
  
 
 
 
 

CREATES Research Paper 2009-4 
 

 
 

First and second order non-linear cointegration models 
 
 

Theis Lange 
 
 
 

 
 

School of Economics and Management 
University of Aarhus 

Building 1322, DK-8000 Aarhus C 
Denmark 

 
 
 

 

 

 



First and second order non-linear
cointegration models

Theis Lange

Department of Economics

University of Copenhagen

&

CREATES

Abstract: This paper studies cointegration in non-linear error correc-

tion models characterized by discontinuous and regime-dependent error

correction and variance specifications. In addition the models allow for

autoregressive conditional heteroscedasticity (ARCH) type specifications

of the variance. The regime process is assumed to depend on the lagged

disequilibrium, as measured by the norm of linear stable or cointegrating

relations. The main contributions of the paper are: i) conditions ensuring

geometric ergodicity and finite second order moment of linear long run

equilibrium relations and differenced observations, ii) a representation

theorem similar to Granger’s representations theorem and a functional

central limit theorem for the common trends, iii) to establish that the

usual reduced rank regression estimator of the cointegrating vector is con-

sistent even in this highly extended model, and iv) asymptotic normality

of the parameters for fixed cointegration vector and regime parameters.

Finally, an application of the model to US term structure data illustrates

the empirical relevance of the model.
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1 Introduction

Since the 1980’s the theory of cointegration has been hugely successful. Espe-

cially Granger’s representation theorem, see Johansen (1995), which provides

conditions under which non-stationary vector autoregressive (VAR) models can

exhibit stationary, stable linear combinations. This very intuitive concept of sta-

ble relations is probably the main reason why cointegration models have been so

widely applied (even outside the world of economics). For an up to date discussion

see the survey Johansen (2007).

However, recent empirical studies suggest that the adjustments to the stable re-

lations might not be adequately described by the linear specification employed

in the traditional cointegration model. When modeling key macroeconomic vari-

ables such as GNP, unemployment, real exchange rates, or interest rate spreads,

non-linearities can be attributed to transaction costs, which induces a band of

no disequilibrium adjustment. For a more thorough discussion see e.g. Dumas

(1992), Sercu, Uppal & Van Hulle (1995), Anderson (1997), Hendry & Ericsson

(1991), and Escribano (2004). Furthermore, policy interventions on monetary

or foreign exchange markets may also cause non-linear behavior, see Ait-Sahalia

(1996) and Forbes & Kofman (2000) among others. Such non-linearities can also

explain the problem of seemingly non-constant parameters encountered in many

applications of the usual linear models. To address this issue Balke & Fomby

(1997) suggested the threshold cointegration model, where the adjustment coeffi-

cients may switch between a specific set of values depending on the cointegrating

relations. Generalizations of this model has lead to the smooth transition models,

see Kapetanios, Shin & Snell (2006) and the references therein and the stochas-

tically switching models, see e.g. Bec & Rahbek (2004), and Dufrenot & Mignon

(2002) and the many references therein.

Parallel to this development the whole strain of literature devoted to volatility

modeling has documented that non-linearities should also be included in the spec-

ification of the variance of the innovations. A large, and ever growing, number

of autoregressive conditional heteroscedasticity (ARCH) type models, originally

introduced by Engle (1982) and generalized by Bollerslev (1986), has been sug-

gested, see e.g. Bauwens, Laurent & Rombouts (2006) for a recent discussion of
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multivariate generalized ARCH models.

Motivated by these findings, this paper proposes a cointegration model, which

allows for non-linearities in both the disequilibrium adjustment and the vari-

ance specifications. The model will be referred to as the first and second order

non-linear cointegration vector autoregressive (FSNL-CVAR) model. The adjust-

ments to the stable relations are assumed to be switching according to a threshold

state process, which depends on past observations. Thus, the model extends the

concept of threshold cointegration as suggested in Balke & Fomby (1997). The

main novelty of the FSNL-CVAR model is to adopt a more general variance

specification in which the conditional variance is allowed to depend on both the

current regime as well as lagged values of the innovations, herby including an

important feature of financial time series.

Constructing a model which embeds many of the previously suggested models

opens up the use of likelihood based tests to assess the relative importance of these

models. For instance, does the inclusion of a regime dependent covariance matrix

render the traditional ARCH specification obsolete or vice versa? Furthermore,

since both the mean- and variance parameters depend on the current regime a

test for no regime effect in for example the mean equation can be conducted as a

simple χ2-test, since the issue of vanishing parameters under the null hypothesis,

and resulting non-standard limiting distributions see e.g. Davies (1977), has

been resolved by retaining the dependence on the regime process in the variance

specification.

The present paper derives easily verifiable conditions ensuring geometric ergod-

icity, and hence the existence of a stationary initial distribution, of the first

differences of the observations and of the linear cointegrating relationships. Sta-

bility and geometric ergodicity results form the basis for law of large numbers

theorems and are therefore an important step not only towards an understanding

of the dynamic properties of the model, but also towards the development of an

asymptotic theory. The importance of geometric ergodicity has recently been

emphasized by Jensen & Rahbek (2007), where a general law of large numbers

is shown to be a direct consequence of geometric ergodicity. It should be noted

that the conditions ensuring geometric ergodicity do not involve the parameters

of adjustment in the inner regime, corresponding to the band of no action in the

3



example above. The paper also derives a representation theorem corresponding

to the well known Granger representation theorem and establishes a functional

central limit theorem (FCLT) for the common trends. Finally, asymptotic nor-

mality of the parameter estimates is shown to hold under the assumption of

known cointegration vector and threshold parameters. The results are applied to

US term structure data. The empirical analysis finds clear evidence indicating

that the short-term and long-term rates only adjusts to one another when the

spread is above a certain threshold. In order to achieve a satisfactory model fit

the inclusion of ARCH effects is paramount. Hence the empirical analysis support

the need for cointegration models, which are non-linear in both the mean and the

variance. Finally, the empirical study shows that adjustments occurs through the

short rate only, which is in accordance with the expectation hypothesis for the

term structure.

The rest of the paper is structured as follows. Section 2 presents the model and

the necessary regularity conditions. Next Section 3 contains the results regarding

stability and order of integration. Estimation and asymptotic theory is discussed

in Section 4 and the empirical study presented in Section5. Conclusions are

presented in Section 6 and all proofs can be found in Appendix.

The following notation will be used throughout the paper. For any vector ‖ · ‖
denotes the Euclidian vector norm and Ip a p-dimensional unit matrix. For some

p×r matrix β of rank r ≤ p, define the orthogonal complement β⊥ as the p×(p−
r)-dimensional matrix with the property β′β⊥ = 0. The associated orthogonal

projections are given by Ip = β̄β′+ β̄⊥β⊥ with β̄ = β(β′β)−1. Finally εi,t denotes

the i’th coordinate of the vector εt. In Section 2 and 3 and the associated proofs

only the true parameters will be considered and the usual subscript 0 on the true

parameters will be omitted to avoid an unnecessary cumbersome notation.

2 The first and second order non-linear cointe-

gration model

In this section the model is defined and conditions for geometric ergodicity of

process generated according to the model are stated. As discussed the model
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is non-linear in both the mean- and variance specification, which justifies refer-

ring to the model as the first and second order non-linear cointegration vector

autoregressive (FSNL-CVAR) model.

2.1 Non-linear adjustments

Let Xt be a p-dimensional observable stochastic process. The process is driven

by both an unobservable i.i.d. sequence νt and a zero-one valued state process

st. It is assumed that the distribution of the latter depends on lagged values of

the observable process and that νt is independent of st. The evolution of the

observable process is governed by the following generalization of the usual CVAR

model, see e.g. Johansen (1995).

∆Xt = st

(
a(1)β′Xt−1 +

q−1∑
j=1

Γj∆Xt−j

)

+(1− st)
(
a(0)β′Xt−1 +

q−1∑
j=1

Gj∆Xt−j

)
+ εt (1)

εt = H1/2(st, εt−1, ..., εt−q)νt = H
1/2
t νt,

where a(0), a(1), and β are p× r matrices, (Γj, Gj)j=1,...,q−1 are p×p matrices, and

νt an i.i.d.(0, Ip) sequence. By letting the covariance matrix Ht depend on lagged

innovations εt−1, ..., εt−q the model allows for a very broad class of ARCH type

specifications. The exact specification of the covariance matrix will be addressed

in the next section, but by allowing for dependence of the lagged innovations the

suggested model permits traditional ARCH type dynamics of the innovations.

Saikkonen (2008) has suggested to use lagged values of the observed process Xt

in the conditional variance specification, however, this leads to conditions for

geometric ergodicity, which cannot be stated independently for the mean- and

variance parameters and a less clear cut definition of a unit root.

As indicated in the introduction the proposed model allows for non-linear and dis-

continuous equilibrium correction. The state process could for instance be spec-

ified such that if the deviation from the stable relations, measured by ‖β′Xt−1‖,
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is below some predefined threshold adjustment to the stable relations occurs

through a(0) and as a limiting case no adjustment occurs, which could reflect

transaction costs. However, if ‖β′Xt−1‖ is large adjustment will take place

through a(1). For applications along theses lines, see Akram & Nymoen (2006),

Chow (1998), and Krolzig, Marcellino & Mizon (2002).

2.2 Switching autoregressive heteroscedasticity

Depending on the value of the state process at time t the covariance matrix is

given by

Ht = D
1/2
t Λ(l)D

1/2
t (2)

Dt = diag(Πt)

Πt = (π1,t, ..., πp,t)
′

πi,t = 1 + gi(εi,t−1, ..., εi,t−q), i = 1, ..., p (3)

with Λl a positive definite covariance matrix, gi(·) a function onto the non-

negative real numbers for all i = 1, ..., p, and l = 0, 1 corresponds to the possible

values of the state process.

The factorization in (2) isolates the effect of the state process into the matrix Λ(l)

and the ARCH effect into the diagonal matrix Dt. This factorization implies that

all information about correlation is contained in the matrix Λ(l), which switches

with the regime process. In this respect the variance specification is related to

the constant conditional correlation (CCC) model of Bollerslev (1990) and can

be viewed as a mixture generalization of this model.

For example, suppose that p = 2, q = 1, gi(εi,t−1) = αiε
2
i,t−1, and st = 1 almost

surely for all t. Then the conditional correlation between X1,t and X2,t is given

by the off-diagonal element of Λ1, which illustrates that the model in this case

is reduced to the traditional cointegration model with the conditional variance

specified according to the CCC model.

Since the functions g1, ..., gp allow for a feedback from past realizations of the inno-

vations to the present covariance matrix it is necessary to impose some regularity

conditions on these functions in order to discuss stability of the cointegrating
6



relations β′Xt and ∆Xt.

Assumption 1. (i) For all i = 1, ..., p there exists constants, denoted αi,1, ..., αi,q,

such that for ‖(ε′t−1, ..., ε
′
t−q)

′‖ sufficiently large it holds that gi(εi,t−1, ..., εi,t−q) ≤∑q
j=1 αi,jε

2
i,t−j.

(ii) For all i = 1, ..., p the sequence of constants satisfies maxl=0,1 Λ
(l)
i,i

∑q
j=1 αi,j <

1.

The assumption essentially ensures that as the lagged innovations became large

the covariance matrix responds no more vigorously than an ARCH(q) process

with finite second order moment. However, for smaller shocks the assumption

allows for a broad range of non-linear responses.

2.3 The State Process

Initially recall that the state or switching variable st is zero-one valued. Next

define the r + p(q − 1)-dimensional variable zt as

zt = (X ′t−1β,∆X
′
t−1, ...,∆X

′
t−q+1)′. (4)

By assumption the dynamics of the state process are given by the conditional

probability

P (st = 1 | Xt−1, ..., X0, st−1, ..., s0) = P (st = 1 | zt) ≡ p(zt). (5)

Some theoretical results regarding univariate switching autoregressive models

where the regime process is similar to (5) can be found in Gourieroux & Robert

(2006).

The transition function p(·) will be assumed to be an indicator function taking

the value one outside a bounded set as suggested by Balke & Fomby (1997).

In the transaction cost example it is intuitively clear that as the distance from

the stable relation increases so does the probability of adjustment to the stable

relation. This leads to:

Assumption 2. The transition probability p(z) defined in (5) is zero-one valued

and tends to one as ‖z‖ → ∞.
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On the basis of Assumption 2 it is natural to refer to the regime where st = 0

as the inner regime and the other as the outer regime. As in Bec & Rahbek

(2004) additional inner regimes can be added without affecting the validity of the

results, the only difference being a more cumbersome notation. Extending the

model to include additional outer regimes, as in Saikkonen (2008), leads inevitable

to regularity conditions expressed in terms of the joint spectral radius of a class

of matrices, which are in most cases impossible to verify.

It follows that the FSNL-CVAR model allows for epochs of equilibrium adjust-

ments and epochs without. Furthermore the model allows these epochs to be

characterized by different correlation structures and have general ARCH type

variance structure. In the next section stationarity and geometric ergodicity of

β′Xt and β′⊥∆Xt are discussed.

3 Stability and order of integration

In the first part of this section conditions which ensure geometric ergodicity of

β′Xt and ∆Xt will be derived. In the second part of the section we derive a

representation theorem corresponding to the well known Granger representation

theorem and establish a FCLT for the common trends. The results presented

in this section rely on by now classical Markov chain techniques, see Meyn &

Tweedie (1993) for an introduction and definitions.

3.1 Geometric Ergodicity

Note initially that the process Xt generated by (1), (2), and (5) is not in itself

a Markov chain due to the time varying components of the covariance matrix.

Define therefore the process Vt = (X ′tβ,∆X
′
tβ⊥)′ where the orthogonal projection

Ip = β̄β′ + β̄⊥β′⊥, has been used. Furthermore define the stacked processes

V̄t = (V ′t , ..., V
′
t−q+1)′, ε̄t = (ε′t, ..., ε

′
t−q+1)′,
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and the selection matrix

ϕ = (Ip, 0p×(q−1)p)
′.

By construction the process V̄t is generated according to the VAR(1) model given

by

V̄t = stAV̄t−1 + (1− st)BV̄t−1 + ηt, (6)

where ηt = ϕ(β′, β′⊥)′εt and hence is a mean zero random variable with variance

(β′, β′⊥)′Ht,st(β
′, β′⊥). The matrices A and B are implicitly given by (1), see

(19) in the appendix for details. Finally the Markov chain to be considered

can be defined as Yt = (ε̄′t, V̄
′
t−q)

′. Note that Vt, ..., Vt−q+1 and st, ..., st−q+1 are

computable from Yt, which can be seen by first computing st−q+1 then Vt−q+1 and

repeating.

As hinted earlier it suffices to assume that the usual cointegration assumption is

satisfied for the parameters of the outer regime;

Assumption 3. Assume that the rank of a(1) and β equals r and furthermore

that there are exactly p− r roots at z = 1 for the characteristic polynomial

A(z) = Ip(1− z)− a(1)β′z −
q−1∑
i=1

Γi(1− z)zi, z ∈ C (7)

while the remaining roots are larger than one in absolute value.

Next the main result regarding geometric ergodicity of the Markov chain Yt will

be stated, with the central conditions expressed in terms of the matrices A and

B. In the subsequent corollaries some important special cases are considered.

Theorem 1. Assume that:
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(i)
For some qp× n, qp ≥ n ≥ 0 matrix µ of rank n, it holds that

(A−B)µ = 0.

(ii) The largest in absolute value of the eigenvalues of A is smaller than one.

(iii)

The stochastic state variable st is zero-one valued and the state probability

is zero-one valued and satisfies p(γ′v̄) → 0 as ‖γ′v̄‖ → ∞ with γ = µ⊥
and v̄ ∈ Rpq

(iv)
νt is i.i.d.(0,Ip) and has a continuous and strictly positive density with

respect to the Lebesgue measure on Rp.

(v)
The generalized ARCH functions g1, ..., gp satisfy the conditions listed in

Assumption 1.

Then Yt is a geometrically ergodic process, which has finite second order moment.

Furthermore there exists a distribution for Y0 such that the sequence (Yt)
T
t=1 is

stationary.

The formulation of the FSNL-CVAR model is in essence a combination of the non-

linear cointegration model of Bec & Rahbek (2004) and the constant conditional

correlation model of Bollerslev (1990). It is therefore not surprising that the

following corollaries show that the stability conditions for the FSNL-CVAR model

are simply a combination of the stability conditions associated with the these two

”parent” models.

Corollary 1. Under Assumption 1, 2, and 3, and (iv) of Theorem 1 it holds

that Yt is a geometrically ergodic process with finite second order moment and

that there exists a distribution for Y0 such that the sequence (Yt)
T
t=1 is stationary.

In the special case where the transition probability in (5) only depends on β′Xt

Assumption 2 does not hold. However, using Theorem 1 the following result can

be established.

Corollary 2. Consider the case where the transition probability in (5) only de-

pends on zt = β′Xt and that Γj = Gj for j = 1, ..., q − 1. Under Assumption 1,

2, and 3 and (iv) of Theorem 1 it holds that Yt is a geometrically ergodic process

with finite second order moment and that there exists a distribution for Y0 such

that the sequence (Yt)
T
t=1 is stationary.
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3.2 Non-stationarity

When considering linear VAR models the concept of I(1) processes is well defined,

see Johansen (1995). This is in contrast to non-linear models, such as the FSNL-

CVAR model, where there still exists considerable ambiguity as to how to define

I(1) processes. In this paper we follow Corradia, Swanson & White (2000) and

Saikkonen (2005) and simply define an I(1) process as a process for which a

functional central limit theorem (FCLT) applies. In Theorem 2 below we establish

conditions for which the (p−r) common trends of Xt have a non-degenerate long-

run variance and a FCLT applies.

Theorem 2. Under the assumptions of Theorem 1 the process Xt given by (1),

(2), and (5) has the representation

Xt = C

t∑
i=1

(εt + (Φ(0) − Φ(1))ut) + τt, (8)

where the processes τt, see 20, and ut = (1− st)zt are stationary and zt is defined

in (4). Furthermore the parameters C,Φ(0), and Φ(1) are defined by

C = β⊥(a(1)′
⊥(Ip −

k−1∑
i=1

Γi)β⊥)−1a(1)′
⊥, Φ(0) = (a(0), G1, ..., Gk−1),

Φ(1) = (a(1),Γ1, ...,Γk−1).

The (p − r) common trends of Xt are given by
∑t

i=1 ci, where ct = a(1)′
⊥(εt +

(Φ(0) − Φ(1))ut). A FCLT applies to ct − EcT , if

Υ = ψ′
(

Σεε Σεu

Σuε Σuu

)
ψ > 0, where ψ′ = a(1)′

⊥(Ip,Φ
(0) − Φ(1)). (9)

The Σ matrices are the long run variances and the exact expression can be found

in (21).

Note that sufficient conditions for Υ being positive definite are sp(Φ(0)) = sp(Φ(1))

or a(1)′
⊥Σεβ = 0.
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4 Estimation and asymptotic normality

In this section it is initially established that the usual estimator in the linear

cointegrated VAR model of the cointegration vector β, which is based on reduced

rank regression (RRR), see Johansen (1995), is consistent even when data is

generated by the much more general FSNL-CVAR model. The second part of this

section considers estimation and asymptotic theory of the remaining parameters.

Define β̂ as the usual RRR estimator of the cointegration vector defined in Jo-

hansen (1995) Theorem 6.1. Introduce the normalized estimator β̃ given by

β̃ = β̂(β̄′β̂)−1, where β̄ = β(β′β)−1. Note that this normalization is clearly not

feasible in practice as the matrix β is not know, however, the purpose of the nor-

malized version is only to facilitate the formulation of the following consistency

result.

Theorem 3. Under the assumptions of Theorem 1 and the additional assumption

that Υ defined in (9) is positive definite, β̃ is consistent and β̃ − β = op(T
1/2).

Theorem 3 suggests that once the cointegrating vector β has been estimated using

RRR the remaining parameters can be estimated by quasi-maximum likelihood

using numerical optimization. To further reduce the curse of dimensionality the

parameters Λ(1) and Λ(0) can be concentrated out of the log-likelihood function

as discussed in Bollerslev (1990).

In order to discuss asymptotic theory restrict the variance specification in (2) to

linear ARCH(q), that is replace (3) by

πi,t = 1 +

q∑
j=1

αi,jε
2
i,t−j (10)

and define the parameter vectors

θ(1) = vec(Φ(1),Φ(0)), θ(2) = (α1,1, ..., αp,1, α2,1, ..., αp,q),

θ(3) = (vech(Λ(1))′, vech(Λ(0))′)′,

and θ = (θ(1)′, θ(2)′, θ(3)′)′. As is common let θ0 denote the true parameter value.

If the cointegration vector β and the threshold parameters are assumed known the
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realization of state process is computable and the quasi log-likelihood function

to be optimized is, apart from a constant, given by

LT (θ) =
1

T

T∑
t=1

lt(θ), lt(θ) = − log(|Ht(θ)|)/2− εt(θ)′Ht(θ)
−1εt(θ)/2, (11)

where εt(θ) and Ht(θ) are given by (1) and (2), respectively. The assumption of

known β and λ is somewhat unsatisfactory, but at present necessary to establish

the result. Furthermore, the assumption can be partly justified by recalling that

estimators of both the cointegration vector and the threshold parameter are usu-

ally super consistent. The proof of the following asymptotic normality result can

be found in the appendix.

Theorem 4. Under the assumptions of Corollary 1 and the additional assump-

tion that there exists a constant δ > 0 such that E[‖εt‖4+δ] and E[‖νt‖4+δ] are

both finite and θ(2) > 0 it holds that when β and the parameters of the regime

process are kept fixed at true values there exists a fixed open neighborhood around

the true parameter N(θ0) such that with probability tending to one as T tends

to infinity, LT (θ) has a unique minimum point θ̂T in N(θ0). Furthermore, θ̂T is

consistent and satisfies

√
T (θ̂T − θ0)

D→ N(0,Ω−1
I ΩSΩ−1

I ),

where ΩS = E[(∂lt(θ0)/∂θ)(∂lt(θ0)/∂θ′)] and ΩS = E[∂2lt(θ0)/∂θ∂θ′].

The proof is given in the appendix, where precise expressions for the asymptotic

variance are also stated.

5 An application to the interest rate spread

In this section an analysis of the spread between the long and the short U.S.

interest rates using the FSNL-CVAR model is presented. The analysis is similar

to the analysis of German interest rate spreads presented in Bec & Rahbek (2004).

However, since the FSNL-CVAR model allows for heteroscedasticity the present

analysis will employ daily data unlike the analysis in Bec & Rahbek (2004),
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which is based on monthly averages. The well-known expectations hypothesis

of the term structure implies that, under costless and instantaneous portfolio

adjustments and no arbitrage the spread between the long and the short rate can

be represented as

R(k, t)−R(1, t) =
1

k

k−1∑
i=1

i∑
j=1

Et[∆R(1, t+ j)] + L(k, t), (12)

where R(k, t) denotes the k-period interest rate at time t, L(k, t) represents the

term premium, accounting for risk and liquidity premia, and Et[·] the expectation

conditional on the information at time t, see e.g. Bec & Rahbek (2004) for

details. Clearly, the right hand side is stable or stationary provided interest rate

changes and the the term premium are stationary (see Hall, Anderson & Granger

(1992)). In fact portfolio adjustments are neither costless nor instantaneous. It

is therefore reasonable to assume that the spread S(k, 1, t) = R(k, t) − R(1, t),

will temporarily depart from its equilibrium value given by (12). However, once

portfolio adjustments have taken place (12) will again hold. Hence, the long

and the short interest rate should be cointegrated with a cointegration vector of

β = (1,−1)′. Testing this implication of the expectations hypothesis of the term

structure has been the focus for many empirical papers, however, the results are

not clear cut. Indeed the U.S. spread is found to be stationary in e.g. Campbell &

Shiller (1987), Stock & Watson (1988), Anderson (1997), and Tzavalis & Wickens

(1998), but integrated of order 1 in e.g. Evans & Lewis (1994), Enders & Siklos

(2001), and Bec, Guayb & Guerre (2008). Note however, that when allowing for

a stationary non-linear alternative the last two papers reject the hypothesis of

non-stationarity of the U.S. spread. Indeed Anderson (1997) establishes that if

one considers homogeneous transaction costs which reduces the investors yield

on a bond by a constant amount, say λ, then one expects that the yield spread is

stationary, but non-linear, since portfolio adjustments will only occur when the

difference between the actual spread S(k, 1, t) and the value predicted by (12) is

larger in absolute value than λ.

According to Anderson’s argument the joint dynamics of short-term and long-

term interest rates could be described by the non-linear error correction model
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Figure 1: The 3-month and 10-year interest rates (top panel) and the spread
between the two series adjusted for their mean (bottom panel). The dashed lines
indicate the threshold λ = 1.65.

given by (1):

∆Xt = (sta
(1) + (1− st)a(0))β′Xt +

k−1∑
j=1

∆Xt−j + εt, (13)

where Xt = (RS
t , R

L
t ), denotes the short and the long rates and the transition

function is defined in accordance with Anderson’s argument. However, as it is a

well established fact that daily interest rates exhibit considerable heteroscedas-

ticity the model must include time dependent variance as in (10).

In the following the proposed FSNL-CVAR model will be applied to daily record-

ings of the U.S. 3-Month Treasury Constant Maturity Rate and the U.S. 10-Year

Treasury Constant Maturity Rate spanning the period from 1/1-1988 to 1/1-2007

yielding a total of 4,500 observations. Data have been downloaded from the web-

page of the Federal Reserve Bank of St. Louis. Following Bec & Rahbek (2004)

both series are corrected for their average and the state process is therefore given
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by st = 1{|SGt−1|≥λ}, with SGt−1 = β′Xt−1. This amounts to approximate the long-

run equilibrium given by (12) by the average of the actual spread, as is common

in the literature. Figure 1 depicts the data.

Initially a self-exiting threshold autoregressive (SETAR) model was fitted to the

series SGt , which indicated a threshold parameter of λ = 1.65. This value is very

close to the threshold parameter value of 1.7 reported in Bec & Rahbek (2004) for

a similar study based on monthly German interest rate data. For the remaining

part of the analysis the threshold parameter will be kept fixed at 1.65. However,

it should be noted that by determining the threshold parameter in such a data

dependent way the conditions for the asymptotic results given in Theorem 4 are

formally not met. In this respect, recall from the vast literature on univariate

threshold models that the threshold parameter is super-consistent and hence can

be treated as fixed when making inference on the remaining parameters, we would

expect this to hold in this case as well. Furthermore, as can be seen from (13)

the short-term parameters Γi are assumed to be identical over the two regimes,

the estimators and covariances in Theorem 4 should be adjusted accordingly.

Concerning the specification of lag lengths in (13), additional lags were included

until there were no evidence of neither autocorrelation nor additional heteroscedas-

ticity in the residuals. This lead us to retain seven lags in the mean equation and

six lags in the variance equation. The choice of lag specification was confirmed

by both the AIC as well as statistical test indicating that additional lags were

not statistically significant at the 5% level.

The parameter estimates of the mean equation are reported in the first two

columns of Table 1. Initially it is noted that the estimated parameters seem

to confirm our conjecture that when the spread is below the threshold value no

adjustment towards the equilibrium occurs. This is confirmed by testing the hy-

pothesis that a(0) = (0, 0)′, which is accepted with a p-value of 0.60 using the LR

test. In addition the estimates of a(1) indicate that long-term rates do not seem

to adjust to disequilibrium. This is confirmed by the LR test of the hypothesis

a
(0)
1 = a

(0)
2 = a

(1)
2 = 0 which cannot be rejected. The test statistic equals 2.2 cor-

responding to a p-value of 0.53. The result implies that big spreads significantly

affects the short-term rate only, which is in accordance with the expectation hy-

pothesis for the term structure. This conclusion as well as the sign of the estimate
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Unrestricted Restricted
∆RS

t ∆RL
t ∆RS

t ∆RL
t

1{|SGt−1|≥1.65}S
G
t−1 -0.00116 0.000996 -0.00136 -

(-2.26) (1.09) (-2.86)
1{|SGt−1|<1.65}S

G
t−1 0.000478 -9.81e-005 - -

(0.92) (-0.11)
∆RS

t−1 0.0687 0.00626 0.0687 0.00693
(3.77) (0.30) (3.79) (0.34)

∆RL
t−1 -0.0163 0.0636 -0.0163 0.0629

(-1.82) (3.80) (-1.83) (3.84)
∆RS

t−2 -0.0717 -0.00262 -0.0713 -0.00175
(-3.91) (-0.13) (-3.88) (-0.09)

∆RL
t−2 8.56e-005 -0.0295 -0.000117 -0.0301

(0.01) (-1.80) (-0.01) (-1.86)
∆RS

t−3 -0.0587 0.0107 -0.0582 0.0115
(-2.71) (0.53) (-2.85) (0.58)

∆RL
t−3 0.00217 -0.0531 0.00212 -0.0537

(0.24) (-3.28) (0.24) (-3.35)
∆RS

t−4 0.0583 -0.0177 0.0589 -0.0165
(3.14) (-0.89) (3.17) (-0.82)

∆RL
t−4 -0.0111 -0.0224 -0.0111 -0.0231

(-1.18) (-1.37) (-1.19) (-1.41)
∆RS

t−5 0.158 0.0476 0.158 0.0483
(8.47) (2.46) (8.54) (2.50)

∆RL
t−5 -0.0162 -0.0116 -0.0159 -0.0121

(-1.71) (-0.66) (-1.69) (-0.70)
∆RS

t−6 -0.0747 -0.0282 -0.0749 -0.0278
(-4.29) (-1.43) (-4.30) (-1.45)

∆RL
t−6 0.0270 -0.00558 0.0271 -0.00614

(3.07) (-0.34) (3.10) (-0.37)

LM(ARCH 1-8) 0.6966 0.6596 0.6963 0.6598
[p-value] [0.69] [0.73] [0.70] [0.73]
LM(AR 1-8) 34.99 34.79
[p-value] [0.32] [0.34]
log-L 14,909.10 14,908.00

Table 1: Model (13) estimates. t-statistics are reported in parentheses. LM tests
of no remaining ARCH and no vector autocorrelation, respectively. Statistically
significant parameters are indicated in bold.
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of a
(1)
1 coincides with the findings of Bec & Rahbek (2004). Estimates of this re-

stricted model are reported in the last two columns of Table 1 for the parameters

of the mean equation and Table 2 for the parameters of the variance equation.

Table 2 reports the estimates of the variance equations. In order to ease com-

parison with traditional ARCH models the parametrization has been changed

slightly from the one presented in (2) to directly reporting the coefficients of the

equation Λ
(1)
1,1π1,t = Λ

(1)
1,1 +

∑6
j=1 Λ

(1)
1,1αi,jε

2
1,t−j, which gives the conditional vari-

ance for the first element of εt when st = 1 and likewise for the other cases. It

should be noted that the change of parametrization has been performed after

estimating the parameters using the parametrization of (2), which is preferable

when performing the numerical optimization of the log-likelihood function as the

parameters in Λ(1) and Λ(1) can be concentrated out. The reported t-statistics

have therefore been computed using the delta-method.

The reported parameter estimates clearly demonstrates the presence of het-

eroscedasticity in the residuals. Examining the covariance matrix of the parame-

ters collected in θ(3) (covariance matrix not reported) indicates that Λ
(1)
i,i and Λ

(1)
i,i

are statistically different for both the short- and the long rate. As expected the

correlation is highest when adjustment to disequilibrium occurs (st = 1), but the

hypothesis that the correlations are identical cannot be rejected at the 5% level.

Hence the parameter estimates indicates the overall level of variance is highest in

the regime where no adjustment occurs, but the correlation might be the same.

Since the parameters of the switching mechanism can be identified based solely

on the variance specification the central hypothesis a(1) = a(0), corresponding

to no switching in the mean equation, can be tested by the standard LR test

statistic, which will be asymptotically χ2 distributed with two degrees of freedom.

Thus avoiding the usual problems of unidentified parameters under the null, see

e.g. Davies (1977), Davies (1987), and the survey Lange & Rahbek (2008), often

encountered when testing no-switching hypothesis. The test statistic is 18.78 and

the hypothesis of no switching in the mean equation is therefore clearly rejected.

It should be noted that the sum of the ARCH coefficients in each column of

Table 2 are very close to one, which violates the fourth order moment condition

of Theorem 4. However, as argued in Lange, Rahbek & Jensen (2007) based on

a univariate model, we expect the asymptotic normality to hold even under a
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st = 1 st = 0

Λ
(1)
1,1π1,t Λ

(1)
2,2π2,t Λ

(0)
1,1π1,t λ

(0)
2,2π2,t

Intercept 0.000412 0.00195 0.000475 0.00226
(0.02) (0.12) (0.02) (0.25)

ε2
t−1 0.148 0.0270 0.171 0.0313

(18.30) (2.80) (21.87) (2.79)
ε2
t−2 0.159 0.0430 0.183 0.0499

(18.14) (3.54) (21.51) (3.60)
ε2
t−3 0.235 0.0241 0.271 0.0279

(24.48) (1.72) (35.49) (1.72)
ε2
t−4 0.112 0.0540 0.129 0.0626

(18.44) (4.24) (22.30) (4.34)
ε2
t−5 0.170 0.115 0.196 0.134

(18.63) (7.25) (22.70) (7.65)
ε2
t−6 0.0603 0.0558 0.0695 0.0647

(8.84) (4.70) (9.22) (4.74)
Correlation 0.425 0.396

(16.56) (29.75)

Table 2: Estimates of the variance parameters. The parameters in e.g. the first
column correspond to the coefficients in the variance equation Λ

(1)
1,1π1,t = Λ

(1)
1,1 +∑6

j=1 Λ
(1)
1,1αi,jε

2
1,t−j. t-statistics are reported in parentheses and were computed

by the delta-method based on the expressions for the asymptotic variance in
Theorem 4. Statistically significant parameters are indicated in bold.

weaker second order moment condition.

6 Conclusion

In this paper we have suggested a cointegrated vector error correction model

with a non-linear specification of both adjustments to disequilibrium and vari-

ance characterized by regime switches. Since the FSNL-CVAR model embeds

many previously suggested models, see the discussion in the introduction, it pro-

vides a framework for assessing the relative importance of these models in a

likelihood based setup. Furthermore tests of hypothesis such as linearity of the

mean equation, which previously led to non-standard limiting distributions, can

be conducted as standard χ2-tests in the FSNL-CVAR model since the state
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process can be identified through the variance specification.

Using Markov chain results we derive easily verifiable conditions under which

β′Xt and ∆Xt are stable with finite second order moment and can be embedded

in a Markov chain, which is geometrically ergodic. The usefulness of this result

is enhanced by the recent work of Jensen & Rahbek (2007), which provides a

general law of large numbers assuming only geometric ergodicity. Furthermore,

a representation theorem corresponding to Granger’s representation theorem has

been derived and a functional central limit theorem for the common trends estab-

lished. This is utilized to show that the usual RRR estimator of Johansen (1995)

for the cointegrating vector, β, is robust to the model extensions suggested by

the FSNL-CVAR model.

Finally, we establish asymptotic normality of the estimated parameters for fixed

and known cointegration vector and threshold parameters. Applying the model

to daily recordings of the US term structure documents the empirical relevance

of the FSNL-CVAR model and the empirical results are in accordance with the

expectation hypothesis of the term structure. Specifically it is found that small

interest rate spreads are not corrected, while big ones have a significant influence

on the short rate only.

Appendix

Proof of Theorem 1

Consider initially the homogenous Markov chain Yt = (ε̄′t, V̄
′
t−q)

′. Before applying

the drift criterion, see e.g. Tjøstheim (1990) or Meyn & Tweedie (1993) it must

be verified that the Markov chain Yt is irreducible, aperiodic, and that compact

sets are small. In order to do so it will be verified that the 2q-step transition

kernel has a density with respect to the Lebesgue measure, which is positive and

bounded away from zero on compact sets.

Note that Vt, ..., Vt−q+1 and st, ..., st−q+1 are computable from Yt, which can be

seen by first computing st−q+1 then Vt−q+1 and repeating this procedure. With

h(· | ·) denoting a generic conditional density with respect to an appropriate
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measure the 2q-step transition kernel can be rewritten as follows (for exposition

only the derivations for q = 2 are presented).

h(Yt | Yt−4) = h(εt | εt−1, Vt−2, Vt−3, Yt−4)h(εt−1 | Vt−2, Vt−3, Yt−4)

h(Vt−2 | Vt−3, Yt−4)h(Vt−3 | Yt−4)

= h(εt | st, εt−1, εt−2)h(εt−1 | st−1, εt−2, εt−3)

h(Vt−2 | st−2, Vt−3, Vt−4, εt−3, εt−4))

h(Vt−3 | st−3, Vt−4, Vt−5, εt−4, εt−5)).

By (iv) and since the conditional covariance matrices are always positive definite

the last four densities are Lebesgue densities, strictly positive, and bounded away

from zero on compact sets. Hence the 2q-step transition kernel for Yt will also

have a strictly positive density, which is bounded away from zero on compact

sets. This establishes that the Markov chain Yt is irreducible, aperiodic, and

that compact sets are small and we proceed by applying the drift criterion of

Tjøstheim (1990).

Denote a generic element of the Markov chain Yt by y = (v̄′, ē′)′ and define the

drift function f by

f(Yt) = 1 + kV̄ ′t−qDV̄t−q +

p∑
i=1

q−1∑
j=0

ki,jε
2
i,t−j, D ≡

∞∑
i=0

Aj′Aj, (14)

where D is well defined as ρ(A⊗A) < 1 by assumption and the positive constants

k, ki,j will be specified later. The choice of the matrix D follows Feigin & Tweedie

(1985) and it implies the existence of second-order moments of Yt. Using (6) and
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following Bec & Rahbek (2004) it holds that

E[V̄ ′t−qDV̄t−q | Yt−1 = y]

= v̄′A′DAv̄ + (1− p(γ′v̄)) {v̄′B′DBv̄ − v̄′A′DAv̄}+ E[η′t−qDηt−q | Yt−1 = y]

= v̄′A′DAv̄ + (1− p(γ′v̄)) {v̄′(A−B)′D(A−B)v̄ − 2v̄′A′D(A−B)v̄}
+E[η′t−qDηt−q | Yt−1 = y]

= v̄′Dv̄ − v̄′v̄ + (1− p(γ′v̄)) {(v̄′γ)γ̄′(A−B)′D(A−B)γ̄(γ′v̄)

−2v̄′A′D(A−B)γ̄(γ′v̄)}+ E[η′t−qDηt−q | Yt−1 = y]. (15)

In the last equality the projection Ipq = γ̄γ′+ µ̄µ′ and (i) have been used. Define

for some λc > 1 the compact set

Cv = {v̄ ∈ Rpq | v̄′Dv̄ ≤ λc}.

On the complement of Cv it holds that

v̄′Dv̄ − v̄′v̄
v̄′Dv̄

= 1− v̄′v̄
v̄′Dv̄

≤ 1− inf
v̄ 6=0

v̄′v̄
v̄′Dv̄

≤ 1− 1

ρ(D)
,

where ρ(·) denotes the spectral radius of a square matrix. Furthermore note that

(v̄′γ)γ̄′(A−B)′D(A−B)γ̄(γ′v̄) � ‖γ′v̄‖2

and that

2v̄′A′D(A−B)γ̄(γ′v̄) � ‖v̄‖ ‖γ′v̄‖,

where h1(x) � h2(x) denotes that h1(x)/h2(x) tends to a non-zero constant

as ‖x‖ tends to infinity. However, by assumption the drift function satisfies

f(y) � ‖y‖2 = ‖γ̄γ′v̄ + µ̄µ′v̄‖2 + ‖ē‖2 and since (1 − p(γ′v̄)) → 0 as ‖γ′v̄‖ → ∞
it can be concluded that

k(1− p̃(γ′v̄)) {(v̄′γ)γ̄′(A−B)′D(A−B)γ̄(γ′v̄)− 2v̄′A′D(A−B)γ̄(γ′v̄)}
f(y)

→ 0,

as ‖v̄‖ → ∞. Or in other words, for λc adequately large it holds that on the
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complement of Cv will

kE[V̄t−qDV̄t−q | Yt−1 = y] ≤ (1− δ∗)kv̄′Dv̄
f(y)

f(y)+kE[η′t−qDηt−q | Yt−1 = y]. (16)

The constant δ∗ should be chosen such that δ∗ ∈]0, 1[ and 1
ρ(D)

> δ∗ > 0. Next

consider the final term of (16). By construction it will be positive and there exists

positive constants c, ci where i = 1, ..., p such that

kE[η′t−qDηt−q | Yt−1 = y] = kE[ε′t−q(β
′, β′⊥)ϕ′Dϕ(β′, β′⊥)′εt−q | Yt−1 = y]

≤ ck + k

p∑
i=1

cie
2
i,q. (17)

As previously define the compact set Ce = {ē ∈ Rpq | ‖ē‖2 ≤ λc}. Furthermore if

λc is chosen large enough (v) yields that on the complement of Ce it holds that

cike
2
i,q +

q−1∑
j=0

ki,jE[ε2
i,t−j | Yt−1 = y]

= cike
2
i,q + ki,0E[ε2

i,t | Yt−1 = y] +

q−1∑
j=1

ki,je
2
i,j

≤ cike
2
i,q + ki,0σ̄i

(
1 +

q∑
j=1

αi,je
2
i,j

)
+

q−1∑
j=1

ki,je
2
i,j

= K + (ki,0σ̄iαi,1 + ki,1)e2
i,1 +

q−1∑
j=2

(ki,0σ̄iαi,j + ki,j)e
2
i,j

+(cik + ki,0σ̄iαi,q)e
2
i,q (18)

for all i = 1, ..., p where K is some positive constant and σ̄i = maxl=0,1 Λ
(l)
i,i . When

σ̄i
∑q

j=1 αi,j < 1 the positive constants k and ki,j can be chosen such that the
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inequalities

ki,0σ̄iαi,1 + ki,1 < ki,0

ki,0σ̄iαi,j + ki,j < ki,j−1, j = 2, ..., q − 1

cik + ki,0σ̄iαi,q < ki,q−1

are all satisfied, which can be seen by setting ki,0 = 1 and choosing k very small,

see Lu (1996) for details. Hence there exists a constant δ∗∗i ∈]0, 1[ such that the

coefficient of e2
i,j+1 in (18) is smaller than (1− δ∗∗i )ki,j for all j = 0, ..., q − 1.

By combing (16)-(18) it can be concluded that for y outside the compact set

C = Cv × Cε will

E[f(Yt) | Yt−1 = y] ≤ (1− δ)v̄′Dv̄ + (1− δ)∑p
i=1

∑q−1
j=0 ki,je

2
i,j+1

1 + v̄′Dv̄ +
∑p

i=1

∑q−1
j=0 ki,je

2
i,j+1

f(y)

≤ (1− δ)f(y),

where δ = min(δ∗, δ∗∗1 , ..., δ
∗∗
p ) > 0. Inside the compact set C the function

E[f(Yt) | Yt−1 = y] is continuous and hence bounded. This completes the verifi-

cation of the drift criterion.

Proof of Corollary 1

Assume without loss of generality that q = 2. Under the assumptions listed in

the corollary the coefficient matrices of (6) are given by

A =




β′a(1) − Ir + β′Γ1β̄ β′Γ1β̄⊥ −β′Γ1β̄ 0

β′⊥a
(1) + β′⊥Γ1β̄ β′⊥Γ1β̄⊥ −β′⊥Γ1β̄ 0

0 0 Ir 0

0 0 0 Ip−r



, (19)
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and likewise for B. Hence

(A−B) =




β′(a(1) − a(0)) + β′(Γ1 −G1)β̄ β′(Γ1 −G1)β̄⊥ −β′(Γ1 −G1)β̄ 0

β′⊥(a(1) − a(0)) + β′⊥(Γ1 −G1)β̄ β′⊥(Γ1 −G1)β̄⊥ −β′⊥(Γ1 −G1)β̄ 0

0 0 0 0

0 0 0 0



.

So the matrices γ and µ can be chosen as

γ =




Ir 0 0

0 Ip−r 0

0 0 Ir

0 0 0



, µ =




0

0

0

Ip−r



,

which satisfies µ = γ⊥ and the remaining assumptions of Theorem 1. Finally

Theorem 1 yields the desired result.

Proof of Corollary 2

Assume again without loss of generality that q = 2. In this case the matrices γ

and µ can be chosen as

γ =




Ir

0

0

0



, µ =




0 0 0

Ip−r 0 0

0 Ir 0

0 0 Ip−r



,

and an application of Theorem 1 completes the proof.

Proof of Theorem 2

The formulation of the theorem as well as the proof owes much to Theorem 4 of

Bec & Rahbek (2004). Initially note that the process Xt given by (1), (2), and

(5) can be written as

A(L)Xt = (Φ(0) − Φ(1))ut + εt,
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where L denotes the lag-operator and the polynomial A(·) is defined in (7). By

the algebraic identity

A(z)−1 = C
1

1− z + C(z),

where C(z) =
∑∞

i=0Ciz
i with exponentially decreasing coefficients Ci it holds

that

Xt = C

t∑
i=1

((Φ(0) − Φ(1))ui + εi) + C(L)((Φ(0) − Φ(1))ut + εt)

= C

t∑
i=1

((Φ(0) − Φ(1))ui + εi) + τt. (20)

Next Theorem 1 yields that β′Xt and ∆Xt−i are stationary and in turn that

ut = (1− st)zt is stationary. Since C(L) has exponentially decreasing coefficients

it therefore holds that τt is stationary. Hence the common trends of Xt are given

by

t∑
i=1

ci = a(1)′
⊥

t∑
i=1

((Φ(0) − Φ(1))ui + εi).

Since ‖ut‖ ≤ ‖zt‖ it holds by Theorem 17.4.2 and Theorem 17.4.4 of Meyn &

Tweedie (1993) that a FCLT applies to ct provided the long run variance Υ,

Υ = γcc(0) +
∞∑

h=1

(γcc(h) + γcc(h)′), γcc(h) = Cov(ct, ct+h),

is positive definite. Note that the long run variance can be written as

Υ = ψ′
(

Σεε Σεu

Σuε Σuu

)
ψ, Σεu = γεu(0) +

∞∑

h=1

(γεu(h) + γεu(h)′). (21)

With similar expressions for the remaining Σ matrices.
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Proof of Theorem 3

By combining Theorem 1 and Theorem 2 one can mimicking the proof of Lemma 13.1

of Johansen (1995) in order to establish the result.

Proof of Theorem 4

Before proving Theorem 4 we initially state and prove some auxiliary lemmas.

For notational ease we adopt the convention εt(θ0) = εt and likewise for other

functions of the parameter vector evaluated in the true parameters. Furthermore,

define εdt = diag(εt) and let 1(d1×d2) denote a d1 times d2 matrix of ones.

Lemma 1. Under the assumptions of Theorem 4 it holds that

1√
T

T∑
t=1

∂lt(θ0)

∂θ

D→ N(0,ΩS),

with ΩS = E[(∂lt(θ0)/∂θ)(∂lt(θ0)/∂θ′)] > 0 as T tends to infinity.

Proof. Initially note that by utilizing the diagonal structure of Dt the first deriv-

atives evaluated at the true parameters can be written as

∂lt
∂θ(1)

= − ∂ε′t
∂θ(1)

H−1
t εt − 1

2

∂Π′t
∂θ(1)

D−1
t ξt1(p×1) (22)

∂lt
∂θ(2)

= −1

2

∂Π′t
∂θ(2)

D−1
t ξt1(p×1) (23)

∂lt
∂θ(3)

= st
∂vec(Λ1)′

∂θ(3)
vec(Λ−1

1 − Λ−1
1 D

−1/2
t εtε

′
tD
−1/2
t Λ−1

1 )

+(1− st)∂vec(Λ0)′

∂θ(3)
vec(Λ−1

0 − Λ−1
0 D

−1/2
t εtε

′
tD
−1/2
t Λ−1

0 ) (24)

∂Π′t
∂θ(1)

= 2

q∑
j=1

∂ε′t−j
∂θ(1)

Ajε
d
t−j, Aj = diag(α1,j, ..., αp,j)

∂ε′t
∂θ(1)

= stJ1zt + (1− st)J2zt

ξt = Ip − εdtH−1
t εdt ,

where J1 is a 2p(r + p(q − 1)) times r + p(q − 1) matrix with all ones on the

first p(r+ p(q− 1)) rows and zeros on the remaining rows and the matrix J2 the
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opposite. Finally, the derivative of Π′t with respect to θ(2) is a block diagonal

matrix with the vectors (ε1,t−1, ..., ε1,t−q)′ to (εp,t−1, ..., εp,t−q)′ on the diagonal

blocks.

Next, note that since the ARCH parameters are all bounded away from zero there

exists a constant k1 > 0 such that ε2
i,t−j/πi,t ≤ 1/αi,j < k1 for all j = 1, ..., q. By

repeating this argument one can conclude that there exists a constant k2 such that

‖(∂Π′t/∂θD
−1
t ‖ < k2. Combining this with the observations that E[‖ξt‖2] < ∞

and E[‖νt‖4] <∞ yields that E[‖∂lt/∂θ‖2] <∞ and Ω <∞.

For any vector c with same dimension as θ define the sequence l
(1)
t = c′∂lt/∂θc,

which is a martingale difference sequence with respect to the natural filtration

Ft = σ(Xt, Xt−1, ...) since E[ξt | Ft−1] = 0 and st is Ft−1 measurable. Under the

stated conditions Theorem 1, the law of large number for geometrically ergodic

time series, and the central limit of Brown (1971) yield that T−1/2
∑T

t=1 l
(1)
t

D→
N(0, c′ΩSc) and the Cramér-Wold device establishes the lemma.

The positive definiteness of ΩS can be established by noting that Theorem 1

guarantees that P (st = 1) > 0, P (st = 0) > 0, and that all elements of Yt have

strictly positive densities. Hence is holds that the c′Ωc = 0 if and only if c = 0

and ΩS is therefore positive definite, see Lange et al. (2007) for details.

Lemma 2. Under the conditions of Theorem 4 there exists an open neighborhood

around the true parameter value N(θ0) and a positive constant k3, such that

sup
θ∈N(θ0)

‖Πt(θ)
′

∂θ(1)
D−1
t ‖max < k3, sup

θ∈N(θ0)

‖Πt(θ)
′

∂θ(2)
D−1
t ‖max < k3,

and ‖Λ(l)−1‖max < k3 for l = 0, 1, where ‖ · ‖max denotes the max norm.

Proof. Let N(θ0) = {θ ∈ Rdim(θ0) | ‖θ0 − θ‖max < δ}. Next, note that by

construction any term in ∂lt(θ)

∂θ(1) will also be in the relevant part of Dt, hence it

can be concluded that if δ is sufficiently small there exists a positive constant k3

such that

sup
θ∈N(θ0)

‖Πt(θ)
′

∂θ(1)
D−1
t ‖max ≤ 1

minθ∈N(θ0) θ(2)
< k3

and likewise for the derivative with respect to θ(2). Finally, note that since the
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true value of both Λ(1) and Λ(0) are positive definite and the eigenvalues of a

matric is a continuous function of the matrix itself it holds that δ can be chosen

such that ‖Λ(l)−1‖max < k3 for l = 0, 1.

Proof of Theorem 4. The proof is based on a Taylor expansion of the log-likelihood

function. To avoid the need for third derivatives we will verify conditions (A.1)-

(A.4) of Lemma A.1 in Lange et al. (2007). The asymptotic normality of the

score evaluated at the true parameter values has been established in Lemma 1,

hence condition (A.1) is satisfied. By directly differentiating (22), (23), and (24)

and adopting the notation of Lemma 1 one obtains the following expressions for

the second derivatives.

∂2lt(θ)

∂θ(1)∂θ(1)′

= −∂εt(θ)
′

∂θ(1)
Ht(θ)

−1∂εt(θ)

∂θ(1)′

−1

4

∂Πt(θ)
′

∂θ(1)
Dt(θ)

−1(diag{εt(θ)dHt(θ)
−1εt(θ)

d1(p×1)} − ξt + Ip)Dt(θ)
−1∂Πt(θ)

∂θ(1)′

+
∂εt(θ)

′

∂θ(1)
Ht(θ)

−1εt(θ)
dDt(θ)

−1∂Πt(θ)

∂θ(1)′ −
1

2

∂Πt(θ)
′

∂θ(1)
Dt(θ)

−2diag{ξt(θ)1(p×1)}∂Πt(θ)

∂θ(1)′

−
q∑
j=1

∂εt−j(θ)′

∂θ(1)
AjDt(θ)

−1diag{ξt(θ)1(p×1)}∂εt−j(θ)
∂θ(1)′

+
1

2

∂Πt(θ)
′

∂θ(1)
Dt(θ)

−1(diag{εt(θ)dHt(θ)
−11(p×1)}+ εdtH

−1
t )

∂εt(θ)

∂θ(1)′

∂2lt(θ)

∂θ(1)∂θ(2)′ =
∂εt(θ)

′

∂θ(1)
Ht(θ)

−1εt(θ)
dDt(θ)

−1∂Πt(θ)

∂θ(2)′

+
1

4

∂Πt(θ)
′

∂θ(1)
D−1
t [2diag{ξt(θ)1(p×1)} − diag{εt(θ)dHt(θ)

−1εt(θ)
d1(p×1)}

−εt(θ)dHt(θ)
−1εt(θ)

d]D−1
t

∂Πt(θ)

∂θ(2)′

−
q∑
j=1

∂εt−j(θ)′

∂θ(1)
εdt−jDt(θ)

−1ξt(θ)
d∂(Aj1(p×1))

∂θ(2)′
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∂2lt(θ)

∂θ(1)∂θ(3)′ = st
∂εt(θ)

′

∂θ(1)

(
(εt(θ)

′D−1/2
t Λ−1

1 )⊗ (Λ−1
1 D

−1/2
t )

)∂vec(Λ1)

∂θ(3)′

+(1− st)∂εt(θ)
′

∂θ(1)

(
(εt(θ)

′D−1/2
t Λ−1

0 )⊗ (Λ−1
0 D

−1/2
t )

)∂vec(Λ0)

∂θ(3)′

−1

2

∂Πt(θ)
′

∂θ(1)
D−1
t

∂(ξt(θ)1(p×1))

∂θ(3)′

∂2lt(θ)

∂θ(2)∂θ(2)′ =
1

4

∂Πt(θ)
′

∂θ(2)
Dt(θ)

−1[2diag{ξt(θ)1(p×1)}

−diag{εt(θ)dHt(θ)
−1εt(θ)

d1(p×1)}+ ξt − Ip]Dt(θ)
−1∂Πt(θ)

∂θ(2)′

∂2lt(θ)

∂θ(2)∂θ(3)′ = −1

2

∂Πt(θ)
′

∂θ(2)
Dt(θ)

−1∂(ξt(θ)1(p×1))

∂θ(3)′

∂2lt(θ)

∂θ(3)∂θ(3)′ = st
1

2

∂vec(Λ1)′

∂θ(3)
(Λ−1

1 ⊗ Ip)
[− (Λ−1

1 Dt(θ)
−1/2εt(θ)εt(θ)

′Dt(θ)
−1/2)⊗ Ip

−Ip ⊗ (Λ−1
1 Dt(θ)

−1/2εt(θ)εt(θ)
′Dt(θ)

−1/2)− Ip
]
(Ip ⊗ Λ−1

1 )
∂vec(Λ1)

∂θ(3)′

(1− st)1

2

∂vec(Λ0)′

∂θ(3)
(Λ−1

0 ⊗ Ip)
[− (Λ−1

0 Dt(θ)
−1/2εt(θ)εt(θ)

′Dt(θ)
−1/2)⊗ Ip

−Ip ⊗ (Λ−1
0 Dt(θ)

−1/2εt(θ)εt(θ)
′Dt(θ)

−1/2) + Ip
]
(Ip ⊗ Λ−1

0 )
∂vec(Λ0)

∂θ(3)′

∂(ξt(θ)1(p×1))

∂θ(3)′ = stεt(θ)
d
(
(εt(θ)Dt(θ)

−1/2Λ−1
1 )⊗ (Λ−1

1 D
−1/2
t )

)∂vec(Λ1)

∂θ(3)′

+(1− st)εt(θ)d
(
(εt(θ)Dt(θ)

−1/2Λ−1
0 )⊗ (Λ−1

0 D
−1/2
t )

)∂vec(Λ0)

∂θ(3)′

By combing Theorem 1 with the law of large numbers for geometrically ergodic

time series and Lemma 2 it can be concluded that the

1

T

T∑
t=1

∂2lt(θ0)

∂θ∂θ′
P→ ΩI ,

as T tends to infinity. By the same arguments as in the proof of Lemma 1 ΩI is
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positive definite. Hence condition (A.2) of Lemma A.1 in Lange et al. (2007) is

satisfied.

Next, let N(θ0) = {θ ∈ Rdim(θ0) | ‖θ0 − θ‖max < δ} denote an open neighborhood

around the true parameter value. By inspecting the second derivatives and uti-

lizing Lemma 2 it is evident that δ > 0 can be chosen such that there exists a

positive constant k4 and vector k of positive constants such that

E[ sup
θ∈N(θ0)

∥∥∥∂
2lt(θ)

∂θ∂θ′

∥∥∥] ≤ E[k4(1 + ‖νtν ′tνtν ′t‖max)k′(z′t, ..., z
′
t−q)

′], (25)

which is finite by assumption. One can therefore define a function F as the point-

by-point (in θ) limit of T−1
∑T

t=1 ∂
2lt(θ)/∂θ∂θ

′ and by dominated convergence the

function is continuous. Hence condition (A.3) is also satisfied.

Finally, by Theorem 4.2.1 of Amemiya (1985) the required uniform convergence

follows from (25) and condition (A.4) is therefore satisfied. Note that Theorem

4.2.1 is applicable in our setup by Amemiya (1985) p. 117 as the law of large num-

bers applies due to geometric ergodicity of the Markov chain zt. This completes

the proof.
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