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Abstract

In this work, we make use of the shifting-mean autoregressive
model which is a �exible univariate nonstationary model. It is suitable
for describing characteristic features in in�ation series as well as for
medium-term forecasting. With this model we decompose the in�ation
process into a slowly moving nonstationary component and dynamic
short-run �uctuations around it. We �t the model to the monthly
euro area, UK and US in�ation series. An important feature of our
model is that it provides a way of combining the information in the
sample and the a priori information about the quantity to be forecast
to form a single in�ation forecast. We show, both theoretically and by
simulations, how this is done by using the penalised likelihood in the
estimation of model parameters. In forecasting in�ation, the central
bank in�ation target, if it exists, is a natural example of such prior
information. We further illustrate the application of our method by
an ex post forecasting experiment for euro area and UK in�ation. We
�nd that that taking the exogenous information into account does im-
prove the forecast accuracy compared to that of a linear autoregressive
benchmark model.
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1 Introduction

Recently, there has been increased interest in characterising and/or fore-
casting in�ation using models that involve structural change. For example,
changes in monetary policy regimes may a¤ect the parameters of the model.1

A typical assumption in this context has been that the regime changes are
abrupt. This implies that the e¤ects of monetary policy changes are imme-
diate and that the new regime is stable until there is another break in the
model. Contrasting this assumption, it may not be unrealistic to think that
the changes are gradual and a complete parameter change occurs over a pe-
riod of time. The shift in preferences towards high price stability, re�ected in
the downward trend of euro area in�ation during the 1980s, may be viewed
as an example of this type. The downward shift in the US in�ation under
Volcker is another prominent example.
There are many ways of incorporating the idea of smooth continuous

changes in parameters into an in�ation model. In this paper, we assume
that the in�ation process has a gradually shifting mean, and the �uctuation
of the process around this mean is described by an autoregressive process.
This leads to the Shifting Mean Autoregressive (SM-AR) model, in which
the in�ation process is assumed to contain two components: a deterministi-
cally time-varying mean and an autoregressive component that is stationary
around the mean. The gradually changing mean may be interpreted as a
measure of the implicit in�ation target of the central bank.2 It can also be
viewed as a proxy for unobservable variables or other driving forces that are
di¢ cult or even impossible to quantify in a satisfactory manner. Examples
include the decline in in�ation due to increasing international consensus in
monetary policy after high and volatile in�ation during the 1970s, a learn-
ing process of agents in terms of their in�ation expectations3, or increasing
globalisation that has led to increased competition. Another interpretation
of the time-varying mean is to view it as a measure of the underlying trend
in in�ation that is often referred to as �core in�ation�.4

Our model of time-varying mean in�ation is well suited to track the devel-
opments in headline in�ation that will persist in the medium term. Transient
features due to temporary shocks to the economy are explained by the au-
toregressive structure of the model. We provide a timely measure of medium-

1See e.g. Stock and Watson (2007), Sims and Zha (2006), Schorfheide (2005), Lendvai
(2006) and Pesaran, Pettenuzzo and Timmermann (2006).

2See e.g. Orphanides and Williams (2005) and Kozicki and Tinsley (2005).
3See e.g. Erceq and Levin (2003).
4See e.g. Cogley (2002), Clark (2001) and Cristadoro, Forni, Reichlin and Veronese

(2005) for recent suggestions and/or discussions of core in�ation measures.
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term in�ation based on a single time series. This measure can also be useful
if one wants to compare medium-term shifts in in�ation between countries.
Another important feature of our model is that it allows incorporating

exogenous information into in�ation forecasts from this model. We show
theoretically and by simulation how this is done by using the penalised like-
lihood in the estimation of model parameters. In forecasting in�ation, the
central bank in�ation target, if it exists, is a natural example of such prior
information.We apply this notion to forecasting the euro area as well as the
UK in�ation rate. In the former case the exogenous information comprises
the de�nition of price stability of the European Central Bank, whereas the
in�ation target of Bank of England plays the same role in the latter. We
�nd that taking this exogenous information into account does improve the
forecast accuracy over that of a linear autoregressive benchmark model.
The plan of the paper is the following: The SM-AR model and outlines of

modelling are presented in Section 2. Empirical results of modelling appear
in Section 3, in which the model is �tted to the euro area, the UK and
the US monthly year-on-year in�ation series. In Section 4 it is shown how
sample information and exogenous information can be combined into a single
(density) forecast using the SM-AR model. Results of forecasting in�ation
in the euro area and the UK, making use of the de�nition of price stability
(euro area) or the in�ation target (UK) of the central bank, can be found
in Section 5. Section 6 contains results from a forecasting exercise, in which
medium-term forecasts are generated ex post using the SM-AR and a linear
autoregressive model. The conclusions can be found in Section 7.

2 A framework for modelling in�ation

2.1 An autoregressive model with a shifting mean

The modelling and forecasting tool in this work is the autoregressive model
with a shifting mean, the SM-AR model. The shift is a smooth determin-
istic function of time, which implies assuming in�ation to be a nonstation-
ary process. The SM-AR model of order p has the following de�nition, see
González and Teräsvirta (2008):

yt = �(t) +

pX
j=1

�jyt�j + "t (1)

where the roots of the lag polynomial 1 �
Pp

j=1 �jL
j lie outside the unit

circle, L is the lag operator: Lxt = xt�1: As all roots of the lag polynomial lie
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outside the unit circle, {ytg is stationary around the shifting mean. The errors
"t form a sequence of independent, identically (0; �2) distributed random
variables, and �(t) is a bounded deterministic nonlinear shift function or
shifting intercept. In parameter estimation and statistical inference it is
assumed that the error distribution is normal.
In empirical work, �(t) is often a linear function of t; in which case yt in

(1) is called �trend-stationary�. Contrary to this, González and Teräsvirta
(2008) de�ne �(t) as a bounded function of time:

�(t) = �0 +

qX
i=1

�ig(
i; ci; t=T ) (2)

where �i; i = 1; : : : ; q; are parameters and g(
i; ci; t=T ), i = 1; : : : ; q, are
logistic transition functions:

g(
i; ci; t=T ) =
�
1 + expf�
i(t=T � ci)g

��1
(3)

with 
i > 0, i = 1; : : : ; q: The components in the shift function (2) are
exchangeable, and identi�cation is achieved for example by assuming c1 <
� � � < cq:
The parametric form of (2) is very �exible and contains as special cases

well known examples of nonlinear functions. For instance, when �1 = � � � =
�q = 0, (2) becomes constant, and when q = 1, �(t) changes smoothly from
�0 to �0 + �1 as a function of t, with the centre of the change at t = c1T .
The smoothness of the change is controlled by 
1: the larger 
1; the faster
the transition. When 
1 ! 1, �(t) collapses into a step function, so there
is a single break in the intercept. On the contrary, when 
1 is close to zero,
�(t) represents a slow monotonic shift that is approximately linear around c.
Values q > 1 add �exibility to �(t) by making nonmonotonic shifts possible.
More generally, �(t) is a so-called universal approximator. Suppose yt =

f(t); that is, there exists a functional relationship between y and t: Then, un-
der mild regularity conditions for f; the relationship is arbitrarily accurately
approximated by replacing f(t) with (2) for q = q0 <1:
From (1) it follows that the time-varying mean of the process equals

Etyt = (1�
pX
j=1

�jL
j)�1�(t): (4)

Another way of parameterizing the SM-AR model is to de�ne �(t) to be the
time-varying mean:

yt = �(t) +

pX
j=1

�jfyt�j � �(t� j)g+ "t: (5)
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This yields Etyt = �(t): Note that the two speci�cations agree when p = 0:
Thus, the representation in which p = 0 but

"t =
1X
j=1

 j�t�j + �t

with �t � iid(0; �2�) and
P1

j=1  
2
j <1; agrees with both (4) and (5).

2.2 Model speci�cation and estimation

The form of the SM-AR model has to be determined from the data. This
implies selecting p and q; which will be done by using statistical inference.
There is no natural order in which the choice is made. Priority may be given
to selecting q �rst if the emphasis lies on specifying a model with a shifting
mean. For example, if one is modelling the developments in the 1980�s and
wants to proxy the unobservable tendencies by time instead of including them
in the autoregressive component of the model, one may want to select q �rst.
Some techniques of modelling structural change by breaks use an analogous
order: the break-points are determined �rst, and the dynamic structure of the
regimes thereafter. The decision is left to the model builder. Nevertheless,
when q is selected �rst, one may use a heteroskedasticity-autocorrelation con-
sistent (HAC) estimator for the covariance matrix of the estimators through-
out the selection process and thus account for the fact that there is autore-
gressive structure around the mean. This is the case in the applications of
Section 3.
In this work we apply a procedure for selecting q that González and

Teräsvirta (2008) call QuickShift. It has two useful properties. First, it
transforms the model selection problem into a problem of selecting variables,
which simpli�es the computations. Second, over�tting is avoided. QuickShift
is a modi�cation of QuickNet, a recent method White (2006) developed for
building and estimating neural network models.
The user of QuickNet �rst �xes the maximum number of �hidden units�,

corresponding to our transition functions, and selects the units from a large
set of predetermined candidate functions. The same is true for QuickShift.
The maximum number of transition functions �q can be set to equal any value
such that the model can be estimated, given the sample size. In this work,
�q = 10: The set of candidate functions is de�ned by a �xed grid for 
 and
c. In our applications, the grid will be de�ned as �N = f(�N
 � CNc)g
with �N
 = f
s : 
s = �
s�1; s = 1; : : : ; N
; � 2 (0; 1)g and CNc = fcs :
cs = cs�1 + (1=Nc); s = 1; : : : ; Ncg. The starting-values are 
0 = 0:01 and
c0 = 0:01. The �nal values are 
N = 30 and cN = 0:99; and, furthermore

4



Nc = 100 and N
 = 100. This de�nes a set of 10000 di¤erent transition
functions. Since 
 is not a scale-free parameter, it is divided by the �standard
deviation�of t=T when constructing the grid. The idea behind all this is to
transform the nonlinear model selection and estimation problem into a linear
one.
Given �q and �N , QuickShift consists of the following steps:

1. Estimate model (1) assuming �(t) = �0, save the residuals "̂t;0.

2. After selecting q � 1 transitions, q > 1, choose the transition function
that in absolute terms has the largest correlation with "̂t;q�1 that is, let

(
̂; ĉ)q = argmax(
s;cs)2�N [r(g(
s; cs; t=T ); "̂q�1;t)]
2

where r(g(
s; cs; t=T ); "̂q�1;t) is the sample correlation between g(
s; cs;
t=T ) and

"̂q�1;t = yt � �̂0 �
q�1X
i=1

�̂ig(
̂i; ĉi; t=T )�
pX
j=1

b�jyt�j:
Test the model with q � 1 transitions against its counterpart with q
transitions; for details see González and Teräsvirta (2008). If the null
hypothesis is rejected, proceed to Step 3. In order to have the overall
signi�cance level of the sequence under control as well as to favour
parsimony, the signi�cance level �q of an individual test is gradually
decreased such that �q = ��q�1; q = 1; 2; :::; where 0 < � < 1. The
user determines �0 and �:

3. Given (
̂; ĉ)q, obtain the estimates (�̂0; : : : ; �̂q; b�1; : : : ; b�q)0 by ordinary
least squares. Go back to Step 2.

4. If every null hypothesis is rejected, stop at q = �q: The choice of �q; the
maximum number of transitions, is controlled by the user and depends
on the modelling problem at hand.

The test used for selecting q is the Taylor expansion based test by Lin
and Teräsvirta (1994). Other choices, such as the Neural Network test by
Lee, White and Granger (1993), are possible, and one can also apply model
selection criteria to this selection problem. In the simulations reported in
González and Teräsvirta (2008), the model selection criteria they investigated
performed less well than the sequential tests and will not be used here.
Full maximum likelihood estimation of parameters of the SM-AR model

including 
i and ci; i = 1; : : : ; q; may not be necessary, because QuickShift
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in general provides good approximations to maximum likelihood estimates
when the grid is su¢ ciently dense. Nevertheless, if one wants to continue,
a derivative-based algorithm with a short initial step-length should thus be
su¢ cient to maximize the log-likelihood. Should there be numerical prob-
lems, however, they may be solved by applying a global optimization algo-
rithm such as simulated annealing (with a rather low initial temperature)
or a genetic algorithm and using the vector of parameters (
 0; c0)0; where

 = (
1; : : : ; 
q)

0 and c = (c1; : : : ; cq)
0 are selected by QuickShift, as initial

values.
The transition functions g(
i; ci; t=T ) are Cesàro summable as

0 < lim
T!1

(1=T )
TX
t=1

g(
i; ci; t=T ) < 1

and the same is true for their squares. Furthermore, the sequences fg(
i; ci;
t=T )yt�jg; j = 1; :::; p; are Cesàro summable since the roots of the lag polyno-
mial 1�

Pp
j=1 �jL

j lie outside the unit circle. It follows, see Davidson (2000,
Section 7.2) that the maximum likelihood estimators of the parameters of
(1) with (2) and (3) are consistent and asymptotically normal.
This approach may be compared to �ltering. In some cases �ltering a

trend component from a series using a �lter such as the one by Leser (1961)
(often called the Hodrick-Prescott �lter), may lead to results similar to ones
obtained by modelling the shifting mean using QuickShift. An essential dif-
ference between the �ltering and our approach is, however, that the latter is
completely parametric, and modelling the shifting mean and the dynamics
around it can be done simultaneously. Another di¤erence is that, contrary to
extrapolating �ltered series, forecasting with the SM-AR model is a straight-
forward exercise. It should be pointed out, however, that the SM-AR model
is not a feasible tool for very short-term forecasting because of its lack of
adaptability. It is, however, well-suited for medium-term forecasting when
extraneous information, for example in the form of a central bank in�ation
target, is available. This will be discussed in Section 4.1.

2.3 Other approaches

The SM-AR model is an example of a time-varying parameter model, but
there are others. For example, one may assume that parameter variation is
stochastic; for various types of the stochastic-parameter model see Teräsvirta,
Tjøstheim and Granger (2009, Sections 3.10�11). Recently, Stock and Wat-
son (2007) characterised the US in�ation with a model based on decomposing
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the in�ation series into two stochastic unobserved components. With con-
stant parameters, the model is simply an ARIMA(0,1,1) model. Parameter
variation is introduced by letting the variances of the two unobserved com-
ponents be nonconstant over time. They are assumed to follow a stochastic
volatility model, that is, their logarithms are generated by a �rst-order au-
toregressive process, which in this case is a pure random walk. The �rst
one of the two stochastic unobserved components represents the �trend�or
the gradually shifting component of in�ation, whereas the second contains all
short-run �uctuations.5 In the SM-ARmodel the shift component of in�ation
is deterministic and there is short-run random variation around it.

3 Modelling gradual shifts in in�ation

3.1 Data

The series representing euro area in�ation is the seasonally adjusted monthly
Harmonised Index of Consumer Prices (HICP). We also estimate SM-AR
models for the monthly CPI in�ation for the UK and the US based on
monthly year-on-year in�ation series. What makes modelling and forecasting
in�ation of the euro area and the UK particurarly interesting is the fact that
the European Central Bank (ECB) provides an explicit formulation for its
aim of price stability, and the Bank of England is one of the in�ation tar-
geting central banks, see Section 5. The time series for the euro area covers
the period from 1981(1) to 2008(5). It consists of annual di¤erences of the
monthly, seasonally adjusted and backdated Harmonised Index of Consumer
Prices, in which �xed euro conversion rates have been used as weights when
backdating. The availability of aggregated backdata for the euro area and the
launch of the European Monetary System in 1979 determine the beginning
of the series. Both the UK and the US year-on-year in�ation series begin
1980(1) and end 2008(2). They comprise annual di¤erences of the monthly
Consumer Price Index (CPI). The euro area series is provided by the ECB
and the other two by OECD.
It should be noted that in December 2003 the Bank of England changed

the series according to which the in�ation target is de�ned. The current
target is 2% year-on-year measured by the CPI (formerly known as the Har-
monised Index of Consumer Prices). As already mentioned, this is the series
we shall use here.

5Similar ideas of allowing for a shifting trend in�ation process modelled as a driftless
random walk without or with stochastic volatility in parameter innovations can be found
in Cogley and Sbordone (2006) and Cogley, Primiceri and Sargent (2008).
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Figure 1: The Euro area in�ation rate 1980(1) - 2008(5) (solid curve) and
the shifting mean from the SM-AR model (6) (dashed curve)

3.2 Euro area in�ation

The euro area in�ation series 1981(1)�2008(5) can be found in Figure 1 (the
solid curve). In selecting the number of transitions, the original signi�cance
level �0 = 0:5; and the remaining ones equal �q = 0:5�q�1; q � 1: Assuming
p = 0 in (1) ; QuickShift and parameter estimation yield the following result:

b� (t) = 10:55
(0:099)

� 8:59
(0:15)

(1 + expf�7:54
(�)
(t=T � 0:12

(�)
)g)�1

� 2:29
(0:092)

(1 + expf�17:3
(�)
(t=T � 0:54

(�)
)g)�1

+ 1:71
(0:10)

(1 + expf�30
(�)
(t=T � 0:29

(�)
)g)�1

+ 0:85
(0:087)

(1 + expf�30
(�)
(t=T � 0:72

(�)
)g)�1

(6)

The standard deviation estimates are heteroskedasticity-autoregression ro-
bust ones. Since 
i and ci; i = 1; :::; 5; are �estimated�by QuickShift, no
standard deviation estimates are attached to their estimates. The maximum
number of 
 in the grid equals 30, and this limit is reached twice. The es-
timated switching mean also appears in Figure 1 (the dashed curve). The
transitions in (6) appear in the order they are selected by QuickShift. The
�rst transition describes the prolonged decrease in in�ation in the �rst half of
the 1980s: note the negative estimate b�1 = �8:59: The second one accounts
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Figure 2: The UK in�ation rate 1980(1) - 2008(2) (solid curve) and the
shifting mean from the SM-AR model (7) (dashed curve)

for another downturn in the mid-1990s, whereas the third one describes the
increase at the end of the 1980s (b�3 = +1:71). The increase following the
introduction of the euro is captured by the fourth transition. The very recent
increase in in�ation does not a¤ect the estimate of �(t) as there has not been
enough information in the time series about the character of the shift.
We also estimate a linear AR(2) model for the euro area series. It has

the form

yEAt = 5:32
(2:77)

+ 1:23
(0:054)

yEAt�1 � 0:23
(0:054)

yEAt�2 + b"t
�̂ = 0:207

The lag order was selected by AIC. This benchmark model that has a root
very close to the unit circle will be used for forecasting in Section 5.

3.3 UK in�ation

The monthly year-on-year UK in�ation series from 1981(1) to 2008(2) is
graphed in Figure 2 together with the shifting intercept from an estimated
SM-AR model. The model has p = 0; and the shifting mean has the following
form:
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�(t) = 34:1
(0:87)

� 30:6
(1:08)

(1 + expf�5:72(t=T � 0:01)g)�1

�4:65
(0:43)

(1 + expf�30(t=T � 0:47)g)�1

+2:76
(0:44)

(1 + expf�30(t=T � 0:32)g)�1

+0:78
(0:28)

(1 + expf�30(t=T � 0:91)g)�1: (7)

As is seen from (7), four transitions are needed to characterise the shifting
mean of the UK series; see also Figure 2. The role of the �rst one is to describe
the decrease in in�ation in the 1980s. Note the low estimate of the location
parameter: bc1 = 0:01 and the high b�0 and low b�1: They are due to the fact
that less than one half of the logistic function is required to describe the steep
early decline in the in-sample shifting mean. The sum b�0 + b�1 = 3:5 is the
value of the shifting mean when the �rst transition is complete, provided that
at that time the remaining transition functions still have value zero. The next
two rather steep transitions handle the outburst in in�ation around 1990-92,
and the last one accounts for the late increase beginning 2005.
We also specify a linear AR model for the UK in�ation series using AIC

to select the maximum lag. The estimated AR(3) model has the following
form:

yUKt = 5:59
(3:04)

+ 1:17
(0:055)

yUKt�1 � 0:020
(0:085)

yUKt�2 � 0:16
(0:055)

yUKt�3 + b"t
�̂ = 0:335.

3.4 US in�ation

The monthly year-on-year US in�ation series comprises the period from
1981(1) to 2008(2), and the series is graphed in Figure 3. The series has
a structure similar to its European counterparts. The shifting mean of the
SM-AR model with p = 0 �tted to this series has the following form:

b� (t) = 11:17
(0:10)

� 8:04
(0:38)

(1 + expf�22:76
(�)

(t=T � 0:05
(�)
)g)�1

� 2:17
(0:21)

(1 + expf�22:76
(�)

(t=T � 0:43
(�)
)g)�1

+ 1:48
(0:30)

(1 + expf�30
(�)
(t=T � 0:25

(�)
)g)�1

+ 0:81
(0:19)

(1 + expf�30
(�)
(t=T � 0:88

(�)
)g)�1:

(8)
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Figure 3: The US in�ation rate 1980(1) - 2008(2) (solid curve) and the
shifting mean from the SM-AR model (7) (dashed curve)

Even this model contains four transitions. The �rst one accounts for the rapid
decrease of the in�ation rate in the early 1980s, and, as Figure 3 also shows,
the mean is shifting upwards again in the late 1980s. The next downward
shift occurs around 1992�1993. After that the mean remains constant until
around 2004 when the in�ation rate again increases. Overall, the shifting
mean is quite similar to the one estimated for the UK in�ation series. The
locations of the four transitions match each other quite well. The �nal level
of the mean according to the equation (8) equals 3:25%.

4 Forecasting in�ation with the SM-ARmodel
using both in-sample and exogenous infor-
mation

4.1 Penalised likelihood

The SM-AR model may not only be used for describing series that are as-
sumed to be strongly in�uenced by unobserved or insu¢ ciently observed
events. It may also be used for forecasting. Nevertheless, it may su¤er from
the same problem as autoregressive models with a linear trend, namely, that
extrapolating the deterministic component may not yield satisfactory short-
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term forecasts. However, the SM-AR model o¤ers an excellent possibility of
making use of exogenous information in forecasting, such as in�ation targets
of central banks or in�ation expectations of economic agents. Since central
banks with an in�ation target aim at keeping in�ation close to the target
value, the target contains information that should be incorporated, if not
in short-term, at least in medium-term forecasts. For very short-term fore-
casts, more �exible models than the SM-AR model may be preferred; see,
for example, Clements and Hendry (1999, Chapter 7) for discussion.
Our idea may be characterised as follows. Assuming T observations, the

log-likelihood function of the SM-AR model has the following general form:

lnLT =

TX
t=1

`t(�; ytjFt�1) (9)

where `t(�; ytjFt�1); is the log-likelihood for observation t; � is the vector
of parameters, and Ft�1 is the �-algebra de�ned by the past information up
until t� 1: Suppose the annual in�ation target of the central bank is x and
that the observations are year-on-year di¤erences of the logarithmic price
level pt, yt = pt � pt�12: Assume that one estimates the SM-AR model from
data until time T and wants to forecast � months ahead from T , for example
� = 24 or 36. Ideally, from the point of view of the bank, yT+� = x: Following
the original suggestion of Good and Gaskins (1971), this target may now be
incorporated into the forecast by penalising the likelihood. The penalised
log-likelihood equals

lnLpenT =
TX
t=1

`t(�; ytjFt�1)� �f�(T + �)� (1�
pX
j=1

�j)xg2 (10)

where � is the forecast horizon of interest. The size of the penalty is de-
termined by the nonnegative multiplier �: When � ! 1; �(T + �) !
(1 �

Pp
j �j)x; that is, ET+�yT+� ! x: The smoothly shifting mean, �(t);

will thus equal the target at time T + � : More generally, depending on �;
the forecast which is the conditional mean of yT+� at time T + � ; lies in a
neighbourhood of the target x:
The role of the penalty component is twofold. First, it is useful in pre-

venting the extrapolated conditional mean from settling on values considered
unrealistic. Second, as already mentioned, the penalised log-likelihood makes
it possible to combine exogenous information about future in�ation with what
the model suggests. This bears some resemblance to the recent approach by
Manganelli (2006). The di¤erence is, however, that in his approach, the ex-
ogenous forecast is retained unless there is enough information in the data
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to abandon it. In our approach, the sample information always modi�es the
exogenous forecast or information in the form of the target, unless � ! 1
in (10).
It should be noted that if the SM-AR model is used simply for describing

the in-sample behaviour of in�ation, no penalty on the log-likelihood should
be imposed. There is no contradiction, because time series models can be
used for both data description and forecasting, and the estimated models for
these two purposes need not be identical.
As already mentioned, it is assumed in equation (10) that yt is directly the

year-on-year in�ation rate to be forecast, yt = pt� pt�12: One may, however,
model the monthly in�ation rate ut = pt�pt�1 and forecast the year-on-year
in�ation from the monthly SM-AR model. In this case, yt =

P11
s=0 ut�s and,

accordingly, deviations of
P11

s=0 ET+��suT+��s from x are being penalized.
Thus,

lnLpenT =
TX
t=1

`t(�; ytjFt�1)� �f
11X
s=0

�(T + � � s)� (1�
pX
j=1

�j)xg2:

In this paper, however, we only report results obtained using models for the
year-on-year in�ation series. Since the Federal Reserve does not have an
in�ation target, we exclude the US in�ation from the forecasting exercise.
We include the euro area, as the ECB provides an explicit formulation for
its aim of price stability, and the UK since the Bank of England is one of the
in�ation targeting central banks.
It may be argued that the ECB�s de�nition of price stability (the year-on-

year in�ation �below but close to 2%�) is a target range rather than a point
target. The penalised likelihood method still applies, however. In that case x
may be taken to represent the mid-point of the range and that the size of the
penalty is slightly larger than would be the case if x were a straightforward
target. Strictly speaking, this idea is valid only when upward deviations from
the range are equally undesirable as downward ones. If this is not the case,
one has to construct asymmetric penalty functions. Note that in (10) the loss
function of the forecaster is assumed to be quadratic. Other loss functions are
possible as well. For example, Boinet and Martin (2005) and Orphanides and
Wieland (2000), among others, consider nonlinear loss functions that they
argue are applicable to central banks with an in�ation target. According to
the authors, these functions resemble a target zone function in that they are
�at in a neighbourhood of the target. Note, however, that nonlinear loss
functions lead to numerical estimation, as the estimation problem no longer
has an analytic solution.
It may be mentioned that information about the target could also be
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used in the analysis by applying Bayesian techniques. One would then have
to choose a prior distribution for the target instead of choosing a value for the
penalty term �: Nevertheless, in the case of the SM-AR model the classical
framework is well suited for the purpose of incorporating this information in
the forecast.

4.2 Modi�cation of penalised likelihood

We are going to make use of the following slight modi�cation of the penalised
likelihood:

lnLpenT =
TX
t=1

`t(�; ytjFt�1)� �
T+�X
t=T+1

�T+��tf�(T + �)� (1�
pX
j=1

�j)xg2

where 0 < � < 1: The penalty now involves all points of time from T + 1
to T + � : The weights are geometrically decaying (other weighting schemes
could be possible as well) from T + � backwards. The geometrically (into
the past) declining weights represent the idea that the forecast in�ation path
will gradually approach the target. But then, a rapid decay, � = 0:8; say,
would give negligible weights to most observations in the penalty component
preceding T+� ; unless � is very large. Even then, the �rst values following T
would be negligible weights compared to the weight of the observation T + � :
In that case, the results would be similar to the ones obtained by maximising
(10).
This modi�cation may also be written as a standard weighted log-likelihood

function as follows:

lnLpenT = c� f(T � p)=2g ln�2 � (1=2�2)
TX

t=p+1

(yt � �(t)�
pX
j=1

�jyt�j)
2

��(1=2�2)
T+�X
t=T+1

�T+��t(y�t � �(t)�
pX
j=1

�jy
�
t�j)

2 (11)

where
y�T+k = (1� k=�)yT + (k=�)(1� k=�)x; k = 1; :::; � (12)

for t = T + 1; :::; T + � : The arti�cial observations (12) are thus determined
by linear interpolation between the last observation and the target. The
forecast of yT+� equals

estE(yT+� jx) = (1�
pX
j=1

b�jLj)�1b�(T + �):
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4.2.1 Parameter constancy test

When the time series are extended to contain the arti�cial observations
y�T+1; :::; y

�
T+� ; the question is how to modify the linearity test. This can

be done by using the weighted auxiliary regressions whose weights originate
from equation (11). This is equivalent to assuming that there is heteroskedas-
ticity of known form in the errors, and that it is accounted for in the test.
The auxiliary regression based on the third-order Taylor expansion has the
form; see, for example, Teräsvirta (1998):

~yt = �0 + �1~t
� + �2~t

�2 + �3~t
�3 + ew0

t� + "�t (13)

~yt = yt for t = 1; :::; T ; eyt = !ty
�
t for t = T + 1; : : : ; T + � ; where !t =p

��T+��t for t = T + 1; : : : ; T + � ; and y�t is de�ned as in (12).. Finally,ewt = (~yt�1; : : : ; ~yt�p)
0. The QuickShift test sequence is carried out in the

same way as in the standard case, where the idea is merely to describe, not
to forecast, in�ation.
Another possibility is not to rerun the test sequence but rather retain the

same number of shifts as is obtained by normal modelling of observations
y1; :::; yT : In forecasting, the parameters of this model would simply be re-
estimated by penalised likelihood, and the estimated shifting mean would
then be used for forecasting. This short-cut would save computer time, but
in our simulations we have respeci�ed the model for each realisation.

4.3 Monte Carlo experiments

4.3.1 The data-generating process

In order to illustrate forecasting with the SM-AR model in the presence of
exogenous information, we conduct a small simulation experiment. The data
are generated from models with and without autoregressive structure. The
DGP has the following form:

yt = �0 +

3X
i=1

�iG(
i; ci; t=(T + �)) +w0
t�+ "t (14)

t = 1; :::; T; where (�0; �1; �2; �3) = (0:9; 0:2; 0:3;�0:4) with
P3

i=0 �i = 1. This
means that the �nal value of the shifting mean equals unity. The transition
functions are logistic functions of time as before:

G(
i; ci; t=(T + �)) = (1 + expf�
(t=T � ci)g)�1; 
i > 0 (15)

with (
i; ci), i = 1; 2; 3, given by the pairs (2; 0:3), (6; 0:5) and (4; 0:9).
Furthermore; either wt = (yt�1; yt�2)

0, and � = (0:5; 0:3)0 or � = 0 (no
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Figure 4: Estimated densities of the point forecast 36 periods ahead with
target x = 2 and various penalties, T = 120: The penalty increases from left
to right and from the �rst row to the second

autoregressive structure). In each realization, T + � observations are gen-
erated, where T is the size of the estimation sample and � the forecasting
horizon. The arti�cial observations y�T+k; k = 1; :::; � ; are de�ned as in (12).
Time is rescaled into the zero-one interval such that T + � now corresponds
to value one. Two sample sizes, T = 120; 240; are considered. The target
x = 2; 4; the forecast horizon � = 36; and the discount factor % = 0:9. The
number of replications equals 1000, and six di¤erent penalties are applied.
The quantity reported for each replication is the point forecast. The model
selection by QuickShift is performed for each replication. In these simulations,
the initial signi�cance level �0 = 0:5 and � = 0:5:

4.3.2 Results

We shall only report results of the experiment with p = 0 and x = 2 because
they already su¢ ciently illuminate the situation. The results for T = 120 are
shown in Figure 4 by the estimated density function based on the 1000 point
forecasts. As a whole, the results are quite predictable. When the penalty is
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Figure 5: Estimated densities of the point forecast 36 periods ahead with
target x = 2 and various penalties, T = 120: The penalty increases from left
to right and from the �rst row to the second

small as it is in the top-row �gures to the left, the density is bimodal. The
mode of the distribution is close to one, the �nal value of the shifting mean,
and there is a secondary peak somewhat to the right of the target. When the
penalty is increased, the peak to the left decreases and eventually disappears
as the forecasts on the average approach the target. In general, the density is
bimodal when the target and the shifting mean at the end of the sample are
su¢ ciently di¤erent from each other, and the penalty is neither very small
nor very large.
Figure 5 contains results from the same experiment with T = 240: In this

case, the sample information weighs more than previously. The density with
the smallest penalty is close to unimodal, and the peak in the vicinity of
unity disappears later than in the preceding simulation. A heavier penalty
is now needed to eliminate it.
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5 Empirical examples

5.1 Forecasting euro area in�ation

In this section we apply the SM-AR model and the penalised likelihood ap-
proach to forecasting the euro area in�ation. The European Central Bank
is aiming to achieve price stability of �below but close to 2%� in terms of
year-on-year in�ation. Following the Bank�s aim of price stability, we use
a value of 2% for the year-on-year in�ation for the medium-term horizon
when forecasting with the SM-AR model. The penalty term � determines
the weight of the external information in (10). It re�ects the forecaster�s
subjective assessment of the seriousness of the Bank and chances of success
of its policies when it comes to bringing the in�ation rate close to the target
or holding it there.
In the penalised log-likelihood (10) the penalty is a quadratic function of

the deviation from the target. This does not exactly correspond to �below
but close to 2%�but serves as an approximation. As already mentioned,
asymmetric penalty functions would be an alternative but will not be con-
sidered here. In the light of the previous discussion, however, a case could
be made for a point target value somewhat below 2%, in particular as the
penalty function is symmetric around the target.
The last observation of the euro area in�ation series is 2008(5), and the

forecast horizon equals 24 months. This means that we shall forecast the
in�ation rate in May 2010. We report the density forecast which is obtained
by parametric bootstrap as follows, see, for example, Teräsvirta (2006).

1. Specify and estimate the SM-AR model for the in�ation series using 24
arti�cial observations in addition to the sample information. Obtain
the point forecast.

2. Bootstrap the residuals of this model and generate a new set of T
observations using the estimated model. Add the arti�cial observations.
Repeat Step 1.

3. Repeat Step 2 B times.

4. Obtain the density forecast from the B point forecasts using kernel
estimation (Teräsvirta et al. 2009, Section 13.1).

The resulting forecast density for � = 1=9 (10% of the weight on the
penalty component and 90% on the sample information) and the one for � =
3=2 (60% of the weight on the penalty and 40% on the sample information)
appear in Figure 6.
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Figure 6. Density forecasts for the euro area year-on-year in�ation rate May
2010 with the 50% (de�ned by the upper bar) and 70% (lower bar) highest
density regions. Left panel: � = 1=9; right panel: � = 3=2

The �gure contains the 50%, 70% and 90% highest density regions (HDR),
for de�nition see for example Teräsvirta et al. (2009, Section 15.2). The
forecast density in the left-hand panel based on a weaker penalty is roughly
unimodal with a thick left tail. When the penalty is increased (right-hand
panel) a peak appears around the target, and the previous peak becomes less
conspicuous. When � = 1=9; only the 90% HDR contains the 2% in�ation
target. When � = 3=2; all three HDR�s do that. In that case, due to the two
distinct peaks in the density they consist of two disjoint intervals:

5.2 Forecasting UK in�ation

As already mentioned, the Bank of England has an in�ation target of 2%.
The forecast horizon is again 24 months and the last observation is 2008(2).
The density forecast for the year-on-year in�ation in February 2010 is gen-
erated in the same way as before and appears in Figure 7. The penalties are
the same as in the euro area forecast. The three horizontal lines again de�ne
the 50%, 70% and 90% HDRs. Both densities in Figure 7 are bimodal, and
the mode of the distribution exceeds the target. The 90% HDR contains the
target in both occasions, and when the penalty is high even the 70% HDR
does that. The e¤ect of increasing the penalty on the density is less here,

19



however, than it was in the euro area case. Both tails becomes thinner when
the penalty is increased, and the second largest peak becomes larger.
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Figure 7. Density forecasts for the UK year-on-year in�ation rate February
2010 with the 50% (de�ned by the highest bar), 70% (middle bar) and 90%
(lowest bar) highest density regions. Left panel: � = 1=9; right panel: � =
3=2:

6 Ex post forecasting experiment

6.1 Design of the experiment

In order to illustrate the working of our model and the modelling approach,
we conducted the following forecasting experiment. The quantity to be fore-
cast is the year-on-year in�ation rate, and the forecast horizon is 36 months.
The SM-AR model is �rst speci�ed and estimated using observations un-
til 2000(1), so the �rst forecast will be for 2003(1). An observation is then
added and the model respeci�ed and re-estimated. Respeci�cation comprises
selecting the number of transitions by QuickShift. This model is used for
forecasting February 2003. New realisations are generated by a parametric
bootstrap that involves respeci�cation and re-estimation of the model for
each of the 1000 bootstrap replications. This is the number of replications
behind each forecast density.
For comparison, we also obtain corresponding density forecasts from an

autoregressive model that is respeci�ed and re-estimated for each period.
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Note, however, that this does not imply that we could have a straightforward
comparison of the forecasting performance between twomodels. The reason is
that the forecasts from the SM-AR model depend on the central bank target
and thus on how well the central bank manages to keep the in�ation rate
in the vicinity of the target. Besides, it is clear that the forecasting period
matters as well. If the in�ation has been well under control during the period,
point forecasts from the SM-AR model are bound to be reasonably accurate,
whenever a su¢ cient weight is given to the target. In the opposite case,
forecasts from that model may not be worth very much.

6.2 Forecasting euro area in�ation

We begin by considering the euro area in�ation, for which we have ex post
density forecasts available for the period 2002(1)�2008(5). The results appear
in Figure 8.
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Figure 8. 36-month density forecasts for the monthly year-on-year euro area
in�ation, 2002(1) �2008(5). Left panel: � = 1=9; right panel: � = 3=2: Solid
line: The in�ation rate, Dark shaded area: 50% highest density regions,
lighter shaded area: 70% highest density regions, light shaded area: 90%
highest density regions. Dashed curve, long dashes: Forecasts from the au-
toregressive model. Dashed curves with short dashes de�ne the 90% interval
forecast from the autoregressive model

It is seen that the interval forecasts from the autoregressive model are con-
siderably wider than the ones from the SM-AR model. This can be expected,
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because the latter model makes use of the target and deviations from it are
penalised. The point forecasts from the linear AR model are slightly upward
biased. This is due to the fact that the mean of the series is higher than the
level of in�ation during the months to be forecast. Since the forecast horizon
is 36 months, the forecasts tend to lie close to the estimated unconditional
mean of the process. This requires, however, that the estimated AR model
is stationary in the mean.
The HDRs for the forecasts from the SM-AR model are wider for the

higher than for the lower �: This may seem surprising at �rst, but Figure 8
shows how the forecasts for large parts of the out-of-sample forecasting period
are pulled towards the target from below when the penalty increases. This
causes the thick right tail the in the right-hand panel while the mode of the
densities is hardly a¤ected. Also note how the densities in the beginning of
the forecasting period move towards the target from above when the penalty
is increased.

6.3 Forecasting UK in�ation

The results for forecasting the UK monthly year-on-year in�ation for the
period 2003(1)�2008(2) are illustrated in Figure 9. In the left panel of the
�gure (� = 1=9), density forecasts from the SM-AR models are unimodal.
The mode of the forecast density �rst lies below the target but moves closer
to it at the end of the period. In the right panel (� = 3=2), about the �rst
two thirds of the time the densities are bimodal, and the modes lie close to
the target. For the last third of the period have a single pronounced peak
with the mode again below the target. There is a long left tail that covers the
actual observations, but in general the point forecasts exceed the observed
in�ation early on and lie below it towards the end of the period.
The point forecasts from the autoregressive model are systematically up-

ward biased due to the fact that the unconditional mean of the UK in�ation
process is higher than the in�ation rates after 2001. In this situation, fore-
casting 24 months ahead with the autoregressive model is not bound to pro-
vide very accurate point forecasts. The 90% interval forecasts do contain the
realised in�ation but the intervals are quite wide. This is due to the fact that
the lag polynomial of the autoregressive model in this case contains a root
near the unit circle while the residual standard deviation of the estimated
models are not small.
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Figure 9. 36-month density forecasts for the monthly year-on-year UK in�a-
tion, 2003(1) �2008(2). Left panel: � = 1=9; right panel: � = 3=2: Solid line:
The in�ation rate, Dark shaded area: 50% highest density regions, lighter
shaded area: 70% highest density regions, light shaded area: 99% highest
density regions. Dashed curve, long dashes: Forecasts from the autoregres-
sive model. Dashed curves with short dashes de�ne the 90% interval forecast
from the autoregressive model

Table 1 contains the root mean square forecast error (RMSFE) of the
point forecasts from the SM-AR model with four penalties for both the euro
area and the UK forecasts. It also contains the RMSFE of the forecasts from
the linear AR model. For the euro area in�ation forecasts, the size of the
penalty does not make a big di¤erence. The upward bias in the forecasts from
the linear AR model shows in the RMSFE which is larger for that model than
for the SM-AR model. Since the target also lies below the average in�ation,
the latter model yields more accurate forecasts than the former.
In relative terms, the improvement in forecast accuracy when one moves

from the linear AR to the SM-AR model remains practically the same when
the UK in�ation forecasts are concerned. The only di¤erence is that the
size of the penalty now matters more than in the euro area case. This is
due to the fact that the change in the forecast densities as a function of the
penalty is larger in the UK than in the euro area forecasts. Note, however,
that already a light penalty considerably improves forecasts compared to the
forecasts from the linear AR model. In the UK case, the upward bias of the
forecasts from the linear model appears larger than the bias in the euro area
forecasts. Thus already giving at least some weight to the target is bene�cial,
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�
Country or area 1=9 3=7 3=2 9 AR
Euro area 0:204 0:176 0:152 0:160 0:443
UK 0:590 0:493 0:174 0:301 1:56

Table 1: The root mean square error of forecasts of the Euro area and the
UK in�ation from the SM-AR model with various penalties and the linear
AR model. Forecasting period: Euro area, 2003(1)�2008(5); UK, 2003(1)�
2008(2)

but � = 3=2 (60% of the total weight on the penalty term) is the best
of the four alternatives considered. This result, however, is speci�c for the
forecasting period, as the linear AR model then systematically overpredicted.
Nevetheless, it may be pointed out that for the euro area in particular, the
chosen forecasting period is a very relevant one as it begins shortly after the
creation of the ECB and the introduction of the euro.

7 Conclusions

In this paper we employ a �exible nonstationary autoregressive model which
is called the shifting-mean autoregressive model. It is, among other things,
suitable for describing characteristic features in in�ation series as well as for
medium-term forecasting. An advantage of the shifting-mean autoregressive
model is that it makes it possible to combine the sample and the a priori
information about the quantity to be forecast to form a single forecast. In
forecasting in�ation, the central bank in�ation target, if it exists, is a natural
example of such prior information. This is done simply by using the penalised
likelihood in the estimation of the parameters of the model.
The target is an example of a piece of deterministic prior information.

It may also be possible to handle stochastic prior information, for example
another point forecast. If the uncertainty of this forecast is assumed to be
known, that is, if the forecast is a draw from a known probability distribution,
this uncertainty can be taken into account when generating density forecasts
with the technique described in the paper. That has not, however, been
done here, as the focus has been on having the central bank in�ation target
or other deterministic exogenous information as prior information.
There is also the possibility of making the model multivariate by including

stochastic regressors. They may appear linearly in the usual way or even
nonlinearly as arguments of logistic functions. In the latter case they could be
included in the pool from which QuickShift selects the appropriate variables
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for the model. Such an extension is left for future work.
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