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Abstract

This paper studies the effect of time–inhomogeneous jumps and leverage type effects on re-
alised variance calculations when the logarithmic asset price is given by a Lévy–driven stochastic
volatility model. In such a model, the realised variance is an inconsistent estimator of the inte-
grated variance. Nevertheless it can be used within a quasi–maximumlikelihood setup to draw
inference on the model parameters. In order to do that, this paper introduces a new methodology
for deriving all cumulants of the returns and realised variance in explicit form by solving a recur-
sive system of inhomogeneous ordinary differential equations.
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1 Introduction

Realised variance and its use for estimating and forecasting stochastic volatility has been studied
extensively in the finance literature in the last decade (seee.g. [2, 10, 11, 37, 52]). So far, such studies
have mainly focused on asset price models given by Brownian semimartingales or, more generally,
Itô semimartingales. This paper is now devoted to studyingthe impact oftime-inhomogeneous jumps
and leverage type effectson realised variance calculations when the logarithmic asset price is given
by a stochastic integral with respect to a Lévy process.

Lévy–driven stochastic volatility models are able to copewith many stylised facts of asset returns
particularly well, e.g. they reflect the skewness and fat tails of asset return distributions more appropri-
ately and can handle jumps and volatility smiles much betterthan models based on Brownian motions
alone. Recently, several types of such Lévy–based stochastic volatility models have been studied in
the financial literature. Basically, they can be divided into two groups: time–changed Lévy processes
(see e.g. [12, 21, 22]) and stochastic integrals with respect to a Lévy process (see e.g. [28, 40, 51, 53]).
Here we restrict our attention to the latter class of Lévy–based stochastic volatility models. We note
that this class of models does not generally fall into the class of affine models (as time–changed Lévy

∗This paper is a revised part of my DPhil thesis and, therefore, I wish to thank my supervisors Neil Shephard and Matthias
Winkel for their guidance and support throughout this project. Financial support by the Rhodes Trust and by the Center
for Research in Econometric Analysis of Time Series, CREATES, funded by the Danish National Research Foundation, is
gratefully acknowledged.
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2 MODEL DEFINITION AND TECHNICAL ASSUMPTIONS 2

processes, see e.g. [26, 39]) and, hence, explicit computations in such a modelling framework turn
out to be analytically more involved. Apart from inhomogeneous jumps, our model also allows for
very general leverage type effects or asymmetric volatility. During the last decades, many empirical
studies have revealed the fact that past stock returns tend to be negatively correlated with innova-
tions of future volatilities. This property is often calledthe leverage effect— an expression which
has been derived from the hypothesis that a negative stock return might increase financial leverage
and, hence, leads to a riskier stock which results in higher volatility. [17] was probably the first to
investigate this effect, and his finding was further supported by studies by [23, 43] among others and,
more recently, by [18, 20, 35, 49, 50, 54]. While the existence of asymmetric volatility is rarely
questioned, its main determinant is still subject to vivid discussions (see e.g. [15] and the references
therein). Besides the previously mentioned leverage–hypothesis, there is also the time–varying risk
premium theory or volatility feedback theory, which essentially relies on the converse causality when
stating that increasing volatility leads to decreasing stock price returns. However, regardless of where
asymmetric volatility originates from, it is definitely an important fact, which has to be accounted
for in asset pricing, especially in the context of option pricing since the asymmetric relationship is
directly associated with implied volatility smiles. So theleverage effect is often regarded as a natural
tool for explaining smirks in option price data (see [31, 36]). Unfortunately, previous work on the
econometric properties of Lévy –driven stochastic volatility has so far only been carried out under the
no–leverage assumption ([12, 53]) which is, particularly in equity markets, not realistic. So the main
contribution of this paper is, that it overcomes this restrictive assumption and studies the impact of
both time–inhomogeneous jumps and general leverage type effects on returns and realised variance
simultaneously.

The remaining part of the paper is structured as follows. Section 2 sets up the notation and defines
the Lévy–driven stochastic volatility model, which we study in this paper. Following recent research
on stochastic volatility models, we use the so–called realised variance as a proxy for the accumulated
variance over a day. This quantity will be defined in Section 3. Section 4 and 5 contain the main
theoretical results of the paper. In Section 4, we present explicit formulae for the moments and
second order properties of the returns, the actual varianceand the quadratic variation of the price
process. Section 5 addresses the first and second order properties of the realised variance where
we study in detail the influence of the jumps and the leverage effect on volatility estimation. All
these results are derived explicitly by using a novel methodology which involves solving a recursive
system of inhomogeneous ordinary differential equation. Finally, we give a brief outlook on parameter
estimation and inference in Section 6. Throughout the text,all of the mathematical proofs are relegated
to the Appendix (Section A).

2 Model definition and technical assumptions

Let (Ω,A, P) denote a probability space with filtrationF = {Ft}0≤t<∞, satisfying the usual con-
ditions (see e.g. [47]). LetS = (St)t≥0 denote the logarithmic asset price andσ = (σt)t≥0 the
stochastic volatility (SV). We will study models of the form

St = µt +

∫ t

0
σs−d(vWs + Xs),

whereX = (Xt)t≥0 denotes a pure jump Lévy processes (see e.g. [16, 45, 48]) and W = (Wt)t≥0

is a standard Brownian motion andv ∈ R is a constant, which could be 0. In that case, we would be
in a pure jump setting. Solely for ease of exposition, we willassume thatEX1 = 0. Furthermore,
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we assume that Var(X1) < ∞. More precisely, in order to make sure that the model is uniquely
identified, we setV arX1 + V ar(vW1) = 1. Otherwise, one could always multiplyvW + X by a
constant and scaleσ appropriately and one would still obtain the same value for the price processS.

Here we will focus on Ornstein–Uhlenbeck (OU) type stochastic volatility models. I.e., we shall
model the volatility process by a stationary Lévy–driven OU process which satisfies the following
stochastic differential equation

dσt = −λσt−dt + dYλt,

whereY = (Yt)t≥0 denotes a pure jump subordinator (i.e. a non–decreasing Lévy process) andλ > 0
is the memory parameter. Throughout we assume thatσ0 is drawn from its stationary distribution.

Similar models have been studied in detail in the Brownian motion framework (i.e. whenX is a
Brownian motion) by [9] who choseσ2 to be a OU process. However, studies by [41] have shown
that choosingσ or σ2 to be an OU process leads to similar results. So for reasons ofmathematical
tractability we have chosen the volatility process rather than the variance to be of OU–type. In such a
modelling framework, the dynamics of the squared volatility process are given by

dσ2
t = −2λσ2

t−dt + 2σt−dYλt + d[Y ]λt,

which might remind us on a jump–driven version of a square root process. Clearly, such a model
for the volatility process satisfies the essential requirement that volatility has to be non–negative. By
time–changing the subordinatorY by the memory parameterλ, we obtain a stationary distribution of
σ which does not depend onλ. Note in particular that we do not assume thatσ andX are independent.
We rather choose a bivariate Lévy process(vW + X,Yλ)′ as driving process of(S, σ)′ and, hence,
can capture the leverage effect with this model. In order to be able to choose such a bivariate Lévy
process, we have to make sure that both driving processes runon the same time scale. The choice of
Yλ rather thanY in the second component is hence essential. Otherwise it would be possible that there
was already information about the price process available before there was any information about the
volatility process and vice versa, and this would possibly lead to arbitrage opportunities. Throughout
the text, we will setµ = 0, although the results can be easily generalised for a price process which
includes a drift term. Finally, we introduce the notation for the cumulants of the the driving Lévy
processes. We defineZ = (Zt)t≥0 by Zt = (Xt, Yλt)

′ for λ > 0, which is a bivariate pure jump
Lévy process of which the second component is a subordinator. Let ν denote the Lévy measure of
Z andνX andνYλ

denote the Lévy measure ofX andYλ, respectively. Note that ifX andY are
pure jump Lévy processes of finite variation, then they can be represented as sum of their jumps:
Xt =

∑

0≤s≤t ∆Xs,andYλt =
∑

0≤s≤t ∆Yλs.

Remark If v = 0 andX is of finite variation,S can be written asSt =
∑

0≤s≤t ∆Ss. From [38,
Chapter IX, Proposition 3] we can deduce that its characteristic triplet is given by(0, 0, νS), where
νS is defined by1IF ⋆ νS = 1IF (σs−x) ⋆ νX for all F ⊆ R\{0}, where we denote byf ⋆ ν for
a functionf on a subset ofR2 and random measureν the following integral process(f ⋆ ν)t =
∫

R×[0,t] f(x, s)ν(dx, ds).

Recall that then–th cumulant of a stochastic processZ = (Zt)t≥0 is defined by (provided it exists)

κn(Zt) =
1

in
∂n

∂un
log (E (exp(iuZt))) .

Furthermore, it is well–known (see e.g. [24, p.32, 92]) thatthe moments of a Lévy process can
then be expressed in terms of the corresponding cumulants byE(Zt) = κ1(Z1)t, E(Z2

t ) = κ2(Z1)t+
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(κ1(Z1)t)
2, E(Z3

t ) = κ3(Z1)t+3κ1(Z1)κ2(Z1)t
2 +(κ1(Z1)t)

3, E(Z4
t ) = κ4(Z1)t+3(κ2(Z1)t)

2 +
4κ1(Z1)κ3(Z1)t

2 +6(κ1(Z1)
2)κ2(Z1)t

3 +(κ1(Z1)t)
4. For the cumulants of these processes, we will

use the following notation. The cumulants (denoted byκi(·), i = 1, 2, . . . ) of the random variableX1

are denoted byξ and the cumulants of the processY1 are denoted byη. Hence,

ξi = κi (X1) =

∫

R

uiνX(du), ηi = κi (Y1) =

∫

[0,∞)
viνY1(dv), for i = 1, 2, . . .

Note thatκi(Yλ) = ληi, for i = 1, 2, . . . . Furthermore,

κn,m =

∫

R×[0,∞)
un vm ν(du, dv), for n, m ∈ N.

Throughout the text, we will assume that at least the first four cumulants of the Lévy processZ are
finite. From the Cauchy–Schwarz inequality, we obtain the following constraints for the cumulants of
Z. Forn,m ∈ N, the cumulants (if they exist) satisfyκn,m ≤

√
ξ2n λη2m.

The cumulants of the bivariate Lévy process can be regardedas a measure of the dependence
between the two driving processes, which obviously includes the leverage effect: the measure of
dependence of first order. In the following, we will deal withthe following five cumulants.

κ1,1 = E {(X1 − EX1)(Yλ − EYλ)} = Cov(X1, Yλ),

κ1,2 = E
{
(X1 − EX1)(Yλ − EYλ)2

}
,

κ1,3 = E
{
(X1 − EX1)(Yλ − EYλ)3

}
− 3E {(X1 − EX1)(Yλ − EYλ)) E

(
(Yλ − EYλ)2

}
,

κ2,1 = E
{
(X1 − EX1)

2(Yλ − EYλ)
}

,

κ2,2 = E (X1Yλ) − 2E (X1) E
(
X1Y

2
λ

)
− 2E (Yλ) E

(
X2

1Yλ

)
− E

(
X2

1

)
E
(
Y 2

λ

)

− 2 {E (X1Yλ)}2 + 2 {E (X1)}2
E
(
Y 2

λ

)
+ 2 {E (Yλ)}2

E
(
X2

1

)

+ 8 E (Yλ) E (X1) E (X1Yλ) − 6 {E (X1)}2 {E (Yλ)}2 .

Note that ifX andYλ are independent, they have no common jumps and, hence,ν{(u, v) ∈ R ×
[0,∞) : uv 6= 0} = 0. That means that, ifX andYλ are independent and, hence, there is no leverage
effect, then all joint cumulantsκn,m = 0.

3 Returns and realised variance

Our aim is to study the econometric properties of the Lévy–type SV model defined above. So far, we
have defined a model for an asset price in continuous time. We can now use the increments of such
a process for modelling (high frequency) returns. Recall that (St)t≥0 denotes the continuous–time
log–price process of an asset. Further, leth > 0 denote the length of a fixed time interval, typically
one day. The returns of the asset price are then given by

si = Sih − S(i−1)h, i = 1, 2, . . . ,

wherei indexes the day. Due to the availability of high frequency data, one is often interested in
modelling returns at a higher frequency than just daily data. Suppose that we are givenM intra–
h observations during each time interval of lengthh. The time gap between these high frequency
observations is denoted byδ = h/M . Then

sj,i = S(i−1)h+jδ − S(i−1)h+(j−1)δ , j = 1, . . . ,M
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denotes thej–th intra–h high frequency return on thei–th period of lengthh. Often we work with
h = 1, representing one day. Based on these high frequency returns, one can then define therealised
variancefor thei–th day by

[Sδ][(i−1)h,ih] =
M∑

j=1

s2
j,i.

This quantity is often used to proxy the variability in financial markets in SV models (see e.g. [4,
10]). In this paper, we will compute the realised variance based on five–minute returns and will
therefore ignore possible market microstructure effects which come into play when analysing really
high frequency returns (i.e. one minute returns, tick by tick data). Such effects can be caused by
e.g. bid/ask spreads, irregular trading and the fact that prices are recorded in discreet time. Since
studying realised variance in the presence of market frictions is beyond the scope of this paper, we
just refer to articles by e.g. [1, 3, 5, 6, 8, 13, 33, 55–57], for recent and very detailed studies of this
research topic. Recall that the quadratic variation of a semimartingaleS = (St)t≥0 is defined by
[S]t = S2

t − 2
∫ t
0 Su−dSu. It is well–known that

[Sδ][(i−1)h,ih]
ucp−→ [S]ih − [S](i−1)h, as M → ∞ (i.e. δ → 0),

where the convergence is uniform on compacts in probability(ucp) (see [45]). So the realised variance
can be used to estimate the (increments of the) quadratic variation of the price process consistently.
Hence, in our modelling framework, the realised variance can be used as a consistent estimator of

[S]ih − [S](i−1)h =

∫ ih

(i−1)h
σ2

s−d[X]s.

However, one is rather interested in estimating and forecasting the integrated varianceIVt =
∫ t
0 σ2

sds.
From Lévy’s theorem, we can deduce that[X]t = t if and only if X is a Brownian motion. I.e. as soon
as the Brownian motion is replaced by a more general Lévy process or semimartingale, the quadratic
variation of the SV model is not given by the integrated variance. Hence, it is important to study the
bias and the degree of inconsistency of the realised variance as proxy for the integrated variance. This
is the task we tackle in the next section.

4 Cumulants of returns, actual variance and incremental quadratic vari-
ation

Here we study the statistical properties of the following three quantities: the price processS, the
integrated varianceIV and the quadratic variation of the price process[S]. From these properties,
we can then directly derive properties of the increments of the corresponding stochastic processes:
the returns of the log–price (the increments ofS), the actual variance (the increments ofIV ) and the
incremental quadratic variation (the increments of[S]).

4.1 Cumulants of returns

We start our theoretical study by computing the moments of the log–price processS. Since these
moments depend not only on the moments ofX but also on those ofσ, we calculate the moments ofσ
first. In order to do that, we derive a general representationformula for thenth power ofσ, for n ∈ N.
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Proposition 4.1 Letn ∈ N. As long as
∫ t
0 σn

s ds < ∞, then–th power ofσt satisfies

σn
t − σn

0 = −λ n

∫ t

0
σn

s−ds +
n∑

k=1

(
n

k

)
∑

0≤s≤t

σn−k
s− (∆Yλs)

k .

Proof. Given in the Appendix. From the formula above, one can deducethe moments ofσ.

Corollary 4.2 Recall thatηi = κi(Y1). The first four moments of the stationary distribution ofσ
are, hence, given by:E (σt) = η1, E

(
σ2

t

)
= η2

1 + 1
2η2, E

(
σ3

t

)
= η3

1 + 1
3η3 + 3

2η2η1, E
(
σ4

t

)
=

1
4η4 + η4

1 + 3η2η
2
1 + 4

3η1η3 + 3
4η2

2.

Now we focus on the moments of the price processS and, also, on its joint moments with the volatility
processσ. It turns out that by repeated applications of Itô’s formula and the use of the compensation
formulas for jump processes, we obtain a recursive system ofinhomogeneous ordinary differential
equations, which can be solved explicitely. This methodology is described in detail in the Appendix
and will be used extensively in the remaining paper. So although our model is generally not affine
and, hence, might look complicated to tackle at first sight – at least compared to the affine models of
time changed Lévy processes (see e.g. [39]) – the new methodology proposed in this paper enables us
to derive all cumulants of interest explicitely.

Proposition 4.3 (Recursive formulae for the moments ofS)
Letk, n ∈ N, with k ≤ n. If ηk < ∞ for k ≤ n, we get the following results.

1. The joint moments ofS andσ are given by

E

(

Sn−k
t σk

t

)

= e−kλt

∫ t

0
g(u;n, k) ekλudu,

where

g(u;n, k) =
k∑

j=1

(
k

j

)

ληj

∫ t

0
E

(

Sn−k
s− σk−j

s−

)

ds +
(n − k)(n − k − 1)v2

2

∫ t

0
E

(

Sn−k−2
s σ2

s

)

ds

+
n−k∑

j=2

(
n − k

j

)

ξj

∫ t

0
E

(

σk+j
s Sn−k−j

s

)

+
n−1∑

j=0

(
n

j

)

ξn−j

∫ t

0
E

(

Sj
s−σm+n−j

s−

)

ds

+
n−k∑

j=1

k∑

l=1

(
n − k

j

)(
k

l

)

κj,l

∫ t

0
E

(

Sn−k−j
s σj+k−l

s

)

ds.

2. The moments ofS are given by

E (Sn
t ) =

n(n − 1)

2
v2

∫ t

0
E
(
Sn−2

s− σ2
s−

)
ds +

n∑

k=2

(
n

k

)

ξk

∫ t

0
E

(

σk
s−Sn−k

s−

)

.

Proof. Given in the Appendix.
Now we can recursively solve the equation above and we obtainthe corresponding moments ofS.
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Corollary 4.4 If ξ1 = 0, the first two moments are given by:

E (St) = 0, E
(
S2

t

)
=
(
v2 + ξ2

) (

η2
1 +

η2

2

)

t.

Using a Taylor expansion around 0 for moments of higher order, one obtains fort ↓ 0:

E
(
S3

t

)
= ξ3

(

η3
1 +

1

3
η3 +

3

2
η1η2

)

t +
3

2

(
v2 + ξ2

) (
κ1,1(2η

2
1 + η2) + κ1,2η1

)
t2 + O(t3),

E
(
S4

t

)
= ξ4

(
1

4
η4 + η4

1 +
3

4
η2
2 + 3η2

1η2 +
4

3
η1η3

)

t

+

{(

3η4
1 + 4η1η3 +

3

4
η4 + 9η2

1η2 +
9

4
η2
2

)
(
v2 + ξ2

)2

+

(
(
6η3

1 + 2η3 + 9η1η2

)
κ2,1 +

(

3η2
1 +

3

2
η2

)

κ2,2

)
(
v2 + ξ2

)

+ ξ3

((
6η3

1 + 9η2η1 + 2η3

)
κ1,1 +

(
3η2 + 6η2

1

)
κ1,2 + 2η1κ1,3

)}
t2 + O(t3).

Further, one obtains

V ar(S2
t ) = ξ4

(
1

4
η4 +

3

4
η2
2 + 3η2

1η2 +
4

3
η1η3 + η4

1

)

t

+

{(

8η2
1η2 + 2η2

2 + 2η4
1 + 4η1η3 +

3

4
η4

)
(
v2 + ξ2

)2

+

(
(
6η3

1 + 2η3 + 9η1η2

)
κ2,1 +

(

3η2
1 +

3

2
η2

)

κ2,2

)
(
v2 + ξ2

)

+ξ3

((
6η3

1 + 9η2η1 + 2η3

)
κ1,1 +

(
3η2 + 6η2

1

)
κ1,2 + 2κ1,3η1

)}
t2 + O(t3).

SinceS has stationary increments, we can deduce the moments of the corresponding returnssi

over a time interval of lengthh by settingt = h and, hence,

E(si) = E(Sh), E(s2
i ) = E(S2

h), E(s3
i ) = E(S3

h), E(s4
i ) = E(S4

h), V ar(s2
i ) = V ar(S2

h).

4.2 First and second order properties of the actual variance

Recent research has focused on integrated variance as a measure for the variability of financial mar-
kets. The integrated variance is defined byIVt =

∫ t
0 σ2

sds. Often, one is interested in studying the
increments of this process over a time interval of lengthh, say. So, we will denote these increments
by

σ2
[(i−1)h,ih] = IVih − IV(i−1)h =

∫ ih

(i−1)h
σ2

sds,

which is generally called theactual variance(AV) on the ith interval of lengthh. Basically, it mea-
sures the accumulated variance over a time interval (often chosen to be one day). Now we can compute
the mean, variance and covariance of the AV as given in the following proposition.

Proposition 4.5 The mean, variance and covariance of the actual variance aregiven by the following
formulae:

E(σ2
[(i−1)h,ih]) =

(

η2
1 +

η2

2

)

h,
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and

V ar(σ2
[(i−1)h,ih]) =

1

λ2

{(
1

2
η2
2 + 4η2

1η2 + 2η1η3 +
1

4
η4

)

λ h

+

(
4

3
η1η3 + 4η2

1η2

)

e−λh +

(
1

4
η2
2 +

1

8
η4 +

1

3
η1η3

)

e−2λh − 1

8
η4 − 4η2

1η2 −
5

3
η1η3 −

1

4
η2
2

}

,

and

Cov(σ2
[(i−1)h,ih], σ

2
[(i+s−1)h,(i+s)h])

=
1

λ2

{(

2η2
1η2 +

2

3
η1η3

)(

e−λ(s+1)h + e−λ(s−1)h − 2e−λhs
)

+

(
1

8
η2
2 +

1

16
η4 +

1

6
η1η3

)(

e−2λ(s+1)h + e−2λ(s−1)h − 2e−2λhs
)}

.

Proof. Given in the Appendix.
As already mentioned above, in a SV model based on a Brownian motion, the actual variance can

be consistently estimated by the realised variance. However, in a more general Lévy–based model,
the quadratic variation of the price process does not equal the integrated variance. Hence, we will
turn our attention to the quadratic variation of the log–price process and study its first and second
order properties. We will then be able to compare those with the results we have just obtained for the
integrated variance.

4.3 First and second order properties of the quadratic variation

The first and second order properties of the quadratic variation are described in the following propo-
sition.

Proposition 4.6 Let t, s > 0 andξ1 = 0. Then:

E ([S]t) =
(
v2 + ξ2

)
(

η2
1 +

1

2
η2

)

t,

V ar([S]t) = c1 + c2t + c3e
−λ t + c4e

−2 λ t,

Cov([S]t, [S]t+s) =
1

2
c1 + c2t +

1

2
c3(e

−λt − e−λs + e−λ(t+s))

+
1

2
c4(e

−2λt − e−2λs + e−2λ(t+s)),

whereci = ci(λ, v, ξ2, ξ4, η1, η2, η3, η4, κ2,1, κ2,2) for i = 1, . . . , 4, with

c1 =
1

24λ2

[(
−40η1η3 − 96η2

1η2 − 3η4 − 6η2
2

) (
v2 + ξ2

)2

+
{(

−8η3 − 72η1η2 − 96η3
1

)
κ2,1 +

(
−6η2 − 12η2

1

)
κ2,2

} (
v2 + ξ2

)]
,

c2 =
1

24λ2

[(
48η1η3 + 12η2

2 + 96η2
1η2 + 6η4

)
λ
(
v2 + ξ2

)2

+
{(

96η1η2 + 96η3
1 + 16η3

)
κ2,1 +

(
24η2

1 + 12η2

)
κ2,2

}
λ
(
v2 + ξ2

)

+
(
24η4

1 + 18η2
2 + 6η4 + 72η2

1η2 + 32η1η3

)
λ2ξ4

]
,
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c3 =
1

24λ2

{(
96η2

1η2 + 32η1η3

) (
v2 + ξ2

)2
+
(
48η1η2 + 96η3

1

)
κ2,1

(
v2 + ξ2

)}

c4 =
1

24λ2

[(
6η2

2 + 3η4 + 8η1η3

) (
v2 + ξ2

)2

+
{
(8η3 + 24η1η2) κ2,1 +

(
12η2

1 + 6η2

)
κ2,2

} (
v2 + ξ2

)]
.

From this proposition, we can easily deduce the first and second order properties for theincre-
mental quadratic variation(IQV):

[s][(i−1)h,ih] = [S]ih − [S](i−1)h =

∫ ih

(i−1)h
σ2

u−d[vW + X]u.

They are given by the following.

Theorem 4.7 Let t, s > 0 andξ1 = 0 andv2 + ξ2 = 1. Then:

E([s][(i−1)h,ih]) = E(σ2
[(i−1)h,ih]),

V ar([s][(i−1)h,ih]) = V ar(σ2
[(i−1)h,ih]) + ξ4

(

3η2
1η2 +

3

4
η2
2 + η4

1 +
4

3
η1η3 +

1

4
η4

)

h

+
1

λ2

[

κ2,1

(
4η3

1 + 2η1η2

) (

e−λh − 1 + λh
)

+

{

κ2,1

(

η1η2 +
1

3
η3

)

+
1

2
κ2,2

(

η2
1 +

1

2
η2

)}(

e−2λh − 1 + 2λh
)]

,

and

Cov([s][(i−1)h,ih], [s][(i+s−1)h,(i+s)h]) = Cov(σ2
[(i−1)h,ih], σ

2
[(i+s−1)h,(i+s)h])

+
1

λ2
[κ2,1

(
2η3

1 + η1η2

)
(e−λ((s+1)h) − 2e−λhs + e−λ((s−1)h))

+

{

κ2,1

(
1

6
η3 +

1

2
η1η2

)

+ κ2,2
1

4

(

η2
1 +

1

2
η2

)}

·

(e−2λ(s+1)h − 2e−2λhs + e−2λ(s−1)h)].

When we compare the first and second order properties of the AVwith those of the IQV, we
observe the following. Firstly, in the variance of IQV thereis an extra summand given byξ4Eσ4h.
Note here that we have assumed thatX is a pure jump Lévy process without drift. Hence,νX1 6= 0
and, hence,ξ4 =

∫

R
x4νX1(dx) > 0, so this factor will never disappear. Secondly, both the variance

and the covariance of the IQV have an extra term which is due toa possible leverage–type effect in the
model. Clearly, in the absence of this effect (i.e. whenX andY are independent), thenκ2,1 = κ2,2 =
0, and hence this extra term would not exist. So, altogether, we can say that, by choosing a pure jump
Lévy process as a driving process for the asset price, we observe an extra term in the variance of the
IQV compared to the variance of the AV. If one additionally allows for a leverage type effects, both
the variance and the covariance of the IQV have to be generalised by an additional leverage term.

4.4 Covariation of returns

We conclude this section by studying the covariance betweenreturns, squared returns and IQV. We
will consider returns over a time interval of lengthh, which are denoted bysi = Sih − S(i−1)h.
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Proposition 4.8 Let i, s ∈ N. For h → 0, one obtains withξ1 = 0:

Cov(si, si+s) = 0,

Cov(si, s
2
i−s) = 0,

Cov(si, s
2
i+s) =

1

4λ2

{

8η2
1κ1,1

(

e−λ(s+1)h − 2e−λhs + e−λ(s−1)h
)

+ (κ1,1η2 + κ1,2η1)
(

e−2λ(s+1)h − 2e−2λhs + e−2λ(s−1)h
)}(

v2 + ξ2

)

Cov(s2
i , s

2
i+s) = Cov([s][(i−1)h,ih], [s][(i+s−1)h,(i+s)h])

+ κ1,1

(
2(η2 + 2η2

1)κ1,1 + 3κ1,2η1

) (
v2 + ξ2

)
h3 + O(h4).

Besides,

Cov(s2
[(i−1)h,ih] − [s][(i−1)h,ih], s

2
[(i+s−1)h,(i+s)h] − [s][(i+s−1)h,(i+s)h]) = 0.

Proof. Given in the Appendix.
So we see that the asset returns are uncorrelated (under the assumption thatξ1 = 0). Further,

we observe that the covariance between returns and squared returns basically depends on the two
leverage parametersκ1,1, κ2,1, which denote the covariation betweenX1 andYλ and the joint centred
moment ofX2

1 andYλ, respectively. Recall that the squared returns can also be used for estimating the
variance (although such an estimate is noisier than one based on realised variance). This covariation
will damp down exponentially with the lag lengths and so will the influence of a possible leverage
effect. Finally, we observe that the covariance between squared returns can be approximated by the
covariance between the IQV and by terms of lower order which depend on parametersκ of possible
leverage .

5 First and second order properties of the realised variance

Finally, we can apply the results we have deduced so far for computing the first and second order
properties of the realised variance (RV) and for studying the degree of inconsistence of the RV as
estimator for the integrated variance.

5.1 First and second order properties of Realised Variance Error

Let

Ht = S2
t − IVt = S2

t −
∫ t

0
σ2

sds.

Proposition 5.1 Let t, s > 0 andξ1 = 0 andv2 + ξ2 = 1. Then (fort → 0):

E(Ht) = 0,

E(H2
t ) = (ξ4 − 2)

(
1

4
η4 +

3

4
η2
2 + 3η2

1η2 +
4

3
η1η3 + η4

1

)

t

+
{((

6η3
1 + 2η3 + 9η1η2

)
κ1,1 +

(
6η2

1 + 3η2

)
κ1,2 + 2κ1,3η1

)
ξ3

+

(
4

3
η3 + 4η3

1 + 6η1η2

)

κ2,1 +
(
2η2

1 + η2

)
κ2,2 + 3η4

1 + 4η1η3 + 9η2
1η2 +

9

4
η2
2 +

3

4
η4

}

t2
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Proof. Given in the Appendix.
Since bothS2 and IV are stationary, we can easily deduce the results for the corresponding

increments of the returns and the IV by settingt = h and, hence,

E

(

s2
i − σ2

[(i−1)h,ih]

)

= E (Hh) , E

((

s2
i − σ2

[(i−1)h,ih]

)2
)

= E
(
H2

h

)
.

So we observe that even in the presence of leverage the expectation ofH is zero and, hence, there
is no bias. However, leverage–type effects (of higher order) do affect the mean square error. We start
by studying the properties of the difference between the squared log–price process and the quadratic
variation.

Proposition 5.2 Let t, s > 0 andξ1 = 0. DefineGt = S2
t − [S]t. Then (fort → 0):

E(Gt) = 0,

V ar(Gt) =

[(
8

3
η1η3 + 2η4

1 +
1

2
η4 +

3

2
η2
2 + 6η2

1η2

)
(
v2 + ξ2

)2

+

{(
4

3
η3 + 4η3

1 + 6η1η2

)

κ2,1 +
(
2η2

1 + η2

)
κ2,2

}
(
v2 + ξ2

)
]

t2 + O(t3),

Cov(Gt, [S]t) = ξ3

{

κ1,1

(

3η3
1 + η3 +

9

2
η1η2

)

+ κ1,2

(

3η2
1 +

3

2
η2

)

+ κ1,3η1

}

t2 + O(t3).

Proof. Given in the Appendix.
Recall that the realised variance error (when estimating the IQV by the RV) is given by

[Sδ][(i−1)h,ih] − σ2
[(i−1)h,ih] =

M∑

j=1

(s2
j,i − σ2

j,i).

Using

sj,i
L
= Sδ and [s]j,i

L
= [S]δ,

we obtain the following result for the squared returns and the IQV.

Corollary 5.3 Let ξ1 = 0 andv2 + ξ2 = 1. Then:

E([Sδ][(i−1)h,ih] − [s][(i−1)h,ih]) = 0,

V ar([Sδ][(i−1)h,ih] − [s][(i−1)h,ih]) =

[(
8

3
η1η3 + 2η4

1 +
1

2
η4 +

3

2
η2
2 + 6η2

1η2

)

+

{

κ2,1

(
4

3
η3 + 4η3

1 + 6η1η2

)

+ κ2,2

(
2η2

1 + η2

)
}]

h2M−1 + O(M−2),

and
Cov([Sδ][(i−1)h,ih] − [s][(i−1)h,ih], [Sδ ][(i+s−1)h,i+sh] − [s][(i+s−1)h,(i+s)h]) = 0.

So we observe the following. RV is an unbiased estimate for IQV; the variance of the RV error is
of O(M−1) and the RV errors are uncorrelated. These findings correspond to similar results in the
Brownian motion case (see [10]).
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5.2 Cumulants of realised variance

Using the results above, we can now derive the mean, varianceand covariance of the realised variance.

Proposition 5.4 Let ξ1 = 0 and v2 + ξ2 = 1. The first and second order properties of the realised
variance are then given by

E[Sδ][(i−1)h,ih] =

(

η2
1 +

1

2
η2

)

h,

and

V ar([Sδ][(i−1)h,ih]) = V ar([s][(i−1)h,ih]) +

[(
8

3
η1η3 + 2η4

1 +
1

2
η4 +

3

2
η2
2 + 6η2

1η2

)

+

{

2
κ2

1,1

λ

(
η2 + 3η2

1

)
+ 3

κ1,2κ1,1

λ
η1 + κ2,1

(
4

3
η3 + 4η3

1 + 6η1η2

)

+ κ2,2

(
2η2

1 + η2

)

}

+ξ3

{
κ1,1

(
6η3

1 + 2η3 + 9η1η2

)
+ κ1,2

(
6η2

1 + 3η2

)
+ 2κ1,3η1

}]
h2M−1

+

[

κ2
1,1

λ2

{

η2
1

(

e−2λh + 4e−λh − 5
)

+ η2

(

e−2λh − 1
)}

+
3

2λ2
κ1,2κ1,1η1

(

−1 + e−2λh
)]

hM−1 + O
(
M−2

)
,

and

Cov([Sδ][(i−1)h,ih], [Sδ][(i+s−1)h,(i+s)h]) = Cov([s][(i−1)h,ih], [s][(i+s−1)h,(i+s)h])

+
κ1,1

4λ2

[

8κ1,1η
2
1

(

−2e−λhs + e−λ(s−1)h + e−λ(s+1)h
)

+
{
2κ1,1(η

2
1 + η2) + 3κ1,2η1

}(

−2e−2λhs + e−2λ(s+1)h + e−2λ(s−1)h
)]

hM−1 + O
(
M−2

)
.

Proof. Given in the Appendix.

5.3 Comparing the autocorrelation functions of realised variance, quadratic variation
and integrated variance

Now we briefly study some implications of our results for autocorrelations of RV, QV, and IV. Hereby
we follow [12], who have studied the same question in the framework of a time–changed Lévy process.
From our results above, we can deduce that:

lim
M→∞

Cor
(
[Sδ][(i−1)h,ih], [Sδ][(i+s−1)h,(i+s)h]

)
= Cor

(
[s][(i−1)h,ih], [s][(i+s−1)h,(i+s)h]

)

=
Cov(σ2

[(i−1)h,ih], σ
2
[(i+s−1)h,(i+s)h]) + LC

V ar
(

σ2
[(i−1)h,ih]

)

+ ξ4 Eσ4 + LV

,

where the leverage part in the covariance is denoted by

LC =
1

λ2

[

κ2,1

(
2η3

1 + η1η2

) (

e−λ((s+1)h) − 2e−λhs + e−λ((s−1)h)
)

+

{

κ2,1

(
1

6
η3 +

1

2
η1η2

)

+ κ2,2
1

4

(

η2
1 +

1

2
η2

)}
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(

e−2λ(s+1)h − 2e−2λhs + e−2λ(s−1)h
)]

,

and the leverage part in the variance is denoted by

LV =
1

λ2

[

κ2,1

(
4η3

1 + 2η1η2

) (

e−λh − 1 + λh
)

+

{

κ2,1

(

η1η2 +
1

3
η3

)

+
1

2
κ2,2

(

η2
1 +

1

2
η2

)}(

e−2λh − 1 + 2λh
)]

.

In the absence of leverage type effects (henceLC = LV = 0), we obtain exactly the same results as
derived by [12] for time–changed Lévy processes:

• The acf of the RV is monotonically decreasing inξ4.

• ForM → ∞, the acf of the RV is given by

lim
M→∞

Cor
(
[Sδ][(i−1)h,ih], [Sδ][(i+s−1)h,(i+s)h]

)
=

Cov(σ2
[(i−1)h,ih], σ

2
[(i+s−1)h,(i+s)h])

V ar
(

σ2
[(i−1)h,ih]

)

+ ξ4 Eσ4

< Cor
(

σ2
[(i−1)h,ih], σ

2
[(i+s−1)h,(i+s)h]

)

, since ξ4 > 0.

which implies that the ACF of RV systematically underestimates the ACF of the actual variance.

• And for ξ4 → ∞, we obtain

lim
ξ4→∞

Cor
(
[Sδ][(i−1)h,ih], [Sδ][(i+s−1)h,(i+s)h]

)
= 0.

However, if we allow for leverage–type effects, we observe the following for the acf of the RV:

• Dependencies betweenX and (higher) moments ofY (i.e. κ1,1, κ1,2, κ1,3) are asymptotically
negligible. In particular, the quantityκ1,1, which describes theclassical leverage effect, has
asymptotically no influence on the acf of the RV.

• Dependencies betweenX2 and (higher) moments ofY (i.e. κ2,1, κ2,2) do influence the acf of
the RV.

5.4 Superposition model

Let us briefly mention a method for generalising our model slightly. Many empirical studies have indi-
cated that one–factor stochastic volatility models cannotfit empirical data very satisfactorily. Hence,
a standard approach for tackling this problem is to study at least a two–factor (or a multi–factor)
stochastic volatility model (see e.g. [14], [18]). Often, one uses the class of so–called superposition
models where the volatility is not just given by a single OU process (as in our modelling framework),
but rather by a convex combination of independent OU processes (see e.g. [7], [10] and the refer-
ences therein). We assume that the volatility process is given by a weighted sum of independent OU
processes. ForJ ∈ N andi = 1..J , let wi ≥ 0 and

∑J
i=1 wi = 1. Then we define

σt =

J∑

i=1

wiτ
(i)
t , dτ (i) = −λ(i)τ

(i)
t dt + dY

(i)

λ(i)t
,
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where we assume that theYi are independent (but not necessarily identically distributed). However,
as in the one–factor model, we allow for dependence betweenXt andY

(i)

λ(i) t
. In particular, sinceX is

a Lévy process, there is a sequence of independent identically distributed random variablesXJ,k for

k = 1, . . . , J such thatX
law
= XJ,1 + · · · + XJ,J . So, we write

κ(i)
n,m =

∫

R×R+

un vmνXJ,i,Y (i)(du, dv),

for the corresponding cumulants of the bivariate Lévy process. The mean, variance and covariance of
the realised variance when the volatility process is given by a superposition model can be derived in
a similar way as in the one–factor model. However, due to the fact that we allow for dependencies
between the driving process of the asset price and the driving processes of the different components
of σ, these formulae become rather lengthy. So, we will just present them in the Appendix.

6 Model estimation and inference

6.1 Quasi–likelihood estimation based on realised variance

Finally, we turn our attention to estimating the parametersof our Lévy –driven stochastic volatility
model. It is well–known that parameter estimation in such a model framework is difficult since one
cannot easily compute the exact likelihood function. Here we follow [12] and use a quasi–maximum
likelihood approach (see e.g. [30, Chapter 5]) based on the Gaussian density function. This method-
ology leads to consistent and asymptotically normally distributed set of estimators. Alternative esti-
mation techniques include method of moment (e.g. [19]) and simulation based methods. For instance,
independent work by [46], [29] and [32] have focused on Markov chain Monte Carlo methodology for
Bayesian inference in OU stochastic volatility models. Recall that we have shown that we can write
the mean, the variance and the covariance of the vector of realised variances[Sδ] = ([Sδ]1, . . . , [Sδ]n)′

as function of the model parameters, which we write in terms of a vectorθ, say. We choose the fol-
lowing quasi–maximum likelihood (QML) approach for estimating the parameters. Let

l(θ) = log L(θ) = −n

2
log(2π) − 1

2
log det(Cov([Sδ ]))

− 1

2
([Sδ] − E([Sδ]))

′(Cov([Sδ]))
−1([Sδ] − E([Sδ])) (1)

denote the Gaussian realised quasi–likelihood function and let θ̂ = arg maxθ log l(θ) denote the QML
estimate. In order to find this estimate, one has to compute the inverse and the determinant of the RV
vector, which would be in general an operation of order O(n3). However, sinceσ is stationary,[Sδ] is
itself stationary. Hence,Cov([Sδ]) is a Toeplitz matrix, which can be inverted by using the Levinson–
Durbin algorithm (see [42] and [27]) in O(n2). Basically, one uses a Choleski decomposition of the
covariance matrix (see e.g. [25]) withCov([Sδ]) = LDL′ = PP ′, whereL is lower diagonal, with
ones on the diagonal andD is a diagonal matrix with the variances of the residuals (which are denoted
by E) as entries. So the likelihood function (1) can be written as

l(θ) = −n

2
log(2π) − 1

2
log(det(D)) − 1

2
E′E,

where the residualsE are given by

E = D−1/2L−1
(
[Sδ] − E

(
[Sδ]

))
= P−1

(
[Sδ] − E

(
[Sδ]

))
.
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Remark We can express the likelihood function in terms of the mean, variance and covariance of
the linear predictions of the RV. Assume thatf denotes the joint density of the time series of the RV.
Straightforwardly, we get

f ([Sδ]1, . . . , [Sδ]n) = f ([Sδ]1)
n∏

i=2

f ([Sδ]i | [Sδ]i−1, . . . , [Sδ ]1) .

Now let EL(yi|Fi−1) andV arL(yi|Fi−1) denote the mean and the variance of the linear prediction.
In order to construct a quasi–likelihood, we assume thatf is given by a Gaussian density and hence

l(θ) = log L(θ, y) = −n

2
log(2π) − 1

2

n∑

i=1

log V arL([Sδ]i|Fi−1)

− 1

2

n∑

i=1

([Sδ]i − EL([Sδ]i|Fi−1))
2

V arL([Sδ]i|Fi−1)
.

So we observe that the entries in the diagonal matrixD in the Choleski decomposition are exactly the
variances of the best linear, unbiased one–step ahead forecast of the RV.

So far, we have only discussed how the model parameters can beestimated. However, in the remaining
part of this section we will briefly describe how one can make inference on the model parameters. Let

J = lim
n→∞

1

n
Cov

(
∂l(θ)

∂θ

)

, and I = lim
n→∞

− 1

n
E

(
∂2l(θ)

∂θ∂θ′

)

.

It is well–known (see e.g. [30]) that not only the maximum likelihood estimator but also the QML
estimator is asymptotically normally distributed with an adjusted covariance matrix (compared to the
MLE setting) and hence √

n(θ̂ − θ)
d→ N(0,I−1J I−1).

Based on this asymptotic result, we can construct 95 % confidence intervals forθ, which are of the
form

θ̂ − 1.96√
n

(
I−1J I−1

)1/2 ≤ θ ≤ θ̂ +
1.96√

n

(
I−1JI−1

)1/2
,

where the square root of a positive (semi-)definite matrixΣ, say, is defined by the matrixΣ1/2 such
that Σ1/2Σ1/2 ′

= Σ. Estimating the so–called sandwich matricesI, which only appear in a QML
setting and accounting for the fact, that the estimation wasnot based on the true density function, does
not cause any problems, whereas estimating the covariance matrix J is more complicated. Here we
have used spectral methods based on the approach popularised by [44]. I.e., letĥt = ∂

∂θ l(xt, θ̂) and
let m denote the number of nonzero autocorrelations ofht(h). Then,

Ĵ = Ω̂0 +
m∑

j=1

(

1 − j

m + 1

)(

Ω̂j + Ω̂
′

j

)

, Ω̂j =
1

n

n∑

t=j+1

ĥ′
tĥt−j .

The sandwich matrices can be estimated straightforwardly by

Î = − 1

n

∂2

∂θ∂θ′
l(x, θ̂) = − 1

n

n∑

i=1

∂2

∂θ∂θ′
l(xi, θ̂).
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6.2 Empirical study

In order to illustrate our results further, we have also carried out an empirical study. We have used
General Motors (GM) intra–day TAQ database, available at WRDS, from 2 January 2001 to 28 April
2006. Before analysing the data, we have cleaned the data. Following methods used by [34], we
concentrate on quote data from one stock exchange only. Herewe have chosen the NYSE. We only
consider quotes, where both the bid–size and the ask–size are greater than 0, and which are quoted in
a normal trading environment (quote condition = 12 in the TAQdatabase). Since data at the beginning
and at the end of a trading day differ quite a lot from the quotes during the day, we concentrate
on data from 9.35 am until 15.55pm only. Further, if there were not any quote data for more than
five minute, we have interpolated the missing data via linearinterpolation. Besides, we have deleted
obvious outliers, which we have chosen to be data points which differ by more than 0.15 from the
prevailing (log-) price level. Finally, we have deleted data from those days where there were too
many data missing at the beginning of a day (no data before 9.45 am) or which were just half trading
days. Furthermore, we have focused on the bid–prices only. In order to construct a time series of
five minute returns of the log–bid–prices, we use the previous tick sampling method. After we have
cleaned the data, we have a data set consisting of 1,308 business days with 76 five minute returns
per day, hence 99,408 returns. We provide a plot of the cleaned GM log–price data (based on five
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Figure 1: GM data: (a) cleaned log–bid–prices (plotted every 5 minutes for 1308 business days
from 2 January 2001 – 28 April 2006; (b) autocorrelation between five minute returns; (c) time se-
ries of realised volatilities (i.e. square root of realisedvariances) based on five minute returns; (d)
autocorrelation between realised variances.

minute data), the corresponding autocorrelation functionand the time series of the realised variances
with their autocorrelation in Figure 1. We have estimated the model parameters of the one–factor
model and the superposition model (with two factors). We have carried out the estimation three
times: once, whenξ2 = ξ3 = ξ4 = 0 and all the leverage parameters are set to 0 (this corresponds
to a Brownian semimartingale framework), once when allowing for jumps but setting all leverage
parameters to zero (and, hence, assuming that there is no leverage) and once with jumps and arbitrary
leverage parameters (which just satisfy the moment conditions described previously). The model fit
of the Brownian motion based model was very poor, hence we do not report the exact details. By
allowing for jumps, the model fit has improved significantly and the corresponding estimation results
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Table 1.
Estimation results for the one–factor
model, withoutκ

Parameter Estimate Robust

standard error

λ 0.037 0.026

ξ4 0.353 0.141

η1 1.770 0.249

η2 0.153 0.198

η3 2.197 0.891

η4 3.195 4.441

Quasi-L -3264.13

BP 28.789

m 35

Table 2.
Estimation results for the one–factor
model, withκ

Parameter Estimate Robust

standard error

λ 0.037 0.026

ξ3 -0.009 1.153

ξ4 0.356 0.132

η1 1.771 0.223

η2 0.145 0.269

η3 2.153 0.261

η4 3.188 0.950

κ11 -0.009 0.181

κ12 -0.009 2.459

κ13 -0.009 1.078

κ21 0.008 0.074

κ22 0.011 0.668

Quasi-L -3264.13

BP 28.789

m 35

are given in the following tables. Note here that in the superposition model the QML estimates for
the third and fourth cumulant ofY , i.e.η3 andη4 are on the boundaries rather than in the interior of
the parameter space. So in these cases, we do not report the robust standard errors. In order to assess
the model fit, we provide the following plots and statistics:Figure 2 and Figure 3 show the empirical
versus the fitted autocorrelation function of the realised variance (a), the estimated (based on the one
step ahead forecast) and the empirical realised variance (b), the time series of the scaled residuals (c)
and their autocorrelation function (d). Furthermore we have computed the Box–Pierce statistic based
on 20 lags which measured the degree of dependence in the scaled residuals. It is really striking that
the model fit seems to be already quite good for the one–factormodel, when we allow for jumps in
the asset price. Incorporating a second factor leads to another (small) improvement. One could also
study multifactor models with more than two factors. But from our results for one and two factors,
we would not expect that this would lead to a big improvement anymore. Note here that, in order
to estimate the parameters of the superposition model, we have usedO(M−1)–approximations (as
given in the Appendix) for the variance and covariance of therealised variance (rather thanO(M−2)–
approximations), since this reduces the number of parameters which have to be estimated from 20
to 12. Studying the higher order approximation and carryingout a numerical optimisation over 20
unknown parameters, which are partly very weakly identified, will be subject to future research. Let
us now turn our attention to the estimated leverage parameters. We observe that accounting for the
leverage parameters in this particular example does not lead to an improvement (but also not to a
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Figure 2: (a)Empirical autocorrelation of realised variance and estimated (for J=1) acf for
01/2001–04/2006; (b) estimated variance and realised variance; (c) scaled residuals; (d) acf of
scaled residuals.
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Figure 3: (a)Empirical autocorrelation of realised variance and estimated (for J=2) acf for
01/2001–04/2006; (b) estimated variance and realised variance; (c) scaled residuals; (d) acf of
scaled residuals.

deterioration) of the model fit. We hypothesise here that estimating the leverage parameters by our
QML method is difficult since they only appear in terms of low order. So they are not easy to identify
and since their corresponding confidence intervals all cover the 0, it is not possible to deduce clearly
whether leverage (in the sense of non–zero joint cumulants)is present in the data. These findings are
in line with other empirical studies, which focused on estimating the leverage effect in single stocks.
However, when studying index data, one often observes a leverage effect, which is present for several
days (see e.g. [20]). Finally, we provide a plot (Figure 4) ofthe empirical cross–correlation between
returns and realised variances which we denote by

L(s) =

∑

i((si − s)([Sδ ]i+s − [Sδ]))
√
∑

i((si − s)2
∑

i([Sδ]i+s − [Sδ]))2

for s ∈ {−20, . . . , 20}, wheres and [Sδ] denote the sample mean of the returns and the realised
variance, respectively. Similarly to [20], this function can be interpreted as a kind of leverage corre-
lation function. In addition to this function, we plot the Bartlett confidence bounds of the hypothesis
that there is no leverage, which are given by1.96/

√
T = 0.054. Although we can clearly spot that
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Table 3.
Estimation results for the two–factor model,
withoutκ

Parameter Estimate Robust

standard error

λ(1) 0.130 0.175

λ(2) 0.011 0.017

w1 0.478 0.156

ξ4 0.344 0.210

η1 1.667 0.482

η2 2.360 0.863

η3 1e-007

η4 1e-007

Quasi-L -3261.956

BP 27.949

m 35

Table 4.
Estimation results for the two–factor model,
with κ

Parameter Estimate Robust

standard error

λ(1) 0.130 0.198

λ(2) 0.011 0.039

w1 0.478 0.893

ξ4 0.344 0.356

η1 1.667 0.511

η2 2.360 3.536

η3 1.0002e-007

η4 1.0374e-007

κ
(1)
21 2.3994e-008 1.263

κ
(1)
22 2.4014e-008 5.570

κ
(2)
21 2.3972e-008 3.630

κ
(2)
22 4.1144e-007 22.086

Quasi-L -3261.956

BP 27.948

m 35

returns and future realised variance seem to be slightly negatively correlated for a couple of days, the
correlation is really small and not statistically significant.

7 Conclusion

In this paper, we have studied the impact of time–inhomogeneous jumps and leverage type effects
on returns and realised variance in Lévy–driven stochastic volatility models. In particular, we have
derived explicit expressions for the cumulants of the returns and the realised variance by solving a
recursive system of inhomogeneous ordinary differential equations. This seems to be a very powerful
technique and might be applicable to a much wider class of asset price models. This aspect will be
investigated further in future research. Although the realised variance is an inconsistent estimator
of the integrated variance in the Lévy–driven stochastic volatility model studied in this paper, we
have shown how it can be used in a quasi–maximumlikelihood framework for estimating the model
parameters of our model.
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Figure 4: This plot shows the leverage correlation functionL(s) = Cor(si, [Sδ]i+s) for s ∈
{−20, . . . , 20} .

A Technical appendix

A.1 Proofs

Proof of Proposition 4.1 From the binomial formula one obtains:

∆σn
t = σn

t − σn
t− = (σt− + ∆σt)

n − σn
t− =

n∑

k=0

(
n

k

)

σn−k
t− (∆σt)

k − σn
t−

=

n∑

k=1

(
n

k

)

σn−k
t− (∆Yλt)

k.

Applying Itô’s formula tof(x) = xn with f ′(x) = nxn−1, f ′′(x) = n(n − 1)xn−2, one gets

σn
t − σn

0 = f(σt) − f(σ0)

=

∫ t

0
f ′(σs−)dσs +

1

2

∫ t

0
f ′′(σs−)d[σ, σ]cs +

∑

0<s≤t

(f(σs) − f(σs−) − f ′(σs−)∆σs)

= −λ n

∫ t

0
σn

s−ds + n

∫ t

0
σn−1

s− dYλs +
∑

0<s≤t

(∆σn
s − nσn−1

s− ∆Yλs)

= −λ n

∫ t

0
σn

s−ds +

n∑

k=1

(
n

k

)
∑

0≤s≤t

σn−k
s− (∆Yλs)

k.

�

Proof of Proposition 4.3 Note that, forn ∈ N,

∆Sn
t =

n∑

k=1

(
n

k

)

(σt−∆Xt)
k Sn−k

t− ,
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and, by Itô’s formula:

Sn
t = n

∫ t

0
Sn−1

s− σs−d(vWs + Xs) +
n(n − 1)

2
v2

∫ t

0
Sn−2

s− σ2
s−ds

+
∑

0≤s≤t

n∑

k=2

(
n

k

)

(σs−∆Xs)
k Sn−k

s− .

Hence,

E (Sn
t ) =

n(n − 1)

2
v2

∫ t

0
E
(
Sn−2

s− σ2
s−

)
ds +

n∑

k=2

(
n

k

)

ξk

∫ t

0
E

(

σk
s−Sn−k

s−

)

.

From the integration by parts formula, it follows that, fork, n ∈ N andk ≤ n,

Sn−k
t σk

t =

∫ t

0
Sn−k

s− dσk
s +

∫ t

0
σk

s−dSn−k
s− + [Sn−k, σk]t = I + II + III.

From Proposition 4.1, one can deduce that

I = −kλ

∫ t

0
Sn−k

s− σk
s−ds +

k∑

j=1

(
k

j

)
∑

0≤s≤t

Sn−k
s− σk−j

s− (∆Yλs)
j ,

and

II = (n − k)

∫ t

0
σk+1

s− Sn−k−1
s− d(vWs + Xs) +

(n − k)(n − k − 1)v2

2

∫ t

0
Sn−k−2

s− σ2
s−ds

+
n−k∑

j=2

(
n − k

j

)
∑

0≤s≤t

σk+j
s− Sn−k−j

s− (∆Xs)
j ,

and

III =
∑

0≤s≤t

∆Sn−k
s ∆σk

s =

n−k∑

j=1

k∑

l=1

(
n − k

j

)(
k

l

)
∑

0≤s≤t

Sn−k−j
s− σj+k−l

s− (∆Xs)
j(∆Yλs)

l.

When taking the expectation and applying the Master formulaand Fubini’s theorem, one obtains:

E

(

Sn−k
t σk

t

)

= −kλ

∫ t

0
E

(

Sn−k
s− σk

s−

)

ds +
k∑

j=1

(
k

j

)

ληj

∫ t

0
E

(

Sn−k
s− σk−j

s−

)

ds

+
(n − k)(n − k − 1)v2

2

∫ t

0
E

(

Sn−k−2
s σ2

s

)

ds +
n−k∑

j=2

(
n − k

j

)

ξj

∫ t

0
E

(

σk+j
s Sn−k−j

s

)

+

n−1∑

j=0

(
n

j

)

ξn−j

∫ t

0
E

(

Sj
s−σm+n−j

s−

)

ds +

n−k∑

j=1

k∑

l=1

(
n − k

j

)(
k

l

)

κj,l

∫ t

0
E

(

Sn−k−j
s σj+k−l

s

)

ds.

The equation above can be written as

d

dt
E

(

Sn−k
t σk

t

)

+ kλE

(

Sn−k
t− σk

t−

)

= g(t;n, k), (2)
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whereg(·;n, k) is defined as in Proposition 4.3. Since the processes above are continuous in proba-
bility, we can write

E

(

Sn−k
t− σk

t−

)

= E

(

Sn−k
t σk

t

)

.

Clearly, equation (2) is a inhomogeneous ordinary differential equation of first order. From solving
(2) with initial value0 at0, one obtains

E

(

Sn
t σk

t

)

= e−kλt

∫ t

0
g(u;n, k)ekλudu.

�

Proof of Proposition 4.5 First, we have to compute the mean, variance and covariance of the inte-
grated variance IV. We use Fubini’s Theorem and the results we have already derived for computing
the moments of the volatility processσ. Hence,

E (IVt) = E

(∫ t

0
σ2

s−ds

)

=

∫ t

0
E
(
σ2

s

)
ds =

(

η2
1 +

η2

2

)

t.

The second moment is given by

E
(
IV 2

t

)
=

∫ t

0

∫ t

0
E
(
σ2

sσ
2
u

)
ds du,

where foru ≥ s,
E
(
σ2

sσ
2
u

)
= E

(
σ4

s

)
+ E

(
σ2

s

(
σ2

u − σ2
s

))
.

Using the SDE representation ofσ2 and Itô’s formula, one obtains the SDE

d

du
E
(
σ2

sσ
2
u

)
= −2λ E

(
σ2

sσ
2
u

)
+ 2η1E

(
σ2

sσu

)
+ η2E

(
σ2

s

)
,

which can be solved using the initial value
(
s, E

(
σ4

s

))
. Similarly,

d

du
E
(
σ2

sσu

)
= −λ E

(
σ2

sσu

)
+ η1E

(
σ2

s

)
,

with initial value
(
s, E

(
σ3

s

))
. By writing

E
(
IV 2

t

)
=

∫ t

0

∫ u

0
E
(
σ2

s σ2
u

)
ds du +

∫ t

0

∫ t

u
E
(
σ2

s σ2
u

)
ds du,

and

E (IVt IVt+s) = E
(
IV 2

t

)
+

∫ t

0

∫ t+s

t
E
(
σ2

x σ2
u

)
dx du,

we can immediately deduce the variance and the covariance ofIV. The mean, variance and covariance
of σ[(i−1)h,ih] can be directly derived from the corresponding results for IV. �
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Proof of Proposition 4.6 First, we compute the mean of[S]. Using the formula for the quadratic
variation of a stochastic integral (see e.g. [45] Theorem II.29), the Master Formula and Fubini’s The-
orem, one can deduce that

E ([S]t) = E

(∫ t

0
σ2

s−d[vW + X]s

)

=
(
v2 + ξ2

)
∫ t

0
E
(
σ2

s

)
ds =

(
v2 + ξ2

)
(

η2
1

λ2
+

1

2

η2

λ

)

t.

Second, we compute second moment of[S]. Using Itô’s formula, we deduce that

[S]2t = 2

∫ t

0
[S]u−d[S]u + [[S]]u = 2

∫ t

0
[S]u−σ2

u−d[vW + X]u + [[S]]u

= 2v2

∫ t

0
[S]u−σ2

u−ds + 2
∑

0≤u≤t

[S]u−σ2
u−(∆Xu)2 +

∑

0≤u≤t

σ4
u−(∆Xu)4.

Hence (using again the Master Formula and Fubini’s Theorem),

E
(
[S]2t

)
= 2

(
v2 + ξ2

)
∫ t

0
E
(
[S]uσ2

u

)
du + ξ4

∫ t

0
E
(
σ4

u

)
du.

So we have to computeE
(
[S]uσ2

u

)
. We apply the integration by parts formula and obtain

[S]uσ2
u =

∫ u

0
[S]x−dσ2

x +

∫ u

0
σ2

x−d[S]x + [[S], σ2]u

= −2λ

∫ u

0
[S]x−σ2

xdx + 2

∫ u

0
[S]x−σxdYλx +

∫ u

0
[S]x−d[Y ]λx

+ v2

∫ u

0
σ4

x−dx +

∫ u

0
σ4

x−d[X]x +

∫ u

0
σ2

x−d[[X], σ2]x.

Applying the Master formula and Fubini’s theorem, we get

E
(
[S]uσ2

u

)
= −2λ

∫ u

0
E
(
[S]xσ2

x

)
dx + 2η1

∫ u

0
E ([S]xσx) dx + η2

∫ u

0
E ([S]x) dx

+
(
v2 + ξ2

)
∫ u

0
E
(
σ4

x

)
dx + 2κ2,1

∫ u

0
E
(
σ3

x

)
dx + κ2,2

∫ u

0
E
(
σ2

x

)
dx.

So we have to computeE ([S]uσu) first and, then, we can solve the differential equation

(E[S]uσ2
u)′ = −2λE

(
[S]uσ2

u

)
+ 2η1E ([S]uσu) + η2E ([S]u)

+
(
v2 + ξ2

)
E
(
σ4

u

)
+ 2κ2,1E

(
σ3

u

)
+ κ2,2E

(
σ2

u

)
,

with initial value (0, 0). So similarly as above, we can computeE ([S]uσu). From the integration by
parts formula, we get

[S]uσu =

∫ u

0
[S]x−dσx +

∫ u

0
σx−d[S]x + [[S], σ]x

= −λ

∫ u

0
[S]x−σx−dx +

∫ u

0
[S]x−dYλx +

∫ u

0
σ3

x−d[vW + X]x +

∫ u

0
σ2

x−d[[X], σ]x.

Hence, we deduce from the Master formula and Fubini’s theorem that
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E ([S]uσu) = −λ

∫ u

0
E ([S]xσx) dx + η1

∫ u

0
E ([S]x) dx +

(
v2 + ξ2

)
∫ u

0
E
(
σ3

x

)
dx

+ κ2,1

∫ u

0
E
(
σ2

x

)
dx.

So one obtainsE ([S]uσu) by solving the differential equation

d

du
E ([S]uσu) = −λE ([S]uσu) + η1E ([S]u) +

(
v2 + ξ2

)
E
(
σ3

u

)
+ κ2,1E

(
σ2

u

)
,

with initial value(0, 0). Finally, we derive the covariance of[S].

E ([S]t([S]t+s − [S]t)) = E

(

[S]t

∫ t+s

t
σ2

ud[vW + X]u

)

=
(
v2 + ξ2

)
∫ t+s

t
E
(
[S]tσ

2
u

)
du.

In order to computeE
(
[S]tσ

2
u

)
, we use once again integration by parts, the Master Formula and

Fubini’s Theorem so that in the end we just have to solve the following two differential equations for
u ≥ t:

d

du
E ([S]tσu) = −λE ([S]tσu) + λη1E ([S]t) ,

with initial value(t, E[S]tσt) and

d

du
E[S]tσ

2
u = −2λE[S]tσ

2
u + 2λη1E[S]tσu + λη2 E[S]t,

with initial value
(
t, E[S]tσ

2
t

)
. Combining these results, we obtain the covariance from

Cov ([S]t, [S]t+s) = E{[S]t[S]t+s} − E([S]t) E([S]t+s)

= E([S]t)
2 + E{[S]t([S]t+s − [S]t) − E([S]t) E([S]t+s).

�

Proof of Proposition 4.8 In order to proof Proposition 4.8, i.e. the covariations between, returns and
squared returns, we have to compute the corresponding covariations of the price processS.

In the following, we will only sketch the proof. Basically, we will always apply Itô’s formula, the
Master Formula and Fubini’s Theorem in order to derive a firstorder ordinary differential equations
(ODE) for the expectation we want to compute. This ODE can then be easily solved.

Covariation of returns

Cov(St, St+s) = ES2
t + E(St(St+s − St))

= E
(
S2

t

)
+ E

(∫ t+s

t
Stσs−d(vWs + Xs)

)

= E
(
S2

t

)
= V ar (St) .

(3)

From equation (3), we can immediately deduce that

Cov(si, si+s) = E (sisi+s) = E(Sih − S(i−1)h)(S(i+s)h − S(i+s−1)h)

= Cov(Sih, S(i+s)h) − Cov(Sih, S(i+s−1)h) − Cov(S(i−1)h, S(i+s)h)

+ Cov(S(i−1)h, S(i+s−1)h) = 0.

�
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Covariation of returns and squared returns

Cov(St, S
2
t+s) = E

(
S3

t

)
+ E

(
St(S

2
t+s − S2

t )
)

= E
(
S3

t

)
+ E

(

St

(

2

∫ t+s

t
Su−dSu +

∫ t+s

t
σ2

u−d[vW + X]u

))

= E
(
S3

t

)
+

∫ t+s

t
E
(
Stσ

2
u

)
du.

(4)

In the following, we will always assume thatu ≥ t. �

Computing E (Stσu)

Stσu = Stσt + St(σt − σu) = Stσt +

∫ u

t
Stdσu = Stσt +

∫ u

t
St(−λσtdt + dYλt).

Hence,

E (Stσu) = E (Stσt) − λ

∫ u

t
E (Stσu) du.

So,E (Stσu) is the solution to
d

du
E (Stσu) = −λE (Stσu) ,

with initial value(t, E (Stσt)). �

Computing E
(
Stσ

2
u

)
Similarly,

Stσ
2
u = Stσ

2
t +

∫ u

t
Stdσ2

x = Stσ
2
t − 2λ

∫ u

t
Stσ

2
x−dx + 2

∫ u

t
Stσx−dYλx +

∫ u

t
Std[σ]x.

Hence,

E
(
Stσ

2
u

)
= E

(
Stσ

2
t

)
− 2λ

∫ u

t
E
(
Stσ

2
x

)
dx + 2η1

∫ u

t
E (Stσx) dx.

SoE
(
Stσ

2
u

)
is the solution to

d

du
E
(
Stσ

2
u

)
= −2λE

(
Stσ

2
u

)
+ 2η1E (Stσu) ,

with initial value(t, E
(
Stσ

2
t

)
). �

Computing E (SaSbSc) for a ≤ b ≤ c

SaSbSc = SaSb(Sb + (Sc − Sb)) = SaS
2
b +

∫ c

b
SaSbσx−d(vWx + Xx).

Hence,ESaSbSc = ESaS
2
b . �
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So we get

Cov(si, s
2
i+s) =E

(

SihS2
(i+s)h

)

− 2E

(

SihS2
(i+s−1)h

)

+ E

(

SihS2
(i+s−1)h

)

− E

(

S(i−1)hS2
(i+s)h

)

+ 2E

(

S(i−1)hS2
(i+s−1)h

)

− E

(

S(i−1)hS2
(i+s−1)h

)

=
1

4λ4

(

η2

(

−2λ e−2 λ sh + λ e−2 λ (sh−h) + λ e−2 λ (h+sh)
)

+8η2
1κ1,1

(

−2 e−λ sh + e−λ (h+sh) + e−λ (sh−h)
))

+ κ1,2

(

λ e−2 λ (h+sh)η1 + λ e−2 λ (sh−h)η1 − 2λ e−2 λ shη1

)

= O(h2).

Covariation between squared returns

Cov(S2
t , S2

t+s) = E
(
S4

t

)
+ E

(
S2

t (S2
t+s − S2

t )
)
− E

(
S2

t ES2
t+s

)

= E
(
S4

t

)
+
(
v2 + ξ2

)
∫ t+s

t
E
(
S2

t σ2
u

)
du − E

(
S2

t

)
E
(
S2

t+s

)
,

and
Cov(s2

i , s
2
i+s) = E(s2

i s
2
i+s) − E

(
s2
i

)
E
(
s2
i+s

)
,

and

E(s2
i s

2
i+s) = E(S2

ihS2
(i+s)h − 2S2

ihS(i+s)hS(i+s−1)h + S2
ihS2

(i+s−1)h − 2SihS(i−1)hS2
(i+s)h

+ 4SihS(i−1)hS(i+s)hS(i+s−1)h − 2SihS(i−1)hS2
(i+s−1)h + S2

(i−1)hS2
(i+s)h

− 2S2
(i−1)hS(i+s)hS(i+s−1)h + S2

(i−1)hS2
(i+s−1)h).

�

Computing E
(
S2

aSbSc

)
for a ≤ b ≤ c

S2
aSbSc = S2

aSb(Sb + (Sc − Sb)) = S2
aS2

b +

∫ c

b
S2

aSbσx−d(vWx + Xx).

Hence,
E
(
S2

aSbSc

)
= E

(
S2

aS2
b

)
.

�

Computing E
(
SaSbS

2
c

)
for a ≤ b ≤ c Similarly,

SaSbS
2
c = SaSb(S

2
b +(S2

c −S2
b )) = SaS

3
b +2

∫ c

b
SaSbSx−σx−d(vWx +Xx)+

∫ c

b
SaSbσ

2
x−d[X]x.

Hence,

E
(
SaSbS

2
c

)
= E

(
SaS

3
b

)
+
(
v2 + ξ2

)
∫ c

b
E
(
SaSbσ

2
x

)
dx

�
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Computing ESaS
3
b for a ≤ b SaS

3
b = S4

a + Sa(S
3
b − S3

a). From Itô’s formula, we deduce that

S3
b − S3

a = 3

∫ b

a
S2

t−dSt + 3v2

∫ t

0
St−σ2

t−ds +
∑

a≤t≤b

(∆S3
t − 3S2

t−∆St),

where

∆S3
t =

2∑

j=0

(
n

j

)

Sj
t−σ2−j

t− (∆Xt)
2−j = σ3

t−(∆Xt)
3 + 3St−σ2

t−(∆Xt)
2 + 3S2

t−σt−∆Xt.

Hence,

ESaS
3
b = ES4

a + ξ3

∫ b

a
Saσ

3
t dt + 3

(
v2 + ξ2

)
∫ b

a
ESaStσ

2
t dt.

�

Computing E
(
Stσ

3
u

)
for u ≥ t

Stσ
3
u = Stσ

3
t + St(σ

3
u − σ3

t ) = Stσ
3
t + St

(

−3λ

∫ u

t
σ3

x−dx

+3

∫ u

t
σ2

x−dYλx +
∑

t≤x≤u

(∆Yλx)3 + 3σx−(∆Yλx)2 + 3σ2
x−∆Yλx



 .

Hence,

E
(
Stσ

3
u

)
= E

(
Stσ

3
t

)
− 3λ

∫ u

t
E
(
Stσ

3
x

)
dx + 3η1

∫ u

t
E
(
Stσ

2
x

)
dx

+ 3η2

∫ u

t
E (Stσx) dx + 3η1

∫ u

t
E
(
Stσ

2
x

)
dx.

SoE
(
Stσ

3
u

)
is the solution to the the ODE

d

du
E
(
Stσ

3
u

)
= −3λE

(
Stσ

3
u

)
+ 3η1E

(
Stσ

2
u

)
+ 3η2E (Stσu) + 3η1E

(
Stσ

2
u

)
,

with initial value
(
t, E

(
Stσ

3
t

))
. �

Computing E (StSuσu) for u ≥ t

StSuσu = S2
t σt + St(Stσt − Suσu)

= S2
t σt + St(−λ

∫ u

t
Sx−σx−dx +

∫ u

t
Sx−dYλx +

∫ u

t
σx−dSx +

∫ u

t
σx−d[X,σ]x).

Hence,

E (StSuσu) = E
(
S2

t σt

)
− λ

∫ u

t
E (StSxσx) dx + η1

∫ u

t
E (StSx)
︸ ︷︷ ︸

=E(S2
t )

dx + κ1,1

∫ u

t
E (Stσx) dx.

�
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Computing E
(
StSuσ2

u

)
for u ≥ t

StSuσ2
u = S2

t σ2
t + St(Suσ2

u − Stσ
2
t ),

where

Suσ2
u − Stσ

2
t = −2λ

∫ u

t
Sx−σ2

x−dx + 2

∫ u

t
Sx−σx−dYλx +

∫ u

t
Sx−d[Y ]λx

+

∫ u

t
σ3

x−d(vWx + Xx) + 2
∑

t≤x≤u

σ2
x−∆Xx∆Yλx +

∑

t≤x≤u

σx−∆Xx(∆Yλx)2.

Hence,

E
(
StSuσ2

u

)
= E

(
S2

t σ2
t

)
− 2λ

∫ u

t
E
(
StSxσ2

x

)
dx + 2η1

∫ u

t
E (StSxσx) dx + η2

∫ u

t
E (StSx) dx

+ 2κ1,1

∫ u

t
E
(
Stσ

2
x

)
dx + κ1,2

∫ u

t
E (Stσx) dx.

�

Computing SaSbσu for u ≥ b ≥ a

SaSbσu = SaSbσb + SaSb(σu − σb)

= SaSbσb + SaSb(

∫ u

b
−λσx−dx + dYλx).

Hence,

E (SaSbσu) = E (SaSbσb) − λ

∫ u

b
E (SaSbσx) dx + η1

∫ u

b
E
(
S2

a

)
dx.

�

Computing SaSbσ
2
u for u ≥ b ≥ a

SaSbσ
2
u = SaSbσ

2
b + SaSb(σ

2
u − σ2

b )

= SaSbσ
2
b + SaSb(−2λ

∫ u

b
σ2

x−dx + 2

∫ u

b
σx−dYλx + [σ]u − [σ]b).

Hence,

E
(
SaSbσ

2
u

)
= E

(
SaSbσ

2
b

)
−2λ

∫ u

b
E
(
SaSbσ

2
x

)
dx+2η1

∫ u

b
E (SaSbσx) dx+η2

∫ u

b
E (SaSb) dx.

�

Computing E (SaSbScSd) for a ≤ b ≤ c ≤ d

SaSbScSd = SaSbS
2
c + SaSbSc(Sd − Sc),

so,
E (SaSbScSd) = E

(
SaSbS

2
c

)
.

�
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From the results above,Cov(s2
i , s

2
i+s) follows straightforwardly .

�

A.1.1 Proofs for Section 5

Proof of Proposition 5.1 Recall thatHt = S2
t − IVt. Since we have already computed the moments

of S andIV , we only have to compute the joint moments of these two processes. The computations
are analogous to the ones carried out in the proof of Proposition 5.2, so we will refer to that proof for
more details. �

Proof of Proposition 5.2 Recall thatGt = S2
t − [S]t. Since we have already computed the moments

of S2 and[S], we basically just have to compute the joint moments of thesetwo processes in order to
derive the mean, variance and covariance ofG.

Mean The mean is given by

E (Gt) = E
(
S2

t

)
− E ([S]t) = 0.

�

Variance Next, we compute the second moment ofG.

G2
t = S4

t − 2S2
t [S]t + [S]2t ,

where

S2
t [S]t =

∫ t

0
S2

s−σ2
s−d[vW +X]s +

∫ t

0
[S]s−(2Ss−σs−d(vWs +Xs)+σ2

s−d[vW +X]s)+[S2, [S]]t,

and

[S2, [S]]t =

∫ t

0
σ2

s−d[S2, [vW + X]]s =
∑

0≤s≤t

σ2
s−(2Ss−σs−∆Xs + σ2

s−(∆Xs)
2)(∆Xs)

2

= 2
∑

0≤s≤t

Ss−σ3
s−(∆Xs)

3 +
∑

0≤s≤t

σ4
s−(∆Xs)

4.

Hence,

E
(
S2

t [S]t
)

=

∫ t

0
E
(
S2

sσ2
s

)
ds +

(
v2 + ξ2

)
∫ t

0
E
(
[S]sσ

2
s

)
ds

+ 2ξ3

∫ t

0
E
(
Ssσ

3
s

)
ds + ξ4

∫ t

0
E
(
σ4

s

)
ds.

All quantities above are already known, so the result for thevariance follows directly from above.�



A TECHNICAL APPENDIX 30

Covariance

Cov(Gt, Gt+s) = Cov(S2
t − [S]t, S

2
t+s − [S]t+s)

= E((S2
t − [S]t)(S

2
t+s − [S]t+s)) − E(S2

t − [S]t)E(S2
t+s − [S]t+s),

where

E((S2
t − [S]t)(S

2
t+s − [S]t+s)) = ES2

t S2
t+s − E[S]tS

2
t+s − E[S]t+sS

2
t + E[S]t[S]t+s.

�

Computing ES2
t S2

t+s

E
(
S2

t S2
t+s

)
= E

(
S2

t (St + (St+s − St))
2
)

= E
(
S4

t

)
+ 2 E

(
S3

t (St+s − St)
)

︸ ︷︷ ︸

=0

+E(S2
t (St+s − St)

2).

(St+s − St)
2 = 2

∫ t+s

t
Su−dSu − 2

∫ t+s

t
StdSu +

∫ t+s

t
σ2

u−d[vW + X]u

Hence,

E
(
S2

t (St+s − St)
2
)

=
(
v2 + ξ2

)
∫ t+s

t
E
(
S2

t σ2
u

)
du.

�

Computing E
(
S2

t σ2
u

)
for u ≥ t

S2
t σ2

u = S2
t σ2

t + S2
t (σ2

u − σ2
t ) = S2

t σ2
t +

∫ u

t
S2

t dσ2
s

= S2
t σ2

t + 2

∫ u

t
S2

t σs−dσs +

∫ u

t
S2

t d[σ]s

= S2
t σ2

t − 2λ

∫ u

t
S2

t σ2
s−ds + 2

∫ u

t
S2

t σs−dYλs +

∫ u

t
S2

t d[σ]s.

Hence,
d

du
E
(
S2

t σ2
u

)
= −2λE

(
S2

t σ2
u

)
+ 2η1E

(
S2

t σu

)
+ η2E

(
S2

t

)
.

�

Computing E
(
S2

t σu

)
for u ≥ t

S2
t σu = S2

t σt + S2
t (σu − σt) = S2

t σt +

∫ u

t
S2

t dσs

= S2
t σt − λ

∫ u

t
S2

t σs−ds +

∫ u

t
S2

t dYλs.

Hence,
d

du
E
(
S2

t σu

)
= −λE

(
S2

t σu

)
+ η1E

(
S2

t

)
.

�
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Computing E
(
[S]tS

2
t+s

)

[S]tS
2
t+s = [S]tS

2
t + [S]t(S

2
t+s − S2

t )

= [S]tS
2
t + [S]t(2

∫ t+s

t
Su−dSu + [S]t+s − [S]t).

Hence,

E[S]tS
2
t+s = E[S]tS

2
t +

(
v2 + ξ2

)
∫ t+s

t
E[S]tσ

2
u−du.

�

Computing E
(
[S]t+sS

2
t

)

[S]t+sS
2
t = [S]tS

2
t + S2

t ([S]t+s − [S]t)

= [S]tS
2
t +

∫ t

0
S2

t σ2
u−d[vW + X]u.

Hence,

E
(
[S]t+sS

2
t

)
= E

(
[S]tS

2
t

)
+
(
v2 + ξ2

)
∫ t+s

t
E
(
S2

t σ2
u

)
du.

�

Computing E
(
[S]t[S]t+s

)
We have already shown that

E ([S]t[S]t+s) = E
(
[S]2t

)
+
(
v2 + ξ2

)
∫ t+s

t
E
(
[S]tσ

2
u

)
du.

So altogether, we obtain:

E((S2
t − [S]t)(S

2
t+s − [S]t+s)) = E

(
S2

t S2
t+s

)
− E

(
[S]tS

2
t+s

)
− E

(
[S]t+sS

2
t

)
+ E ([S]t[S]t+s)

= E
(
(S2

t − [S]t)
2
)

= E
(
G2

t

)
.

�

So
Cov(Gt, Gt+s) = E

(
G2

t

)
− E (Gt) E (Gt+s) = V ar(Gt) = O(t2),

for t → 0, which does not depend ons.

Computing Cov(Gt, [S]t)

Cov(Gt, [S]t) = E (Gt[S]t) − E (Gt) E ([S]t) = E (Gt[S]t)

= E
(
S2

t [S]t
)
− E

(
[S]2t

)
.

�
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Note here that the corresponding properties for the increments ofG follow directly from the re-
sults above. �

Proof of Proposition 5.4 The first and second order properties of the realised variance can be derived
from the corresponding results of the squared returns:

E[Sδ][(i−1)h,ih] =
M∑

j=1

E
(
s2
j,i

)
,

V ar
(
[Sδ][(i−1)h,ih]

)
=

M∑

i=1

V ar(s2
j,i) + 2

∑

1≤j<k≤M

Cov(s2
j,i, s

2
k,i).

And for s > 0:

Cov
(
[Sδ][(i−1)h,ih], Sδ][(i+s−1)h,(i+s)h]

)
=

∑

1≤j, k≤M

Cov(s2
j,i, s

2
k,i+s).

Finally, we express the (quite lengthy) formulae of the variance and covariance of the realised variance
in form of a Taylor series expansion and focus on the first terms only. These leads to the results given
in Proposition 5.4. �

A.1.2 Superposition Model

Now we assume thatσ is given by a superposition model as defined in Section 5.4. Asalready men-
tioned, we can derive the mean, variance and covariance evenin that more general model, but due to
the fact that the driving processes of the asset price and thevolatility components are dependent, the
formulae become quite lengthy. However, here we focus the caseJ = 2 and we compute the quadratic
variation of the price process and use that as anO(M−1)–approximation of the corresponding formu-
lae of the realised variance. Since we only consider the caseJ = 2 here, we can write the weights as
w1 = w, w2 = 1 − w.

Proposition A.1 Letv2 + ξ2 = 1. Then:

E ([S]t) =

{(

w2 − w +
1

2

)

η2 + η2
1

}

h,

and

V ar([S]) =
(

a1 + a2h + a3e
−λ(1) h + a4e

−λ(2) h + a5e
−2λ(1) h + a6e

−2λ(2) h

+a7e
−(λ(1)+λ(2) h)

)

+
(

a8 + a9h + a10e
−λ(1) h + a11e

−λ(2) h + a12e
−2λ(1) h

+a13e
−2λ(2) h + a14e

−(λ(1)+λ(2) h)
)

+ ξ4h a15,

where

a1 =

(

− 4

λ(2) 2
+ 8

w

λ(2) 2
− 4

w2

λ(2) 2
− 4

w2

λ(1) 2

)

η2η
2
1 +

(

− 5

3λ(2) 2
− 5

w2

λ(2) 2
+ 5

w

λ(2) 2
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+
5

3

w3

λ(2) 2
− 5

3

w3

λ(1) 2

)

η3η1 −
1

4

(

−4λ(1) 4w3 + 14λ(1) 2λ(2) 2w2 + λ(1) 4w4

−4λ(1) 4w + λ(1) 4 + 10λ(1) 2λ(2) 2w4 − 4λ(1) 2λ(2) 2w + 6λ(1) 4w2 + λ(2) 4w4

+2λ(1) λ(2) 3w4 + λ(1) 2λ(2) 2 + 2λ(1) 3λ(2) − 20λ(1) 2λ(2) 2w3 + 2λ(1) 3λ(2) w4

−8λ(1) 3λ(2) w3 + 12λ(1) 3λ(2) w2 − 8λ(1) 3λ(2) w
)

η2
2

{

λ(1) 2λ(2) 2
(

λ(1) + λ(2)
)2
}−1

+

{(

− 1

8λ(2) 2
− 1

8λ(1) 2

)

w4 +
1

2

w3

λ(2) 2
− 3

4

w2

λ(2) 2
+

1

2

w

λ(2) 2
− 1

8λ(2) 2

}

η4,

a2 =
1

λ(1)λ(2)
(
λ(1) + λ(2)

)

{(

16λ(2) 2w2 + 16λ(1) 2 − 32λ(1) 2w − 32λ(1) λ(2) w

+16λ(1) λ(2) + 32λ(1) λ(2) w2 + 16λ(1) 2w2
)

η2η
2
1 +

(

8λ(1) 2 + 8λ(1) λ(2)

+24λ(1) 2w2 + 8w3λ(2) 2 + 24λ(1) λ(2) w2 − 24λ(1) λ(2) w − 8w3λ(1) 2

−24λ(1) 2w
)

η3η1 +
(

12λ(1) w4λ(2) − 8w3λ(1) 2 + 2λ(1) 2 + 12λ(1) 2w2

−8λ(1) λ(2) w + 2w4λ(1) 2 + 2λ(1) λ(2) − 8λ(1) 2w + 20λ(1 ) λ(2 )
w

2

−24λ(1 ) λ(2 )
w

3 + 2w
4λ(2 )2

)

η2
2 +

(

λ(1 ) λ(2 ) − 4λ(1 )2
w − 4w

3λ(1 )2

+6λ(1) 2w2 + w4λ(1) 2 + 6λ(1) λ(2) w2 + 2λ(1) w4λ(2) − 4λ(1) λ(2) w3

−4λ(1) λ(2) w + λ(1) 2 + w4λ(2) 2
)

η4

}

,

a3 =
4 (3 η1η2 + η3w) w2η1

3 λ(1) 2
,

a4 = − 4
(
6w − 3w2 − 3

)
η2η

2
1

3λ(2) 2
− 4

(
−3w2 + 3w + w3 − 1

)
η3η1

3λ(2) 2
,

a5 =
w3η3η1

3λ(1) 2
+

w4η2
2

4λ(1) 2
+

w4η4

8λ(1) 2
,

a6 =

(
8 − 24w + 24w2 − 8w3

)
η3η1

24λ(2) 2
+

(
−24w3 + 36w2 + 6w4 − 24w + 6

)
η2
2

24λ(2) 2

+
−12 η4w + 3w4η4 − 12 η4w

3 + 18w2η4 + 3 η4

24λ(2) 2

a7 = 2
η2
2w

2
(
1 − 2w + w2

)

(
λ(1) + λ(2)

)2 ,

a8 =

[

−4
w
(
w λ(1) 2 + 2λ(1) λ(2) + λ(2) 2

)
η3
1

λ(1) 2
(
λ(1) + λ(2)

)2 − w
(

4λ(1) 2w3 − 3w2λ(1) 2 + 5λ(2) 2w2

+10w2λ(1) λ(2) + 2w λ(1) 2 − 8w λ(1) λ(2) − 4λ(2) 2w + 4λ(1) λ(2) + 2λ(2) 2
)

η2η1

{

λ(1) 2
(

λ(1) + λ(2)
)2
}−1

− 1

3

w4η3

λ(1) 2

]

κ
(1)
2,1

+

{

−1

2

w2η1
2

λ(1 )2
− 1

4

(
2w2 − 2w + 1

)
w2η2

λ(1 )2

}

κ
(1)
2,2
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+
{

4
(

−λ(2) 2w2 + w λ(1) 2 + 2w λ(1) λ(2) + 2λ(2) 2w − λ(1) 2 − 2λ(1) λ(2) − λ(2) 2
)

η3
1

(

λ(2) 2
(

λ(1) + λ(2)
)2
)−1

+
(

−4λ(2) 2w4 + 10w3λ(1) λ(2) + 5λ(1) 2w3 + 13λ(2) 2w3

−17λ(2) 2w2 − 22w2λ(1) λ(2) − 11w2λ(1) 2 + 9w λ(1) 2 + 18w λ(1) λ(2) + 11λ(2) 2w

−3λ(1) 2 − 6λ(1) λ(2) − 3λ(2) 2
)

η2η1

{

λ(2) 2
(

λ(1) + λ(2)
)2
}−1

− 1

3

(
w4 − 4w3 + 6w2 − 4w + 1

)
η3

λ(2) 2

}

κ
(2)
2,1

+
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−1

2

(
w2 − 2w + 1

)
η2
1

λ(2) 2
− 1

4

(
2w4 − 6w3 + 7w2 − 4w + 1

)
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}

κ
(2)
2,2,

a9 =
2

3
κ

(1)
2,1

(

6λ(2) + 6λ(1) w
)

w η3
1

{

λ(1)
(

λ(1) + λ(2)
)}−1

+
2

3
κ

(1)
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(

6λ(1) w3

+3λ(1) w − 3w2λ(1) − 6λ(2) w + 9λ(2) w2 + 3λ(2)
)

w η2η1

{

λ(1)
(

λ(1) + λ(2)
)}−1

+
2

3

κ
(1)
2,1

(
λ(1) w3 + λ(2) w3

)
w η3

λ(1)
(
λ(1) + λ(2)

) +
κ

(1)
2,2w

2η2
1

λ(1)
+

1

2

κ
(1)
2,2

(
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)
w2η2

λ(1)

+
2

3

κ
(2)
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(
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)
η3
1

λ(2)
(
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)

+
2

3
κ

(2)
2,1

(
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)
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{
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(
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+
2

3
κ

(2)
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+6λ(2) w2 − 4λ(2) w + w4λ(2)
)

η3

{

λ(2 )
(
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+
1

2

κ
(2)
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(
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)
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1

λ(2)
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1

2

κ
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(
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)
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,

a10 =

{

4
w η3

1

λ(1) 2
+ 2

(
2w2 − 2w + 1

)
w η2η1

λ(1) 2

}

κ
(1)
2,1,

a11 =
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1
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(
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}

κ
(2)
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a12 =

(

w3η1η2

λ(1) 2
+

1

3

w4η3

λ(1)

2
)

κ
(1)
2,1 +

{

1

2

w2η2
1

λ(1) 2
+

1

12

(
3 − 6w + 6w2

)
w2η2

λ(1) 2

}

κ
(1)
2,2,

a13 =

{

1

12

(
12 − 12w3 − 36w + 36w2

)
η2η1

λ(2) 2
+

1

12

(
4 + 24w2 − 16w3 − 16w + 4w4

)
η3

λ(2) 2

}

κ
(2)
2,1 +

{

1

12

(
6 + 6w2 − 12w

)
η2
1

λ(2) 2
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1

12

(
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}

κ
(2)
2,2,



A TECHNICAL APPENDIX 35

a14 =

{

2
w (−2 + 2w) η1

3

(
λ(1 ) + λ(2 )

)2 + 2
w
(
−1 + 2w3 − 4w2 + 3w

)
η2η1

(
λ(1 ) + λ(2 )

)2

}

κ
(1)
2,1

+

{

2
w (−2 + 2w) η1

3

(
λ(1) + λ(2)

)2 + 2
w
(
−1 + 2w3 − 4w2 + 3w

)
η2η1

(
λ(1) + λ(2)

)2

}

κ
(2)
2,1,

a15 =

{

η4
1 +

(
3 − 6w + 6w2

)
η2η

2
1 +

(

4w2 +
4

3
− 4w

)

η3η1

+

(

6w2 − 3w +
3

4
− 6w3 + 3w4

)

η2
2 +

(

−w3 +
1

4
− w +

3

2
w2 +

1

2
w4

)

η4

}

,

Cov([S]t, [S]t+s) = b1

(

e−λ(1) (s+1)h − 2 e−λ(1) sh + e−λ(1) (s−1)h
)

+ b2

(

e−λ(2) (s+1)h − 2 e−λ(2) sh + e−λ(2) (s−1)h
)

+ b3

(

e−2λ(1) (s+1)h − 2 e−2λ(1) sh + e−2λ(1) (s−1)h
)

+ b4

(

e−2λ(2) (s+1)h − 2 e−2λ(2) sh + e−2λ(2) (s−1)h
)

+ b5

(

e−(s+1)h(λ(1)+λ(2)) − 2 e−sh(λ(1)+λ(2)) + e−(s−1)h(λ(1)+λ(2))
)

,
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1

λ(1) 2
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2w2η2η
2
1 +

2

3
w3η3η1

)

+
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2w η3

1 +
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η2η1

}
κ
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2,1

]
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1

λ(2) 2
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η2η
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(

−2w +
2

3
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3
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)
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}

+
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(
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}
κ

(2)
2,1

]

,
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1

λ(1) 2
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1

6
w3η3η1 +

1

8
w4η2

2 +
1

16
w4η4

)

+

(
1

2
w3η2η1 +

1

6
w4η3

)

κ
(1)
2,1

+

{
1

4
w2η2

1 +

(
1

4
w4 − 1

4
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1

8
w2

)
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}

κ
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2,2

]
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1
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(
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1 +
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Proof of Proposition A.1 In the following we will assume that1 ≤ i, j ≤ J andv2 + ξ2 = 1.

Moments ofσ The moments ofσ can be straightforwardly derived from the corresponding moments
of τ (i) by

σt =

J∑

j=1

wj τ
(j)
t .

In the following we use the notationη(i)
k = λ(i)ηk, for i = 1, . . . , J andk ∈ N. �

Mean

E ([S]t) = E

(∫ t

0
σ2

u−d[X]u

)

= E
(
σ2

0

)
t.

�

Variance

E
(
[S]2t

)
= 2

∫ t

0
E
(
[S]uσ2

u

)
du + ξ4

∫ t

0
E
(
σ4

u

)
du.

�

Computing E ([S]uσu)

[S]uσu =
J∑

i=1

[S]uwi τ (i)
u ,

where

E

(

[S]uτ (i)
u

)

= −λ(i)

∫ u

0
E

(

[S]xτ (i)
x dx

)

+ η
(i)
1

∫ u

0
E ([S]x) dx +

∫ u

0
E

(

(τ (i)
x )3

)

dx

+ κ
(i)
2,1

∫ u

0
E

(

(τ (i)
x )2

)

dx.

�

Computing E
(
[S]uσ2

u

)

[S]uσ2
u = [S]u

(
J∑

i=1

wi τ (i)
u

)2

=
J∑

i=1

[S]uw2
i

(

τ (i)
u

)2
+ 2

∑

1≤j<k≤J

[S]uwj τ (j)
u wk τ (k)

u ,

where

d

du
E

(

[S]uτ (i) 2
u

)

= −2λ(i)
E

(

[S]uτ (i) 2
u

)

+ 2η
(i)
1 E

(

[S]uτ (i)
u

)

+ E

(

σ2
uτ (i) 2

u

)

+ 2κ
(i)
2,1E

(

σ2
uτ (i)

u

)

+ κ
(1)
2,2E

(
σ2

u

)
.

�
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Computing E

(

[S]uτ
(i)
u τ

(k)
u

)

for i 6= k

τ (i)
u τ (k)

u =

∫ u

0
τ (i)
s dτ (k)

s +

∫ t

0
τ (k)
s dτ (i)

s + [τ (i), τ (k)]u

=

∫ u

0
τ (i)
s

(

−λ(k)τ
(k)
s− ds + dY

(k)

λ(k)s

)

+

∫ u

0
τ (k)
s

(

−λ(i)τ
(i)
s−ds + dY

(i)

λ(i)s

)

+
∑

0≤s≤u

∆Y
(i)

λ(i)
∆Y

(k)

λ(k)
.

= −
(

λ(i) + λ(k)
)∫ u

0
τ

(i)
s−τ

(k)
s− ds +

∫ u

0
τ

(i)
s−dY

(k)

λ(k)s
+

∫ u

0
τ

(k)
s− dY

(k)

λ(i)s
+ [τ (i), τ (k)]u.

Note: From the independence of theY (i) we get:

{(u, v) ∈ R
2
+ : ν(

(Y
(i)

λ(i)
,Y

(k)

λ(k)

)(u, v) > 0} ⊂ {(u, v) ∈ R
2
+ : uv = 0}.

So we obtain

[S]uτ (i)
u τ (k)

u =

∫ u

0
[S]s−d

(

τ (i)
s τ (k)

s

)

+

∫ u

0
τ

(i)
s−τ

(k)
s− d[S]s + [[S], τ (i)τ (k)]u

=

∫ u

0
[S]s−

(

−
(

λ(i) + λ(k)
)

τ
(i)
s−τ

(k)
s− ds + τ

(i)
s−dY

(k)

λ(k)s
+ τ

(k)
s− dY

(k)

λ(i)s
+ d[τ (i), τ (k)]s

)

+

∫ u

0
τ

(i)
s−τ

(k)
s− σ2

s−d[X]s +

∫ u

0
σ2

s−d[[X], τ
(i)
s−τ

(k)
s− ]s.

Hence,

E

(

[S]uτ (i)
u τ (k)

u

)

=

∫ u

0
−
(

λ(i) + λ(k)
)

E

(

[S]sτ
(i)
s τ (k)

s

)

ds + η
(k)
1

∫ u

0
E

(

[S]sτ
(i)
s

)

ds

+ η
(i)
1

∫ u

0
E

(

[S]sτ
(k)
s

)

ds +

∫ u

0
E

(

τ (i)
s τ (k)

s σ2
s

)

ds

+ κ
(k)
2,1

∫ u

0
E

(

σ2
sτ

(i)
s

)

ds + κ
(i)
2,1

∫ u

0
Eσ2

sτ
(k)
s ds,

since
∫ u

0
σ2

s−d[[X]], τ (i)τ (k)] =
∑

0≤s≤u

σ2
s−(∆Xs)

2(τ
(i)
s−∆τ (k)

s + τ
(k)
s− ∆τ (i)

s + ∆
(

τ (i)
s τ (k)

s

)

).

�

Computing E

(

σ2
sτ

(i)
s

)

[S]uτ (i)
u =

∫ u

0
[S]s−dτ (i)

s +

∫ u

0
τ

(i)
s−d[S]s + [[S], τ (i)]u

= −λ(i)

∫ u

0
[S]s−τ

(i)
s−ds +

∫ u

0
[S]s−dY

(i)

λ(i)s
+

∫ u

0
σ2

s−τ
(i)
s−d[X]s +

∫ u

0
σ2

s−d[[X], τ (i)]s.
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Hence,

E

(

[S]uτ (i)
u

)

= −λ(i)

∫ u

0
E

(

[S]sτ
(i)
s

)

ds + η
(i)
1

∫ u

0
E ([S]s) ds +

∫ u

0
E

(

σ2
sτ

(i)
s

)

ds

+ κ
(i)
2,1

∫ u

0
Eσ2

sds.

�

The computations for the covariance are completely analogous to the ones above and the correspond-
ing calculations in the one–factor setting.

�
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