 - - 0.869 (0.031)

6.2 Posterior results

Table IV displays posterior moments for the GARCH and MNGARCH models. The results

are based on the data used for pricing of week one in the option pricing data. As it is

often found in the literature, the posterior means of the GARCH model imply a highly

persistent variance process since α1 + β1 = 0.995. For the MNGARCH model, we see that

the second distribution has an explosive variance process since 0.237+0.869 > 1. Given that

the probability to be in this state is small, i.e. 1 − π = 0.246, the second order stationarity

condition stated in equation (7) is still met. It is thanks to this distribution that we can

accommodate for example the high kurtosis in the returns of the underlying.

Table V informally compares the moments of the data with the moments implied by the

posterior mean parameters of the GARCH and MNGARCH models. From this table, we

see that the GARCH model can match the variance but clearly not the kurtosis of the data.

The MNGARCH model, on the other hand, matches both the standard deviation and the

kurtosis nicely. With respect to the skewness, it should be noted that, given the size of the
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Table V: Empirical and implied moments of the returns (week 1)

Simulated moments using 50,000 draws for the GARCH and MNGARCH models.

Standard deviation Skewness Kurtosis

Empirical 0.9984 -0.09517 7.1077

GARCH 1.0316 0.06911 4.5840
MNGARCH 1.0143 0.10518 7.4169
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Figure 4: Posterior marginal densities of ν

This figure plots the posterior marginal densities of the unit risk premium ν using 20,000 draws
from the Gibbs sampler.

estimates, these are both insignificantly different from zero.

With respect to the unit risk premium parameter ν, Table IV shows that the posterior

mean of ν is centered around 6.139 for the GARCH model and 4.534 for the MNGARCH

model. Figure 4 plots the posterior marginals for ν and shows that they are symmetrically

distributed away from zero. Comparing the size of the estimates, we note that while it may

seem that the unit risk premium is larger for the GARCH model than for the MNGARCH

model this, in fact, is to be expected as this model neglects the impact of higher order

conditional moments. In particular, as it was mentioned above the higher order terms

in (31) varies negatively with conditional skewness and positively with conditional excess

kurtosis for a given level of ν. Hence, when these terms are neglected, a higher ν is required

to compensate investors appropriately for the risk of the asset.
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6.3 Option pricing results

For option pricing to proceed, we need the risk neutral dynamics, i.e. the dynamics under Q.

As mentioned in the introduction, our method allows us to derive these using only historical

data on returns and hence no calibration to historical option prices is needed. Figure 5

displays the term structure of the mean, variance, skewness and kurtosis of the predicted

returns under Q until the highest maturity, i.e. 248 trading days, for week 1 for the GARCH

and MNGARCH models.

While the first two moments are similar for the two models, this is clearly not the case

for the skewness and the kurtosis. In particular, for the GARCH model skewness is zero

as expected, whereas the risk neutral dynamics of the MNGARCH model has pronounced

negative skewness. Likewise, for the kurtosis large differences are also observed as the level

is much higher for the MNGARCH model than for the GARCH model. These features are

related to the explosive volatility process in the second distribution of the finite mixture

which in the risk neutral dynamics becomes even more important as π∗
t < π.

It is well known that skewness and excess kurtosis are important for option pricing

purposes, and will potentially affect different categories of options. In particular, excess

kurtosis increases the predicted value of both DITM and DOTM options and lowers predicted

prices of ATM options. The large negative skewness will, everything else equal, contribute

positively to OTM and DOTM put options and ITM and DITM call options. Table I and

II show that both of these effects are relevant for our sample of options.

6.3.1 Dollar losses

We now proceed to compare out-of-sample our MNGARCH model to the classical GARCH

model in terms of actual prices. Since we price options for 52 weeks in 2006, we update

the return data on a weekly basis to compute the predictive price densities. We could also

update the posterior densities weekly, but given that our inference is based on the last 4,000

observations neither the parameters nor the predictive densities would change substantially

when doing this. Table VI provides dollar losses for the calls, calculated as the observed price

minus the predicted price, whereas Table VII provides dollar losses for the puts. The tables
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Figure 5: Week 1 term structure under Q

This figures plots the term structure of the first four moments of the predictive return densities
under Q using 20,000 draws from the Gibbs sampler.
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also report the root mean squared error (RMSE). In both tables, the top panels provide the

results for the GARCH model whereas the results for the MNGARCH model are found in the

bottom panels. In all tables and panels, we categorize the losses according to the maturity

and moneyness as defined in Section 6.1.2.

Examining first the overall results, we see that there are pronounced differences between

the performance of the two models. Using the dollar losses, it appears that the GARCH

models performs the best for call options whereas the MNGARCH models perform the best

for put options. For the call options, Table VI shows a clear pattern across both moneyness

and maturity. In particular, when comparing the two panels, it is only for the ATM category

that the GARCH model has the smallest losses. For the DOTM options with VLT maturity,

the MNGARCH model improves on the GARCH model with an average $1.92. In percentage

of the mean option prices, the improvement is as high as 37% for the DOTM options with

ST maturity.

For the put options, the MNGARCH model outperforms the GARCH model and as Table

VII shows the losses are approximately 16% or $0.34 smaller. This holds true along both

dimensions of the data indicating clearly that the flexible dynamics accommodated by this

model are important for the pricing of put options. The largest average improvement in

dollar losses is $1.71 for the DITM options with VLT maturity. In percentage of the mean

option prices, the improvement is largest for the shorter term options which are out of the

money. For several of these categories, this improvement exceeds 10% to 15%.

While the ranking of the models in terms of dollar losses are ambiguous for the call

options, the ranking of the models in terms of RMSE is clear. In particular, using this

metric the MNGARCH model is the best for both calls and puts. This holds not only overall

but also along both moneyness and maturity dimensions. Moreover, the improvements of

the MNGARCH model are in several cases of a significant size. Consider, as an example, the

DOTM category where the GARCH RMSE equals 4.576 and the MNGARCH RMSE equals

3.402. This corresponds to a reduction of approximately 25%.
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Table VI: Dollar losses for Calls

In the cells of this table, the first number is the mean error and the second number is the root
mean squared error both measured in USD. The maturity (columns) and moneyness (lines) are
defined in Section 6.1.2.

GARCH

VST ST MT LT VLT ALL

DOTM - -1.532 -2.477 -4.772 -6.836 -3.778
- 1.866 2.839 5.205 7.251 4.576

OTM -1.443 -1.977 -2.580 -3.430 -4.520 -2.436
1.768 2.443 3.185 4.306 5.320 3.148

ATM -0.756 -0.454 0.421 0.355 -0.593 -0.236
1.632 2.157 2.756 3.145 3.525 2.402

ITM 0.933 1.868 3.241 3.703 4.191 2.415
1.556 2.730 4.123 4.707 5.311 3.535

DITM 0.477 1.428 3.467 5.803 6.913 3.274
1.385 2.228 4.325 6.539 7.580 4.660

ALL -0.361 -0.461 -0.023 -0.325 0.095 -0.092
1.612 2.321 3.272 4.696 6.041 3.432

MNGARCH

VST ST MT LT VLT ALL

DOTM - -1.211 -2.015 -3.540 -4.915 -2.851
- 1.453 2.269 3.860 5.259 3.402

OTM -1.260 -1.794 -2.261 -2.519 -2.896 -2.021
1.523 2.166 2.771 3.495 3.806 2.610

ATM -0.860 -0.639 0.235 0.806 0.780 -0.263
1.639 2.087 2.668 3.158 3.311 2.343

ITM 0.621 1.361 2.495 3.402 4.731 2.075
1.493 2.361 3.365 4.299 5.551 3.268

DITM 0.417 1.200 2.971 5.481 6.748 3.008
1.368 2.150 3.882 6.245 7.216 4.395

ALL -0.460 -0.552 -0.096 0.179 1.110 -0.158
1.562 2.128 2.902 4.116 5.297 3.001
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Table VII: Dollar losses for Puts

In the cells of this table, the first number is the mean error and the second number is the root
mean squared error both measured in USD. The maturity (columns) and moneyness (lines) are
defined in Section 6.1.2.

GARCH

VST ST MT LT VLT ALL

DITM -0.208 -0.142 -1.624 -4.340 -8.151 -2.393
1.262 1.789 2.517 4.899 8.601 4.133

ITM -1.029 -1.612 -2.217 -2.744 -6.188 -1.871
1.803 2.708 3.288 3.454 6.627 2.970

ATM -0.562 0.122 1.126 0.274 -0.962 0.155
1.584 2.138 2.852 3.247 3.806 2.360

OTM 1.036 2.400 3.645 4.026 3.553 2.610
1.405 2.870 4.248 4.794 4.695 3.402

DOTM 0.995 1.829 3.223 5.074 6.418 3.431
1.196 2.189 3.771 5.752 7.202 4.416

ALL 0.238 1.289 2.466 3.752 4.686 2.174
1.456 2.357 3.620 5.252 6.768 3.831

MNGARCH

VST ST MT LT VLT ALL

DITM -0.318 -0.166 -1.117 -2.797 -6.441 -1.778
1.228 1.929 2.131 3.646 6.972 3.366

ITM -0.925 -1.308 -1.729 -1.830 -4.590 -1.468
1.703 2.549 2.974 3.067 4.885 2.617

ATM -0.699 -0.118 -0.916 1.137 0.589 0.106
1.563 2.051 2.731 3.081 3.402 2.283

OTM 0.724 1.828 2.951 3.973 4.055 2.205
1.203 2.441 3.628 4.601 4.853 3.069

DOTM 0.868 1.554 2.728 4.508 5.901 3.021
1.084 1.938 3.271 5.184 6.565 3.965

ALL 0.081 0.997 2.066 3.559 4.584 1.831
1.364 2.114 3.183 4.768 6.158 3.384
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6.3.2 Implied standard deviation losses

Whereas the section above considered actual dollar losses, another often used metric for

comparing the performance of alternative option pricing models is losses in ISD’s. Tables

VIII and IX provide these losses for the call and put options, respectively. In both tables,

the losses are calculated as the difference between the ISD of the market price and the ISD

of the predicted price. Thus, when comparing these numbers across all the options we may

firstly gauge whether or not the models generate a sufficiently high level of volatility under

the risk neutral measure Q in general. Secondly, if a particular model can explain the smile

or smirk, which is documented in Tables I and II for our option sample, losses should be

constant across moneyness for the various maturity.

Although the overall losses are not exactly equal to zero, they are in fact quite close to

zero. This is so especially for the call options. For the put options, the overall losses are

slightly positive and somewhat larger for the GARCH model. This indicates that this model

fails to produce a high enough level of volatility under Q, a feature which is well known in

empirical option pricing as highlighted in the introduction. The MNGARCH model, on the

other hand, is able to generate a higher volatility under Q than the GARCH model, which

reduces the ISD loss with 24%. The conclusions are the same when considering the RMSE’s

which are 21% smaller for the MNGARCH model than for the GARCH model for the put

options.

Inspecting the individual cells in Tables VIII and IX, we see that in most cases the losses

are smaller for the MNGARCH model than for the GARCH model. In fact, this is so for 41

of the 49 categories for which options are available. Moreover, this is so for all the DOTM

categories and for all but one of the DITM categories (the ST put options). The improvement

is larger than 28% for DOTM put options with less than MT maturity. Taken together, the

evidence in the two tables indicates that the MNGARCH model is capable of explaining a

larger fraction of the smile in ISD’s than the GARCH model.
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Table VIII: Implied volatility losses for Calls

In the cells of this table, the first number is the mean error and the second number is the root
mean squared error both measured in ISD’s. The maturity (columns) and moneyness (lines) are
defined in Section 6.1.2.

GARCH

VST ST MT LT VLT ALL

DOTM - -0.024 -0.026 -0.027 -0.023 -0.025
- 0.027 0.028 0.030 0.024 0.028

OTM -0.023 -0.020 -0.016 -0.011 -0.011 -0.017
0.026 0.023 0.020 0.014 0.012 0.021

ATM -0.007 -0.003 0.002 0.001 -0.001 -0.003
0.016 0.013 0.012 0.009 0.008 0.013

ITM 0.017 0.015 0.016 0.010 0.009 0.014
0.036 0.022 0.020 0.014 0.012 0.028

DITM 0.018 0.034 0.048 0.029 0.021 0.032
0.085 0.076 0.073 0.035 0.031 0.067

ALL -0.002 -0.003 0.001 -0.003 0.001 -0.001
0.037 0.032 0.031 0.022 0.020 0.031

MNGARCH

VST ST MT LT VLT ALL

DOTM - -0.020 -0.022 -0.021 -0.017 -0.020
- 0.022 0.024 0.023 0.018 0.022

OTM -0.020 -0.018 -0.014 -0.009 -0.007 -0.015
0.023 0.019 0.017 0.012 0.009 0.019

ATM -0.008 -0.004 0.001 0.002 0.001 -0.003
0.015 0.013 0.012 0.009 0.007 0.013

ITM 0.010 0.010 0.012 0.009 0.010 0.010
0.034 0.018 0.016 0.012 0.012 0.022

DITM 0.012 0.029 0.039 0.026 0.018 0.027
0.090 0.059 0.073 0.036 0.021 0.069

ALL -0.004 -0.003 0.000 -0.001 0.002 -0.002
0.037 0.033 0.018 0.019 0.015 0.030
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Table IX: Implied volatility losses for Puts

In the cells of this table, the first number is the mean error and the second number is the root
mean squared error both measured in ISD’s. The maturity (columns) and moneyness (lines) are
defined in Section 6.1.2.

GARCH

VST ST MT LT VLT ALL

DITM 0.011 -0.026 -0.041 -0.034 -0.028 -0.025
0.115 0.076 0.069 0.049 0.031 0.076

ITM -0.037 -0.018 -0.013 -0.009 -0.015 -0.022
0.059 0.031 0.019 0.011 0.016 0.040

ATM -0.006 0.001 0.005 0.001 -0.002 -0.000
0.017 0.013 0.012 0.009 0.008 0.0137

OTM 0.021 0.020 0.018 0.012 0.008 0.018
0.025 0.023 0.021 0.014 0.011 0.022

DOTM 0.057 0.053 0.052 0.043 0.031 0.048
0.063 0.058 0.058 0.048 0.035 0.054

ALL 0.016 0.028 0.029 0.029 0.022 0.025
0.045 0.043 0.044 0.040 0.031 0.042

MNGARCH

VST ST MT LT VLT ALL

DITM -0.007 -0.032 -0.037 -0.027 -0.023 -0.026
0.121 0.090 0.061 0.043 0.025 0.078

ITM -0.036 -0.016 -0.010 -0.006 -0.011 -0.020
0.059 0.031 0.014 0.010 0.011 0.040

ATM -0.007 -0.001 0.004 0.003 0.001 -0.001
0.016 0.013 0.011 0.009 0.007 0.013

OTM 0.013 0.014 0.015 0.011 0.009 0.014
0.019 0.019 0.018 0.013 0.011 0.018

DOTM 0.041 0.038 0.038 0.034 0.026 0.036
0.047 0.043 0.042 0.037 0.028 0.040

ALL 0.009 0.019 0.021 0.024 0.019 0.019
0.038 0.034 0.033 0.032 0.025 0.033
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7 Conclusion

In this paper, we perform option pricing using mixed normal heteroscedasticity models. We

provide details on how to obtain the appropriate risk neutral dynamics and we suggest a

feasible way for option pricing within this general framework. Moreover, we perform inference

in a Bayesian framework which allows us to compute easily predictive price densities that take

into account parameter uncertainty. We compare our option pricing model to a benchmark

model and find substantial improvements in terms of both dollar losses and implied standard

deviation losses for a large sample of options on the S&P 500 index.

In terms of the risk neutralization, we show that the risk neutral dynamics stay within the

class of mixed normal heteroscedasticity models, although the parameters of the distribution

are changed. These risk neutral parameters are easily interpreted as providing investors with

compensation for specific distributional features like for example the distribution with an

explosive variance process found in our data. Moreover, when comparing the properties of

the risk neutral distribution these differ in a pronounced way from the properties under the

original measure used for inference.

We document significant difference between our model and the benchmark in terms of

the risk neutral dynamics used for option pricing. In particular, our model is capable of

generating negative skewness and significant amounts of excess kurtosis. In terms of pricing

performance, our results confirm the importance of both of these features for our sample of

index options. Our model performs best for options which are deep out of the money and

deep in the money. In terms of explaining the smirk in implied volatilities, improvements are

found for all maturities, and this is particularly pronounced when considering the shorter

maturities.

There are several interesting extensions for further research. The most obvious will

be to extend our data to include the recent period of financial turmoil as data becomes

available. We conjecture that this may require additional distributions in the mixture, i.e.

increasing K, which is easily accommodated in our framework. With this new data it

would be interesting to consider alternative benchmarks which could include discrete jumps

in returns and volatility as suggested by Christoffersen, Jacobs, and Ornthanalai (2008).
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Another extension would be to consider Markov switching models in which returns can have

a high or low mean and variance, and switches between these states are determined by a

Markov process. Within this framework, it is possible to allow for state dependent unit risk

premiums that further drive a wedge between the physical and risk neutral dynamics. Lastly,

this paper does not use option prices for inference on the model parameters. We explained

in the introduction how complicated this is for our model which is non-affine. However, it

would nevertheless be interesting to investigate how the information contained in past option

prices can be included in the inference procedure of this paper.
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