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Abstract

In this paper we analyse the impact of non-stationary volatility on the recently devel-
oped unit root tests which allow for a possible break in trend occurring at an unknown
point in the sample, considered in Harris, Harvey, Leybourne and Taylor (2008) [HHLT].
HHLT�s analysis hinges on a new break fraction estimator which, when a break in trend
occurs, is consistent for the true break fraction at rate Op(T�1). Unlike other available
estimators, however, when there is no trend break HHLT�s estimator converges to zero
at rate Op(T�1=2). In their analysis HHLT assume the shocks to follow a linear process
driven by IID innovations. Our �rst contribution is to show that HHLT�s break fraction
estimator retains the same consistency properties as demonstrated by HHLT for the IID
case when the innovations display non-stationary behaviour of a quite general form, in-
cluding, for example, the case of a single break in the volatility of the innovations which
may or may not occur at the same time as a break in trend. However, as we subsequently
demonstrate, the limiting null distribution of unit root statistics based around this es-
timator are not pivotal in the presence of non-stationary volatility. Associated Monte
Carlo evidence is presented to quantify the impact of various models of non-stationary
volatility on both the asymptotic and �nite sample behaviour of such tests. A solution
to the identi�ed inference problem is then provided by considering wild bootstrap-based
implementations of the HHLT tests, using the trend break estimator from the original
sample data. The proposed bootstrap method does not require the practitioner to specify
a parametric model for volatility, and is shown to perform very well in practice across a
range of models.
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1 Introduction

In a recent paper Harris, Harvey, Leybourne and Taylor (2008) [HHLT] discuss solutions
to a long-standing inference problem in time series econometrics. The problem in question
dates back to the pioneering work of Perron (1989) who developed augmented Dickey-Fuller
[ADF] type unit root tests which allow for a break in trend. Such breaks are considered to
be prevalent in macroeconomic series; see, inter alia, Stock and Watson (1996,1999,2005) and
Perron and Zhu (2005), and it is now regular applied practice to allow for the possibility of
deterministic structural change in the trend function when testing for a unit root.

In his original work Perron (1989) treated the location of the potential trend break as
known, a priori. This assumption has attracted signi�cant criticism (see, for example, Chris-
tiano, 1992). In response to this criticism, subsequent approaches have focused on the case
where the (possible) break occurs at an unknown point in the sample which needs to be esti-
mated in some way; see, inter alia, Zivot and Andrews (1992), Banerjee et al. (1992), Perron
(1997) and Perron and Rodríguez (2003), the last of which considers tests based on both the
ADF principle and the more recent autocorrelation-robust M -type tests of Perron and Ng
(1996), Stock (1999) and Ng and Perron (2001). However, while the tests proposed in Perron
(1989) are (exact) invariant to the magnitude of the trend break (provided any trend break
does indeed occur at the assumed date), this is not true of these later tests. Tests of the type
proposed in Zivot and Andrews (1992), which base inference on the minimum of a sequence
of ADF statistics calculated for all possible break dates within a given range, are particularly
problematic owing to the fact that the location of the minimum of the ADF statistics is not
a consistent estimator of the true break fraction when a break occurs. For this reason it is
necessary with these tests to make the infeasible assumption that no break in trend occurs
under the unit root null hypothesis, such that tests with pivotal limiting null distributions
can be obtained. Even with that assumption these tests have the undesirable property that
their power functions depend on the magnitude of the trend break.

The tests developed in Perron (1997) and Perron and Rodríguez (2003) are explicitly based
around an estimator of the unknown break fraction. Provided this estimator is consistent at a
su¢ ciently fast rate (the rate in question must be faster than Op(T�1=2)) then, where a break
occurs, the resulting tests are asymptotically equivalent to the corresponding known break
fraction test. In the case of the tests of Perron and Rodríguez (2003), which are based on
quasi di¤erence (QD) detrending, this entails that the resulting tests are near asymptotically
e¢ cient1 where a break occurs. However, it is the behaviour of the breakpoint estimators
used in these approaches when no break occurs which causes the inference problem. Here
the tests proposed in Perron and Rodríguez (2003) are not e¢ cient, and the e¢ ciency losses
can be quite substantial relative to the e¢ cient tests of Elliott et al. (1996) [ERS], as HHLT
demonstrate for the ADF-type statistic. This occurs because, in the absence of a trend break,
the break point estimator they propose has a non-degenerate limit distribution over the range
of possible break dates from which it is calculated and, as such, will spuriously indicate the

1Although not formally e¢ cient, in the limit these tests lie arbitrarily close to the asymptotic Gaussian

local power envelope for this testing problem and, hence, with a small abuse of language we shall refer to tests

with this property as �e¢ cient�throughout the remainder of this paper.
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presence of an unnecessary trend break.
In practice, since it will be unknown as to whether a trend break occurs or not, this

di¤ering behaviour of the break fraction estimator also renders the true asymptotic critical
values of the aforementioned tests dependent on whether a break occurs or not. For these
tests to be feasible one faces a choice. Either, as in Perron and Rodríguez (2003), to use
conservative critical values corresponding to the case where it is assumed that no break is
present, with an associated loss of e¢ ciency in cases where a break is present (and, indeed,
where it is not, as noted above), or to use critical values which assume that a break is present
but run the risk of over-sizing in the unit root tests when a break is in fact not present
(coupled with the loss in e¢ ciency which occurs when there is no break).

HHLT rectify these drawbacks with the existing tests by proposing a new break fraction
estimator. This estimator is a data-dependent modi�cation of the estimator of the break
fraction obtained by using an OLS estimator on the �rst di¤erences of the data (hereafter,
the �rst di¤erence estimator). This estimator possesses two key properties. First, when a
break actually occurs, the estimator collapses to the �rst di¤erence estimator, which converges
to the true break fraction at rate Op(T�1), allowing the Perron and Rodríguez (2003) �xed
break fraction critical values to be applied in the limit. Second, and crucially, when no break
occurs, the estimator collapses to zero at rate Op(T�1=2) which is su¢ ciently fast such that
the e¢ cient ERS test with only a linear trend may be applied using the critical values given
in ERS. Alternative approaches to this problem, based on pre-testing for a break in trend,
have also been proposed in Kim and Perron (2006) and Carrion-i-Silvestre et al. (2007).

While the unit root tests discussed above allow for the possibility of breaks in the de-
terministic trend function of the series under consideration, signi�cantly they do not allow
for time-varying behaviour in the unconditional volatility of the driving shocks. This is a
considerable drawback with these procedures especially bearing in mind the tendency (see,
inter alia, the discussions in Busetti and Taylor, 2003, and Sensier and van Dijk, 2004) for
series which display breaks in trend to display simultaneous breaks in unconditional volatility.
Indeed, there is a large body of recent applied work suggesting non-constant behaviour, in
particular a general decline, in the unconditional volatility of the shocks driving macroeco-
nomic time-series over the past twenty years or so is a relatively common phenomenon; see, in
particular the literature review in Cavaliere and Taylor (2008). As an example, and control-
ling for the possibility of level and/or trend breaks, Sensier and van Dijk (2004) report that
over 80% of the real and price variables in the Stock and Watson (1999) data-set reject the
null of constant innovation variance against the alternative of a one-o¤ change in variance.

These �ndings have helped stimulate a research agenda analysing the e¤ects of non-
constant (or non-stationary) volatility on univariate unit root and stationarity tests; see,
inter alia, Kim, Leybourne and Newbold (2002), Busetti and Taylor (2003), Cavaliere (2004),
and Cavaliere and Taylor (2005,2007,2008). These authors show that standard unit root and
stationarity tests based on the assumption of constant unconditional volatility can display
signi�cant size distortions in the presence of non-stationary volatility. Cavaliere and Taylor
(2008) develop wild bootstrap-based implementations of standard unit root tests which are
shown to yield pivotal inference in the presence of non-stationary volatility.

In this paper we analyse the impact of non-stationary volatility in the shocks on the
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ADF-type trend break unit root test of HHLT together with analogous tests based on the
M testing principle. We allow for innovation processes whose unconditional variances evolve
over time according to a quite general mechanism which allows, for example, single and
multiple abrupt variance breaks, smooth transition variance breaks, and trending variances.
We demonstrate that although the large sample properties of HHLT�s modi�ed break fraction
estimator are unaltered from those which apply in the homoskedastic case in both the trend
break and no trend break environments, the asymptotic distributions of the HHLT statistic
and the corresponding M statistics are not pivotal and in both trend break and no trend
break environments depend on the structure of the underlying volatility process. Simulation
results for a one-time change in volatility suggest that this can have a large impact on both
the size and power properties of the tests both in large and small samples.

In order to solve the identi�ed inference problem, at least within the class of non-stationary
volatility processes considered, we propose an implementation of the ADF-type test of HHLT
and the corresponding M -type tests using the wild bootstrap principle. The wild bootstrap
replicates in the re-sampled data the pattern of heteroskedasticity present in the original
shocks, and has been shown to be highly e¤ective in the case of standard unit root tests
which allow for either a constant or linear trend; see Cavaliere and Taylor (2008). As we
shall demonstrate, the wild bootstrap implementations of the HHLT-type trend break unit
root statistics share the same limiting null distribution as the original statistics under the class
of non-stationary volatility considered, with this result holding in both the trend break and
no trend break environments. Consequently, inference that is asymptotically robust under
the unit root null hypothesis to non-stationary volatility in the shocks can be performed
without the need to specify any parametric model of volatility and regardless of whether a
trend break is present or not.

The paper is organised as follows. We outline our reference heteroskedastic trend break
model in section 2. In section 3 we �rst review the modi�ed break fraction estimator and
associated ADF-type test developed for the homoskedastic case in HHLT, and also extend
their analysis to the corresponding tests based on the M testing principle. We then demon-
strate that HHLT�s modi�ed break fraction estimator retains the same rates of consistency
in both the trend break and no trend break cases in the presence of non-stationary volatility
as were stated in HHLT for the case of constant unconditional volatility. We also show that
in both the trend break and no trend break cases, the unit root test proposed in HHLT,
based around this modi�ed estimator, has a non-pivotal limiting distribution with its form
depending on the underlying volatility process. The same is shown to be true of the corre-
sponding M -type tests. The impact of various models of non-stationary volatility - including
the case where a one-time break in volatility occurs simultaneously with a break in trend -
on the asymptotic properties of these statistics is explored numerically through Monte Carlo
simulations. In section 4 we propose a wild bootstrap-based implementation of the HHLT
procedure. We demonstrate that the wild bootstrap analogue of the HHLT statistic repli-
cates the �rst-order asymptotic null distribution of the standard HHLT statistic, such that
the corresponding bootstrap tests are asymptotically valid, in the presence of non-stationary
volatility. The same is shown to be true for the corresponding M -type tests. Simulation evi-
dence presented in Section 5 suggests that the proposed bootstrap tests perform well in small
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samples. Concluding remarks are o¤ered in section 6. Proofs are collected in an Appendix.
In what follows we use the following notation: �b�c�denotes the integer part of its argu-

ment; �w!�denotes weak convergence, �p!�convergence in probability, and �w!p�weak con-
vergence in probability, in each case as the sample size diverges to positive in�nity; �1(:)�
denotes the indicator function, �x := y�(�x =: y�) indicates that x is de�ned by y (y is de�ned
by x), and x a

= y indicates that the objects x and y are asymptotically equivalent; �nally,
C := C[0; 1] is used to denote the space of continuous processes on [0; 1], and D := D[0; 1]

the space of right continuous with left limit (càdlàg) processes on [0; 1].

2 The Heteroskedastic Trend Break Model

We consider the time series process fytg generated according to the following model,

yt = �0 + �0t+ 0DTt(�0) + ut; t = 1; :::; T; (1)

ut = �Tut�1 + "t; t = 2; :::; T; (2)

"t = C(L)et =
1P
j=0

cjet�j (3)

et = �tzt (4)

and where the initial condition in (2) is assumed to satisfy T�1=2u1
p! 0. The observation

equation in (1) allows for the possibility of a trend break through the indicator variable
DTt(�0) := 1(t > b�0T c)(t�b�0T c). The potential trend break point is given by b�0T c, with
associated break fraction �0 and trend break magnitude 0, the latter assumed to be �xed.
We assume �0 is unknown but satis�es �0 2 �, where � = [�L; �U ] with 0 < �L < �U < 1; the
fractions �L and �U representing trimming parameters, below and above which, respectively,
no break is deemed allowable to occur. In (1), a break in trend occurs at time b�0T c when
0 6= 0, while if 0 = 0, no break in trend occurs. One might also consider a second model
which allows for a simultaneous break in the level of the process at time b�0T c in the model
in (1)-(4). However, as argued by Perron and Rodríguez (2003, pp.2,4), we need not analyze
this case separately because a change in intercept is a special case of a slowly evolving
deterministic component (see Condition B of ERS, p.816) and, consequently, does not alter
any of the large sample results presented in this paper.

Within (2), we focus on the near-integrated autoregressive model, Hc : �T := 1�c=T with
0 � c < 1, and we will be concerned with testing the unit root null hypothesis, H0 : c = 0,
against local alternatives, Hc where c > 0. The following set of assumptions will also be
taken to hold on (1)-(4).

Assumption A: A1. The lag polynomial satis�es C (z) 6= 0 for all jzj � 1, and
P1
j=0 jjcj j <1;

A2. zt � IID(0; 1) with Ejztjr < K <1 for some r � 4; A3. The volatility term �t satis�es
�bsT c = ! (s) for all s 2 [0; 1], where ! (�) 2 D is non-stochastic and strictly positive. For
t < 0, �t � �� <1.

Remark 2.1 Notice that f"tg in (3) is a linear process in fetg, the latter formed as the product
of two components, fztg and f�tg. Since, under Assumption A2, fztg is IID, conditionally
on �t, the error term et has mean zero and time-varying variance �2t . �
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Assumption A coincides with the set of conditions adopted in Cavaliere and Taylor (2008).
As discussed there, Assumption A1 is standard in the unit root literature. Assumption
A2 is somewhat stronger than is often seen, since it rules out certain forms of conditional
heteroskedasticity, such as that arising from stationary GARCH models, in the errors. This
assumption is made to simplify exposition and the results stated in this paper would continue
to hold if this assumption was weakened along the lines detailed in Remark 1 of Cavaliere and
Taylor (2008,pp.46-47). The key assumption for the purposes of this paper, however, is A3,
which casts the dynamics of the innovation variance in a quite general framework, requiring
the innovation variance only to be non-stochastic, bounded and to display a countable number
of jumps. A detailed discussion of the class of variance processes allowed under A3 is given
in Cavaliere and Taylor (2004). They show that this includes the single abrupt change model
of, inter alia, Kim et al. (2002), variance processes displaying multiple volatility shifts,
polynomially (possibly piecewise) trending volatility and smooth transition variance breaks,
among other things. In the case where volatility displays jumps, these are not constrained
to be located at the same point in the sample as the putative trend break. The conventional
homoskedasticity assumption, as employed in HHLT, that �t = � for all t, also satis�es
Assumption A3, since here !(s) = � for all s. Although Assumption A3 imposes the volatility
process to be non-stochastic, this may be weakened along the same lines as are detailed in
Remark 2 of Cavaliere and Taylor (2008,p.47).

A quantity which will play a key role in what follows is given by the following function
in C, known as the variance pro�le of the process:

� (s) :=

�Z 1

0
! (r)2 dr

��1 Z s

0
! (r)2 dr. (5)

Observe that the variance pro�le satis�es � (s) = s under homoskedasticity while it deviates
from s in the presence of heteroskedasticity. Notice also that the quantity !2 :=

R 1
0 ! (r)

2 dr

which appears in (5), by Assumption A3 equals the limit of T�1
PT
t=1 �

2
t , and may therefore

be interpreted as the (asymptotic) average innovation variance.

Remark 2.2 Before progressing it is worth commenting that, since the variance �2t depends
on T , a time series generated according to (1)-(4) with �t satisfying Assumption A3 formally
constitutes a triangular array of the type fyT;t := dT;t + uT;t : 1 � t � T; T � 2g, where
dT;t is purely deterministic and uT;t is recursively de�ned as uT;t := �TuT;t�1 + C (L)�T;tzt,
�T;bsT c := ! (s). However, since the triangular array notation is not essential, for simplicity
the subscript T will be suppressed in what follows. �

3 Break Fraction Estimation and Unit Root Tests

In section 3.1 we �rst provide a brief review of the modi�ed trend break fraction estimator
proposed in HHLT together with their proposed ADF-based unit root testing procedure based
on this estimator. We also show how their approach can be extended to the class of M -type
unit root tests. In section 3.2 we then derive the large sample behaviour of these quantities
under non-stationary volatility which satis�es Assumption A3. Speci�cally, we �rst show that
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HHLT�s trend break fraction estimator retains the same rates of consistency as demonstrated
by HHLT for the homoskedastic case in cases both where a trend break occurs and where it
does not. However, as we subsequently demonstrate, unit root statistics based around this
estimator do not attain the same limiting distribution (either under the null or the local
alternative) as obtain in the homoskedastic case, either where a trend break occurs or where
it does not. We then quantify the impact of a one-time break in volatility and of trending
volatility on the asymptotic size and local power of the unit root tests via Monte Carlo
simulation.

3.1 The HHLT Procedure - Homoskedastic Innovations

Under the assumption of homoskedastic innovations, that is �t = � for all t, HHLT develop
a unit root test based on QD detrending that has both correct asymptotic size under the
unit root null hypothesis and is asymptotically e¢ cient against local alternatives, regardless
of whether or not a break in trend occurs.

In order to carry out valid unit root inference in the case where a trend break is known
to have occurred at some unknown point in the sample (that is where 0 6= 0), an estimator
of the unknown break fraction is required whose rate of consistency is su¢ ciently rapid for a
unit root test based on that estimator to have an asymptotic distribution that is the same as
if the break fraction �0 were known, such that the (asymptotic) critical values corresponding
to a known break fraction can be used and that the test will be asymptotically e¢ cient. This
requires that the estimator obtains a rate of consistency which is faster than Op(T�1=2).

HHLT consider the �rst di¤erence estimator of �0:

~� := argmin
�2�

~�2 (�) ; (6)

where ~�2 (�) := T�1
PT
t=2 ~vt (�)

2, and ~vt (�) are the OLS residuals from the regression

�yt = �0 + 0DUt (�) + vt; t = 2; :::; T (7)

where vt := �ut and DUt (�) := 1(t > b�T c). Under homoskedasticity, HHLT [Lemma 1]
demonstrate that this estimator satis�es ~� = �0 + Op(T

�1), so that it is consistent at rate
Op(T

�1).
Applying a QD transformation to (1) at the estimated break fraction, ~� of (6), yields the

QD de-trended data
~ut := yt �Xt (~�)0 �̂�c (8)

where Xt (~�) := (1; t; DTt (~�))
0 and �̂�c is the vector of OLS parameter estimates from the

regression of y�c;t on X�c;t (~�), where

y�c;t :=

(
y1 t = 1

yt � ��T yt�1 t = 2; : : : ; T
;

X�c;t (~�) :=

(
X1 (~�) t = 1

Xt (~�)� ��TXt�1 (~�) t = 2; : : : ; T
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and ��T := 1 � �c=T , where �c is the QD parameter. This parameter is generally chosen to
be the value of the local-to-unity parameter c at which the asymptotic Gaussian local power
envelope for a given signi�cance level has power equal to 0.50; see Table 1 of HHLT for
relevant values of �c which depend on the true break fraction �0.

The QD detrended ADF test rejects for large negative values of the regression t-statistic
for � = 0 in the ADF-type regression

�~ut = �~ut�1 +

pX
j=1

�j;p�~ut�j + ep;t; t = p+ 2; :::; T: (9)

We denote this statistic ADF-GLStb (~� ; �c). As is standard, the lag truncation parameter, p,
in (9) is assumed to satisfy the following condition:

Assumption B. As T !1, the lag truncation parameter p in (9) satis�es the condition that
1=p+ p3=T ! 0.

Remark 3.1 Perron and Rodríguez (2003) recommend using the modi�ed Akaike Information
Criterion (MAIC) of Ng and Perron (2001) for selecting p in (9) with an upper bound pmax
satisfying Assumption B; see section 6 of Perron and Rodríguez (2003). �

Under homoskedasticity, HHLT [Theorem 1] show that under Hc, ADF-GLStb(~� ; �c) =
ADF-GLStb(�0; �c)+ op(1), where ADF-GLStb(�0; �c) denotes the ADF-type unit root statistic
of Perron and Rodríguez (2003) evaluated at the true break date fraction, �0. This result
with c = 0 shows that one can carry out the test ADF-GLStb (~� ; �c) by using asymptotic
critical values appropriate for ADF-GLStb (�0; �c). For c > 0, the result establishes that
ADF-GLStb (~� ; �c) and ADF-GLStb (�0; �c) have identical asymptotic local alternative power
functions which both lie arbitrarily close to the Gaussian local power envelope; see Perron and
Rodríguez (2003,pp.7-9). The asymptotic distribution of ADF-GLStb (�0; �c), together with
the corresponding M -based tests, under Hc are given in Theorem 1 of Perron and Rodríguez
(2003,p.5) who also provide critical values for these tests; see also Table 1 of HHLT.

Where no trend break occurs (so that 0 = 0), ~� is randomly distributed on � and
consequently, as shown in Perron and Rodríguez (2003) and HHLT, ADF-GLStb(~� ; �c) is as-
ymptotically over-sized and is no longer e¢ cient in that it always includes an unnecessary
trend break dummy. Where it is known that 0 = 0, it is the test based on the standard
QD detrended (constant plus linear trend) augmented Dickey-Fuller unit root test statistic
of ERS, which we denote by ADF-GLSt, that is e¢ cient.2 As a consequence, HHLT propose
modifying the �rst di¤erence break fraction estimator so that it has the same asymptotic
properties as previously discussed when a break occurs, but converges to zero when a break
does not occur, so that as a consequence the trend break dummy drops out from the QD
detrending stage. This ensures that (under homoskedasticity) the resulting test has correct
asymptotic size (using the asymptotic critical values from Table 1 of ERS, p.825) and is
asymptotically e¢ cient in the case where a break does not occur.

2This statistic is formed in the same way as outlined above for ADF-GLS tb(~� ; �c) but replacing ~ut in (9)

by the OLS residuals from regressing y�c;t on X�c;t where X�c;t := X1 for t = 1 and X�c;t := Xt � ��TXt�1 for

t = 2; : : : ; T , with Xt := (1; t)
0. Here �c = �13:5 for tests run at the asymptotic 5% level; see ERS.
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Speci�cally, HHLT propose the modi�ed break fraction estimator

�� = [1� exp(�gT�1=2WT (~�))]~� (10)

where g is an (asymptotically irrelevant) positive constant,3 and WT (~�) denotes the Wald
statistic for testing H0 : 0 = 0 in the partially summed model

Pt
i=1 yi = �0t+ �0

Pt
i=1 i+

0
Pt
i=1DTi(~�)+ st, where st :=

Pt
i=1 ui, t = 1; :::; T . HHLT [Lemmas 2 and 3] demonstrate

that if 0 = 0, WT (~�) = Op(1), and �� = Op(T
�1=2), while if 0 6= 0, WT (~�) = Op(T ), and

�� = �0 +Op(T
�1), giving the required properties.

Since the earliest a break can occur is �L, the HHLT statistic is given by4

t(��) :=

(
ADF-GLS t if �� < �L
ADF-GLS tb (�� ; �c) if �� � �L:

(11)

The associated unit root test uses the decision rule as outlined previously for ADF-GLS t and
ADF-GLS tb (�� ; �c) as appropriate to the unit root statistic selected in (11). HHLT [Theorem
2] demonstrate that if 0 = 0, t(��) = ADF-GLSt + op(1), while if 0 6= 0, t(��) = ADF-
GLStb(�0; �c) + op(1). Consequently, under the assumption of homoskedastic innovations, a
unit root test based on t(��) will be asymptotically correctly sized and e¢ cient, regardless of
whether or not a break occurs.

The approach proposed in HHLT uses ADF-type tests in forming the unit root procedure
in (11). However, the same testing principle could equally well be implemented using the M
unit root tests of Perron and Ng (1996), Stock (1999), Ng and Perron (2001), and for the
broken trend case, Perron and Rodríguez (2003). In the linear trend environment unit root
tests based on the M principle are generally considered to be signi�cantly more robust to
serially correlated shocks than ADF-based tests, particularly where the MAIC lag truncation
rule of Ng and Perron (2001) is adopted; see, for example, Haldrup and Jansson (2006). It
therefore seems worthwhile to also explore variants of the HHLT procedure in (11) based on
M -type tests.

Consider �rst the case where a break occurs, so that 0 6= 0. Here the trinity of M
statistics evaluated at ~� of (6), analogous to ADF-GLStb(~� ; �c), are given by

MZtb� (~� ; �c) :=
T�1~u2T � s2AR (p)
2T�2

PT
t=2 ~u

2
t�1

; MSBtb(~� ; �c) :=
 
T�2

TX
t=2

~u2t�1=s
2
AR (p)

!1=2
MZtbt (~� ; �c) := MZtb� (~� ; �c)�MSBtb(~� ; �c) (12)

where s2AR (p) is an autoregressive estimator of the (non-normalized) spectral density at
frequency zero of f"tg. Speci�cally,

s2AR (p) := �̂
2=(1� b� (1))2, b� (1) := pX

i=1

b�i;p (13)

3Although asymptotically irrelevant, g, does have an impact in �nite samples. Recommendations on the

choice of g in practice are given in section 5.3 of HHLT and will be further discussed in section 5 of this paper.
4As discussed in HHLT, an asymptotically equivalent statistic can be formed by replacing ADF-GLS tb (�� ; �c)

with ADF-GLS tb (~� ; �c) in the de�nition of t(��) when �� � �L. However, HHLT note that unreported simulation
experiments indicate that this does not improve upon the �nite sample performance of t(��). We found the

same to be true for the correspondingM-type tests discussed below.
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where b�i;p, i = 1; :::; p, and �̂2 are, respectively, the OLS slope and variance estimators from
(9), and where p satis�es Assumption B. In the case of MZtb� (~� ; �c) and MZ

tb
t (~� ; �c), the unit

root null hypothesis is rejected for large negative values of the statistics, while a test based
onMSBtb(~� ; �c) rejects for small values of the statistic. Critical values are provided in Perron
and Rodríguez (2003). It is entirely straightforward to show, using the results established
in HHLT and under the conditions stated in HHLT (which, recall, are the same as given
in this paper but with the additional assumption of homoskedasticity, such that �t = �

for all t) that under Hc, M tb (�� ; �c) = M tb (�0; �c) + op(1), where (M tb (�� ; �c) ; M tb (�0; �c)) are
used generically to denote either (MZtb� (�� ; �c) ; MZ

tb
� (�0; �c)), (MSB

tb (�� ; �c) ; MSBtb (�0; �c))

or (MZtbt (�� ; �c) ; MZ
tb
t (�0; �c)), withMZ

tb
� (�0; �c), MSB

tb(�0; �c) andMZtbt (�0; �c) denoting the
trinity of M test statistics of Perron and Rodríguez (2003) evaluated at the true break date
fraction, �0, the limiting distributions for which under Hc are given in Theorem 1 of Perron
and Rodríguez (2003,p.5). Again, therefore, the M -type tests based on the statistics in (12)
will be correctly sized in the limit (when using the asymptotic critical values from Perron
and Rodríguez, 2003) and will be asymptotically e¢ cient.

Where a break does not occur (such that 0 = 0), just like the test based on ADF-
GLStb(~� ; �c), the tests based on the M statistics in (12) will be neither correctly sized nor
e¢ cient, even in the limit, due again to the random behaviour of ~� in the no break case.
Again here to obtain correctly sized e¢ cient tests one needs to construct the M statistics in
(12) from data which are QD detrended allowing simply for a constant plus linear trend, as
outlined in footnote 2. Denote the resulting M statistics by MZt�, MSB

t and MZtt .
Using the modi�ed break estimator, �� of (10), M -based analogues of t(��) of (11) can be

formed as

M(��) :=

(
Mt if �� < �L
Mtb (�� ; �c) if �� � �L:

(14)

where M t is used in a generic sense, in the same way as M tb (�� ; �c), to denote either MZt�,
MSBt or MZtt . With an obvious notation, we denote these three statistics by MZ�(��),
MSB(��) and MZt(��). Again using results established in HHLT and under the conditions
stated in HHLT it is straightforward to demonstrate that, in the generic notation used above,
if 0 = 0, M(��) = M t + op(1), while if 0 6= 0, M(��) = M tb (�0; �c) + op(1). Consequently,
under homoskedastic innovations, unit root tests based onM(��) will again be asymptotically
correctly sized and e¢ cient, regardless of whether or not a break occurs.

We now turn to establishing the large sample behaviour of both the �rst di¤erence and
modi�ed estimators, ~� of (6) and �� of (10) respectively, and the associated unit root test based
on t(��) of (11), along with the corresponding M -based tests in (14), when the innovations
display non-stationary volatility of the form considered in Assumption A3.

3.2 Behaviour of the HHLT Procedure under Non-stationary Volatility

In this section we �rst discuss the behaviour of the break fraction estimators ~� of (6) and ��
of (10) in cases where the volatility process �t is permitted to be generated by any process
satisfying Assumption A3. These results are detailed in the following lemma.
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Lemma 1 Let yt be generated according to (1)-(4) under Hc, and let Assumption A hold.

Then: (i) where 0 6= 0, ~� = �0+Op(T�1), and �� = �0+Op(T�1); (ii) where 0 = 0, ~� has a
well de�ned asymptotic distribution with support equal to � = [�L; �U ], while �� = Op(T�1=2).

The results of Lemma 1 (which also hold in the stable autoregressive case) establish
that both the �rst di¤erence estimator, ~� of (6), and HHLT�s modi�ed version thereof, �� of
(10), behave exactly the same in large samples in the presence of non-stationary volatility
satisfying Assumption A3 as they do under the constant volatility assumption of HHLT. The
key implication of this is that �� converges in probability to zero at rate Op(T�1=2) when
there is no break in trend, but is consistent for the true break fraction, �0, at rate Op(T�1)
when a break occurs. This result is crucial to our being able to employ wild bootstrap-based
implementations of the tests outlined in section 3.1, as we shall see later.

Although, as Lemma 1 demonstrates, the large sample behaviour of the break fraction
estimators ~� and �� is invariant to the presence or otherwise of non-stationary volatility in the
innovations, we now show in Theorem 1 that the same is not true for the limiting distributions
of the unit root tests from section 3.1.

Theorem 1 Let yt be generated according to (1)-(4) under Hc, and let Assumptions A and

B hold. Then: (i) if 0 = 0,

MZ�(��)
w! K�

c (1)2 � 1
2
�R 1
0 K

�
c (r)2dr

� =: ��c;�c;t;�1

MSB(��) w!
�Z 1

0
K�
c (r)

2dr

�1=2
=: ��

c;�c;t;�
2

MZt(��)
a
= t(��)

w! K�
c (1)2 � 1

2
�R 1
0 K

�
c (r)2dr

�1=2 =: ��c;�c;t;�3

and, (ii) if 0 6= 0,

MZ�(��)
w! V �1 (1; �0)

2 � 2V �2 (1; �0)� 1
2
�R 1
0 V

�
1 (r; �0)

2dr � 2
R 1
�0
V �2 (r; �0)dr

� =: ��c;�c;tb;�1 (�0)

MSB(��) w!
�Z 1

0
V �1 (r; �0)

2dr � 2
Z 1

�0

V �2 (r; �0)dr

�1=2
=: ��

c;�c;tb;�
2 (�0)

MZt�(��)
a
= t(��)

w! V �1 (1; �0)
2 � 2V �2 (1; �0)� 1

2
�R 1
0 V

�
1 (r; �0)

2dr � 2
R 1
�0
V �2 (r; �0)dr

�1=2 =: ��c;�c;tb;�3 (�0)

where

K�
c (r) := W �

c (r)� r
�
�c�W �

c (1) + 3(1� �c�)
Z 1

0
rW �

c (r)dr

�
V �1 (r; �0) := W �

c (r)� rb3

V �2 (r; �0) := b4(r � �0)
�
W �
c (r)� rb3 �

1

2
(r � �0)b4

�
10



with W �
c (r) :=

R r
0 e

�(r�s)cdW (�(s)), where W (s) is a standard Brownian motion and �(�)
is the variance pro�le of the volatility process de�ned in (5), �c� := (1 + �c)=(1 + �c + �c2=3),

b3 := �1b1 + �2b2, b4 := �2b1 + �3b2 with b1 := (1 + �c)W �
c (1) + �c2

R 1
0 rW

�
c (r)dr and b2 :=

(1 + �c � �0�c)W �
c (1) + �c2

R 1
�0
W �
c (r)(r � �0)dr �W �

c (�0), and the constants �1; :::; �3 are as

de�ned in Theorem 1 of Perron and Rodríguez (2003,p.5) but replacing �c by ��c in their
expressions.

As can be seen from comparing the representations given in Theorem 1 with the corre-
sponding representations in Theorem 1 of Perron and Rodríguez (2003,p.5) for the trend break
case (0 6= 0) and ERS for the linear trend case (0 = 0), the asymptotic null distributions
(those pertaining to c = 0) of the unit root statistics have the usual form with the exception
that the standard limiting Brownian motion, W0(s), is replaced by the Brownian functional
W �
0 (s), the latter reducing to the former only where the process is homoskedastic; that is,

where !(�) is a constant function. The process W �
0 (s) is known as a variance-transformed

Brownian motion, i.e. a Brownian motion under a modi�cation of the time domain; see, for
example, Davidson (1994). This di¤erence has serious implications for the size of the as-
sociated unit root tests, with the standard tabulated critical values (cited above) no longer
appropriate in either the linear or broken trend environments.

It is also clear from the representations in Theorem 1 for c > 0 that the asymptotic local
power functions of the tests in both the linear and broken trend cases will also be a¤ected by
non-stationary volatility (even if critical values from the correct null distributions were used)
since, as with the null case, it is only where !(�) is constant that the representations given in
parts (i) and (ii) of Theorem 1 reduce to the corresponding representations given in ERS and
Perron and Rodríguez (2003) respectively. Speci�cally, the (size-adjusted) asymptotic local
power functions of the tests, in each case at signi�cance level ", are given by �j(c; �c; t; �) and
�j(c; �c; tb; �; �0), j = 1; 2; 3, in the linear and broken trend cases, respectively, where

�j(c; �c; �; �) := P (��c;�c;�;�j < bj(�c; �; �)); j = 1; 2; 3 (15)

and
�j(c; �c; �; �; �) := P (��c;�c;�;�j (�) < bj(�c; �; �; �)); j = 1; 2; 3 (16)

where bj(�c; �; �) and bj(�c; �; �; �) respectively satisfy P (��0;�c;�;�j < bj(�c; �; �)) = " and P (��0;�c;�;�j (�) <
bj(�c; �; �; �)) = ", j = 1; 2; 3, where the index j = 1 refers to the test based on MZ�(��), j = 2
to that based on MSB(��), and j = 3 to both tests based on MZt�(��) and on t(��). Moreover,
unlike in the homoskedastic case, these cannot necessarily be expected to lie close to the
Gaussian asymptotic local power envelope in either the linear or broken trend environments.

To conclude this section we now quantify the impact of a number of particular variance
pro�les on the asymptotic size and local power of the tests of section 3.1. The asymptotic
results we report were obtained from direct simulation of the relevant limiting distributions,
approximating the Wiener processes using NIID(0,1) random variates, with the integrals
approximated by normalized sums of 1000 steps. The simulations were conducted using the
rndKMn function of Gauss 7.0 with 50,000 replications.
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Figure 1 reports the asymptotic size of nominal 0.05-levelM(��) and t(��) tests for a single
abrupt shift in volatility from �0 to �1 at time b��T c; i.e. for the volatility function

!(s) = �0 + (�1 � �0)1(s > ��); s 2 [0; 1] (17)

with �� 2 [0; 1]. Results are reported for �1=�0 2 f1=10; 1=9; :::; 1=2; 1; 2; 3; :::; 10g and �� 2
f0:3; 0:5; 0:7g, allowing for positive and negative breaks in volatility at a range of timings (the
setting �1=�0 = 1 giving the constant volatility case). Four deterministic speci�cations are
considered: (a) no break in trend, (b) break in trend with �0 = 0:3, (c) break in trend with
�0 = 0:5, and (d) break in trend with �0 = 0:7. Together with the settings for the volatility
shifts, cases (b)-(d) allow for situations both where the shift in volatility coincides with the
break in trend, and where the breaks occur at di¤erent points in time.

While the M(��) and t(��) tests are correctly sized under constant volatility, a pattern of
asymptotic over-size is clearly evident when a shift in volatility occurs. The size distortions
increase with the magnitude of the shift in volatility, and can be quite severe, up to around
40% in the worst of the cases considered. The MZ�(��), MSB(��), and MZt(��); t(��) tests are
a¤ected in di¤erent ways by the non-constant volatility, but these di¤erences are nonetheless
quite small, especially when considered in relation to the size distortions induced by the
volatility shift. The most severe size biases occur when the timings of the break in trend and
the break in volatility are either both early (�0 = �� = 0:3) or both late (�0 = �� = 0:3),
although substantial size distortions are also observed for other combinations of break timings,
and also when no break in trend is present. The impact of a volatility shift on test size is also
seen to be strongly dependent on the direction of the shift: when the volatility break occurs
early (late), a negative (positive) shift generates relatively greater size distortions than when
the shift is positive (negative).

Figure 2 also reports the asymptotic size of theM(��) and t(��) tests for the four determin-
istic speci�cations considered in Figure 1, but where the volatility now follows a linear trend
from �0 at t = 1 to �1 at time T ; i.e., !(s) = �0 + (�1 � �0)s; s 2 [0; 1]. Size distortions are
again observed for all the M(��) and t(��) tests, although these are markedly less severe than
when the volatility is subject to a one-time shift.

In Figures 3-6 the asymptotic size-corrected local power of the MZt(��); t(��) tests are
reported for the same four deterministic speci�cations as above.5 Figures 3, 4 and 5 present
powers when the volatility undergoes an abrupt shift, with, respectively, �� = 0:3, 0:5 and
0:7, while Figure 6 considers trending volatility. In each case, we report results for constant
volatility (�1=�0 = 1) as well as the changing volatility settings �1=�0 2 f1=10; 1=5; 5; 10g.
Relative to the baseline case of homoskedasticity, it can be seen from Figures 3-5 that a shift
in volatility can have a substantial and detrimental impact on the size-adjusted power of
the unit root tests. Unsurprisingly, the cases where power is most dramatically a¤ected are
those where size was found to be most distorted, i.e. early negative and late positive volatility
shifts, where the timing of the breaks in trend and volatility coincide.

5The size-adjusted powers for theMZ�(��) andMSB(��) tests were found to be almost identical to those
ofMZt(��); t(��) and are consequently omitted.
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4 Bootstrap Unit Root Tests

As demonstrated in the previous section, non-stationary volatility introduces a time defor-
mation aspect to the limiting distributions of the unit root statistics under Hc, which alters
their form vis-à-vis the homoskedastic case. In section 4.1 we propose bootstrap analogues
of the unit root tests from section 3.1. In section 4.2 we show that the bootstrap tests allow
us to retrieve asymptotically correct p-values under the null and share the same asymptotic
local power functions as the corresponding (asymptotically size-adjusted) standard tests.

Our proposed bootstrap algorithm draws on the �wild bootstrap�literature (see, inter alia,
Liu, 1988, and Mammen, 1993) and, as we demonstrate, allows us to construct bootstrap
unit root tests that are robust under the null to non-stationary volatility of the form given in
Assumption A3. In the context of the present problem, the wild bootstrap scheme is required,
rather than the standard residual re-sampling schemes used for other bootstrap unit root tests
proposed in the literature because, unlike these, the wild bootstrap can replicate the pattern
of heteroskedasticity present in the shocks; see Remark 4.1. The wild bootstrap has also
recently been successfully applied by Gonçalves and Kilian (2004,2007) to the problem of
carrying out inference in stationary autoregressive models driven by heterogenous shocks,
and by Cavaliere and Taylor (2008) to construct bootstrap versions of the MZt�, MSB

t

and MZtt tests of section 3.1 which are asymptotically robust under the unit root null to
non-stationary volatility of the form described in Assumption A3.

4.1 The Bootstrap Algorithm

Implementation of the bootstrap is straightforward and requires only the OLS de-trended
data based around the �rst di¤erence break date estimate, ~� of (6), which, crucially, we
know from Lemma 1 to be T -consistent for the true break fraction �0 where a trend break
occurs, even in the presence of non-stationary volatility. Although this estimator is randomly
distributed over � when no break occurs, this has no impact on the behaviour of the resulting
bootstrap tests. The following steps constitute our bootstrap algorithm:

Algorithm 1 (Wild Bootstrap Unit Root Tests)

Step (i) OLS de-trend yt under the null hypothesis using the �rst di¤erence break fraction

estimator, ~� of (6); that is, "̂t := �yt � �̂0 � ̂0DUt(~�), t = 2; :::; T , where �̂0 and ̂0 are

the OLS estimates of �0 and 0, respectively, obtained from regressing �yt on a constant and

DUt(~�), t = 2; :::; T .

Step (ii) Generate T bootstrap innovations "�t , t = 1; :::; T , according to the device "
�
t := "̂twt,

t = 2; :::; T , and "�1 := 0, where fwtgTt=1 denotes an independent N(0; 1) sequence.

Step (iii) Construct the bootstrap sample as the partial sum process

y�t :=
tX
i=1

"�i ; t = 1; :::; T: (18)

13



Step (iv) According to the value of the modi�ed break fraction estimator, �� of (10), obtained

from the original sample data yt, t = 1; :::; T , obtain the bootstrap test statistics, as follows:

(i) if �� < �L, t(��)� := ADF-GLS t �, MZ�(��)� := MZ t �
� , MSB(��)� := MSB t � and

MZt(��)
� :=MZ t �

t ;

(ii) if �� � �L, t(��)� := ADF-GLS tb �(�� ; �c),MZ�(��)� :=MZ tb �
� (�� ; �c),MSB(��)� :=MSB tb � (�� ; �c)

and MZt(��)� :=MZ tb �
t (�� ; �c),

where, for example, ADF-GLS tb �(�� ; �c) denotes the statistic ADF-GLS tb(�� ; �c) constructed as

outlined in section 3.1, but applied to the bootstrap data, y�t , rather than the original data, yt,

with the same obvious notational convention also used for the other bootstrap statistics.

Step (iv) Bootstrap p-values are computed as: p�1;T := G�1;T (t(��)), p
�
2;T := G�2;T (MZ�(��)),

p�3;T := G�3;T (MSB(��)), and p�4;T := G�4;T (MZt(��)), where G�j;T (�), j = 1; :::; 4, denotes

the conditional (on the original sample data) cumulative density function (cdf) of t(��)�,

MZ�(��)
�, MSB(��)� and MZt(��)� respectively. Notice, therefore, that bootstrap tests, run at

the �, 0 < � < 1, signi�cance level, based on t(��), MZ�(��), MSB(��) and MZt(��) are then

de�ned such that they reject the unit root null hypothesis, H0 : �T = 1 if p
�
j;T < �, j = 1; :::; 4,

respectively.

Remark 4.1 Notice that the bootstrap innovations, "�t , replicate the pattern of heteroskedas-
ticity present in the original shocks since, conditionally on "̂t, "�t is independent over time
with zero mean and variance "̂2t . The fact that the bootstrap sample has uncorrelated incre-
ments also means that the lag truncation used in the bootstrap analogue of (9), p� say, need
not equal p, the lag order used in constructing the original statistics. Indeed, as T diverges
to in�nity p� need only satisfy the condition that p�=T 1=3 ! 0 (see Assumption B� below);
in particular, it is therefore not required to diverge to in�nity with T . �
Remark 4.2 As in Cavaliere and Taylor (2008), the unit root null is imposed on the re-sampling
scheme used in step (iii) of Algorithm 1. Notice that the arguments made in Paparoditis and
Politis (2003) as to why it is preferable on power grounds to not impose the null hypothesis
when constructing the residuals to be used for re-sampling, do not apply here. This is
because, conditionally on the original data, the bootstrap innovations, "�t from step (ii) are
serially uncorrelated, regardless of any serial correlation present in the �tted residuals "̂t. As
an aside, because wild bootstrap innovations are (conditionally) serially uncorrelated it is
often the case that improved �nite sample performance can be obtained by incorporating an
additional re-colouring (or sieve) device in step (iii) of Algorithm 1; see Cavaliere and Taylor
(2009) for details. We experimented with this, both where the underlying innovations, "t,
were serially correlated and where they were not, and found that such re-colouring did not
improve on the �nite sample performance of the bootstrap tests outlined in Algorithm 1. �
Remark 4.3 As discussed in Davidson and Flachaire (2008), in some cases improved accuracy
can be obtained when using the wild bootstrap by replacing the Gaussian distribution used
for generating the pseudo-data by an asymmetric distribution with E (wt) = 0, E

�
w2t
�
= 1
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and E
�
w3t
�
= 1 (Liu, 1988), two examples being Mammen�s (1993) two-point distribution:

P (wt = �0:5(
p
5 � 1) = 0:5(

p
5 + 1)=

p
5 = p, P (wt = 0:5(

p
5 + 1)) = 1 � p, and the

Rademacher distribution: P (wt = 1) = 1=2 = P (wt = �1). We found only minor di¤erences
between the �nite sample properties of the bootstrap unit root tests based on the Gaussian
or the Mammen or Rademacher distributions. �
Remark 4.4 In practice the cdfs G�j;T , j = 1; :::; 4, will be unknown but can be approximated
in the usual way through numerical simulation; see, inter alia, Hansen (1996) and Andrews
and Buchinsky (2001). Using HHLT�s t(��) statistic to illustrate, this is done by generating
M such (conditionally) independent bootstrap statistics, say tm(��)�, m = 1; :::;M , computed
as for t(��)� above but from y�m;t :=

Pt
i=1 "

�
m;i, "

�
m;t := "̂twm:t, t = 1; :::; T , and "̂0 := 0, with

ffwm:tgTt=1gMm=1 a doubly independent N(0; 1) sequence. The simulated bootstrap p-value
is then computed as ~p�1;T := M�1PM

m=1 1 (tm(��)
� � t(��)), and is such that ~p�1;T

a:s:! p�1;T as
M ! 1. An approximate standard error for ~p�1;T is given by (~p�1;T (1 � ~p�1;T )=M)

1=2; see
Hansen (1996, p.419). �

4.2 Asymptotic Properties

In this section we discuss the asymptotic properties of the wild bootstrap unit root tests. We
show that under the unit root null, and for any volatility process satisfying Assumption A3,
the bootstrap statistics converge to the same asymptotic distribution as the test statistics
computed on the original data; that is, the wild bootstrap allows us to replicate the correct
�rst-order asymptotic null distributions of the test statistics of interest. We also demonstrate
the asymptotic properties of the bootstrap statistics under near-integrated alternatives.

In Theorem 2 we now show that the bootstrap statistics from section 4.1 allow us to
retrieve the correct asymptotic null distributions for the tests from section 3.1, and, hence,
that the corresponding p-values are asymptotically pivotal. This theorem is derived under
the following condition on the bootstrap lag truncation parameter, p�:

Assumption B�. As T !1, the lag truncation parameter, p�, in the bootstrap analogue of
(9) satis�es the condition that p�=T 1=3 ! 0.

Notice that this condition is weaker than that imposed on the lag truncation, p, in the original
ADF regression, (9), by Assumption B; cf. Remark 4.1.

Theorem 2 Let yt be generated according to (1)-(4) under Hc and let Assumptions A and

B� hold. Let the bootstrap sample be generated as detailed in Algorithm 1. Then: (i) if 0 = 0,

MZ�(��)
� w!p

��
0;�c;t;�
1 , MSB(��)� w!p

��
0;�c;t;�
2 , MZt(��)�

w!p
��
0;�c;t;�
3 and t(��) w!p

��
0;�c;t;�
3 ; and (ii)

if 0 6= 0, MZ�(��)�
w!p

��
0;�c;tb;�
1 (�0), MSB(��)�

w!p
��
0;�c;tb;�
2 (�0), MZt(��)�

w!p
��
0;�c;tb;�
3 (�0) and

t(��)
w!p
��
0;�c;tb;�
3 (�0). Moreover, if �T = 1, p

�
j;T

w! U [0; 1], j = 1; :::; 4.

Theorem 2 demonstrates the usefulness of the wild bootstrap: as the number of observa-
tions diverges, the bootstrapped statistics have the same null distribution as the correspond-
ing original test statistic and, consequently, the bootstrap p-values are uniformly distributed
under the null hypothesis, leading to tests with asymptotically correct size. As Theorem 2
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also shows, these limiting distributions also hold for the bootstrapped statistics under local
alternatives. This immediately implies that the bootstrap unit root tests will have the same
asymptotic local power functions as the original unit root tests, provided the latter were run
using critical values from the appropriate limiting null distribution; that is, the asymptotic
local power functions given in (15) and (16). The asymptotic theory therefore predicts that
the bootstrap tests should have power approximately equal to the size-adjusted power of
the standard tests. An obvious and important implication of this result is that under ho-
moskedasticity (�t = � for all t) the wild bootstrap tests will not su¤er from any loss of
(asymptotic local) e¢ ciency, relative to the standard tests.

Figures 1 and 2 also report results for the asymptotic size of the wild bootstrap tests
MZ�(��)

�,MSB(��)�, andMZt(��)�; t(��)�. Since these tests are correctly sized asymptotically,
the sizes in Figures 1 and 2 are equal to 0.05 for all of the deterministic and volatility settings
considered. The contrast with the correspondingMZ�(��),MSB(��), andMZt(��); t(��) tests is
striking, and serves to highlight the asymptotic robustness of the wild bootstrap tests to non-
constant volatility. In addition, the asymptotic local power of the bootstrap tests is identical
to that of the original tests when the latter are size-adjusted, thus the asymptotic power
curves presented in Figures 3-6 can also be interpreted as the power curves for MZ�(��)�,
MSB(��)�, and MZt(��)�; t(��)�. The impact of non-constant volatility on the power of the
tests can again be seen; while reductions in power are observed relative to the baseline case
of constant volatility, the wild bootstrap tests attain the same asymptotic local power as the
(infeasible) size-corrected original tests.

5 Finite Sample Simulations

In this section we investigate the �nite sample size and power properties of the standard
M(��) and t(��) tests (using nominal 0.05-level asymptotic critical values), along with their
wild boostrap analogues M(��)� and t(��)�. In order to compute the test statistics, choices
must be made for the parameter g in (10). For the ADF-based tests t(��) and t(��)�, we set
g = 3, opting for the better sized of the two procedures recommended by HHLT. For the
M(��) and M(��)� tests, unreported simulations similar to those in HHLT suggested that the
best �nite sample size/power trade-o¤ was obtained for g = 6, hence we use that value for
each of the M -based tests in what follows.

When accounting for potentially autocorrelated innovations, the lag truncation parameter,
p, used in the ADF-type regressions and the computation of s2AR(p), is selected according
to the MAIC lag selection rule of Ng and Perron (2001) - hereafter denoted by pMAIC -
with an upper bound of pmax :=

�
12(T=100)1=4

�
. In the implementation of the bootstrap

algorithm, we found that the best overall �nite sample properties were obtained by setting
p� = 0 in the construction of the bootstrap statistics based on the re-sampled data, i.e. step
(iii) of Algorithm 1, so we employ this setting throughout.6 All the simulations reported in

6We also experimented with setting the value of p� used in calculating the bootstrap statistics equal to that

selected by MAIC for the corresponding original test statistic, and also re-selecting p� according to MAIC for

each bootstrap sample. However, we found that neither of these approaches resulted in a superior size/power

16



this section were conducted using 10,000 Monte Carlo replications and M = 499 bootstrap
replications, again using the rndKMn function of Gauss 7.0.

Figure 7 reports �nite sample size results for an illustrative subset of the DGPs considered
in Figures 1-2. Speci�cally, the data are generated according to (1)-(4) with c = 0 for the
shift in volatility model where �t shifts from �0 to �1 at time b��T c (we let �0 = 1 without
loss of generality), with �1=�0 2 f1=10; 1=9; :::; 1=2; 1; 2; 3; :::; 10g as before. We set zt �
NIID(0,1), u1 = "1 and C(L) = 1, abstracting at this stage from the e¤ects of autocorrelated
innovations. The size behaviour of the standard unit root tests MSB(��), MZt(��) and t(��) is
considered, both when the true lag order is assumed known (i.e. p = 0 in the computation of
the test statistics), and also the feasible versions where the lag order is treated as unknown
and determined according to pMAIC.7 We also report results for the corresponding feasible
wild bootstrap tests MSB(��)�, MZt(��)� and t(��)�, where the statistics are again calculated
using p = pMAIC (p� = 0 is used in constructing the bootstrap statistics based on the re-
sampled data, as outlined above). We use the same four deterministic speci�cations as in
the asymptotic simulations, and in each case we consider a single timing for the break in
volatility, namely: (a) no break in trend, �� = 0:7, (b) break in trend, �0 = �� = 0:3, (c)
break in trend, �0 = �� = 0:5, and (d) break in trend, �0 = �� = 0:7. When a break in
trend is present in the DGP, in order to standardize its magnitude in the presence of di¤erent
volatility speci�cations, we set 0 = 

0
0��, where �� is the average standard deviation across the

sample period (i.e., �� := T�1
PT
t=1 �t); we let 

0
0 = 1 throughout. Finally, we let �0 = �0 = 0

without loss of generality, and consider the sample size T = 150.
The pattern of �nite sample size behaviour for theM(��) and t(��) tests when p = 0 closely

resembles the asymptotic results for these tests presented in Figure 1. As might be expected,
the size distortions are more severe for T = 150 than in the limit, particularly in the case of no
break. The overall picture is one of substantial over-size, emphasizing the lack of robustness
of these procedures to non-stationary volatility. When lag augmentation is incorporated
into the original statistics (p = pMAIC), the size distortions are reduced, in many cases even
below the level observed in the limit; it appears, therefore, that the MAIC procedure results
in an over-speci�cation of the lag order when non-stationary volatility is present, and this
property (somewhat arti�cially) mitigates the extent to which the tests display over-size in
�nite samples. However, substantial size distortions are still observed, with theM(��) and t(��)
tests lacking adequate size control when shifts in volatility are present. On the other hand,
the feasible wild bootstrap tests (MSB(��)�, MZt(��)� and t(��)� with p = pMAIC) display
very attractive size properties. When a break in trend occurs, the tests are conservative,
while in the no trend break case, size is close to the nominal level, with only a little over-size
observed (size is always less than 0.08). The contrast with the original tests is marked, with
the wild bootstrap tests clearly exhibiting reliable size properties for both homoskedastic and
non-stationary volatility models, in �nite samples as well as in the limit.

Figures 8-9 present �nite sample power comparisons of the original and bootstrap tests,
again for T = 150. As in the asymptotic analysis, we focus on theMZt(��) and t(��) tests, along

trade-o¤ across the range of DGPs considered.
7The sizes of MZ�(��) are similar to the other M(��) tests, and always lie between the sizes of MSB(��)

andMZt(��); results forMZ�(��) are thus omitted for the sake of clarity in the �gures.
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with their bootstrap analogues,MZt(��)� and t(��)�, owing to the fact that the threeM -based
tests again display very similar size-adjusted powers. Results are provided for c 2 f0; 1; :::; 50g
for the same four deterministic speci�cations as before, each for the case of homoskedastic
errors (Figure 8) and an illustrative volatility shift example (Figure 9). We report results for
tests using both the infeasible setting of p = 0 and the feasible version p = pMAIC. To enable
meaningful comparisons, the powers of the original tests are size-adjusted so as to ensure
that a particular test has size equal to that of the corresponding wild bootstrap test.

On comparing the results of Figure 8 with those of Figure 9, it can be seen that the power
of the original tests is adversely a¤ected by the presence of volatility shifts, as was seen in
the limit. Further, when lag selection according to MAIC is employed in the computation of
the test statistics, the powers are reduced relative to when p is (infeasibly) set to zero. This
is consistent with the fact that tests using p = pMAIC have lower sizes than those based on
p = 0, and represents the cost of having to select the lag order in practice, particularly when
the volatility is non-stationary. However, the most important comparison in Figures 8-9 for
our purposes is the power of the wild bootstrap tests relative to the (size-adjusted) power
of the original tests. Here, the asymptotic prediction that the bootstrap tests should have
power approximately equal to the size-adjusted power of the standard tests is borne out in
�nite samples. For both constant volatility and non-stationary volatility speci�cations, the
power functions of the bootstrap tests follow the size-adjusted power curves of the original
tests very closely, and in some circumstances the bootstrap tests actually achieve power in
excess of the size-adjusted power of the corresponding standard tests. The bootstrap tests
therefore have very attractive �nite sample properties: there is little cost involved in applying
the bootstrap tests when the volatility function is in fact constant, while obvious gains are
displayed when changes in volatility occur; in the latter case, the wild bootstrap tests achieve
reliable �nite sample size (unlike their standard test counterparts), and at the same time have
power very similar to the size-adjusted power of the corresponding standard tests. Finally,
the MZt(��)� and t(��)� tests are seen to have very similar power properties to each other, the
former being slightly more powerful under constant volatility, while the latter achieves minor
relative power gains when a volatility shift is present.

Lastly, we consider the size behaviour of the original and bootstrap tests when the shocks
are autocorrelated, i.e. when C(L) 6= 1 in (3). We now let the "t be generated according to
either an AR(1) process: "t = �"t�1+et (with "1 = e1), or an MA(1) process: "t = et��et�1
(again with "1 = e1). When a break in trend is present, we additionally standardize the break
magnitude by the long-run standard deviation of "t, i.e. 0 := 

0
0��=(1��) and 0 := 00��(1��)

for the AR(1) and MA(1) processes, respectively. Here, we restrict attention to feasible tests
that determine the lag order to be used in the statistics according to pMAIC. Table 1 reports
results for a number of � and � settings for the same eight DGP settings considered in Figures
8-9, but with c = 0. When the volatility is constant, the wild bootstrap tests have sizes similar
to those of the corresponding standard tests, and although some over-size is observed in the
presence of autocorrelated shocks, size is on the whole reasonably well controlled in small
samples, particularly for t(��) and t(��)�. For cases where a shift in volatility occurs, the
wild bootstrap tests continue to control size across the range of DGPs considered (in fact,
the sizes are generally lower than in the corresponding homoskedastic cases), but now the
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standard tests are mostly over-sized, as expected. Comparing the di¤erent variants of the wild
bootstrap tests, MZ�(��)�, MSB(��)� and MZt(��)� have almost identical sizes, while t(��)�

displays less upward size distortion. Since t(��)� loses little in terms of power relative to the
M -based alternatives, this test appears to have the most appealing �nite sample properties
of the tests considered in this paper.

6 Conclusions

In this paper we have explored the impact that non-stationary volatility has on unit root
tests which allow for a possible break in trend. We have focused on the ADF-based test of
HHLT and extensions thereof using the correspondingM -type tests. Numerical evidence was
presented which showed that non-stationary volatility can have potentially serious implica-
tions for the reliability of these tests with size often being substantially above the nominal
level. This was shown to be a feature of the limiting distributions of the statistics. To rectify
this problem, we have proposed wild bootstrap-based implementations of the tests, these
having proved to be highly successful in other unit root testing applications. The proposed
bootstrap tests have the considerable advantage that they are not tied to a given para-
metric model of volatility within the class of non-stationary volatility processes considered.
The asymptotic validity of our proposed bootstrap tests within the class of non-stationary
volatility considered was demonstrated. Monte Carlo simulation evidence was also reported
which suggested that the proposed bootstrap unit root tests perform well in �nite samples
avoiding the large oversize problems that can occur with the standard tests in the presence
of non-stationary volatility, yet emulating the �nite sample power properties of (infeasible)
size-adjusted implementations of the standard tests.
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A Appendix

This appendix is organized as follows. In section A.1 we provide the mathematical proofs of
Theorem 1 and the related Lemma 1. This section also contains some preliminary lemmas
that are used in the sequel. Section A.2 contains proofs related to the bootstrap tests. Some
useful results related to bootstrap tests for the case of no trends breaks or a trend break
at a known date are also reported. Detailed proofs are reported only for the tests based on
MZ� (as well as for its bootstrap counterparts). Proofs for tests based on MZt, MSB and
ADF -GLS are similar and omitted for brevity. Finally, in this appendix we make use of the
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following notation: we let ��2 := maxfsups ! (s) ; ��g and �!2 :=
R 1
0 ! (s)

2 ds; moreover, we let
�2! := �

2C (1)2 denote the (asymptotic) average long run variance of "t.

A.1 Proof of Lemma 1, Theorem 1 and Related Results

A.1.1 Preliminary Lemmas

The following lemmas present the asymptotic distribution of the MZt� statistic in the case
of no trend breaks (0 = 0) and of the MZ

tb
� (�0) in the general case. Notice that the latter

statistic corresponds to the case where the date of the possible break is known.

Lemma A.1 Let yt be generated according to (1)-(4) under Hc, and let Assumptions A and

B hold. Then, if 0 = 0, MZ
t
�
w! ��

c;�c;t;�
1 .

Proof. The theorem follows by adapting the same arguments as in the proof of Theorem 1
in Cavaliere and Taylor (2007) to the case of GLS detrended data.

Lemma A.2 Let yt be generated according to (1)-(4) under Hc, and let Assumptions A and

B hold. Then, MZtb� (�0)
w! ��

c;�c;tb;�
1 (�0).

Proof. The theorem follows by adapting the same arguments as in the proof of Theorem 1 in
Perron and Rodríguez (2003) to the case of heteroskedastic data. To this end, one has simply
to amend their Lemma A.1 to the following:

(a) T�1=2ubT �c
w! �!W �

c (�); (b) T�3=2
PT
t=1 ut

w! �!
R 1
0 W

�
c (s) ds; (c) T�2

PT
t=1 u

2
t
w! �!2

R 1
0 W

�
c (s)

2 ds.

The result in part (a) follows as in Remark 3.1 of Cavaliere and Taylor (2007), while parts
(b) and (c) follow from (a) and the CMT.

A.1.2 Proof of Lemma 1

Part (i). We begin by proving the consistency of ~� when 0 6= 0. When c = 0, since
vt := �ut = "t the proof follows by adapting Proposition 3 of Bai (1994) to independent, but
not identically distributed errors. The case c > 0 then follows using the same arguments as
in HHLT, proof of Lemma 1. In order to extend Proposition 3 of Bai (1994) to the present
framework it su¢ ces to show that in the presence of heteroskedasticity, Bai�s generalization
of Hajek-Renyi inequality (see Bai, 1994, Proposition 1) becomes as follows:

Pr

 
max
m�k�n

ck

�����
kX
i=1

"i

�����
!
� C0

��2

�2

 
mc2m +

nX
i=m+1

c2i

!
(A.1)

with ��2 := maxfsups ! (s) ; ��g and C0 as de�ned in Bai (1994, p.470). As in Bai (1994,p.457),
this inequality implies that

Pr

 
sup
k�m

1

k

�����
kX
i=1

"t

�����
!
� C1
�2m

: (A.2)
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Using (A.1) and (A.2) it is straightforward to see that the proof of Proposition 3 in Bai (1994)
holds under our assumptions, hence implying, for the case c = 0, that ~� � � = Op

�
(T0)

�1�.
In order to prove the result for �� we need to establish that T�1WT (�0) has a well-de�ned

distribution; see HHLT, proofs of Lemma 2 and Lemma 3(i). As in HHLT, consider the partial
sums of the DGP in (1), which can be written as wt = Z 01t�1;0+z

0
2;�0
0+st, t = 1; :::; T , where

wt :=
Pt
i=1 yi, Z1t :=

Pt
i=1 (1; i)

0, z2;�t :=
Pt
i=1DTi(�0), st :=

Pt
i=1 ui and �1;0 := (�0; �0)

0.
In matrix form we can write w = Z1�1;0 + z2;�0 + s = Z�0�0 + s, where Z� = (Z1; z2;� ). We
then have that

WT (�) =

�
z02;�

�P1w
�2�

z02;�
�P1z2;�

� �
w0 �P�w

�
where �P1 := IT � Z1 (Z 01Z1)

�1 Z 01 and �P� := IT � Z� (Z 0�Z� )
�1 Z 0� . When � = �0, we have

WT (�0) =

�
0z

0
2;�0

�P1z2;�0 + z
0
2;�0

�P1s
�2�

z02;�0
�P1z2;�0

� �
s0 �P1s

�
�
�
z02;�0

�P1s
�2

which implies that

T�1WT (�0) =

�
0T

�5z02;�0
�P1z2;�0 + T

�5z02;�0
�P1s
�2�

T�5z02;�0
�P1z2;�0

� �
T�4s0 �P1s

�
�
�
T�9=2z02;�0

�P1s
�2 :

Let Z1 (r) :=
�
r; 12r

2
�0
, Z2;� (r) := 1

2 (r � �)
2 I (r � �) and Z� (r) :=

�
Z1 (r)

0 ; Z2;� (r)
�0
. As in

HHLT, we then have that

T�5z02;�0
�P1z2;�0 !

Z 1

0
Z2:1;�0 (r)

2 dr

and that T�5z02;�0
�P1s = op (1), where Z2:1;�0 (r) is the residual process from a projection

of Z2;�0 (r) on Z1 (r). To deal with the remaining terms, we make use of the FCLT from
Theorem 1(i) of Cavaliere and Taylor (2007), which establishes that

1

T 1=2

bTrcX
t=1

"t
w! �!W

� (r) (A.3)

where W � is the time-change Brownian motion W � (r) := W (� (r)), W denoting a stan-
dard BM. Using standard arguments we have that (ubTrc; sbTrc)

w! (W �
c (r) ;W

�
c (r)), with

W �
c (r) :=

R r
0 e

�(r�s)cdW � (s) and W �
c (r) :=

R r
0 W

�
c (s) ds. The CMT further implies

T�4s0 �P1s
w! �2!

Z 1

0
S1 (r)

2 dr (A.4)

T�9=2z02;�0
�P1s

w! �!

Z 1

0
Z2:1;�0 (r)S1 (r) dr (A.5)

where S1 is the residual process from a projection of W �
c on Z1. Hence,

T�1WT (�0)
d!

20
R 1
0 Z2:1;�0 (r)

2 drR 1
0 Z2:1;�0 (r)

2 dr
R 1
0 S1 (r)

2 dr �
�R 1
0 Z2:1;�0 (r)S1 (r) dr

�2 = Op (1) ,
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as required.
Part (ii). When 0 = 0 we can apply Theorem 3.1 of Nunes et al. (1995) to get ~� = Op (1).
Then, a su¢ cient condition for �� to be of Op(T�1=2) is that WT (�0) = Op (1); cf. HHLT,
proof of Lemma 3(i). But this immediately follows from (??), (A.4), (A.5), and by noting
that, under 0 = 0,

WT (�0) =

�
T�9=2z02;�0

�P1s
�2�

T�5z02;�0
�P1z2;�0

� �
T�4s0 �P1s

�
�
�
T�9=2z02;�0

�P1s
�2 = Op (1) .

A.1.3 Proof of Theorem 1

By using Lemmas A.1 and A.2 above, the stated results follow immediately by establishing
that: (a) if 0 = 0, then MZ� (��) � MZt�

p! 0 ; and, (b) if 0 6= 0, then MZ� (��) �
MZtb� (�0; �c)

p! 0.
Proof of (a). This follows from Lemma 1, which implies that Pr (�� < �T ) ! 1 and, hence,
that MZ� (��)�MZt�

p! 0.
Proof of (b). The proof obtains by showing that, provided ~� is any Op(T�1) consistent
estimator of �0, it holds that MZtb� (~� ; �c) =MZ

tb
� (�0; �c) + op (1). We now establish this.

As in HHLT, we make use of the matrix notation

y = X�0 + u

y�c = X�c�0 + u�c; (A.6)

where �0 := (�0; �0; 0)
0, y := (y1; :::; yT )

0, X := (X1 (�0) ; : : : ; XT (�0))
0, u := (u1; :::; uT )

0,
y�c := (y1; y2 � ��T y1:::; yT � ��T yT�1)0,X�c := (X1 (�0) ; X2 (�0)� ��X1 (�0) ; : : : ; XT (�0)� ��XT�1 (�0))0

and u�c := (u1; u2 � ��Tu1:::; uT � ��TuT�1)0. The quasi-GLS estimator of �0 obtained from
(A.6) (with �0 known) is denoted �̂�c; the corresponding de-trended series is û := y � X�̂�c.
The MZ� test statistic for û is

MZtb� (�0; �c) :=
û2T =T � ŝ2AR (p)
2û0�1û�1=T

with û�1 := (û1; :::; ûT�1)
0. The estimator ŝ2AR (p) := �̂

2=(1� �̂0�)2 (� being the p-dimensional
unit vector) is obtained from the regression

�ût = �ût�1 + �
0Ûp;t + ep;t (t = p+ 1; :::; T ) (A.7)

= a0Ẑt + ep;t ,

where Ẑt := (ût�1; Û 0p;t)
0. Similarly, when ~� is used instead of �0, we de�ne the matrices

~X := (X1 (~�) ; : : : ; XT (~�))
0 and ~X�c := (X�c;1 (~�) ; : : : ; X�c;T (~�))

0. The OLS estimator from a
regression of y�c on ~X�c is denoted ~��c and the corresponding de-trended series is ~u := y� ~X~��c.
The test statistic on ~u is

MZ� (~� ; �c) :=
~u2T =T � ~s2AR (p)
2~u0�1~u�1=T
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with ~s2AR (p) := ~�
2=(1� ~�0�)2 estimated from the regression

�~ut = �~ut�1 + �
0 ~Up;t + ep;t (A.8)

= a0 ~Zt + ep;t

with ~Zt :=
�
~ut�1; ~U 0p;t

�0
.

We need to establish some preliminary results �rst. As in HHLT, in order to prove the
theorem it is useful to establish that, for DT := diag

�
1; T 1=2; T 1=2

�
, �̂ � �0 = Op

�
T�1

�
implies that

DT (~��c � �̂�c) = Op
�
T�1=2

�
: (A.9)

Furthermore, we need to show that, uniformly for all s 2 [0; 1],

T�1=2
�
~ubTsc � ûbTsc

�
= Op

�
T�1=2

�
(A.10)

and that, uniformly in i; j = 1; : : : p,

T�1
TX

t=p+1

�~ut�i�~ut�j � T�1
TX

t=p+1

�ût�i�ût�j = Op
�
T�1

�
(A.11)

T�1
TX

t=p+1

~ut�1�~ut�i � T�1
TX

t=p+1

ût�1�ût�i = Op

�
T�1=2

�
. (A.12)

These results, together with the following rates�T�1Û 0pÛp��1 = Op (1) (A.13)

T�1û0�1Ûp = Op �p1=2� (A.14)

implies that Lemma 6 in HHLT holds under the conditions of Theorem 1 here.

To prove (A.9), we �nd from HHLT, that

D�1T X
0
�cX�cD

�1
T =

TX
t=1

D�1T X�c;t (�0)X�c;t (�0)
0D�1T !

 
1 0

0
R 1
0 H�c;�0 (s)H�c;�0 (s)

0 ds

!

with H�c;�0 (s) := (1 + �cs; 1 (s > �0) (1 + �c (s� �0)))0. Furthermore, since (for t > 1) u�c;t =
�ut+

�c
T ut�1 = "t�

c
T ut�1+

�c
T ut�1, by standard arguments (speci�cally, the FCLT in (A.3) and

the CMT) it holds that D�1T X
0
�cu�c = Op (1). This then implies that DT (�̂�c��0) = Op (1) and,

using the same arguments as in HHLT (proof of Lemma 4), that DT (~��c � �̂�c) = Op
�
T�1=2

�
,

as required.

The proofs of (A.10)-(A.12) obtain as in HHLT, proof of Lemma 5, which does not require
unconditional homoskedasticity. Finally, (A.13) and (A.14) follow from Cavaliere and Taylor
(2007, Lemma 3).
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We can now make use of these preliminary results to prove the main result in (b). First, notice
that (A.10) and the fact that sup jT�1=2ûT j and sup jT�1=2~uT j are both of Op (1) imply that
T�1(û2T � ~u2T ) = Op(T�1=2) and, similarly, that

~u0�1~u�1
T 2

�
û0�1û�1
T 2

= Op(T
�1=2): (A.15)

Hence, it is left to prove that ~s2AR (p) � ŝ2AR (p) = op (1), which follows if we can show that
~�2 � �̂2 = op (1) and that j~�

0
�� �̂0�j = op (1).

Regarding the di¤erence ~�2 � �̂2, notice that

~�2 � �̂2 = T�1
�
�~u0 ~P�~u��û0P̂�û

�
+ T�1

0B@
�
û0�1P̂�û

�2
û0�1P̂ û�1

�

�
~u0�1

~P�~u
�2

~u0�1
~P ~u�1

1CA
with �û := (�û2; :::;�ûT )

0, Ûp := (Ûp;2; : : : ; Ûp;T )0, P̂ := IT�p�1�Ûp
�
Û 0pÛp

��1
Û 0p; �~u, ~u�1,

~Up, ~P are de�ned similarly. First, as in HHLT, (A.12), (A.13) and Lemma 6 in HHLT implies

that T�1
�
~u0�1

~P�~u� û0�1P̂�û
�

p! 0 and, by using (A.15), that T�1
�
~u0�1

~P ~u�1 � û0�1P̂ û�1
�

p!

0. Similarly, (A.11), (A.13) and Lemma 6 in HHLT imply that T�1
�
�~u0 ~P�~u��û0P̂�û

�
p!

0. Taken together, these results yield the result that ~�2 � �̂2 ! 0, in probability.

It now remains to prove that j~�0�� �̂0�j = op (1). Letting GT := diag(T; T 1=2Ip), we show that
under the stated conditions, jjGT (~a0 � â) jj = op(p

1=2=T 1=2). Since �̂ = (0; Ip)â, this result
implies that �0j~� � �̂j � p1=2jj~� � �̂jj = op (1), as p = o(T 1=2), hence completing the proof. To
that end, notice that

GT (~a� â) =
�
G�1T

~Z 0 ~ZG�1T

��1
G�1T

~Z 0�~u�
�
G�1T Ẑ

0ẐG�1T

��1
G�1T Ẑ

0�û

=

��
G�1T

~Z 0 ~ZG�1T

��1
�
�
G�1T Ẑ

0ẐG�1T

��1�
G�1T

~Z 0�~u

+
�
G�1T Ẑ

0ẐG�1T

��1 �
G�1T

~Z 0�~u�G�1T Ẑ
0�û

�
Standard manipulations (Berk, 1974, proof of Lemma 3) establish that, up to an op (1) term,�G�1T ~Z 0 ~ZG�1T

��1
�
�
G�1T Ẑ

0ẐG�1T

��1 � const�G�1T ~Z 0 ~ZG�1T

�
�
�
G�1T Ẑ

0ẐG�1T

� = Op �T�1=2� :
To show the last result, let q :=

�
G�1T

~Z 0 ~ZG�1T

�
�
�
G�1T Ẑ

0ẐG�1T

�
. The upper left element of

q, say q11, satis�es q11 = T�2~u0�1~u�1� T�2û0�1û�1 = Op(T�1=2); see (A.15). The lower right
block is given by q22 = T�1 ~U 0p ~Up � T�1Û 0pÛp and satis�es jjq22jj = Op(pT

�1), as in HHLT,
proof of Lemma 6. Similarly, the lower left block of q, is such that

jjq21jj = jjT�3=2 ~U 0p~u�1 � T�3=2Û 0pû�1jj = Op
�
p1=2T�1

�
,

which implies, as p = o(T 1=2), that jjqjj = Op(T�1=2).
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Regarding the term G�1T ~Z 0�~u�G�1T Ẑ 0�û, we can again proceed as in HHLT, proof of Lemma
6, to show that

G�1T ~Z 0�~u�G�1T Ẑ
0�û

 =  1
T ~u

0
�1�~u� 1

T û
0
�1�û

1
T 1=2

~U 0p�~u� 1
T 1=2

Û 0p�û

 = Op(p1=2=T 1=2):
Finally, similarly to HHLT (Lemmas 5 and 6) one can show that jj(G�1T Ẑ 0ẐG

�1
T )

�1jj and
jjG�1T ~Z 0�~ujj are both ofOp (1), which lead to the desired result, jjGT (~a� â) jj = Op(p1=2=T 1=2).

A.2 Proof of Theorem 2 and Related Results

In this section we provide the proof of Theorem 2. Before doing so, we need to establish
some preliminary results useful for determining the asymptotic distribution of the various
bootstrap statistics; see section A.2.1. In section A.2.2 we provide some results for the
bootstrap versions of the MZt� and MZ

tb
� (�0; �c) statistics. The proof of Theorem 2 is given

in section A.2.3.
We denote the probability distribution induced by the bootstrap (i.e., conditional on the

original data) by P �. Recall that w!p denotes weak convergence in probability; i.e., X�
T
w!p X

if supx2R jP � (XT � x)� P (X � x)j ! 0, in probability. We also make use of the following
notation (see Chang and Park, 2003, p.386). We say that X�

T = o
�
p (1) if P

� (jX�
T j > �)

p! 0

for any � > 0. Similarly, X�
T = O�p (1) means that for any � > 0 we can �nd a constant M

such that for T large enough, P � (jX�
T j > M) < �, in probability. Notice that most of the

standard results for op and Op extend to o�p and O
�
p, see e.g. Lemma 1 in Chang and Park

(2003). Results involving both op,Op and o�p,O
�
p are also possible. For instance, if X

�
T = o

�
p (1)

and XT = op (1), then it is easy to show that X�
TXT = o

�
p (1). Similarly, if X

�
T = O

�
p (1) and

XT = op (1), then it can be shown that X�
TXT = o

�
p (1).

A.2.1 Preliminary Lemmata

The following Lemma contains a bootstrap FCLT which is necessary in order to derive the
asymptotic distributions of the bootstrap statistics considered. The Lemma can be proved
as in Cavaliere and Taylor (2008), proof of Theorem 2.

Lemma A.3 Let S�T (�) := T�1=2u�bT �c = T
�1=2PbT �c

t=1 "
�
t . Moreover, let u

�
t;�c := u

�
t�(1� �c=T )u�t�1

for t = 2; :::; T and u�t;�c := u
�
t for t = 1. Finally, let S

�
T;�c (�) :=

PbT �c
t=1 u

�
t;�c. Then, S

�
T (�)

w!p

W � (�) and S�T;�c (�)
w!p W

� (�) + �c
R �
0W

� (s) ds.

A.2.2 Bootstrap Statistics when there is no Uncertainty about the Break date

Theorem A.3 below shows that a wild bootstrap version of the MZt� test mimics the correct
asymptotic distribution if there are no trend breaks (0 = 0). Similarly, in Theorem A.4
below it is proved that a wild bootstrap version of the MZtb� (�0) (i.e., the break date is
known) test delivers the correct asymptotic distribution.
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Theorem A.3 (Cavaliere and Taylor, 2008, Theorem 2) Under the conditions of The-

orem 2(i), MZt��
w!p
��
0;�c;t;�
1 .

Proof. See Cavaliere and Taylor (2008).

Theorem A.4 Under the conditions of Theorem 2(ii), MZtb�� (�0)
w!p
��
0;�c;tb;�
1 (�0).

Proof. The theorem can be proved by using Lemma A.3 and by extending the proof of
Theorem 2 in Cavaliere and Taylor (2008) to the case of a broken linear trend. This extension
is tedious but straightforward and is therefore omitted for brevity.

A.2.3 Proof of Theorem 2

Part (i). Let 0 = 0. We need to establish that���P � (MZ� (��)� � x)� P (��0;�c;t;�1 � x)
��� p! 0 (A.16)

since, by Polya�s theorem, the continuity of the limiting cdf P (��0;�c;t;�1 � �) implies that (A.16)
holds uniformly over all x 2 R. We have that���P � (MZ� (��)� � x)� P (��0;�c;t;�1 � x)

��� �
��P � (MZ� (��)� � x)� P

�
MZt�� � x

���
+
���P � �MZt�� � x

�
� P (��0;�c;t;�1 � x)

��� :
The �rst term in the right member of the preceding inequality is of op (1). Speci�cally, since,
conditionally on the data, I (�� < �L) is non-random, we have that

P � (MZ� (��)� � x) = P �
�
MZt�� � x

�
I (�� < �L) + P �

�
MZtb�� (�� ; �c) � x

�
I (�� � �L)

= P �
�
MZt�� � x

�
+
�
P �
�
MZtb�� (�� ; �c) � x

�
� P �

�
MZt�� � x

��
I (�� � �L) :

Since ��
p! 0 when 0 = 0 (Lemma 1), it holds that I (�� � �L)

p! 0 and, hence, that��P � (MZ� (��)� � x)� P �
�
MZt�� � x

��� � I (�� � �L) p! 0:

This in turn implies that
���P � (MZ� (��)� � x)� P

�
��
0;�c;t;�;0
1 � x

����= ���P � �MZt�� � x
�
� P

�
��
0;�c;t;�;0
1 � x

����
+op (1) = op (1), since, by Theorem A.3,

���P � �MZt�� � x
�
� P (��0;�c;t;�1 � x)

��� ! 0, in proba-

bility. This proves Theorem 2(i).
Part (ii). Let 0 6= 0. As in the proof of part (i), we need to establish that���P � (MZ� (��)� � x)� P (��0;�c;tb;�1 (�0) � x)

��� p! 0: (A.17)

Using Theorem A.4 and the same arguments as in the proof of part (i) it is straightforward
to see that

jP � (MZ� (��)� � x)� P
�
��
0;�c;tb;�
1 (�0) � x

�
j �

���P � (MZ� (��)� � x)� P �
�
MZtb�� (��) � x

����
+
���P � �MZtb�� (��) � x

�
� P �

�
MZtb�� (�0) � x

����+ ���P � �MZtb�� (�0) � x
�
� P

�
��
0;�c;tb;�
1 (�0) � x

����
=
���P � �MZtb�� (��) � x

�
� P �

�
MZtb�� (�0) � x

����+ op (1) :
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Hence, (A.17) follows by proving that
��P � �MZtb�� (��) � x

�
� P �

�
MZtb�� (�0) � x

���! 0, in
probability. This is implied by the following lemma.

Lemma A.4 Under the conditions of Theorem 2(ii), P �
�
jMZtb�� (��)�MZtb�� (�0) j > �

�
!

0, in probability.

Proof of Lemma A.4. The proof closely follows the proof of Theorem 1(ii), the only di¤erence
being that we are now dealing with bootstrap statistics. In matrix form, the bootstrap sample
can be written as y� = u� or, after taking the quasi-GLS di¤erences, as y��c = u

�
�c . As previously,

let X := (X1 (�0) ; : : : ; XT (�0))
0, X�c := (X�c;1 (�) ; : : : ; X�c;T (�))

0, �X := (X1 (��) ; : : : ; XT (��))
0

and �X�c := (X�c;1 (��) ; : : : ; X�c;T (��))
0. The bootstrap sample, detrended at �0, is û� := y��X�̂

�
�c ,

with �̂
�
�c the OLS estimator of the regression coe¢ cients obtained by regressing of y

�
�c on X�c.

Similarly, the bootstrap sample, detrended at �� , is �u� := y�� �X��
�
�c , with ��

�
�c the OLS estimator

of the regression coe¢ cients obtained by regressing of y��c on �X�c. The two statistics of interest
are

MZtb�� (�0; �c) :=
û�2T =T � ŝ�2AR (p)
2û0��1û

�
�1=T

; MZtb�� (�� ; �c) :=
�u�2T =T � �s�2AR (p)
2�u0��1�u

�
�1=T

with û��1 :=
�
û�1; :::; û

�
T�1

�0, �u��1 := �
�u�1; :::; �u

�
T�1

�0 and ŝ�2AR (p) ; �s�2AR (p) the usual long run
variance estimators, computed on the bootstrap sample.

As for the proof of Theorem 1, a useful result is that, as T diverges to positive in�nity,

DT (��
�
�c � �̂

�
�c) = O

�
p

�
T�1=2

�
(A.18)

which implies that
T�1=2 max

t=1;:::;T
(û�t � �u�t ) = O�p

�
T�1=2

�
. (A.19)

Using results in HHLT (proof of Lemma 4), see also the proof of Theorem 1, to show (A.18)
we need to prove that D�1T �X 0

�cu
�
�c �D�1T X 0

�cu
�
�c = Op

�
T�1=2

�
. But this follows from

D�1T
�X 0
�cu
�
�c�D�1T X

0
�cu
�
�c =

 
0; 0; T�1=2

TX
t=1

(DT�c;t (��)�DT�c;t (�0))u��c;t

!
= O�p

�
T�1=2

�
(A.20)

since, by letting (without loss of generality) �� < �0, it holds that

T�1=2
TX
t=1

(DT�c;t (��)�DT�c;t (�0))u��c;t

= T�1=2
X

b��T c<t�b�0T c
(1 + �c (t� 1� b��T c) =T )u��c;t + �c

b�0T c � b��T c
T

T�1=2
X

b�0T c<t�T
u��c;t

= O�p

�
T�1=2

�
+O�p

�
T�1

�
= O�p

�
T�1=2

�
as b�0T c � b��T c is of Op (1) :

Equation (A.19) implies (cf. proof of Theorem 1) that

T�1
�
û�2T � �u�2T

�
= o�p (1) . (A.21)
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Moreover, since

T�2
�
û�0�1û

�
�1 � �u�0�1�u��1

�
= T�2

�
��
0
�c
�X 0
�cu
�
�c � �̂

�0
�c X

0
�cu
�
�c

�
+ o�p (1)

= T�2�̂
�0
�c DT

�
D�1T

�X 0
�cu
�
�c �D�1T X

0
�cu
�
�c

�
� T�2

�
DT

�
�̂
�
�c � ���c

��0
D�1T

�X 0
�cu
�
�c + o

�
p (1) ,

the results in (A.18), (A.20), DT �̂
�
�c = O

�
p (1) and D

�1
T
�X 0
�cu
�
�c = O

�
p

�
T 1=2

�
together yield that

T�2
�
û�0�1û

�
�1 � �u�0�1�u��1

�
= o�p (1) . (A.22)

The proof is therefore completed by showing that ŝ�2AR (p) � �s�2AR (p) = o�p (1). We prove this
result for p = 0; the proof extends mechanically to any p which is of o

�
T 1=2

�
. When p = 0,

ŝ�2AR (0)� �s�2AR (0) = T�1
�
�û�0�û� ���u�0��u�

�
+ T�1

 �
�u�0�1��u

��2
�u�0�1�u

�
�1

�
�
û�0�1�û

��2
û�0�1û

�
�1

!
(A.23)

For the term û�0�1�û
�
�1 � �u�0�1��u��1, we proceed as in HHLT, proof of Lemma 5(iii), to show

T�1
�
û�0�1�û

�
�1 � �u�0�1��u��1

�
= o�p (1) (A.24)

follows from (A.18) and from the fact that

T�3=2
b�0T cX

t=b��T c+1
û�t�1 = o

�
p (1) . (A.25)

The result in (A.25) can be proved by noticing that T�3=2
Pb�0T c
t=b��T c+1 û

�
t�1 � T�1(b�0T c �

b��T c)maxt=0;:::;T T�1=2jû�t j = o�p (1), since ����0 = op (1) andmaxt=0;:::;T T�1=2jû�t j) = O�p (1).
Hence, (A.24) holds.

For the term T�1 (�û�0�û� ���u�0��u�), we can make use of the decomposition

T�1
�
�û�0�û� ���u�0��u�

�
= T�1

TX
t=1

(��u�t ��û�t )��u�t + T�1
TX
t=1

�û�t (��u
�
t ��û�t ) :

(A.26)
For the �rst term in the right member of (A.26), straightforward calculations (cf. HHLT,
proof of Lemma 5(ii)) lead to the equality

T�1
TX
t=1

(��u�t ��û�t )��u�t =
�
�̂
�
�c � ��

�
�c

�
T�1

�
�u�T � �u�p�1

�
+ (̂��c � ���c)T�1

�
�u�T � �u�b�0T c

�
� (��c � 0)T�1

�
�u�b�0T c � �u

�
b~�T c

�
which is obviously of o�p (1), as required. The second term in the right member of (A.26)
can be handled similarly, hence implying that T�1 (�û�0�û� ���u�0��u�) = o�p (1). Hence,
(A.23) holds. This result, together with (A.21) and (A.22), imply that MZ tb � (�� ; �c) =

MZ tb � (�0; �c) + o�p (1), which proves the lemma and completes the proof.
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Table 1. Finite sample size; ARMA shocks; T = 150; shift in volatility.

DGP φ θ MZα(τ̄) MSBα(τ̄) MZt(τ̄) t(τ̄) MZα(τ̄)∗ MSBα(τ̄)∗ MZt(τ̄)∗ t(τ̄)∗

(i) 0.0 0.0 0.064 0.064 0.063 0.090 0.079 0.078 0.079 0.067
0.5 0.0 0.119 0.121 0.116 0.088 0.130 0.130 0.130 0.062
−0.5 0.0 0.046 0.045 0.047 0.080 0.051 0.050 0.052 0.056

0.0 0.5 0.099 0.098 0.101 0.122 0.110 0.108 0.111 0.092
0.0 −0.5 0.093 0.094 0.090 0.060 0.108 0.109 0.107 0.040

(ii) 0.0 0.0 0.166 0.180 0.156 0.129 0.064 0.065 0.061 0.025
0.5 0.0 0.241 0.264 0.225 0.112 0.112 0.114 0.109 0.017
−0.5 0.0 0.125 0.134 0.121 0.114 0.041 0.041 0.040 0.018

0.0 0.5 0.160 0.168 0.154 0.141 0.071 0.069 0.071 0.043
0.0 −0.5 0.215 0.235 0.204 0.103 0.095 0.098 0.093 0.013

(iii) 0.0 0.0 0.026 0.026 0.026 0.050 0.041 0.040 0.041 0.038
0.5 0.0 0.058 0.060 0.057 0.046 0.075 0.076 0.074 0.031
−0.5 0.0 0.015 0.015 0.017 0.045 0.024 0.023 0.025 0.030

0.0 0.5 0.053 0.053 0.053 0.078 0.067 0.066 0.068 0.060
0.0 −0.5 0.047 0.048 0.046 0.030 0.062 0.063 0.061 0.021

(iv) 0.0 0.0 0.083 0.079 0.086 0.102 0.026 0.026 0.026 0.014
0.5 0.0 0.104 0.099 0.106 0.094 0.042 0.042 0.042 0.011
−0.5 0.0 0.055 0.052 0.056 0.099 0.016 0.015 0.016 0.012

0.0 0.5 0.082 0.079 0.085 0.134 0.036 0.035 0.036 0.033
0.0 −0.5 0.102 0.097 0.105 0.093 0.041 0.041 0.041 0.009

(v) 0.0 0.0 0.024 0.024 0.025 0.051 0.035 0.035 0.036 0.034
0.5 0.0 0.058 0.060 0.058 0.046 0.069 0.069 0.068 0.030
−0.5 0.0 0.017 0.017 0.018 0.046 0.024 0.023 0.025 0.029

0.0 0.5 0.053 0.051 0.053 0.081 0.065 0.063 0.066 0.056
0.0 −0.5 0.045 0.046 0.045 0.031 0.056 0.056 0.057 0.019

(vi) 0.0 0.0 0.047 0.045 0.050 0.065 0.030 0.030 0.030 0.022
0.5 0.0 0.073 0.069 0.074 0.062 0.045 0.045 0.045 0.015
−0.5 0.0 0.031 0.028 0.032 0.059 0.016 0.015 0.016 0.018

0.0 0.5 0.055 0.052 0.057 0.081 0.038 0.038 0.038 0.034
0.0 −0.5 0.066 0.063 0.069 0.051 0.041 0.041 0.042 0.012

(vii) 0.0 0.0 0.030 0.030 0.029 0.053 0.040 0.040 0.040 0.036
0.5 0.0 0.060 0.061 0.058 0.047 0.067 0.067 0.065 0.028
−0.5 0.0 0.020 0.019 0.019 0.046 0.023 0.023 0.023 0.027

0.0 0.5 0.056 0.055 0.055 0.080 0.062 0.062 0.062 0.054
0.0 −0.5 0.047 0.047 0.047 0.034 0.056 0.056 0.056 0.020

(viii) 0.0 0.0 0.146 0.154 0.137 0.150 0.035 0.035 0.036 0.018
0.5 0.0 0.209 0.223 0.198 0.119 0.071 0.075 0.069 0.007
−0.5 0.0 0.104 0.109 0.100 0.133 0.023 0.024 0.023 0.012

0.0 0.5 0.133 0.138 0.129 0.158 0.046 0.048 0.047 0.035
0.0 −0.5 0.186 0.198 0.178 0.107 0.055 0.058 0.055 0.005

Note: The numbered DGPs denote: (i) No break in trend, σ1/σ0 = 1; (ii) No break in trend, σ1/σ0 = 5, τσ = 0.7; (iii)
Break in trend, γ′

0 = 1, τ0 = 0.3, σ1/σ0 = 1; (iv) Break in trend, γ′
0 = 1, τ0 = 0.3, σ1/σ0 = 1/5, τσ = 0.3; (v) Break in

trend, γ′
0 = 1, τ0 = 0.5, σ1/σ0 = 1; (vi) Break in trend, γ′

0 = 1, τ0 = 0.5, σ1/σ0 = 1/5, τσ = 0.5; (vii) Break in trend,
γ′

0 = 1, τ0 = 0.7, σ1/σ0 = 1; (viii) Break in trend, γ′
0 = 1, τ0 = 0.7, σ1/σ0 = 5, τσ = 0.7.
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