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1 Introduction

Modeling and forecasting of stock market return volatility has received unprecedented atten-

tion in the academic literature over the past two decades. The three most striking empirical

regularities to emerge from this expanding literature arguably concern: (i) the highly per-

sistent own dynamic dependencies in the volatility;1 (ii) the existence of a typically positive

volatility risk premium as manifested by the variance swap rate exceeding the corresponding

expected future volatility;2 (iii) the apparent asymmetry in the lead-lag relationship between

returns and volatility.3 Despite these now well-documented and generally accepted empirical

facts, no formal model yet exists for explaining these features within a coherent economic

framework. This paper fills that void by developing an entirely self-contained equilibrium

based explanation for the asymmetry and volatility risk-premium that also accommodates

long-run dependencies in the underlying volatility process.

Before discussing the model any further, it is instructive to illustrate anew the empirical

regularities we seek to explain. To that end, the top most solid line in Figure 1 shows the

sample autocorrelations for the aggregate market volatility out to a lag length of ninety days,

based on daily data for the squared options-implied volatility index VIX over the past two

decades; further details concerning the data and different volatility measures are given in

Section 4. The autocorrelations in Figure 1 decay at a very slow rate and remain numerically

large and statistically significant for all lags. Consistent with these highly persistent own

dynamic dependencies in the volatility, it is now widely accepted that the typical rate of decay

is so slow as to be best described by a fractionally integrated long-memory type process; for

some of the earliest empirical evidence along these lines see, e.g., Robinson (1991), Ding et

1The historically low volatility over several years proceeding the Fall 2008 financial crises and the subse-
quent sustained heightened volatility provide anecdotal evidence for this idea.

2The preponderance of options traders ”selling” volatility to gain the premium indirectly supports the
notion of volatility carrying a risk premium.

3Again, anecdotal evidence like the heightened volatility following Russia’s default and the LTCM debacle
in September 1998, the relatively low volatility accompanying the rapid run-up in prices during the tech
bubble, as well as the recent sharp increase in volatility accompanying the Fall 2008 financial crises and
sharp market declines are all consistent with this asymmetry.
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Figure 1 Sample Autocorrelations
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The top most solid line shows the sample autocorrelations for the V IX2 volatility index to a lag length of 90 days. The lower

line shows the sample autocorrelations for the variance risk premium. The calculations are based on daily data and variable

definitions as described in more detail in Section 4.1.

al. (1993) and Baillie et al. (1996).

The VIX index in effect represents the market’s expectation of the volatility for S&P

500 index over the next month together with any premium for bearing the corresponding

volatility risk.4 Isolating the variance risk premium, the second line in Figure 1 shows the

daily autocorrelations for the difference between the squared VIX index and the one-month-

ahead forecasts from a simple reduced form time series model for the actually observed daily

realized variation of the S&P 500 returns; further details concerning the high-frequency based

realized volatility series and the construction of the model forecasts are again deferred to

Section 4. Although the autocorrelations indicate non-trivial dependencies for up to several

weeks, the premium is clearly not as persistent as the volatility process itself. Again, this

is not a new empirical result per se, but one that any satisfactory economic model must be

able to accommodate. For instance, the empirical analysis in Bollerslev et al. (2006a) also

supports the idea of relatively fast mean reversion in the volatility risk premium, as does

4The variance risk premium is formally defined as the difference between the expected future volatility
under the risk-neutral and the actual probability measures.
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Figure 2 Sample Cross-Correlations
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The top panel shows the sample cross-autocorrelations between the V IX2 and lags and leads of the returns ranging from -22 to

22 days. The bottom panel shows the sample cross-autocorrelations between the variance risk premium and the returns. The

calculations are based on high-frequency five-minute data and and variable definitions as further detailed in Section 4.1.

the evidence of fractional co-integration between implied and realized volatility presented

by, e.g., Bandi and Perron (2006) and Nielsen (2007).

Next, to highlight the aforemention return-volatility asymmetry, the first panel in Figure

2 plots the very high frequency cross-correlations between leads and lags of the S&P 500

returns and the corresponding squared options-implied VIX volatility index. Bollerslev et

al. (2006b) have previously demonstrated the advantage of using high-frequency intraday

data for more effectively estimating and analyzing the lead-lag relationship between returns

and volatility.5 We therefore follow their lead in using five-minute observations for both

the VIX and the S&P 500 returns in calculating the sample cross-correlations for leads and

lags ranging up to 22 days, or 1,716 leads and lags at the five-minute sampling frequency.

5Bollerslev and Zhou (2006) have also argued that the asymmetry tend to be stronger for implied than
realized volatility.
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High-frequency data for the VIX have only been available since 2003, so that the cross-

autocorrelations depicted in Figure 2 are necessarily based on a somewhat shorter five-year

calendar-time span compared to the longer sample of daily observations used for illustrating

the longer-run own volatility dependencies in the previous Figure 1. Nonetheless, this shorter

high-frequency sample still reveals a striking negative pattern in the correlations between the

volatility and the lagged returns, lasting for several days. On the other hand, the correlations

between the volatility and the future returns are all positive, albeit close to zero. Following

Black (1976), who first observed the apparent asymmetry in the return-volatility relationship,

the left part of the figure and the negative correlation between lagged returns and current

volatility is now commonly referred to as a “leverage effect,”6 while the right part of the

figure and the positive correlation between current volatility and future returns has been

termed a “volatility feedback effect.” This systematic pattern in the high-frequency based

cross-correlations is directly in line with the empirical evidence from numerous empirical

studies based on coarser lower frequency daily data and specific parametric models, including

the early influential work by French et al. (1987), Nelson (1991), Glosten et al. (1993) and

Campbell and Hentschell (1992).

Taking the analysis one step further, the bottom panel in Figure 2 shows the cross-

correlations between the five-minute S&P 500 returns and the variance risk premium, where

as before the variance risk premium is defined as the difference between the squared VIX in-

dex and the corresponding forecast constructed from a simple reduced form time series model

for the observed realized volatilities. Comparing this new picture to the return-volatility de-

pendencies in the top panel, the signs of the cross-correlations generally coincide. However,

there is a noticeable faster decay toward zero in the magnitude of the cross-correlations

between the variance risk premium and the lagged returns compared to the decay in the cor-

responding cross-correlations between the squared VIX index and the lagged returns. This

difference closely mirrors the difference in the shape and the rate of decay in the standard

6It is now also widely agreed that the negative correlations actually have little if anything to do with
changes in financial leverage; see, e.g., Figlewski and Wang (2002).
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sample autocorrelations for the two daily volatility series depicted in Figure 1.

The key empirical return-volatility patterns and dynamic dependencies illustrated in the

figures indicate that volatility carries a risk premium. Standard equilibrium based models

build around a representative agent with time-separable utility rules out priced volatility risk;

see, e.g., the discussion in Bansal and Yaron (2004). Instead, following the literature on long-

run risk models pioneered by Bansal and Yaron (2004), we assume that the representative

agent is equipped with Epstein-Zin-Weil preferences. Importantly, in this situation the

Stochastic Discount Factor (SDF) will depend not only on the consumption growth rate,

but also on the future investment opportunities. Consequently, the aggregate market return

will be a function of the expected growth in the economy, as in the traditional time-separable

utility case, as well as the uncertainty about the future economic growth; see, e.g., Campbell

(1996). Intuitively, this also explains why investors may be willing to pay an uncertainty

premium, and in turn why the VIX may differ from the corresponding actual return volatility

and why the corresponding variance risk premium may serve as a separately priced risk factor.

Our model is cast in continuous time. The Epstein-Zin-Weil preference structure was first

employed in a continuous-time asset pricing setting by Duffie and Epstein (1992a). However,

in contrast to the expression for the SDF involving the compensator function derived in that

paper, we find it more convenient to work with the discount factor expressed in terms of the

consumption growth rate and the market return. As formally show below, this expression

in turn results in continuous-time Euler equations analogous to the discrete-time equations

originally derived by Epstein and Zin (1989), and utilizing a log-linearization allows for

closed-form tractable solutions of the model for values of the Intertemporal Elasticity of

Substitution (EIS) different from unity.

The model is most directly related to the equilibrium long-run risk model recently de-

veloped by Bollerslev et al. (2009), in which the volatility-of-volatility in the economy is

determined by its own separate stochastic process, and the model of Drechsler and Yaron

(2008), in which the expected growth rate in consumption and the volatility of consumption
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growth are both allowed to “jump.” In comparison to the specific discrete-time formu-

lations employed in those papers, however, the continuous-time formulation adopted here

has the advantage of allowing for the calculation of internally consistent model implications

across different sampling frequencies and return horizons, and it is able to accommodate

much richer longer-run volatility dependencies including fractional integration. Importantly,

the continuous-time formulation also permits a stringent definition of the VIX volatility in-

dex and avoids the inherent problem in traditional discrete-time long-run risk models with

GARCH type errors that the (conditional) variance is known one period in advance and

therefore formally can’t generate a variance premium. A related long-run risk type model

in which the economic uncertainty, or the volatility of consumption growth, is allowed to

“jump” in continuous-time has also recently been explored by Eraker (2008), in an attempt

to explain the existence of a (on average) positive volatility risk premium.

Other recent studies concerned with the equilibrium pricing of volatility risk include

Gabaix (2009) and Wachter (2008), both of whom analyze the implications of rare disasters,

and Lettau et al. (2009) who emphasize the role of low frequency movements in macroe-

conomic uncertainty for explaining low frequency multi-year movements in stock market

valuations. Several studies more squarely rooted in the options pricing literature have also

explored the equilibrium implications of allowing for richer volatility dynamics and non-

standard preference structures; see, e.g., the recent papers by Benzoni et al. (2005), Eraker

and Shaliastovich (2008) and Santa-Clara and Yan (2009) and the references therein. How-

ever, the empirical focus of the present paper is distinctly different from all of these other

studies, and to the best of our knowledge, no other coherent economic equilibrium-based

explanation for the volatility asymmetries and dynamic dependencies depicted in Figures 1

and 2 is yet available in the literature.

The plan for the rest of the paper is as follows. The new theoretical model is formally

defined and solved in Section 2. The equilibrium implications from the model in regards to

the return-volatility asymmetries and the own dynamic volatility dependencies are presented
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in Section 3. The data used in the construction of the figures discussed above and the model’s

ability to reproduce these basic empirical features are the subject of Section 4. Section 5

concludes. Most of the mathematical proofs are deferred to two Appendixes.

2 Volatility in Equilibrium

The classic continuous-time Intertemporal CAPM of Merton (1973) is often used to justify

the existence of a traditional volatility risk premium in aggregate market returns. However,

the model is unable to explain the leverage effect and asymmetric return-volatility depen-

dencies actually observed in the data. The continuous-time endowment economy developed

here instead builds on the discrete-time long-run risk model pioneered by Bansal and Yaron

(2004), and the extensions of that same model in Bollerslev et al. (2009) and Drechsler and

Yaron (2008). We begin in the next subsection by a description of the basic continuous-time

model setup and solution under short-memory dynamics. We subsequently show how the

model may be extended to incorporate empirically relevant long-memory dependencies.

2.1 Basic Model Setup and Assumptions

Let the local geometric growth rate of consumption Ct in the economy be denoted by gt ≡ dCt

Ct
.

To simplify the analysis and explicitly focus on the role of time-varying volatility, we rule

out any predictability in gt by assuming that it follows the continuous martingale

gt = µgdt + σg,tdW c
t , (1)

where µg denotes the constant mean growth rate, σg,t refers to the conditional volatility of the

growth rate, and W c
t is a standard Wiener process.7 Further, we assume that the volatility

dynamics in the economy are governed by the following continuous-time affine processes,

dσ2
g,t = κσ(µσ − σ2

t )dt +
√

qtdW σ
t , (2)

7The growth rate of consumption is identically equal to the dividend growth rate in this Lucas-tree
economy.
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dqt = κq(µq − qt)dt + ϕq
√

qtdW q
t , (3)

where the two Wiener processes W σ
t and W q

t are independent and jointly independent of W c
t ,

and the parameters satisfy the non-negativity restrictions µσ > 0, µq > 0, κσ > 0, κq > 0,

and ϕq > 0.8 The stochastic volatility process σ2
g,t represents time-varying economic uncer-

tainty in consumption growth, with the volatility-of-volatility process qt in effect inducing

an additional source of temporal variation in that same process. As discussed further below,

both of these processes play an important role in generating empirically realistic time varying

volatility risk premia. Note that the assumption of independent innovations across all three

equations means the internal structure of the model itself must explain the return-volatility

correlations, and it rules out any correlations that might otherwise arise via purely statistical

channels.

We assume that the representative agent’s consumption and investment decisions are

based on the maximization of Epstein-Zin-Weil recursive preferences. As formally shown

in Appendix A this implies that the equilibrium relationship between the inter-temporal

marginal rate of substitution, Mt, consumption, Ct, and the cumulated return on the aggre-

gate wealth portfolio, Rt, must satisfy the relation derived in equation (A.9),

d log Mt +
θ

ψ
d log Ct + (1− θ)d log Rt = −ρθdt, (4)

where ρ denotes the instantaneous subjective discount factor, ψ equals the inter-temporal

elasticity of substitution, and the parameter θ is defined by

θ ≡ 1− γ

1− 1
ψ

, (5)

where γ refers to the coefficient of risk aversion. The expression in equation (4) is naturally

interpreted as the continuous-time version of the widely used and celebrated discrete-time

equilibrium relationship derived in Epstein and Zin (1991). In the following we will maintain

8We also assume that µqκq > 0.50ϕ2
q, which ensures positivity of qt, and that µσ is sufficiently large

relative to κσ, so that negativity of σ2
g,t is highly unlikely and the subsequent approximations reasonable.
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the assumptions that γ > 1 and ψ > 1, which readily implies that θ < 0.9 Consistent with

the empirical regularities discussed in the introductory section, these specific parameter

restrictions ensure, among other things, that asset prices fall on news of positive volatility

shocks and that volatility carries a positive risk premium.

2.2 Basic Model Solution

Let Ψt denote the price-dividend ratio, or equivalently the price-consumption or the wealth-

consumption ratio, of the asset that pay the consumption endowment {Ct+s}s∈[0,∞). It

is convenient to express Ψt = Ψ(xt) a function of the state vector xt = (σ2
g,t , qt). The

conventional linear method of solving for rational expectations models is complicated by

the fact that the stochastic differential equation for log(Ψt) involves the reciprocal of Ψ(xt).

To circumvent this difficulty, we approximate Ψ(x)−1 = exp(− log Ψ(x)) by the following

first-order expansion,

Ψ(x)−1 ≈ exp(−log Ψ)− exp(−log Ψ)(log Ψ(x)− log Ψ) = κ0 − κ1 log Ψ(x),

where κ1 > 0. This approximation plays a similar role to that of the standard Campbell-

Shiller discrete-time approximation to the returns in terms of the log price-dividend ratio.

Similar expressions have also previously been used in the continuous-time setting by, e.g.,

Campbell and Viceira (2002).

Now conjecturing a solution for log(Ψt) as an affine function of the two state variables,

σ2
g,t and qt,

log(Ψt) = A0 + Aσσ
2
g,t + Aqqt, (6)

9The assumption that γ > 1 is generally agreed upon, but the assumption that ψ > 1 is a matter of some
debate; see, e.g., the discussion in Bansal and Yaron (2004).
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and solving for the coefficients A0, Aσ, and Aq, it follows from Appendix B that

A0 =
Aσκσµσ + Aqκqµq − κ0 + (1− 1/ψ)µg − ρ

κ1

, (7)

Aσ =
−γ

2

1− 1
ψ

κσ + κ1

, (8)

Aq =
κq + κ1 −

√
(κq + κ1)2 − θ2A2

σϕ
2
q

θϕ2
q

. (9)

The restrictions that γ > 1 and ψ > 1, readily imply that the impact coefficient associated

with both of the volatility state variables are negative; i.e., Aσ < 0 and Aq < 0.10 Or put

differently, that the market falls on positive volatility “news.” From these explicit solutions

for the three coefficients it is now also relatively straightforward to deduce the reduced form

expressions for other variables of interest.

In particular, as shown in equation (B.7) in Appendix B, the equilibrium dynamics of

the logarithmic cumulative return process, Rt, is given by

d log(Rt) =

[
µg

ψ
+ ρ− σ2

g,t

2
+

γ

2
(1− 1

ψ
)σ2

g,t − Aqqt(κ1 + κq)

]
dt +

σg,tdW c
t + Aσ

√
qtdW σ

t + Aqϕq
√

qtdW q
t .

(10)

The directional effects of increases in the endowment volatility, σ2
g,t, on the local expected

return are generally ambiguous. However, for sufficiently high levels of risk-aversion γ and

inter-temporal substitution ψ, endowment volatility positively affects the local expected

return. Meanwhile, increases in the volatility-of-volatility, qt, unambiguously, increase the

local expected return, reflecting the compensation for bearing volatility risk. On the other

hand, diffusive-type innovations in the volatility and the volatility-of-volatility, dW σ
t and

dW q
t , both have a negative impact on the local returns, consistent with a leverage type

effect.

To further appreciate the implications of the model and how it might help explain the

empirical regularities, it is instructive to consider the model-implied equity premium, πr,t,

10The solution for Aq in equation (9) represents one of a pair of roots to a quadratic equation, but it is
the economically meaningful root for reasons discussed below.
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as derived in equation (B.9),

πr,t ≡ − 1

dt

d [R, M ]t
RtMt

= γσ2
g,t + (1− θ)(A2

σ + A2
qϕ

2
q)qt. (11)

The first term, γσ2
g,t, is akin to a classic risk-return tradeoff relationship. It does not re-

ally represent a volatility risk premium per se, however, but rather changing prices of con-

sumption risk induced by the presence of stochastic volatility. Instead, the second term,

(1 − θ)κ2
1(A

2
qϕ

2
q + A2

σ)qt, has the interpretation of a true volatility risk premium, represent-

ing the confounding impact of the two diffusive-type innovations, dW σ
t and dW q

t .11 The

existence of this true volatility risk premium depends crucially on the dual assumptions of

recursive utility, or θ 6= 1, as volatility would not otherwise be a priced factor, and time

varying volatility-of-volatility, in the form of the qt process. The restrictions that γ > 1 and

ψ > 1 imply that the volatility risk premium is positive.

The expression for the instantaneous risk premium in equation (11) discussed above

closely mirrors the expression for the premium in the corresponding discrete-time model of

Bollerslev et al. (2009). The specific formulations used in deriving these results both involve

somewhat restrictive assumptions about the underlying volatility dynamics. We next discuss

how the continuous-time setup and the developed model solution may be adapted to allow

for more flexible and richer dynamic dependencies in the volatility, including longer-memory

type effects.

2.3 General Model Solution

Numerous more flexible continuous-time stochastic volatility models have been proposed in

the literature. We build on the framework of Comte and Renault (1996) in assuming that

the evolution in σ2
g,t may be described by

σ2
g,t = σ2 +

∫ t

−∞
a(t− s)

√
qsdW σ

s . (12)

11The specific root in equation (9) implies that A2
qϕ

2
q → 0 for ϕq → 0, which guarantees that the premium

disappears when qt is constant, as would be required by the lack of arbitrage.
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This representation is quite general and flexible. By appropriate choice of the moving average

weights {a(s)}s∈[0,∞) it obviously includes the affine process in equation (2) as a special case.

Importantly, by suitable choice of the mapping s → a(s), the process for σ2
g,t may also exhibit

various forms of long range dependence. In particular, setting

a(s) =
σ

Γ(1 + α)

(
sα − ke−ks

∫ s

0

ekuuαdu

)
(13)

results in the classic fractionally integrated process, where α denotes the long-memory pa-

rameter.

To complete the specification of the model and still allow for closed form solutions, we will

maintain the identical laws of motions for the consumption growth rate and the volatility-

of-volatility given by equations (1) and (3), respectively. The actual solution strategy differs

somewhat from that for the basic model. The full details are given in Appendix C; a precis

follows.

In parallel to the solution for the short-memory model discussion above, we start by

conjecturing a solution for the logarithmic price-consumption ratio now of the form

log(Ψt) = A0 + Aqqt +

∫ t

−∞
A(t− s)

√
qsdW σ

s (14)

where A0, Aq, and {A(s)}s∈[0,∞) are to be determined. Some care is needed because of

subtleties related to possible arbitrage opportunities under long-memory type dependencies

(Rogers, 1997). The strategy that we use relies on the fact that in the absence of arbitrage

the return on a traded security must follow a semi-martingale. This allows us to split up

the returns into a drift and a local martingale component. This decomposition is possible

when A(t) exists and is differentiable at zero. Substituting the conjectured solution into the

pricing equation (4) yields the following ordinary differential equation for t > s,

A′(t− s)− κ1A(t− s) =
γ(1− 1

ψ
)

2
a(t− s), (15)

and two regular equations,

θ

2
ϕ2

qA
2
q − (κq + κ1)Aq +

θA(0)2

2
= 0 (16)
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A0 =
Aqκqθq − κ0 + (1− 1

ψ
)µg − ρ− γ

2
(1− 1

ψ
)σ2

κ1

. (17)

From the Appendix, the solutions to this system of equations are

A(s) = −
∫ +∞

s

γ(1− 1
ψ
)

2
eκ1(t−τ)a(τ)dτ, (18)

Aq =
κq + κ1 −

√
(κq + κ1)2 − θ2ϕ2

qA(0)2

θϕ2
q

, (19)

A0 =
Aqκqθq − κ0 + (1− 1

ψ
)µg − ρ− γ

2
(1− 1

ψ
)σ2

κ1

, (20)

which exists and is well defined subject to a terminal condition ruling out explosive bubble

solutions and other mild regularity conditions. As before, from this set of solutions it is

possible to deduce the reduced form expressions for all other variables of interest.

In particular, in parallel to the expression for the returns in the short-memory model in

equation (10) above, it follows from Appendix C that the reduced form expression for the

returns in the general may be expressed as,

d log(Rt) = µR,t dt + σg,tdW c
t + Aqϕq

√
qtdW q

t + A(0)
√

qtdW σ
t , (21)

where the drift is defined by,

µR,t = ρ +
µg

ψ
+ [−1

2
+

γ

2
(1− 1

ψ
)]σ2

g,t − (κq + κ1)Aqqt. (22)

Similarly, from equation (C.7) in Appendix C the equilibrium equity premium is deter-

mined by,

πr,t = γσ2
t + (1− θ)[A2

qϕ
2
q + A(0)2]qt = γσ2

t + 2

(
1

θ
− 1

)
(κq + κ1)Aqqt. (23)

Under the previously discussed parameter restrictions γ > 1 and ψ > 1, implying that

θ < 0, the equity premium remains positive. So as long as γ 6= 1
ψ
, or θ 6= 1, it also

remains the case that stochastic volatility carries a positive risk premium. Note also that

the instantaneous equity premium only depends on the {a(s)}s∈[0,∞) weights and the possible
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long-run dependencies in the volatility through the cumulative impact determined by the

integral solution for A(0) in equation (18).

We next turn to a more specific discussion of the model’s implications vis-a-vis the

volatility risk premium and dynamic return-volatility dependencies.

3 Dynamic Equilibrium Dependencies

The equilibrium expressions discussed in the previous section characterize how the equity

premium depends on the instantaneous volatility, and how the instantaneous return responds

to contemporaneous volatility innovations within the model. This section further details

the model’s implications in regards to the dynamic dependencies in the volatility and the

volatility risk premium, and how these volatility measures co-vary with leads and lags of

the returns at different horizons. We will subsequently confront these theoretical predictions

with the key empirical regularities discussed in the introduction.

3.1 VIX and the Volatility Risk Premium

One of the key features of the general version of the model is that consumption volatility,

σ2
g,t, may exhibit long-range dependence while the volatility of the volatility, qt, is a short-

memory process. This in turn has important implications for the serial correlation properties

of the equivalent to the VIX volatility index implied by the model and the corresponding

volatility risk premium, and how these measures correlate with the returns.

To begin, consider the (forward) integrated variance, or quadratic variation, of the asset

price St,

IVt,t+N ≡
∫ t+N

τ=t

d [log S, log S]τ , (24)

where the “brackets” [ ] represents the standard quadratic variation process. From equa-

tion (C.8) in Appendix C the reduced form expression for the integrated variance may be
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conveniently written as,

IVt,t+N =

∫ t+N

t

σ2
g,τdτ + (A2

qϕ
2
q + A(0)2)

∫ t+N

t

qτdτ. (25)

The integrated variance is, of course, random and not observed until time t + N .

The corresponding variance swap rate is defined as the time t risk-neutralized expectation

of IVt,t+N , say EQ
t (IVt,t+N). This risk-neutral expectation may in theory be calculated in a

completely model-free fashion from a cross-section of option prices (see, e.g., Carr and Madan,

1998; Britten-Jones and Neuberger, 2000; Jiang and Tian, 2005). This way of calculating

the variance swap rate directly mirrors the definition of the (squared) VIX volatility index

for the S&P 500,

VIX2
t ≡ EQ

t (IVt,t+N) , (26)

where the horizon N is set to one month, or 22-days.12

This same risk-neutral expected variation may alternatively be calculated within the

specific equilibrium model setting. In particular, it follows from equation (C.9) in Appendix

C that

VIX2
t = βvx,0 +

∫ t

−∞
hvx(t− s)

√
qsdW σ

s + βvx,q qt, (27)

where the dependence on N has been suppressed for notational convenience. The {hvx(s)}s∈[0,∞)

weights depend on the {a(s)}s∈[0,∞) moving average coefficients, and importantly inherit any

long-memory decay in those coefficients. As such, an eventual slow hyperbolic decay in the

autocorrelations for the V IX2
t would therefore be entirely consistent with the implications

from the general theoretical model; i.e.,

Corr(VIX2
t , VIX2

t+s) = chs
bh s > S, (28)

where ch > 0 and bh < 0 are constants, and S denotes a sufficiently long lag so that the

short-run dependencies have dissipated.

12A more detailed description of the mechanical calculation of the VIX index is available in the white paper
on the CBOE website; see also the discussion in Jiang and Tian (2007).
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Next, consider the variance risk premium, as formally defined by the difference between

the risk-neutral and objective expectation of IVt,t+N ,

vpt ≡ EQt (IVt,t+N)− EPt (IVt,t+N) . (29)

Whereas EQ
t (IVt,t+N) and EP

t (IVt,t+N) both depend on the consumption growth volatility

and the volatility-of-volatility of that process, the variance risk premium is simply an affine

function of the volatility-of-volatility, qt. Specifically, from equation (C.10) in Appendix C,

vpt = bvp,0 + bvp,1qt, (30)

where bvp,0 > and bvp,1 > 0, reflecting the positive premium for bearing volatility risk pro-

vided that θ > 0. Consequently, the vpt process simply inherits the short-memory dynamic

dependencies in the qt process, and should exhibit a relatively fast exponential decay in its

autocorrelation structure,

Corr(vpt, vpt+s) = cqe
−κqs s > 0, (31)

where cq denotes a positive constant.

The equilibrium expressions for the the variance swap rate and the premium in equations

(27) and (30), respectively, also have unique implications for the dynamic cross-correlations

with the returns. We review these next.

3.2 Return-Volatility Correlations

We are interested in calculating the dynamic cross-correlations between the two variance

measures, VIX2
t and vpt, and leads and lags of the returns. To help elucidate the economic

mechanisms, it is instructive to first review the predictions under short-memory dynamics,

which allow for closed form solutions for the cross-correlations. We subsequently discuss the

general case explicitly allowing for long-memory dependencies in the underlying volatility

process. The cross-correlations between the variance premium and the returns are easier to

calculate than those for the VIX, and we begin by considering these.
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Let rt ≡ d log(Rt) denote the instantaneous return. We will refer to the cross-correlations

between the time t premium vpt and the future returns, rt+s for s > 0, as the forward

correlations. The forward correlations represent the extent to which the premium is able

to forecast the returns. The correlations between the premium vpt and the lagged returns,

rt+s for s < 0, on the other hand, represent the impact of movements in the past returns

on the current variance premium. Given the well-known near unpredictability of returns,

we would expect the forward correlations to be positive, reflecting the premium for bearing

volatility risk, but small and quickly declining to zero for longer interdaily return horizons.

We would expect the lagged correlations to be negative, but increasing to zero for longer daily

lags, consistent with the existence of a dynamic leverage type effect. The formal theoretical

predictions from the model confirm these ideas.

Specifically, from the results for the short-memory model derived in Appendix B, it

follows that for s > 0,

Corr( vpt, rt+s ) = βR,q Var(qt) Kq e−κq s,

where βR,q represents the sensitivity of the instantaneous returns to the qt process. Since

βR,q > 0 and Kq > 0, the forward correlations should all be positive. Similarly, it follows

from the appendix that the cross-correlations for s < 0 satisfy,

Corr( vpt, rt−s ) = (βR,q Var(qt) + Aqφ
2
qµq) Kq e−κq s.

Since the high-frequency returns are close to unpredictable, the value for βR,q is likely to be

small. Hence, we would expect the second term involving Aq < 0 to dominate the expression

in parenthesis, and consequently all of the backward correlations to be negative. In summary,

the model predicts,

Corr(vpt, rt+s ) =





a− e−κq |s| s < 0,

a+ e−κq s s ≥ 0,

(32)

where a− < 0 and a+ > 0. As discussed further below, this prediction does indeed adhere

very closely with the relevant empirical shapes.
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The dynamic cross-correlations between the VIX2 and the return are a bit more involved

than those for the variance premium. However, the basic intuition is essentially the same,

except that the actual formulas now also depend on the volatility process σ2
g,t itself and its

correlation with the returns. In particular, referring to Appendix B the forward correlations

for s > 0 takes the form,

Corr(VIX2
t , rt+s) = βR,σ Var(σ2

g,t)Kσ e−κσ s + βR,q Var(qt) Kq e−κq s.

The sign of βR,σ will depend upon the preference parameters ψ and γ. However, it may

reasonably be expected to be positive,13 so that the forward cross-correlations will again be

positive, with the decay toward zero ultimately determined by the dominant value of κσ or

κq. As for the premium, the backward correlations for s < 0 are slightly more complicated,

taking the form,

Corr(VIX2
t , rt−s) = (βR,σ Var(σ2

g,t) + Aσµσ)Kσ e−κσ s + (βR,q Var(qt) + Aqφ
2
qµq) Kq e−κq s.

As discussed above, given the difficulties in predicting returns, we would expect the βR,σ

and βR,q terms to be relatively small and dominated by the terms involving the Aσ < 0 and

Aq < 0 coefficients determining the instantaneous response of the returns to volatility inno-

vations. Consequently, the backward correlations are naturally expected to be all negative.

In summary,

Corr(VIX2
t , rt+s ) =





aq,− e−κq |s| + aσ,− e−κσ |s| s < 0,

aq,+ e−κq s + aσ,+ e−κσ s s ≥ 0,

(33)

where aq,−, aσ,− < 0 and aq,+, aσ,+ < 0. Again, these theoretical model predictions closely

match what we see in the data.

The general model allowing for long-memory in the volatility essentially give rise to the

same basic patterns and predictions. However, the formal derivations are somewhat more

complicated and the actual values of the cross-correlations will ultimately depend upon the

13The prototypical values ψ = 1.5 and γ = 10 from Bansal and Yaron (2004) implies that βR,σ = 7/6.
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specific process for σ2
g,t and the corresponding moving average coefficients {a(s)}s∈[0,∞). We

briefly sketch the relevant tools and ideas needed to determine the correlations.

The economics of the problem remain exactly the same. The main interactions between

the return and volatility are twofold: one consists in the forward effect of volatility inno-

vations on future expected returns, the other involves the feedback effect of lagged return

innovations, or the diffusive part of the returns, on current volatility. To elucidate these

separate effects within the general model setting, it is useful to define the auxiliary variable

rt,s ≡





σg,t+sdW c
t+s + Aqϕq

√
qt+sdW q

t+s + A(0)
√

qt+sdW σ
t+s s < 0,

µR,t+s s ≥ 0.

The variable rt,s is equal to the local diffusive part of the equilibrium return process for

s < 0, and it equals the local mean of the equilibrium return process for s ≥ 0, as defined in

equation (22). As such, the basic shape of the cross-covariances between the variance risk

premium vpt and rt,s directly mirrors that of the cross-covariances with the returns, rt+s. In

particular, it follows directly from the expression for vpt in equation (30) that the forward

correlations with rt,s must be proportional to the autocovariances of the qt process. That is

for s > 0,

Cov(vpt, rt,s) = Kre
−κqs,

where Kr > 0 denotes a positive constant of proportionality. To derive the backward corre-

lations, write qt in integral form,

qt = ϕq

∫ t

u=−∞
eκq(u−t)√qudW q

u .

From this expression it follows that for s < 0,

Cov( vpt , rt,s) = e−κq |s|E (ϕqbvp,1
√

qt+sdW q
t+s, Aqϕq

√
qt+sdW q

t+s) = Aqbvp,1ϕ
2
q E (qt) e−κq |s| ,

so that all of the backward autocovariances are again negative decaying at an exponential

rate under the maintained assumption that the preference parameters γ > 1 and ψ > 1
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and therefore Aq < 0. The dynamic patterns in the cross-correlations for rt,s, of course,

mimic those of the cross-covariances. While those for the returns rt−s will be given by an

attenuated version of the cross-correlations for rt,s, consistent with the implications from the

short-memory model summarized in equation (32) above.

The theoretical predictions for the dynamic cross-correlations between the VIX and the

returns within the general model setting are not quite as clear-cut as those for the variance

premium. The qt process determining the variance risk premium essentially gets confounded

with the classical consumption risk premium, and there are also potential side effects from

long-range dependence. However, the underlying economic mechanisms remain the same

as for the short-memory model, and we would expect a similar pattern of mixed negative

backward correlations and positive forward correlations to hold true.

4 Empirical Results

The equilibrium framework developed above completely characterizes the dynamic depen-

dencies in the returns and the volatility. Of course, the specific solution of the model will

invariably depend upon the choice of preference parameters and the values of the parameters

for the underlying consumption growth rate and volatility dynamics. However, the model is

obviously somewhat stylized and direct estimation based on actual consumption data would

be challenging at best. Instead, we will evaluate the model’s direct implications in regards to

the autocorrelations and cross-correlations derived in the previous section, and in particular

how well the basic patterns implied by the model match those of the actual data depicted in

Figures 1 and 2. We begin in the next subsection with a discussion of the data and pertinent

summary statistics underlying the figures.

4.1 Data Description

Our tick-by-tick data for the S&P 500 futures contract was obtained from Tick Data Inc.

To alleviate the impact of market microstructure “noise” in the calculation of the cross-
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correlations, and the realized volatility measures discussed further below, we follow the

dominant approach in the literature and convert the tick-by-tick prices to equally spaced

five-minute observations.14 With 77 five-minute intervals per trading day and one overnight

return, this leaves us with a total of 78 “high-frequency” return observations per day. Stan-

dard summary statistics for the corresponding daily returns over the January 2, 1990, through

October 31, 2007, sample period and the five-minute returns over the shorter September 23,

2003, to August 31, 2007, sample are reported in the first column in Table 1.

The autocorrelations for the VIX in the top panel in Figure 1 are based on daily data

from January 2, 1990, through October 31, 2007. These data are freely available from

the Chicago Board Options Exchange (CBOE).15 From the summary statistics reported in

Table 1, the average value of the V IX2 over the sample equals 32.81, or 16.41 in standard

deviation form, but it varies quite considerably over the sample, as indicated by the standard

deviation of 23.70. This variation is quite persistent, however, as suggested by the slow decay

in the aforementioned autocorrelations depicted in Figure 1. This strong persistence is also

immediately evident from the actual time series plot of the data in Figure 5 in the appendix.

The tick-by-tick data for the VIX used in the construction of the cross-correlations shown

in the top panel in Figure 2 was again obtained from Tick Data Inc. High-frequency data for

the VIX has only been available since the introduction of the “new” model-free VIX index

on September 22, 2003. The relevant summary statistics for the V IX2 over the shorter

September 22, 2003, to August, 2007, high-frequency sample, reported in the bottom part of

Table 1, are broadly consistent with those over the longer daily sample, and the time series

plots in Figures 5 and 6 in the appendix also reveal the same basic features. Most notably,

the average value is somewhat lower over the more recent sample, and not surprisingly, the

14The specific choice of a five-minute smapling frequency strike a reasonable balance between confounding
market microstructure effects when sampling too frequently and the loss of important information concern-
ing fundamental price movements when sampling more coarsely; see, e.g., the discussion and references in
Andersen et al. (2007b), where the same futures data and five-minute sampling frequency have been used
from a different perspective.

15The VIX index is reported in annualized units by the CBOE. We convert the series to monthly units
using the transformation V IX2

t = 30/365 V IX2
CBOE,t.
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Table 1 Summary Statistics

rt V IX2
t RVt,t+22 v̂pt

Daily Sampling (1990-2007)

Mean 11.14 32.81 23.74 8.96

Standard Deviation 15.67 23.70 24.12 12.62

Skewness -0.05 1.88 2.59 -1.86

Excess Kurtosis 3.75 4.66 8.01 17.53

5-Minute Sampling (2003-2007)

Mean 8.96 17.48 11.28 6.17

Standard Deviation 11.31 8.40 7.68 5.25

Skewness 0.70 2.90 3.81 1.94

Excess Kurtosis 42.12 15.12 17.90 9.40

The table reports summary statistics for continuously-compounded returns rt, implied variances V IX2
t , monthly realized

variances RVt,t+22, and the variance risk premium v̂pt = V IX2
t − bERVt,t+22. The realized variances are constructed from the

summation of high-frequency five-minute squared returns. The expectations for the future variances ÊtRVt,t+22 are based on

the HAR-RV forecasting model discussed in the text. All the variables are in percentage form. The daily data extend from

from January 2, 1990 to October 31, 2007. The five-minute sample spans September 22, 2003 to August 31, 2007.

kurtosis is substantially higher when the data is sampled at the five-minute frequency.

The integrated variance IVt,t+N defined within the theoretical model is, of course, not

directly observable. However, it may be consistently estimated in a completely model-free

manner by the corresponding realized variation based on an increasing number of obser-

vations over the fixed time-interval [t, t + N ] (see, e.g., Andersen, Bollerslev and Diebold,

2009). As previously noted, to guard against the adverse impact of market microstructure

effects when sampling too frequently, we follow the common approach in the literature and

rely on the summation of equally spaced five-minute squared returns.16 With 77 five-minute

intervals per trading day and the overnight return, the N -day-ahead realized variation is

then simply given by,

RVt,t+N =
78N∑
i=1

(log St+i/78 − log St+(i−1)/78)
2.

16Recent studies, e.g., Zhang et al. (2005) and Barndorff-Nielsen et al. (2008), have proposed more effi-
cient and complicated ways by which to annihilated the impact of market microstructure effects. However,
the simple-to-implement estimator that we use here remains dominant, and importantly allows for easy
verification and replication of the results.
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With the notable exception of a lower mean, the summary statistics for the resulting one-

month realized volatility measures RVt,t+22 reported in Table 1 are generally close to those

for the VIX. The corresponding time series plots in Figures 5 and 6 are also very similar to

those for the VIX.

The higher average value of the VIX compared to the actual realized volatility reflects a

premium for bearing volatility risk. Meanwhile, the variance risk premium is formally de-

fined as the difference between the objective and risk-neutralized expectation of the forward

integrated variance. While the risk-neutral expectation and the actually observed values

of IVt,t+N may both be estimated in a completely model-free fashion by the VIX and the

realized volatilities, respectively, the calculation of the objective expectation Et(IVt,t+N)

necessitates some mild auxiliary modeling assumptions. Motivated by the results in Ander-

sen et al. (2003) that simple autoregressive type models estimated directly for the realized

volatility typically perform on par with, and often better, than specific parametric modeling

approaches designed to forecast the integrated volatility,17 we will here rely on the HAR-RV

model structure first proposed by Corsi (2004), and subsequently used by Andersen et al.

(2007a) among many others, in approximating the objective expectation. Specifically, define

the one-day-ahead expectation by the linear projection of the realized volatility on the lagged

daily, weekly and monthly realized volatilities,

Et(RVt,t+1) = βrv,0 + βrv,1RVt−1,t + βrv,2RVt−5,t + βrv,2RVt−22,t.

The one-month expectation Et(IVt,t+22) = Et(RVt,t+22) is then simply obtained by iterating

the projection forward.18

The summary statistics for the resulting variance risk premium v̂pt = V IX2
t − ÊRVt,t+22,

reported in the last column in Table 1, confirm the positive expected return for selling

volatility, but also show that the magnitude of the premium varies substantially over time.

17Andersen et al. (2004) have formally shown that for the stochastic volatility models most commonly
applied, the loss in efficiency from the use of reduced form autoregressive models for the realized volatility
is typically small; see also Sizova (2008).

18The actual estimates for the β’s are directly in line with the results reported in the extant literature and
available upon request.
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At the same time, the plots in Figures 5 and 6 indicate much less persistent dependencies

in the premium than for the VIX and the realized volatilities. Of course, the previously

discussed autocorrelations in Figure 1 already confirm this important difference between the

premium and the VIX. We next turn to our discussion of the model’s ability to match this

basic feature along with the other key dynamic dependencies observed in the data.

4.2 Model Implied Auto- and Cross-Correlations

A full characterization of the model-implied autocorrelations for the integrated volatility

would require that all of the moving average weights {a(s)}s∈[0,∞) in equation (12) be com-

pletely specified. Importantly, however, as discussed in Section 3.1, any long-run depen-

dencies in these coefficients are directly translated to similar long-run dependencies in the

moving average weights {hvx(s)}s∈[0,∞) describing the equilibrium process for the V IX2
t in

equation (27). The top panel in Figure 3 shows the best fitting model-implied autocorre-

lations from estimating the slowly hyperbolic decaying autocorrelation structure in (28) to

the actual daily sample autocorrelations for the VIX starting at a lag length of S = 22.19

The figure also shows the conventional ninety-five percent confidence intervals for the sample

autocorrelations. The model-implied autocorrelations do a remarkable job at describing the

long-run dependencies inherent in the VIX, always falling well inside the confidence bands.

Of course, the fit does not match at all well if extrapolated to the 1-22 day interval, which

is to be expected.

One of the key predictions of the theoretical model is that the equilibrium volatility risk

premium is an affine function of the volatility-of-volatility, and thereby is short memory,

despite the fact that the integrated volatility and its risk neutral expectation may both

display long-memory dependencies. Intuitively, as discussed above, everything except for the

volatility-of-volatility gets risk neutralized out in equation (30). This, of course, is consistent

with the shape of the autocorrelation function displayed in Figure 1, which in sharp contrast

19The R2 from estimating the functional relationship is an impressive 0.993, although this value should
be carefully interpreted because of the strong serial correlation in the residuals from the fit.
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Figure 3 Model Implied Autocorrelations
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The top panel shows the autocorrelations for the V IX2 volatility index to a lag length of 90 days. The solid line gives the model

implied autocorrelations under the assumption of long-memory in the underlying fundamental volatility process. The bottom

panel shows the autocorrelations for the variance risk premium vp. The solid line gives the model implied autocorrelations.

The pair of dashed lines included in both panels represent ninety-five percent confidence intervals for the corresponding sample

autocorrelations based on daily data from 1990 through 2007.

to the one for the VIX dies out relatively quickly. As a more formal verification of this

distinct implication form the model, we fitted the functional form in equation (31) to the

actual sample autocorrelations for the premium. The fit shown in the bottom panel of Figure

3 is again excellent, and the model-implied autocorrelations easily fall within the ninety-five

percent confidence intervals over the entire 1-90 day range.20

The observed volatility feedback and leverage effects evident in the dynamic cross-correlations

in Figure 2 arguably present the more challenging and difficult to explain empirical depen-

dencies. Consider first the cross-correlations for the variance risk premium. The negative

backward correlations start out at a slightly larger absolute value than the forward correla-

20The fitted R2 equals 0.934.
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tions, and both decay toward zero at what appears to be an exponential rate. This apparent

pattern in the cross-correlations between the premium and leads and lags of the returns is

entirely consistent with the model-implied correlations summarized in (32). The bottom

panel in Figure 4 shows the resulting fit along with the ninety-five percent confidence in-

tervals for the sample cross-correlations.21 The theoretical model obviously delivers very

accurate predictions for the actually observed dynamic dependencies between the returns

and the variance risk premium.

The theoretical predictions for the VIX-return cross-correlations are not quite as clear-cut

as those for the premium. As discussed in Section 3.2 above, the volatility risk premium in

effect gets confounded with the classical consumption risk premium, and within the general

theoretical model setting there may also be potential side effects from long-range dependence.

In parallel to the model-implied autocorrelations for the VIX, a complete characterization of

these separate effects would require that the underlying fundamental consumption growth

rate volatility process σ2
g,t and the corresponding moving average weights {a(s)}s∈[0,∞) be

fully specified. Short of such a specification, the basic pattern and decay in the cross-

correlations may naturally be expected to adhere to the functional form in (33). The top

panel in Figure 4 shows the resulting fit to the sample cross-correlations.

Comparing the observed backward correlations for the VIX in the left part of Figure

2 to those for the variance premium in the bottom panel, the dynamic leverage effect is

clearly more prolonged for the VIX. This slower decay is very well described by the mixed

exponential functions shown in Figure 4. At the same time, the differences between the

forward correlations for the VIX and the premium, and in turn the impact on future returns

attributable to the classical consumption risk premium and mean-variance tradeoff, appear

less pronounced. In fact, the relatively fast decay rates in the empirically observed forward

correlations are well described by a single exponential function for both the premium and

21The fitted R2’s for the backward and forward correlations equal 0.907 and 0.678, respectively. Of course,
some of the sample cross-correlations used in the fit are not statistically different from zero.
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Figure 4 Model Implied Cross-Correlations
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The top panel shows the sample cross-autocorrelations between the V IX2 volatility index and lags and leads of the returns

ranging from -22 to 22 days. The bottom panel shows the cross-correlations between the variance risk premium vp and the

returns. The solid lines give the cross-correlations implied by the theoretical model. The pair of dashed lines represent ninety-

five percent confidence intervals for the corresponding sample cross-correlations based on high-frequency 5-minute observations

from 2003 through 2007.

the VIX.22.

Summing up the empirical results, the qualitative implications from the new theoretical

model do an admirable job in terms of matching the key dynamic dependencies in the ag-

gregate market returns and volatilities. The previously documented autocorrelations for the

volatility and volatility risk premium and the puzzling high-frequency based cross-correlation

patterns in Figures 1 and 2, may all be explained by the model, with the model predictions

well within conventional statistical confidence intervals.

22The fitted R2’s for a double exponential for the VIX backward correlations and a single exponential for
the VIX forward correlations equal 0.941 and 0.709, respectively.
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5 Conclusion

The aggregate stock market volatility exhibits long-range dependence, while the variance

risk premium, defined as the difference between the objective and risk-neutral expectation

of the forward variance, shows much less persistence. Consistent with the well documented

leverage effect, there is also a distinct and prolonged asymmetry in the relationship between

volatility and past and future returns. We provide a first self-contained equilibrium based

explanation for these empirical facts. The return on the aggregate market defined within

the new model depends not only on the prospects of future economy growth, but also on

the current uncertainty about the future economic conditions, and importantly explains the

presence of a separate premium for bearing variance risk.

The dynamic return-volatility dependencies that motivate our theoretical model were all

well-established prior to the advent of the current financial crises. Although the same basic

dependencies have been shown to hold true during other market downturns and recessions,

the scope of the current crises is different. We look forward to the opportunity of analyzing

more recent data and formally test the model’s ability to explain the dependencies observed

therein.

Our explanation of the empirical facts is entirely risk-based, and depends critically on

the temporal variation in the variance risk premium defined within the model. The wedge

between the objective and risk-neutral expectation of the forward variance may alternatively

be interpreted as a proxy for the aggregate degree of risk aversion in the market, and any

temporal variation in the empirically observed variance risk premium thus indicative of

changes in the way in which systematic risk is valued (see, e.g., Aı̈t-Sahalia and Lo, 2000;

Bollerslev, Gibson and Zhou, 2006a; Gordon and St-Amour, 2004). Although it might be

difficult to contemplate systematic changes in the level of risk aversion at the frequencies

emphasized here, time-varying volatility risk and time-varying attitudes toward risk likely

both play a role in explaining the temporal variation in expected returns and risk premia (e.g.,

Bekaert, Engstrom and Xing, 2009). It would be interesting to extend the model developed
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here to somehow allow for changes in the underlying preference parameters and risk-attitudes

to more clearly delineate these effects. We conjecture that this may be especially important in

fully understanding the return-volatility dependencies observed during the current financial

crises.
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A Continuous-Time Equilibrium and SDF

The generalized preferences that we use are a continuous-time version of the Epstein-Zin-Weil

discrete-time utility:

Ṽ
1− 1

ψ

t =
(
1− e−ρh

)
C

1− 1
ψ

t + e−ρh
[
EtṼ

1−γ
t+h

] 1− 1
ψ

1−γ
. (A.1)

Assuming that Ṽ 1−γ
t is a semi-martingale, we approximate its conditional expectation over

a short time-interval h by the linear function:

EtṼ
1−γ
t+h ≈ D

(
Ṽ 1−γ

t

)
h + Ṽ 1−γ

t , (A.2)

where D(.) denotes the drift of the argument. Plugging the conditional expectation in (A.2)

into the definition (A.1), and taking limits around h = 0, the drift for the utility may be

expressed as a function of consumption and utility:

D
(
Ṽ 1−γ

t

)
= θρ


1− C

1− 1
ψ

t

Ṽ
1− 1

ψ

t


 Ṽ 1−γ

t .

The original utility Ṽt in (A.1) can be replaced by any ordinally equivalent utility Vt = ϕ(Ṽt),

where the transformation ϕ(.) is strictly increasing. Following Duffie and Epstein (1992b),

we apply the transformation ϕ(.) that is linear in Ṽ 1−γ
t :

Vt =
1

1− γ
Ṽ 1−γ

t .

Given this choice of ϕ(.), the preferences may be simply defined through the recursive con-

dition:

DVt + f(Ct, Vt) = 0, (A.3)

where the normalized drift equals

f(c, v) =
ρ

1− 1
ψ

c1− 1
ψ − [(1− γ)v]1/θ

[(1− γ)v]1/θ−1
. (A.4)

This in effect constitutes the formal definition of the Epstein-Zin-Weil preferences in contin-

uous time; see also Duffie and Epstein (1992a).
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A.1 SDF in Continuous Time

In this section we derive the exact formula for the Stochastic Discount Factor (SDF) under the

Epstein-Zin-Weil preferences in equation (A.4) as a function of the return on the consumption

asset and the consumption growth rate.

For notational convenience, denote the logarithmic welfare-consumption ratio:

vct ≡ log
Ṽt

Ct

=
1

1− γ
log([1− γ]Vt)− log Ct. (A.5)

The normalized drift in equation (A.4) may then alternatively be represented as:

f(Ct, Vt) = ρθVt

(
e−(1− 1

ψ
)vct − 1

)
.

Duffie and Esptein(1992) have previously derive the SDF for recursive preferences with an

arbitrary normalized drift f(Ct, Vt):

Mt = exp
R t
0 fv(Cs,Vs)ds fc(Ct, Vt). (A.6)

The dynamics for the SDF thus follows from the dynamics of the two partial derivative,

fc ≡ ∂f

∂Ct

= (1− γ)ρC−γ
t e− log(1−γ)+( 1

ψ
−γ)vct ,

and

fv ≡ ∂f

∂Vt

= θρ(e−(1− 1
ψ

)vct − 1)(1− 1

θ
)− ρ.

Now, note that

V
1
θ

t MtC
1
ψ

t = ρe
log(1−γ)

θ Vte
R t
0 fv(Cs,Vs)ds.

Extracting the drift of the process on the left-hand-side of the above equation, taking into

account that the drift of the Vt process equals −f(Ct, Vt), and rearranging the terms, we

obtain the following relation:

D


e

log(1−γ)
θ

ρ


V

1
1−γ

t

Ct




1− 1
ψ

MtCt


 = −MtCt.
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In other words,

e
log(1−γ)

θ

ρ


V

1
1−γ

t

Ct




1− 1
ψ

satisfies the Euler condition for the price-dividend ratio of the consumption asset. Together

with appropriate terminal conditions, this implies that this expression must be equal to the

price-dividend ratio. In logarithm terms, there is a one-to-one correspondence between the

price-dividend ratio of the consumption asset and the welfare-consumption ratio:

log Ψt = − log ρ + (1− 1

ψ
)vct. (A.7)

The formula for the price-dividend ratio implies that the total return satisfies:

dRt

Rt

≡ dSt + Ctdt

St

=
d [ΨtCt]

ΨtCt

+
dt

Ψt

. (A.8)

Combining the definitions of the return in (A.8), the SDF in (A.6), and the price-dividend

ratio in (A.7), we obtain the following relation:

d log Mt + (1− θ)d log Rt +
θ

ψ
d log Ct

= [fv(Ct, Vt)dt + d log fc(Ct, Vt)] + (1− θ)[d log Ct + d log Ψt +
dt

Ψt

] +
θ

ψ
d log Ct

= ρθdt, (A.9)

where the last equality follows from two identities:

fv(Ct, Vt) + (1− θ)
1

Ψt

= ρθ,

d log fc(Ct, Vt) + (1− θ)[d log Ct + d log Ψt] +
θ

ψ
d log Ct = 0.

The expression for the SDF in equation (A.9) as a function of the return on aggregate

consumption and consumption growth may naturally be seen as the continuous-time version

of the similar discrete-time relationship in Bansal and Yaron (2004). We next proceed to

study the asset pricing implications of the model and this SDF, including expressions for the

risk-free rate, the return on the consumption asset, and the variance risk premium.
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B Model Solution Under Short Memory Dynamics

B.1 Pricing of the Consumption Asset

Suppose, that the dynamics of the consumption growth gt ≡ dCt

Ct
is determined by the

following system of equations:

dCt

Ct

= µgdt + σg,tdW c
t , (B.1)

dσ2
g,t = κσ(µσ − σ2

g,t)dt +
√

qtdW σ
t , (B.2)

dqt = κq(µq − qt)dt + ϕq
√

qtdW q
t , (B.3)

where all of the shocks are uncorrelated. Under the risk-neutral measure the asset return

must a martingale with respect to information at time t, i.e.,

D (MtRt) = 0.

It follows from the formula for the SDF in (A.9) and the definition of the return in (A.8)

that

d log (MtRt) = θ(d log Ψt + d log Ct +
dt

Ψt

)− θ

ψ
d log Ct − ρθdt

Substituting the price-dividend ratio Ψt ≡ Ψ(xt) into the above condition for the drift

D (MtRt) yields the following pricing relation:

θD log Ψ(xt) +
θ

Ψ(xt)
+ (1− γ)(µg −

σ2
g,t

2
)− ρθ+

+
θ2

2

d [log Ψ(x), log Ψ(x)]t
dt

+
1

2
(1 − γ)2σ2

g,t = 0, (B.4)

where D log Ψ(xt) denotes the drift of log Ψ(xt), and [log Ψ(x), log Ψ(x)]t refers to the quadratic

variation, whose increment characterizes the variance of shocks to log Ψ(xt). The pricing re-

lation in (B.4) may now be solved using the first-order approximations similar to Campbell

and Viceira (2002),

1

Ψ(xt)
= exp(− log Ψ(xt)) ≈ exp(−log Ψ)− exp(−log Ψ)(log Ψ(xt)− log Ψ).
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In particular, under this linearization it is natural to conjecture that log price-dividend ratio

is linear in the states:

log Ψ(xt) = A0 + Aσσ
2
g,t + Aqqt, (B.5)

and therefore

1

Ψ(xt)
≈ −κ0 − κ1(A0 + Aσσ

2
g,t + Aqqt). (B.6)

Substituting the conjectured solution for Ψ(xt) in (B.5) and its inverse value in (B.6) into

the pricing condition (B.4), we find the coefficients:

A0 =
Aσκσµσ + Aqκqµq − κ0 + (1− 1/ψ)µg − ρ

κ1

,

Aσ =
−γ

2

1− 1
ψ

κσ + κ1

,

Aq =
κq + κ1 −

√
(κq + κ1)2 − θ2A2

σϕ
2
q

θϕ2
q

,

where the value of Aq is the root of a quadratic equation that is bounded away from ∞ as

φq goes to zero. Note that similar to the discrete-time case, the loadings Aσ and Aq are

negative for values of the inter-temporal elasticity of substitution ψ > 1.

Combining the dynamics of dividends Ct and the dynamics of the price-dividend ratio,

we obtain the dynamics for the total log-return under the objective measure:

d log Rt = (
µg

ψ
+ ρ +

(
−1

2
+

γ

2
(1− 1

ψ
)

)
σ2

g,t − Aq(κ1 + κq)qt)dt

+ σg,tdW c
t + Aσ

√
qtdW σ

t + Aqϕq
√

qtdW q
t . (B.7)

The dynamics for the stochastic discount factor follows from (A.9):

dMt

Mt

= [
γ

2
(1 +

1

ψ
)σ2

g,t − (1− 1

θ
)(κq + κ1)Aqqt − 1

ψ
µg − ρ]dt

− γσg,tdW g
t + (θ − 1)[Aσ

√
qtdW σ

t + Aqϕq
√

qtdW q
t ] (B.8)
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The dynamics of SDF readily defines the risk-free rate, the equity premium, and the risk-

neutral probability measure. For example, the risk-free rate is simply given by the drift of

the SDF:

rf,t ≡ −Et
dMt

Mt

=
1

ψ
µg + ρ− γ

2
(1 +

1

ψ
)σ2

g,t + (1− 1

θ
)(κq + κ1)Aqqt.

The equity premium is obtained as the “covariance” between the total return and the SDF:

πr,t ≡ 1

dt

d [R,M ]t
RtMt

= γσ2
g,t − (θ − 1)(A2

σ + A2
qϕ

2
q)qt. (B.9)

Lastly, the diffusion part of the SDF (B.8) defines the transition from the processes under

the objective measure to the risk-neutral measure:

dCt

Ct

= (µg − γσ2
g,t)dt + σg,tdW̃ c

t

dσ2
g,t =

(
κσ(µσ − σ2

g,t) + (θ − 1)Aσqt

)
dt +

√
qtdW̃ σ

t (B.10)

dqt =
(
κq(µq − qt) + (θ − 1)Aqϕ

2
qqt

)
dt + ϕq

√
qtdW̃ q

t , (B.11)

where dW̃ c
t , dW̃ σ

t , and dW̃ q
t are all uncorrelated Brownian motions under the risk-neutral

probability measure.

B.2 Variance Premium

The variability of the future asset price is determined by the integrated variance:

IVt,t+N ≡
∫ t+N

τ=t

d [log S, log S]τ =

∫ t+N

τ=t

σ2
gτdτ + (A2

σ + A2
qϕ

2
q)

∫ t+N

τ=t

qτdτ. (B.12)

The variance risk premium by definition is given by the difference between the expected

values of the integrated variance under the objective and risk-neutral measures:

vpt ≡ EQ
t IVt,t+N − EP

t IVt,t+N .

Under the objective measure, the consumption variance σ2
g,t and the volatility-of-volatility

qt are both affine processes with expectations:

EP
t qt+∆t = [qt − µq]e

−κq∆t + µq,
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EP
t σ2

g,t+∆t = [σ2
g,t − µσ]e−κσ∆t + µσ.

Under the risk-neutral measure, the volatility-of-volatility qt remains an affine process, with

the mean-reversion κ̃q = κq− (θ− 1)Aqϕ
2
q and the mean µ̃q = κqµq

κ̃q
given by equation (B.11).

Thus, the expectation of qt+∆t under the risk-neutral measure simply equals:

EQ
t qt+∆t = [qt − µ̃q]e

−κ̃q∆t + µ̃q.

The process for the variance σ2
g,t under the risk-neutral measure in equation (B.10) is quali-

tatively different. The conditional mean now depends not only on its own value, but also on

the current realization of qt:

EQ
t σgt+∆t = µ̃σ + (σ2

g,t − µ̃σ −∆q)e
−κσ∆t + ∆qe

−κ̃q∆t,

where,

∆q =
(θ − 1)Aσ

κσ − κ̃q

[qt − µ̃q],

and µ̃σ = µσ + (θ−1)Aσ

κσ
µ̃q is equal to the risk-neutral unconditional mean of the variance.

The differences in the conditional expectations of the state variables under the risk-neutral

and the objective measures can be represented as:

EQ
t qt+∆t − EP

t qt = qt

[
e−κ̃q∆t − e−κ̃q∆t

]
+ κqµq

[
1− e−κ̃q

κ̃q

− 1− e−κq∆t

κq

]
,

EQ
t σ2

g,t+∆t − EP
t σ2

g,t+∆t

(θ − 1)Aσ

= qt

[
e−κ̃q∆t − e−κσ∆t

κσ − κ̃q

]
+ µ̃q

[
1− e−κσ∆t

κσ

− e−κ̃q∆t − e−κσ∆t

κσ − κ̃q

]
.

Since exp(−x) and (1 − exp(−x))/x are both decreasing functions in x, it follows that

EQ
t qt+∆t > EP

t qt for κ̃q < κq (Aq < 0). Similarly, it it is possible to show that for any

positive κ̃q, κσ, and ∆t, the expressions in square brackets in the second equation above are

both greater than zero. Thus, the variance and volatility-of-volatility are both expected to

be higher under the risk-neutral measure. Since the integrated variance in (B.12) depends

on future values of qt and σ2
g,t, the variance premium vpt ≡ EQ

t IVt,t+N −EP
t IVt,t+N must be

positive.
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Going one step further, the variance premium may be expressed as:

vpt = βpr,0 + βpr,1qt, (B.13)

where

βpr,0 = (µ̃σ − µσ)

[
N − 1− e−κσN

κσ

]
+ (µ̃q − µq)(A

2
σ + A2

qϕ
2
q)

[
N − 1− e−κqN

κq

]
− βpr,1µ̃q,

βpr,1 =

[
1− e−κ̃qN

κ̃q

− 1− e−κσN

κσ

]
(θ − 1)Aσ

κσ − κ̃q

+ (A2
σ + A2

qϕ
2
q)

[
1− e−κ̃qN

κ̃q

− 1− e−κqN

κq

]
.

The expression in (B.13) is obtained by taking the difference between the expectations of

the integrated variance under the objective measure,

EP
t IVt,t+N = µσN +

1− e−κσN

κσ

(σ2
g,t− µσ) + (A2

σ + A2
qϕ

2
q)

(
µqN +

1− e−κqN

κq

(qt − µq)

)
,

and under the risk-neutral measure,

EQ
t IVt,t+N = βV IX,0 + βV IX,σσ

2
g,t + βV IX,qq

2
t , (B.14)

where

βV IX,0 = µ̃σ

[
T − 1− e−κσT

κσ

]
+

+

[
(θ − 1)Aσ

κσ − κ̃q

µ̃q

] [
1− e−κσT

κσ

− 1− e−κ̃qT

κ̃q

]
+ (A2

σ + A2
qϕ

2
q)

[
T − 1− e−κ̃qT

κ̃q

]
µ̃q,

βV IX,σ =
1− e−κσT

κσ

,

βV IX,q =
(θ − 1)Aσ

κσ − κ̃q

[
1− e−κ̃qT

κ̃q

− 1− e−κσT

κσ

]
+ (A2

σ + A2
qϕ

2
q)

1− e−κ̃qT

κ̃q

.

As discussed further in the main text, the expectation under the risk-neutral measure cor-

responds directly to the VIX2 volatility index, hence the subscript notation for the β’s.

B.3 Return-Volatility Cross-Correlations

The return over a short time-interval ∆t is approximately equal to:

∆ log(Rt) ≈
(

µg

ψ
+ ρ− σ2

g,t

2
+

γ

2
(1− 1

ψ
)σ2

g,t − Aq(κ1 + κq)qt

)
∆t+

+ σg,t∆W c
t + Aσ

√
qt∆W σ

t + Aqϕq
√

qt∆W q
t ,
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where the operator ∆ denotes the increment to the process over the [t, t + ∆] time-interval.

The variance of the return equals:

Var(∆ log Rt) =
[
β2

R,σVar
(
σ2

g,t

)
+ β2

R,qVarqt

]
(∆t)2 + µσ∆t +

[
A2

σ + A2
qϕ

2
q

]
µq∆t,

where βR,σ = −0.5 + γ
2
(1− 1

Ψ
) and βR,q = −Aq(κ1 + κq).

From equation (B.13), the variance premium is directly proportional to qt. Hence, the

correlation between the premium and the return is solely determined by the correlation of

the return with the qt process. The covariance between qt and a future return, ∆ log Rt+l

and l > 0, is equal to the covariance of qt with the drift part of the return:

cov(qt, ∆ log Rt+l) = e−κqlVarqtβR,q∆t, l ≥ 0.

The covariance of qt with the past return, ∆ log Rt−l and l < 0, consists of two parts.

The covariance with the drift e−κqlVarqtβR,q∆t, and the covariance with the diffusive part

Aqϕqcov(qt,
√

qt−l∆W q
t−l) = Aqϕ

2
qµqe

−κql∆t. Combining these effects, the cross-correlation

function for the variance risk premium and the returns may be conveniently expressed as:

corr(qt, ∆ log Rt+l) =

(
VarqtβR,q + Il<0Aqϕ

2
qµq

)
e−κq |l|∆t√

Varqt

√
Var(∆ log Rt)

,

for any value of l.

The expression for the VIX2
t ≡ EQ

t IVt,t+N in (B.14) involves a linear function of qt and

the variance σg,t, with loadings βV IX,q and βV IX,σ, respectively. The covariance of the VIX2
t

with any future return depends solely on the covariance with the drift of the return:

cov(VIX2
t , ∆ log Rt+l) =

(
βR,σβV IX,σVarσ2

g,te
−κσl + βR,qβV IX,qVarqte

−κql
)
∆t.

The covariance of the VIX2
t with past returns includes the covariances with the drift and the

diffusion:

cov(VIX2
t , ∆ log Rt−l) = βV IX,σ βR,σe

−κσlVarσ2
g,t∆t + βV IX,σ Aσcov(σ2

g,t,
√

qt−ldW σ
t−l)+

+βV IX,q βR,qe
−κqlVarqt∆t + βV IX,q Aqϕqcov(qt,

√
qt−ldW q

t−l)

=
(
[βR,σVarσ2

g,t + Aσµq]βV IX,σe
−κσl + [βR,qVarqt + Aqϕ

2
qµq]βV IX,qe

−κql
)
∆t.
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Combining these expressions, the cross-correlations between the VIX2
t and the returns may

be succinctly written:

corr(VIX2
t , ∆ log Rt+l) =(

βR,σVarσ2
g,t + Il<0Aσµq

)
βV IX,σe

−κσ|l|∆t +
(
βR,qVarqt + Il<0Aqϕ

2
qµq

)
βV IX,qe

−κq |l|∆t√(
β2

V IX,σVarσ2
g,t + β2

V IX,qVarqt

)
Var(∆ log Rt)

,

for any value of l.

C General Model Solution

To allow for more flexible volatility dynamics, we assume that the process for the consump-

tion variance has a general MA-representation:

σ2
g,t = σ2 +

∫ t

−∞
a(t− s)

√
qsd.W σ

s (C.1)

This specification includes the short-memory model in equation (B.2) above as a special

case, but importantly allows for much richer dynamic dependencies, including long-memory

in which the a(t − s) coefficients decrease at a slow hyperbolical rate. We maintain the

identical short-memory process for the volatility-of-volatility in equation (B.3).

The pricing relation in (B.4) remains the same. In parallel to the solution method for

the short-memory model used above, the linearization of the price-dividend ratio reduces

the problem to a system of linear equations. In general, all the shocks in (C.1) need to be

included in the conjectured solution for the dividend-price ratio:

log Ψt = A0 + Aqqt +

∫ t

−∞
A(t− s)

√
qsdW σ

s . (C.2)

Following Rogers (1997), if the price is a semi-martingale, as it must be to prevent arbitrage,

and A(t) exists and is differentiable at zero, the dynamics of the price-dividend ratio may

be decomposed into separate drift and diffusion terms:

d log Ψt =

[
Aqκq(µq − qt) +

∫ t

−∞
A′(t− s)

√
qsdW σ

s

]
dt + Aqϕq

√
qtdW q

t + A(0)
√

qtdW σ
t .
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Now, substituting the conjectured solution into the pricing equation imply that the loadings

on the variance shocks must satisfy:

A′(t− s)− κ1A(t− s) =
γ(1− 1

ψ
)

2
a(t− s),

for all t ≥ s. Solving this system along with the constant and the loading on qt in equation

(C.2) we obtain:

A(t) = −
∫ +∞

t

γ(1− 1
ψ
)

2
eκ1(t−τ)a(τ)dτ, (C.3)

Aq =
κq + κ1 −

√
(κq + κ1)2 − θ2ϕ2

qA(0)2

θϕ2
q

, (C.4)

A0 =
Aqκqµq − κ0 + (1− 1

ψ
)µg − ρ− γ

2
(1− 1

ψ
)σ2

κ1

. (C.5)

If absolute values of the coefficients a(t) are decreasing in t (or grow at a rate less than

exponential) and |a(t)| < ∞, then A(t) is well-defined and A′(0) = κ1A(0) +
γ(1− 1

ψ
)

2
a(0) is

finite.

Substituting the solution for the price-dividend ratio into the expression for the SDF, it

follows that

dMt

Mt

=

[
−µg

ψ
− ρ +

γ

2
(1 +

1

ψ
)σ2

g,t + (
1

θ
− 1)(κ1 + κq)Aqqt

]
dt

− γσg,tdW c
t + (θ − 1)Aqϕq

√
qtdW q

t + (θ − 1)A(0)
√

qtdW σ
t .

As before, the risk-free rate is simply defined by the drift of Mt:

rrf
t = − Et

dMt

Mtdt
=

µg

ψ
+ ρ− γ

2
(1 +

1

ψ
)σ2

g,t + (1− 1

θ
)(κ1 + κq)Aqqt.

Since d log Rt = d log Ct + d log Ψt + Ψ−1
t dt, and therefore

d log Rt = D log Rtdt + σg,tdW c
t + Aqϕq

√
qtdW q

t + A(0)
√

qtdW σ
t , (C.6)

the equity premium equals:

πr,t = γσ2
g,t + (1− θ)[A2

qϕ
2
q + A(0)2]qt = γσ2

g,t + 2

(
1

θ
− 1

)
(κq + κ1)Aqqt. (C.7)
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And, the dynamics of the return is determined by:

d log Rt =

[
ρ +

µg

ψ
+ [−1

2
+

γ

2
(1− 1

ψ
)]σ2

g,t − (κq + κ1)Aqqt

]
dt

+ σg,tdW c
t + Aqϕq

√
qtdW q

t + A(0)
√

qtdW σ
t .

The integrated variance may generally be expressed as:

IVt,t+N =

∫ t+N

t

σ2
g,τdτ + (A2

qϕ
2
q + A(0)2)

∫ t+N

t

qτdτ. (C.8)

The expected value of the integrated variance under the objective measure equals:

EP
t IVt,t+N = σ2N +

∫ t

−∞

[∫ t+N

t

A(τ − s)dτ

]√
qsdW σ

s

+ (A2
qϕ

2
q + A(0)2)

[
µqN +

1− e−κqN

κq

(qt − µq)

]
.

The expectation under the risk-neutral measure is:

EQ
t IVt,t+N = σ2N +

∫ t

−∞

[∫ t+N

t

A(τ − s)dτ

]√
qsdW σ

s

+ EQ
t

∫ t+N

t

∫ τ

t

A(τ − s)
√

qsdW σ
s dτ + (A2

qϕ
2
q + A(0)2)

[
µ̃qN +

1− e−κ̃qN

κ̃q

(qt − µ̃q)

]
,

(C.9)

where κ̃q = κq − (θ − 1)Aqϕ
2
q refers to the mean-reversion of qt under the risk-neutral

probability, and µ̃q = κq/κ̃qµq denotes the corresponding expectation. Moreover, under the

risk-neutral measure:

EQ
t

√
qsdW σ

s = EQ
t [
√

qsdW̃ σ
s + (θ− 1)A(0)qsds] = (θ− 1)A(0)(µ̃q + e−κ̃q(s−t)(qt− µ̃q))ds.

Consequently, the variance risk premium defined by the difference between EQ
t IVt,t+N and

EP
t IVt,t+N is again a linear function of qt:

vpt = βpr,0 + βpr,1qt, (C.10)

with the two coefficients now defined by:

βpr,0 = (θ − 1)A(0)µ̃q

∫ t+N

t

∫ τ

t

A(τ − s)(1− e−κ̃q(s−t))dsdτ+

+ (A2
qϕ

2
q + A(0)2)

[
µ̃q(N − 1− e−κ̃qN

κ̃q

)− µq(N − 1− e−κqN

κq

)

]
,
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βpr,1 = (θ − 1)A(0)

∫ t+N

t

∫ τ

t

A(τ − s)e−κ̃q(s−t)dsdτ+

+ (A2
qϕ

2
q + A(0)2)

[
1− e−κ̃qN

κ̃q

− 1− e−κqN

κq

]
.
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D Time Series Plots

Figure 5 Volatility Measures, Daily Sample
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The figure shows the V IXt implied volatility index, the realized volatility RV
1/2
t,t+22, and the volatility risk premium v̂pt =

V IXt−Et(RVt,t+22)1/2 over the January 2, 1990 to October 31, 2007 sample period. All of the volatility measures are plotted

at the monthly frequency in annualized percentage units. The realized volatilities are constructed from the summation of

high-frequency five-minute squared returns. The expectations for the future variances ÊtRVt,t+22 are based on the HAR-RV

forecasting model discussed in the text.
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Figure 6 Volatility Measures, 5-Minute Sample

2004 2005 2006 2007

10

20

30

40
Implied Volatility

2004 2005 2006 2007

10

20

30

40
Realized Volatility

2004 2005 2006 2007
−10

0

10

20
Volatility Premium

The figure shows the V IXt implied volatility index, the realized volatility RV
1/2
t,t+22, and the volatility risk premium v̂pt =

V IXt − Et(RVt,t+22)1/2 over the September 23, 2003 to August 31, 2007 sample period. All of the volatility measures are

plotted at the daily frequency in annualized percentage units. The realized volatilities are constructed from the summation of

high-frequency five-minute squared returns. The expectations for the future variances ÊtRVt,t+22 are based on the HAR-RV

forecasting model discussed in the text.
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