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Abstract

This paper studies the effect of time—inhomogeneous jumgddeverage type effects on re-
alised variance calculations when the logarithmic asse¢ s given by a Lévy—driven stochastic
volatility model. In such a model, the realised variancensreconsistent estimator of the inte-
grated variance. Nevertheless it can be used within a guasimumlikelihood setup to draw
inference on the model parameters. In order to do that, #pgpintroduces a new methodology
for deriving all cumulants of the returns and realised vas&in explicit form by solving a recur-
sive system of inhomogeneous ordinary differential equnasti

Keywords: Lévy processes; stochastic volatility, leverage effegperposition; realised variance.
JEL classification: C10, C13, C14, G10, G12.

1 Introduction

Realised variance and its use for estimating and foregastiochastic volatility has been studied
extensively in the finance literature in the last decadedsgq?2, 10, 11, 37, 52]). So far, such studies
have mainly focused on asset price models given by Browreanireartingales or, more generally,
Itd semimartingales. This paper is now devoted to studftiegmpact ottime-inhomogeneous jumps
andleverage type effecin realised variance calculations when the logarithmietgssce is given
by a stochastic integral with respect to a Lévy process.

Lévy—driven stochastic volatility models are able to capén many stylised facts of asset returns
particularly well, e.g. they reflect the skewness and fé tdiasset return distributions more appropri-
ately and can handle jumps and volatility smiles much bétin models based on Brownian motions
alone. Recently, several types of such Lévy—based stichadatility models have been studied in
the financial literature. Basically, they can be divideaitwo groups: time—changed Lévy processes
(see e.g.[12, 21, 22]) and stochastic integrals with ragpeclLévy process (see e.g. [28, 40, 51, 53]).
Here we restrict our attention to the latter class of Léwasdul stochastic volatility models. We note
that this class of models does not generally fall into the<tz affine models (as time—changed Lévy

*This paper is a revised part of my DPhil thesis and, therefovish to thank my supervisors Neil Shephard and Matthias
Winkel for their guidance and support throughout this proje=inancial support by the Rhodes Trust and by the Center
for Research in Econometric Analysis of Time Series, CRE3Tnded by the Danish National Research Foundation, is
gratefully acknowledged.
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processes, see e.g. [26, 39]) and, hence, explicit conpusain such a modelling framework turn
out to be analytically more involved. Apart from inhomogeuns jumps, our model also allows for
very general leverage type effects or asymmetric vohatilduring the last decades, many empirical
studies have revealed the fact that past stock returns tebd negatively correlated with innova-
tions of future volatilities. This property is often calltite leverage effect— an expression which
has been derived from the hypothesis that a negative stdgiknreight increase financial leverage
and, hence, leads to a riskier stock which results in higbéatiity. [17] was probably the first to
investigate this effect, and his finding was further supgmbliy studies by [23, 43] among others and,
more recently, by [18, 20, 35, 49, 50, 54]. While the existenf asymmetric volatility is rarely
questioned, its main determinant is still subject to viviscdssions (see e.g. [15] and the references
therein). Besides the previously mentioned leverage-thysis, there is also the time—varying risk
premium theory or volatility feedback theory, which esgaht relies on the converse causality when
stating that increasing volatility leads to decreasinglsfurice returns. However, regardless of where
asymmetric volatility originates from, it is definitely amportant fact, which has to be accounted
for in asset pricing, especially in the context of optioncpny since the asymmetric relationship is
directly associated with implied volatility smiles. So tleserage effect is often regarded as a natural
tool for explaining smirks in option price data (see [31,)38Unfortunately, previous work on the
econometric properties of Lévy —driven stochastic vbtathas so far only been carried out under the
no—leverage assumption ([12, 53]) which is, particulanequity markets, not realistic. So the main
contribution of this paper is, that it overcomes this regitre assumption and studies the impact of
both time—inhomogeneous jumps and general leverage typetebn returns and realised variance
simultaneously.

The remaining part of the paper is structured as followsti@e@ sets up the notation and defines
the Lévy—driven stochastic volatility model, which wedjun this paper. Following recent research
on stochastic volatility models, we use the so—called sedlivariance as a proxy for the accumulated
variance over a day. This quantity will be defined in SectionSégction 4 and 5 contain the main
theoretical results of the paper. In Section 4, we preseplicitxformulae for the moments and
second order properties of the returns, the actual variandethe quadratic variation of the price
process. Section 5 addresses the first and second ordert@eps the realised variance where
we study in detail the influence of the jumps and the leverdpeteon volatility estimation. All
these results are derived explicitly by using a novel mettamy which involves solving a recursive
system of inhomogeneous ordinary differential equationalfy, we give a brief outlook on parameter
estimation and inference in Section 6. Throughout the &bof the mathematical proofs are relegated
to the Appendix (Section A).

2 Model definition and technical assumptions

Let (€2, A, P) denote a probability space with filtratioh = {F; }o<t<0, Satisfying the usual con-
ditions (see e.g. [47]). Le§ = (S:):>0 denote the logarithmic asset price and= (o;)¢>0 the
stochastic volatility (SV). We will study models of the form

¢
Sy = ut —I—/ os—d(vWs + Xy),
0

whereX = (X;);>o denotes a pure jump Lévy processes (see e.g. [16, 45, 48]fan- (W;):>0
is a standard Brownian motion amdec R is a constant, which could be 0. In that case, we would be
in a pure jump setting. Solely for ease of exposition, we agsume thalt.X; = 0. Furthermore,
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we assume that VaK;) < oo. More precisely, in order to make sure that the model is wliqu
identified, we seVarX; + Var(viW;) = 1. Otherwise, one could always multiphyy” + X by a
constant and scale appropriately and one would still obtain the same valuetergrice process.
Here we will focus on Ornstein—Uhlenbeck (OU) type stodlagilatility models. l.e., we shall
model the volatility process by a stationary Lévy—drivebd Process which satisfies the following
stochastic differential equation
doy = —Ao_dt + dY)y,

whereY = (Y;):>0 denotes a pure jump subordinator (i.e. a non—decreasingprecess) and > 0

is the memory parameter. Throughout we assumesthi drawn from its stationary distribution.
Similar models have been studied in detail in the Browniationdramework (i.e. wherX is a

Brownian motion) by [9] who chose? to be a OU process. However, studies by [41] have shown

that choosingr or o2 to be an OU process leads to similar results. So for reasonmatifematical

tractability we have chosen the volatility process rathantthe variance to be of OU-type. In such a

modelling framework, the dynamics of the squared volgtjlitocess are given by

do? = —2X\o?_dt + 20,_d Yy + d[Y ],

which might remind us on a jump—driven version of a squard poocess. Clearly, such a model
for the volatility process satisfies the essential requinenthat volatility has to be non—negative. By
time—changing the subordinat®t by the memory parametey, we obtain a stationary distribution of
o which does not depend on Note in particular that we do not assume thand.X are independent.
We rather choose a bivariate Lévy procés®’ + X, Y, ) as driving process ofS, o) and, hence,
can capture the leverage effect with this model. In orderet@lie to choose such a bivariate Lévy
process, we have to make sure that both driving processesrtive same time scale. The choice of
Y, rather thart” in the second component is hence essential. Otherwise lthkepossible that there
was already information about the price process availablerb there was any information about the
volatility process and vice versa, and this would possibgdlto arbitrage opportunities. Throughout
the text, we will sety = 0, although the results can be easily generalised for a primeeps which
includes a drift term. Finally, we introduce the notatiom foe cumulants of the the driving Lévy
processes. We defing = (Z;);>0 by Z; = (X;,Y),)’ for A > 0, which is a bivariate pure jump
Lévy process of which the second component is a subordinitt v denote the Lévy measure of
Z andvy andvy, denote the Léevy measure &f andY), respectively. Note that ik andY are
pure jump Lévy processes of finite variation, then they camrdpresented as sum of their jumps:
X; = ZOSSSt AXgandY,, = ZOSSSt AY,.

Remark If v = 0 and X is of finite variation,S can be written as;, = > ., AS,. From [38,
Chapter IX, Proposition 3] we can deduce that its charatteririplet is given by(0,0, vs), where
vg is defined byllp x vg = lp(os_x) * vx for all F C R\{0}, where we denote by x v for
a function f on a subset oR? and random measure the following integral processf x v); =

fRX[Oﬂ f(x,s)v(dx,ds).

Recall that the:—th cumulant of a stochastic procegs= (Z;);>o is defined by (provided it exists)

kn(Zy) = log (E (exp(iuZy))) .

1 o

" ou™
Furthermore, it is well-known (see e.g. [24, p.32, 92]) tivat moments of a Lévy process can

then be expressed in terms of the corresponding cumula$ 8y = r1(Z1)t, E(Z2) = kao(Z1)t +
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(Hl(Zl)t)z, E(Ztg) = Hg(Zl)t + 3K1 (Zl)ﬁg(Zl)tz + (lil(Zl)t)g, E(Z;l) = H4(Zl)t + 3(%2(Zl)t)2 +
4k1(21)k3(Z21)t2 4+ 6(k1(Z1)%)k2(Z21)t2 + (k1(Z1)t)*. For the cumulants of these processes, we will
use the following notation. The cumulants (denoted:fly), i = 1,2,...) of the random variablé&(;

are denoted by and the cumulants of the procegsare denoted by. Hence,

§i = ki (X1) = / u'vx (du), ni = ki (Y1) = / vy, (dv), fori=1,2,...
R [0,00)

Note thatx;(Y)) = An;, fori = 1,2,.... Furthermore,
Kn,m :/ u" "™ v(du,dv), forn, m € N.
R x[0,00)

Throughout the text, we will assume that at least the first fmumulants of the Lévy process are
finite. From the Cauchy—Schwarz inequality, we obtain thiedong constraints for the cumulants of
Z. Forn,m € N, the cumulants (if they exist) satisfy, ., < v/E2n A2

The cumulants of the bivariate Lévy process can be regaadesl measure of the dependence
between the two driving processes, which obviously incdutte leverage effect: the measure of
dependence of first order. In the following, we will deal wiitie following five cumulants.

=
|
=
=
=
I
Q
o)
=4
I
=

koo =E(X1Y)) — 2E (X1) E (X1Y7) — 2E (Y)) E (X7Y)) — E (X7) E (V)
—2{E (X1 Y3)}? + 2{E (X))}’ E (Y2) + 2 {E(V})}E (X?)
+8E (YA E (X)) E(X1Y)) — 6 {E (X1)}* {E(Y))}”.
Note that if X andY) are independent, they have no common jumps and, herice,v) € R x

[0,00) : uv # 0} = 0. That means that, ik andY, are independent and, hence, there is no leverage
effect, then all joint cumulants,, ,,, = 0.

3 Returns and realised variance

Our aim is to study the econometric properties of the LéypetSV model defined above. So far, we
have defined a model for an asset price in continuous time. avenow use the increments of such
a process for modelling (high frequency) returns. Recait l9;):>o denotes the continuous—time
log—price process of an asset. Furtherjilet 0 denote the length of a fixed time interval, typically
one day. The returns of the asset price are then given by

Si = ih_S(i—l)h7 Z‘:1727"'7

where: indexes the day. Due to the availability of high frequencyadane is often interested in
modelling returns at a higher frequency than just daily d&appose that we are giveyl intra—

h observations during each time interval of length The time gap between these high frequency
observations is denoted bby= i /M. Then

8ji = S(i—1)h+js — Oi-h+(i-1)s» J=1,..., M
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denotes thg—th intra-k high frequency return on thie-th period of lengthh. Often we work with
h = 1, representing one day. Based on these high frequency setume can then define thealised
variancefor thei—th day by

[Sé [(i—1)h,ih] — Z Siir

This quantity is often used to proxy the varlablllty in finealomarkets in SV models (see e.g. [4,
10]). In this paper, we will compute the realised variancselon five—minute returns and will
therefore ignore possible market microstructure effediglvcome into play when analysing really
high frequency returns (i.e. one minute returns, tick bi tlata). Such effects can be caused by
e.g. bid/ask spreads, irregular trading and the fact thaeprare recorded in discreet time. Since
studying realised variance in the presence of marketdristis beyond the scope of this paper, we
just refer to articles by e.g. [1, 3, 5, 6, 8, 13, 33, 55-57i,rexent and very detailed studies of this
research topic. Recall that the quadratic variation of aisemingaleS = (S;):>o is defined by
[S]; = S — 2 [ Sy—dS,. Itis well-known that

Uuc;

[Sslii—1)min) —> [Slin = [Sli—1yh,  as M — oo (i.e.d — 0),

where the convergence is uniform on compacts in probalfilitp) (see [45]). So the realised variance
can be used to estimate the (increments of the) quadratitioar of the price process consistently.
Hence, in our modelling framework, the realised variancelmused as a consistent estimator of

ih

e

However, one is rather interested in estimating and fotegathe integrated variandd/; = fot o2ds.
From Lévy’s theorem, we can deduce th&i, = ¢ if and only if X is a Brownian motion. |.e. as soon
as the Brownian motion is replaced by a more general Levgga® or semimartingale, the quadratic
variation of the SV model is not given by the integrated vaze Hence, it is important to study the
bias and the degree of inconsistency of the realised vaziasproxy for the integrated variance. This
is the task we tackle in the next section.

4 Cumulants of returns, actual variance and incremental quaratic vari-
ation

Here we study the statistical properties of the followingeghquantities: the price process the
integrated variancéV” and the quadratic variation of the price procéSs From these properties,
we can then directly derive properties of the incrementshefdorresponding stochastic processes:
the returns of the log—price (the incrementsS)f the actual variance (the increments/éf) and the
incremental quadratic variation (the increment$5).

4.1 Cumulants of returns

We start our theoretical study by computing the moments efltig—price process. Since these
moments depend not only on the momentsdbut also on those af, we calculate the moments of
first. In order to do that, we derive a general representdtionula for thenth power ofo, for n € N.
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Proposition 4.1 Letn € N. As long asfot olds < oo, then—th power ofr; satisfies

t n
af—ag:—)\n/o a?_ds—i—z (Z) Z "R (AYy)"
k=1

0<s<t
Proof. Given in the Appendix. From the formula above, one can detheenoments of.

Corollary 4.2 Recall thatn; = ;(Y7). The first four moments of the stationary distributionoof
are, hence, given byE (o) = m, E (07) = ni + %772, E(0}) = n} + %773 + %772171, E (of) =
14+ 0t 3ment + gms + 05

Now we focus on the moments of the price procgssd, also, on its joint moments with the volatility
processs. It turns out that by repeated applications of 1td’s formahd the use of the compensation
formulas for jump processes, we obtain a recursive systemhoimogeneous ordinary differential
equations, which can be solved explicitely. This methogplis described in detail in the Appendix
and will be used extensively in the remaining paper. So afjhoour model is generally not affine
and, hence, might look complicated to tackle at first sight least compared to the affine models of
time changed Lévy processes (see e.g. [39]) — the new n@thmpdproposed in this paper enables us
to derive all cumulants of interest explicitely.

Proposition 4.3 (Recursive formulae for the moments of)
Letk,n € N,withk < n. If n, < oo for k < n, we get the following results.

1. The joint moments ¢f and o are given by

t
E (St"_kaf> — g kM / glu;n, k) e du,
0

where
~ (k ! —k)n—k—1
g(u,n,k)=;<j>mj/o E (si7hok=7) ds + (n )("2 ) /O (527420 ds
(15 )s [ ) (o [ 2 (st
= j J 0 s s = n—j 0 s—0g_
n—k

2. The moments d¢f are given by
n_n(n_l)Z ! n—2 _2 & n ! n—k
E(S;') = —5 v /0 E (Ss_ O‘S_) ds + kzzz i gk/o (O‘S_SS_ >

Proof. Given in the Appendix.
Now we can recursively solve the equation above and we otstainorresponding moments §f
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Corollary 4.4 If £, = 0, the first two moments are given by:

E(S;) =0, E(S7) = (v2+&) ( + %)t

Using a Taylor expansion around 0 for moments of higher qmlee obtains for | 0:

1 3 3
E(S}) =& (77% +3mt 5771?72> t+5 (v + &) (k1,1(20F +1m2) + K12m) £ + O(t?),

1 3 4
E(S}) =& (Z”‘* 3 + B + §771773> t

3 9 2
+ { (3771l + 4173 + o+ e + 177§> (v* + &)

3
+ ((677% + 203 + Imnp) Ko + <377% + 5772) /<a2,2> (v + &)

+ & (617 + 9mamy + 2n3) k1,1 + (3n2 4+ 6n7) K12 + 2mk13) 2 + O(P).

Further, one obtains

1 3 4
Var(SE) =& (?74 + 1775 +3nine + 3+ 77%) t

3 2
+ { (877%772 + 205 + 201 + dmpinz + 1774) (v? + &)

3
+ ((677:1)) + 203 + Imne) Ko + <37ﬁ + 5772) /<a2,2> (v + &)

+&5 (607 + 9mom1 + 2n3) k11 + (3n2 4+ 607) K12 + 2613m) | 2 + O(F?).

Since S has stationary increments, we can deduce the moments obttesponding returns;
over atime interval of length by settingt = h and, hence,
E(si) =E(Sn), E(s?) =E(Sh), E(s]) =E(Sp), E(s7) =E(Sy), Var(s) = Var(sy).

K3 K3 K3

4.2 First and second order properties of the actual variance

Recent research has focused on integrated variance as arméasthe variability of financial mar-
kets. The integrated variance is defined/y = fot o2ds. Often, one is interested in studying the
increments of this process over a time interval of lengtlay. So, we will denote these increments

by
ih

J[2(i—1)h,ih} = IVip = IV(i-1)n = / osds,
(i—1)h
which is generally called thactual variance(AV) on theith interval of lengthh. Basically, it mea-
sures the accumulated variance over a time interval (oftesen to be one day). Now we can compute
the mean, variance and covariance of the AV as given in thewWoig proposition.

Proposition 4.5 The mean, variance and covariance of the actual variancejaen by the following

formulae:

2 _ (2.2
E(ofi—1yn,in) = (771 + 3 ) h,
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and

1 1 1
Var(of;_iym) = 2 { (577% +dning + 2muns + 1774> Ah

4 1 1 1 1 5) 1
4 An? M (L2 1 L N N 12
+ <3771773 + 771772> e\t gt gmis)e g~ A2 = 3N = 32 (s

and

CO’U(U[Z(i_nh,ih]a 0[2(i+s—1)h,(z'+s)h])

1 2
= v { <2T7%772 + 5771773) (6_)‘(3+1)h 4 6—)\(8—1)h _ 26—)\hs)

1 1 1 Cons e e
+ <§T75+E774+6771?73> (e 2A(s+1)h | o~2A(s=1)h _ g ~2Mh >}

Proof. Given in the Appendix.

As already mentioned above, in a SV model based on a Brownidiom the actual variance can
be consistently estimated by the realised variance. Haweve more general Lévy—based model,
the quadratic variation of the price process does not edpgaintegrated variance. Hence, we will
turn our attention to the quadratic variation of the logeprprocess and study its first and second
order properties. We will then be able to compare those Wwighrésults we have just obtained for the
integrated variance.

4.3 First and second order properties of the quadratic varidion

The first and second order properties of the quadratic vamiare described in the following propo-
sition.

Proposition 4.6 Lett, s > 0 and&; = 0. Then:

1
E([S]:) = (v* + &) <?7% + 5772> t,
Var([S]y) = ¢ + cot + cze M + cqe 2 M,

1 1
Cov([S]s, [Slirs) = = €1 + cat + = c3(e™™ — 7 4 e AH9))

2 2
1
+ 5 C4(€_2>\t N 6—2)\8 + 6_2)\(t+5)),
WhereCi = Ci(}\7 v, 527 647 ni,n2,M3, M4, H2,17 ’%2,2) for 1= 17 .. 741 Wlth

= Tl)@ [(—40771773 — 96mim2 — 304 — 613) (v + 52)2
+ {(=8n3 — T2mma — 9607) Koy + (—6m2 — 1207) Koo} (v* + &)]
co = Tl)\z [(48771773 + 1205 + 96ni12 + 6m4) A (v* + 52)2
+ {(96m1m2 + 96m7 + 16m3) K21 + (2407 + 12m2) Ko} A (v¥ + &2)
+ (24771 + 1803 + 6ma + 720710 + 32mm3) A2&4]
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{(9677%772 + 32m113) (v2 + 52)2 + (48mme + 9677%) K21 (v2 + 52)}

1
3 = ——
37 oan2

1
Ccq = 22 |:(677% + 34 + 8771773) (222 + 62)2

+ {(8773 + 24771772) Ko2,1 + (1277% + 6?72) Hg,g} (1)2 + 52)] .
From this proposition, we can easily deduce the first andrskooder properties for thieicre-
mental quadratic variatiorflQV):
ih
[slii=1)n,in) = [Sin — [S]ii—1)n = /( o oo dlvW + X]y.

They are given by the following.

Theorem 4.7 Lett, s > 0 and&; = 0 andv? + & = 1. Then:
E([8)Gi-1)n,in) = E(TT_1yn.im)s

3 4 1
Var([s]jg-1ynin) = Var(ot_1ynin) + & <377%772 + 1775 +ni + /s + Z”4> h

1 _
+33 [@71 (47 + 2mng) (e A1 )\h)

1 1 1 _
+ {%2,1 (771772 + gﬁs) + 3h2.2 (77% + 5?72)} (e 2 _ 1 4 2/\h)] ,

and

Cov([si—vynin: [8)(i+s—vm+om) = CoUTT 1y Tliis—1yniroyn)

1
+ 5 [r2 (207 + mum) (7 METD) — gemhs 4 o= M(s=h))

A2
+ Lt o (1 4 L
K — — K922~ — .
2,1 6?73 2771772 2,24 Ui 2772

(e—2>\(s+1)h _ 26—2>\h8 + 6—2)\(8—1)}1)]‘

When we compare the first and second order properties of thevily those of the IQV, we
observe the following. Firstly, in the variance of IQV thésean extra summand given §yEo*h.
Note here that we have assumed thais a pure jump Lévy process without drift. Heneg;, # 0
and, hence{, = fR rtvy, (dz) > 0, so this factor will never disappear. Secondly, both théavae
and the covariance of the IQV have an extra term which is dagtussible leverage—type effect in the
model. Clearly, in the absence of this effect (i.e. wieandY” are independent), then | = ka2 =
0, and hence this extra term would not exist. So, altogetheican say that, by choosing a pure jump
Lévy process as a driving process for the asset price, weradsin extra term in the variance of the
IQV compared to the variance of the AV. If one additionalljoals for a leverage type effects, both
the variance and the covariance of the IQV have to be gesedaby an additional leverage term.

4.4 Covariation of returns

We conclude this section by studying the covariance betwetmns, squared returns and IQV. We
will consider returns over a time interval of lengthwhich are denoted by, = Si, — S(;_1)p-
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Proposition 4.8 Leti, s € N. For h — 0, one obtains witlf; = 0:

Cov(si, Sivs) = 0,
Cov(s;, ZZS) 0,

Cov(si, s2,.,) = o {8771%1 ) ( AR _ gg-Mhs | e—A(s—l)h)

+ (Rl 112 + 5172771) (6_2)‘(3+1)h _ 26—2>\hs + 6—2)\(s—l)h>} (1)2 + 52)
Couv(s?, s7ys) = Cov([sii—1)hin]» [5][(i-+s—1)h(i+5)h))
+ w1 (20m + 20k + 3k1am) (V2 + &) B2 + O(hY).

Besides,

COU(S%(i—l)h,ih} - [3][(i—1)h,ih]7 3[2(i+s_1)h,(i+s)h} - [3][(z‘+s—1)h,(z’+s)h]) =0.

Proof. Given in the Appendix.

So we see that the asset returns are uncorrelated (undesghmgtion that; = 0). Further,
we observe that the covariance between returns and squelteds basically depends on the two
leverage parameters 1, x2 1, which denote the covariation betwe&h andY), and the joint centred
moment ofX? andY,, respectively. Recall that the squared returns can alsedmtfor estimating the
variance (although such an estimate is noisier than onallmsecalised variance). This covariation
will damp down exponentially with the lag lengthand so will the influence of a possible leverage
effect. Finally, we observe that the covariance betweemrggureturns can be approximated by the
covariance between the IQV and by terms of lower order whigbedd on parametersof possible
leverage .

5 First and second order properties of the realised variance

Finally, we can apply the results we have deduced so far forpeing the first and second order
properties of the realised variance (RV) and for studyirg diegree of inconsistence of the RV as
estimator for the integrated variance.

5.1 First and second order properties of Realised Variance iEor
Let .
Ht:sf—fvt:sf—/ olds.
0
Proposition 5.1 Lett, s > 0 and&; = 0 andv? + & = 1. Then (fort — 0):
E(H,;) =0,
2 1 3 2 2 4 4
E(H;) = (€0 =2) | g+ i +3nimz + gmis +y ) ¢
+{((6nF + 2n3 + Iimz) k11 + (607 + 3m2) K12 + 2k1,3m) &3

4 9 3
- (5773 + 4n + 6?71772) Ko + (207 4 m2) Koo + 301 + dmms + Ining + 1773 - 1774} t?
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Proof. Given in the Appendix.
Since bothS? and IV are stationary, we can easily deduce the results for theegponding
increments of the returns and the |V by setting h and, hence,

2
E <322 - U[2(i—1)h,ih]) =E(Hp), E <<32 — of l)hzh}) ) =E (Hj).

So we observe that even in the presence of leverage the etipaatf H is zero and, hence, there
is no bias. However, leverage—type effects (of higher grderaffect the mean square error. We start
by studying the properties of the difference between theusgulog—price process and the quadratic
variation.

Proposition 5.2 Lett, s > 0 and¢; = 0. DefineG; = S? — [S];. Then (fort — 0):

Var(Gy) =

3 2
“nat Sns + 6771772> (v + &)

1
( mns + 20t + 5

2

0,
{( N3 + 4771 + 6771772> Ko1 + (277% + 772) Ii2,2} (U2 + 52)] 2 + O(t%),

9 3
Cov(Gy, [S]t) = &3 {%1,1 (377‘? +n3 + 5771772> + K12 <377% + 5772> + 51,3771} 2+ O().

Proof. Given in the Appendix.
Recall that the realised variance error (when estimatieg@V by the RV) is given by

M
[55][(i—1)h,ih] - U[2(i_1)h,m} = Z(S?,z’ - sz',i)'
j=1
Using
Sjﬂ‘ é 55 and [S]jﬂ' é [S]g,

we obtain the following result for the squared returns ardi@V.

Corollary 5.3 Leté, = 0 andv? + & = 1. Then:

E([Ss]{(i=1)n,in) — [8l[(i=1)n,in) = 0,

8 1 3
Var([Sslii—1)nin) — [8l[i—1)nin) = Kgnms + 201 + 3t 5775 + 677%?72)
4
+ {%2,1 <§773 + 4} + 6771?72) + K22 (20} + 12) H M~ + O(M™?),

and
COU([S5][(i—1)h,ih] - [3][(i—1)h,ih]> [56][(i+s—1)h,i+sh] - [3][(i+s—1)h,(i+s)h]) =0.
So we observe the following. RV is an unbiased estimate fof; Qe variance of the RV error is

of O(M 1) and the RV errors are uncorrelated. These findings comespmsimilar results in the
Brownian motion case (see [10]).
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5.2 Cumulants of realised variance
Using the results above, we can now derive the mean, varamteovariance of the realised variance.

Proposition 5.4 Let¢; = 0 andv? + & = 1. The first and second order properties of the realised
variance are then given by

1
E[Ss](i—1)h,in] = (77% + 5772> h,

and

8 1 3
Var([Sslii—1ynin) = Var([slji-1yn,n) + K§?71?73 + 21 + gt 5775 + 6?7%?72)

2
4
+ {2T (n2 -+ 3172) + 3250y 4k <—773 + 4} + 6771?72) + a2 (207 + 772)}

A 3
+&5 {k1,1 (607 + 203 4+ Iimz) + k1,2 (607 + 3n2) + 2k1,3m | K2 M !

2
K
S L (et 4 = 5) o (e 1))

23\2 K1,2K1,1M <—1 + eﬂ”‘)} hM~' 4+ 0 (M_Q) )

+

and

Cov([Ss]i(i=1)h,in)» [55][(i+s DhyGi+s)h]) = Cov([s][i—1)n,in)» [8][(i+s—1)h,(i+5)R])

+ m [8/{1 1M (_Qe—Ahs + e~ AMs—=1)h + e—A(s+1)h)

+ {2611 (nF + 12) + k1,21 } (_26—2>\hs 4D e-zx(s_nh” WML+ 0 (M72).

Proof. Given in the Appendix.
5.3 Comparing the autocorrelation functions of realised vaance, quadratic variation
and integrated variance

Now we briefly study some implications of our results for agiwelations of RV, QV, and IV. Hereby
we follow [12], who have studied the same question in the &anrk of a time—changed Lévy process.
From our results above, we can deduce that:

z\}iinoo Cor ([35][(i—1)h,ih]a [55][(i+s—1)h,(i+s)h]) = Cor ([3][(i—1)h,ih]7 [3][(i+s—1)h,(i+s)h])

CO”(U[Z(Z D)hyih]? [2(z+s—1)h,(i+s)h}) + Lc
Var (U[Z(Z 1)h,ih]) + & Eot + Ly

)

where the leverage part in the covariance is denoted by

1
Lo = ~ [@71 (277:1), i 771772) (e—A((s-i-l)h) _ e~ Mhs 4 e—A((s—l)h))

. 1 +1 n 1 2Jr1
K21 6773 2771772 ’42,24 Ua 2772
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I

<e—2)\(s+1)h _ 9 2hs 4 6—2,\(3—1)h)}

and the leverage part in the variance is denoted by

1
Ly = < [fm (4 + 2m1my) (e_)‘h 14 Ah)

A
1 1 1 _
+ {ﬁz,l <771772 + §773> + 5h2.2 <77% + 5?72) } (e 224 2)\h)} )

In the absence of leverage type effects (hehge= Ly = 0), we obtain exactly the same results as
derived by [12] for time—changed Lévy processes:

e The acf of the RV is monotonically decreasingsin

e For M — oo, the acf of the RV is given by

. COU(Uzi—l h,ih 7022‘ s Dh(its)h])
Jim Cor ([Ss]ii—1)n,in) [96)[(i-+s—1)h,(i+5)n]) = . 2) (e DR +4) ]
Var (U[(i—l)h,ih]) + &4 Eo

< Cor (U[Z(i—l)h,ih]’ U[Z(i-l-s—l)h,(i—l—s)h]) ;  since § > 0.
which implies that the ACF of RV systematically underestiesehe ACF of the actual variance.

e And for &, — oo, we obtain

lim Cor ([S5lji—1)n,in]> [96][(i+s—1)h,(i+s)n)) = O-

&4—00

However, if we allow for leverage—type effects, we obsehefollowing for the acf of the RV:

e Dependencies between and (higher) moments af (i.e. k1,1, k1,2, £1,3) are asymptotically
negligible. In particular, the quantity; ;, which describes thelassicalleverage effect, has
asymptotically no influence on the acf of the RV.

e Dependencies betweexi? and (higher) moments df (i.e. x2,1, k2,2) do influence the acf of
the RV.

5.4 Superposition model

Let us briefly mention a method for generalising our modghdly. Many empirical studies have indi-
cated that one—factor stochastic volatility models caffihempirical data very satisfactorily. Hence,
a standard approach for tackling this problem is to studyeastl a two—factor (or a multi—factor)
stochastic volatility model (see e.g. [14], [18]). Oftemeouses the class of so—called superposition
models where the volatility is not just given by a single Odgass (as in our modelling framework),
but rather by a convex combination of independent OU preseésee e.g. [7], [10] and the refer-
ences therein). We assume that the volatility process endy a weighted sum of independent OU
processes. Fof € Nand: = 1..J, letw; >0 andz;.’:1 w; = 1. Then we define

J
oy = Z wﬂt(l), drl) = —A(i)Tt(Z)dt + dY/\(fi))t,
i=1
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where we assume that the are independent (but not necessarily identically distely However,
as in the one—factor model, we allow for dependence bet\oXQedeA(f,?) . In particular, sinceX is
a Lévy process, there is a sequence of independent idintiistributed random variableX ;;, for

k=1,...,Jsuchthatt 2 X, +--- + X, . So, we write

i n.,m
Rgz,)m = / u" vy -y (du, dv),
RxR4 ’

for the corresponding cumulants of the bivariate Lévy pasc The mean, variance and covariance of
the realised variance when the volatility process is givela Buperposition model can be derived in
a similar way as in the one—factor model. However, due to dlee that we allow for dependencies
between the driving process of the asset price and the drptiocesses of the different components
of o, these formulae become rather lengthy. So, we will justgarethem in the Appendix.

6 Model estimation and inference

6.1 Quasi-likelihood estimation based on realised variarc

Finally, we turn our attention to estimating the parametdreur Lévy —driven stochastic volatility
model. It is well-known that parameter estimation in suchaaleh framework is difficult since one
cannot easily compute the exact likelihood function. Heesf@llow [12] and use a quasi—maximum
likelihood approach (see e.g. [30, Chapter 5]) based on thes§lan density function. This method-
ology leads to consistent and asymptotically normallyrdisted set of estimators. Alternative esti-
mation techniques include method of moment (e.g. [19]) &amdlstion based methods. For instance,
independent work by [46], [29] and [32] have focused on Marileain Monte Carlo methodology for
Bayesian inference in OU stochastic volatility models. &lethat we have shown that we can write
the mean, the variance and the covariance of the vector lifedaariance$S;s] = ([Ss)1, -, [Ss)n)’

as function of the model parameters, which we write in terifres wectord, say. We choose the fol-
lowing quasi—-maximum likelihood (QML) approach for estiimg the parameters. Let

1(0) = log L() = —g log(27) — % log det(Cov([Ss]))
1

5 (185 = E([8s)) (Cov([8:])) ~ ([Ss] ~ E([S4)) (1)

denote the Gaussian realised quasi-likelihood functioHetd = argmaxg log((6) denote the QML
estimate. In order to find this estimate, one has to competatierse and the determinant of the RV
vector, which would be in general an operation of ordenQ.(However, since is stationary[Ss] is
itself stationary. Hence,'ov([S;]) is a Toeplitz matrix, which can be inverted by using the Leoim-
Durbin algorithm (see [42] and [27]) in @f). Basically, one uses a Choleski decomposition of the
covariance matrix (see e.qg. [25]) witlov([Ss]) = LDL' = PP’, whereL is lower diagonal, with

ones on the diagonal ardd is a diagonal matrix with the variances of the residuals ¢Wwlaire denoted
by F) as entries. So the likelihood function (1) can be written as

1(6) = 2 log(2m) % log(det(D)) — % F'E,
where the residual&’ are given by

E=D2L7 ([S5] ~E([S5])) = P~ (18] — E ([S4])) -
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Remark We can express the likelihood function in terms of the meaniamce and covariance of
the linear predictions of the RV. Assume thfatlenotes the joint density of the time series of the RV.
Straightforwardly, we get

n

F([Sshs- 5 [S51n) = £ ([Ssh) T/ (1S6)i | [Ss)i1s - [Ssl) -

1=2

Now letEf (y;|Fi—1) andVarr(y;|Fi—1) denote the mean and the variance of the linear prediction.
In order to construct a quasi-likelihood, we assume fhiatgiven by a Gaussian density and hence

1 n
1(0) =log L(0, y) = —g log(2m) — B Zlog Varp([Ss]i| Fi-1)
i=1

_}Zn: ([Ss)i = Er([Ss)ilFi-1))?
2Z - Varr([Ss)i| Fi-1)

So we observe that the entries in the diagonal mddrir the Choleski decomposition are exactly the
variances of the best linear, unbiased one—step ahead&bi@the RV.

So far, we have only discussed how the model parameters astibeted. However, in the remaining
part of this section we will briefly describe how one can maierience on the model parameters. Let

o a1(0) . o%(9)
T= s e (W) | . T (6969' |

It is well-known (see e.g. [30]) that not only the maximunelikood estimator but also the QML
estimator is asymptotically normally distributed with afjusted covariance matrix (compared to the
MLE setting) and hence

vl —0) 5 N0, 1T T,

Based on this asymptotic result, we can construct 95 % corde@etervals for, which are of the
form

~ 196 1/2 5 -1 1/2

9—%( JI ) 6 <0+ %( JI)
where the square root of a positive (semi-)definite maijsay, is defined by the matrix'/2 such
that ©1/2x1/2" = ¥, Estimating the so—called sandwich matridesvhich only appear in a QML
setting and accounting for the fact, that the estimationneadased on the true density function, does
not cause any problems, whereas estimating the covariaatté&xnf is more complicated. Here we
have used spectral methods based on the approach populilayi$é4]. l.e., leth; = 2i(x,0) and
let m denote the number of nonzero autocorrelations;0f). Then,

PSR o i N ra) a-L S i
_QO+Z<1—m—+1> (Qj+9j), =~ Z R ;.
Jj=1 t=7+1
The sandwich matrices can be estimated straightforwandly b

. 1 52 . 1 — 92

L= 000" = " 2 900

n 0006 Hzi,0).
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6.2 Empirical study

In order to illustrate our results further, we have alsoiedrout an empirical study. We have used
General Motors (GM) intra—day TAQ database, available aD8Rfrom 2 January 2001 to 28 April
2006. Before analysing the data, we have cleaned the dalowif@g methods used by [34], we
concentrate on quote data from one stock exchange only. wiefeve chosen the NYSE. We only
consider quotes, where both the bid-size and the ask—szgeater than 0, and which are quoted in
a normal trading environment (quote condition = 12 in the T@abase). Since data at the beginning
and at the end of a trading day differ quite a lot from the gsi@aring the day, we concentrate
on data from 9.35 am until 15.55pm only. Further, if there eveot any quote data for more than
five minute, we have interpolated the missing data via line@rpolation. Besides, we have deleted
obvious outliers, which we have chosen to be data pointsiwtiiiter by more than 0.15 from the
prevailing (log-) price level. Finally, we have deleted aléitom those days where there were too
many data missing at the beginning of a day (no data befofed) or which were just half trading
days. Furthermore, we have focused on the bid—prices onlprder to construct a time series of
five minute returns of the log—bid—prices, we use the previszk sampling method. After we have
cleaned the data, we have a data set consisting of 1,308esssitays with 76 five minute returns
per day, hence 99,408 returns. We provide a plot of the ctb&M log—price data (based on five

- @® g _ (b)
o
[ 2
o =
< =2 <
o c 3
8 F é o ||
s [ £ [
;8’ S % s l"“yh \‘“‘h‘.“h L l“ll'\" | L,U“.l\‘_‘h“l‘illln.h‘lﬁm“xUli M Lly\“.'l (il
oi S =1
c”s C L L L L Il CIS T L L L L
2001 2002 2003 2004 2005 2006 o] 1 2 . 3 4 5
(c) Years e (d) Lags in days
=4
g < =S
= E ol
B £ 3
3 gs
2 i s
S S S =
o S O o
=3 Whtn_pros s,
L o
2001 2002 2003 2004 2005 2006 o] 50 100 150 200
Years Lags in days

Figure 1: GM data: (a) cleaned log—bid—prices (plotted every 5 miadte 1308 business days
from 2 January 2001 — 28 April 2006; (b) autocorrelation beem five minute returns; (c) time se-
ries of realised volatilities (i.e. square root of realisedriances) based on five minute returns; (d)
autocorrelation between realised variances.

minute data), the corresponding autocorrelation funciod the time series of the realised variances
with their autocorrelation in Figure 1. We have estimatesl riiodel parameters of the one—factor
model and the superposition model (with two factors). Weehearried out the estimation three
times: once, whe, = &3 = £ = 0 and all the leverage parameters are set to O (this correspond
to a Brownian semimartingale framework), once when allgwior jumps but setting all leverage
parameters to zero (and, hence, assuming that there isera¢@) and once with jumps and arbitrary
leverage parameters (which just satisfy the moment camditdescribed previously). The model fit
of the Brownian motion based model was very poor, hence weotloeport the exact details. By
allowing for jumps, the model fit has improved significanthydahe corresponding estimation results
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Table 1. Table 2.
Estimation results for the one—factor Estimation results for the one—factor
model, withouts model, withx
Parameter Estimate Robust Parameter Estimate Robust
standard error standard error
A 0.037 0.026 A 0.037 0.026
&4 0.353 0.141 &3 -0.009 1.153
m 1.770 0.249 &4 0.356 0.132
Mo 0.153 0.198 m 1.771 0.223
73 2.197 0.891 Mo 0.145 0.269
M4 3.195 4.441 73 2.153 0.261
Quasi-L  -3264.13 M4 3.188 0.950
BP 28.789 K11 -0.009 0.181
m 35 K12 -0.009 2.459
K13 -0.009 1.078
K21 0.008 0.074
K22 0.011 0.668
Quasi-L  -3264.13
BP 28.789
m 35

are given in the following tables. Note here that in the sppsition model the QML estimates for
the third and fourth cumulant df, i.e.n3 andn, are on the boundaries rather than in the interior of
the parameter space. So in these cases, we do not reporbtis standard errors. In order to assess
the model fit, we provide the following plots and statistiEsgure 2 and Figure 3 show the empirical
versus the fitted autocorrelation function of the realisadance (a), the estimated (based on the one
step ahead forecast) and the empirical realised variancthétime series of the scaled residuals (c)
and their autocorrelation function (d). Furthermore weehewmputed the Box—Pierce statistic based
on 20 lags which measured the degree of dependence in tleel seaiduals. It is really striking that
the model fit seems to be already quite good for the one—factalel, when we allow for jumps in
the asset price. Incorporating a second factor leads tdhan¢mall) improvement. One could also
study multifactor models with more than two factors. Butnfrour results for one and two factors,
we would not expect that this would lead to a big improvemeyn@ore. Note here that, in order
to estimate the parameters of the superposition model, we tsedO (M ~!)—approximations (as
given in the Appendix) for the variance and covariance of#fadised variance (rather than M —2)—
approximations), since this reduces the number of parametkich have to be estimated from 20
to 12. Studying the higher order approximation and carrngnga numerical optimisation over 20
unknown parameters, which are partly very weakly identjfieidl be subject to future research. Let
us now turn our attention to the estimated leverage parametie observe that accounting for the
leverage parameters in this particular example does ndttle@n improvement (but also not to a
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Figure 2: (a)Empirical autocorrelation of realised variance andiesated (for J=1) acf for
01/2001-04/2006; (b) estimated variance and realisedararé; (c) scaled residuals; (d) acf of
scaled residuals.
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Figure 3: (a)Empirical autocorrelation of realised variance andiesated (for J=2) acf for
01/2001-04/2006; (b) estimated variance and realisedararé; (c) scaled residuals; (d) acf of
scaled residuals.

deterioration) of the model fit. We hypothesise here thainesing the leverage parameters by our
QML method is difficult since they only appear in terms of lower. So they are not easy to identify

and since their corresponding confidence intervals all ctha0, it is not possible to deduce clearly

whether leverage (in the sense of non—zero joint cumulai®esent in the data. These findings are
in line with other empirical studies, which focused on estiimg the leverage effect in single stocks.
However, when studying index data, one often observes sdgeesffect, which is present for several
days (see e.g. [20]). Finally, we provide a plot (Figure 4)haf empirical cross—correlation between
returns and realised variances which we denote by

(s = 5)([Sslies — [S3])
L(s) = D
V(i — 902 5, (Sslivs — [53))2

for s € {—20,...,20}, wheres and[Ss] denote the sample mean of the returns and the realised
variance, respectively. Similarly to [20], this functioarcbe interpreted as a kind of leverage corre-
lation function. In addition to this function, we plot the iBatt confidence bounds of the hypothesis
that there is no leverage, which are given1b§6/v/T = 0.054. Although we can clearly spot that
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Table 3. Table 4.
Estimation results for the two—factor model, Estimation results for the two—factor model,
without x with k
Parameter  Estimate Robust Parameter Estimate Robust
standard error standard error
A 0.130 0.175 A 0.130 0.198
A2 0.011 0.017 A2 0.011 0.039
w1 0.478 0.156 w1 0.478 0.893
& 0.344 0.210 & 0.344 0.356
m 1.667 0.482 ™ 1.667 0.511
79 2.360 0.863 79 2.360 3.536
N3 1e-007 n3 1.0002e-007
N4 1e-007 N4 1.0374e-007
kS 2.3994e-008 1.263
Quasi-L  -3261.956 kY 2.4014e-008 5.570
BP 27.949 k) 2.3972e-008 3.630
m 35 k2 4.1144e-007 22.086
Quasi-L  -3261.956
BP 27.948
m 35

returns and future realised variance seem to be slightlgtivedy correlated for a couple of days, the
correlation is really small and not statistically signifita

7 Conclusion

In this paper, we have studied the impact of time—inhomogasngeumps and leverage type effects
on returns and realised variance in Lévy—driven stochastiatility models. In particular, we have
derived explicit expressions for the cumulants of the reguand the realised variance by solving a
recursive system of inhomogeneous ordinary differengialedions. This seems to be a very powerful
technique and might be applicable to a much wider class @ft @sice models. This aspect will be
investigated further in future research. Although theiseal variance is an inconsistent estimator
of the integrated variance in the Lévy—driven stochastiatlity model studied in this paper, we
have shown how it can be used in a quasi—-maximumlikelihoachéwork for estimating the model
parameters of our model.
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A Technical appendix

A.1 Proofs

Proof of Proposition 4.1 From the binomial formula one obtains:

" /n
Aol =0 — o) = (04— + Ac)" — ot = Z <k‘> o F(Agy)F — o

k=0
_Z< >at_ (AYy)F.

Applying Itd's formula tof(z) = 2™ with f/(x) = L f"(z) = n(n — 1)z"2, one gets
of —op = — f(o0)
1 t
/ flotdost s [ Flodiooi+ Y (fon) - flo) - fo)Aa)
0
0<s<t
t
=-An / oy ds+n / oYy + Z (Ac™ — no™'AYy,)
0 0 0<s<t
t n
=—-\n / oy _ds+ Z <Z> Z o F(AY),)F
0 k=1 0<s<t

Proof of Proposition 4.3 Note that, forn € N,

n

ASp=3" (Z) (01— AX,)" Sk,

k=1

20
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and, by Ité’s formula:

t o t
Stn = n/ Sgl_—lo.s_d(,UWs +XS) + w / Sn 2 2 ds
0 0

Hence,

E(Sf):@ﬁ/ot (S5=207_ ds+z<> / (b su7r).

From the integration by parts formula, it follows that, fam € N andk < n,
t t
Snkgk — / SrFkdoh 4 / ok dsnk 4 [snk oK), = T4+ 1T+ I11.
0 0

From Proposition 4.1, one can deduce that

t k . .
I= —k:/\/ I Z <§> Z S?__kfff__j(AYAs)]a
0 .
j=1

0<s<t

and

t _ — k-1 2 t
II=(n—k) / oAt gn—k-lgew, 4+ x,) 4 (PR k= Dv / Snk=252 g
0 0

2
n—k n—k ' .
+Z< . ) S ok (AN, ),
]:2 ] OSSSt

and
n—k k n— o '
=Y ASI*Ack = ZZ( >< ) 7 ST AKX (A
0<s<t j=11=1 0<s<t

When taking the expectation and applying the Master forrantiFubini’s theorem, one obtains:

E(Stn_kaf) :—m/ (Sn bk )ds+z< >Am/t (sg_—kaf_—j) ds
0
+ ("_k)(”;k_l)” /0 E (s17+%02) ds+z:§<”;k>§j /OtE(agﬂ'sg—k—j)

t ) n—k k n— k ; o
+ Z < >§n ]/ (Sg_ g”_—i-n—J) ds + Z Z < > ( >"€j,l/ E (Sg—k—]ag—kk—l) ds.
j=1 1=1 0
The equation above can be written as

%E (S" ke ) + kAR (S” ko ) = g(t;n, k), 2
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whereg(-;n, k) is defined as in Proposition 4.3. Since the processes abewatinuous in proba-

bility, we can write
E (Sf__kaf_) =E <Sf_kaf) .

Clearly, equation (2) is a inhomogeneous ordinary difféamquation of first order. From solving
(2) with initial value0 at0, one obtains

t
E (St"crf) — ¢ kM /0 glu;n, k)eF  du.

Proof of Proposition 4.5 First, we have to compute the mean, variance and covaridnite ante-
grated variance IV. We use Fubini’'s Theorem and the resudthave already derived for computing
the moments of the volatility process Hence,

E(IVt):E</Ota§_ds> :/OtE(ag)ds: (vﬁ+%>t.

The second moment is given by

IVt / / +) ds du,

E(0202) :E( )—l—E( (02—02))

Using the SDE representation @f and 1td’s formula, one obtains the SDE

where foru > s,

%E(JJ):—2>\E(O’U ) +2mE (0704) +12E (07) ,

which can be solved using the initial val(e E (o73)). Similarly,

LB (020,) = AE (0%0) + mE (0?)

with initial value (s, E (02)). By writing

IVt // 0'0 dsdu—l—// o?o? ) ds du,

E (IV; IViys) = E (IV?) / / 2) dz du,

we can immediately deduce the variance and the covariarise Diie mean, variance and covariance
of o((;—1)n,:n) Can be directly derived from the corresponding resultsVor | O

and
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Proof of Proposition 4.6 First, we compute the mean ¢%]. Using the formula for the quadratic
variation of a stochastic integral (see e.g. [45] Theore@B)| the Master Formula and Fubini’s The-
orem, one can deduce that

E([S]t):E</O ai_d[vW+X]s>:(v2+§2)/0 (02) ds = (v* +5)<A2+%n_;>t
Second, we compute second momenitdf Using Itd’s formula, we deduce that
2 t - t o ’
S =2 [ (Shu-diSl. + (S = 2 /O [Shu—o2_dloW + X, + (STl

:21)2/ [Slu—opds+2 > [Slu-on (AX,)* + Y on (AX,)*

0 0<u<t 0<u<t

Hence (using again the Master Formula and Fubini's Theqrem)
B(S) =27+ ) | "B ([8)u02) du+ & / "E (%) du.
So we have to compufe ([S],02). We apply the integration by parts formula and obtain
o = [ 8lado?+ [ o ). +[18).o%,
= [S)emodnt2 [ (S-csdvio + [ISL-d

+v2/ af;,_dx+/ afg_d[X]x—i—/ o2 _d[[X],0?],.
0 0 0

Applying the Master formula and Fubini’s theorem, we get
E ([S]uag) = _2)‘/ E ([S]xag) dx + 2m /
0 0
+ (v + &) / E (0}) dz + 2k2, / E (03) dz + R272/ E (02) dz.
0 0 0

So we have to comput ([S],,0,,) first and, then, we can solve the differential equation

u

E ([S]s00) da + 1 /0 "E () dz

(E[S]ua ) = —2AE ([S]uai) + 2mE ([S]uow) + n2E ([Su)
+ (’U + 52) E (O’ﬁ) + 2:‘%2711@ (0'2) + RQQE (O'g) s

with initial value (0, 0). So similarly as above, we can compi#é[S],o,,). From the integration by
parts formula, we get

S = /u[S] _do, + /“ax_d[swusmx

:—)\/ o daz+/ [S]m_dYM—I—/ 02_d[vW+X]w—|—/ o2_d[[X], o]
0 0 0

Hence, we deduce from the Master formula and Fubini’s thedhat
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u

E ([Sluou) = —A /0 "E ([Slsos) da + m /0 E(S)) dz + (0 + &) /0 E (02) da

+ ka1 / E (02) dz.
0
So one obtain& ([S],0,) by solving the differential equation
d
T E([Sluow) = —AE ([S]uow) + mE ([S) + (v* + &) E (03) + 21 E (07)

with initial value (0, 0). Finally, we derive the covariance f].

t+s t+s
E ([S]e([S]e+s — [S])) = E <[S]t /t odvW + X]u> = (v + &) /t E ([S];02) du.

In order to computel ([S]tag), we use once again integration by parts, the Master Forrmda a
Fubini's Theorem so that in the end we just have to solve thewing two differential equations for
u >t

d
o E([Sltou) = —AE ([Slow) + AmE ([S]),
with initial value (¢, E[S];0¢) and
C%E[S]tai — _OAE[S],02 + 2\ E[S]iw + A2 E[S]:,

with initial value (¢, E[S];07). Combining these results, we obtain the covariance from

Cov ([S]t, [Slt+s) = E{[S]e[S]t+s} — E([S]) E([S]t+s)
= E([ST)* + E{[S]¢([STe+s — [S]e) — E([S]e) E([S]ers)-
O

Proof of Proposition 4.8 In order to proof Proposition 4.8, i.e. the covariationsamsn, returns and
squared returns, we have to compute the correspondingiatioas of the price process.

In the following, we will only sketch the proof. Basically,ewvill always apply Ité’s formula, the
Master Formula and Fubini’s Theorem in order to derive a @irder ordinary differential equations
(ODE) for the expectation we want to compute. This ODE can theeeasily solved.

Covariation of returns

Cov(Sy, Spis) = ES? + E(Sy(Siys — St))

=E(S7) +E < " ©)
t

Syos_d(vW, + X8)> =E(S7) =Var(S).
From equation (3), we can immediately deduce that

Cov(si, si+s) = E (sisi+s) = E(Sin — S(i—1)n) (S(i+s)h — S(i+s—1)n)
= Cov(Sin, S(itsyn) — Cov(Sin, Sips—1)n) — Cov(Sii—1)ns Stits)n)
+ Cov(Si—1)ns S(its—1)n) = 0.
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Covariation of returns and squared returns

Cov(St, St,y) =E (S7) + E (Si(S7., — S7))
t+s t+s
=E(S}) +E <St (2/ Su—dS, + / o2 _dvW + X]u>> @)
t t
t+s
=E (S}) + / E (Si02) du.
t

In the following, we will always assume that> t. O

Computing E (S;0,,)

StO'u = Stat + St(o't — O’u) = Sto't +/ StdO'u = Stat +/ St(—)\O'tdt —l-dY)\t).
t t
Hence, "
E (StO'u) =E (StO't) - )\/ E (StO'u) du.
t
So,E (S;0,,) is the solution to

d
@E (StO'u) = —/\E (StO'u) s

with initial value (¢, E (S;oy)). O

Computing E (Sy02) Similarly,

Stai = Statz +/ Stdafﬂ = Sltat2 — 2)\/ Stafﬂ_dw + 2/ Si0_dY\, +/ Syd[o] .
t t t t

Hence,

U

E (Si02) =E (S07) — 2)\/ E (S;02) dz + 27;1/ E (S;0,) d.
t t
SoE (S;02) is the solution to

%E (Sio2) = —2AE (Sio2) + 2mE (Siou) ,

with initial value (¢, E (S;0?)). O
Computing E (S,S,5.) fora < b <¢
SaSpSe = SaSp(Sp + (Se — Sp)) = SaSg + / SaSpop—d(vW, + X;).
b

Hence ES,S,S. = ES,Sz. O
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So we get
Couv(si, siy.s) =E <Sih5(2i+s)h> —2E <Sih5(2i+s—1)h> +E <Sihs(2i+s—1)h> -k <S(i—1)h5(2i+s)h>
+2E (S(i—l)hs(zi-i-s—l)h) —E (S(i—l)h5(2i+s—1)h>
:ﬁ (772 (_2)\6—2)\sh L oae2Asheh) )\6—2)\(h+sh)>
+8n%n171 (_2 e~ Ash o o=A(htsh) e—,\(sh—h)))
+ k1o (A e 2A(htsh) 4\ g2 A (sh=h)p 9\ 6_2’\Sh771) — O(h?).
Covariation between squared returns
Cou(S}, Stis) = E (S}) +E (S/(Sk — 7)) — E (S7ESL,,)
—E(st) + (24 8) [ B(stod) du-E(s)E($2),

and
COU(S?’ 812+5) = E(SZ2822+8) - E (82) E (SZ2+8) ’

and

E(S?S?ﬂ) = E(S?hS(QHs)h -2 Sz'th(i-i-s)hS(i-‘rs—l)h + Sz'th(2i+s—1)h —2 Sihs(i—l)hs(zwrs)h
+45inS(i—1)nS(i+s)nS(i+s—1)h — 2 SihS(i_1)hS(2i+s_1)h + S(2i—1)hS(2i+s)h
—2 S%i—l)hs(iJrS)hS(Hs—l)h + S(2i—1)h5(2i+s—1)h)-

]
Computing E (525,5.) for a < b < ¢
S28,S. = S2Sy(Sy + (S, — Sy)) = S2SE + / 28,0, _d(vW, + X,).
b
Hence,
E (525,S.) = E (S257) .
]

Computing E (5,5,52) for a < b < ¢ Similarly,
SuSpS2 = SuSy(SZ+ (S2— S2)) = S,S% +2 / SuSySe_ e d(vWy + Xu) + / SuSp02_d[X],.
b b

Hence, .
E (S.5,52) = E (S.55) + (v* + &) / E (SqSpo2) dx
b
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Computing ES,S; for a < b S,S; = Si+ S,(Sp — S2). From Itd's formula, we deduce that

b t
S —83=3 / SZ_ dS; + 3v? / Si—of ds+ > (AS} — 357 AS)),
a 0

a<t<b
where
ASE=>" (j) ST o7 (AX)? T =0} (AX))? 438,02 (AX,)? + 357 0 AX,.
7=0
Hence, , ,
ES,S? = ESY + &4 / Saoidt + 3 (v + &) / ES,S;o2dt.

O
Computing E (Syo3) for u > ¢
StO'?L = StO'f + St(o'i - O’?) = StO'? + St <—3)\/ O'g_dl'
t
+3 / or dYae + Y (AYe)® + 30, (AYx,)? + 307 AY), | .
t t<x<u
Hence,
E (S,0%) = E (Si0%) — 3A / E (S,0%) d + 3, / E (Si02) dx
t t
+ 312 / E (Sio,) dx + 3m / E (Stag,) dx.
t t
SoE (S;07) is the solution to the the ODE
%E (Sto*i) = —3)\E (Sto*z) +3mE (Sto*g) + 3nE (Stoy) + 3mE (Sto*g) ,
with initial value (¢, E (S;07)). O

Computing E (S;S,0,,) for u >t
S¢Suoy = S2oy + Si(Sior — Suoy)

:Stzat—i-St(—)\/ Sx_ax_dx—l—/ Sx_dYM—l—/ ax_de—l—/ 0p—d[X,0]z).
t t t t

Hence,

u

E (S¢Syoy) =E (Sfat) — )\/ E (S¢Sz0,) dx + 771/ E (S:S;) dx + /11,1/ E (Sio,) dz.
t t ~——— t

=E(s?)
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Computing E (S¢S,03) for u >t
S;S,02 = S?a? 4 Si(Syo2 — Sio?),

where

S,02 — Sio? = —2) / Sy o2 dr+2 / Sy 0p dYy, + / Se_d[Yxa
t t t

+ / o3 _d(wW, + X,) +2 Z 02 AX,AYy, + Z 02 AX,(AYyy)2

¢ t<x<u t<x<u

Hence,
E (SiSuo2) = E (Sfo7) — 2A / E (S:S,02) dx + 2m / E (8:S:04) dz + n2 / E (S;5;) dz
t t t

+ 2K1,1 / E (Sto'?c) dr + K12 / E (Si0,) dz.
t t

O
Computing S;Syo, for u>b>a
SaSpou = SaSyoy + SaSy(oy — 0p)
= S.Sp01 + SaSh( /b ' “A0p_dx + dYyy).
Hence,
E (S4Sy04) = E (SaSyo) — A /b UE (8,80, da +m /b UE (S2) dz.
O

Computing S, Syo2 for u>b>a
SuSyo2 = S4Sy0t + SuSy(02 — o})
= S.Sp07 + SuSp(—2A /bu o2_dx +2 /bu 0e—dYrg + [0]u — [0]b)-
Hence,
E (SaSpo2) = E (SaSpof) — 2 /b 'K (SaSpo2) d +2m /b ‘& (S4Sy02) dx +m2 /b ‘K (S,Sy) dz.

O

Computing E (S,5,5.54) for a <b <c<d
SaSpSeSy = SaSyS% 4 545,5.(Sq — S.),

SO,
E (S0SyScSa) = E (825,57 .
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From the results above€jov(s?, s?, ,) follows straightforwardly .

19 2148

A.1.1 Proofs for Section 5

Proof of Proposition 5.1 Recall thatH; = S? — IV;. Since we have already computed the moments
of S'andV, we only have to compute the joint moments of these two psassThe computations
are analogous to the ones carried out in the proof of Prapoit2, so we will refer to that proof for
more details. 0

Proof of Proposition 5.2 Recall thatG; = S — [S];. Since we have already computed the moments
of 2 and[S], we basically just have to compute the joint moments of tieseprocesses in order to
derive the mean, variance and covariancé&; of

Mean The mean is given by

E(Gy) =E(S7) —E([S]:) = 0.

Variance Next, we compute the second momenthf
G} = Si —287[S) + [S]F,
where
S2[8), = / S22 dluW +X]s+ /Ot[S]s_(2Ss_as_d(st—I—Xs)+a§_d[vW+X]s)+ 152, S]],
and

82,15 = [ o2 IS bW + Xl = 3 0228, 0 AX, 02 (AX,)(AK,)
0

0<s<t

=2 )" Se0d (AX)P+ Y ol (AX,)N
0<s<t 0<s<t
t t
E (S2[S),) = /0 E (5%02) ds + (v* + &) /0 E ([S]s0?) ds

t t
+2§3/0 (Ss0? )ds+§4/0 (o) ds.

All quantities above are already known, so the result fovérgance follows directly from abovell
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Covari

where

ance
CO'U(Gt, Gt—i—s)

E((S7 — [S1)(Stys —

Computing ES?S?,

2 (535%,,) — E

= COU(SE - [S]t7 St2+s - [S]t-i-s)
= E((S7 = [S10)(S7ss = [Slets)) — B(ST = [SI)E(S7s — [S)ets),

[Slers)) = BS? ST, — E[S]:SE s — E[S]i4557 + E[S)[S]its.

(SZ(S + (Sts — S1))?)

=E (S}) + 2E (S (Siss — St)) +E(SF(Seqs — St)?).

(St4s — St)? =2

Hence,

t

E (S7(S:

Computing E (S702) for u > t

2 2 _ Q2
St u_St

Hence,

a4
du

=0

t+s t+s t+s
Sy dSu—2 [  SidS.+ / o2 _doW + X]o
t t

t+s
45— S)%) = (V¥ + &) /t E (Sfos) du.

u
7+ 5302 - of) = Shot + / 7o’

t0t+2/ S?oy_dog + / SZd|

t t t

E (S/ou)

Computing E (S70y,) for u >t

Hence,

S0,

a4
du

= —2)\E (S702) + 2mE (Sfou) + nE (S7) .

= Stzat + SE(UH —0y) = SEO} + / Sfdo*s
t

Sfat—)\/ sfas_ds+/ S2dY,.
t t

E (Sfo,) = —AE (S?oy) + mE (S7) .

30
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Computing E ([S],5%,)

(81575 = [STeSE + [STe(SEes — SP)
t+s

= [S]tstz + [S]t(2 Su—dsu + [S]t+s - [S]t)

Hence, ,
+s
E[S]:SE, s = E[S]:S? + (v* + &) / E[S],02 _du.
t

O
Computing E ([5],, ,S7)
[S]e+s57 = 51657 + S7([Slets — [S]e)
_ 2 ¢ 20,2 v
(5152 + /0 S202_d[oW + X]..
Hence,
t+s
E ([S]+s52) = E ([S):5?) + (v + &) / E (5202) du.
O
Computing E ([5],[S],,,) We have already shown that
t+s
E((SUShee) =E(SE) + (0% +&) [ B(Slhod) du.
So altogether, we obtain:
E((S7 = [S16)(Stes — [Slers)) = E (S75715) — E ([S)6575) — E ([S]e4sS7) + E ([S):[S]+5)
(52— [S10) = E(G2).
O

So
Cov(Gy, Giss) = E (G}) — E(G1) E (Giys) = Var(Gy) = O(?),

for t — 0, which does not depend an
Computing Cov(Gy, [S],)

Cov(Gy, [S]e) = E(Gi[S]t) — E(Gy) E ([S]¢) = E(G4[S]:)
= E (57[S]:) —E ([S]7) -
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Note here that the corresponding properties for the incnésnef GG follow directly from the re-
sults above. 0

Proof of Proposition 5.4 The first and second order properties of the realised vagiaac be derived
from the corresponding results of the squared returns:

[S(S [(i—1)h,ih] ZE

Var ([55 [(i—1) hm Z Var(s )—l— 2 Z C’ov(sii,sii).
1<j<k<M

And for s > 0:

Cov ([Ss) -1y Sal{i4s—mgicsn) = D Cov(sT i stiys)-
1<j, k<M

Finally, we express the (quite lengthy) formulae of theamcie and covariance of the realised variance
in form of a Taylor series expansion and focus on the first$esnmly. These leads to the results given
in Proposition 5.4. O

A.1.2 Superposition Model

Now we assume that is given by a superposition model as defined in Section 5.4alkady men-
tioned, we can derive the mean, variance and covarianceietkat more general model, but due to
the fact that the driving processes of the asset price andotlélity components are dependent, the
formulae become quite lengthy. However, here we focus the.ta= 2 and we compute the quadratic
variation of the price process and use that a®ah/ ~!)—approximation of the corresponding formu-
lae of the realised variance. Since we only consider the £ase here, we can write the weights as
wy =w,wy =1—w

Proposition A.1 Letv? + & = 1. Then:

and

Var([S]) = <a1 + ash + CL36_)‘(1) h 4+ age 2@ n +as —oaMp 4 aﬁe_g)\@) n

—(AM1A®@) A e _oa(D)
+are (A+A h)) + <ag—|—a9h+a1oe A h+ane A h+61126 A

AD 4@ h))

—_o\(2) _
+ai3e A + ayye + &4h a5,
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ag =

az =

ag = —

as =

ag —

a7 =

ag —

3

T33@z T 3ame 1
—4 AW Ay AW L 10 AW 202 29510 g NA) 2)(2) 245 g A1) 42 4 A2) Ay
F2 AW N@ 3yt ND2N@) 2 4 9 3D 3N _ 90 \(1) 2)(2) 243 1 9 \(D) 3\ (2) 4t

SAD I w1200 3@ 2~ A0 N ) 7 { AD2A@ 2 (30 4 A@))z}

3
o o > n3m — ! (—4 AL 403 11421 20(2) 22 4 A1) 454

-1

1 1 g 1w 3w 1w 1
U@z noz)Y Te@z 13@: T 2.@2 a@a (M

NG (Al(l) ey { (16 A 22 416210 2 39 31 2y — 32\ A2y,

+16 A0 A 1 3201 A?) 42 4 160 2w2> non? + (8 A 2 4 g A1) \@
+24 A 2052 4 8w AP) 2 4 24 X1 A@) 2 — 24 XD \@) gy — 843 A 2
—o4 \® 2w> st + (12 AL WIA@ gyt A2 {9 D)2 4 19 \(1) 2,2

—8AWAD 4y 4 20N D 2 L 2 XD N@ g \D) 2 490 N2 A(2) 2
24D N® 3 49 w4)\(2)2> m? + ()\(1) AR g a2y 43N
+6 A1 2092 4w AM 2 46 XD AR 2 4 2 XM 4 ANE) — g ND) N2) 3
4 A A®) gy 4 A2 g7 2) 774} ,

4 (3mmz + n3w) wn

312 ’
4(6w—3w?—3)mn;  4(-3w?+3w+w—1)ngm
3A(2) 2 B 3A(2)2 ’
3 4,2 4
wism Wy W

3AM 2 axm) 2 T gAMm) 27
(8 —24w+24w? —8w?) gy (—24w? + 36w? +6w* — 24w + 6) n3
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N —12n4w + 3wng — 124w + 18 w?ny + 3y

24)\(2) 2
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+10w? XD AP 20 XD 2 gy XD A@ — g X2 2 4 4 XD A\ 49 \@) 2) N2

)

Wz (0 @2 Lwln |
A (A A ) -5 3ms |
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{4 (-A® 20?4 wAD 24 20 A0 NG 122D 2y - A2 - 231 3C) _ x@B2)

—1
. (w (X0 4 5 )) + (—42® 208+ 100TAD XD 4 500 2t 4130 27

—17A@ 2092 — 2202 XM AP — 11 02AM 2 1 99 AW 2 1 18w XD NP 11 13) 2y
_3AM2 _ A1) \@ _ 3@ 2)

27 1 (wt 4w+ 6wt —dw+1)ng | (o
o {30 (0} L et e g

+

1 (w?=2w+1)n 1 Q2u'—6w’+7w* —4dw+1)m| @
2 A2 2 4 \2) 2 K22
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) )

g /igli (6 A@ 4 gAM w) wni {/\(1) </\(1) + )\(2)> }_1 g /igli (6 AW

—1
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w(—2+2w)n13 w (—1+2w3—4w2+3w)n2771 1)
ajq = 2 3 2 3 Ro 1
(>\(1) +>\(2)) (>\(1) +A(2>) ’

n 2w(—2+2w)n13 2w(—1+2w3—4w2+3w)n27]1 %(2)

(AW 4 A@)? (AD + A@)? 2,1

1
a5 = {nf‘ + (3 6w+ 6w?) nant + <4w2 +3 - 4w> 3

5 1 3, 1
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Proof of Proposition A.1 In the following we will assume that < i, j < J andv? + & = 1.

Moments of o The moments of can be straightforwardly derived from the correspondingnamts
of 7 by
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Computing E ([S] SOPAL ) fori £k

u t
070 / 20gr ) 4 / w0 dr 4 (70, 70,
0 0

- / -0 (_w (k)ds+dY((k))) / 78 (207 0as + ay () )
0 0

+ZA )\(k
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Note: From the independence of th&é?) we get:
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+/&&%M1/ﬁwﬂﬁﬁk
0 0

Computing E (0278( ))
(Shuriy = [ (8)-de® + [ 7 2d[S), + (18], 70,
0 0

= A0 / (S)s-7ds + / [S)e-dY (), + / o2 rd[X], + / o2 d[[x], 7.
0 0 0



REFERENCES 38

Hence,

)

—|—I{g)1/ Eo?ds.
0

The computations for the covariance are completely anak¢mthe ones above and the correspond-
ing calculations in the one—factor setting.
O
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