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Abstract

We propose a simulated maximum likelihood estimator for dynamic models based on non-
parametric kernel methods. Our method is designed for models without latent dynamics from
which one can simulate observations but cannot obtain a closed-form representation of the like-
lihood function. Using the simulated observations, we nonparametrically estimate the density�
which is unknown in closed form� by kernel methods, and then construct a likelihood func-
tion that can be maximized. We prove for dynamic models that this nonparametric simulated
maximum likelihood (NPSML) estimator is consistent and asymptotically e¢ cient. NPSML is
applicable to general classes of models and is easy to implement in practice.
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1 Introduction

We propose a simulated maximum likelihood estimator for dynamic models based on nonparametric

kernel methods. Our method is designed for models without latent dynamics from which one can

simulate observations but cannot obtain a closed-form representation of the likelihood function.

For any given parameter value, conditioning on available information, we draw N i.i.d. simulated

observations from the model. We then use these simulated observations to nonparametrically

estimate the conditional density� unknown in closed form� by kernel methods. The kernel estimate

converges to the true conditional density as N goes to in�nity, enabling us to approximate the true

density arbitrarily well with a su¢ ciently large N . We then construct the likelihood and search

over the parameter space to obtain a maximum likelihood estimator� nonparametric simulated

maximum likelihood (NPSML) estimator.

NPSML was introduced by Fermanian and Salanié (2004), who obtained theoretical results

only for static models. In this paper, we develop and generalize their method to dynamic models,

including nonstationary and time-inhomogeneous ones. We give general conditions for the NPSML

estimator to be consistent and have the same asymptotic distribution as the infeasible maximum

likelihood estimator (MLE). For the stationary case, we also analyze the impact of simulations on

the bias and variance of the NPSML estimator.

NPSML can be used for estimating general classes of models, such as structural Markov decision

processes and discretely-sampled di¤usions. In Markov decision processes, the transition density

of endogenous state variables embodies an optimal policy function of a dynamic programming

problem, and hence typically does not have a closed-form representation (Doraszelski and Pakes,

2007; Rust, 1994). However, we can closely approximate the optimal policy function numerically,

and simulate observations from the model for NPSML. Similarly, in continuous-time stochastic

models with discretely-sampled data, the transition densities are well-de�ned, but only in few

special cases can we derive closed-form expressions for them. Again, di¤usion processes can be

approximated with various discretization schemes to any given level of precision, and hence we can

simulate observations from the model which are then used for NPSML.

For the classes of models that NPSML addresses, there are two categories of existing approaches.

The �rst is based on moment matching, and includes simulated methods of moments (Du¢ e and

Singleton, 1993; Lee and Ingram, 1991; McFadden, 1989; Pakes and Pollard, 1989), indirect inference

(Gouriéroux et al., 1993; Smith, 1993), and e¢ cient methods of moments (Gallant and Tauchen,

1996). These are all general-purpose methods, but cannot attain asymptotic e¢ ciency� even for

models that are Markov in observables� unless the true score is encompassed by the target moments

(Tauchen, 1997). More recently, Altissimo and Mele (2008) and Carrasco et al. (2007) developed

general-purpose estimators based on matching a continuum of moments that are asymptotically

as e¢ cient as maximum likelihood estimators for fully observed systems. One attractive feature



of NPSML� which it shares with Altissimo and Mele (2008) and Carrasco et al. (2007)� is that

asymptotic e¢ ciency is attained without having to judiciously choose an auxiliary model. For

NPSML, the researcher has to choose a kernel and a bandwidth for the nonparametric estimation

of transition densities. However, there exist many data-driven methods that guide the researcher

in this regard such that our method can be made fully automated while yielding full e¢ ciency.

Another advantage is that, unlike most of the above methods (Altissimo and Mele, 2008; Carrasco

et al., 2007; Gallant and Tauchen, 1996; Gouriéroux et al., 1993; Smith, 1993), NPSML can handle

nonstationary and time-inhomogeneous dynamics.

The approaches in the second category approximate the likelihood function itself, and hence

is more closely related to NPSML. Examples of this approach include the simulated likelihood

method (Lee, 1995), and the method of simulated scores (Hajivassiliou and McFadden, 1998), both

of which are designed for limited dependent variable models. Another set of examples are various

maximum likelihood methods for discretely sampled di¤usions (Aït-Sahalia, 2002, 2004; Brandt

and Santa-Clara, 2002; Elerian et al., 2001; Pedersen, 1995a,b; Sandmann and Koopman, 1998).1

While all these methods result in asymptotically e¢ cient estimators, they are designed only for

speci�c classes of models� i.e. limited dependent variable models or di¤usions, and cannot be

adapted easily to other classes of models. NPSML is for general purposes in both theoretical and

practical senses. Theoretically, we establish its asymptotic properties under fairly weak regularity

conditions allowing for a wide range of di¤erent models. At the practical level, when the model

speci�cation changes, only the part of the computer code that generates simulated observations

needs to be modi�ed, leaving other parts (e.g. kernel estimation of conditional density or numerical

maximization of likelihood) unchanged.

Throughout this paper, we assume that it is possible to simulate the current variables of the

model conditioning on �nitely-many past observations. This excludes cases with latent dynamics

since these cannot be simulated one step at a time. Extensions to methods with built-in nonlinear

�lters that explicitly account for latent dynamics are worked out in a companion paper (Kristensen

and Shin, 2007) building on the main results obtained here.

The rest of the paper is organized as follows. In the next section, we set up our framework to

present the simulated conditional density and the associated NPSML estimator. In Section 3, we

derive the asymptotic properties of the NPSML estimator under regularity conditions. Section 4

provides a detailed description on implementing NPSML with a numerical example, and Section 5

concludes.
1Obviously, we are citing only a small subset of methods for di¤usion estimation� namely, those that maximize

approximated likelihood and that are hence most closely related to NPSML. It should be noted that, unlike the
others, Aït-Sahalia (2002, 2004) use analytic expansions of the transition density and forgo simulations. Markov
chain Monte Carlo methods are widely used for Bayesian estimation of di¤usions. Elerian, Chib, and Shephard
(2001) is a representative example, and Johannes and Polson (2005) provide a broad overview of such methods.
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2 Nonparametric Simulated Maximum Likelihood

2.1 Construction of NPSML Estimator

Suppose that we have T observations, f(yt; xt)gTt=1, yt 2 Rk and xt 2 Xt. The space Xt can be
time-varying. We assume that the data has been generated by a fully parametric model:

yt = gt (xt; "t; �) ; t = 1; � � � ; T; (1)

where � 2 � � Rd is an unknown parameter vector, and "tjxt � F". Assume that F" is known

and does not depend on �.2 One particular class contained in the above model is where xt �
(yt�1; :::; yt�q) for some q � 1, such that fytg is a (possibly time-inhomogeneous) qth order Markov
process. In this case (1) is a fully speci�ed model. However, we allow xt to contain other (exogenous)

variables than lagged values of yt, in which case (1) is only a partially speci�ed model. Also, we

allow the process zt to be nonstationary, either due to unit-root-type behaviour or due to time-

dependence of gt.

The model is assumed to have an associated conditional density pt(yjx; �). That is,

P (yt 2 Ajxt = x) =

Z
A
pt(yjx; �)dy; t = 1; � � � ; T;

for any Borel set A � Rk. Then a natural estimator of � is the maximizer of the conditional
log-likelihood:

~� = argmax
�2�

LT (�); LT (�) =

TX
t=1

log pt(ytjxt; �):

If the model (1) is fully speci�ed, xt = (yt�1; :::; yt�q), then this is the full likelihood of the model

conditional on the starting value. If on the other hand, xt contains other variables than lagged

values of yt, LT (�) is a partial likelihood.

Suppose now that pt(yjx; �) does not have a closed-form representation, and thus the maximum
likelihood estimation of � is not feasible. In terms of the model (1), this normally occurs when

either the inverse of gt(xt; "t; �) w.r.t. "t does not exist, or the inverse does not have a closed-form

expression.3 Such a situation may arise, for example, when the function g involves a solution to

a dynamic programming problem, or when we are dealing with discretely-sampled di¤usions. In

such cases, although pt(yjx; �) is not available in closed form, we are still able to generate simulated
observations from the model: A solution to a dynamic programming problem can be represented

2We can actually allow the distribution F" to be time-varying and dependent on xt as well� i.e. F" (�) � F" (�; t; xt).
For simplicity, we do not consider such cases here.

3 If the inverse has a closed-form expression, we have pt(yjx; �) = p"
�
g�1t (y; x; �)

� ��� @g�1t (y;x;�)

@y

���, and the likelihood
is easily evaluated.
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numerically, and a di¤usion can be approximated by various discretization schemes up to a given

level of precision.

We here propose a general method to obtain a simulated conditional density, which in turn will

be used to obtain a simulated version of the maximum likelihood estimator. For any given t � 1,
y 2 Rk, x 2 Xt, and � 2 �, we wish to compute a simulated version of pt(yjx; �). To this end, we
�rst generate N i.i.d. draws from F", f"igNi=1, through a random number generator, and use these

to obtain:

Y x;�t;i = gt (x; "i; �) ; i = 1; � � � ; N:

By construction, the N simulated i.i.d. random variables, fY x;�t;i gNi=1, follow the target distribution:
Y x;�t;i � pt(�jx; �), i = 1; � � � ; N . They can therefore be used to estimate pt(yjx; �) with kernel
methods. De�ne:

p̂t(yjx; �) =
1

N

NX
i=1

Kh(Y
x;�
t;i � y); (2)

where Kh(�) = K(�=h)=hk, K : Rk 7! R is a kernel, and h > 0 a bandwidth.4 Under regularity

conditions on pt and K, we obtain:

p̂t(yjx; �) = pt(yjx; �) +OP (1=
p
Nhk) +OP (h

2); N !1;

where the remainder terms are oP (1) if h! 0 and Nhk !1.
Once (2) has been used to obtain the simulated conditional density, we can now use it to

construct the following simulated MLE of �0:

�̂ = argmax
�2�

L̂T (�); L̂T (�) =

TX
t=1

log p̂t(ytjxt; �):

When searching for �̂ through numerical optimization, we use the same draws for all values of �.

We may also use the same batch of draws from F"(�), f"igNi=1, across di¤erent values of t and x.
Since p̂t(yjx; �)

P! pt(yjx; �), the simulated likelihood L̂T (�)
P! LT (�) as N ! 1 for a given

T � 1 under regularity conditions. The main theoretical results of this paper demonstrate that �̂
inherits the properties of the infeasible MLE, ~�, as T;N !1, under suitable conditions.

Let us note the following two points. Firstly, the usual curse of dimensionality for nonparametric

estimators depends only on k � dim(yt) here, and the dimension of xt is irrelevant in itself. Secondly,
because we use i.i.d. draws, the density estimator is not a¤ected by the dependence structure in

the observed data. In particular, our estimator p̂t(yjx; �) remains a consistent of pt(yjx; �) whether
the model and observed data are i.i.d. or nonstationary.

4Here and in the following, we will use K to denote a generic kernel.
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Numerical optimization is facilitated if L̂T (�) is continuous and di¤erentiable in �. With (2),

if K and � 7! gt (x; "; �) are r � 0 times continuously di¤erentiable, then L̂T (�) has the same

property. This follows from the chain rule and the fact that we use the same random draws f"igNi=1
for all values of �.

A disadvantage of our estimator is that, for a �nite N and a �xed h > 0, the simulated log-

likelihood function is a biased estimate of the actual one. To obtain consistency, we will have to

let N !1 which is a feature that is shared by most other simulated likelihood methods.5 This is

in contrast to, for example, simulated method of moments, where unbiased estimators of moments

can be constructed, and consistency therefore be obtained for a �xed N . In addition to this, we

also have to require h ! 0 to obtain consistency. However, if one is willing to make a stronger

assumption about the identi�cation of the model, this issue can be partially avoided. For example,

in the stationary case, the standard identi�cation assumption is

E [log p(ytjxt; �)] < E [log p(ytjxt; �0)] ; � 6= �0:

A stronger identi�cation condition implying the former is

E
�
log

�Z
K(�)p(yt + h�jxt; �)d�

��
< E

�
log

�Z
K(�)p(yt + h�jxt; �0)d�

��
; � 6= �0;

for all 0 � h � �h for some �h > 0.6 Under this identi�cation condition, one can show consistency of
our estimator for any �xed 0 < h � �h as N !1. A similar identi�cation condition can be found
in Altissimo and Mele (2008). Still, for a �xed h > 0 the resulting estimator will no longer have

full e¢ ciency. To obtain this, one has to let h! 0.

While we here focus on the kernel estimator, one can use other nonparametric density estimators

as well. Examples are the semi-nonparametric estimators of Fenton and Gallant (1996), Gallant

and Nychka (1987), Phillips (1983) and Wahba (1981); the log-spline estimator of Stone (1990); and

the wavelet estimator of Donoho et al. (1996). What is needed is that the nonparametric estimator

converges towards the true density.

Example: Discretely-Observed Jump Di¤usion. Consider an Rk-dimensional continuous-
time stochastic process fyt : t � 0g that solves:

dyt = � (t; yt; �) dt+�(t; yt; �) dWt + JtdQt: (3)

5See Lee and Song (2006) for an exception.
6This follows from the following inequality:

E [log p(ytjxt; �)] = lim
h!0

E
�
log

�Z
K(�)p(yt + h�jxt; �)d�

��
< lim

h!0
E
�
log

�Z
K(�)p(yt + h�jxt; �0)d�

��
= E [log p(ytjxt; �0)] :
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Here, the model contains both continuous and jump components. Wt 2 Rl is a standard Brownian
motion, while Qt is an independent pure jump process with stochastic intensity �(t; yt; �) and jump

size 1. The functions � : [0;1) � Rk � � 7! Rk and � : [0;1) � Rk � � 7! Rk�k is the drift and
the di¤usion term respectively, while Jt measures the jump sizes and has density v (t; yt; �).

Such jump di¤usions are widely used in �nance to model the dynamics of stock prices, interest

rates, exchange rates and so on (Sundaresan, 2000). Suppose we have a sample y1; :::; yT� without

loss of generality, we normalize the time interval between observations to 1� and wish to estimate

� by maximum likelihood. Although under regularity conditions (Lo, 1988) the transition density

P (yt+1 2 Ajyt = x) =
R
A pt(yjx; �)dy is well-de�ned, it cannot be written in closed form.

7 However,

discretization schemes (Bruti-Liberati and Platen, 2007; Kloeden and Platen, 1992) can be used to

simulate observations from the model for any given level of accuracy, hence enabling NPSML. We

re-visit this example in Section 4 where we provide a detailed description of implementing NPSML

in practice.

2.2 Extensions and Alternative Schemes

Discrete Random Variables. Discrete random variables can be accommodated within our

framework. Suppose yt contains both continuous and discrete random variables. For example, yt =

(y1t; y2t) 2 Rk+l where y1t 2 Rk is a continuous random variable while y2t 2 Y2 � Rl is a random
variable with (potentially in�nite number of) discrete outcomes, Y2 = fy2;1; y2;2; :::g. We could
then use a mixed kernel to estimate pt (yjx). For given simulated observations Y x;�t;i =

�
Y x;�1t;i ; Y

x;�
2t;i

�
,

i = 1; :::; N :

p̂t(y1; y2jx; �) =
1

N

NX
i=1

Kh(Y
x;�
1t;i � y1)IfY

x;�
2t;i = y2g; (y1; y2) 2 Rk+l; (4)

where If�g is the indicator function and K : Rk 7! R is the kernel from before. However, the

resulting simulated log-likelihood will be discontinuous and optimization may be di¢ cult. One

could replace the indicator function used for the discrete component with a smoother. Examples

of smoothers can be found in Cai et al. (2001) and Li and Racine (2007, Chapter 2). These will

increase bias but reduce variance of the estimator, and at the same time lead to a continuous

function. However, in general, Y x;�2t;i itself will not be continuous so either way, with a discrete

component, L̂T (�) based on (4) is no longer continuous w.r.t. �.

Instead, we will here assume that there exists a function Y x;�2t;i (y2) = g2 (y2; x; "; �) that is smooth

7Schaumburg (2001) and Yu (2007) use analytic expansions to approximate the transition density for univariate
and multivariate jump di¤usions, respectively. Their asymptotic result requires that the sampling interval shrink to
zero. The theoretical results of the simulated MLE of Brandt and Santa-Clara (2002) or Pedersen (1995a,b) need to
be substantially modi�ed before they can be applied to generalized Lévy processes.
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in � such that

E
h
Y x;�2t;i (y2) jY

x;�
1t;i = y1

i
= pt(y2jy1; x; �): (5)

Thus, Y x;�2t;i now denotes a simulated value of the associated density, and not the outcome of the

dependent variable. We then propose to estimate the joint density by

p̂t(y1; y2jx; �) =
1

N

NX
i=1

Kh(Y
x;�
1t;i � y1)Y

x;�
2t;i (y2) : (6)

To motivate the above assumption and the resulting estimator, we �rst note that a discrete random

variable can always be represented as y2;t = D (zt) for some continuous variables zt 2 Rm and some
function D : Rm 7! Y2 which we, for the sake of the argument, assume does not depend on (t; x; �).
For example, most limited dependent variables can be written on this form, c.f. Manrique and

Shephard (1998) and the references therein. We assume that zt satis�es zt = gZ (x; "; �) for some

function gZ that can be written on closed form, and has associated conditional density pztjxt (zjx).
Clearly, pt (y2jx) = P (y2;t = y2jxt = x) satis�es

pt (y2jx) = P
�
zt 2 D�1 (y2) jxt = x

�
=

Z
D�1(y2)

pztjxt (zjx) dz:

The last integral is equal to
R
Rm

pt(zjx)
pD(zjy2)pD (zjy2) dz for any density pD (zjy2) with support D

�1 (y2).

If pztjxt (zjx) is known on closed form, this integral can then be simulated by

p̂
(1)
t (y2jx) =

1

N

NX
i=1

K(1)( ~Z�;y2i ; y2jx), K(1)
�
~Zx;�t;i ; y2

�
=
pztjxt(

~Z�;y2i jx)
pD( ~Z

�;y2
i jy2)

; (7)

where ~Z�;y2i
iid� pD (zjy2), as is standard in the estimation of limited dependent variable models.

If pzjx (zjx) cannot be written on closed form, we propose to instead use

p̂ztjxt (zjx) =
1

N

NX
i=1

Kb(Z
x;�
t;i � z);

where Zx;�t;i
iid� pztjxt (zjx) and b > 0 is another bandwidth. If

R
D�1(y2)

Kb(Z
x;�
t;i �z)dz can be written

on closed form, we follow Fermanian and Salanié (2004, pp. 709�710 and 724�725) and use:

p̂
(2)
t (y2jx) =

1

N

NX
i=1

K(2)b
�
Zx;�t;i ; y2

�
; K(2)b

�
Zx;�t;i ; y2

�
=

Z
D�1(y2)

Kb(Z
x;�
t;i � z)dz: (8)

If this not the case, we can use

p̂
(3)
t (y2jx) =

NX
i=1

K̂(2)b
�
Zx;�t;i ; y2

�
, K̂(2)b

�
Zx;�t;i ; y2

�
=
1

N

NX
j=1

Kb(Z
x;�
t;i � ~Z�;y2j )

pD( ~Z
�;y2
j jy2)

: (9)
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In all three case, we can write the resulting simulated joint density on the form (6) by choosing

Y x;�2t;i (y2) = K(1)( ~Z�;y2i ; y2jx), Y x;�2t;i (y2) = K(2)b
�
Zx;�t;i ; y2

�
and Y x;�2t;i (y2) = K̂(2)b

�
Zx;�t;i ; y2

�
respec-

tively. Here, � 7! Y x;y2;�2t;i is smooth with a bias that disappears as b ! 0 and variance that is

bounded in b. Thus, the order of the variance of L̂T (�) is not a¤ected by any added discrete

variables, and the curse of dimensionality remains of order k = dim (y1t).

Time-Homogeneous Processes. If the data-generating process is time-homogeneous such that

pt(yjx; �) � p(yjx; �), and we can simulate a trajectory fY �t ; X�
t : i = t; :::; ~Ng from the model�

as is the case with most simulation-based methods used for dynamic models, then the following

alternative is available:

�p(yjx; �) =
P ~N
t=1Kh(Y

�
t � y)Kh(X

�
t � x)P ~N

t=1Kh(X
�
t � x)

: (10)

This estimator is used in for example Altissimo and Mele (2008) and Hurn et al. (2003). It poten-

tially saves time since one can use the same simulated data points to approximate the conditional

density at all data points. So we only generate ~N simulated observations here to obtain the sim-

ulated likelihood at a given parameter value, while in the time-inhomogeneous case we need to

simulate T � N values. On the other hand, the convergence of �p will be slower due to (i) the

dimension of (Y �t ; X
�
t ) being greater than that of Y

�
t , and (ii) the dependence between (Y

�
s ; X

�
s )

and (Y �t ; X
�
t ), s 6= t. So one will have to choose a larger ~N for the simulated conditional density in

(10) relative to the one in (2).

Typically, one will have to assume a stationary solution to the dynamic system under consider-

ation for �p P! p, and either have to start the simulation from the stationary distribution, or assume

that the simulated process converges towards the stationary distribution at a suitable rate. For

the latter to hold, one will need to impose some form of mixing condition on the process, as in

Altissimo and Mele (2008) and Du¢ e and Singleton (1993). Then a large value of N is needed to

ensure that the simulated process is su¢ ciently close to its stationary distribution� that is, one

has to allow for a burn-in.

The estimator in (10) may work under nonstationarity as well. Recently, a number of papers

have considered kernel estimation of nonstationary Markov processes. The kernel estimator proves

to be consistent and asymptotically mixed-normally distributed when the Markov process is recur-

rent (Bandi and Phillips, 2003; Karlsen and Tjøstheim, 2001). However, the convergence rate will

be path-dependent and relatively slow. So, for strongly dependent and nonstationary processes, it

will be preferable to use the estimator in (2).

In the remainder of this paper we focus on (2). The properties of (10) can be obtained by

following the same strategy of proof as the one we employ for (2). The only di¤erence is that, to

obtain �p P! p, one has to take into account the dependence of the simulated values. A su¢ cient set

9



of conditions for �p(yjx; �) P! p(yjx; �) uniformly in y; x and � when the dynamics of the parametric
model is near-epoch dependent can be found in Andrews (1995, Corollary 2).

Quasi Maximum Likelihood Estimation. The use of our approximation method is not limited

to actual MLEs. In many situations, one can de�ne quasi- or pseudo-likelihood which, even though

it is not the true likelihood, identi�es the parameters of the true model. One obvious example of this

is the standard regression model, where the MLE based on Gaussian errors (i.e. the least-squares

estimator) proves to be robust to deviations from the normality assumption� e.g. C. Gourieroux,

A. Monfort and A. Trognon (1984) Pseudo Maximum Likelihood Methods: Theory. Econometrica,

Vol. 52(3), pp. 681-700. Another example is estimation of (G)ARCH models using quasi-maximum

likelihood� e.g. Lee and Hansen (1994). These are cases where the quasi-likelihood can be written

explicitly. If one cannot �nd explicit expressions of the quasi-likelihood, one can instead employ

our estimator, simulating from the quasi-model: Suppose for example that data has been generated

by the model (1), but the distribution of the errors F" is unknown. We could then choose a suitable

distribution G", draw f"igNi=1 from G" and then proceed as in Section 2.1. The resulting estimator

would no longer be a simulated MLE but rather a simulated QMLE. In this setting, the asymptotic

distribution has to be adjusted to accommodate for the fact that we are no longer using the true

likelihood function to estimate the parameters. This obviously extends to the case of misspeci�ed

models as in White (1984). SEE ALSO

The above procedure is one example of how our simulation method can be applied to non-

and semiparametric estimation problems where an in�nite-dimensional component of the model

is unknown. Another example is the situation where data has been generated by the model (1)

with known distribution F", but now � = (�; ) where � and  are �nite- and in�nite-dimensional

parameters respectively. An application of our method in this setting can be found in Kristensen

(2008a) where  is a density. Again, our asymptotic results have to be adjusted to allow for � to

contain in�nite-dimensional parameters.

3 Asymptotic Properties of the NPSMLE

Given the convergence of the simulated conditional density towards the true one, we expect that

the NPSMLE �̂ based on the simulated density in equation (6) will have the same asymptotic

properties as the infeasible MLE ~� for a suitably chosen sequence N = N(T ) and h = h(N) (and

b = b (N) when an additional kernel is used). We give two sets of results. The �rst establishes that

�̂ is �rst-order asymptotic equivalent to ~� under general conditions, allowing for nonstationarity.

Under additional assumptions, including stationarity, we derive approximate expressions of the bias

and variance components of �̂ relative to the actual MLE due to the simulations, and give results

for the higher-order asymptotic properties of �̂.
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We allow for a mixed discrete and continuous distribution of the response variable, and write

yt = (y1t; y2t) 2 Y1 � Y2, where Y1 = Rk and Y2 = fy2;1; y2;2; :::g. Here, y1t has a continu-

ous distribution, while y2t is discrete with y2;i 2 Rl. The joint distribution can be written as
pt(y1; y2jx; �) = pt(y2jy1; x; �)pt(y1jx; �) where pt(y2;ijy1; x; �) are conditional probabilities satisfy-
ing

Pm
i=1 pt(y2;ijy1; x; �) = 1, while pt(y1jx; �) is a conditional density w.r.t. the Lebesgue measure.

Also, let pt(y2;ijx; �) denote the conditional probabilities of y2tjxt = x.

The asymptotics are derived under the following simulation scheme,

Y xt;�1t;i = g1;t (xt; "i; �) ; (11)

Y xt;�2t;i (y2t) = g2;t (y2t; xt; "i; �) ; (12)

for i = 1; � � � ; N and t = 1; � � � ; T , where f"igNi=1 are i.i.d. draws from F", such that equation (5)

holds. The condition in equation (5) is met when Y x;�2t;i (y2) = K(1)( ~Z
�;y2
i ; y2jx) with K(1) given in

equation (7), while it only holds approximately for K(2) and K̂(2) de�ned in equations (8)�(9) due
to biases induced by the use of kernel smoothing in those two cases. We handle these two cases in

Theorem 4 where results for approximate simulations are given.

Note that we here use the same errors to generate the simulations over time. An alternative sim-

ulation scheme would be to draw a new batch of errors for each observation xt, Y
xt;�
t;i = gt (xt; "t;i; �),

i = 1; :::; ~N , such that the total number of simulations would be ~N�T , f"i;tg
~N
i=1, t = 1; :::; T . Under

regularity conditions, the NPSMLE based on this simulation scheme would have similar asymptotic

properties as the one based on the simulations in equations (11)�(12). However, as demonstrated

in Lee (1992), choosing N = ~NT , the variance of the NPSMLE based on equations (11)�(12) will

be smaller.8

In order for �̂ to be asymptotically equivalent to ~�, we need p̂ P! p su¢ ciently fast in some

suitable function norm. To establish this, we verify the general conditions for uniform rates of kernel

estimators found in Kristensen (2008b). These general conditions are veri�ed by the following set

of regularity conditions regarding the model and its associated conditional density.

A.1 The functions (x; t; �) 7! g1;t (x; "; �) and (x; t; �) 7! g2;t (y2; x; "; �) are continuously di¤eren-

tiable for all y2 and " such that for some function �(�) and constants �i;j � 0, i; j = 1:2,

kg1;t (x; "; �)k � �(")
h
1 + kxk�1;1 + t�1;2

i
; kg2;t (y2; x; "; �)k � �(")

h
1 + kxk�2;1 + t�2;2

i
;

and E [� (")s] < 1 for some s > 2. The derivatives of g1 and g2 w.r.t. (x; t; �) satisfy the

same bounds.
8The results of Lee (1992) are for discrete choice models, but we conjecture that his results can be extended to

general simulated MLE.
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A.2 The conditional density pt(y1; y2jx; �) is continuous w.r.t. � 2 �, and r � 2 times con-

tinuously di¤erentiable w.r.t. y1 with bounded derivatives such that with �B (x; t) =

�B
�
1 + kxk�0;1 + t�0;2

�
, for some constants �B > 0 and �0;1; �0;2 � 0, the following bounds

hold uniformly over (t; y1; y2; x; �):X
j�j=r

����@rpt(y1; y2jx; �)@y�1

���� � �B (x; t) ; ky1kk pt (y1; y2jx; �) � �B (x; t) : (13)

A.3 � 7! g1;t (x; "; �) and � 7! g2;t (x; y2; "; �) are twice continuous di¤erentiable for all t; x; " with

their derivatives satisfying the same moment conditions as g1 and g2 in (A.1).

A.4 @pt(yjx; �)=@� and @2pt(yjx; �)=
�
@�@�0

�
are r � 2 times continuously di¤erentiable w.r.t. y1

with bounded derivatives such that they satisfy the same bounds in equation (13) as p.

Assumptions (A.1)�(A.2) are used to establish uniform convergence of p̂ by verifying the general

conditions in Kristensen (2008b), c.f. Lemma 11. Assumption (A.1) imposes restrictions on the

two data-generating functions g1 and g2. The smoothness conditions are rather weak, and satis�ed

by most models, while the polynomial bounds imposed on the two functions can be exchanged for

other bounds, but will complicate some of the conditions imposed below. Note that the moment

conditions in (A.1) do not concern the observed process f(yt; xt)g, only the errors " that we
draw when simulating. If for example, �(") � k"kq, then the moment condition is satis�ed if
E [k"kqs] <1. Thus, in this case, the moment condition only rule out models driven by fat-tailed
errors. If the model is time-homogenous, �k;2 = 0, k = 1; 2.

Assumption (A.2) restricts the conditional density that we are trying to estimate. The smooth-

ness assumptions imposed on p in (A.2) in conjunction with the use of higher-order kernels reduces

the bias of p̂. The bounds are imposed to obtain a uniform bound of the variance of p̂. Again, the

assumptions are quite weak and are satis�ed by many models. If the model is time-homogenous,

�0;2 = 0.

Assumptions (A.3) and (A.4) will only be used when examining the e¤ect of the simulations

on the asymptotic variance of the estimator. These two conditions yield uniform convergence of

@p̂t(yjx; �)=@� and @2p̂t(yjx; �)=
�
@�@�0

�
, which in turn allows us to analyze the �rst and second

derivatives of the simulated log-likelihood (Lemma 12).

Our conditions are slightly stronger than the ones found in Fermanian and Salanié (2004,

Conditions M.1�2 and L.1�3). There, weaker bounds and smoothness conditions are imposed

on the function g, while their restrictions on the conditional density are very similar to ours.

The kernel K is assumed to belong to the following class of kernel:

K.1 The kernel K satis�es:
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1. jK (u)j � �K <1 and
R
jK (u)j du � � <1. There exist �; L <1 such that either (i)

K (u) = 0 for kuk > L and jK (u)�K (u0)j � � ku� u0k, or (ii) K (u) is di¤erentiable
with j@K (u) =@uj � �. For some a > 1,

��@iK (u) =@ui�� � � kuk�a for kuk � L and

i = 0; 1.

2. For some r � 1:
R
K (u)uidu = 0, i = 1; :::; r � 1, and

R
K (u) jujr du <1.

K.2 The �rst and second derivative of K exist and also satisfy (K.1.1).

This is a broad class of kernels allowing for unbounded support. For example, the Gaussian

kernel satis�es (K.1) with r = 2. When r > 2, K is a so-called higher-order kernel that reduces

the bias of p̂ and its derivatives, and thereby obtains a faster rate of convergence. The smoothness

of p as measured by its number of derivatives, r, determines the degree of bias reduction. The

additional assumption (K.2) is used in conjunction with (A.3)�(A.4) to show that the �rst and the

second derivatives of p̂ w.r.t. � also converge uniformly.

Next, we impose regularity conditions on the model to ensure that the actual MLE is asymp-

totically well-behaved. We �rst introduce the relevant terms driving the asymptotics of the MLE.

We �rst normalize the log-likelihood by some factor �T !1:

LT (�) =
1

�T

TX
t=1

log pt(ytjxt; �):

This normalizing factor �T is introduced to ensure that LT (�) is well-behaved asymptotically and

that certain functions of data are suitably bounded, c.f. (C.1)�(C.5) below. It is only important for

the theoretical derivations, and not relevant for the actual implementation of our estimator since

�T does not depend on �. The choice of �T depends on the dynamics of the model. The standard

choice is �T = T as is, for example, the case when the model is stationary. In order to allow for

non-standard behaviour of the likelihood, e.g. unit root-type asymptotics, we don�t impose this

restriction though.

Assuming that LT (�) is three times di¤erentiable, c.f. (C.4) below, we can de�ne:

ST (�) =
@LT (�)

@�
=
1

�T

TX
t=1

@ log pt(ytjxt; �)
@�

2 Rd;

HT (�) =
@2LT (�)

@�@�0
=
1

�T

TX
t=1

@2 log pt(ytjxt; �)
@�@�0

2 Rd�d;

GT;i(�) =
@3LT (�)

@�@�0@�i
=
1

�T

TX
t=1

@3 log pt(ytjxt; �)
@�@�0@�i

2 Rd�d:
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The information then is de�ned as:

iT (�) =
1

�T

TX
t=1

E
�
@ log pt(ytjxt; �)

@�

@ log pt(ytjxt; �)
@�0

�
= E [HT (�)] 2 Rd�d:

We also de�ne the diagonal matrix IT (�) = diag fiT (�)g 2 Rd�d, and:

UT (�) = I�1=2T (�)ST (�); VT (�) = I�1=2T (�)HT (�)I�1=2T (�); WT;i(�) = I�1=2T (�)GT;i(�)I�1=2T (�):

We then impose the following conditions on the actual log-likelihood function and the associated

MLE where IT � IT (�0):

C.1 The parameter space is given by a sequence of local neighbourhoods,

�T =
n
� : kI1=2T (� � �0) k < �

o
� Rd;

for some � > 0 with I�1T = OP (1).

C.2 I1=2T (~� � �0) = oP (1).

C.3 � 7! LT (�0 + I�1=2T �) is stochastically equicontinuous for k�k < �.

C.4 LT (�) is three times continuously di¤erentiable with its derivatives satisfying:

1. (UT (�0); VT (�0))
d! (0;H1), and

�p
�TUT (�0); VT (�0)

� d! (S1;H1), with H1 > 0 a.s.;

2. maxj=1;:::;d sup�2�T kWj;T (�)k = OP (1).

C.5 The following bounds hold for some �; q > 0:

1. sup�2�T �
�q
T

PT
t=1 jlog pt(ytjxt; �)j

1+� = OP (1);

2. ��qT
PT
t=1 kxtk

1+� = OP (1) and �
�q
T

PT
t=1 �

2
1t ("t) = OP (1).

The above conditions (C.1)�(C.4) are standard conditions found in the literature on non-ergodic

models� e.g. Basawa and Scott (1983); Jeganathan (1995); Saikkonen (1995). For general non-

ergodic models, simple conditions for (C.2)�(C.5) are not available and they have to be veri�ed on

a case-by-case basis. For the stationary case, (C.2)�(C.5) are implied by primitive conditions as

found below.

The speci�cation of the parameter space in (C.1) to be a sequence of non-increasing sets is

introduced to allow for non-ergodic models. Currently, to the best of our knowledge, there exists

no general results on the properties of MLEs for general dynamic models over a �xed parameter

space. Park and Phillips (2001) give results with �xed parameter space for the case of nonlinear
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regression with integrated time series. There, it is required that the individual components of the

estimator all converge with the same rate. In contrast, we here allow for di¤erent convergence rates

given by I1=2T . This is usually the case for non-ergodic models as for example in the error-correction

model discussed below.

Assumption (C.2) gives us consistency of the actual MLE, while (C.3) is used in the proof of

�̂
P! ~�. See Saikkonen (1995) for further details. Assumption (C.4) is a strengthening of (C.2)�

(C.3), c.f. Lemma 7. It implies consistency and that the asymptotic distribution of the MLE is

given by:
p
�TI1=2T (~� � �0)

d! H�1
1 S1;

c.f. Lemmas 5�6.9

Assumption (C.5) imposes bounds on a number of sample averages. They are used when showing

that the simulated and the actual log-likelihood are asymptotically identical. Note that the factor

�T in (C.5) is the same as the one we normalized the log-likelihood with. The exponent q > 0 can

be chosen to ensure that both the log-likelihood and the sample averages in (C.5) are well-behaved.

In the ergodic case, we can appeal to standard results for stochastic equicontinuity� e.g. Newey

(1991)� to prove that (C.3) and (C.5) hold with �T = T and q = 1 if E[ kxtk1+�] < 1 and

E
�
sup�2� j log p(ytjxt; �)j1+�

�
< 1. See Corollary 2 below and its proof for further details. Fur-

thermore, iT (�0) = i(�0) + oP (1) with i(�0) = E
�
@2 log p(ytjxt; �0)=(@�@�0)

�
, so that IT can be

chosen as the constant diag fi(�)g. This in turn implies that �T is a �xed compact parameter set,
and we get standard

p
�T =

p
T -convergence towards a normal distribution. Thus, in the case of

stationarity, (C.1)�(C.5) are more or less identical to the ones imposed in Fermanian and Salanié

(2004, Conditions L.1�3).

In the general case, one should choose �T as the square of the slowest rate of convergence of

the vector of MLEs. There is a tension between (C.1) and (C.5) in terms of the choice of �T . We

cannot choose �T !1 too fast, since then kIT k ! 0 (in which case no information regarding �0 is

available) and this is ruled out by (C.1). On the other hand, we have to choose �qT !1 su¢ ciently

fast to ensure that the bounds in (C.5) hold. By choosing q > 0 su¢ ciently large, (C.1) and (C.5)

will both be satis�ed. However, a large value of q implies that we have to use a larger number of

simulations for the NPSMLE to be asymptotically equivalent to the MLE, c.f. (B.1)�(B.2) below.

As an example of non-standard asymptotics of the MLE, consider a linear error-correction

model,

�yt = ��0yt�1 +

1=2"t; "t � N (0; Ik) :

We can split the parameter vector into short-run, �1 = (�; vech (
)), and long-run parameters,

�2 = �. The MLE ~�1 converges with
p
T -speed towards a normal distribution, while ~�2 is super-

9Basawa and Scott (1983) and Jeganathan (1995) show what S1 and H1 look like in various cases.
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consistent with T (~�2 � �2) converging towards a Dickey-Fuller type distribution. In that situation,
we choose

p
�T =

p
T , but now iT (�0) and therefore IT , is not asymptotically constant. As demon-

strated in Saikkonen (1995), this model satis�es (C.2)�(C.4). Furthermore, xt = yt�1 satis�es

T�2
PT
t=1 kxtk

1+� = OP (1) so we can choose q = 2. We also refer to Kristensen and Rahbek (2008)

and Park and Phillips (2001) where (C.2)�(C.5) are veri�ed for some non-linear, non-stationary

models.

Finally, we need to introduce trimming of the approximate log-likelihood to obtain uniform

convergence of log p̂t as is standard in the literature on semiparametric estimators. We rede�ne our

simulated log-likelihood as

L̂T (�) =
1

�T

TX
t=1

�a(p̂t(ytjxt; �)) log p̂t(ytjxt; �);

where �a(�) is continuously di¤erentiable trimming function satisfying �a(z) = 1 if jzj > a, and 0

if jzj < a=2, with a trimming sequence a = a(N) ! 0. One could here simply use the indicator

function for the trimming, but then L̂T (�) would no longer be di¤erentiable, and di¤erentiability

is useful when using numerical optimization algorithms to solve for �̂.

We impose the following restrictions on how the bandwidth h and trimming sequence a can

converge to zero in conjunction with N;T !1:

B. With q; � > 0 given in (C.5), ��k = �0;k + �1;k + �2;k, k = 1; 2, where �i;1; �i;2 � 0, i = 0; 1; 2,
are given in (A.1)-(A.2) and for some  > 0:

1. j log aj�q�1T N�(1+�) ! 0; j log(4a)j���q�1T ! 0; T��1T a�1
h
N��1 + T

��2
i
log(N)=

p
Nhk !

0; and T��1T a�1
�
N�0;1 + T �0;2

�
! 0.

2. j log aj�qTN�(1+�) ! 0; j log(4a)j���qT ! 0; T��1=2T a�1
h
N��1 + T

��2
i
log(N)=

p
Nhk !

0; and T��1=2T a�1
�
N�0;1 + T �0;2

�
! 0.

Condition (B.1) is imposed when showing consistency of the NPSMLE, while (B.2) will

imply that the NPSMLE has the same asymptotic distribution as the MLE. The parameter

 > 0 can be chosen freely, however it has to be chosen small enough such that, for example,

Ta�1N��1�1 log(N)2=hk ! 0 as required in (B.2). We observe that large values of q and/or
��1; ��2 implies that N has to diverge at a faster rate relative to T . In practice, this means that

a larger number of simulations have to be used for a given T to obtain a precise estimate. The

joint requirements imposed on a, h and N are fairly complex, and it is not obvious how to choose

these nuisance parameters for a given sample size T . This is a problem shared by, for example,

semiparametric estimators that rely on a preliminary kernel estimator. We refer to Ichimura and

Todd (2007) for an in-depth discussion of these matters.
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Our strategy of proof is based on some apparently new results for approximate estimators,

c.f. Appendix A. In particular, Theorems 8�9 establish that the NPSMLE and the MLE will be

asymptotically �rst-order equivalent if L̂T (�) converges uniformly towards LT (�) at the right rate.

This makes our proofs considerably less burdensome than those found in other studies of simulation-

based estimators� e.g. Altissimo and Mele (2008); Fermanian and Salanié (2004)� since we do not

need to show that the simulated score and Hessian also converge.

Theorem 1 Assume that (A.1)�(A.2), (K.1) and (C.5) hold. Then the NPSMLE based on (6)
satis�es:

(i) Under (C.1)�(C.3): I1=2T (�̂��0) = oP (1) for any sequences N !1, h; a! 0 satisfying (B.1).

(ii) Under (C.4):
p
�TI1=2T (�̂ � �0)

d! H�1
1 S1 for any sequences N , h and a satisfying (B.2).

The following corollary considers the case where the data generating process is stationary and

ergodic, in which case more primitive conditions can be shown to imply (C.1)�(C.5) and (B.1)�

(B.2):

Corollary 2 Assume that f(yt; xt)g is stationary and ergodic, that (A.1)�(A.2) and (K.1) hold,
and:

(i) E[ kxtk1+�] <1, j log p(yjx; �)j � b1(yjx), 8� 2 �, with E
�
b1(ytjxt)1+�

�
<1 and � compact;

(ii) E [log p(ytjxt; �)] < E [log p(ytjxt; �0)], 8� 6= �0.

Then �̂
P! �0 as

p
log(N)=Nh�k�1a�1 ! 0, hra�1 ! 0, and N�2h�k log a ! 0 for some

 > 0.

If furthermore:

(iv) i(�0) = E
h
@ log p(ytjxt;�0)

@�
@ log p(ytjxt;�0)

@�0

i
exists and is nonsingular;

(v) k@
2 log p(yjx;�)
@�@�0

k � b2(yjx) uniformly in a neighborhood of �0 with E [b2(ytjxt)] <1;

then
p
T (�̂��0)

d! N (0; i(�0)�1) as T
p
log(N)=Nh�k�1a�1 ! 0, Thra�1 ! 0, TN�2h�k log a!

0, T (log a)�1 ! 0, TN� ! 0.

When N , h and a satisfy (B.1)�(B.2), the simulated and actual MLE are asymptotically �rst

order equivalent. However, in �nite sample, the NPSMLE will most likely su¤er from additional

biases and variance. To highlight these potential e¤ects, we further examine the properties of

the NPSMLE when (B.1)�(B.2) are not satis�ed. To this end, we have to invoke the additional
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smoothness conditions on g and p stated in (A.3)�(A.4) since we need to be able to analyze the

�rst and second derivative of L̂T (�).

Under the additional smoothness conditions, the �rst two derivatives of g1t (x; "; �) and

g2t (y2; x; "; �) w.r.t. � exist, and we can compute the �rst two derivatives of our density estimator:

@p̂t(yjx; �)
@�

=
1

Nh

NX
i=1

n
Kh

�
Y xt;�1t;i � y1

�
_Y xt;�2t;i (y2) +K

0
h

�
Y xt;�1t;i � y1

�
_Y xt;�1t;i Y

xt;�
2t;i (y2)

o
; (14)

@2p̂t(yjx; �)
@�@�0

=
1

Nh

NX
i=1

K 0
h

�
Y xt;�1t;i � y1

�n
2 _Y xt;�1t;i

_Y xt;�2t;i (y2)
0
+ �Y xt;�1t;i Y

xt;�
2t;i (y2)

o
(15)

+
1

Nh

NX
i=1

�
Kh

�
Y xt;�1t;i � y1

�
�Y xt;�2t;i (y2) +K

00
h

�
Y xt;�1t;i � y1

�
_Y xt;�1t;i

�
_Y xt;�1t;i

�0
Y xt;�2t;i (y2)

�
;

where

_Y x;�1i;t =
@gt (x; "i; �)

@�
; �Y x;�1i;t =

@2gt (x; "i; �)

@�@�0
;

and similarly for _Y x;�2i;t and �Y
x;�
2i;t . Lemma 12 shows that these are uniformly consistent estimates of

the actual derivatives of the conditional density pt. We can in turn use these to obtain a simulated

version of the score,

ŜT (�) =
1

�T

TX
t=1

@p̂t(ytjxt; �)
@�

�
�a(p̂t(ytjxt; �))
p̂t(ytjxt; �)

+ � 0a(p̂t(ytjxt; �)) log p̂t(ytjxt; �)
�
; (16)

and the Hessian (see the proof of Theorem 3 for the expression). We then follow Lee (1999) and

consider a second order functional Taylor expansion of ŜT (�) w.r.t. p̂. This takes the form:

ŜT (�0) = ST (�0) +rST;N [p̂� p] +r2ST;N [p̂� p; p̂� p] +RT;N ; (17)

where rST;N [p̂� p] and r2ST;N [p̂� p; p̂� p] are the �rst and the second order functional di¤er-
entials w.r.t. p, while RT;N is the remainder term. Expressions for these terms can be found in the

proof of Theorem 3.

We then wish to analyze the asymptotic behaviour of each of the four terms on the right

hand side. To conduct our analysis, which involves U -statistics, we restrict our attention to the

stationary and �-mixing case. See e.g. Ango Nze and Doukhan (2004) for an introduction to this

concept. We also assume a bounded support of xt, and that p (yjx; �) is uniformly bounded away
from zero thereby obviating trimming. Under these and other regularity conditions, we obtain

that asymptotically the �rst two terms in the expansion in equation (17) satisfy (c.f. the proof of

Theorem 3):

p
TST (�0) +

p
TrST;N [p̂� p] /

p
Thr�1 + Z1 +

r
T

N
Z2:
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Here, the �rst term is a bias component incurred by kernel estimation, while the two remaining

ones are variance components: Z1 and Z2 are two independent variables where Z1 � N
�
0; i(�0)

�1�
is the variance component of the observed data, while Z2 � N

�
0;Var

�
� 2 ("i)

��
is the variance

component of the simulations. Here,

� 2 ("i) = E

"
_Y xt2;i (y2t)

p (y2tjxt)
j"i

#
� E

�
s(Y xt1i ; y2tjxt)Y x2;i (y2t)

p (y2tjxt)
j"i
�
;

where s(y1; y2jx) denotes the score at � = �0, and p (y2;tjxt) the conditional distribution of y2;tjxt =
x. The second order term also contains a bias component,

p
Tr2ST;N [p̂� p; p̂� p] /

p
T

Nhk+1
�2 +OP

�p
Th2r

�
;

which all non-linear, simulation-based estimators will su¤er from, while the remainder term is of a

lower order:

p
TRT;N / OP

�p
T=
�
Nhk+2

�3=2�
+OP

�p
Th3r

�
:

The two leading bias terms in the above expressions, �1 and �2, are given by:

�1 =

Z �Z
@ry@�p (yjx; �) dy

�
p (x) dx�

Z �Z
s (yjx; �) @ryp (yjx; �) dy

�
p (x) dx; (18)

�2 = E

"
_Y xt1;iY

x
2;i (y2t)

2

p
�
Y xt1;i ; y2tjxt

�
p (y2tjxt)

#Z
K 0 (v)K (v) dv: (19)

From these results, we conclude that if
p
Thr ! 0 and

p
T=
�
Nhk+1

�
! 0, all bias terms vanish

and
p
T (�̂ � �0) follows a normal distribution centered around zero. On the other hand, if eitherp

Thr or
p
T=
�
Nhk+1

�
does not vanish, a bias term will be present and the asymptotic distribution

will not be centered around zero. Also, there will be an increase in variance due to the presence of

Z2.

Theorem 3 Assume that:

(i) f(yt; xt)g is stationary and �-mixing with geometrically decreasing mixing coe¢ cients;

(ii) (A.1)�(A.5) and (K.1) hold, and � 7! g (x; e; �) is twice di¤erentiable with both derivatives

satisfying (A.5);

(iii) (i)�(v) of Corollary 2 hold;

(iv) xt is bounded and infy1;y2;x;� p (y1; y2jx; �) > 0.
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Then, if
p
Thr ! c1 � 0 and

p
T=
�
Nhk+1

�
! c2 � 0,

p
T (�̂ � �0)

d! N
�
�c; i(�0)

�1
�
i(�0) +

T

N
Var

�
� 2 ("i)

��
i(�0)

�1
�
;

where �c = c1�1 + c2�2, with �1 and �2 as in equations (18)�(19).

If
p
T=
�
Nhk+1

�
! c2, then T=N ! 0 such that the limiting distribution in Theorem 3 is

equivalent to N
�
�c; i(�0)

�1�. We have here kept the factor 1 + T=N in the asymptotic variance to

give a better description of the �nite-sample performance of the NPSMLE.

For the case where an unbiased estimator of the density is available and a new batch of simu-

lations is used for each observation, Lee (1999) derives results similar to Theorem 3.

Estimation of Variance. To do any �nite-sample inference, an estimator of the asymptotic

distribution (which depends on the unknown parameter �) is needed. A general method is simply

to simulate the score (and potentially also the observed information) for a su¢ ciently large T and

evaluate at � = �̂. These can then be used to approximate H�1
1 S1. The computation of the score

and Hessian can be done in several ways. If the model satis�es (A.3), the estimators of the score

and Hessian given in (16) and the proof of Theorem 3 are available. In the general case, a simple

approach is to use numerical derivatives. De�ne:

@p̂t(yjx; �)
@�k

=
p̂t(yjx; � + �ek)� p̂t(yjx; � � �ek)

2�
;

where ek is the kth column of the identity matrix. We have:

@p̂t(yjx; �)
@�k

� @pt(yjx; �)
@�k

=
p̂t(yjx; � + �ek)� pt(yjx; � + �ek)

2�
� p̂t(yjx; � � �ek)� pt(yjx; � � �ek)

2�

+

�
pt(yjx; � + �ek)� pt(yjx; � � �ek)

2�
� @pt(yjx; �)

@�k

�
:

Now letting � = �(N) ! 0 as N ! 1 at a suitable rate, all three terms are oP (1). A consistent

estimator of the second derivative can be obtained in a similar fashion. These can in turn be used

to construct estimators of the information and score.

Approximate Simulations. In many cases, the model in (1) is itself intractable, such that one

cannot directly simulate from the model, and one only has an approximation of the model at hand.

For example, solutions to dynamic programming problems are typically approximated numerically,

and sample paths of di¤usions must be approximated by some discretization scheme. We here derive

the asymptotics of the approximate NPSMLE based on simulations from a sequence of approximate
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models. Assuming that the approximation error from using the approximate model relative to the

true one can be made arbitrarily small, we demonstrate that the approximate NPSMLE has the

same asymptotic properties as the actual MLE.

Suppose we only have the following approximations of g1t and g2t, gM;1t (x; "; �) and

gM;2t (y2; x; "; �) at our disposal, where gM;kt ! gkt, k = 1; 2, as M ! 1 in a suitable func-

tion norm speci�ed below in condition (M.1). We then rede�ne the simulated conditional density

as:

p̂M;t(yjx; �) =
1

N

NX
i=1

Kh(Ŷ
x;�
1t;i � y1)Ŷ

x;�
2t;i (y2) ;

where Ŷ x;�t;i is generated by the approximate model,

Ŷ x;�1t;i = gM;1t (x; "i; �) ; Ŷ x;�2t;i (y2) = gM;2t (y2; x; "i; �) ; i = 1; � � � ; N:

Let �̂M be the associated approximate NPSMLE,

�̂M = argmax L̂M;T (�) L̂M;T (�) =

TX
t=1

�a(p̂M;t(ytjxt; �)) log p̂M;t(ytjxt; �):

We give regularity conditions under which �̂M has the same asymptotic properties as �̂ which

is based on simulations from the true model. We impose the following condition on the sequence

of approximate models, and on the rates of N , h, a relative to the approximation error.

M.1 The sequence of approximate models fgMg satis�es for some constants Bk; �3;k; �4;k � 0,

k = 1; 2:

E
�
sup
�2�

kgM;1t (x; "; �)� g1t (x; "; �)k
�

� B1

�
1 + kxk�3;1 + t�3;2

�
�M;1;

E
�
sup
�2�

kgM;2t (y2; x; "; �)� g2t (y2; x; "; �)k
�

� B2

�
1 + kxk�4;1 + t�4;2

�
�M;2;

where �M;k ! 0 as M !1.

B.10 T��1T a�1h�1
�
N�3;1 + T �3;2

�
�M;1 ! 0 and T��1T a�1

�
N�4;1 + T �4;2

�
�M;2 ! 0.

B.20 T��1=2T a�1h�1
�
N�3;1 + T �3;2

�
�M;1 ! 0 and T��1=2T a�1

�
N�4;1 + T �4;2

�
�M;2 ! 0.

Theorem 4 Assume that the conditions of Theorem 1 hold together with (M.1). Then the approx-

imate NPSMLE satis�es:

1. I1=2T (�̂M � �0) = oP (1) for any sequences N; M , h; and a satisfying (B.1) and (B.10);
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2.
p
�TI1=2T (�̂M � �0)

d! H�1
1 S1 for any sequences N; M , h; and a satisfying (B.2) and (B.20).

One can exchange (M.1) for

E
�
sup
�2�

jlog pM;t(y1t; y2tjxt; �)� log pt(y1t; y2tjxt; �)j
�
� �M ;

in which case 1 and 2 of Theorem 4 still go through under (B.100), �M ! 0, and (B.200),
p
�T �M ! 0

respectively. However, since pM;t(ytjxt; �) and pt(ytjxt; �) in most cases are di¢ cult to analyze,
condition (M.1) is in general easier to verify.

4 Implementing NPSML

One of the merits of NPSML is its general applicability. The applications include Markov decision

processes (Pakes, 1994; Rust, 1994), and discretely-sampled di¤usions, where pt(ytjxt; �) typically
does not have a closed-form representation but observations can still be simulated for NPSML.

In Section 4.1 we re-visit the jump-di¤usion example of Section 2, and provide a detailed

description on the implementation of NPSML in practice. We focus on this particular example

for two reasons. Firstly, di¤usion models can be described more concisely than a typical Markov

decision model, which requires a detailed description of the economic environment. Secondly, the

literature on estimating general jump di¤usions has largely sidestepped maximum likelihood� See

the discussion in Footnote 7. In this context, this estimation exercise showcases the usefulness of

NPSML.

NPSML being for general purposes, other applications can be implemented in a similar way. At

the implementation stage, only the part of the computer code that generates simulated observations

needs to be modi�ed. In Section 4.2, we brie�y discuss how NPSML can be used for estimating

generic Markov decision processes.

CHOICE OF BANDWIDTH: Hardle + XXX Journal of multivariate anal, Hall, Hardle and

Ichimura (1993) Optimal Smoothing in Single-Index Models, Annals of Statistics 21, 157-178.

4.1 Discretely-Observed Di¤usions

We consider a bivariate version of the model in (3).

dy1;t =

�
�� exp(y2;t)

2

�
dt+ exp

�y2;t
2

�
dW1;t + log(1 + Jt)dQt; (20)

dy2;t = (�0 � �1y2;t)dt+ �2dW2;t: (21)

This speci�cation is used by Andersen et al. (2002) to model daily stock (S&P 500) returns. In

their paper, y2;t is an unobservable stochastic volatility process, and they use EMM for estimation.
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Here we assume that both y1;t and y2;t are observable. One interpretation is that we infer the

volatility from derivative prices as in Aït-Sahalia and Kimmel (2007). Note that it is not our

intention to replicate either paper.

The factors W1;t and W2;t are standard one-dimensional Brownian motions with correlation �

between them. Qt is a pure jump process with jump size 1, independent of W1;t and W2;t, and its

jump intensity is given by �0. The jump size Jt is assumed to be log-normally distributed:

log(1 + Jt) � N
�
�0:52; 2

�
: (22)

Note that the parameter vector � 2 R7 is (�; �0; �1; �2; ; �; �0).
Ideally, we would like to give precise conditions under which the general jump di¤usion (3)

satis�es (A.1)�(A.4) and (C.1)�(C.5). However, this proves very di¢ cult without imposing strong

conditions ruling out standard models considered in empirical �nance, including the current example

(20)�(21). Su¢ cient conditions for the existence of a twice-di¤erentiable transition density for the

general jump di¤usion can be found in Bichteler et al. (1987) and Lo (1988), but these are rather

restrictive and require, among other things, that the drift and di¤usion term be linearly bounded

and in�nitely di¤erentiable. The asymptotic properties of the MLE of general jump di¤usions are

not very well-understood yet due to the problems of not having the transition density on closed

form. In a few special cases, its properties can be derived, e.g. Aït-Sahalia (2002).

In what follows, we �rst generate a continuous sample path f(y1;t; y2;t) 2 R2 : 0 � t � Tg
from the true parameter values given in Table 1 (second column). We then assume that we

observe this process only discretely, for t = 0; 1; � � � ; T . Note that the discrete observations are
temporally equidistant, with the interval length normalized to 1. We use these discrete observations

f(y1;t; y2;t) : t = 0; 1; � � � ; Tg as our data. To generate this data series, we use the Euler scheme
with the observation interval divided into 100 subintervals to approximate the di¤usion process.

Then we use NPSML while forgoing our knowledge of the parameter values used for data

generation. The �rst step of NPSML involves generating simulated observations from the model

for any given �, and we use the Euler scheme to approximate the data generating process.10 Given

(y1;s; y2;s) for some period s, we divide the interval between s + 1 and s into M subintervals. In

our benchmark estimation, we use M = 10. We recursively compute for m = 1; � � � ;M :

ui1;m = ui1;m�1 +

 
��

exp(ui2;m�1)

2

!
1

M
+ exp

 
ui2;m�1
2

! fW i
1;mp
M

+ log(1 + J im)U
i
m;

ui2;m = ui2;m�1 + (�0 � �1ui2;m�1)
1

M
+ �2

W i
2;mp
M

;

10We are approximating a continuous-time process using a discretization scheme, and hence need to appeal to
Theorem 4. Bruti-Liberati and Platen (2007) and Kloeden and Platen (1992) give conditions under which the
discrete-time approximation satis�es condition (M.1). See also Detemple et al. (2006).
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with ui1;0 = y1;s and ui2;0 = y2;s for all i = 1; � � � ; N ; J im is an i.i.d. random variable with its

distribution given in (22); U im is an i.i.d. binomial random variable, with Prob(U im = 1) = �0
M ;

11fW 1
m;i =

p
1� �2W i

1;m+�W
i
2;m, where W

i
1;m and W

i
2;m are i.i.d. standard normal random variables.

The subscript i indexes simulations. In our benchmark estimation, we use N = 1; 000.

With the simulated observations Y �s+1;i � (ui1;M ; ui2;M ) for i = 1; � � � ; N , we use (2) to obtain:

p̂s+1(y1;s+1; y2;s+1jy1;s; y2;s; �) =
1

N

NX
i=1

Kh

�
Y �s+1;i � (y1;s+1; y2;s+1)

�
: (23)

We use multiplicative Gaussian kernel Kh(�) = Kh1(�)Kh2(�), with the bandwidths h1 and h2 (for y1
and y2 respectively) given by the rule of thumb of Scott (1992, p.152). In particular, hk = �̂kN

�1=6

for k = 1; 2, where �̂k is the sample standard deviation of yk;s in the data. Note that we do not

take advantage of the cross-correlation between y1;s and y2;s in the data, and instead use a simpler

kernel and bandwidth.

With the estimated p̂t for t = 1; 2; � � � ; T , we can evaluate the conditional likelihood, which is
then maximized over the parameter space. As is typical for simulation-based estimations, when we

maximize the likelihood function, we use the same set of random numbers for any �.12

In our simulation study, we draw 100 sample paths of length T = 1; 000 each, and estimate each

sample path with NPSML. In column (1) of Table 1, we report the mean of the 100 point estimates

for each parameter, and the 90% con�dence interval constructed from these point estimates, with

N = 1; 000 and the rule-of-thumb bandwidths. The NPSML performs reasonably well, although

the correlation coe¢ cient � is systemically underestimated. One remarkable outcome is that the

jump parameters�  and �0� are rather precisely estimated, even though there are only 20 or so

jump realizations in each sample path.13

To assess how sensitive the estimation results are to the choice of N (number of arti�cial obser-

vations used for density estimation) and the kernel bandwidths, we try di¤erent N and bandwidths.

In column (2), we reduce the number of arti�cial observations to N = 750. In column (3), we use

N = 1; 000, but reduce both bandwidths by 20 percent. Finally, in column (4), we use N = 1; 000

and bandwidths that are 20 percent greater than those in the benchmark.

When N is reduced to 750� column (2), the mean of the estimates move further away from

the true parameter value. However, there is no clear increase or decrease in the dispersion of the

parameter estimates. The results in column (3) are of particular interest to us. Our theoretical

results suggest that bandwidths should be chosen to go to zero at a faster rate than in the standard
11To draw the binomial random variable U , we �rst generate a uniform [0,1] random number and determine whether

it is less than Prob(U im = 1).
12 In the case of the binomial random variable U , we �x the realization of the underlying uniform random variable.

For di¤erent �� �0, to be exact, U itself may have di¤erent realizations.
13We ran the same exercise with trimming of the approximate log-likelihood. The results, with N being as large

as 1,000, were virtually the same as in column (1).
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Parameter True Value (1) (2) (3) (4)
2*� 2*0.0304 0.0305 0.0305 0.0307 0.0306

(0.0022,0.0524) (0.0162,0.0533) (0.0012,0.0661) (0.0084,0.0448)

2*�0 2*-0.0120 -0.0148 -0.0152 -0.0144 -0.0149
(-0.0181,-0.0100) (-0.0186,-0.0111) (-0.0188,-0.0088) (-0.0185,-0.0100)

2*�1 2*0.0145 0.0161 0.0164 0.0160 0.0161
(0.0116,0.2061) (0.0121,0.0207) (0.0114,0.0214) (0.0120,0.0214)

2*�2 2*0.1153 0.1147 0.1139 0.1167 0.1127
(0.1107,0.1168) (0.1092,0.1185) (0.1118,0.1198) (0.1089,0.1156)

2* 2*0.0150 0.0199 0.0310 0.0100 0.0121
(0.0060,0.0542) (0.0000,0.0368) (0.0017,0.0158) (0.0085,0.0126)

2*� 2*-0.6125 -0.7291 -0.7526 -0.6933 -0.7740
(-0.7595,-0.6863) (-0.7984,-0.7012) (-0.7189,-0.6592) (-0.8064,-0.7344)

2*�0 2*0.0200 0.0169 0.0133 0.0196 0.0166
(0.0101,0.0213) (0.0086,0.0175) (0.0122,0.0197) (0.0104,0.0222)

Table 1: Estimation Results. In each cell, the mean of the 100 point estimates in the simulation
study is reported in the top half. In the bottom half, the 90% con�dence interval constructed
from the point estimates is reported. Column (1) is our benchmark with N = 1; 000 and the
rule-of-thumb bandwidths. Column (2) reports the results with N = 750. Column (3) is for
N = 1; 000 and bandwidths that are 20 percent narrower than those in the benchmark. Column
(4) is for N = 1; 000 and bandwidths that are 20 percent wider than those in the benchmark.
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cases. With a little under-smoothing as in column (3), the mean of the estimates are closer to

the true parameter value than in the benchmark. Note the estimates of � in particular. On the

other hand, the results with over-smoothing as in column (4) do not compare favorably with the

benchmark results. We, in accordance with our theory, recommend a bandwidth narrower that

what is given by the rule of thumb in actual implementations.

4.2 Markov Decision Processes and Dynamic Games

Another class of economic models that NPSML can readily be applied to is Markov decision

processes: See Rust (1994) for an overview. In these models, the transition density is given by

p(ytjxt; �) =
Z
p(ytjxt; ut)q(ut)dut;

where p(ytjxt; ut) is typically governed by an optimal decision rule of a dynamic programming
problem. The integral on the right-hand side does not have a closed-form representation, except in

few special cases. However, conditioning on xt, one can simulate ut and hence yt, and use kernel

methods to estimate p(ytjxt). Therefore, NPSML is feasible.
NPSML can also be used to estimate a related class of economic models: Markov-perfect

equilibria of dynamic games. Ericson and Pakes (1995) provide a canonical framework for this

literature: a dynamic model of oligopolistic industry with entry and exit. The equilibrium transition

probability of this model is given by

pt(!t+1j!t; �); ! 2 Zn;

where Z is a �nite set of integers. The transition probability depends on individual �rm-speci�c

shocks, industry-wide shocks, and Markov-perfect strategies of �rms regarding entry, exit and

investment.14 Firms� strategies represent an optimal decision rule of a dynamic programming

problem. Clearly, the transition probability does not have a closed-form representation, but it

is still possible to simulate observations from the model conditioning on !t. Thus, NPSML is

feasible.15 The computational burden of such models grow quickly with n. Doraszelski and Judd

(2008) show how one can avoid this problem by casting the problems in continuous time. NPSML

is readily applicable to such continuous-time dynamic stochastic games as well.

14 In this class of models, conditioning on !t, !t+1 depends not only on individual actions but also on idiosyncratic
and aggregate shocks. To obtain the transition probability, all the shocks need to be integrated out.
15 In solving individual �rms� dynamic programming problem, one needs to know their continuation value, and

hence the transition probability. Therefore, for a given �, one needs to compute a �xed point in Pr(!t+1j!t). See
Doraszelski and Pakes (2007) for a more detailed discussion.
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5 Concluding Remarks

We have generalized the nonparametric simulated maximum likelihood estimator of Fermanian

and Salanié (2004) to deal with dynamic models, including nonstationary and time-inhomogeneous

ones. Theoretical conditions in terms of the number of simulations and the bandwidth are given

ensuring that the NPSML estimator inherits the asymptotic properties of the infeasible MLE.

This method is applicable to general classes of models, and can be implemented with ease. Our

�nite-sample simulation study demonstrates that the method works well in practice.

One limitation of the paper is that we only consider the cases where it is possible to simulate

the dependent variable conditional on �nitely-many past observations. This excludes the cases with

latent dynamics. Extensions to methods with built-in nonlinear �lters that explicitly account for

latent variable dynamics are worked out in a companion paper (Kristensen and Shin, 2007) based

on the main results given here.
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A Some General Results for Approximate Estimators

We �rst establish some general results for approximate MLEs. These results will then be applied

to show the desired results for the proposed NPSML considered here.

In the following, let �̂ = argmax�2� L̂T (�) and ~� = argmax�2� LT (�), where LT (�) =

��1T
PT
t=1 log pt (ytjxt; �) is the true but infeasible log-likelihood, and L̂T (�) = L̂T;N (�) is a se-

quences of approximations to LT (�) (not necessarily the simulated version proposed here). We

then �rst establish the asymptotic properties of the true MLE under (C.1)�(C.4). Next, we give a

general set of conditions for the approximate estimator, �̂, to be asymptotically equivalent to ~�.

A.1 Asymptotics of True MLE

Lemma 5 Assume that (C.1) and (C.4) hold. Then with probability tending to one, there exists a
unique minimum point ~� of LT (�) in �T which solves ST (~�) = 0. It satis�es I1=2T (~���0) = oP (1).

Proof Use a second order Taylor expansion to obtain for any bounded sequence �T 2 Rd such that
�0 + I�1=2T �T 2 �T ,

LT (�0 + I�1=2T �T )� LT (�0) = UT (�0) �T +
1

2
�0TVT (��)�T ;

for some �� 2 [�0; �0 + I�1=2T hT ] 2 �T . By another application of Taylor�s Theorem,���0TVT (��)�T � �0TVT (�0)�T �� = ����0TI�1=2T

�
HT (��)�HT (�0)

�
I�1=2T �T

���
� max
i=1;:::d

sup
�2�T

���0TWT (�) �T
��� jjI�1=2T �T jj

= OP (jjI�1=2T �T jj) = oP (1) ;

where we have used (C.4.2) and the fact that jjI�1=2T �T jj = oP (1). Thus,

LT (�0 + I�1=2T �T )� LT (�0) = UT (�0) �T +
1

2
�0TVT (�0)�T + oP (1) =

1

2
�0TH1�

0
T + oP (1) ;

where the second equality follows by (C.4.1). Since �0TH1�
0
T > 0 a.s., LT (�) is convex with

probability tending to one in the neighbourhood �T , and so a unique minimizer ~� 2 �T exists
which solves the �rst-order condition, ST (~�) = 0. We can choose � > 0 in the de�nition of

�T arbitrarily small, and conclude that the solution to ST (~�) = 0 will still lie in �T . Thus,

I1=2T (~� � �0) = oP (1).

Lemma 6 Assume that (C.1) and (C.4) hold. Then the MLE ~� satis�es

p
�TI1=2T (~� � �0)

d! H�1
1 S1:
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Proof By Lemma 5, we know that ~� is consistent and solves the �rst order condition. A �rst order
Taylor expansion of the score and using (C.4.2) together with the same arguments as in the proof

of Lemma 5 yield

p
�TUT (�0) = VT (��)

p
�TI1=2T (~� � �0) = VT (�0)

p
�TI1=2T (~� � �0) + oP (1)

such that, by (C.4.1),
p
�TI1=2T (~� � �0) = H�1

1 S1 + oP (1).

The following lemma states that (C.3) holds under (C.4).

Lemma 7 Assume that (C.4) holds. Then � 7! LT (�0 + I�1=2T �) is stochastically equicontinuous.

Proof Under the assumptions made,

LT (�0 + I�1=2T �1)� LT (�0 + I
�1=2
T �2) =

1

2
(�1 � �2)0H1(�1 � �2) + oP (1) ;

such that for any deterministic sequence �n ! 0+,

sup
k�1��2k<�n

jjLT (�0 + I�1=2T �1)� LT (�0 + I
�1=2
T �2)jj �

1

2
kH1k �2n + oP (1)!P 0:

A.2 Asymptotics of Approximate MLE

Theorem 8 Assume that (C.1)�(C.3) hold and (*) sup�2�T jL̂T (�) � LT (�)j = oP (1) as T ! 1
for a sequence N = N(T )!1. Then I1=2T (�̂ � �0) = oP (1).

Proof De�ne �̂T = I
1=2
T (�̂ � �0) and ~�T = I

1=2
T (~� � �0). We then wish to show that for any � > 0,

P (jjI1=2T (�̂ � ~�)jj > �) = P (k~�T � �̂T k > �)! 0; T !1:

Let � > 0 be given. Then by (C.3) there exists a � > 0 such that, k~�T � �̂T k > � implies

jLT (�0 + I�1=2T �̂T )� LT (�0 + I
�1=2
T

~�T )j � � with probability tending to 1. Thus, as T !1,

P (k~�T � �̂T k > ") � P (jLT (�0 + I�1=2T �̂T )� LT (�0 + I
�1=2
T

~�T )j � �):

We then have to show that the right-hand side converges to zero. Since ~� is the maximizer of LT (�),

we know that LT (�0 + I�1=2T �̂T ) � LT (�0 + I�1=2T
~�T ). Thus,

jLT (�0 + I�1=2T �̂T )� LT (�0 + I
�1=2
T

~�T )j = LT (�0 + I�1=2T
~�T )� LT (�0 + I

�1=2
T �̂T )

=
n
L̂T (�0 + I�1=2T �̂T )� LT (�0 + I

�1=2
T �̂T )

o
+
n
LT (�0 + I�1=2T

~�T )� L̂T (�0 + I
�1=2
T �̂T )

o
;

where, by (*),

L̂T (�0 + I�1=2T �̂T )� LT (�0 + I
�1=2
T �̂T ) � sup

�2�
jLT (�)� L̂T (�)j = oP (1)
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while, by the de�nition of �̂ and again using (*),

LT (�0 + I�1=2T
~�T )� L̂T (�0 + I

�1=2
T �̂T ) � LT (�0 + I�1=2T

~�T )� L̂T (�0 + I
�1=2
T

~hT )

� sup
�2�

jLT (�)� L̂T (�)j = oP (1):

Next, we state two results for the approximate estimator to have the same asymptotic distri-

bution as the actual MLE. Theorem 9 establishes this result only requiring that the approximate

likelihood function sup�2�T jL̂T (�)� LT (�)j = oP (1=
p
�T ). Theorem 10 imposes stronger smooth-

ness conditions, requiring that L̂T (�) be once di¤erentiable; on the other hand we only require

sup�2�T jj@L̂T (�)=@��@LT (�)=@�)jj = oP (1=k
p
�TI1=2T k) which is a weaker convergence restriction

than oP (1=
p
�T ), since kI�1=2T k = O (1). So there is a trade-o¤ between smoothness and rate of

convergence.

Theorem 9 Assume that (C.1) and (C.4) hold. Then:

(i) If sup�2�T jL̂T (�)� LT (�)j = oP (1), then I1=2T (�̂ � �0) = oP (1).

(ii) If sup�2�T jL̂T (�)�LT (�)j = oP (1=
p
�T ), then

p
�TI1=2T (~�� �0)

d! H�1
1 S1 and

p
�TI1=2T (�̂�

~�) = oP (1). In particular,
p
�TI1=2T (�̂ � �0)

d! H�1
1 S1.

Proof Under (C.1) and (C.4), it holds that I1=2T (~� � �0) = oP (1) and that (C.3) is satis�ed by

Lemmas 5 and 7 respectively. Thus, the conditions of Theorem 8 holds which then yields (i).

To prove (ii), we use the same arguments as in the proof of Lemma 5 to obtain:

LT (~�)� LT (�̂) = LT (�0 + I�1=2T
~�T )� LT (�0 + I

�1=2
T �̂T )

=
1

2
(~�T � �̂T )0I

�1=2
T HT (��)I�1=2T (~�T � �̂T )

=
1

2
(~�T � �̂T )0H1(~�T � �̂T ) + oP (1) ;

for some �� 2 [~�; �̂], since ST (~�) = ST (�0 + I�1=2T
~�T ) = 0 by the de�nition of ~�. We now use the

exact same argument as in the proof of Theorem 8 for the left-hand side to obtain that

p
�T fLT (~�)� LT (�̂)g =

p
�T fLT (~�)� L̂T (�̂)g+

p
�T fL̂T (�̂)� LT (�̂)g = oP (1) :

Thus,

jjp�TI1=2T (�̂ � ~�)jj2 � jjH�1
1 jjp�T (~�T � �̂T )0H1(~�T � �̂T ) = oP (1):

Theorem 10 Assume that (C.1) and (C4) hold together with:

(i) � 7! L̂T (�) is once di¤erentiable in �T .
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(ii) There exists a sequence N = N(T )!1 such that sup�2�T kŜT (�)�ST (�)k = oP (1=k
p
�TI1=2T k).

Then
p
�TI1=2T (�̂ � �0)

d! H�1
1 S1 for this sequence N .

Proof By a standard Taylor expansion,

p
vTI�1=2T ST (�̂) =

p
vTI1=2T ST (�0) + I�1=2T HT (�0)I�1=2T

p
vTI1=2T (�̂ � �0) + oP (1) ;

where

kpvTI1=2T ST (�̂)k = k
p
vTI1=2T fST (�̂)� ŜT (�̂)gk � sup

�2�T
kpvTI1=2T fST (�)� ŜT (�)gk = oP (1):

Thus,

p
vTI1=2T (�̂ � �0) = I�1=2T HT (�0)I�1=2T

n
vTI1=2T ST (�0) + oP (1)

o
d! H�1

1 S1:

B Properties of Simulated Conditional Density

We here establish uniform convergence of p̂t given in equation (6) and its derivatives w.r.t. �.

Lemma 11 Assume that (A.1)�(A.2) and (K.1) hold. Then p̂t given in (6) satis�es for all y2 2 Y2
and any compact set �:

sup
1�t�T

sup
y12Rk

sup
kxk�dn

sup
�2�

jp̂t(y1; y2jx; �)� pt(y1; y2jx; �)j

= OP

�h
d
��1
n + T

��2
i
log(N)=

p
Nhk

�
+OP

��
d�0;1n + T�0;2

�
hr
�
;

where ��k = �0;k + �1;k + �2;k, k = 1; 2.

Proof De�ne  = (x; �; t) 2 � = Xt � � � f1; 2; 3; � � � g. Write p̂(y1; y2; ) = p̂(y1; y2jx; �) and
p(y1; y2; ) = p(y1; y2jx; �). We split up into a bias and a variance component:

sup
k(x;�)k�dn

sup
t�T

jp̂(y1; y2; )� p(y1; y2; )j

� sup
k(x;�)k�dn

sup
t�T

jE[p̂(y1; y2; )]�p(y1; y2; )j+ sup
k(x;�)k�dn

sup
t�T

jp̂(y1; y2; )� E[p̂(y1; y2; )]j

= : Bias(y1; y2; ) + Var(y1; y2; ):

Using standard arguments for kernel estimators, the bias term can be shown to satisfy

jBias(y1; y2; )j � hr
Z
jK (v)j jvjr dv � sup

k(x;�)k�dn
sup
t�T

����@rp(y1; )@yr1

����+ o (hr) :
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Thus, using the bound imposed on the rth derivative, jBias(y1; y2; )j = O
�h
d
�0;1
n + T �0;2

i
hr
�

uniformly over (y1; ). To establish the uniform rate of the variance term, we apply the result of

Kristensen (2008b, Theorem 1) for averages of the form

	̂ (x; ) =
1

nhd

nX
i=1

Yi ()G

�
Xi ()� x

h

�
; (24)

for some kernel-type function G. With Yi () = Y x;�2t;i (y2), Xi () = Y x;�1t;i and G = K, our simulated

density can be written on this form. We then verify that his conditions (A.1)�(A.5) are satis�ed

under our Assumptions (A.1)�(A.2) and his conditions (A.6) on G is implied by our (K.1). It�s clear

that our (K.1) implies his (A.6). Also, Kristensen (2008b, Assumptions A.1) is trivially satis�ed

since we have i.i.d. draws. Kristensen (2008b, Assumptions A.2) follows from our Assumption

(A.1). Finally, the bounds in Kristensen (2008b, Assumptions A.4-A.5) in our case becomes, using

Kristensen (2008b, Remark 2.2):

~B0 = p (y1; ) ;

~B1 = ky1kk E
h���Y x;�2t;i (y2)

��� jY x;�1t;i = y1

i
p (y1; ) ;

~B2 = ky1kk E
h��� _Y x;�2t;i (y2)

��� jY x;�1t;i = y1

i
p (y1; ) ;

~B3 = ky1kk E
h���Y x;�2t;i (y2)

_Y x;�1t;i

��� jY x;�1t;i = y1

i
p (y1; ) ;

where _Y x;�1t;i and _Y x;�2t;i (y2) are the derivatives w.r.t. (x; �; t). By Assumption (A.2), ~B0 =

O
�
1 + kxk�0;1 + t�0;2

�
while, using (A.1),

E
h���Y x;�2t;i (y2)

��� jY x;�1t;i = y1

i
=

Z
fe:g1(e;)=y1g

jg2 (y2; e; )j dF" (e)

�
Z
jg2 (y2; e; )j dF" (e)

= E [jg2;t (y2; "; )j]

� E [� (")]
h
1 + kxk�2;1 + t�2;2

i
;

and similarly for the two other conditional expections in ~B2 and ~B3. Thus,

~Bk � E [� (")]
�
1 + kxk�1 + t�2

�
ky1kq p (y1; ) = O

�
1 + kxk�0;1+�2;1 + t�0;2+�2;2

�
;

for k = 1; 2, where the second equality follows from (A.2), while ~B3 = O
�
1 + kxk��1 + t��2

�
.

Lemma 12 Assume that (A.1)�(A.4) and (K.1) hold. Then @ip̂t=@�
i, i = 1; 2, given in (14)

satisfy for all y2 2 Y2 and any compact set �:

sup
1�t�T

sup
y12Rk

sup
kxk�dn

sup
�2�

����@ip̂t(y1; y2jx; �)@�i
� @ipt(y1; y2jx; �)

@�i

����
= OP

�h
d
��1
n + T

��2
i
log(N)=

p
Nhk+i

�
+OP

��
d�0;1n + T�0;2

�
hr
�
:
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Proof We only give a proof for the �rst derivative. The proof for the second one follows along the
same lines. We proceed as in the proof of Lemma 11. From the expression in equation (14),

E
�
@p̂t(y1; y2jx; �)

@�

�
=

1

hk

Z
K

 
Y x;�1t;i � y1

h

!
_Y x;�2t;i (y2) dF" (")

+
1

hk+1

Z
K 0

 
Y x;�1t;i � y1

h

!
_Y x;�1t;iY

x;�
2t;i (y2) dF" (") ;

where, uniformly over (t; x; �),

1

hk

Z
K

 
Y x;�1t;i � y1

h

!
_Y x;�2t;i (y2) dF" (") =

Z
K (v) p (y1 + vhjx; �)

@pt (y2jy1 + vh; x; �)
@�

dv

=
@pt (y2jy1; x; �)

@�
pt (y1jx; �) +O

�h
d
�1

n + T�2
i
hr
�
;

1

hk+1

Z
K 0

 
Y x;�1t;i � y1

h

!
_Y x;�1t;iY

x;�
2t;i (y2) dF" (") = pt (y2jy1; x; �)

@pt (y1jx; �)
@�

+O
�h
d
�1

n + T �2
i
hr
�
:

For the variance component, we again apply the results of Kristensen (2008b). With  = (x; �; t)

and Xn;i () = Y x;�t;i , @p̂t=@� can be written as the sum of two kernel averages, each of the form (24);

the �rst with Yn;i () = _Y x;�1t;iY
x;�
2t;i and G = K 0, and the second with Yn;i () = _Y x;�2t;i and G = K.

Under the conditions imposed on the model, Assumptions (A.1)�(A.5) of Kristensen (2008b) hold.

C Proofs

Proof of Theorem 1 The �rst part of the result will follow if we can verify the condi-

tions in Theorem 8. In order to do this, we introduce an additional trimming function,

~�a;t = �a(p̂t(ytjxt; �))I fkxtk � Ng, where I f�g is the indicator function and  > 0 is chosen

as in (B.1), and two trimming sets,

A1;t(") = fp̂t(ytjxt; �) � "a; kxtk � Ng ; A2;t(") = fpt(ytjxt; �) � "a; kxtk � Ng ;

for any " > 0. De�ning At(") = A1;t(") \ A2;t("), it follows by the same arguments as in Andrews
(1995, p. 588), A2;t(2") � A1;t(") � At("=2) w.p.a.1 as N ! 1 under (B.1). Thus, IA2;t(4) �
IA1;t(2) � ~�a;t � IA1;t(1=2) � IAt(1=4).

We then split up L̂T (�)� LT (�) into three terms,

L̂T (�)� LT (�) =
1

�T

TX
t=1

[�a(p̂t(ytjxt; �))� ~�a;t] log p̂t(ytjxt; �)

+
1

�T

TX
t=1

~�a;t [log p̂t(ytjxt; �)� log pt(ytjxt; �)] +
1

�T

TX
t=1

[~�a;t � 1] log pt(ytjxt; �)

=: B1(�) +B2(�) +B3(�);
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and then show that sup�2� jBi(�)j = oP (1), i = 1; 2; 3. By (C.5),

jB1(�)j �
j log aj
�T

TX
t=1

I fkxtk > Ng � j log aj�q�1T

N(1+�)

1

�qT

TX
t=1

kxtk1+� �
j log aj�q�1T

N(1+�)
�OP (1);

while,

jB2(�)j � 1

�T

TX
t=1

IAt(1=4)j log p̂t(ytjxt; �)� log pt(ytjxt; �)j

� T

a�T
� sup
1�t�T

sup
�2�

sup
y2Rk

sup
kxk�N

jp̂t(ytjxt; �)� pt(ytjxt; �)j:

The �nal term is bounded by

jB3(�)j � 1

�T

TX
t=1

j~�a;t � 1jj log pt(ytjxt; �)j

� 1

�T

TX
t=1

Ifpt(ytjxt; �) < 4agj log pt(ytjxt; �)j+
1

�T

TX
t=1

I fkxtk > Ng j log pt(ytjxt; �)j

=: B3;1(�) +B3;2(�):

First, as a! 0,

jB3;1(�)j � 1

�T

TX
t=1

I fpt(ytjxt; �) < 4ag j log pt(ytjxt; �)j

=
1

�T

TX
t=1

Ifj log pt(ytjxt; �)j > j log(4a)jgj log pt(ytjxt; �)j

� j log(4a)j���q�1T

1

�qT

TX
t=1

j log pt(ytjxt; �)j1+�

= j log(4a)j���q�1T �OP (1):

where we have used (C.5). Similarly, by (C.5),

jB3;2(�)j � 1

�T

TX
t=1

Ifkxtk > Ngj log pt(ytjxt; �)j

�
(
1

�T

TX
t=1

Ifkxtk > Ng
)�=(1+�)(

1

�T

TX
t=1

j log pt(ytjxt; �)j1+�
)1=(1+�)

� �q�1T

N(1+�)

(
1

�qT

TX
t=1

kxtk1+�
)�=(1+�)(

1

�qT

TX
t=1

j log pt(ytjxt; �)j1+�
)1=(1+�)

=
�q�1T

N(1+�)
�OP (1):

The consistency result now follows from Theorem 8 together with Lemma 11 and (B.1).
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To show the second result, we merely have to strengthen the convergence of L̂T (�) to take place

with rate �T , c.f. Theorem 9(ii). One can still apply the above bounds which now have to go to

zero with rate �T . This is ensured by (B.2).

Proof of Corollary 2 We verify that (C.1)�(C.5) hold under the conditions imposed in the corol-
lary. First, with �T = T and q = 1, we obtain by LLN for mixing sequences that iT (�0) =

i(�0)+oP (1) with i(�0) = E
�
@2 log p(ytjxt; �0)=(@�@�0)

�
, such that IT can be chosen as the constant

I = diag fi(�)g. Thus, there is a one-to-one deterministic correspondence between the mapping
� 7! LT (�0+I�1=2T �) and LT (�) and we can restrict our attention to the latter. From e.g. Tauchen

(1985) that sup�2� jLT (�)� L (�)j = oP (1) with L (�) = E [log p (ytjxt; �)] continuous under Con-
dition (i). Thus, by Newey (1991), LT (�) is stochastically equicontinuous and we have veri�ed

(C.3). Similarly, (C.5) follows by the (uniform) LLN,

sup
�2�T

�����T�1
TX
t=1

jlog pt(ytjxt; �)j1+� � E
h
jlog p (ytjxt; �)j1+�

i�����!P 0;

T�1
TX
t=1

kxtk1+� � E
h
kxtk1+�

i
!P 0; ��qT

TX
t=1

�21 ("t)� E
�
�21 ("t)

�
!P 0:

To verify (C.4), appeal to the CLT for mixing sequences to obtain:

p
�TUT (�0) = I�1=2 � T�1=2

TX
t=1

@ log pt(ytjxt; �)
@�

����
�=�0

!d N
�
0; I�1=2i(�0)I�1=2

�
;

while by the LLN,

VT (�0) = I�1=2 � T�1
TX
t=1

@2 log pt(ytjxt; �)
@�@�0

����
�=�0

� I�1=2 !P �I�1=2i(�0)I�1=2:

Finally,

max
j=1;:::;d

sup
�2�

kWj;T (�)k � C sup
�2�

T�1
TX
t=1

@2 log pt(ytjxt; �)
@�@�0

����� i(�0)
+ Ci(�0) = OP (1) :

Proof of Theorem 3 Since p (yjx; �) is bounded away from zero, we may here re-de�ne the sim-

ulated likelihood as L̂T (�) = T�1
PT
t=1 log p̂ (ytjxt; �) such that the associated score takes the form

ŜT (�) = T�1
TX
t=1

1

p̂ (ytjxt; �)
@p̂ (ytjxt; �)

@�
:

By the mean value theorem, for some �� on the line segment between �̂ and �0.

0 = ŜT (�0) + ĤT (��)(�̂ � �0):
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We then analyze the two terms, ŜT (�0) and ĤT (��), in turn. De�ne pt (�) = p (ytjxt; �), p̂t (�) =
p̂ (ytjxt; �) and st (�) = @� log pt (�).

We �rst consider ŜT (�0) and suppress the dependence on �0 since this is �xed. The expansion

in equation (17) now follows by Lee (1999, Proposition 1) with

rST;N [p̂� p] = T�1
TX
t=1

1

pt
f@�p̂t � @�ptg � T�1

TX
t=1

st
pt
fp̂t � ptg ;

r2ST;N [p̂� p; p̂� p] = �T�1
TX
t=1

1

p2t
f@�p̂t � @�ptg fp̂t � ptg+ T�1

TX
t=1

st
p2t
fp̂t � ptg2 ;

RT;N = �T�1
TX
t=1

1

p̂tp2t
f@�p̂t � @�ptg fp̂t � ptg2 + T�1

TX
t=1

st
p̂tp2t

fp̂t � ptg3 :

We split up the �rst di¤erential into a bias and a variance component,

rST;N [p̂� p] = rST;N [E [p̂]� p] +rST;N [p̂� E [p̂]] ;

where E [p̂] denotes the expectation of p̂ conditional on data. Using standard bias expansions for
kernel estimators,

p̂ (y1; y2jx)� E [p̂ (y1; y2jx)] = hr@ry1p (y1; y2jx) + o (h
r) ;

@�p̂ (y1; y2jx)� E [@�p̂ (y1; y2jx)] = hr@ry1@�p (y1; y2jx) + o (h
r) ;

implying that the bias component satis�es

rST;N [E [p̂]� p] = hrT�1
TX
t=1

@ry@�pt

pt
� hrT�1

TX
t=1

st
pt
@rypt + oP (h

r)

= �1h
r + oP (h

r) ;

with �1 given in equation (18). Next, de�ne

 (zt; "i) =
1

pt
�1 (zt; "i)�

st
pt
�2 (zt; "i) ;

where zt = (yt; xt) and

�1 (zt; "i) =
1

hk+1
K 0
�
Y xt1;i � y1t

h

�
_Y xt1;iY

xt
2;i (y2t) +

1

hk
K

�
Y xt1;i � y1t

h

�
_Y xt2;i (y2t) ;

�2 (zt; "i) =
1

hk
K

�
Y xt1;i � y1t

h

�
Y xt2;i (y2t) :

Here, Y x1;i = g1 (x; "i; �0) and _Y x1;i = @�g1 (x; "i; �0) and similarly for Y x2;i (y2) and _Y x2;i (y2). With

 1 (zt) = E [ (zt; "i)j zt],  2 ("i) = E [ (zt; "i)j "i] and � = E [ (zt; "i)], we can then write
rST;N [p̂� E [p̂]] as

rST;N [p̂� E [p̂]] =
1

TN

TX
t=1

NX
i=1

f (zt; "i)�  1 (zt)g =
1

N

NX
i=1

�
 2 ("i)� � 

	
+AT;N ;
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where AT;N = 1
TN

PT
t=1

PN
i=1

�
 (zt; "i)�  1 (zt)�  2 ("i) + � 

	
. By standard results for U -

statistics of �-mixing sequences, c.f. Denker and Keller (1983), we obtain that AT;N =

OP

�
1=
p
NT

�
, while  2 ("i)� � = � 2 ("i)� E

�
� 2 ("i)

�
+ oP

�
1=
p
N
�
. This follows from

E
�
�1 (zt; "i)

p (ytjxt)

���� "i� =
X
y22Y2

Z
_Y x;�1;i Y
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2;i (y2)

�
1
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K 0
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h

�
dy1
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Z
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1
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Z
K

�
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h

�
dy1

�
dFx (x)

=
X
y22Y2

Z
_Y x2;i (y2) dFx (x)

= E

"
_Y x2;i (y2)

p (y2jx)
j"i

#

where we have used that h�(k+1)
R
K 0
�
Y xi �y
h

�
dy = h�k

R
K 0 (v) dv = 0, and

E
�
s (ytjxt)
p (ytjxt)

�2 (zt; "i)

���� "i� =
X
y22Y2

Z �
1

hk

Z
s(y1; y2jx)K

�
Y x1;i � y1

h

�
dy1

�
Y x2;i (y2) dFx (x)

=
X
y22Y2

Z
s(Y x1i; y2jx)Y x2;i (y2) dFx (x) +O (hr)

= E
�
s(Y x1i; y2jx)Y x2;i (y2)

p (y2jx)
j"i
�
+O (hr) :

The second order di¤erential can be written as:

r2ST;N [p̂� p; p̂� p] = r2ST;N [E[p̂]� p;E[p̂]� p] +r2ST;N [p̂� E[p̂]; p̂� E[p̂]]

+2r2ST;N [E[p̂]� p; p̂� E[p̂]] :

Since the cross-term is of a smaller order than the �rst two ones, we can ignore this and set it to

zero in the following. Again using the bias expansion for kernel estimators and appealing to the

LLN for stationary and ergodic sequences, the bias component satis�es

r2ST;N [E[p̂]� p;E[p̂]� p]

= � 1
T

TX
t=1

1

p2t
fE[@�p̂t]� @�ptg fE[p̂t]� ptg+

1

T

TX
t=1

st
p2t
fE[p̂t]� ptg2

= OP
�
h2r
�
:

The variance component can be written as

r2ST;N [p̂� E[p̂]; p̂� E[p̂]] =
1

TN2

TX
t=1

NX
i=1

� (zt; "i; "i) +
1

TN2

TX
t=1

X
i 6=j

� (zt; "i; "j) (25)

=:
1

N
UT;N +BT;N ; (26)
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with

� (zt; "i; "j) = �
1

p2t
�1 (zt; "i) �2 (zt; "j) +

st
p2t
�2 (zt; "i) �2 (zt; "j) :

The �rst term, UT;N , is again a second order two-sample U -statistic while BT;N is a third order one.

We �rst analyze UT;N . We have E [� (zt; "i; "i) jzt] = 0 and, using the same arguments as before,

E
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1
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where K� (v) = K (v)K 0 (v), and
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such that

E [� (zt; "i; "i)] = h�(k+1)�2 + h
�k~�2 + o

�
h�(k+1)

�
;

where �2 is given in equation (19) and ~�2 is the sum of the two other expectations above. Thus,

UT;N=N = 1=
�
Nhk+1

�
�2 + oP

�
1=
�
Nhk+1

��
. Next, we observe that:

E [� (zt; "i; "j) jzt; "i] = E [� (zt; "i; "j) jzt; "j ] = 0;

while E [� (zt; "i; "j) j"i; "j ] = o (1) as h! 0 such that the corresponding U -statistic BT;N is second-

order degenerate, implying BT;N = OP
�
1=
�
N3=2hk+1

��
. Finally, appealing to Lemma 12 and the

LLN,

p
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Next, we consider the Hessian:
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1

T
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@2��p̂t
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1
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TX
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:

We �rst write
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The second and the third terms are both oP (1) by standard ULLN results for stationary and

ergodic sequences under the conditions we have imposed on @2 log p (yjx; �) =@�@�0 (Newey, 1991).
Regarding the �rst term, write
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The term A1 can be written as
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where we have used the LLN together with supt jp̂t(�)� pt(�)j = oP (1), supt
@2��p̂t(�)� @2��pt(�) =

oP (1) and inft;� pt(�) > 0. We can show that A2 = oP (1) by the same arguments.

Combining the results for the score and the Hessian, with ZT =
p
T fST (�) +rST;N [p̂� E [p̂]]g,
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;

where 
 = i(�0)
�1Var

�
� 2 ("i)

�
i(�0)

�1.

Proof of Theorem 4 We follow the exact same arguments as in the proof of Theorem 3, except

that we now have
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y2Rk
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where p̂t(yjx; �) is the (infeasible) kernel estimator based on simulations from the true model. The

rate of convergence of the second term is given by Lemma 11, while the �rst term satis�es by (M.1),
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where the right-hand side has to go to zero to obtain consistency. This holds by (B.10). For �rst-

order equivalence, we require that the right-hand side vanish with rate
p
�T . This holds by (B.20).
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