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Abstract

In this paper, we propose new tests for long memory in stationary and nonstationary time
series possibly perturbed by short-run noise which may be serially correlated. The tests
are all based on semiparametric estimators and exploit the self-similarity property of long
memory processes. We offer simulation results that show good size properties of the tests,
with power against spurious long memory. An empirical study of daily log-squared returns
series of exchange rates and DJIA30 stocks shows that indeed there is long memory in
exchange rate volatility and stock return volatility.
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1 Introduction

Recent interest in the properties of financial markets has supported the notion that volatility
has long memory, is fractionally integrated! or self-similar, see e.g. Calvet, Fisher & Mandelbrot
(1997), Fisher, Calvet & Mandelbrot (1997) and Mandelbrot, Fisher & Calvet (1997). The three
definitions are not exactly equivalent. Nonetheless, if a process has long memory, is fractionally
integrated or self-similar, its autocovariance function decays hyperbolically as y(h) ~ ¢y, |h|2d*1
as h — oo, or equivalently its spectral density satisfies f (A) ~ cx [A| 7% as A — 0, where ¢,
and c) are constant proportionality factors, and d is the long memory parameter, parameter of
fractional integration or parameter of self-similarity, see Beran (1994) and Taqqu (2003).

Neglecting a normalizing constant, a definition of self-similarity is that nonoverlapping
temporal aggregates of the original series, see eqn. (14) below, are distributed as the original
series, and hence, their autocorrelation functions or spectral densities are asymptotically equal.
Two of the first self-similar and continuous-time fractionally integrated processes introduced
into statistics were the fractional Brownian motion (fBm) and its increments, the fractional
Gaussian noise (fGn), see Mandelbrot & van Ness (1968). Later, Granger & Joyeux (1980)
and Hosking (1981) introduced an extension of the fBm in discrete-time and named it the au-
toregressive fractionally integrated moving average (ARFIMA) process, which is often referred
to in the literature as a long memory process. More recently, temporal aggregation for long
memory processes has been considered. Beran & Ocker (2000) and Man & Tiao (2001, 2006)
consider Gaussian ARFIMA models, and Souza (2003a, 2003b, 2004) present more general re-
sults all showing that temporal aggregation only acts to modify the short memory properties,
and therefore, a true long memory processes is defined as a process that has the same memory
at all levels of sampling frequency.

This phenomenon inspired Ohanissian, Russell & Tsay (2008) to formalize a test for self-
similarity and naming it more popularly a test for long memory. In the following, we will use
the terms self-similar, fractionally integrated or long memory process liberally, covering the
same property that the spectral density of the underlying process is only assumed to decay
according to a power law near frequency zero, see eqn. (1) below.

Even though the past two decades have witnessed an increasing interest in fractionally
integrated processes as a convenient way of describing the long memory properties of many
time series, a debate has begun concerning the possibility of confusing long memory processes
and processes which are capable of exhibiting a hyperbolic decaying autocovariance function
without being self-similar. We refer to these processes as being spurious long memory processes.
It has been known for some years that stationary short memory processes contaminated by
level shifts, Markov switching models with independent, identically distributed (iid) regimes or
generalized autoregressive conditional heteroskedasticity (GARCH) regimes, white noise models
with deterministic trends and higher order factor generalized autoregressive moving average
(GARMA) models are capable of exhibiting spurious long memory, see e.g. Bhattacharya,
Gupta & Waymire (1983), Woodward, Cheng & Gray (1998), Diebold & Inoue (2001), Granger

'See among others Ding, Granger & Engle (1993), Baillie, Bollerslev & Mikkelsen (1996), Comte & Renault
(1998), Ray & Tsay (2000), Andersen, Bollerslev, Diebold & Ebens (2001), Andersen, Bollerslev, Diebold &
Labys (2001, 2003), Wright (2002), Hurvich & Ray (2003) and Arteche (2004b).



& Hyung (2004), and Perron & Qu (2004). Since inference under a stationary true long memory
model is different from the spurious case, it is very important to be able to distinguish between
them. Ohanissian, Russell & Tsay (2003) have shown in a simulation study that misspecifying
the long memory property of asset return volatility results in a serious mispricing of call options.
This result is an example of the well-known issue that long-lived impacts of shocks found in
long memory models have very different impacts on asset pricing compared to short memory
models.

Exploiting the long memory parameter’s invariance to temporal aggregation, Ohanissian
et al. (2008) derived the joint distributional properties of the log-periodogram regression (LPR)
estimator of Geweke & Porter-Hudak (1983) and Robinson (1995b) applied to different aggrega-
tion levels of the original series, and introduced a formal test of true long memory. A simulation
study showed that the size of the test and the power against the spurious long memory models
mentioned above are very good.?

However, as mentioned by Ohanissian et al. (2008), the methodology is mostly directed
towards high frequency data because of the long time series needed to facilitate aggregation,
but many financial time series with much shorter length also exhibit long memory, see e.g. the
surveys by Robinson (1994b), Baillie (1996) and Henry & Zaffaroni (2003) and the references
therein for some examples. Hence, to be general, the methodology should be applicable to
smaller samples. Furthermore, Ohanissian et al. (2008) extend their test to long memory
signal plus added noise models (perturbed fractional processes). However, especially in small
samples, it should be noted that the LPR estimator may be substantially downward biased
when the noise-to-signal ratio is high, and that the bias increases as the bandwidth m, used
in the estimator, increases, see Deo & Hurvich (2001, 2002). Therefore, especially in finite
samples, the LPR estimates of the long memory in the temporally aggregated series and their
variances might be significantly different depending on the properties of the noise. The issue
about the variance is to some extent dealt with in Ohanissian et al. (2008) since they use the
variance approximation recommended by Geweke & Porter-Hudak (1983) in their test.

In this paper, we extend the idea of Ohanissian et al. (2008) in several important directions.
We first extend the test based on the LPR estimator to nonstationary Gaussian time series
and then, by applying tapering, we avoid the assumption of Gaussianity. This does, however,
increase the asymptotic variance in the distributional result. Secondly, we derive the local
Whittle (LW) of Kiinsch (1987) and Robinson (1995a) analogue of the test in Ohanissian et al.
(2008). Basing the test on the local Whittle estimator suggested by Kiinsch (1987) has the
advantage that Gaussianity is not assumed and that theoretically it should have better power
since the variance is smaller. Thirdly, we further derive a test that is robust to cases where
the signal process (potentially serially correlated) is a long memory process with memory pa-
rameter d which is perturbed by an additive noise term which may be serially correlated. More
specifically, we use the local polynomial Whittle with noise? (LPWN) framework set forward

2The power against stationary short memory processes contaminated by level shifts can also indirectly be
induced from the paper by Perron & Qu (2004) who showed that applying the log-periodogram estimator on
such processes results in very different (spurious) long memory estimates depending on the bandwidths.

3Includes both the LW estimator and the local Whittle with noise (LWN) estimator of Hurvich & Ray (2003)
and Hurvich, Moulines & Soulier (2005, parameterization (P1)) as special cases.



by Frederiksen, Nielsen & Nielsen (2008). Frederiksen et al. (2008) proposed to approximate
both the spectrum of the short-memory component of the signal and the spectrum of the
perturbation by polynomials of even and finite order in a shrinking neighborhood of the zero
frequency, instead of constants, thereby obtaining a reduction depending on the smoothness of
the polynomials. By approximating the short-memory component by a polynomial, Andrews &
Sun (2004) showed for non-perturbed processes that it is possible to reduce the theoretical bias
of the classical LW estimator if the spectral density is sufficiently smooth. Frederiksen et al.
(2008) extended this to include potentially perturbed processes by modeling the spectrum of
the perturbation in the same manor, see Frederiksen et al. (2008) for further details.

Although the popular LPR estimator and the LW estimator both preserve consistency
and asymptotic normality when applied to perturbed fractional processes, as shown by Deo
& Hurvich (2001) and Arteche (2004b), these estimators can be severely biased since they do
not take the perturbation into account. Indeed, for non-perturbed processes the bias of the
standard semiparametric frequency domain estimators is of order O(A\2), where \,,, = 27m/n
and n is the sample size, and m is a user chosen bandwidth number, which tends to infinity
slower than n such that \,, — 0, whereas the leading bias term when there is perturbation is
of order O(A?%). As shown in Deo & Hurvich (2001) and Arteche (2004b), this bias is typically
negative and can be very large (note that d < 1). Therefore, estimating long memory in
perturbed time series can be a challenging task and calls for an estimator which explicitly
accounts for the perturbation.

To alleviate the problem of the sometimes quite large difference between the asymptotic
variance and the sample variance, see e.g. Hurvich & Ray (2003) and Ohanissian et al. (2008),
we use finite sample approximations of the asymptotic variances of the estimators in the im-
plementation of the tests. Finally, we show that all the applied tests inherit the structure of
the covariance matrix derived in Ohanissian et al. (2008).

Simulations show that all the tests have good size properties and power against spurious
long memory alternatives. In conclusion, an empirical study of the 30 Dow Jones Industrial
Average (DJIA) stocks and the DEM/USD, YEN/USD, and USD/GBP exchange rates are
implemented. The empirical analysis shows that there is indeed long memory in volatility.

The remainder of the paper is organized as follows. Section 2 gives an introduction to
semiparametric estimation in fractional processes potentially perturbed by some noise term
that may be serially correlated. Section 3 introduces the setup of temporal aggregation and
some auxiliary results. The limiting distribution results for the semiparametric estimators of
long memory under temporal aggregation are shown in section 4. In section 5, we analyze the
tests with respect to finite sample size and power. Finally, section 6 provides an empirical
study of daily log-squared returns series of DJIA stocks and the DEM/USD, YEN/USD, and
USD/GBP exchange rates. Finally, section 7 offers some concluding remarks. All proofs are in
Appendix A, and Appendix B contains the specification of the power simulation study.



2 Semiparametric estimation of perturbed fractional processes
For semiparametric frequency domain estimators, it is common to use the approximation
f2(A) ~GA 2 as A — 0T, (1)

where G is a constant, and the symbol "~" means that the ratio of the left and right hand sides
tends to one in the limit. Thus, the semiparametric estimators enjoy robustness to short-run
dynamics since they use only information from the periodogram ordinates in the vicinity of the
origin. Note that the approximation in (1) is valid for a broad range of processes, where e.g.
the ARFIMA process is a special case, since it only assumes that the spectral density decays
according to a power law near frequency zero.

Probably the most commonly applied semiparametric estimator is the LPR estimator intro-
duced by Geweke & Porter-Hudak (1983) and analyzed in detail by Robinson (1995b). Taking
logs in (1) and inserting sample quantities, we get the approximate regression relationship

log I, (\j) = log G — 2dlog \; + error, (2)

where \; = 2mj/n are the Fourier frequencies, and I, (\) = lw.(\)|? is the periodogram of z,
where w,(\) = \/ﬁ S, ze is the discrete Fourier transform of z;. The LPR estimator

is defined as the OLS estimator in the regression (2) using j = 1,...,m, where m is a user
chosen bandwidth number which tends to infinity as n — oo but at a slower rate. Note that
the estimator is invariant to a non-zero mean since j = 0 is left out of the regression.

Under suitable regularity conditions, including z; being Gaussian (later relaxed by Velasco
(2000)) and a restriction on the bandwidth, Robinson (1995b) derived the asymptotically nor-
mal limit distribution for the LPR estimator

Jm (CZLPR _ d) 4 N (0,72/24) , (3)

when d is in the stationary and invertible range (—1/2,1/2). Recently, Kim & Phillips (2006)
and Velasco (1999b) demonstrated that the range of consistency is d € (—1/2, 1] and the range
of asymptotic normality is d € (—1/2,3/4), where the distributional result in (3) still holds
if sufficient trimming of the very first periodogram ordinates is applied, see Velasco (19990,
Theorem 3) for details.

By assuming that z; is a fourth order stationary linear process and applying tapering,
Velasco (2000) avoided the Gaussianity assumption. The tapering asymptotically removes the
bias of the periodogram ordinates introduced by not assuming Gaussianity and thus paves the
way for asymptotic normality results. Defining the tapered periodogram,

: (4)

where wl (A\;) = (2r 1, h2) "L SO0 | hezrexp(idjt) and then interchanging I, ();) with I7();)
in (2), the tapered LPR estimator (TLPR) is defined as the OLS estimator using j = 3,6,...,m,
where m is divisible by 3. If no tapering is used (h; = 1) and the summation is j = 1,2,...,m,
then the TLPR reduces to the classical (non-tapered) LPR estimator.

IT(\) = |wT(Aj)\2

z



Compared to the LPR estimator, the advantage of the taper is that Gaussianity of the
underlying series is not assumed. However, the asymptotic variance is increased by a factor 3
caused by basing the estimator on only a third of the Fourier frequencies, and from Velasco
(2000) we know that

m'2(drppr — d) % N(0,372/24). (5)

Another popular semiparametric estimator which does not assume Gaussianity of z; is
the local Whittle (LW) approach suggested by Kiinsch (1987) and later analyzed in detail by
Robinson (1995a). The LW estimator is defined as the minimizer of the (negative local Whittle

likelihood) function
_ i Zm —2d I, ()‘j)

i.e.

R ) 1 m R 1 m
drw = argmin | logG(d) —2d— log); |, Gd) == ML, (\). 7
Lw = argm g G(d) m;gy (d) m;] (A5) (7)

For D C (—1/2,1/2), Robinson (1995a) showed that
mY*(dpw — d) % N(0,1/4). (8)

Like the LPR estimator, the range of consistency and the range of the above asymptotic
normality result have later been shown by Velasco (1999a) and Phillips & Shimotsu (2004) to
be d € (—1/2,1] and d € (—1/2,3/4), respectively.

To reduce the asymptotic bias of the standard LW estimator, Andrews & Sun (2004) have
suggested the local polynomial Whittle (LPW) estimator, where the constant, log G, in (6) is
replaced by the polynomial log G — 27111 GTAJQ-T. That is, by modeling the logarithm of the
spectral density of the short-run dynamics in the vicinity of the origin by a polynomial instead
of a constant, we reduce potential bias introduced by short-run contamination of the signal. As
shown by Andrews & Sun (2004), this method does, however, increase the asymptotic variance
of d in (8) by a multiplicative constant.

For non-perturbed fractional processes, the asymptotic bias of CZLW, JL PR, and a?TLpR is
of order O(X\2), and for dppyw it is of order O()\ﬁin{s’%m}), where s is a measure of the
smoothness of the spectral density near frequency zero.

In this paper, we will focus on perturbed fractional processes

Zt = Yt + Wy, 9)

where the signal process y; is a long memory process with memory parameter d, which is
perturbed by the additive noise term w;. These processes have found extensive use in modeling
long memory characteristics of observed time series. In particular, they are a version of the
random walk plus noise model, except that the signal here is a long memory process rather
than a random walk, see e.g. Harvey (1989). Since the analyzed estimators are functions of



the periodogram at nonzero frequencies only, we assume without loss of generality® that the
signal process y; has zero mean.

Assuming that the processes {y;} and {w;} are independent, the spectral density of z; can
be written as

) =370, (0 + 6,00 = 376 (S0 el (10)
Y Y

where )\*Qd(by (A) is the spectrum of the signal y;, ¢,,()\) is the spectrum of the noise term
wy, and d is the degree of long memory in y; or equivalently in z;,. Contrary to the case
of non-perturbed processes, applying the above-mentioned estimators for perturbed fractional
processes, the bias is of order O(A\2?), and, as shown by e.g. Deo & Hurvich (2001), Hurvich &
Ray (2003) and Arteche (2004b), this bias is typically negative and can be very severe.

More specifically, for perturbed fractional processes we have the spectral representation
(10) rather than (1). There are two main consequences: first, the extra additive term in
(10) needs to be taken into account to avoid serious asymptotic bias as mentioned above,
and second, the rate of convergence of the estimators is reduced if the extra term is not
modeled. The latter follows because the choice of bandwidth parameter is severely constrained
for perturbed fractional processes when the perturbation term in (10) is not modeled. Thus, for
non-perturbed processes the bandwidth requirement is typically m = 0(n4/ %), whereas (apart
from logarithmic terms) for perturbed processes it is m = o(n?¥(1+24). Since d < 1 and the
estimator is y/m—consistent, this is a serious constraint.

Frederiksen et al. (2008) therefore propose to approximate (10) locally near the zero fre-
quency by®

g(\) = A2 (1 + By (B, A) + A2 Ry (0., A)) , (11)

where hy(6,, ) = S5 0,002, hup(Bu, ) = 506,02, It R, = 0, we set hy(6,,A) = 0.
Defining also the polynomial A(d, 6, \) = hy (0, \) + A2 hy, (04, \) with 6 = (0, Hﬁw) this yields
the (concentrated) likelihood

Q(d,0) = logC(d,0) + Zlog()\_zd(1+h(d0)\))) (12)
j=1
R DAL (N
G0 = LY sy "
j=1

with estimates,
(CZ, @) = argmin Q (d,0),
(d,0)eDx©
where O is a compact and convex set in R+, R = Ry + Ry, and D = [dy,ds] with 0 < d; <
dy < 1. Frederiksen et al. (2008) call this estimator the local polynomial Whittle with noise
(LPWN) estimator.

*In the nonstationary case, the zero mean assumption implies that z; is free of linear trends, which does
entail a loss of generality in that case.
®Note that #,(A) and ¢,,(A) are symmetric around A = 0 and are therefore approximated by even polynomials.



Note that h(6,\) = 0 is the standard local Whittle specification in (6), which does not
explicitly account for the perturbation. For R, = Ry, = 0, we get h(0,\) = 0, where ¢, (A)
and ¢,,(A) in (10) are both modeled locally by constants. This is the local Whittle with noise
(LWN) estimator of Hurvich & Ray (2003) and Hurvich et al. (2005, parameterization (P1)).
Thus, the above model parameterization includes the standard LW estimator and the LWN
estimator as special cases.

3 Temporal aggregation and the asymptotic properties

The framework for the test for spurious long memory builds on the self-similarity property of
fractionally integrated processes, see Mandelbrot & van Ness (1968). If the time series z; has
long memory, then the memory will be the same at all levels of sampling frequency, and thus
the long memory parameter should be invariant to temporal aggregation of the original series,
see e.g. Souza (2003a, 20035, 2004).

Defining the k£ period nonoverlapping temporal aggregates of z; as

k

k n
Ti,t) = sz(t71)+i) t= 17"'7%7 (14)
i=1
Tikg and z; should have the same memory. Note that the number of periodogram ordinates,

mk) = {(n/ k:)‘s], used in the estimation of the memory parameter d depends on the length of

the series, and since temporal aggregation decreases the length, we have that m®«) > (k)
for k, < k,. Furthermore, changing the length of the series also implies different frequencies,
Aj, used in the estimation of d; i.e. Ajx, = %j such that A, = %)‘jﬂkv'

The self-similarity property implies that there is a straightforward relationship between the
periodogram of the original series, I.();), and the periodogram of the k period nonoverlapping

temporal aggregates, Ig? (Aj). Defining

n/k 2

k
k .
1) = 5 E:(E :Zk(t—nﬂ') exp(iA;t)
t=1 =1

k| i
— > " zexp(im; [t/k])

t=1

for 1 < j < n/k, where |x| denotes the smallest integer greater than or equal to x, we state
the following result.

Lemma 1 Let z; be a long memory process with spectral demsity satisfying the assumptions
outlined in the subsections regarding the individual semiparametric estimators, then for the
k’th aggregation level
k J
19 0) = k1. 0y) = 0, (£

where k =1 —2d ford € (—=1/2,1/2) and k =2 —2d ford € [1/2,1).



Notice that Lemma 1 extends the result of Ohanissian et al. (2008) to the nonstationary case,
and is used in establishing the limiting distributional results for arbitrary linear combinations
of LPR and TLPR estimates of long memory obtained using temporally aggregated series, see
Theorem 1 and Theorem 2 below. In order to prove similar results for the LPWN estimators,
we need the following lemma.

Lemma 2 Under the assumptions of Lemma 1, we have that
. (k) .
J I (A) L (N) j
FE ) —kf.(\) =0 () and - =0, (= ).
2 ( J) ( j) p nk T(/:) ()\j) fz ()\j) p nk

This furthermore implies that for any two arbitrarily chosen aggregation levels, k, < k, we
have

. (kv) . (ku) . 1
n ‘rzv ()\j) Tzu ()‘J)

where k =1 —2d ford € (—=1/2,1/2) and k =2 —2d ford € [1/2,1).

Now to use the fact that the memory of the original series and the k period nonoverlapping
temporal aggregates are equal, and thus to derive a formal test, it is necessary to know the
joint distribution of the long memory estimates for different aggregation levels. Depending on
the estimator, applying results for empirical spectral processes (see Soulier (2001), Moulines
& Soulier (2003) or Hurvich et al. (2005)), it can be shown that arbitrary linear combinations
of the memory estimates of the aggregated series are asymptotically normal. Ohanissian et al.
(2008) apply the central limit theorem for functions of Gaussian vectors in Soulier (2001). An
analogue for non-Gaussian vectors is found in Moulines & Soulier (2003, Theorem 21), which can
be used when basing the test on the tapered LPR estimator. Alternatively, Hurvich et al. (2005,
Proposition 4.1, Proposition 4.2, and Proposition A.2) can be used in the log-periodogram
case and has the advantage that neither Gaussianity nor stationarity of z; is required. It is
straightforward to show that if the assumptions of Soulier (2001, Theorem 4.1) or Moulines
& Soulier (2003, Theorem 21) are satisfied, then applying the LPR estimators (see e.g. the
proof of Theorem 1 and Theorem 2 in the appendix) implies that the assumptions of Hurvich
et al. (2005, Proposition A.2) are satisfied. This has the advantage that our results are valid
for d € (0,3/4). For the LPWN estimator, the limiting results can be based on Hurvich et al.
(2005, Proposition 4.1, Proposition 4.2, and Proposition A.2), or one can straightforwardly
extend Lemma 3 of Frederiksen et al. (2008) to this setup utilizing our Lemma 2 and the
assumptions underlying the specific estimator.

Next we will distinguish between log-periodogram estimation and local Whittle estimation.
We will only discuss the modeling of approximating the spectrum of the signal and perturbation
by polynomials in the local Whittle setting, but it should be noted that the ideas of Frederiksen
et al. (2008) could be transferred to the log-periodogram setting by utilizing the results of
Andrews & Guggenberger (2003), Sun & Phillips (2003), and Arteche (2006), where Andrews
& Guggenberger (2003) model the LPR equivalent of the LPW estimator and Sun & Phillips
(2003) and Arteche (2006) discuss the LPR equivalent of the LWN estimator.



For the local Whittle framework, we will focus on the LPWN methodology as it encompasses
the LW and LWN estimators as special cases. We do this to simplify the presentation, and we
only list one set of assumptions even though these could be relaxed when looking at the special
cases (e.g. LW or LWN).

In the following, true values of the parameters are denoted by subscript zero, and |x]
denotes the integer part of a real number z. We also define a function ¢(\) to be smooth of
order s at A = 0 if, in a neighborhood of A = 0, ¢ ()) is [s] times continuously differentiable
with |s] —derivative, ¢{1*), satisfying (13D (A) — o) (0)| < C'|A*"*) for some constant
C < oo.

3.1 Log-periodogram regression asymptotics

To extend the setup of Ohanissian et al. (2008) to the nonstationary case, we need the following
assumptions of Velasco (1999b).

A1l z has memory parameter dy € (1/2,3/2) if the mean zero stationary process ¢; = Az; has
spectral density
fe(N) = AT2OTD (),

where f*()\) is a positive, integrable, even function on [—m, 7] which is bounded above
and away from zero and is continuous at A = 0.

Assumption Al allows us to define the pseudo spectral density
f2(0) = A720 f* ().

Since f,(A) does not have a clear statistical interpretation, Velasco (1999b) stated his assump-
tions in terms of f-(A).

A2 The spectral density f.(\) satisfies for p € (0,2], G € (0,00), and dy € [1/2,3/2)
fo(A) = GAHdo=D) L o(A=2do=D)Fp) 45 X — 07,
Notice that p = 2 if g is a stationary and invertible ARFIMA process.

A3 In a neighborhood (0, €) of the origin, f.()) is differentiable and

‘j)\fa()\)‘ = O\ IT2Ay a5 X — 0T

For the stationary case, these assumptions are equivalent to Assumptions 1 and 2 in Robin-
son (1995b) and thus imply that f*(\) is bounded from above and away from zero and is
continuous in an interval (0,¢€), e > 0, and that f,(\) has bounded first derivative. Lastly, we
need to restrict the bandwidth number.

10



A4 For any fixed aggregation level k, the bandwidth m®) = m®) (n) is a non-decreasing
sequence such that

(m(k))?)/2 log m(*) N (m(k))l/2 log m(%) N llog?(n/k) N (m(k))1+1/2p
(n/k)" (204 m(¥) (n/k)

-0, (15

where k is defined in Lemma 1 and [ is a user-chosen trimming number to avoid the very
first periodogram ordinates.

The first term of the (15) is an extra term compared to e.g. Velasco (1999b). It is needed
to ensure that we can derive a scaling factor «, which is needed in deriving the limiting dis-
tributional results for arbitrary linear combinations of the estimator. We can now state the
following limiting distributional result for arbitrary linear combinations of LPR estimates of
long memory obtained using the K temporal aggregated series.

Theorem 1 Let the assumptions of Lemma 1 and Assumptions A1 - A4 be satisfied and assume
that e is Gaussian. Then for dy in the interior of D = [d1,ds], 0 < d; < d2 < 3/4,

aZ’yZ —>N(O 7r2/24)

2 —1/2
where a = 2 (Zfil m’Z}C y +2 ZZ 9 Zz ! Lo s ) , and the vy;’s are scalar weights that can be

s=1 m (ks)
chosen arbitrarily.

The result of Theorem 1 is very convenient since confidence bands of the long memory
estimates of e.g. volatility do generally suggest that nonstationarity is a possibility.

To avoid the assumption of Gaussianity, we need the following assumptions of Velasco
(1999b, 2000) besides Al and A3.

B1 ¢; is covariance stationary with dy € [0,1/2) and satisfies

(0. ] (0.0 d
=D am g Yo <o [gat)| =00 a0y Za] ,
=0 =0

as A — 0T, where 7, is iid with E (n,) = 0, E (n?) = 1, E (n}| Fi=1) = p3 < oo and
E (nﬂ Fi—1) = pg < 00, where F;_q is the o-field generated by {n, : s <t — 1}.

B2 1, has characteristic function Q(w) = E (") satisfying

sup |Q(w)| = §(wyp), for all wg >0, and / |19(w@) P dw < oo,

|w| >0

for some integer p > 1.
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As explained by Velasco (2000), Assumption B2 implies that the probability distribution
of n, has a bounded and continuous density.

B3 The spectral density f.()) satisfies for p € (0,2], G € (0,00), E, < 00, and dy € [1/2,3/2)

fe(\) = GAT2d0=) L g \~Hdo=D4r o\ 72do=DHe) a5 N — 0F,

Notice that this assumption is satisfied if €; e.g. is a stationary and invertible ARFIMA
process (p = 2). However, for the stationary case these assumptions are equivalent to As-
sumptions 1 and 2 in Robinson (1995b), and thus imply that f*(\) is bounded from above and
away from zero and is continuous in an interval (0,€), € > 0, and that f,()\) has bounded first
derivative. Lastly, we need to restrict the bandwidth number.

B4 For any fixed aggregation level k, the bandwidth m®*) = m(*) (n) is a non-decreasing
sequence such that for dyp € [0,1/2)

(k) 3/2 (k) 2 (k) 1+1/2p
(m*)" " logm l—i- llog*(n/k) N (m'*)) o

(n/k)" l mk) (n/k)

and for dy € [1/2,3/2) we also need (m(’“))l/2 /l — 0 for n — oo, where & is defined in
Lemma 1, and [ is a user-chosen trimming number to avoid the very first periodogram
ordinates.

Note that for d € [0,1/2), interchanging d — 1 in Assumption B3 with just d, Velasco (2000)
proved the normality result of the tapered LPR estimator based on the covariance stationary
series ;. However, the tapered estimator of Velasco (1999b) is still based on Gaussianity of &;.
Thus, the following result is based on the conjecture of Velasco (19995, p. 351) that instead of
Gaussianity, Assumption Bl and B2 can be applied in the nonstationary case as well.

We can now state the following limiting distributional result for arbitrary linear combina-
tions of TLPR estimates of long memory obtained using the K temporal aggregated series.

Theorem 2 Let the assumptions of Lemma 1 and Assumptions A1, A3, Bl - B be satisfied.
Then for dy in the interior of D = [dy,ds], 0 < di < d2 < 3/4,

K
@ yi(di — do) & N (0,37%/24) ,
=1

2 . 71/2
where a = 2 (Zfil mv(fm + 23000, Y ) , and the v;’s are scalar weights that can be

s=1 m(ks)
chosen arbitrarily.

If the signal process {y:} is contaminated by a noise term {w:}, we need to restrict the
bandwidth choice of the LPR and TLPR for the limiting distributional results to hold. That

is, under the assumptions of Theorem 1 or Theorem 2 and m¥) = o ((n/ k)ﬁ , Theorem 1

and Theorem 2 still hold for perturbed fractional processes, see e.g. Deo & Hurvich (2001).
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Note that the asymptotic variance in the limiting distributional result for both the non-
tapered and tapered log-periodogram regression equals the (scaled) asymptotic variance of each
individual estimate. This implies that the asymptotic covariance matrix is known given the
user-chosen bandwidth. Theorem 1 and 2 give the following structure of the covariance matrix.

Proposition 2.1 Under the assumptions of Theorem 1 or Theorem 2 and with dg in the inte-
rior of D = [dy,ds2], 0 < di < day < 3/4,

lim (m(k"’) (C’ov ((il, c@) —Var (ciz))> =0 (16)

n—oo

fori<i<j<K.

Notice that the structure of the covariance matrix parallels the result of Hausman (1978)
that an efficient estimator must have zero asymptotic covariance with the difference between the
efficient estimator and any other consistent, asymptotically normal estimator. In this setup the
estimate based on the least aggregated series is efficient in the class of LPR estimates obtained
using temporal aggregates.

Since it was shown by Ohanissian et al. (2008) that the test for long memory based on the
LPR estimator is better behaved if one uses a finite sample analogue of (16), we present this
in Proposition 2.2. This was originally put forth by Geweke & Porter-Hudak (1983).

Proposition 2.2 Treating I, (\;) as independently distributed as %)\;M‘)Gxg, omitting a mul-
tiplying constant that converges to one in probability, we obtain the finite approrimate variance

exTPression

—1
mki) ki) 2

N 1
~ 2 -
Var(d;) ~ 7° |24 E log \; ) E log A\, ,
j q

where we note that the summation is j,q = 1,2, ymE) and 7,9 = 3,6, ooy () for the LPR
and TLPR, respectively.

Note that basing the variance expression on j,¢ = 3,6, ..., m®) makes it approximately
three times larger compared to the LPR estimator.

3.2 Local Whittle asymptotics
These assumptions follow from Frederiksen et al. (2008) adapted to our setting.

C1 The noise process {w;} is independent of the signal process {y;}.

C2 The spectral density of z is f, (A) = )\_2d°Gozy((3§ + ¢y (\), where ¢, () and ¢,,(A)
Y
are real, even, positive, continuous functions on [—m,7) and dy € D = [di,ds] with

0<dy <dy <.

C3 The functions ¢, (A) and ¢,,(A) are smooth of orders s, and s,, at A = 0, where s, > 2Ry,
Sw > 2Ry, and sy, 5, > 1.
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Assumption Cl1 is the independence assumption used above to write the spectral density of
z; as the sum of the (pseudo) spectral densities of y; and w;. Assumption C3 is a smoothness
condition on the functions ¢, (\) and ¢,,(A) similar to that applied by Andrews & Sun (2004).
Note that Assumption C3 holds for all s, < oo when, e.g., y; is a finite order ARFIMA process,
and for all s,, < co when, e.g., w; is a finite order ARMA process.

C4 (a) The signal y; has zero mean and admits an infinite order moving average represen-
tation g = > 7% ajer—; (stationary case) or Ay = xy = > 77, ajer—; (nonstationary
case), where Z;’;O oz? < oo and g satisfies, for all t, E (g4 F;—1) =0, E (5%{ ]-'tfl) =1,
E (8t3|ft_1) = 3z < 00, and E (5f|}}_1) = py < oo almost surely, where F;_; is the
o-field generated by {es,s < t}.

(b) There exists a random variable € with E(¢?) < oo such that for all 7 > 0 and some K > 0,
P (let] > 1) < KP(le| > 7).
(c) In a neighborhood of the origin, %a (A) = O(la(N)|/A) as A — 0, where a(\) =
ZZOZO akezk)\'
C5 (a) The noise w; has zero mean and admits an infinite order moving average representation
wy = Y220 BM—j» where Y322, B3 < oo and n; satisfies, for all ¢, E (n;| Fi_1) = 0,

FE (nﬂ}},l) =1, F (n?‘ft,l) = u3 < 00, and E (7721‘.7-},1) = py < oo almost surely,
where F;_; is the o-field generated by {n,,s < t}.

(b) There exists a random variable £ with E(£2?) < oo such that for all 7 > 0 and some K > 0,
P(|ny| > 7)< KP(|e] > 7).
(c) InzfO neigh}g))?rhood of the origin, %B (A) = O(|BAN)|/A) as A — 0, where B(\) =
k=0 Br€"™"

Importantly, Assumptions C4 and C5 allow for non-Gaussian processes. Note that Assump-
tions C1-C4 plus the assumption that w; is white noise with finite fourth moment imply the
assumptions needed on y; and w; to prove consistency and asymptotic normality (if, in addi-
tion, d2 < 3/4) of the LWN estimator of Hurvich & Ray (2003). It follows from Theorem 3
below that their results for the LWN estimator are also valid for our more general assumptions
on wy in Assumption C5.

C6 For any fixed aggregation level k, the bandwidth m® = m®) (n) is a non-decreasing
sequence such that

(m(k))1+4Ry (m(k))1+4(do+Rw)
_|_
(k)T () )
(m(k))3/2 log m®) (m(k))2<ﬂy+1 (m(k))wa-‘rlldo—i-l

(n/k)n + (n/k)%% + (n/k)2¢w+4d0

00, (17)

0 (18)

where £ is defined as in Lemma 2 and ¢, = min{s,,2 +2R,},a = y, w.
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Condition (17) guarantees that all the elements of the scaling matrix B, x) (that is used
to normalize the gradient and Hessian of the scaled log-likelihood) diverge as n/k — oo, which
is a minimal condition for consistency. (18) restricts the expansion rate of the bandwidth to
control bias and ensures that the estimator uses only relevant information from periodogram
ordinates sufficiently near the zero frequency.

C7 O is a compact and convex subset of RE+1 and 6y lies in the interior of ©.

Frederiksen et al. (2008) show that the LPWN estimator is consistent for d € (0,1) for
k =1 when the bandwidth is chosen as (1) + m(l) — 0.

Theorem 3 Let Asszfmptions C1-C7 hold with dy in the interior of D = [d1,ds], 0 < dy <
dy < 3/4, then d and 0 are both consistent and

4 Wy v

d — d d —1 Y w

Z% m<k>< ; 02 > = N0, (0Qr,.r,) ), Qr,r.=| #r, Tr,  Vror, |,

VR VYRuR, YR

and

,2 K il —1/2
— 7 sl
o= (b e )

1=2 5= 1
where the v;’s are scalar weights that can be chosen arbitrarily, Em(ki) = 1/v m(ki)Bm(ki>
and B, ;) = B, o) (do) is the (R+2) x (R +2) deterministic diagonal matriz with diagonal
elements

(Bm(ki))ll = Vmlk, (Bm(k )5+1 v miki) /\2S(k fors=1,... Ry,
— 2do+2 —
and ( m(k))s+Ry+2s+Ry+2 \/>)\ (Ok)sfors—(),...,Rw,

bR, ond VR, = VR, (do) are the vectors

1 —4(d
732]"07’3:1,...,Ry and (Vg )st1 = (do + s)
(1+2) (1+ 2do + 25)

g, and ¥g, = YR, (do) are the Ry x R, and (R, + 1) x (Ry + 1) matrices

(MRy)s: 5 for s =0,..., Ry,

4ls
r = Ls=1,...
Cr)i = Grasaarmases 0= b B
A(do + 1) (dy + )
U = l,s=0,..., Ry,
(VR 1,541 (15 20+ 25 + 4do) (1 + 20 + 2do) (1 + 25 + 2dg) 0 be =0 B
and Y, r, = YRy.r,(do) is the (Ry + 1) X Ry matriz
4s(do +1)

(VRy R, I+1,s = forl=0,...Ry,5=1,...,R,.

(1 + 2do + 25 + 21) (1 + 2do + 21) (1 + 2s)

4 v
If R, = R,, = 0 define Qoo = - .
o Yo
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First of all, we note that by setting h (d,0,\) = 0 or R, = R,, = 0, we obtain as special
cases the LW and LWN estimators, respectively

K
o> (A~ do) 4 N (0,1/4),
i=1

K 2
SLWN) d (14 2do)

i=1

Secondly, we note that the asymptotic variance of o Zf; 'yz(cf — dp) is free of the polynomial
parameters 6, but it depends on dy. Moreover, the use of the polynomials hy(6,, ) and
hw(0, ) increases the asymptotic variance of d by a multiplicative constant compared to
LWN;, seen by use of the formula for the inverse of a partitioned matrix.

Note that the condition (18) implies that if ¢, (\) and ¢,, (\) are infinitely smooth near
frequency zero, then any (R,, R,,) can be chosen and the estimator is (n/ k)l/ 7T consistent for
all 7 > 0. Hence, in that case, the rate of convergence is arbitrarily close to the parametric rate.
Thus, the conditions (17) and (18) allow the bandwidth m®*) to be much larger than for the
LWN estimator and the standard LW estimator, which require that (assuming s, > 2, s,, > 2)
(m(k))5 (n/k)™* — 0 and (m(k))4d0+1 (n/k)"*° — 0, respectively, see Hurvich & Ray (2003)
and Arteche (2004b) in a non-temporal aggregation context. Therefore, Theorem 3 provides an
improvement in the rate of convergence relative to existing estimators of the memory parameter
for perturbed fractional processes. This comes at the cost of an increase in the asymptotic
variance by a multiplicative constant, but this is clearly more than off-set by the faster rate of
convergence, at least asymptotically.

The LPWN setup inherits the same approximate variance structure as for the LPR setup.

Proposition 3.1 Under the assumptions of Theorem 8 and with dg in the interior of D =
[dl,dg], 0<dy <ds < 3/4,

lim (m(ki) (Cov (a?l, czj) —Var (cil))> =0 (19)
n—oo
for1<i<j<K.

In Proposition 3.2, we present the analogue for the LPWN estimator to Proposition 2.2.

Proposition 3.2 Treating I, (\;) as independently distributed as %A;Qdong, omitting a mul-
tiplying constant that converges to one in probability, we obtain that

cov |mPvQ (do,00)| = T,
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where

'y = 4 U%,j;
j=1
I'iasy = 2 U1,jV(1+s),55
j=1
F(1+s),1 = F1,(1+s)v
Iiiry4ny = 2 Z V1,jV(2+Ry+1),5>
j=1
Povr,an1 = Ti@ir,+),
Lorry4),4s) = Z V(24 Ry+1),jV(1+5),55
j=1
Pave),eir,+) = LTetr, 0,049
Dags),a4s) = Z v(21+8),j’
j=1
F(2+Ry+l)’(2+Ry+l) = Z v(22+Ry+l)aj’
=1
where
(k;
A2k, (G M) log Ay 1 A% 1y (B0 0, ) log Ag
vj = logAj — ——= > | log A, — :
1+h(d7007)‘j) m{k) g=1 1+h(d7 907/\11)
2s (kl) 2s
B —\7 1 Z =Xy
Ya+s)s = 7 + h(d, 60, \;) )) 1+ h(d, 00,)\ )’
_ \2do+21 1 (’“i) — AZdo-+2
V@+Ry+0),j = 1+ h(d7 0o, /\j) m("v‘ ) Z 1+ h(d 0o, A )

for s =1,..,R,, | = 0,1,..., Ry, and h(d,0,\) = hy(0,,\) + \2?hy (0, \). Then the finite
Y y\Uy

sample approximate variance ofcz s given as the element [F_l] where we replace the unknown

1’
true parameters (do,0o) with the consistent estimate (CZZ, 91>

We remark that for the LW and LWN cases, i.e. h(d,0,)) = 0 and h(d,0,\) = 0X2%,
respectively, the corresponding entries in the above finite sample covariance matrix are deleted.
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The validity of the finite sample approximate variance expression is influenced by the ap-
proximation of the spectrum of the signal and noise by polynomials. That is, e.g. in the case
of the LWN estimator the expression is more accurate when OA?? is small; i.e. when either d
is large or # is small. Therefore, the variance expression can be inaccurate when d is close to
zero. However, unreported simulations show that the expression has the advantage that it does
not blow up when d is close to zero given realistic noise-to-signal ratios (see Deo & Hurvich
(2001)).

In the next section, we setup the test statistic.

4 Testing for long memory

Our null hypothesis is that the original series is a long memory process in which case the

~ ~ ~ ~ /
memory parameter should be the same across aggregation levels. If we let d = (dl, da,...d K)
be the vector of memory parameters for the K aggregated series, where dy is the memory
estimate of the original series, do is the memory estimate of Ti{? = 2911 + 29t etc. (see eqn.
(14)), and let the finite sample covariance matrix of the estimates be A, then applying the

limiting normal distributional results derived in sections 3.1 and 3.2, the test statistic follows
directly from Ohanissian et al. (2008).

Corollary 1 Let d be the K dimensional vector of long memory estimates of the K aggregated
. R N -
series, i.e. d = (dl,d2, .. .dK> , and let Var <d) =A. Then (a)
. ! .

W= (d— d0> A7Y (d— do) 42
(b) since d is unknown, we propose a feasible test statistic given as

= ~\/ N —1 7 d 2

W= (1d) (ra1') " (Td) % Xk,

where we use the mean value of the estimates as an approzimation of d, and the (K —1) x K
matriz T is defined with elements [T, =1—1/K fork=1,...,K —1 and —1/K elsewhere.

Note that we use the feasible test statistic in Corollary 1 (b) even though it is straightfor-
ward to specify the null hypothesis that each long memory estimate should be identical across
aggregation levels using Corollary 1 (a); i.e. the Wald test on its standard form. However, since
dp in practice is unknown, it seems more reasonable to test whether the individual estimates
are different from the mean value.

5 Finite sample properties of the tests
The size and power of the different tests are evaluated in a finite sample setup where we use

the corresponding 95% X%(fl critical value. In investigating the size, we will limit the analysis
to where the signal is an ARFIM A(p,d,0) for p € {0,1} and potentially contaminated by
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a perturbation. We will for the sake of simplicity not consider the case where there is serial
correlation in the perturbation, see e.g. the Monte Carlo (non-temporal aggregation) setup
in Frederiksen et al. (2008). That is, we will therefore only implement the LPWN estimator
where we set Ry =1 and R,, = 0.

In a non-temporal aggregation setup, we know from Hurvich & Ray (2003) that the LWN
estimator is superior to the LW estimator in terms of bias and RMSE in the context of the
standard LMSV model. Furthermore, Hurvich et al. (2005) show that the polynomial log-
periodogram regression estimator of Andrews & Guggenberger (2003) suffers from severe bias
in the case of perturbed fractional processes, and the LPW estimator is expected to perform
similarly. Therefore, we would expect the LWN and LPWN(1,0) to outperform the LPR,
TLPR, LW, and LPW in both size and power, where we contaminate the signal by a noise
term. Additionally, Frederiksen et al. (2008) show that the LPWN estimator is superior to the
LWN when we have short-run contamination in the signal besides contamination of the signal
by an additive noise term.

5.1 Simulation setup

We consider the model
z = yp + Ty, (20)

where I is an indicator function taking the value 0 if no noise is added. {y;} is the signal
process, and {w;} is the perturbation process. We model {w;} as

wy = logu?, wu; ~ NID(0,1). (21)
Note that the variance of wy is 02, = m2/2 regardless of the variance of u;. The signal process

{y;} follows different DGPs. For brevity, we consider four different DGPs for the signal process.
The general setup for {y;} is

(1—-ayL)(1 = L)y, = (1+8,)m, n, ~NID(0,02), (22)
with parameter configurations

Model I : I=0,ay =0, =0,
Model I : IT=1,a =, =0,
Model IIT : IT=1,a,=038,8, =0,
Model IV : T=1,ay =0,8, = —0.38,

We remark that in all the models the noise-to-signal ratio is given as®
2
fw(0) P
nsr = = . (23)
f(l*L)d t(0> 2 (H_By)Z
Y. o >
T(1-cy)

This allows us to control the true value of h (d,8) (in theory, as A — 0), see eqn (12).
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For each Monte Carlo DGP, we generated 10,000 artificial time series with a sample size
of 4096 and 8192 with ordered aggregation levels as consecutive powers of two; i.e. k; = 2¢1
for i = 1,2,..., K = 5.7 This is in sharp contrast to Ohanissian et al. (2008) who employ
n = 610,304. However, our choice is motivated by the fact that we want to apply the tests to
shorter time series. For both size and power studies we set the bandwidth m(*:) = | (n/k;)°|
for all aggregate series, where § € {0.5,0.6,0.7}. For the LPR, TLPR and LW estimators, we
conjecture that the "optimal" empirical® choice of § is 0.5, whereas for the LWN and LPWN
estimators, we apply the same bandwidth for simple comparison. However, regarding the
estimators where we model a polynomial term also, we can have issues of pinning down the
0’s estimates. Therefore, a larger sample of periodogram ordinates is needed, and thus the
inclusion of ¢ € {0.6,0.7}. Furthermore, a higher bandwidth value may lead to lower bias for
the estimators that implement a polynomial due to the fact that the polynomial parameters
are only consistently estimated if the bandwidth grows sufficiently fast relative to the sample
size, see Assumption C6. So in that sense, high bandwidth values generate better estimates of
the polynomial parameters leading to lower bias.

The parameter of interest, d, is set equal to either 0.4 or 0.6. For the noise-to-signal ratio,
we choose nsr € {1,5,10}, and the variance 0727 is set as a function of oy and 3, such that
the nsr has the desired value. The values of d, nsr, ay, 8, and the sample sizes are chosen
to reflect empirical findings on long memory in volatility, see the references in the introduction
for some examples.

The signal {y;} is generated by the circulant embedding method as described in Davies &
Harte (1987), i.e. the stationary type I fractionally integrated process in the terminology of
Marinucci & Robinson (1999), see also Beran (1994, pp. 215-217). To generate nonstationary
series with d > 1/2, we simulate the ARFIMA process with integration order d — 1 and cu-
mulate the resulting series. Numerical optimization was carried out in Matlab v7.2 using the
BFGS optimization routine. The initial values were set as follows. For the local Whittle type
estimators, we used the LPR estimate, dr, PR, if it was in the interior of the admissible space
of d, i.e. [0.01,0.99]. Otherwise, d was set equal to 0.1. As initial values for the polynomial
parameters, we used 1 for all estimators.

Like Ohanissian et al. (2008), we consider power properties by applying the tests to simu-
lated realizations of models which are capable of exhibiting spurious long memory. More specif-
ically, we consider stationary and nonstationary random level shift models, Markov switching
models with 7id or GARC H regimes, and a white noise model with a slow deterministic trend.
The exact specifications of the models are in Appendix B.

To conserve space, we present only a subset of the results. The left-out results (Size study:
Model IV, d = 0.6 (for Model I-III), n = 8192, and m*:) = L(n/ki)o'ﬁj, and for the power study:

mk) = |(n/k)°] for § € {0.6,0.7}) are qualitatively similar when comparing the different

"The number of observations is chosen as a power of two in order to use the fast Fourier transform in calculating
the periodogram. This speeds up the estimations considerably compared to using the discrete Fourier transform.

81t is well-known that the bias of the LPR and the LW estimators is increasing in the bandwidth when the
long memory series is perturbed, and that choosing § = 0.5 renders fairly unbiased results, see e.g. Sun &
Phillips (2003) and Arteche (20040, 2004b).

9We set the admissible parameter space of the memory parameter equal to the consistency region. Although,
we note that the limiting distribution results only hold for do € (0,3/4).
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estimators to the ones presented, and are available from the authors upon request.

5.2 Simulation results

Before turning to the results, note that a general problem stems from the fact that using tempo-
rally aggregated series is asymptotically equivalent to using a smaller bandwidth in estimating
the memory of the original series. Since it is well-known that the estimators that do not model
the perturbation directly, i.e. LPR, TLPR, LW and LPW, become less biased when applying
smaller bandwidths in perturbed fractional processes, see e.g. Deo & Hurvich (2002), Sun &
Phillips (2003), Arteche (20044, 2004b), Frederiksen & Nielsen (2008), and Frederiksen et al.
(2008), we might see a large variability in the estimates across aggregates, and thus, possible
overrejection. Tables 1 to 3 show that this is generally the case since the size increases as we
include more aggregated series (K increases) in the tests. From a practical point of view, this is
expected since the sample of periodogram ordinates decreases as K increases, and it therefore
becomes harder for the estimators to pin down the memory parameter precisely, and for the
LWP, LWN, and LPWN to pin down the polynomial estimates.

[Tables 1-3 about here]

In the case where there is no contamination by short-run dynamics in the signal and with
no perturbation, i.e. Model I with results displayed in Table 1, we see that the size generally
increases as K increases. But overall, the size is generally fairly close to the theoretical type I
error, a = 0.05.

In Table 2, we consider Model 1II, i.e. a perturbed fractional process without any contam-
ination of the signal. Here we would presume that the tests based on the LWN and LPWN
estimators would outperform the tests that do not take the perturbation into account, i.e. the
LPR, TLPR, LW, and LPW estimators. We clearly see that the LWN and LPWN estimators
introduce less size distortion in the empirically relevant scenario of d = 0.4, when K < 4. How-
ever, it is noteworthy that when K = 5, and sometimes when K = 4, these tests have larger
size compared to the LPR, TLPR, LW and LPW tests when the nsr is low. This is caused by
the fact that the impact from the perturbation diminishes when K increases, which benefits
the LPR, TLPR, LW, and LPW estimators and because using fewer periodogram ordinates
makes ¢,,(\) in eqn. (10) approach zero inducing more volatile estimates of d for the LWN and
LPWN estimators.

Results for Model III where (ay, ﬁy) = (0.8,0) are shown in Table 3. We would expect the
LPWN estimator to outperform the LWN estimator as it explicitly models the contamination
in the signal. This is also seen in Table 3, although when K increases, the size of the two
tests are comparable as the bias in estimating d introduced by not modeling the short-run
contamination diminishes as K increases. Furthermore, looking at the tests based on the LPR,
TLPR, and LW estimators, there is clear overrejection from not properly dealing with the
short-run contamination and perturbation.

For the nonstationary case (results omitted), we see that the theoretical extension carries
over into practice. The sizes of the tests are equivalent to the stationary case, but it seems
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that the tests perform slightly better under this scenario. This is due to the stronger memory
in the signal, which makes it easier for the estimator to pin down even in smaller samples.

To complete the size analysis, we also tried modeling the signal innovations as t4; i.e.
Student t distributed with four degrees of freedom, and thus introducing fat tails. This did not
change the results. This is expected for the test based on the TLPR, LW, LPW, LWN, and
LPWN estimators since this does not violate the assumptions behind the estimators. However,
it is noteworthy that the test based on the LPR estimator still performs well since this is a
violation of one of its assumptions.

[Tables 4-5 about here]

Focusing on the power properties of the tests, Tables 4 to 5 show that all the tests generally
have power above 90% against the mentioned models capable of exhibiting spurious long mem-
ory. However, the test based on the LWN and LPWN estimators always obtains (very close
to) 100% power. This result holds for both the generic and the empirical parameter values.
Taking a closer look, we have marked in bold font the test which obtains the lowest power
for the different aggregation levels (K’s) and spurious long memory models. Now it becomes
more noticeable that the tests based on the LPR, TLPR, LW, and LPW estimators have the
lowest power. This was expected in comparison to the estimator that explicitly models the
perturbation in the returns, but as seen the tests based on the LPR and TLPR estimators
are comparable to the tests based on the LW. This was not expected since the LW obtains
the lowest variance. Furthermore, we see that the overall lowest power results are found for
the nonstationary random level shift (NSRLS) model and the white noise with trend (WNT)
model when based on the empirical parameter values. It is also seen that using a higher K, i.e.
increasing the number of aggregated series used in the test, increases the power. This result is
not surprising since the NSRLS and WNT models give the most stable long memory estimates
across aggregation levels (not reported here) although the stability decreases as K increases.
For the LPR estimator, this is also obvious from Table III in Ohanissian et al. (2008).

Increasing the bandwidth choice (results omitted) generally results in increased power and
in almost all cases with close to 100% power for all estimators.

For completeness, we also investigated the power of the tests against the AR(1) alternative
with autoregressive parameter ¢ = 0.684, which was shown by Nielsen (2004) to be the most
troublesome for parametric tests of fractional integration. However, unreported results show
that the power is above 96% for all estimators.

Overall, we find that the proposed tests all perform well in terms of both size and power.
However, in the empirically relevant scenario of perturbed long memory series (d € {0.4,0.6},
I =1, and nsr € {1,5,10}), the test based on the LWN and LPWN estimators should be
considered as good alternatives to the test based on the LPR estimator derived in Ohanissian
et al. (2008), especially for higher bandwidth. Furthermore, when we contaminate the signal
by short-run dynamics, i.e. AR or MA noise, the LPWN estimator outperforms the LWN
estimator in terms of size. This is of course not surprising as the LPWN estimator models this
contamination by a polynomial whereas the LWN does not.
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6 Empirical applications

This section investigates whether it is reasonable to assume that there is long memory in
daily log-squared returns series of exchange rates (DEM/USD, YEN/USD, and USD/GBP)
and DJIA30 Stocks. Based on the above finite sample analysis, we apply the series to the
tests based on the LPR, TLPR, LW, LPW, LWN, and LPWN estimators. We implement
the LPWN estimator with (R, R,) equal to (1,0) and with starting values etc. as in the
Monte Carlo study above.!® Including the test based on the LWN and LPWN estimators is
motivated by the study of daily log-squared returns series of DM /USD and Yen/USD presented
in Ohanissian et al. (2008), where rejecting the null hypothesis of long memory based on the
LPR estimates comes fairly close for the DM /USD (p-value is 0.08 based on the approximate
variance expression).

In both empirical studies, to avoid the problem of taking logarithm of zero, we based the
analysis on adjusted log-squared returns using the method of Fuller (1996); i.e. we analyze

1%
r2+ v’

log 72 = log (rf +v) —

where v = 2925 72 Furthermore, we set the bandwidth equal to mk) = [(n/k)°], 6 €
{0.5,0.7}.

6.1 Long memory in exchange rate volatility

This subsection analyses empirically the long memory in volatility of daily returns series of
DEM/USD, YEN/USD, and USD/GBP exchange rates obtained from the U.S. Federal Reserve
Board of Governors H.10 release. The sample covers the period 12/1/1986 —11/30,/2006 for a
total of n = 5000 observations.'!'1? We apply aggregation levels k; = 2" 1 fori =1,2,..., K = 4
such that the aggregated series have 5000, 2500, 1250 and 625 observations, respectively. The
number of aggregation levels implies that the critical value of the test statistic is x3 (0.95) =
7.82.

[Tables 6 and 7 about here]

Tables 6 and 7 report the long memory estimates for the 30 stocks, the test statistics, and
the respective p-values.

When we set m = | (n/k)%®|, i.e. Table 6, we reject the null for the DEM/USD for the tests
baed on the LPR, TLPR, and LW estimators whereas, we cannot reject for the LPW, LWN,
and LPWN estimators. Furthermore, we reject the null for the YEN/USD when using the LPR
estimator. We note that for the LWN estimator we hit the lower bound for the DEM/USD and

"We also implemented the local polynomial Whittle with noise estimator with (Ry, Rw) equal to (0,1) and
(1,1). The results where qualitatively the same as for the LPWN(1,0) parameterization, and therefore omitted
for space reasons.

' After the adoption of the Euro on January 1, 1999, the DEM/USD exchange rate has been calculated using
the USD/EUR exchange rate and the fixed 1.95583 DEM/EUR exchange rate.

12The sample is originally n = 5186, but to obtain reasonable aggregated series we deleted the first 186
observations.

23



YEN/USD and for the LPWN estimator for the DEM/USD. Hitting the lower bound inflates
the variance and therefore results in a non-rejection of the null. Increasing the bandwidth
choice mitigates this problem because we get more periodogram ordinates to pin down the 6’s.

We also note that for the estimators that model the potential perturbation in returns, i.e.
the LWN and LPWN estimators, the estimate of the memory parameter is somewhat higher
than for the estimators that do not model the potential perturbation, i.e. the LPR, TLPR,
LW, and LPW estimators. Especially when we increase the bandwidth. This is expected given
the theoretical, simulation, and empirical evidence of this in the literature, see e.g. Deo &
Hurvich (2002), Sun & Phillips (2003), Arteche (2004a, 2004b), Frederiksen & Nielsen (2008),
Frederiksen et al. (2008), among others. Furthermore, the apparent perturbation in returns
causes the test based on the LPR, TLPR, LW, and LPW estimators to reject the null hypothesis
of long memory when in fact the test based on the LWN and LPWN estimators does not.
Overall, we conclude that there indeed is long memory in exchange rate volatility.

Ohanissian et al. (2008) analyze the DEM/USD and YEN/USD exchange rates using the
LPR estimator and they find that there indeed is true long memory in exchange rates, although
on another sample period than ours. However, their estimates of the long memory parameter
d for k=1,2,3,4 and m = | (n/k)*?| are reasonably close to our LPR estimates.

6.2 Long memory in DJIA stock volatility

This subsection analyzes the long memory in daily log-squared returns series of the 30 DJIA
stocks corrected for the effects of stock splits and dividends from January 1 1990 to March
31 2008, for a sample of n = 4400,'* and we apply aggregation levels k; = 20~ for i =
1,2,..., K = 4 such that the aggregated series have 4400, 2200, 1100 and 550 observations,
respectively. The number of aggregation levels implies that the critical value of the test statistic
is x2(0.95) = 7.82.

[Table 8 about here]

Table 8 reports the long memory estimates for the 30 stocks, the test statistics and the
respective p-values. For space reasons, we only display the results for the LPR estimator
and LWN estimator. The results for the TLPR, LW, and LPW tests are comparable to the
test based on the LPR estimator, and results for the LPWN test are comparable to the test
based on the LWN estimator. To make a fair comparison of the estimators, we focus on
setting the bandwidth equal to m®*) = |(n/k)%?| as we know from the simulation study that
increasing the number of periodogram ordinates potentially introduces severe size distortion
for the tests based on the TLPR, LPR, LW, and LPW estimators. Furthermore, the reason for
focusing on the LWN estimator instead of the LPWN when m®*) = |(n/k)°?] is that we need
more periodogram ordinates to pin down the polynomial coefficient in the case of the LPWN
estimator.

Notice that for some of the DJIA stocks, the perturbation in the returns causes the test
based on the LPR estimator to reject the null hypothesis of long memory when in fact the test

3The sample is originally n = 4753, but to obtain reasonable aggregated series we deleted the first 353
observations.
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based on the LWN estimator does not. It is only for General Electric (GE) that both tests
reject, although removing k£ = 4 from the analysis makes the test based on the LWN estimator
not reject. In some cases, we hit the lower bound of 0.01 for the LWN estimator (C, JPM,
and MSFT). This results in a variance inflation and hence we cannot reject the null. This is
mitigated by increasing the bandwidth and in this case the memory estimate when k = 4 is
comparable to the other levels of aggregation, and hence we still cannot reject the null.

It is noticeable that the LWN estimates of the memory parameter in the log-squared returns
series are somewhat larger than the LPR estimates, especially when increasing the bandwidth
as the LPR estimates get downward biased due to the perturbation in returns. From the LWN
memory estimates, we see that volatility might be nonstationary. This is in line with the results
obtained by Frederiksen et al. (2008) where they in an empirical investigation of the DJIA30
Stocks show that the LWN and LPWN estimators indicate stronger persistence in volatility
than standard estimators, and for most stocks produce estimates of d in the nonstationary
region. Nonetheless, the results of the tests show that there is indeed long memory in stock
return volatility for the majority of the stocks.

7 Concluding remarks

In this paper, we have proposed new tests for long memory in stationary and nonstationary
time series possibly perturbed by short-run noise which may be serially correlated. The dif-
ferent tests are all based on semiparametric estimators and exploit the invariance of the long
memory parameter to temporal aggregation of the original series. We have shown that the
analyzed estimators are asymptotically normal under temporal aggregation and we derived
Wald-type tests based on these semiparametric estimators. Simulations showed that the tests
overall have good size properties and power against series that exhibit spurious long memory.
More specifically, in the case where the signal is perturbed by a noise term, the tests based on
the local Whittle with noise and local polynomial Whittle with noise estimators outperform
the standard semiparametric estimators (e.g. log-periodogram regression and standard local
Whittle estimators). Furthermore, the local polynomial Whittle with noise estimator outper-
forms the local Whittle with noise when we, besides the perturbation, introduce short-run
contamination in the signal. This is due to the fact that the local polynomial Whittle with
noise estimator allows the spectrum of the signal (and potentially also the perturbation) to be
modeled as even finite polynomials, instead of constants near the zero frequency, and thereby
yielding a bias reduction depending on the smoothness of the spectra. In conclusion, the tests
were applied to the daily log-squared returns series of exchange rates (DEM/USD, YEN/USD,
and USD/GBP) and DJIA30 Stocks, which showed that there is long memory in exchange rate
and stock return volatility.

Future research will focus on deriving methods for selecting the optimal level of temporal
aggregation, and how to select the bandwidth given temporal aggregation. Additionally, it
would also be of interest to look at bootstrap methods to improve the size properties. Further-
more, we want to apply the theory to high frequency data where especially the test based on
the LPWN estimator will be appropriate.
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8 Appendix A: Proofs

The following proofs are heavily based on the methodology of Hurvich et al. (2005), Frederiksen
et al. (2008), and the ideas of Ohanissian et al. (2008). In the following theorems, we set k1 = 1
without loss of generality. However, if k1 # 1, the results of Lemma 2 can be used to prove the
theorems.

8.1 Proof of Lemma 1

Here we focus on the nonstationary case since the proof for 0 < d < % is found in Ohanissian
et al. (2008).

Define Rjj = (Igj) (Aj) — ldg) ()\j)>, where Igj) (Aj) is the periodogram of the kth ag-
gregated series. Now, we show that this remainder term can be bounded. Since R;j can be
written as a quadratic form of a mean zero Gaussian vector, we only need to show that its first
two moments can be bounded, for details see Ohanissian et al. (2008). Using the results in
Velasco (19995, Proof of Theorem 1) combined with the approach in Ohanissian et al. (2008),
we can write, for % <d<1

BlRl = B (18 () = k1) (1))

T

_ % zn: i zn: i E (enen,) (exp (i)\jk QZJ _ “:D) — exp i\ (t — t2))) ,

t1=1 hy=1t2=1ho=1
where |z] denotes the smallest integer greater than or equal to z. This expression can be
written as

L5 5 % v (o (2] [2]) o)

t1=1 hyi=1ty=1 ho=1

S S penr s (o (o ([ 2])) st )

t1=1h1=1t2=1ho=1
J
= a (5h15h2) b (tla t2) =a (€h15h2) @) <ng> )

where

n t1 n to

a(enehy) = Z Z Z Z E (en,€h,)

t1=1h1=1t2=1hso=1

bt ts) = % <cos <)\jk (VKIJ - VED) ~ cos (A (t1 —tz))> ,

see Ohanissian et al. (2008) for details. Since b(¢1,%2) is uniformly zero for ¢; = t9, straight-
forward calculations show that the expectation can be bounded by

E[R;] = 0 (j/n?) O (%) O (n2*"V) = 0 <n2‘72d> .
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Applying the same approach, it can be shown that Var (R;) = O((j/nz_Qd)Q)

that Ig:) (Aj) — kfg) (Aj) = Op (j/n?*724). This concludes the proof.

, which implies

8.2 Proof of Lemma 2

From Ohanissian et al. (2008), we know that
I8 (Ag) = kI (3) = O, <J> ,
and for arbitrary aggregation levels, k, < k,, that

80 0) = 218 ) = 0, ().

n®
where k = 1 —2d when d € (0,1/2) and from Lemma 1, we have k = 2 — 2d when d € [1/2,1).
Since Ig:) (Aj) = T(z) (Aj) + Oy (j/n), see e.g. Priestley (1981), we can deduce that
7O 0 = B ) = 0, ().
Combining the above results, we get
k ]. . k’l) ku >
) 1), (6 I () 12 () J
(k) M O (e ) ™4 G (k) Or '
sz (AJ) sz <)\]) sz (A]) sz ()\])

This concludes the proof.

8.3 Proof of Theorem 1

Since Soulier (2001) assumes stationarity of z;, we cannot directly apply the results of Ohanissian
et al. (2008) to prove the theorem. However, since

m(k1) m(k1)
Z ac; =0 and Z (ac;)? =1,
j=1 J=1

. . K K i—1 v, —1/2
by the construction of ¢; and by defining av = 2 (Zizl —y t 2 oD ey mfk;)> , (see
Ohanissian et al. (2008) for the definitions ¢;), and since

2

m(k1)
nangOaQ > e = el + [epen]| | log(n) =0,
=1

because ¢; = O (logm(kl)/m(kl)) and a = O(Vm(k)), we can apply Hurvich et al. (2005,
Proposition A.2) together with the results of Lemma 1 and 2 to prove the theorem. This
concludes the proof.

27



8.4 Proof of Theorem 2

Using the conjecture of Velasco (2000)'4, it can be shown that the joint distribution of arbitrary
linear combinations of log-periodogram regression (LPR) estimates obtained using temporally
aggregated possibly non-Gaussian series is asymptotically normal.

For every aggregation level (k1, ko, ...k ), the LPR estimator based on the tapered discrete
Fourier transform is

(k)
1S . . .
dl' = ~350 > ajrlogIPRI(N), 5 =3,6,9,...,m"), (24)
L
where
m(ki) m ki)
ajr, = log\; — Z logA\; =logyj — (k) Z log 7,
mki)
Sk = Z aj s,
. . m(ks) . (k)
Note that here and in the remainder of the proof, Zj denotes the sum over j = 3,6,9,...,m\"%
where m(¥) is divisible by 3. If no tapering is used (hy = 1) and the summation is j =
1,2,...,m%) then (24) reduces to the classical (non-tapered) LPR estimator.

Since we know from Lemma 2 that given the bandwidth restrictions

189 (0g) — T 10 (0) = (1),

Tz ku Tz
we can deduce that
k
Re( () () - ?vwgiu) (Aj)) = op(1),

where Re(x) is the real part of 2. Therefore, by simple insertion, it follows that

T2 () K200 (3) = 0,(1),

Using this notation we can therefore write the weighted sum of K tapered LPR estimates as

K m(ki)
;%‘dz Z 2sk ; ajk, log ™) (),

"Velasco (2000) proves the asymptotic normality of the tapered log-periodogram regression estimate for non-
Gaussian time-series using pooled periodogram ordinates. However, he conjectures that extending the arguments,
the limiting distribution theory holds for estimates without pooling.
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where the K estimates are based on the K temporally aggregated series. Following Ohanissian
et al. (2008), this can be written as

(k) K (ki)
j im2 Wk
(ki)
-3 - 00 (5 )
(k1)
(k1) (k1)
= Z Cj log ]T’(kl)(/\j) + Op (W) ) (25)
J
since a;, = O(logm*)) and
—XL e for 1< <m0
B ZK 1 'Y;‘;Jkk for mkx) +1 < j < mkx-1)
Cj =
_V;GSQkL for m(kZ) _|_ 1 SJ S m(kl)
1

To finish the proof, we can use Moulines & Soulier (2003, Theorem 21) to state that (25) is
asymptotically normal if

m(k1)

Z (acj)? = 1, (26)

J

lim max |acj| = 0, (27)
n—=00 1<j<mlk1)
m(k1)
. —1 . _
nh_}ngon Z (acp)(acy) = T, (28)
hotj=1
and
max |ac;| = O(1), (29)
1<j<m(k1)

see Moulines & Soulier (2003) for details. The only difference to assuming Gaussianity of the
underlying series is (29). So from Ohanissian et al. (2008), we know that (26) - (28) are fulfilled
if « is defined accordingly.
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Focusing on (26), we can write

m(k1) mk1) K m*1) K i—1

Y- (DR () ey
j =1 =2 s=1 sk
1 mF1) K Z2 2k mF1) K -1 Y0 ks
e
Z 1 S
) Ky (e Plogj — A5 5 log j)ayy,
+2ZZZ SkSkmS / — |,
J =2 s=1 sk

where

m*) K -1 1 m(ki) . 1 m(ks) .
'Ys%’(m(ki) Zj logj — (k) Zj IOg])aj,ki
J 1=2

i Z s=1 Sks Sk’

i— k1)

1
= 20(logj!) nys ZZ

i=2 s—1 S S’“l‘

= o(1).

By definition we have that Zm( v 32 k, = Sk;» and by approximating sums by integrals we get
Sk, = mF). Hence,

m{) i=2 s=1 mke)

m(k1) 1 K 72 K i—-1 y s
_ = 7 s i
[ SEEE o R 9 3 o) ]

Defining

2 K i—1 -1/2
am2(X ey T 1)
=2 s=1

then nh_)rgo Z;n(kl)(acj)z =1.

Notice that (26) and (28) imply that

m(k1)

7= lim n~Y( Z acj)?.

n—o0 -
J

Hence, 7 = 0 when E;"(kl) ac; = 0, which we have in our case since a;y, is by definition
deviations from mean so (28) is fulfilled. From Moulines & Soulier (2003, Section 9.3), we
know that (28) is generally fulfilled by the LPR estimator and therefore also for the TLPR
estimator and the sum of estimates. Lastly, note that since we know from Moulines & Soulier
(2003) that for every aggregation level, k;,

lim max |cjp|=0
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we have that the weighted sum c¢; satisfies (27).
Notice that since o = O(Vm(*1) this implies that o 37 ~,d? can be written as

m(1) 3/2
(k1))°74] (k1)
S i () )

nk
J

and thus, given the restrictions on the bandwidths, we can apply Moulines & Soulier (2003,
Theorem 21) to state that

2 S T o7
2 <Zl m(ﬁﬁ) +QZZ m(ks)> ;%‘(di —d)

1=2 s=1

is asymptotically normal with zero mean and variance 372 /24.
Alternatively, we could have applied Hurvich et al. (2005, Proposition A.2) to state the
same result since

m(kl) m(kl)
Z ac; =0 and Z (acj)? =1
J J

by the construction of ¢;, and since
2

m(k1)

lim o2 Z lej — cj1| + ’Cm(kl)’ log(n) =0,

n—o0 -
J

because ¢; = O (log m(kl)/m(kl)) and a = O(Vm(1)). This concludes the proof.

8.5 Proof of Proposition 2.1
Proof follows by Ohanissian et al. (2008, Lemma 2). This concludes the proof.

8.6 Proof of Proposition 2.2
The proof follows by Geweke & Porter-Hudak (1983). This concludes the proof.

8.7 Proof of Theorem 3

We know from the non-temporal aggregated case that Lemma 3(e) of Frederiksen et al. (2008)
implies Proposition 4.1 of Hurvich et al. (2005) and Lemma 3(a,b,c,d) of Frederiksen et al.
(2008) implies Proposition 4.2 of Hurvich et al. (2005). Therefore, in order to prove Theorem
3 it is sufficient to adapt either of these results to our setting, see Hurvich et al. (2005) and
Frederiksen et al. (2008).
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Define

/\
s

;(di, 0:)] 2d; 2d08§i)7

S k) (diy0i) =

U k)(dis ) = m(k)Sm(k’i)<di>Qi)va(ki)(diaei)7
where
1+ h(do, 6o, ;)

;i 03) = 1+ h(di,0i,N;)’

(k) -1

57 =1 0w (1 on)

and VQ (,)(d;i,0;) is the first-order derivative of the objective function. Here Igi) (Aj) and

fT(I:Z) (Aj) are the periodogram and spectral density of the k;th aggregated series, respectively.
Furthermore, define

9gh (di, 05, 7j)
Uy (s Ky (din0;) = 2log (X)) — T+ b (dy, 0, \y) k) Zlog

Oah (di, i, Ag)

1
m Z L+ h(di,0;,0)

q=1
O h (00 0) 1™ 9y h(di, 0, 0)
0, iy Viy Aj 0, iy Uiy N\g
(x) = - E ) = 2> ceey w 27
'Ur]m( )(d 9) 1+h(di,0¢,)\j) m s 1+h(di,0i,)\q) r Ry+R +
N, e (dis 03) - = (Ul,j,m(’“i) (di,0) sV g o )(d“e))
0 0 0 0
$Oy = SO (do,00), U = U () (do,b0), N;’;(ki) = N, v (do, o).

This notation allows us to write the scaled derivative vector evaluated at the true parameters
as

-1
mEI B VQ k) (do,00) = (SY)) B LU

m( m Z) m(kl)
_ (@ Yl © O
= (s%) Bl Z} N
]:

where

(Bm(ki))ll = vV mki), (Bm(ki))s+l o1 m)\%(m for s=1,..., Ry,
= Vim0 for [ =0, Ry,

d (B )
an m*i) ) 1 p b0 Ry 42 m(ki)
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-1
From Frederiksen et al. (2008) we know that <S © ) Bt U (ng_) is asymptotically Gaussian
m\"i

~ ~ !/
with zero mean and covariance matrix (g, g, , such that Bm(ki) <di —dp,0; — 90) is asymptot-

ically Gaussian with mean zero and covariance matrix Q]}i R, We need to show that the prop-

erly scaled, Zfi 1 'Viém(ki) (aﬂ — dy, 0, — 00)/ is also asymptotically Gaussian with mean zero
1
m(ki)
1), %’m(ki)fé*%ki)v@m(ki) (ds, 0;) 4N (0,0Qr, R, ) and (2) “K 7¢m(ki)§7%ki)V2Qm(ki) (ds, ;) Ei%ki) L
afdr, r,. (1) Follows by the adaption of Lemma 3(e) of Frederiksen et al. T(n20()8) and/or "
Proposition 4.1 of Hurvich et al. (2005) to our setting. (2) Follows by the adaption of Lemma
3(a,b,c,d) of Frederiksen et al. (2008) and/or Proposition 4.2 of Hurvich et al. (2005) to our
setting.

More specifically, following the idea of Ohanissian et al. (2008), write

and covariance matrix (af2) "', where Em( k) = B_ (1, Two steps are needed as n — oo:

K K . m(¥i) )
ki) p—1 0y D1 i
Z%’m( )Bm(ki)va(ki) (di, 0i) = Z% (Sm(’“i)) Bm(ki) Nj,m(’“i)ej
i=1 i=1 j=1
~_ k;
- szBm%}%) Njam(ki)ej T 0p (1) ’
i=1 j=1
K m(t) (k1) og (k1)
B ~_1 (k1) m\"t) log m'\¥1
- ZVZBm(kz) Nj,m(kz) J OP( nk
i=1 j=1
(k1)
ST o. [ m"* logm®
B Z =3 +Op nk ’
j=1
where B = Vm(ki)Bm(ki) and since
K »n—1 .
2 i1 WBm(kz-)ij(ki) for 1 < j < m(kx)
K—1_ pH-1 .
ci = izt VB  Njme - for mbr) 41 < j < mbr-)
;=
V1B, by Njtind for mk2) 41 < j < m(k)
The proof of asymptotic normality of Z;-n:(il) cjeékl) is based on the Wold device. Define, for
m(k1) m(k1)
2 — (k1)
2 (z) = Z (2'¢j)”, kny(z) = ot (x)2'cj, and T, = Z kn,j (z)€; !
j=1 j=1
Using this notation, we have 2’ Z;n:(?) cjsékl) = 7, (x) T, and it suffices to prove that T,
is asymptotically standard Gaussian and that lim, .. t2 (z) = z'aQx. Using the idea of
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Ohanissian et al. (2008) and the proof to Proposition 4.1 in Hurvich et al. (2005) the last
property can be obtained by writing

mk1) Ry+Ruw+2 Ry+Ry+2
2
th(2)= Y (¢¢;)" =101 (2) + Z Z s ( (30)
j=1

and approximating sums by integrals. More specifically, without loss of generality focus on
tn 1.1 (%) (the other being routine applications of the same technique), where

m(k1) K 2
2
a1 (2) = = ot Z ( m(’“) Yy jmlk z)> .

Rewriting t2 ; ; (z), we get

42 T 2 i
Jim 20 @) = mad |33 ()
i=1 j=1
K i—1 m(k) oy
s I
+QZZ i 5s) () U Lam )Yy o (i)
i=2 s=1 j=1
(k4) 2
lim 721,1,1() —  lim Zm %2 Ul,j,m(kz)
n—oo 5'3%1 o n—oo — — m(kz) m(kz)
i=1 j=1
K i— lm(kl
YoYi VLgmtE) U (ki)
wygzzm o
7 s i

Pt Rad)

and approximating sums by integrals (as this is elementary calculus, although tedious, we omit
the intermediate steps)

K 9 K i—1
hm tn,1,1,1 4 Z m(i;fi)7 nlingotn,l,l,2 =8 Z Z mééksl) '
i=1 1=2 s=1

Thus,

tha v L 1
. o s /i
g B0 (5- 7 2y S )

n—oo
i=2 s=1

Applying the same procedure, and therefore omitted, to the other elements of (30), we get that
lim,, o0 2 () = 2'afz.
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Now we only need to prove that T, is asymptotically standard Gaussian. In order to apply

the results of Hurvich et al. (2005, Proposition A.2), we need

m(k1) m(k1)

D kng@) =0, > kij(@)=1,
=1 =1

and
m(k1)

r}l—{go Z ’kn’j (.TJ) - k’n,j—H ({E)‘ +
=1

kn7m(kl) ‘ log

Notice that (31) is fulfilled by the construction of ¢; and &y ; (x), i

_07

(k1) (k1)
m m
xcj ZJ 1 xcj
1

knj(x) =
jz; / ; \/mel) (2¢,)? \/Emwl) (ac;)?

j=
) .
since Zm . ¢; = 0 by construction, and

m(k1) m(k1)

2
S R =y el oy
— ’ — mk1) 2
=1 I=L 200 (2g)

Furthermore, since

K
=02 71 (k:) d |ej—cjp|=012 :
21 ( Z% ogm and  |cj — ¢ ;vm

(31)

(32)

(32) is fulfilled. Thus, we can apply Hurvich et al. (2005, Proposition A.2) to state that T}, is

asymptotically standard Gaussian.

To finish the proof, we show that the sum of the weighted (and scaled) Hessian converges
in probability to af2r, r,. Now, if we write the weighted sum of the scaled derivatives vector

as

K

Z ’Yim(ki)é;l%ki) va(kz’) (di, 0;)
i=1

K mki)
15 (’%)
— Z Z Yi <Sm(’%) (dl,92)> Bm%ki)Nj,m(k )(dz,g )goj(dug) -2d; 2d0
i=1 j=1
m(kl
(k1)
= (Sm(kl) dlael Z nyz m(k jm )(dl?e )‘p](dha) j2di 2d0 € +Op(1),
7j=1 =1
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we can write the scaled Hessian as

m(k1) K
(S

m(kl) dlael Z Z’yzg % )(dlve’b) X

7j=1 =1

K
~_ 9 — k)
{Z ’Yz‘Bm%ki) V(p;(di, 0:)5" Qdo),}fj
i=1

mk1) K

+ (8,000 (d1, 1)) - Z Z%B_ (ki)

Jj=1 =1
K

B~ (k)
(Z ’Yle%kz)VNj,m(kz) (d“ 91))90] (dla 0; ) j2di 2d0€j
i=1
m(kl) K
- (s

e (d1,01)) Z Z%B‘ k) j (k) (diy 03)p; (i, 0,)5 2d; 2d0€§ D
7j=1 =1

K
=1

1 1

= (S0 (d1,01))" MLm(ki)(dz',@i) + (S0 (d1,01))

o
— (8,0 (d1,61)) M, ) dis 0i).

M, k) (i 0i)

Since S, (x;) converges uniformly to 1, we only need to prove that M (ki) COnVErges in probabil-

—1/2
ity to aQg, g, uniformly w.r.t. (d,) € Dx©O, where a = (Zl 1 m(k S22 Ryt nZ?’jsi)) ,
and that M o (k) and M 3. m(k;) COnVerge to 0. We prove the first fact, the other being routine

applications of the same technique, and therefore omitted.
Let Bl (i) be the Ith diagonal element of Bm(ki)' Thus, the derivatives wrt. 6; are (dette

er forkert!!!, se Hurvich + hvordan vi definerer tingene!)

(Ls)
M

m(kl) K
0p, h (d;, 05, )\j) (k1)
-1 2d;—2do . (*1
- — di, b i,
> DB Z% TS vy e i

=1 =1

(di, 0;)

fori=1,..,Ry+Ry,+2andr=2,..., R, + R, + 2. Since ZTZ(I ) Uik = 0, this expression
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can be rewritten as

M(l’s) (dz‘, 91)
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~_1 5-1
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Approximating sums by integrals (33) converges to the ([, s)th element of af2g, r,. From

L ) Vgt | < () (m®) ™, we

know that (34) converges to 0. Finally, the term (35) is op(1 ) by Hurvich et al. (2005, Propo-

" . (ki)
sition A.1) since > 7", U (k) = 0 and @, (d;, 0;)72%—2D0 2, 1.
Concerning the derivatives wrt. d;

the consistency of the LPWN estimates and that B

MY (d;,0:)
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where 4
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1
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Again, it is seen by approximating sums by integrals that (36) converges to the (I, 1)th

element of aQ2r, g, , and from the arguments above that (37) converges to 0. That (38) is 0,(1)
(ki)

can be seen since 370, v, . ) =0 and @;(d;, 0;)2%=2d0 L, 1 guch that the assumptions to

apply Hurvich et al. (2005, Proposition A.1) are satisfied.
Hence, the sum of the weighted (and scaled) Hessian converges in probability to aQ2r, g,

~ ~ ~ /
such that Zfi 1 %‘Bm(ki) (di —dop,0; — 00) by standard arguments is asymptotically Gaussian

. . _1 . K 2 K i1 v,y -1/2
with mean zero and variance (afg, r, )" . By defining o = (Zi:l —y T 23 o3 WZ(ZS)> ,
know from the derivations above that the scaled derivatives vector at,, (x) T, is asymptotically

centered Gaussian with variance Qg g, , and that the scaled Hessian converges in probability
also to Qg g, This concludes the proof.

8.8 Proof of Proposition 3.1

Here we follow the proof of Lemma 2 of Ohanissian et al. (2008) and applying the above
distribution result for the simple sum of two estimators, i.e. v; =v; =1for 1 <i<j <K
and v, = 0 for all 1 < k < K such that k # i, j, we get

lim m*) cov (CZ“ a?]) = QR, Ry

n—oo

This implies that the asymptotic covariance between any LPWN estimates obtained using
temporal aggregated series equals the variance of the lesser aggregated series, i.e.

nlLIEO <m(ki) (Cov (cil, cz]) —Var (cf,))) =0.

This concludes the proof.

8.9 Proof of Proposition 3.2

Following Hurvich & Ray (2003), we conjecture that the covariance matrix is well approximated
by cov(mVQ (d,0))".
For any m (and corresponding aggregation level), consider the objective function

Q(d,0) =1o 1§:M +iilo <)\_2d(1+h(d9 x))) (39)
,V) =108 mj:l ]_—l—h(d,G,)\]) mj:1 g\ A y Vs Aj .
Thus, the score multiplied by m can be written as

m )\?dlz (\)) 1 & Agdlz (M)

A -1
m\&, V) = ) T m T hid oy | X
mVQm (d,0) = G (d,0) ; 11 h(d,0,%) m qzl L+ h(d,0,7) ) 7
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where
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where X; is the vector of partial derivatives of —log (/\_2dG( 0, ) )) For simplicity
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Gx3 it follows that

where vy ; = (log Aj— ) . Then as-

suming that I, (\;) is independently distributed as %)\-_MOW

207 (A))
D VL Trh (o B0 3]
E[mVaQm (do,00)] = E|2m | = A;OE ?A(; ’
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)\2d01 ()\ )
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)‘?dolz ()‘J) a1
1+ h(dy, 09, )\J)

2dg
since F/ [W 1} = 1 and )37 v1; = 0. The same holds for the other entries of
the score, i.e. E[mVQy, (do,00)] =0, as E [WG_ ] =1land > 7, v5; = 0 for s =

1, ..., Ry+ Ry, +2. Hence, using cov(mV@Qy, (do, 00)) = E [(mVQmn (do, 00)) (mVQy, (do, 00))'] ,

the covariance matrix is approximately given by I'"!. This concludes the proof.
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9 Appendix B: Specification of the spurious long memory mod-
els

Stationary and Nonstationary Random Level Shift Models (SRLS and NSRLS)

. . . P(i;=0)=1-
Zt = Uy + €ty Uy = (1 _]t]l) P T 2t It = { ](5%(]15 :)1) =p P )

where €; is NID (O, O'g), nyis NID (0, 0'727) and I is the indicator function taking the value 1 in
the stationary case (SRLS).

Markow Switching Models (MS-IID and MS-GARCH)

N (pg,02) if s, =0

(MS = TID): 2 = { N(u1,02) ifsp=1

and
(MS — GARCH) : z, = 041, 07 = wo + (w1 — wo) 8¢ + azi_| + Bor_y, e ~ N(0,1)

with (transition) probability pg of remaining in regime 0 (s; = 0) and (transition) probability
p1 of remaining in regime 1 (s; = 1).

White Noise with Trend Model (WNT)
2y = ctP—1/2 + uy,

where c is a constant and u; is NID (0,02).
Table 9 shows the parameter values we use in the power study.

[Table 9 about her]|
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Table 1: Empirical size properties for Model I

d=04 d=0.6

K 2 3 4 5 2 3 4 5
Panel A: m = LnU‘E)J

LPR 0.048 0.059 0.067 0.063 0.051 0.055 0.059 0.061
TLPR 0.050 0.058 0.063 0.068 0.054 0.059 0.062 0.059
LW 0.059 0.061 0.075 0.091 0.074 0.077 0.080 0.093
LPW 0.066 0.070 0.089 0.106 0.047 0.051 0.064 0.061
LWN 0.035 0.039 0.052 0.063 0.048 0.059 0.063 0.071

LPWN 0.039 0.041 0.059 0.068 0.042 0.057 0.065 0.075

Panel B: m = Lno'(jj

LPR 0.048 0.057 0.065 0.061 0.049 0.054 0.057 0.061
TLPR 0.049 0.057 0.063 0.063 0.054 0.055 0.061 0.059
LW 0.058 0.061 0.074 0.088 0.064 0.069 0.070 0.084
LPW 0.062 0.065 0.079 0.091 0.047 0.050 0.064 0.063
LWN 0.039 0.039 0.052 0.059 0.048 0.065 0.065 0.071

LPWN 0.041 0.044 0.057 0.066 0.045 0.061 0.068 0.072
Panel C: m = Ln0'7J

LPR 0.049 0.055 0.055 0.056 0.049 0.053 0.055 0.056
TLPR 0.049 0.056 0.055 0.058 0.051 0.054 0.057 0.059
Lw 0.057 0.059 0.070 0.081 0.064 0.061 0.062 0.074
LPW 0.058 0.061 0.076 0.084 0.049 0.051 0.057 0.058
LWN 0.040 0.041 0.052 0.058 0.048 0.056 0.057 0.062

LPWN 0.041 0.045 0.056 0.061 0.045 0.053 0.062 0.067

Notes: The table shows the empirical size properties for Wn for 5% theoretical size. The number of observations
of the original series is 4096 and the aggregated series have 4096/21_1 fori =1,2,..., K = 5 observations.
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Table 2: Empirical size properties for Model IT with T =1 and (ay, 8,0) = (0,0).

nsr 1 5 10

K 2 3 4 5 2 3 4 5 2 3 4 5
Panel A: m = LnU'E’J

LPR 0.051 0.048 0.054 0.052 0.053 0.055 0.064 0.062 0.061 0.068 0.069 0.062
TLPR 0.054 0.046 0.055 0.062 0.064 0.059 0.065 0.073 0.067 0.066 0.071 0.072
LW 0.055 0.059 0.060 0.061 0.061 0.064 0.063 0.079 0.064 0.067 0.066 0.075
LPW 0.059 0.056 0.073 0.074 0.059 0.063 0.077 0.083 0.069 0.076 0.081 0.094
LWN 0.037 0.045 0.049 0.055 0.042 0.045 0.051 0.055 0.047 0.049 0.059 0.062
LPWN 0.051 0.057 0.059 0.065 0.052 0.061 0.064 0.066 0.051  0.065 0.068 0.071
Panel B: m = LnO‘GJ

LPR 0.059 0.061 0.064 0.063 0.062 0.067 0.075 0.079 0.069 0.078 0.078 0.092
TLPR 0.058 0.059 0.061 0.062 0.061  0.067 0.077 0.081 0.069 0.077 0.081 0.089
LW 0.061 0.060 0.065 0.069 0.066 0.068 0.075 0.078 0.071 0.069 0.082 0.089
LPW 0.062 0.064 0.076 0.077 0.069 0.075 0.083 0.089 0.072 0.085 0.099 0.107
LWN 0.046 0.049 0.055 0.056 0.052 0.051 0.055 0.059 0.051  0.053 0.059 0.060
LPWN 0.051 0.054 0.058 0.063 0.055 0.053 0.061 0.061 0.055 0.063 0.065 0.069
Panel C: m = Ln(”J

LPR 0.089 0.092 0.102 0.108 0.101  0.095 0.124 0.120 0.161 0.145 0.112 0.102
TLPR 0.091 0.100 0.099 0.113 0.092 0.112 0.121 0.115 0.159 0.138 0.120 0.111
LW 0.088 0.095 0.097 0.102 0.105 0.121 0.130 0.129 0.162 0.161 0.142 0.101
LPW 0.105 0.114 0.126 0.131 0.133 0.141 0.152 0.149 0.193 0.184 0.152 0.131
LWN 0.053 0.052 0.057 0.058 0.055 0.054 0.059 0.061 0.069 0.061 0.058 0.055
LPWN 0.058 0.058 0.060 0.071 0.069 0.071 0.068 0.075 0.081 0.079 0.078 0.064

Notes: The table shows the empirical size properties of Wn for 5% theoretical size. The number of observations
of the original series is 4096 and the aggregated series have 4096/2171 fori =1,2,..., K = 5 observations.
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Table 3: Empirical size properties for Model III with I =1 and (ay, 3,0) = (0.8,0).

nsr 1 5 10

K 2 3 4 5 2 3 4 5 2 3 4 5
Panel A: m = LnU'E’J

LPR 0.062 0.068 0.069 0.073 0.063 0.081 0.098 0.112 0.068 0.071 0.078 0.111
TLPR 0.063 0.066 0.071 0.072 0.065 0.080 0.101 0.109 0.067 0.074 0.081 0.116
LW 0.061 0.069 0.064 0.069 0.064 0.078 0.102 0.111 0.065 0.075 0.076 0.114
LPW 0.059 0.061 0.067 0.069 0.070 0.088 0.101 0.119 0.076  0.081 0.081 0.101
LWN 0.049 0.055 0.056 0.059 0.059 0.060 0.062 0.064 0.058 0.059 0.060 0.065
LPWN 0.051 0.055 0.054 0.057 0.064 0.063 0.065 0.069 0.061  0.060 0.063 0.070
Panel B: m = LnO‘GJ

LPR 0.053 0.061 0.070 0.078 0.077 0.079 0.105 0.119 0.088 0.100 0.101 0.111
TLPR 0.060 0.064 0.071 0.080 0.075 0.081 0.112 0.120 0.088 0.095 0.108 0.117
LW 0.054 0.056 0.070 0.078 0.081 0.083 0.112 0.121 0.086 0.099 0.101 0.114
LPW 0.058 0.058 0.067 0.072 0.085 0.089 0.100 0.119 0.091 0.099 0.105 0.119
LWN 0.054 0.057 0.058 0.061 0.064 0.066 0.066 0.069 0.062 0.062 0.066 0.071
LPWN 0.051 0.055 0.055 0.059 0.059 0.058 0.059 0.066 0.060 0.057 0.059 0.068
Panel C: m = Ln(”J

LPR 0.114 0.112 0.110 0.113 0.179 0.161 0.132 0.136 0.152 0.102 0.108 0.127
TLPR 0.109 0.111 0.125 0.119 0.157 0.162 0.135 0.130 0.170 0.111 0.109 0.129
LW 0.113 0.107 0.104 0.117 0.181 0.144 0.133 0.139 0.163 0.119 0.110 0.123
LPW 0.089 0.078 0.079 0.082 0.141 0.120 0.117 0.120 0.121 0.135 0.129 0.101
LWN 0.059 0.061 0.064 0.063 0.076 0.071 0.065 0.066 0.089 0.079 0.074 0.071
LPWN 0.055 0.053 0.054 0.061 0.058 0.055 0.060 0.064 0.071  0.055 0.059 0.063

Notes: The table shows the empirical size properties of Wn for 5% theoretical size. The number of observations
of the original series is 4096 and the aggregated series have 4096/2171 fori =1,2,..., K = 5 observations.
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Table 4: The power against the nonstationary random level shift (NSRLS), the stationary
random level shift (SRLS), and white noise with trend (WNT) models with m = |n%®|.

Generic Parameter Values Estimated Parameter Values
Panel A: NSRLS
K 2 3 4 5 2 3 4 5
LPR 94.0% 96.5% 97.6% 98.0% 93.4% 93.2% 93.1% 94.3%
TLPR 99.0% 99.3% 98.7% 98.5% 93.2% 94.1% 93.7% 94.1%
LW 94.2% 95.7% 97.3% 97.4% 90.4% 91.2% 91.0% 91.4%
LPW 97.9% 98.0% 98.0% 98.3% 89.5% 89.9% 90.6% 91.1%
LWN 100.0% 100.0% 100.0% 100.0% 99.5% 99.7% 99.8% 99.8%
LPWN  98.5% 99.0% 99.8% 100.0% 99.5% 99.5% 100.0% 100.0%
Panel B: SRLS
K 2 3 4 5 2 3 4 5
LPR 95.6% 98.1% 98.7% 99.4% 97.3% 98.7% 99.5% 99.3%
TLPR 99.9% 99.8% 99.6% 99.3% 100.0%  99.7% 99.5% 99.3%
LW 96.1% 98.6% 99.3% 99.3% 97.2% 98.9% 99.5% 99.8%
LPW 99.1% 99.8% 99.3% 99.5% 99.2% 99.6% 99.9% 99.9%
LWN 100.0% 100.0% 100.0%  99.9% 100.0% 100.0% 100.0% 100.0%

LPWN  99.0% 99.3%  100.0% 100.0% 100.0%  100.0% 100.0% 100.0%

Panel C: WNT

K 2 3 4 5 2 3 4 5
LPR 95.8%  98.4% 99.5% 99.6% 77.8% 87.7% 91.6% 96.1%
TLPR  99.8% 99.9%  100.0%  99.6% 98.3% 98.9% 98.0% 98.0%
LW 96.3% 98.1% 98.8% 99.3% 89.3% 91.6% 95.6% 98.9%
LPW 99.3% 99.5%  100.0%  99.7% 75.5% 80.6% 83.4% 86.6%

LWN  100.0% 100.0% 100.0% 100.0% 100.0%  100.0% 100.0% 100.0%
LPWN 100.0% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Notes: The table shows the power properties of Wn against nonstationary random level shift (Panel A), sta-
tionary random level shift (Panel B), and white noise with trend (Panel C) models. The number of observations
of the original series is 4096 and the aggregated series have 4096/21_1 fori =1,2,..., K = 5 observations.
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Table 5: The power against the Markov switching models with iid (MS-IID) and GARCH

(MS-GARCH) regimes with m = |n%5].

Generic Parameter Values

Estimated Parameter Values

Panel A: MS-IID

K 2 3 4 5 2 3 4 5
LPR 93.9% 96.9% 96.3% 97.0% 94.8% 97.2% 97.8% 97.7%
TLPR 95.7% 95.7% 96.6% 97.1% 99.1% 99.5% 98.9% 98.9%
LW 94.2% 96.6% 96.1% 96.1% 94.1% 96.7% 97.4% 97.9%
LPW 96.4% 96.9% 98.8% 99.1% 98.6% 99.1% 99.0% 98.7%
LWN 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
LPWN 100.0% 100.0% 99.6% 100.0% 100.0% 99.6% 100.0% 99.6%

Panel B: MS-GARCH

K 2 3 4 5 2 3 4 5
LPR 97.9% 98.0% 98.0% 98.0% 95.4% 97.8% 99.2% 99.5%
TLPR 97.7% 97.7% 97.5% 97.7% 99.6% 100.0% 99.5% 99.6%
LW 95.3% 95.3% 96.7% 96.7% 94.8% 97.9% 98.7% 99.0%
LPW 94.7% 94.6% 95.0% 95.5% 99.4% 99.6% 99.7% 99.8%
LWN 100.0% 99.8% 99.8% 99.9% 100.0% 100.0% 100.0% 100.0%
LPWN 99.9% 99.5% 99.9% 99.9% 100.0% 100.0% 100.0% 100.0%

Notes: The table shows the power properties of Wn against Markov switching models with iid (Panel A) and

GARCH (Panel B) regimes. The number of observations of the original series is 4096 and the aggregated series
have 4096/2271 fori =1,2,..., K = 5 observations.

Table 6: Empirical results for the DEM/USD, YEN/USD, and USD/GBP exchange rates with

m = |n%5).
LPR Long Memory Estimates TLPR Long Memory Estimates
Currency w p-values k=1 k=2 k=3 k=4 W  p-values k=1 k=2 k=3 k=4
DEM/USD 23.02 0.00 0.47 0.35 0.37  -0.02 947 0.02 0.41 0.22 0.55 0.16
YEN/USD  9.14 0.02 0.24 0.26 0.45 0.31  0.92 0.81 0.45 0.54 0.64 0.58
USD/GBP  2.44 0.48 0.40 0.44 0.49 0.37 2.44 0.48 0.41 0.42 0.47 0.38
LW Long Memory Estimates LPW Long Memory Estimates
Currency w p-values k=1 k=2 k=3 k=14 W p-values k=1 k=2 k=3 k=4
DEM/USD 18.80 0.00 0.39 0.27 0.32 0.08  4.46 0.21 0.15 0.22 0.26 0.02
YEN/USD  5.02 0.16 0.30 0.30 0.38 0.26  0.61 0.89 0.30 0.28 0.21 0.16
USD/GBP  1.58 0.66 0.32 0.36 0.40 0.38 1.05 0.78 0.43 0.36 0.37 0.45
LWN Long Memory Estimates LPWN Long Memory Estimates
Currency w p-values k=1 k=2 k=3 k=4 W  p-values k=1 k=2 k=3 k=4
DEM/USD  0.46 0.92 0.32 0.15 0.17 0.01  0.02 0.99 0.41 0.28 0.35 0.01
YEN/USD  2.84 0.41 0.28 0.24 0.41 0.01  0.22 0.97 0.16 0.24 0.07 0.31
USD/GBP  0.82 0.84 0.53 0.44 0.51 0.57 0.25 0.96 0.28 0.73 0.73 0.74

Note: The LPWN denotes the local polynomial Whittle estimator implemented with (Ry, Rw) = (1, 0).
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Table 7: Empirical results for the DEM/USD, YEN/USD, and USD/GBP exchange rates with

m = |n07).
LPR Long Memory Estimates TLPR Long Memory Estimates
Currency w p-values k=1 k=2 k=3 k=4 w p-values k=1 k=2 k=3 k=4
DEM/USD  30.58 0.00 0.24 0.34 0.37 0.18  14.69 0.00 0.21 0.35 0.42 0.20
YEN/USD 16.15 0.00 0.18 0.26 0.36 0.37 5.77 0.12 0.17 0.28 0.35 0.31
USD/GBP  7.08 0.07 0.25 0.32 0.32 0.34 8.14 0.04 0.27 0.38 0.29 0.17
Lw Long Memory Estimates LPW Long Memory Estimates
Currency w p-values k=1 k=2 k=3 k=4 w p-values k=1 k=2 k=3 k=4
DEM/USD 13.87 0.00 0.22 0.30 0.32 0.28 9.69 0.02 0.32 0.36 0.35 0.17
YEN/USD 14.63 0.00 0.23 0.29 0.33 0.41 2.99 0.39 0.29 0.32 0.31 0.22
USD/GBP  11.63 0.01 0.24 0.30 0.31 0.38 1.76 0.62 0.31 0.30 0.36 0.33
LWN Long Memory Estimates LPWN Long Memory Estimates
Currency w p-values k=1 k=2 k=3 k=4 w p-values k=1 k=2 k=3 k=4
DEM/USD  7.10 0.07 0.48 0.38 0.38 0.37 0.37 0.94 0.36 0.32 0.35 0.19
YEN/USD  7.57 0.06 0.41 0.33 0.30 0.49 5.11 0.16 0.33 0.18 0.38 0.24
USD/GBP  4.12 0.24 0.44 0.36 0.45 0.42 0.69 0.87 0.38 0.51 0.50 0.54

Note: The LPWN denotes the local polynomial Whittle estimator implemented with (Ry, Rw) = (1, 0).
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Table 8: Empirical results for the DJIA30 stocks with m = Ln0'5J.

LPR Long Memory Estimates LWN Long Memory Estimates

Ticker w p-values k=1 k=2 k=3 k=4 w p-values k=1 k=2 k=3 k=4
AA 4.05 0.26 0.42 0.50 0.39 0.32 0.84 0.84 0.55 0.60 0.74 0.58
AIG 4.22 0.24 0.42 0.50 0.39 0.38 0.92 0.82 0.66 0.68 0.75 0.56
AXP 5.59 0.13 0.53 0.51 0.35 0.47 0.01 1.00 0.75 0.73 0.74 0.73
BA 15.89 0.00 0.34 0.42 0.28 0.60 2.65 0.44 0.74 0.57 0.58 0.50
C 7.55 0.06 0.53 0.51 0.32 0.21 14.80 0.00 0.66 0.76 0.77 0.01
CAT 17.71 0.00 0.28 0.43 0.40 0.73 1.87 0.59 0.72 0.52 0.42 0.49
DD 1.40 0.70 0.24 0.21 0.18 0.08 0.46 0.92 0.28 0.33 0.54 0.08
DIS 13.33 0.00 0.49 0.49 0.27 0.47 0.23 0.97 0.68 0.78 0.80 0.47
GE 15.08 1.00 0.55 0.55 0.27 0.41 10.86 0.01 0.62 0.88 0.81 0.31
GM 5.69 0.13 0.43 0.43 0.30 0.14 23.43 0.00 0.41 0.28 0.94 0.97
HD 5.48 0.14 0.53 0.60 0.44 0.41 1.20 0.75 0.61 0.56 0.45 0.68
HON 11.80 0.01 0.33 0.50 0.46 0.24 1.51 0.68 0.72 0.81 0.75 0.74
HPQ 2.18 0.53 0.50 0.52 0.42 0.47 0.34 0.95 0.72 0.71 0.82 0.74
IBM 2.37 0.49 0.42 0.51 0.50 0.44 0.72 0.87 0.67 0.73 0.80 0.66
INTC 5.21 0.15 0.47 0.54 0.39 0.37 1.32 0.72 0.71 0.71 0.77 0.32
JNJ 9.51 0.02 0.45 0.49 0.29 0.42 3.52 0.31 0.61 0.61 0.34 0.46
JPM  19.04 0.00 0.56 0.51 0.23 0.45 6.81 0.07 0.54 0.71 0.72 0.01
KO 7.73 0.06 0.46 0.52 0.49 0.23 0.29 0.96 0.61 0.69 0.77 0.78
MCD 11.89 0.00 0.49 0.57 0.34 0.44 4.08 0.25 0.44 0.45 0.74 0.42
MMM  7.20 0.07 0.27 0.40 0.28 0.30 0.74 0.86 0.56 0.64 0.68 0.65
MO 1.99 0.57 0.35 0.40 0.35 0.27 1.13 0.77 0.66 0.62 0.64 0.73
MRK 5.88 0.11 0.29 0.40 0.39 0.22 0.98 0.80 0.56 0.52 0.35 0.20
MSFT  5.90 0.12 0.55 0.55 0.37 0.33 2.55 0.46 0.68 0.67 0.18 0.01
PFE 4.48 0.21 0.36 0.37 0.47 0.30 0.29 0.96 0.64 0.64 0.56 0.75
PG 7.63 0.06 0.44 0.40 0.39 0.11 2.52 0.47 0.59 0.74 0.85 0.66
SBC 3.43 0.33 0.49 0.45 0.32 0.28 7.03 0.07 0.61 0.66 0.76 0.75
UTX 8.03 0.05 0.41 0.45 0.31 0.11 1.25 0.74 0.66 0.57 0.63 0.59
VZ 7.63 0.06 0.46 0.63 0.49 0.43 3.97 0.26 0.92 0.88 0.58 0.41
WMT 6.33 0.10 0.59 0.64 0.47 0.39 5.04 0.16 0.71 0.63 0.31 0.31
XOM  11.83 0.01 0.37 0.41 0.21 0.41 1.02 0.79 0.49 0.47 0.88 0.91
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Table 9: The Simulated Spurious Long Memory Models.

Generic Parameter Values Estimated Parameter Values
NSRLS 02=5,00=1, 0 =44, 0, =23,
p = 0.00001 p = 0.000004
SRLS ol=o0l=1, 02 =22, 00 =517,
p = 0.003 p = 0.002
MS-IID o= —p; =1, 0% =1, to = —0.4, py = —4, 0% = 2.5,
po = p1 = 0.001 po = p1 = 0.001
MS-GARCH wo =1, w; =3, wo = 0.08, w1 = 0.23,
a=04, 3=0.3,p=0.001 a=0.28, 5 = 0.56, p = 0.0008
WNT c=3,=-01,02=1 c=—-4.3, 3= -0.063, 02 =8.1

Notes: The table displays the generic and empirical parameter values obtained from the foreign exchange rate

analysis in Ohanissian et al. (2008).
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