
  
 
 
 
 

CREATES Research Paper 2009-6 
 

 
 

On IGARCH and convergence of the QMLE for 
misspecified GARCH models 

 
 

Anders Tolver Jensen and Theis Lange 
 
 

 
 

School of Economics and Management 
University of Aarhus 

Building 1322, DK-8000 Aarhus C 
Denmark 

 
 
 

 

 

 



On IGARCH and convergence of the QMLE
for misspecified GARCH models

Anders Tolver Jensen Theis Lange

Department of Natural Sciences Department of Economics

University of Copenhagen University of Copenhagen

&

CREATES

Abstract: We address the IGARCH puzzle by which we understand

the fact that a GARCH(1,1) model fitted by quasi maximum likelihood

estimation to virtually any financial dataset exhibit the property that

α̂+β̂ is close to one. We prove that if data is generated by certain types of

continuous time stochastic volatility models, but fitted to a GARCH(1,1)

model one gets that α̂ + β̂ tends to one in probability as the sampling

frequency is increased. Hence, the paper suggests that the IGARCH

effect could be caused by misspecification. The result establishes that

the stochastic sequence of QMLEs do indeed behave as the deterministic

parameters considered in the literature on filtering based on misspecified

ARCH models, see e.g. Nelson (1992). An included study of simulations

and empirical high frequency data is found to be in very good accordance

with the mathematical results.
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1 Introduction

A complete characterization of the volatility of financial assets has long been one

of the main goals of financial econometrics. Since the seminal papers of Engle

(1982) and Bollerslev (1986) the class of generalized autoregressive heteroskedas-

tic (GARCH) models has been a key tool when modeling time dependent volatil-

ity. Indeed the GARCH(1,1) model has become so widely used that it is often

referred to as “the workhorse of the industry” (Lee & Hansen 1994).

Recall that given a sequence of returns (yt)t=0,...,T the GARCH(1,1) model defines

the conditional volatility as

σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ), (1)

for some non-negative parameters θ = (ω, α, β)′. Quasi maximum likelihood

estimation of GARCH(1,1) models on financial returns almost always indicates

that α̂ is small, β̂ is close to unity, and the sum of α̂ and β̂ is very close to

one and approaches one as the sampling frequency is increased, see e.g. Engle

& Bollerslev (1986), Bollerslev & Engle (1993), Baillie, Bollerslev & Mikkelsen

(1996), Ding & Granger (1996), Andersen & Bollerslev (1997), and Engle &

Patton (2001). This feature seems to be present independently of the considered

asset class or sample. Engle & Bollerslev (1986) proposed the integrated GARCH

(IGARCH) model specifically to reflect this fact. Also in the recent literature on

quasi maximum likelihood estimation in GARCH models it has been paramount

to allow for α + β to be close to or even exceeding one, see e.g. Jensen &

Rahbek (2004) and Francq & Zaköıan (2004). IGARCH implies that the return

series is not covariance stationary and multiperiod forecasts of volatility will

trend upwards. Recently it has been suggested that either long memory, see e.g.

Mikosch & Stărică (2004), or parameter changes, see e.g. Hillebrand (2005), in

the data generating process can give the impression of IGARCH.

In a series of seminal papers Nelson (1992), Nelson & Foster (1994), and Nelson

& Foster (1995) explore the consequences of applying ARCH type filters on dis-

crete samples from continuous time stochastic volatility models. One important

result demonstrates the existence of a deterministic sequence of parameters for

the GARCH(1,1) model such that the difference between the GARCH conditional
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volatility estimates based on (1) and the true volatility converges to zero in prob-

ability as the sampling frequency is increased. This may explain the success of

ARCH type models at recovering and forecasting volatility even though they are,

no doubt, misspecified. The result, however, depends on the fact that the chosen

parameters have the IGARCH property in the limit and do not depend on the

data. Indeed Nelson & Foster (1994) stress the need for extending their results

to cover filters based on quasi maximum likelihood estimators (QMLEs) from

ARCH type models. In addition a number of papers (see, e.g. Drost & Nijman

(1993), Drost & Werker (1996), and Francq & Zaköıan (2000)) explore the con-

nection between continuous time stochastic volatility models and discrete time

GARCH models. They establish a link between parameters of the two classes

of models and consequently suggest that one estimates parameters in the con-

tinuous time model from the GARCH estimates. However, Wang (2002) warns

against applying statistical inference based on a GARCH model to its continuous

time counterpart as this may lead to inefficient inference. The concerns of Nelson

& Foster (1995) and Wang (2002) illustrate the need to understand better the

behaviour of QMLEs for misspecified GARCH models.

In this paper we propose a simple stochastic volatility type model that enables us

to study the statistical properties of the QMLE based on the GARCH(1,1) model

(1). We prove in Theorem 1 that as the sampling frequency is increased certain

data generating processes will spuriously lead to the conclusion of IGARCH. The

employed infill asymptotics has recently been much used in the literature on

realized volatility, see e.g. Andersen, Bollerslev, Diebold & Labys (2003) and

Barndorff-Nielsen & Shephard (2001).

The paper also provides a more intuitive explanation of the IGARCH puzzle

by exposing similarities between the GARCH model and non-parametric estima-

tion of a volatility process, see Stărică (2003) for a related study. The GARCH

model provides a filter for computing the present volatility as, roughly speaking,

a weighted average of past squared observations and a constant. Examination of

the weights and the shape of the quasi likelihood function makes it plausible to

believe that the performance of the filter is optimized when α and β sum to one.

Finally, since the theoretical results not only establish that the sum of the

GARCH parameters will tend to one, but also indicate that they will do so
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at a polynomial rate, an illustration using high frequency exchange rates as well

as simulated data is provided. The results are found to be in remarkably good

accordance with the theoretical results and furthermore indicates that Theorem 1

is valid for other models than the ones covered by the present proof.

The rest of the paper is organized as follows. Section 2 presents the main result

and explores connections between the GARCH(1,1) model and non-parametric

estimation of volatility. Section 3 illustrates our results by both simulations and

empirical data, while Section 4 concludes and presents ideas for future research.

All technical lemmas are deferred to the Appendix.

2 Main Results

Based on a large class of volatility models this section initially provides a more

heuristic explanation of the IGARCH puzzle by exposing similarities between

the GARCH model and non-parametric estimation of a volatility process. In the

second part of the section we present a mathematical setup where these heuristic

arguments can be formalized and we state our main theorem.

2.1 An Intuitive Explanation of the IGARCH Puzzle

Essentially all volatility models for a sequence (yt)t=0,...,T can be captured by the

formulation

yt =
√
ft · zt, (2)

where zt is a sequence of zero mean random variables with unit variance and

(ft)t=0,...,T a sequence of stochastic volatilities such that zt is independent of

(ft, yt−1, . . . , y0). Define σ2
t (θ) to be the conditional variance process correspond-

ing to the GARCH(1,1) model with parameters θ = (ω, α, β)′

σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ)

= ω

t−1∑
i=0

βi + α

t−1∑
i=0

βiy2
t−1−i + βtσ2

0, (3)
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with σ2
0 a fixed constant. Consider the usual quasi log-likelihood function

lT (θ) = − 1

T

T∑
t=1

(log(σ2
t (θ)) +

y2
t

σ2
t (θ)

) (4)

and note that under the data generating process given by (2) the likelihood

function may be rewritten as

lT (θ) =
1

T

T∑
t=1

(1− z2
t )

ft
σ2
t (θ)
− 1

T

T∑
t=1

(log(σ2
t (θ)) +

ft
σ2
t (θ)

). (5)

Strictly speaking this is not a likelihood function, but just an objective function

for the GARCH(1,1) model, but the terminology emphasizes the connection to the

literature on estimation of GARCH models. Since the first term has zero mean (if

finite) and the function x 7→ − log(x)−a/x has a unique maximum at x = a, the

decomposition (5) suggests that for a large class of data generating processes it is

plausible that the likelihood function is optimized when the conditional variance

process is close to the true unobserved volatility process ft.

For large values of t the conditional variance process in (3) can be viewed as

a kernel estimator of the unobserved volatility at time t with kernel weights

αβi, i = 0, . . . , t − 1 on past observations y2
t−1, . . . , y

2
0 plus the constant ω

1−β . In

order for this to be an unbiased estimator of the non-constant volatility f on

average over the entire sample one must in general have
∑∞

i=0 αβ
i = α

1−β ≈ 1

and the constant ω
1−β small. Hence, when considering the conditional variance

process, σ2
t (θ), as a non-parametric estimator of the unobserved volatility one

must have α + β ≈ 1 and ω small in order to avoid introducing a systematical

bias. Clearly, the method above is not always the optimal way to match the

conditional variance process, σ2
t (θ), with the volatility process, ft. For instance if

the data generating process is in fact the GARCH(1,1) model one should choose

θ to be the true parameter value and hence obtain σ2
t (θ) = ft.

2.2 A Mathematical Explanation of the IGARCH Puzzle

In the following we introduce a mathematical framework allowing us to formalize

the considerations above. Clearly, we cannot give unified mathematical proofs

5



of our results covering all interesting stochastic volatility models. However, the

framework below offers a compromise between flexibility of the model class and

clarity of the formal mathematical arguments. Following Theorem 1 we discuss

possible generalizations.

Let the continuous time process (Su)u∈[0,1] be a solution to the stochastic differ-

ential equation

d logSu =
√
f(u)dWu, (6)

where W is a standard Brownian motion and f is a stochastic function on the

unit interval, which is strictly positive, continuous, and independent of W (f

could for instance be a solution to a stochastic differential equation). Usually

one considers a discrete sample (rt)t=1,...,T of returns

rt = log St/T − logS(t−1)/T ,

and indeed many of the results by D.B. Nelson concerning misspecified ARCH

models, see e.g. Nelson (1992), are based on discrete samples from models of the

type captured by (6). By independence of W and f then conditionally on the

volatility, f, we have that

rt = log St/T − logS(t−1)/T ∼ N(0,

∫ t/T

(t−1)/T

f(u)du).

In particular, for large T the distribution of the returns (scaled by
√
T ) will

resemble the distribution of a sequence (yt)t=1,...,T generated by

yt =
√
f(t/T ) · zt, (7)

where zt is an i.i.d. sequence of zero mean unit variance Gaussian random vari-

ables. This justifies the use of (7) as the relevant data generating process when

deriving asymptotic properties for QMLE based on high frequency sampling of

the stochastic volatility model (6).

Consider the sequence of parameters θT = (0, T−d, 1 − T−d)′ and introduce the
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stochastic processes

hT (u) = σ2
bTuc(θT )

on u ∈ [0, 1], where σt(θ) is given by the GARCH(1,1) recursion (3). Here and

throughout the paper bxc denotes the integer part of x. Further, let D([a, b])

denote the space of càdlàg functions on the interval [a, b].

Lemma 1. Under the data generating process given by (7) and if E[z8
t ] < ∞

then for any d ∈]1/2, 1[ and γ ∈]0, 1] the process hT
P→ f in the uniform norm

on D([γ, 1]) as T tends to infinity.

From the proof of the lemma it is evident that the lower bound on the parameter

d and the moment requirement on zt are mostly technically motivated and can

probably be relaxed considerably (to d > 0 and E[z4
t ] < ∞) at the price of a

significantly more complex proof. However, the present version suffices for our

intended application.

The lemma establishes that there exists a sequence of parameters such that the

conditional variance process associated with the GARCH(1,1) model gets arbi-

trarily close to the unobserved volatility process when the sampling frequency is

increased. The lemma is an analogue to Theorem 3.1 of Nelson (1992), however,

our result is given for the uniform norm, but assuming a somewhat simpler data

generating process. Note that the chosen parameter sequence is by no means the

only sequence for which the result holds, see Nelson (1992), however, this choice

simplifies the proof and is adequate for the intended application.

Proof of Lemma 1. All arguments are given conditionally on the realization of f .

Introduce the notation gT (u) := E[hT (u)] for u ∈ [0, 1]. For γ, η > 0

P( sup
u∈[γ,1]

|hT (u)− f(u)| > η)

≤ P( sup
u∈[γ,1]

|hT (u)− gT (u)| > η/2) + P( sup
u∈[γ,1]

|gT (u)− f(u)| > η/2).

By Lemma 3 in the Appendix the last term converges to zero as T tends to

infinity. To handle the first term note that by Lemma 2 in the Appendix it holds
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that

P( sup
u∈[γ,1]

|hT (u)− gT (u)| > η/2)

= P( max
t=bTγc−1,...,T

|hT (t/T )− gT (t/T )| > η/2)

≤
T∑

t=bTγc−1

P(|hT (t/T )− gT (t/T )| > η/2)

≤ Aη−4Tα2
T

which converges to zero as T tends to infinity since αT = T−d with d > 1/2. 2

Before stating our main theorem define the parameter set

Θ = {(ω, α, β)′ ∈ R3 | 0 ≤ ω, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1} (8)

and let θ̂T = (ω̂T , α̂T , β̂T )′ = arg maxθ∈Θ lT (θ) be the usual quasi maximum like-

lihood estimator based on (4).

Theorem 1. Suppose that the data generating process is given by (7) where the

stochastic function f is almost surely non-constant and E[z8
t ] < ∞. Then the

QMLE based on (4) satisfies that (ω̂T , α̂T , β̂T )′ P→ (0, 0, 1)′ as T tends to infinity.

Remark 1. The initial value σ2
0 for the conditional volatility process σ2

t (θ) does

not need to be a constant. For instance Theorem 1 still holds if σ2
0 is merely

bounded in probability as T tends to infinity. This includes defining σ2
0 as the

unconditional variance of the full sample, which is implemented in many software

packages.

Remark 2. When defining σ2
0 as the unconditional variance of the full sample

it is a simple consequence of the GARCH(1,1) recursion that any scaling of the

observations only affects the estimate of the scale parameter ω. Hence, if the

QMLE is based on the unscaled returns, rt, from the continuous time model (6)

Theorem 1 remains valid. Also in this case the result should be read as conditional

on the sample path of the volatility process.

Remark 3. To facilitate the presentation we have assumed that the volatility

process f is a continuous function. However, the proofs can be extended to cover
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a finite number of discontinuities at the price of a somewhat more cumbersome

notation and Theorem 1 therefore remains valid.

Remark 4. The proof is given for the case of Gaussian innovations zt, however,

it can easily be adapted to most other distributions such as the t-distribution as

long as the moment condition in Theorem 1 is met. Another generalization is to

allow for some dependence in the sequence of innovations. For instance including

an autoregressive structure on zt would permit modeling leverage effects, but

leads to considerably more complicated proofs.

Proof of Theorem 1. All arguments are given conditionally on the realization of

f . For ωU > 0 divide the full parameter space Θ defined in (8) into the compact

subset

ΘωU := {θ = (ω, α, β)′ ∈ Θ | ω ≤ ωU}

and its complement Θc
ωU
. Let

Vε(0, 0, 1) = {(ω, α, β)′ ∈ Θ | ||(ω, α, β)′ − (0, 0, 1)′|| < ε}

and use Lemma 6 in the Appendix to construct a finite covering

∪ki=1V (θi) ⊃ ΘωU\Vε(0, 0, 1)

of the compact set ΘωU\Vε(0, 0, 1) with open subsets of Θ and let γθ1 , . . . , γθk > 0

be constants such that according to Lemma 6

lim
T→∞

P( sup
θ∗∈V (θi)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθi) = 1
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for i = 1, . . . , k. With γ = min(γθ1 , . . . , γθk) we conclude that

1 ≥ P( sup
θ∈Θ\Vε(0,0,1)

lT (θ) < −
∫ 1

0

log(f(u))du− 1− γ)

≥ P( sup
θ∈∪ki=1V (θi)∪ΘcωU

lT (θ) < −
∫ 1

0

log(f(u))du− 1− γ)

≥ 1−
k∑
i=1

P( sup
θ∈V (θi)

lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− γ) (9)

− P( sup
θ∈ΘcωU

lT (θ) ≥ −
∫ 1

0

log(f(u)))du− 1− γ) (10)

where by construction (9) converges to one as T tends to infinity. Further, as

σ2
t (θ) ≥ ωU on Θc

ωU
we get that

sup
θ∈ΘcωU

lT (θ) = sup
θ∈ΘcωU

− 1

T

T∑
t=1

(log(σ2
t (θ)) +

y2
t

σ2
t (θ)

) ≤ − log(ωU)

hence the probability in (10) is zero if we choose ωU large enough. By Lemma 4

in the Appendix it holds that lT (θT )
P→ − ∫ 1

0
log(f(u))du− 1 and since lT (θ̂T ) ≥

lT (θT ) we conclude that for any ε > 0

lim
T→∞

P(θ̂T ∈ Vε(0, 0, 1)) = 1.

2

3 Illustrations

The main result (Theorem 1) establishes that for certain data generating processes

the quasi maximum likelihood estimators for the GARCH(1,1) model will con-

verge to (0, 0, 1)′ as the sampling frequency increases. In this section we illustrate

the convergence results and go a step further by examining the rate of conver-

gence as well. Based on Lemma 1 one could conjecture that α̂T and 1 − β̂T are

proportional to T−d for some d ∈ (0, 1). This assertion can be visualized by plot-

ting log(α̂T ) and log(1− β̂T ) against log(T ). If a linear relationship is found the
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parameter d can be estimated by ordinary least squares.

The first part of the study is based on high frequency recordings of the EUR-USD

exchange rate. To increase the empirical relevance of the simulation part we use

broadly applied continuous time models as data generating processes. However,

formally these models do not satisfy the assumptions of Theorem 1. In this

respect the simulation study actually demonstrates that the scope of the results

might be extended to a wider class of models.

EUR-USD. Based on 30-minute recordings of the EUR-USD exchange rate span-

ning the period from the 2nd of February 1986 to the 30th of March 20071 log-

returns are computed corresponding to 4 through 72 hour returns. This gives

estimates θ̂T for T between 3,687 and 64,525.

Simulations. We consider three different simulation setups including the Heston

model and the continuous GARCH model (obtained as the diffusion limit of

a GARCH(1,1) model, see Nelson (1990)). The considered models can all be

embedded in the formulation

dSu = SuV
1/2
u dW1u, dVu = κV a

u (µ− Vu)du+ σV b
udW2u,

where W1 and W2 are standard Brownian motions with a possibly non-zero cor-

relation denoted by ρ. For ease of exposition we have omitted a drift term in the

equation for dSu. We will consider three configurations for the parameters a and

b, corresponding to the Heston model, the continuous GARCH model, and the

3/2N model suggested in Christoffersen, Jacobs & Mimouni (2007). To make the

simulations comparable to the empirical study we consider a fixed time span of

21 years. For the remaining parameters we choose the estimated values stated

in Christoffersen et al. (2007), which are based on fitting the models to S&P-500

data. By this choice of time span and parameter values it is reasonable to com-

pare the empirical study and the simulation study directly. GARCH(1,1) models

are fitted to log-returns based on a discrete sample from the S process2. Table 1

summarizes the parameters (per annum) for the included models. We will con-

1Prior to January 1999 the series is generated from the DEM-USD exchange rate using a
fixed exchange rate of 1.95583 DEM per EUR. Preceding the analysis the dataset has been
cleaned as described in Andersen et al. (2003).

2The continuous time process is simulated by a standard Euler scheme using 108 data points.
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Name a b κ µ σ ρ
Heston 0 1/2 6.5200 0.0352 0.4601 -0.7710
Continuous GARCH 0 1 3.9248 0.0408 2.7790 -0.7876
3/2N 1 3/2 60.1040 0.0837 12.4989 -0.7591

Table 1: Parameter values used in the simulation study.

sider log-returns corresponding to weekly through 5 minute returns, which gives

estimates θ̂T for T between 1,000 and 300,000.

Figure 1 reports the correspondence between the estimates of α and T for the

four setups. The conjectured linear relationship between log(α̂T ) and log(T ) is

clearly present. The corresponding plots for 1− β̂T have been omitted since they

are indistinguishable from Figure 1. In particular we have verified the IGARCH

property, i.e. that (α̂T , β̂T ) → (0, 1). The estimated values for d are in all cases

found to be between 0.25 and 0.5, but explaining this phenomenon is left for

future research.
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Figure 1: Correspondence between α̂T and T in log-scale for the four configu-
rations. The estimate of d is obtained by regressing log(α̂T ) on log(T ) and a
constant.
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The fact that none of the simulations satisfy the assumptions clearly indicates

that Theorem 1 holds for a far larger class of models than those covered by the

present version of our proof. This emphasizes that the IGARCH effect can be

caused by the mathematical structure of a GARCH model alone and hence might

not be a property of the true data generating mechanism. That the apparent

polynomial convergence of the QMLEs is not only a property of the simulated

series is illustrated by the striking similarities between plots based on simulated

and real data.

4 Conclusion

In this paper we have established that when a GARCH(1,1) model is fitted to

a discrete sample from a certain class of continuous time stochastic volatility

models then the sum of the quasi maximum likelihood estimates of α and β will

converge to one in probability as the sampling frequency is increased. Our results

therefore indicate that the IGARCH property often found in empirical work could

potentially be caused by misspecification.

The work of Nelson (1992) showed that it is possible to make the conditional

variance process based on ARCH type models with deterministic parameters

converge to the true unobserved volatility process. The parameters must here

satisfy that (ωT , αT , βT ) → (0, 0, 1) as the number of sample points T tends to

infinity. Our main result states that the same convergence holds for the stochastic

sequence of quasi maximum likelihood estimators.

The simulations and the empirical study confirm the theoretical results and fur-

ther suggest that: i) the assumptions of the main results may be weakened con-

siderably and ii) that it may be possible to derive the exact rate of convergence

of the estimators in specific mathematical frameworks. These questions are left

for future research.
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Appendix: Auxiliary lemmas

Since f is independent of the sequence (zt)t∈N all lemmas will be proved condi-

tional on the realization of f , which can therefore be treated as a fixed strictly

positive continuous function throughout.

Lemma 2. If E[z8
t ] <∞ there exists some A > 0 such that for any η > 0

sup
u∈[0,1]

P[|hT (u)− gT (u)| > η] ≤ Aη−4α2
T .

Proof. It follows from Chebychev’s inequality that

P(|hT (u)− gT (u)| > η)

≤ η−4E[|hT (u)− gT (u)|4]

≤ η−4E[(αT

bTuc−1∑
t=0

βtTf( bTuc−1−t
T

)(z2
bTuc−1−t − 1))4]

≤ η−4||f ||4∞α4
T{
bTuc−1∑
t=0

β4t
T κ4 + 6

bTuc−1∑
t=1

t−1∑
j=0

β2t+2j
T κ2

2}

≤ A1η
−4α4

T (
∞∑
t=0

β4t
T +

∞∑
t=1

β2t
T

1−β2t
T

1−β2
T

),

where we make use of the fact that f is bounded and that κ1 = 0 with κr =

E[(z2
t − 1)r]. Evaluating the geometric series above, using that αT = 1− βT , and

that the last expression does not depend on u one arrives at an inequality of the

form stated in the lemma. 2

Lemma 3. For any γ > 0 then supu∈[γ,1] |gT (u)−f(u)| → 0 as T tends to infinity.
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Proof. For any sequence cT and any u ∈ [γ, 1] we get

|gT (u)− f(u)|

= |βbTucT σ2
0 + αT

bTuc−1∑
t=0

βtT (f( bTuc−t−1
T

)− f(u))− αT
∞∑

t=bTuc
βtTf(u)|

≤ β
bTuc
T σ2

0 + αT

cT−1∑
t=0

βtT |f( bTuc−t−1
T

)− f(u)|+ αT

∞∑
t=cT

βtT ||f ||∞

≤ β
bTγc
T σ2

0 + αT
1− βcTT
1− βT sup

v∈[u− cT
T
,u]

|f(v)− f(u)|+ αT
βcTT

1− βT ||f ||∞.

If cT/T = o(1) the uniform continuity of f implies that the middle term can be

made arbitrary small by choosing T adequately large and that the convergence

is uniform over u ∈ [γ, 1]. To complete the proof note that

log(βcTT ) = cT log(1− T−d) = −cTT−d log(1− T−d)− log(1)

T−d
→ −∞

as T tends to infinity provided that we choose cT so that cT/T
d tends to infinity

as T tends to infinity. 2

Lemma 4. For d > 1/2 then

lT (θT )
P→ −

∫ 1

0

log(f(u))du− 1, as T →∞.

Proof of Lemma 4. Rewriting the expression for lT (θT ) yields

lT (θT ) = − 1

T

T∑
t=1

(log(σ2
t (θT )) +

f(t/T )

σ2
t (θT )

) (11)

− 1

T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1) (12)

By the law of large numbers for martingale difference sequences (12)
P→ 0. For-

mally, since E[z2
t − 1] = 0 and σ2

t (θT ) is Ft−1−measurable we get by applying
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Chebechev’s inequality that

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1)| > η)

≤ B1

T 2

T∑
i=1

T∑
j=i

E[E[
(z2
i − 1)(z2

j − 1)

σ2
i (θT )σ2

j (θT )
| Fj−1]]

=
B2

T 2

T∑
t=1

E[
1

σ4
t (θT )

] ≤ B3

Tα2
Tβ

2cT
T

E[
1

(z2
1 + . . .+ z2

cT
)2

],

where cT is a sequence of positive integers. For T sufficiently large (Mathai &

Provost (1992), p. 59)

E[
1

(z2
1 + . . .+ z2

cT

)2] ≤ B4

c2
T

hence

0 ≤ lim sup
T→∞

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1)| > η) ≤ lim sup

T→∞

B5

Tα2
Tβ

2cT
T c2

T

and by choosing cT = bα−1
T c = bT dc the right hand side is zero.

For any γ > 0 (11) may be written as

− 1

T

bTγc−1∑
t=1

log(σ2
t (θT ))− 1

T

bTγc−1∑
t=1

f(t/T )

σ2
t (θT )

−
∫ 1

γ

log(hT (u))du−
∫ 1

γ

f(u)

hT (u)
du+

T∑

t=bTγc

∫ t/T

(t−1)/T

f(u)− f(t/T )

hT (u)
du,

using that hT (u) is piecewise constant on intervals of the form [(t − 1)/T, t/T [.

16



We deduce from Lemma 1 and the continuous mapping theorem that

∫ 1

γ

log(hT (u))du
P→

∫ 1

γ

log(f(u))du

∫ 1

γ

f(u)

hT (u)
du

P→ 1− γ
∫ 1

γ

1

hT (u)
du

P→
∫ 1

γ

1

f(u)
du.

By the uniform continuity of f we conclude that

T∑

t=bTγc

∫ t/T

(t−1)/T

f(u)− f(t/T )

hT (u)
du

P→ 0.

For η > 0 then

P(| 1
T

bTγc−1∑
t=1

1

σ2
t (θT )

| > η) ≤ P( max
t=1,...,bTγc−1

1

T

1

σ2
t (θT )

>
η

bTγc − 1
)

≤ P( min
t=1,...,bTγc−1

σ2
t (θT ) ≤ γ

B6

)

≤
bTγc∑
t=1

P(σ2
t (θT ) ≤ γ

B6

).

Noting that E[σ2
t (θT )] ≥ min(f, σ2

0) ≡ σ2 > 0 uniformly in t and T we find that

for γ > 0 sufficiently small then

P(σ2
t (θ) ≤

γ

B6

) ≤ P(|σ2
t (θT )− E[σ2

t (θT )]| ≥ E[σ2
t (θT )]− γ

B6

)

≤ P(|σ2
t (θT )− E[σ2

t (θT )]| ≥ σ2 − γ

B6

)

17



we get by applying Lemma 2 that

P(| 1
T

bTγc−1∑
t=1

1

σ2
t (θT )

| > η) ≤ B7bTγcα2
T

which tends to zero as T tends to infinity. For η > 0 given we get

P(| 1
T

bTγc−1∑
t=1

log(σ2
t (θT ))| > η)

≤ P( max
t=1,...,bTγc−1

| 1
T

log(σ2
t (θT ))| > η

bTγc − 1
)

≤ P( max
t=1,...,bTγc−1

σ2
t (θT ) ≥ exp(B8/γ)) + P( min

t=1,...,bTγc−1
σ2
t (θT ) ≤ exp(−B8/γ))

≤
bTγc−1∑
t=1

P(σ2
t (θT ) ≥ exp(B8/γ)) +

bTγc−1∑
t=1

P(σ2
t (θT ) ≤ exp(−B8/γ)).

From the previous argument we find that for γ > 0 sufficiently small

P(σ2
t (θT ) ≥ exp(B8/γ)) ≤ P(|σ2

t (θT )− E[σ2
t (θT )]| ≥ exp(B8/γ)− σ2)

P(σ2
t (θT ) ≤ exp(−B8/γ)) ≤ P(|σ2

t (θT )− E[σ2
t (θT )]| ≥ σ2 − exp(−B8/γ)),

where σ2 = σ2
0 + ‖f‖∞. From Lemma 2 we get that

P(| 1
T

bTγc−1∑
t=1

log(σ2
t (θT ))| > η) ≤ B9bTγcα2

T

as T tends to infinity. 2

Lemma 5. For any θ ∈ Θ it holds that if f is non-constant there exists a constant

cθ > 0 such that

lim
T→∞

P(lT (θ)− {−
∫ 1

0

log(f(u))du− 1} < −cθ) = 1.

Proof of Lemma 5. Assume initially that θ is such that α 6= 0 and β 6= 0, 1 and

18



rewrite the log-likelihood function as follows

lT (θ)− {−
∫ 1

0

log(f(u))du− 1}

=

∫ 1

0

log(f(u))du− 1

T

T∑
t=1

log(f(t/T ))− 1

T

T∑
t=1

f(t/T )

σ2
t (θ)

(z2
t − 1) (13)

+
1

T

T∑
t=1

{log(
f(t/T )

σ2
t (θ)

) +
σ2
t (θ)− f(t/T )

σ2
t (θ)

}. (14)

By the LLN for martingale differences (13) tends to zero in probability as T tends

to infinity. Formally, since E[z2
t − 1] = 0 and σ2

t (θ) is measurable with respect to

Ft−1 = F(z0, ..., zt−1) we get by applying Chebechev’s inequality that

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θ)

(z2
t − 1)| > η)

≤ C1

T 2

T∑
i=1

T∑
j=i

E[E[
(z2
i − 1)(z2

j − 1)

σ2
i (θ)σ

2
j (θ)

| Fj−1]]

=
C2

T 2

T∑
t=1

E[
1

σ4
t (θ)

] ≤ C3

T
E[

1

(α(z2
5 + βz2

4 + . . .+ β4z2
1))2

]

and the expectation on the right hand side is finite if α, β > 0 c.f. Mathai &

Provost (1992).

Next turn to the expression in (14) which we decompose into

1

T

T∑
t=1

(log(
f(t/T )

σ2
t (θ)

)− E[log(
f(t/T )

σ2
t (θ)

)]) (15)

+
1

T

T∑
t=1

(E[
f(t/T )

σ2
t (θ)

]− f(t/T )

σ2
t (θ)

) (16)

+
1

T

T∑
t=1

E[log(
f(t/T )

σ2
t (θ)

) +
σ2
t (θ)− f(t/T )

σ2
t (θ)

] (17)

Initially we will establish that (15) converges in probability to zero. For any

19



η > 0 direct calculations yield

P(|T−1

T∑
t=1

log(
f(t/T )

σ2
t (θ)

)− E[log(
f(t/T )

σ2
t (θ)

)]| > η)

= P(|T−1

T∑
t=1

log(σ2
t (θ))− E[log(σ2

t (θ))]| > η)

≤ 2

T 2η2

T∑
i=1

T∑
j=i

|cov(log(σ2
i (θ)), log(σ2

j (θ)))|. (18)

Utilizing the following inequalities

− 1√
x
≤ log(x) ≤ √x, 0 ≤ log(1 + x) ≤ x,

which hold for all strictly positive x, it can be concluded that

|Cov(log(σ2
i (θ)), log(σ2

j (θ)))|

= |Cov(log(σ2
i (θ)), log(βj−iσ2

i (θ) + ω
1− βj−i

1− β + α

j−i−1∑

k=0

βky2
j−1−k

︸ ︷︷ ︸
:=Z(i,j)

))|

= |Cov(log(σ2
i (θ)), log(Z(i, j)(1 +

βj−iσ2
i (θ)

Z(i, j)
)))|

= |Cov(log(σ2
i (θ)), log(1 +

βj−iσ2
i (θ)

Z(i, j)
))|

≤
√
E[(log(σ2

i (θ)))
2]

√
E[(log(1 +

βj−iσ2
i (θ)

Z(i, j)
))2]

≤
√
E[(

1√
σ2
i (θ)

+
√
σ2
i (θ))

2]

√
E[(

βj−iσ2
i (θ)

Z(i, j)
)2]

≤ βj−i
√
E[(σ2

i (θ) +
1

σ2
i (θ)

+ 2)]
√
E[σ4

i (θ)]

√
E[

1

Z(i, j)2
].

For j > i+ 1 the right hand side can be bounded by βj−1C4, where the constant

C4 does not depend on either i nor j. In the derivations it is used repeatedly

that σ2
i (θ) is independent of Z(i, j). Since T−2

∑T
i=1

∑T
j=i β

j−i tends to zero as T
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tends to infinity it can be concluded that (18) and hence also (15) tends to zero.

To show that (16) tends to zero in probability note that

|Cov(
f(i/T )

σ2
i (θ)

,
f(j/T )

σ2
j (θ)

)|

= |f(
i

T
)f(

j

T
)(E[

1

σ2
i (θ)

1

βj−iσ2
i (θ) + Z(i, j)

]− E[
1

σ2
i (θ)

]E[
1

βj−iσ2
i (θ) + Z(i, j)

])|

≤ f(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

] | E[
1

Z(i, j)
]− E[

1

βj−iσ2
i (θ) + Z(i, j)

]|

≤ f(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

]E[
βj−iσ2

i (θ)

Z(i, j)(βj−iσ2
i (θ) + Z(i, j))

]

≤ βj−if(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

]E[σ2
i (θ)]E[

1

Z(i, j)2
].

As before if j > i + 4 the expression can be bounded by βj−1C5, where the

constant C5 does not depend on either i nor j. Hence it can be concluded that

(16) tends to zero. Before turning towards (17) note that for any η > 0 it holds

that

P(σ2
t (θ) /∈ [f − η, ‖f‖∞ + η]) ≥ P(σ2

t (θ) > ‖f‖∞ + η)

≥ P(αfz2
t > ‖f‖∞ + η) = C6 > 0.

Furthermore since the function x 7→ log(a/x) + (x−a)/x has a unique maximum

at a with the value 0 and the function f is strictly positive and bounded there

exists a constant C7 > 0 such that

sup
a∈[f,‖f‖∞]

sup
x∈[0,a−η]∪[a+η,∞]

log(a/x) + (x− a)/x < −C7.
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Finally it can be concluded that (17) can be bounded by

1

T

T∑
t=1

E[log(
f(t/T )

σ2
t (θ)

) +
σ2
t (θ)− f(t/T )

σ2
t (θ)

]

≤ 1

T

T∑
t=1

−C7P(σ2
t (θ) /∈ [f − η, ‖f‖∞ + η])

≤ 1

T

T∑
t=1

−C7C6 = −C7C6 = cθ < 0,

which verifies the claim of the lemma. For the special cases α = 0 or β = 0

the lemma is trivially satisfied. If β = 1 the lemma follows from observing σ2
t (θ)

tends to infinity almost surely as t grows. 2

Lemma 6. For θ ∈ Θ\(0, 0, 1) there exists an open subset of Θ around θ denoted

V (θ) and a constant γθ > 0 such that

P( sup
θ∗∈V (θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθ)

tends to one as T tends to infinity.

Proof of Lemma 6. We divide the proof into seven cases mainly because we have

to be very careful when θ lies on the boundary of Θ.

1. θ = (ω, α, β)′ ∈ (0,∞)× [0, 1]× [0, 1)

2. θ = (ω, α, β)′ ∈ (0,∞)× (0, 1]× {1}

3. θ = (ω, α, β)′ ∈ (0,∞)× {0} × {1}

4. θ = (ω, α, β)′ ∈ {0} × (0, 1]× {0}

5. θ = (ω, α, β)′ ∈ {0} × (0, 1]× (0, 1)

6. θ = (ω, α, β)′ ∈ {0} × (0, 1]× {1}

7. θ = (ω, α, β)′ ∈ {0} × {0} × [0, 1)
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Case 1. Choose according to Lemma 5 a cθ > 0 such that

lim
T→∞

P(lT (θ)− {−
∫ 1

0

log(f(u))du− 1} ≥ −cθ) = 0.

For ε > 0 denote by

Vε(θ) = {θ∗ ∈ Θ | ||θ∗ − θ|| ≤ ε}

and note that for T sufficiently large

P( sup
θ∗∈Vε(θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− cθ/2)

= 1− P( sup
θ∗∈Vε(θ)

lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− cθ/2)

≥ 1− P(lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− cθ)− P( sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)| ≥ cθ/2).

To complete the proof we only need to show that for some sufficiently small ε > 0

then

lim
T→∞

P( sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)| ≥ cθ/2) = 0. (19)

Note that this is much weaker than proving that

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

converges to zero in probability since the probability in (19) should not necessarily

converge to zero for this particular ε if cθ is replaced by an arbitrarily small

positive number. We proceed by showing that there exists a constant, D1 > 0,

such that for any small ε > 0 then

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

can be bounded above by something that converges in probability to D1ε as T

tends to infinity. In particular, the conclusion given by (19) holds for ε > 0 such
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that D1ε < cθ/2.

Trivially, for ε sufficiently small we get the inequalities

sup
θ∗∈Vε(θ)

|βt − β∗t| ≤ εt(β + ε)t−1

sup
θ∗∈Vε(θ)

|αβt − α∗β∗t| ≤ εαt(β + ε)t−1 + ε(β + ε)t

sup
θ∗∈Vε(θ)

|ω
t−1∑
i=0

βi − ω∗
t−1∑
i=0

β∗i| ≤ ε
1

1− β + ε(ω + ε)
∞∑
i=0

i(β + ε)i−1.

Hence

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D1ε+ ||f ||∞ε
t−1∑
i=0

z2
t−1−i [αi(β + ε)i−1 + (β + ε)i]︸ ︷︷ ︸

:=ci

+εt(β + ε)t−1σ2
0 (20)

and

sup
θ∗∈Vε(θ)

1

T

T∑
t=1

|σ2
t (θ)− σ2

t (θ
∗)|

≤ 1

T

T∑
t=1

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D1ε+ ||f ||∞ε
T∑
t=1

t−1∑
i=0

z2
t−1−ici +

1

T

T∑
t=1

t(β + ε)t−1σ2
0ε

≤ D2ε+ ||f ||∞ε{
∞∑
i=0

ci} 1

T

T−1∑
t=0

z2
t

P→ D3ε

as T tends to infinity. As σ2
t (θ
∗) is bounded below by ω−ε on Vε(θ) the derivations

just above demonstrate that

sup
θ∗∈Vε(θ)

1

T

T∑
t=1

| log(σ2
t (θ))− log(σ2

t (θ
∗))| ≤ sup

θ∗∈Vε(θ)

1

T

T∑
t=1

1

ω − ε |σ
2
t (θ)− σ2

t (θ
∗)|
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is bounded above by something that converges in probability to D4ε as T tends

to infinity. Consider now the decomposition

sup
θ∗∈Vε(θ)

|lT (θ)− lT (θ∗)|

≤ sup
θ∗∈Vε(θ)

1

T

T∑
t=1

| log(σ2
t (θ))− log(σ2

t (θ
∗))|

+ ||f ||∞ 1

T

T∑
t=1

z2
t sup
θ∗∈Vε(θ)

| 1

σ2
t (θ)
− 1

σ2
t (θ
∗)
|

≤ sup
θ∗∈Vε(θ)

1

T

T∑
t=1

1

ω − ε |σ
2
t (θ)− σ2

t (θ
∗)| (21)

+
||f ||∞

(ω − ε)2

1

T

T∑
t=1

(z2
t − 1) sup

θ∗∈Vε(θ)
|σ2
t (θ)− σ2

t (θ
∗)| (22)

+
||f ||∞

(ω − ε)2

1

T

T∑
t=1

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|. (23)

It follows by previous computations that (21) and (23) can be bounded above by

variables converging in probability to constants of the form Dε. The remaining

term (22) is a martingale difference and by (20) we find that for ε > 0 sufficiently

small

0 ≤ sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D5ε+D6ε
t−1∑
i=0

(z2
t−1−i − 1)ci.
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This implies that

E[(
1

T

T∑
t=1

(z2
t − 1) sup

θ∗∈Vε(θ)
|σ2
t (θ)− σ2

t (θ
∗)|)2]

≤ κ2
2

1

T 2

T∑
t=1

E[( sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|)2]

≤ 1

T
D2

5ε
2 +D2

6ε
2 1

T 2

T∑
t=1

E[(z2
1 − 1)2]

t−1∑
i=0

c2
i

≤ 1

T
D2

5ε
2 +

1

T
D2

6ε
2κ2

∞∑
i=0

c2
i

verifying that (22) tends to zero in probability which is much stronger that what

we need.

Case 2 and 6. Note initially that for ε adequately small

inf
θ∗∈Vε(θ)

σ2
t (θ
∗) ≥ (α− ε)

t−1∑
i=0

(1− ε)ifz2
t−1−i ≡ σ2

t (ε).

Hence

sup
θ∗∈Vε(θ)

lT (θ∗) = sup
θ∗∈Vε(θ)

− 1

T

T∑
t=1

(log(σ2
t (θ
∗)) +

y2
t

σ2
t (θ
∗)

) ≤ 1

T

T∑
t=1

− log(σ2
t (ε)),

which can be bounded by

− log(α− ε)− log(f)− k log(1− ε)− 1

T

T∑
t=1

log(
t∧k−1∑
i=0

z2
t−i−1)

P→ − log(α− ε)− log(f)− k log(1− ε)− E[log(Uk)] (24)

where the convergence is due to the the law of large numbers and Uk = z2
1+· · ·+z2

k.

Now choose k ∈ N and ε so small that (24) is strictly less then
∫ 1

0
log(f(u))−1du

as desired.
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Case 3. Note initially that for ε adequately small

inf
θ∗∈Vε(θ)

σ2
t (θ
∗) ≥ (ω − ε)

t−1∑
i=0

(1− ε)i ≡ σ2

t
(ε).

Hence for suitably large T

sup
θ∗∈Vε(θ)

lT (θ∗) ≤ 1

T

T∑
t=1

− log(σ2

t
(ε)) ≤ − log(ω − ε) + log(2) + log(ε),

and since the right hand side converges to minus infinity as ε tends to zero the

desired result has been established.

Case 4. Note that for ε sufficiently small then infθ∗∈Vε(θ) σ
2
t (θ
∗) ≥ (α − ε)y2

t−1.

In particular

lT (θ∗) ≤ − 1

T

T∑
t=1

(log((α− ε)y2
t−1) +

y2
t

σ2
t (θ
∗)

)

= − log(α− ε)− 1

T

T∑
t=1

log(f(
t− 1

T
))− 1

T

T∑
t=1

log(z2
t−1)− 1

T

T∑
t=1

y2
t

σ2
t (θ
∗)
.

Now, working on a probability space where we have a doubly infinite sequence,

(zt)t∈Z, of innovations we get that

inf
θ∗∈Vε(θ)

1

T

T∑
t=1

y2
t

σ2
t (θ
∗)
≥ 1

T

T∑
t=1

y2
t

ε
1−ε + (α + ε)

∑t−1
i=0 ε

iy2
t−1−i + εtσ2

0

≥ D7
1

T

T∑
t=1

z2
t

ε+D8

∑t−1
i=0 ε

iz2
t−1−i

≥ D7
1

T

T∑
t=1

z2
t

ε+D8

∑∞
i=0 ε

iz2
t−1−i

.

By the ergodic theorem the right hand side converges in probability towards its
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mean, and since by Fatou’s lemma

lim inf
ε→0

E[
1

T

T∑
t=1

z2
t

ε+D8

∑∞
i=0 ε

iz2
t−1−i

]

= lim inf
ε→0

E[
z2
t

ε+D8

∑∞
i=0 ε

iz2
t−1−i

]

≥ E[lim inf
ε→0

z2
t

ε+D8

∑∞
i=0 ε

iz2
t−1−i

] = E[
z2
t

Dz2
t−1

] = +∞

we conclude that for ε > 0 sufficiently small

lim
T→∞

P( sup
θ∗∈Vε(θ)

lT (θ∗)− {−
∫ 1

0

log(f(u))du− 1} < −1) = 1.

Case 5. Since for ε > 0 sufficiently small

sup
θ∗∈Vε(θ)

|σ2
t (θ
∗)− σ2

t (θ)|

≤ ε

1− (β + ε)
+ ε

t−1∑
i=0

(β + ε)iy2
t−1−i + α

t−1∑
i=1

iε(β + ε)i−1y2
t−1−i + (β + ε)tσ2

0

and for any k ∈ N

inf
θ∗∈Vε(θ)

σ2
t (θ
∗) ≥ (α− ε)

k∑
i=1

(β − ε)iy2
t−1−i

we deduce from previous arguments that

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

≤ 1

T

T∑
t=1

1

infθ∗∈Vε(θ) σ
2
t (θ
∗)

sup
θ∗∈Vε(θ)

|σ2
t (θ
∗)− σ2

t (θ)|

+
1

T

T∑
t=1

y2
t

(infθ∗∈Vε(θ) σ
2
t (θ
∗))2

sup
θ∗∈Vε(θ)

|σ2
t (θ
∗)− σ2

t (θ)|

In particular, to demonstrate that supθ∗∈Vε(θ) |lT (θ∗)− lT (θ)| is bounded in prob-
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ability by εD we only need to work with terms of the form

1

T

T∑
t=1

ε
∑t−1

i=0(β + ε)iz2
t−1−i

(α− ε)∑k
i=1(β − ε)iz2

t−1−i
(25)

1

T

T∑
t=1

αε
∑t−1

i=1 i(β + ε)i−1z2
t−1−i

(α− ε)∑k
i=1(β − ε)iz2

t−1−i
(26)

1

T

T∑
t=1

εz2
t

∑t−1
i=0(β + ε)iz2

t−1−i
[(α− ε)∑k

i=1(β − ε)iz2
t−1−i]2

(27)

1

T

T∑
t=1

αεz2
t

∑t−1
i=1 i(β + ε)i−1z2

t−1−i
[(α− ε)∑k

i=1(β − ε)iz2
t−1−i]2

. (28)

As in the proof of Case 4 introduce a doubly infinite sequence, (zt)t∈Z, of inno-

vations and note that for ρ1, ρ2 ∈ (0, 1) then by the ergodic theorem

1

T

T∑
t=1

∑∞
i=0 iρ

i
1z

2
t−1−i∑k

i=1 ρ
i
2z

2
t−1−i

P→ E[

∑∞
i=0 iρ

i
1z

2
t−1−i∑k

i=1 ρ
i
2z

2
t−1−i

]

where

E[

∑∞
i=0 iρ

i
1z

2
t−1−i∑k

i=1 ρ
i
2z

2
t−1−i

]

=
k∑
i=0

E[
iρi1z

2
t−1−i∑k

i=1 ρ
i
2z

2
t−1−i

] + E[
1∑k

i=1 ρ
i
2z

2
t−1−i

]E[
∞∑

i=k+1

iρi1z
2
t−1−i]

≤
k∑
i=1

i(ρ1/ρ2)i + E[
1∑k

i=1 ρ
i
2z

2
t−1−i

]
∞∑

i=k+1

iρi1

and the right hand side is finite for k ≥ 5, c.f. Mathai & Provost (1992). This

shows that asymptotically for T large then (25) and (26) may be bounded above

in probability by εD. To show that (27) and (28) may be bounded in probability
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by εD note that

1

T

T∑
t=1

z2
t

∑∞
i=0 iρ

i
1z

2
t−1−i

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

P→ E[
z2
t

∑∞
i=0 iρ

i
1z

2
t−1−i

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

]

where

E[
z2
t

∑∞
i=0 iρ

i
1z

2
t−1−i

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

]

≤
k∑
i=1

E[
iρi1z

2
t−1−i

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

] + E[
1

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

]E[
∞∑

i=k+1

iρi1z
2
t−1−i]

≤
k∑
i=1

{1

2
E[(iρi1z

2
t−1−i)

2] +
1

2
E[

1

(
∑k

i=1 ρ
i
2z

2
t−1−i)4

]}

+ E[
1

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

]
∞∑

i=k+1

iρi1

with the right hand side finite for k large enough.

Case 7. For θ = (0, 0, β)′, 0 ≤ β < 1 and ε > 0 small enough we get that

sup
θ∗∈Vε(θ)

σ2
t (θ
∗) ≤ 1

1− (β + ε)
ε+ ε||f ||∞

t−1∑
i=0

(β+ ε)iz2
t−1−i + (β+ ε)tσ2

0 := σ2
t (ε).

Using the inequality −1/x ≤ 2 log(x) we get that

sup
θ∗∈Vε(θ)

lT (θ∗) = sup
θ∗∈Vε(θ)

1

T

T∑
t=1

(− log(σ2
t (θ
∗))− y2

t

σ2
t (θ
∗)

)

≤ sup
θ∈Vε(θ)

T∑
t=1

(log(σ2
t (θ
∗))− 2 log(y2

t ))

≤ 1

T

T∑
t=1

(log(σ2
t (ε))− 2 log(z2

t )− 2 log(f(t/T )))

≤ log(
1

T

T∑
t=1

σ2
t (ε))−

2

T

T∑
t=1

log(z2
t )−

2

T

T∑
t=1

log(f(t/T )).
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Clearly, the last two terms tend to a constant and since

1

T

T∑
t=1

σ2
t (ε) ≤

ε

1− (β + ε)
+

ε

1− (β + ε)

||f ||∞
T

T∑
t=1

z2
t +

1

T

1

1− (β + ε)
σ2

0

we conclude that for ε > 0 small and a suitable γθ > 0 then

lim
T→∞

P( sup
θ∗∈Vε(θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθ) = 1.

2
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Francq, C. & J. Zaköıan (2000), ‘Estimating weak GARCH representations’,

Econometric Theory 16(5), 692–728.

Hillebrand, E. (2005), ‘Neglecting parameter changes in GARCH models’, Jour-

nal of Econometrics 129, 121–138.

Jensen, S.T. & A. Rahbek (2004), ‘Asymptotic inference for nonstationary

GARCH’, Econometric Theory 20, 1203–1226.

Lee, S.W. & B. Hansen (1994), ‘Asymptotic theory for the GARCH(1,1) quasi-

maximum likelihood estimator’, Econometric Theory 10, 29–53.

Mathai, A.M. & S.B. Provost (1992), Quadratic Forms in Random Variables,

Marcel Dekker, New York.
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