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Abstract

Combination of forecasts from survey data is complicated by the frequent entry

and exit of individual forecasters which renders conventional least squares regression

approaches infeasible. We explore the consequences of this issue for existing combina-

tion methods and propose new methods for bias-adjusting the equal-weighted forecast

or applying combinations on an extended panel constructed by back-�lling missing ob-

servations using an EM algorithm. Through simulations and an application to a range

of macroeconomic variables we show that the entry and exit of forecasters can have a

large e¤ect on the real-time performance of conventional combination methods. The

bias-adjusted combination method is found to work well in practice.

KEYWORDS: Real-time Data, Survey of Professional Forecasters, Bias-adjustment,

EM Algorithm.
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1 Introduction

Survey forecasts provide an ideal data source for investigating real-time forecasting perfor-

mance. By construction such forecasts were computed in real time and so do not su¤er

from the potential look-ahead biases associated with forecasts constructed ex-post from an

econometric model due to the e¤ects of parameter estimation, model selection (Pesaran and

Timmermann (2005)) or data revisions (Amato and Swanson (2001); Croushore and Stark

(2001)).

Surveys include multiple participants and so a natural question becomes how best to

select or combine individual forecasts. Moreover, a largely ignored issue is that most surveys

take the form of unbalanced panels due to the frequent entry, exit and re-entry of individual

forecasters. This is a general problem and a¤ects, inter alia, the Livingston survey, the

Survey of Professional Forecasters, Blue Chip forecasts, the survey of the Confederation of

British Industry, Consensus Forecasts and surveys of �nancial analysts�forecasts.

As an illustration of this problem, Figure 1 shows how participation in the Survey of

Professional Forecasters evolved over the 5-year period from 1995 to 1999. Each quarter,

participants are asked to predict the implicit price de�ator for the Gross Domestic Product.

Forecasters constantly enter, exit and re-enter following a period of absence, creating prob-

lems for standard combination approaches that rely on estimating the covariance matrix for

the individual forecasts. Such approaches are not feasible with this type of data since many

forecasters may not have overlapping data and so the covariance matrix cannot be estimated.

This paper considers ways to recursively select or combine survey forecasts in the pres-

ence of such missing observations. We consider both conventional methods and some new

approaches. The �rst category includes the previous best forecast, the equal-weighted av-

erage, odds ratio methods in addition to least squares and shrinkage methods modi�ed by

trimming forecasts from participants who do not report a minimum number of data points.

The second category includes a method that projects the realized value on a constant and the

equal-weighted forecast. This projection performs a bias correction in response to the strong
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evidence of biases in macroeconomic survey forecasts (Zarnowitz (1985); Davies and Lahiri

(1995)) and among �nancial analysts (Hong and Kubik (2003)). Although this method is

parsimonious and only requires estimating an intercept and a slope parameter, we also con-

sider using the SIC to choose between the simple and bias-adjusted average forecast. Finally,

we use the EM algorithm to �ll out past missing observations when forecasters leave and

rejoin the survey and combine the forecasts from the extended panel.

We compare the (�pseudo�) real-time forecasting performance of these methods through

Monte Carlo simulations in the context of a common factor model that allows for bias in the

individual forecasts, dynamics in the common factors, and heterogeneity in individual fore-

casters�ability. In situations with a balanced panel of forecasts, the least squares combination

methods perform quite well unless the cross-section of forecasts (N) is large relative to the

length of the time-series (T ). If the parameters in the Monte Carlo simulations are chosen

so that equal-weights are su¢ ciently suboptimal in population, least-squares combination

methods dominate the equal-weighted forecast. Interestingly, the simple bias-adjusted mean

outperforms regression-based and shrinkage combination forecasts in most experiments.

In the simulations that use an unbalanced panel of forecasts calibrated to match actual

survey data, the simulated real-time forecasting performance of the least squares combination

methods deteriorates relative to that of the equal-weighted combination. This happens

because the panel of forecasters must be trimmed to get a balanced subset of forecasts from

which the combination weights can be estimated by least squares methods. This step entails

a loss of information relative to using the equal-weighted forecast which is based on the

complete set of individual forecasts. The bias-adjusted mean forecast continues to perform

well in the unbalanced panel.

We �nally evaluate the selection and combination methods using survey data on 14 time

series covering a range of macroeconomic variables. Consistent with other studies (e.g.

Stock and Watson (2001, 2004)), we �nd that most methods are dominated by the simple

equal-weighted average. However, there is evidence for around half of the variables that the
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bias-adjusted combination method�particularly when re�ned by the selection step based on

the SIC�improves upon the equal-weighted average. We show that this is related to evidence

of biases in the equal-weighted average.

The plan of the paper is as follows. Section 2 describes methods for estimating combi-

nation weights. Section 3 conducts the Monte Carlo simulation experiment while Section 4

provides the empirical application. Section 5 concludes.

2 Selection and Combination Methods

This section introduces the methods for selecting individual forecasts or combining multiple

forecasts that will be used in the simulations and empirical application. We let Ŷ i
t+hjt be

the ith survey participant�s period-t forecast of the outcome variable Yt+h, where h is the

forecast horizon, i = 1; :::; Nt and Nt is the number of forecasts reported at time t. Individual

forecast errors are then given by eit+hjt = Yt+h � Ŷ i
t+hjt, while the vector of forecast errors

is et+hjt = �Yt+h � Ŷt+hjt, where Ŷt+hjt = (Ŷ 1
t+hjt; :::; Ŷ

N
t+hjt)

0 and � is an Nt � 1 vector of

ones. Suppose that Yt+h � (�y; �2y), Ŷt+hjt � (�;�ŷŷ) and Cov(Yt+h; Ŷt+hjt) = �yby, where
for simplicity we omit time- and horizon subscripts on the moments. Forecast combination

methods entail �nding a vector of weights, !, that minimize the mean squared error (MSE):

E[e0t+hjtet+hjt] = (�y � !0�)2 + �2y + !
0�ŷŷ! � 2!0�yŷ: (1)

Selection and combination methods di¤er in how they estimate the moments in (1) and

which restrictions they impose on the weights.

Previous best forecast. Rather than obtaining ! through estimation, one can simply pick

the best forecast based on past forecasting performance, i.e. Ŷ �
t+hjt = Ŷ

i�t
t+hjt; where,

i�t = arg min
i=1;:::;Nt

(t� h)�1
tX

�=h+1

(Y� � Ŷ i
� j��h)

2: (2)
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This corresponds to setting a single element of ! equal to one and the remaining elements

to zero. Note that the ranking of the various forecasts follows a stochastic process that may

lead to shifts in the selected forecast as new data emerges.

Equal-weighted Average. By far the most common combination approach is to use the

equal-weighted forecast,

�Yt+hjt = N�1
t

NtX
i=1

Ŷ i
t+hjt; (3)

which is simple to compute even for unbalanced panels of forecasts and has proven surpris-

ingly di¢ cult to outperform (Clemen (1989); Stock and Watson (2001, 2004); Timmermann

(2006)). Intuition for why this approach works well is that, in the presence of a common

factor in the forecasts, the �rst principal component can be approximated by the 1=N com-

bination. In population, the equal-weighted average is optimal in the sense that it minimizes

(1) when the forecast error variances are the same and forecast errors have identical pairwise

correlations, i.e. in the absence of heterogeneity among individual forecasters, but it will

generally be suboptimal under heterogeneity. Importantly, optimality of the 1=N weights

also requires that the forecasts be unbiased (� = �y�) and the additional constraint !
0� = 1.

Least Squares Estimates of Combination Weights. A simple way to obtain estimates of

the combination weights is to perform a least squares regression of the outcome variable,

Yt, on a constant, !0, and the vector of forecasts, Ŷtjt�h = (Ŷ 1
tjt�h; :::; Ŷ

N
tjt�h)

0: Population

optimal values of the intercept and slope parameters in this regression are:

!�0 = �y � !�0�

!� = ��1byby�yby: (4)
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Granger and Ramanathan (1984) consider three versions of the least squares regression:

(i) Yt = !0 + !
0Ŷtjt�h + "t

(ii) Yt = !0Ŷtjt�h + "t (5)

(iii) Yt = !0Ŷtjt�h + "t; s.t. !0� = 1:

The �rst and second of these regressions can be estimated by standard OLS, the only di¤er-

ence being that the second equation omits an intercept term. The third regression omits an

intercept and can be estimated through constrained least squares. The �rst regression does

not require the individual forecasts to be unbiased since any bias is absorbed through the

intercept, !0. In contrast, the third regression is motivated by an assumption of unbiased-

ness of the individual forecasts. Imposing that the weights sum to one then guarantees that

the combined forecast is also unbiased.

The main advantage of this approach is that it applies under general correlation patterns,

including in the presence of strong heterogeneity among forecasters. On the other hand,

estimation error is known to be a major problem when N is large or T is small. Another

problem is that the approach is poor at handling unbalanced data sets for which the full

covariance matrix cannot be estimated. In such cases, minimum data requirements must be

imposed and the set of forecasts trimmed. For example, one can require that forecasts from

a certain minimum number of (not necessarily contiguous) common periods be available.

Inverse MSE. To reduce the e¤ect of parameter estimation errors, we apply a weight-

ing scheme which, for forecasters with a su¢ ciently long track record, uses weights that

are inversely proportional to their historical MSE-values, while using equal-weights for the

remaining forecasters (normalized so the weights sum to one).

Shrinkage. Stock and Watson (2004) propose shrinkage towards the arithmetic average

of forecasts. Let !̂it be the least-squares estimator of the weight on the ith model in the

forecast combination obtained, e.g., from one of the regressions in (5). The combination
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weights considered by Stock and Watson take the form:

!it =  t!̂
i
t + (1�  t)(1=Nt);

 t = max(0; 1� �Nt=(T � 1�Nt � 1)): (6)

Larger values of � imply a lower  t and thus a greater degree of shrinkage towards equal

weights. As the sample size, T , rises relative to the number of forecasts, Nt, the least squares

estimate gets a larger weight, thus putting more weight on the data in large samples.

Odds Matrix Approach. The odds matrix approach (Gupta and Wilton (1988)) computes

the combination of forecasts as a weighted average of the individual forecasts where the

weights are derived from a matrix of pair-wise odds ratios. The odds matrix, O, contains

the pair-wise probabilities �ij that the ith forecast will outperform the jth forecast in the

next realization, i.e. oij =
�ij
�ji
. We estimate �ij from �ij =

aij
(aij+aji)

; where aij is the number

of times forecast i had a smaller absolute error than forecast j in the historical sample. The

weight vector, !, is obtained from the solution to (O�NtI)! = 0; where I is the identity

matrix. We follow Gupta and Wilton and use the normalized eigenvector associated with

the largest eigenvalue of O.

Bias-adjusted mean. As noted in the introduction, there is strong empirical evidence that

individual survey participants�forecasts are biased. Moreover, equal-weighted averages of

biased forecasts will themselves in general be biased. To deal with this, we propose a simple

bias-adjustment of the equal-weighted forecast, �Yt+hjt :

~Yt+hjt = �+ � �Yt+hjt. (7)

To intuitively motivate the slope coe¢ cient in (7), �, notice that there always exists a scaling

factor such that, at a given point in time, the product of this and the average forecast is

unbiased. To ensure that on average (or unconditionally) the combined forecast is unbiased,

we further include a constant in (7).
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This extension of the equal-weighted combination uses the full set of individual forecasts

(incorporated in the equal-weighted average) and only requires estimating two parameters,

� and �, which can be done through least squares regression. The method is therefore highly

parsimonious and so is less a¤ected by estimation error than regression-based methods such

as (5), particularly when N is large. For balanced panels the method can be viewed as a

special case of the general Granger-Ramanathan regression (5), part (i), although this does

not hold with missing observations.

To see more rigorously when the bias-adjustment method is optimal, notice that under

homogeneity in the covariance structure of (Yt+h; Ŷt+hjt), we can write (by Theorem 8.3.4 in

Graybill (1983)) ��1byby = c1IN + c2��
0, �yby = c3�, where ci are constant scalars and IN is the

N �N identity matrix, so that from (4), !� = c3(c1+Nc2)�, while !�0 = �y�!�0� . Setting

� = c3N(c1+Nc2) and � = �y� c3(c1+Nc2)�0�, we see that the optimal combination takes

the form in (7).

The bias-adjustment method will thus be optimal if the only source of heterogeneity is

individual-speci�c biases, although it will not be (asymptotically) optimal in the presence

of heterogeneity in the variance or covariance of the forecast errors. The reason is that the

intercept term, �, corrects for arbitrary forms of biases, independent of their heterogeneity.

This is empirically important; for example Elliott, Komunjer and Timmermann (2008) �nd

evidence of considerable heterogeneity in individual-speci�c biases.

To see when a slope coe¢ cient, �, di¤erent from one may occur, suppose that both

the outcome and the forecasts are driven by a single common factor, F , but that, due to

misspeci�cation, the individual forecasts contain an extraneous source of uncorrelated noise,

"i : Y = F + "Y ; Ŷi = F + "i , where V ar(F ) = �2F , V ar("i) = �2", Cov("i; "j) = 0 for

all i 6= j, and Cov("i; "y) = 0. Then one can show that !� = ��2F=(�
2
" + N�2F ): The

optimal weights are thus only equal to (1=N)� in the special case where �2" = 0, i.e. if

there is no misspeci�cation in the individual forecasts. By including a slope coe¢ cient,

� = N�2F=(�
2
" +N�2F ), equation(7) can handle this type of (homogenous) misspeci�cation.
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Model selection approach (SIC). Following Swanson and Zeng (2001), this approach uses

the Schwarz Information Criterion (SIC: Schwarz (1978)) to select among the simple and

bias-adjusted equal-weighted average. The bias-adjusted forecast requires estimating two

additional parameters and so only gets selected provided that its �t improves su¢ ciently on

the equal-weighted forecast.

EM algorithm. Suppose that the individual forecasts follow a local level model:

Ŷ i
t+hjt = xit + �it �it � N

�
0; �2

�i

�
xit+1 = xit + �it �it � N

�
0; �2�i

�
; (8)

where �it and �
i
t are mutually independent, cross-sectionally independent as well as indepen-

dent of x1:We use the Expectation Maximization (EM) algorithm (Watson and Engle (1983);

Koopman (1993)) to recursively estimate the two variances �2
�i
and �2�i. This approach uses

the smoothed state to back-�ll missing forecasts whenever a survey participant has left the

survey but rejoins at a later stage. The least squares combination approach in (5), part (i)

is then used on the reconstructed panel of forecasts.

It is di¢ cult to obtain analytical results for the forecasting performance of the above

methods. The forecasts are likely to re�ect past values of the predicted series and so cannot

be considered strictly exogenous, making it very hard to characterize the �nite sample dis-

tribution of the mean squared forecast errors. The unbalanced panel structure of the surveys

further complicates attempts at analytical results. For this reason we next turn to simula-

tions and empirical applications to study the performance of the selection and combination

approaches.
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3 Monte Carlo Simulations

To analyze the determinants of the performance of the various forecast combination methods,

we conduct a series of Monte Carlo experiments in the context of a simple two-factor model:

Yt+1 = �y + �y1F1t+1 + �y2F2t+1 + "yt+1; "yt+1 � N(0; �2"Y )

Ŷ i
t+1jt = �i + �i1F1t+1 + �i2F2t+1 + "it+1; "it+1 � N(0; �2"i), i = 1; :::; N; (9)

where we assume that E ["it+1"jt+1] = 0 if i 6= j, and E["it+1"yt+1] = 0 for i = 1; :::; N:

Dynamics is introduced by letting the factors (F1t+1 F2t+1)0 follow an AR(1) process with

diagonal autoregressive matrix BF and uncorrelated innovations, "Ft+1 � N(0; �2"F ). This

model is simply a di¤erent representation of a setup where at time t forecasters receive noisy

signals that are imperfectly correlated with the future factor realizations, F1t+1 and F2t+1.

We let the sample size, T , vary from 50 to 100 and 200 and let the number of forecasts

(N) assume values of 4, 10 and 20. This covers situations with large N relative to the sample

size T (e.g., N = 20; T = 50) as well as situations with plenty of data points relative to the

number of estimated parameters (e.g., N = 4, T = 200). All forecasts are one-step-ahead,

simulated out-of-sample, and are computed based on recursive parameter estimates using

only information available at the time of the forecast.

The �rst experiments assume that the individual forecasts are unbiased and set �y =

�i = 0 (i = 1; :::; N). In experiment 1 all parameters (except for BF which equals zero) are

set equal to one so the optimal weights are identical and sum to unity. In experiments 2-7

we assume that �i1 = 0:5; (i = 1; ::::; N) while �i2 is set so that the regression coe¢ cient of

Yt+1 on the individual forecasts Ŷ i
t+1jt is unity. Factor dynamics is introduced in experiment

3 by letting BF = 0:9�I. Heterogeneity in the individual forecasters�ability is introduced in

two ways: �rst, by drawing the factor loadings, �if , from a Beta(1,1) distribution centered

on 0.5 (experiment 4) and, second, by drawing the inverse of the variance of the idisyncratic

errors, ��2"i , from a Gamma(5,5) distribution (experiment 5). To allow for the possibility
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that di¤erent forecasts capture di¤erent predictable components (thus enhancing the role of

forecast combinations over the individual models), experiment 6 considers a scenario where

di¤erent groups of forecasts load on di¤erent factors. Finally, forecast biases are introduced

in experiment 7 by allowing for a non-zero intercept. Additional details are provided in Table

1.

3.1 Balanced Panel of Forecasters

The �rst set of results assumes a balanced panel of forecasts. Panel A of Table 1 reports

simulated out-of-sample MSE-values computed relative to the MSE-value associated with

the equal-weighted forecast (which is thus always equal to unity).

In the �rst experiment, the simple equal-weighted forecast performs best�imposing a

true constraint ensures e¢ ciency gains. For the same reason, the combination that excludes

an intercept and constrains the weights to sum to unity is best among the regression-based

methods. The improvement over the most general least squares regression (GR1) tends,

however, to be marginal. Conversely, when the true weights do not sum to unity, as in

the second experiment, the most constrained schemes such as equal weights or GR3 produce

MSE-values that are worse than the less constrained methods (GR1 and GR2). Constraining

the intercept to be zero (GR2) leads to marginally better performance than under the un-

constrained least squares model (GR1) when this constraint holds as in experiments 2-6, but

leads to inferior performance when the underlying forecasts are in fact biased (experiment

7).

The shrinkage forecasts generally improve on the benchmark equal-weighted combina-

tion�s performance. In most cases the shrinkage approach does as well as or slightly better

than the best least squares approach. When the sample size is small, the model with the

largest degree of shrinkage (� = 1) does best. However, using a smaller degree of shrink-

age (� = 0:25) becomes better as the sample size, T , is raised (for �xed N). The bene�t

from shrinkage is particularly sizeable when the number of models is large. Although the
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di¤erences in MSE-values are small, the odds matrix and inverse MSE approaches generally

dominate using equal-weights.

Factor dynamics�introduced in the third Monte Carlo experiment�leads to deteriorating

forecasting performance across all combination schemes. Interestingly, it also has the e¤ect

of improving the relative performance of the most general least squares methods (GR1 and

GR2), shrinkage and the bias-adjusted average.

Heterogeneity in the factor loadings of the various forecasts�introduced by drawing these

from a beta distribution� means that the true performance di¤ers across forecasting models.

Models with larger factor loadings have a higher R2 than models with small factor loadings.

As a result, the equal-weighted average performs worse. Heterogeneity in factor loadings

(experiment 4) leads to poor performance of the simple equal-weighted forecast. Conversely,

the forecasting performance of the previous best model improves as the heterogeneity gets

stronger and the best single forecast gets more clearly de�ned. Heterogeneity in the precision

of individual forecasts (experiment 5) leads to relatively good performance for the least

constrained OLS schemes along with the bias adjusted mean. Of course this result depends

on the assumed degree of heterogeneity among forecasters with increases (decreases) in the

heterogeneity leading to deteriorating (improving) performance for the bias adjusted mean.

For example, drawing ��2"i from a more disperse Gamma(1,1) distribution means that the

bias-adjusted mean is dominated by the best least squares method for most combinations of

N and T . Conversely, drawing ��2"i from a less disperse Gamma(10,10) distribution improves

the relative performance of the bias-adjusted mean.

When half of the forecasts track factor one while the remaining half track factor two

(experiment 6), the bene�ts from combining over using the single best model (which can

only track one factor at a time) tend to be particularly large. Moreover, the bias-adjusted

mean performs very well as do the least constrained OLS and shrinkage forecasts. When we

let half of the forecasts be biased with a bias equal to one-half of the standard deviation pa-

rameters (experiment 7), the e¢ ciency gain due to omitting an intercept in the least squares
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combination regression is now more than out-done by the resulting bias. This explains why

the general regression (GR1) which includes an intercept term produces better results than

the constrained regressions (GR2 and GR3). The shrinkage method pulls the least squares

forecast towards the biased equal-weighted forecast and so performs worse than in the case

without a bias. In contrast, the performance of the bias-adjusted mean is largely unchanged

compared with the results in the second experiment since only the intercept is changed.

Overall, the best forecasting performance is produced by the bias-adjusted mean. This

approach produces better results than the equal-weighted forecast in all experiments except

the �rst one (for which a small under-performance of up to �ve percent is observed). Fur-

thermore, it generally does best among all combination schemes in experiments 2-7, with

slightly better results observed for the least squares and shrinkage methods in the presence

of heterogeneity in factor loadings (experiment 4). Finally, the re�nement that uses the SIC

to select among the simple- and bias-adjusted mean improves slightly upon the latter in the

�rst experiment and produces similar forecasting performance in the other experiments.

3.2 Unbalanced Panel of Forecasters

We next perform the same set of experiments on data generated from a two-factor model

that mimics the unbalanced panel structure of the Survey of Professional Forecasters data

underlying Figure 1. To this end, we �rst group the experts into frequent and infrequent

forecasters de�ned according to whether a forecaster participated in the survey a minimum

of 75 percent of the time. Next, we pool observations within each of the two groups of

forecasters and estimate two-state Markov transition matrices for each group, where state

one represents participation in the survey while state 2 means absent from the survey.

Using data on in�ation forecasts, the estimated �stayer�probabilities for the transition

matrices conditional on frequent participation are 0.84 and 0.59, while the estimates are

0.69 and 0.97, conditional on infrequent participation. Thus, among frequent forecasters

there is an 84 percent chance of observing a forecast next period if a forecast is reported in
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the current period. This probability declines to 41 percent if no forecast is reported in the

current period. The extremely high probability (0.97) of repeated non-participation among

the infrequent forecasters shows that this category covers forecasters who rarely participate

in the survey. We set the proportion of frequent forecasters at 40 percent.

We use these estimates to generate a matrix of zeros and ones that tracks when a fore-

caster participated in the survey. We then multiply, element-by-element, the zero-one partic-

ipation matrix with the matrix of forecasts generated from the two-factor model and apply

the combination methods to the resulting (unbalanced) set of forecasts.

To apply least-squares combination methods we trim those forecasters with fewer than

20 contiguous forecasts or no prediction for the following period. Among the remaining

forecasters we use the largest common data sample to estimate the combination weights.

If there are no forecasters with at least 20 contiguous observations or if there are fewer

remaining forecasters than parameters to be estimated, we simply use the average forecast.

Results are reported in Panel B of Table 1 in the form of out-of-sample MSE-values

measured relative to the values generated by the simple average. Since unbalanced panels

are more likely to occur in settings with a relatively large number of forecasters, we only

report results for N = 20.

Compared with the earlier results in Panel A, the previous best and inverse MSE ap-

proaches perform more like the simple average in the unbalanced panel. A similar �nding

holds for the least squares combination and shrinkage approaches. The performance of these

methods (relative to the simple equal-weighted approach) is therefore relatively worse in the

unbalanced panel. Two reasons explain this �nding. First, in about one-third of the peri-

ods the regression methods revert to using the equal-weighted forecast because a balanced

subset of forecasters with a su¢ ciently long track record cannot be found. Second, since the

regression methods trim the set of forecasters to obtain a balanced subset of forecasts, they

discard potentially valuable information. Consequently, these methods perform worse than

the equal-weighted average when conditions are in place for the latter to work well and only
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outperform by a small margin otherwise.

The combinations that back-�ll missing observations using the EM algorithm generally

o¤er consistent, though fairly modest, improvements over the equal-weighted average in all

but the �rst experiment.

Overall, the bias-adjusted mean along with the SIC re�nement that chooses between this

method and equal weights continues to perform better than the other approaches even with

an unbalanced panel of forecasts. Moreover, while the bias adjustment method can be used

even with balanced panels, the relative performance of this approach generally improves

as a result of forecasters� entry and exit. The only experiment where a worse (relative)

performance is observed is in the sixth experiment with a block diagonal factor structure.

Even in this case the bias-adjusted mean remains the best overall.

We conclude that the bias-adjusted mean is better than the other methods that can

be used when estimation of the full covariance matrix of the forecast errors is not feasible

(equal-weights, odds matrix or previous best forecast). This approach also performs better

than the regression and shrinkage approaches modi�ed so they can be used on a balanced

subset of forecasters.

4 Empirical Application

To illustrate the empirical performance of the selection and combination methods, we study

one- through four-step ahead survey forecasts of 14 variables that have data going back to

1981 and are covered by the Survey of Professional Forecasters. A brief description of these

variables is provided in Table 2.

4.1 Forecasting performance

The �rst 30 forecasts are used to estimate the initial combination weights. The estimation

window is then recursively expanded up to the end of the sample which gives us 77 forecasts
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for h = 1 and 74 forecasts for h = 4: The regression-based methods estimate the combination

weights on the largest common sample and require forecasters to have a minimum of 10

common contiguous observations, although the results are robust to using 20 contiguous

observations instead. For the real-time realized value we follow Corradi, Fernandez and

Swanson (2007) and use �rst release data.

Empirical results in the form of (pseudo real-time) root mean squared error (RMSE)

values are presented in Table 3. Again we have normalized by the RMSE for the equal-

weighted average. In some cases the underlying combination models are nested while in

other cases they are not. This makes it di¢ cult to compare the statistical signi�cance of the

performance measures which we therefore do not pursue any further.

In common with empirical �ndings in the literature, the simple equal-weighted forecast

turns out to be extraordinarily di¢ cult to beat. For example, the Granger-Ramanathan

combinations underperform across the board, in some cases by a wide margin. The shrink-

age schemes mostly improve upon the least squares combination methods but continue to

underperform against the equal-weighted combination. The same conclusion is true for the

odds ratio and EM approaches.

Only two methods seem capable of producing better average forecasting performance

than the equal-weighted average, namely the bias-adjusted/SIC method and the inverse of

the MSE. The SIC method that selects between the simple and bias-adjusted equal-weighted

average does particularly well, producing lower RMSE-values than the equal-weighted fore-

cast for close to half of the series including the consumer price index, industrial production,

nominal GDP growth, the GDP price de�ator, changes in private inventories or residential

�xed investments, T-bill rates and the unemployment rate.

4.2 Bias and Heterogeneity

Our earlier analysis suggests that the performance of the equal-weighted mean deteriorates

as a result of cross-sectional heterogeneity in forecast precision. To see if this helps explain
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our empirical �ndings, Table 4 reports measures of cross-sectional heterogeneity in the biases

along with standard deviations of the forecast errors. More speci�cally, as a measure of het-

erogeneity in the biases we report the cross-sectional standard deviation of the forecast biases

normalized by the standard deviation of the outcome variable. To measure heterogeneity

in the variance of the forecast errors, we report the cross-sectional standard deviation of

forecast error variances, normalized by the variance of the outcome variable. Interestingly,

cross-sectional heterogeneity in the bias is quite strong for variables such as the CPI and

GDP price index where we �nd that the bias-adjusted mean improves over the simple mean.

Similarly, heterogeneity in the variances is strong for variables such as the T-bill rate and

the GDP price index, where the bias-adjusted mean again performs well.

Table 4 also shows estimates of � and � from the bias-adjustment regression (7) applied

to the full sample. For a majority of the variables, there is strong evidence of biases as

� 6= 0 or � 6= 1. This is clearly the case for variables such as the consumer and GDP

price indexes, nominal GDP growth, residential �xed investment and the T-bill rate where

signi�cant biases coincide with good performance of the bias-adjustment method.

4.3 Attrition of forecasters

Understanding the process whereby forecasters exit from the sample is important. Suppose,

for example, that there is a systematic tendency for forecasters who previously produced

relatively poor forecasts to leave the sample so that only the best forecasters remain. This

would suggest focusing mainly on the forecasters with the longest track record. Conversely,

if there is only scant evidence that past forecasting performance is related to attrition, then

the number of forecasts reported by individual survey participants�or their past forecasting

performance�is unlikely to be a good indicator of future performance.

To brie�y address this issue we select survey participants with a minimum of ten reported

forecasts. For these we code continued participation as zero and exit as one. For each of

the variables in the survey we pool the data across survey participants and estimate probit
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models using the previous number of forecasts and relative RMSE as regressors. Table 5

shows when the regressors were signi�cant along with the sign of the coe¢ cients in these

cases. In many cases the number of previous forecasts is signi�cantly negatively related to

the probability of an exit, suggesting that forecasters who have participated in the survey

for a long time are less likely to exit. The relative RMSE is signi�cant for only a few of the

variables�in many cases with the wrong sign�so the evidence of a link between exits from

the survey and poor past forecasting performance is very weak.

5 Conclusion

Real-time combination of survey forecasts requires trading o¤ biases induced by using re-

stricted and sub-optimal combination weights against the e¤ect of parameter estimation

error arising from the use of less restricted combination methods. This trade-o¤ changes

with the number of forecasts and so helps explain why the entry and exit of forecasters is

important to the performance of di¤erent combination methods. Attrition in forecast surveys

means that the performance of combination methods that require estimating the covariance

between the individual forecasts deteriorates relative to that of more robust methods such

as equal-weighting. We �nd empirical evidence, however, that the equal-weighted forecast is

strongly biased and that a simple bias-adjustment method seems to work well in practice.
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Table 1: Simulation Results From Forecast Combinations Under Factor Structure 
A) Full data 

# of 
Forecasts

Sample 
Size EW BAM SIC GR1 GR2 GR3 S1 S2 Odds Previous 

Best
Inverse 

MSE

4 50 1.00 1.04 1.00 1.10 1.08 1.06 1.08 1.08 0.98 1.44 0.97
4 100 1.00 1.02 1.00 1.05 1.05 1.04 1.05 1.04 0.99 1.54 0.99
4 200 1.00 1.01 1.00 1.02 1.02 1.01 1.02 1.02 1.00 1.58 0.99
10 50 1.00 1.05 1.00 1.30 1.27 1.24 1.23 1.20 0.97 2.36 0.96
10 100 1.00 1.02 1.00 1.13 1.12 1.11 1.12 1.10 0.99 2.62 0.98
10 200 1.00 1.01 1.00 1.06 1.06 1.05 1.05 1.05 0.99 2.91 0.99
20 50 1.00 1.04 1.00 1.79 1.72 1.67 1.50 1.32 0.97 3.79 0.95
20 100 1.00 1.02 1.00 1.25 1.24 1.22 1.21 1.13 0.98 4.36 0.97
20 200 1.00 1.01 1.00 1.13 1.12 1.11 1.11 1.11 0.99 4.84 0.99

4 50 1.00 0.89 0.96 0.95 0.93 1.06 0.93 0.92 0.99 1.06 0.99
4 100 1.00 0.88 0.91 0.90 0.90 1.04 0.90 0.90 1.00 1.13 0.99
4 200 1.00 0.87 0.87 0.88 0.88 1.01 0.88 0.88 1.00 1.15 1.00
10 50 1.00 0.81 0.85 1.00 0.97 1.24 0.95 0.93 0.98 1.06 0.98
10 100 1.00 0.80 0.80 0.87 0.86 1.11 0.85 0.84 0.99 1.11 0.99
10 200 1.00 0.79 0.79 0.83 0.82 1.05 0.82 0.82 1.00 1.19 1.00
20 50 1.00 0.75 0.78 1.25 1.21 1.66 1.07 0.97 0.98 1.01 0.98
20 100 1.00 0.74 0.74 0.91 0.89 1.23 0.87 0.83 0.99 1.08 0.99
20 200 1.00 0.74 0.74 0.81 0.81 1.11 0.80 0.80 1.00 1.15 1.00

4 50 1.00 0.75 0.79 0.80 0.78 1.06 0.78 0.78 0.98 1.21 0.98
4 100 1.00 0.74 0.75 0.76 0.75 1.03 0.75 0.75 0.99 1.28 0.99
4 200 1.00 0.73 0.73 0.74 0.74 1.02 0.74 0.74 1.00 1.35 0.99
10 50 1.00 0.53 0.54 0.66 0.64 1.24 0.63 0.62 0.98 1.25 0.97
10 100 1.00 0.52 0.52 0.57 0.56 1.10 0.56 0.56 0.99 1.34 0.99
10 200 1.00 0.50 0.50 0.53 0.52 1.05 0.52 0.52 0.99 1.43 0.99
20 50 1.00 0.43 0.43 0.72 0.70 1.69 0.63 0.61 0.98 1.21 0.97
20 100 1.00 0.42 0.42 0.50 0.49 1.22 0.48 0.49 0.99 1.30 0.98
20 200 1.00 0.40 0.40 0.45 0.45 1.11 0.45 0.44 0.99 1.39 0.99

4 50 1.00 0.87 0.93 0.89 0.87 0.93 0.87 0.86 0.95 0.94 0.95
4 100 1.00 0.86 0.88 0.85 0.84 0.90 0.84 0.84 0.96 0.94 0.96
4 200 1.00 0.85 0.85 0.83 0.82 0.89 0.82 0.82 0.96 0.96 0.96
10 50 1.00 0.79 0.83 0.94 0.91 0.94 0.89 0.87 0.94 0.85 0.94
10 100 1.00 0.78 0.79 0.82 0.81 0.86 0.80 0.79 0.95 0.88 0.95
10 200 1.00 0.77 0.77 0.78 0.78 0.82 0.78 0.77 0.95 0.90 0.95
20 50 1.00 0.74 0.77 1.21 1.17 1.17 1.03 0.94 0.94 0.79 0.93
20 100 1.00 0.72 0.73 0.87 0.85 0.87 0.83 0.80 0.94 0.81 0.94
20 200 1.00 0.73 0.73 0.78 0.78 0.80 0.77 0.77 0.95 0.84 0.94

4 50 1.00 0.66 0.68 0.70 0.69 1.06 0.69 0.68 0.98 1.32 0.97
4 100 1.00 0.65 0.65 0.66 0.66 1.03 0.66 0.66 0.99 1.40 0.99
4 200 1.00 0.65 0.65 0.66 0.66 1.02 0.66 0.66 0.99 1.46 0.99
10 50 1.00 0.34 0.34 0.42 0.41 1.22 0.41 0.42 0.98 1.35 0.97
10 100 1.00 0.35 0.35 0.38 0.38 1.10 0.38 0.38 0.99 1.50 0.98
10 200 1.00 0.35 0.35 0.36 0.36 1.05 0.36 0.36 0.99 1.61 0.99
20 50 1.00 0.19 0.19 0.33 0.32 1.69 0.30 0.59 0.98 1.34 0.97
20 100 1.00 0.19 0.19 0.24 0.24 1.22 0.23 0.26 0.99 1.50 0.98
20 200 1.00 0.19 0.19 0.21 0.21 1.11 0.21 0.22 0.99 1.61 0.99

4 50 1.00 0.79 0.84 0.84 0.83 1.07 0.82 0.82 0.99 1.02 0.99
4 100 1.00 0.78 0.78 0.81 0.80 1.03 0.80 0.80 1.00 1.06 1.00
4 200 1.00 0.77 0.77 0.78 0.77 1.02 0.77 0.77 1.00 1.08 1.00
10 50 1.00 0.66 0.66 0.82 0.79 1.24 0.77 0.76 0.99 0.99 0.99
10 100 1.00 0.65 0.65 0.71 0.70 1.10 0.70 0.69 0.99 1.03 0.99
10 200 1.00 0.64 0.64 0.67 0.67 1.05 0.66 0.66 1.00 1.08 1.00
20 50 1.00 0.58 0.58 0.97 0.94 1.67 0.83 0.78 0.99 0.97 0.99
20 100 1.00 0.57 0.57 0.70 0.69 1.23 0.67 0.65 0.99 1.01 0.99
20 200 1.00 0.57 0.57 0.63 0.62 1.11 0.62 0.62 1.00 1.06 1.00

4 50 1.00 0.86 0.93 0.91 0.96 1.05 0.95 0.95 0.98 1.07 0.98
4 100 1.00 0.84 0.86 0.87 0.92 1.02 0.92 0.92 0.99 1.12 0.99
4 200 1.00 0.84 0.84 0.85 0.90 1.00 0.90 0.90 0.99 1.14 0.99
10 50 1.00 0.77 0.81 0.96 1.01 1.21 0.98 0.96 0.98 1.04 0.98
10 100 1.00 0.77 0.77 0.84 0.89 1.09 0.89 0.87 0.99 1.10 0.99
10 200 1.00 0.76 0.76 0.80 0.85 1.03 0.85 0.85 0.99 1.16 0.99
20 50 1.00 0.72 0.74 1.21 1.23 1.60 1.08 0.98 0.98 1.01 0.98
20 100 1.00 0.71 0.71 0.87 0.91 1.19 0.89 0.84 0.99 1.08 0.99
20 200 1.00 0.71 0.71 0.78 0.82 1.08 0.81 0.81 0.99 1.12 0.99

Experiment 5: Heterogeneity in forecast precision

Experiment 6: Block-diagonal factor structure

Experiment 7: Bias in individual forecasts

Experiment 1 : Equal weights summing to one

Experiment 2: Equal weights

Experiment 3: Factor Dynamics

Experiment 4: Heterogeneity in factor loadings
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B) Survey-like data 

# of 
Forecasts

Sample 
Size EW BAM SIC GR1 GR2 GR3 S1 S2 Odds Previous 

Best
Inverse 

MSE
EM 

Algorithm

20 50 1.00 1.02 1.01 1.04 1.03 1.48 1.03 1.03 1.48 1.51 1.00 1.03
20 100 1.00 1.00 1.00 1.04 1.03 1.45 1.03 1.03 1.45 1.47 1.00 1.04
20 200 1.00 0.99 1.00 1.03 1.02 1.46 1.02 1.02 1.45 1.48 1.00 1.04

20 50 1.00 0.60 0.61 0.99 0.99 0.98 0.99 0.99 0.98 0.98 1.00 0.99
20 100 1.00 0.58 0.58 0.99 0.99 0.98 0.99 0.99 0.98 0.98 1.00 0.99
20 200 1.00 0.57 0.57 0.99 0.98 0.98 0.98 0.98 0.98 0.98 1.00 0.99

20 50 1.00 0.38 0.38 0.96 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.96
20 100 1.00 0.36 0.36 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.97
20 200 1.00 0.34 0.34 0.96 0.96 0.97 0.96 0.96 0.97 0.97 1.00 0.97

20 50 1.00 0.59 0.60 0.99 0.99 0.98 0.96 0.99 0.98 0.98 1.00 0.99
20 100 1.00 0.57 0.57 0.99 0.99 0.98 0.99 0.99 0.98 0.98 1.00 0.99
20 200 1.00 0.57 0.57 0.99 0.98 0.98 0.98 0.98 0.98 0.98 1.00 0.98

20 50 1.00 0.29 0.29 0.97 0.97 0.96 0.97 0.97 0.96 0.96 1.00 0.89
20 100 1.00 0.26 0.26 0.98 0.97 0.97 0.97 0.97 0.97 0.97 1.00 0.88
20 200 1.00 0.25 0.25 0.96 0.96 0.95 0.96 0.96 0.95 0.96 1.00 0.88

20 50 1.00 0.77 0.79 1.01 1.00 0.99 1.00 1.00 0.99 0.99 1.00 1.00
20 100 1.00 0.76 0.76 1.00 1.00 0.99 1.00 1.00 0.99 0.99 1.00 1.00
20 200 1.00 0.75 0.75 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00

20 50 1.00 0.61 0.61 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
20 100 1.00 0.59 0.59 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
20 200 1.00 0.58 0.58 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99

Experiment 4: Heterogeneity in factor loadings

Experiment 6: Block-diagonal factor structure

Experiment 7: Bias in individual forecasts

Experiment 1 : Equal weights summing to one

Experiment 2: Equal weights

Experiment 3: Factor Dynamics

Experiment 5: Heterogeneity in forecast precision

Notes: Results are based on 10,000 simulations. EW: equal-weighted forecast; BAM: bias-adjusted mean; SIC: 
select EW if the SIC criterion of EW is smaller than the SIC criterion of BAM and select BAM otherwise; GR1: 
unconstrained OLS; GR2: OLS w/o constant; GR3: OLS w/o constant and weights constrained to add to unity; S1: 
shrinkage with κ=0.25; S2: shrinkage with κ=1; Odds: Odds ratio approach; Previous Best: forecast from previous 
best model; Inverse MSE: weights equal the inverse of the historical MSE; EM fills the missing data using the EM 
algorithm and then applies unconstrained OLS. 
The simulations are based on the two-factor model: Yt+1= µy+ βy1F1t+1+ βy2F2t+1+εyt+1, εyt+1~N(0,σ2

εY) and Yi
t+1|t= µi+ 

βi1F1t+1+ βi2F2t+1+ εit+1, εit+1~N(0,σ2
εi), i=1,…,N.  The experiments are as follows: 1) Base scenario with equal 

weights summing to one. 2) Identical weights with weights not summing to one. 3) Factor Dynamics corresponding 
to an AR(1) model with persistence of 0.9. 4) Heterogeneity with βif~Beta(1,1) for f = 1, 2. 5) Heterogeneity with  
1/σ2

εi ~Gamma(5,5). 6) Factor loadings in blocks where βi1=1 if 1 ≤ i ≤ N/2 and βi1=0 if N/2 ≤ i ≤ N, also βi2=0 if 1 ≤ 
i ≤ N/2 and βi1=1 if N/2 ≤ i ≤ N . 7) Biased forecasts where µi=1/2 if 1 ≤ i ≤ N/2 and µi=0 if N/2 ≤ i ≤ N. 
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Table 2: Variable Descriptions 
Name Description Transformation Sample 

CPI 

Forecasts for the CPI Inflation Rate. 
SA, annual rate, percentage points. 
Quarterly forecasts are annualized 
quarter-over-quarter percent 
changes. 

None 1981q3- 
2006q4 

CPROF 

Forecasts for the quarterly level of 
nominal corporate profits after tax 
excluding IVA and CCAdj. SA, 
annual rate, billions of dollars. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
CPROF

CPROF  
1981q3- 
2006q4 

HOUSING 
Forecasts for the quarterly average 
level of housing starts. SA, annual 
rate, millions. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
HOUSING

HOUSING  
1981q3- 
2006q4 

INDPROD 

Forecasts for the quarterly average 
of the index of industrial 
production. SA, index, base year 
varies. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
INDPROD

INDPROD  
1981q3- 
2006q4 

NGDP 
Forecasts for the quarterly level of 
nominal GDP. SA, annual rate, 
billions of dollars. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
NGDP

NGDP  
1981q3- 
2006q4 

PGDP 
Forecasts for the quarterly level of 
the GDP price index. SA, index, 
base year varies. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
PGDP

PGDP  
1981q3- 
2006q4 

RCBI 
Forecasts for the quarterly level of 
real change in private inventories. 
SA, annual rate, base year varies. 

None 1981q3- 
2006q4 

RCONSUM 

Forecasts for the quarterly level of 
real personal consumption 
expenditures. SA, annual rate, base 
year varies. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
RCONSUM

RCONSUM  
1981q3- 
2006q4 

RFEDGOV 

Forecasts for the quarterly level of 
real federal government 
consumption and gross investment. 
SA, annual rate, base year varies. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
RFEDGOV

RFEDGOV  
1981q3- 
2006q4 

RGDP 
Forecasts for the quarterly level of 
real GDP. SA, annual rate, base 
year varies. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
RGDP

RGDP  
1981q3- 
2006q4 

RRESINV 
Forecasts for the quarterly level of 
real residential fixed investment. 
SA, annual rate, base year varies. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
RRESINV

RRESINV  
1981q3- 
2006q4 

RSLGOV 

Forecasts for the quarterly level of 
real state and local government 
consumption and gross investment. 
SA, annual rate, base year varies. 

Growth Rate for quarter-over-quarter change, 
expressed in annualized percentage points, constructed 
as: 400ln

1 ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

−+

+

ht

ht
RSLGOV

RSLGOV  
1981q3- 
2006q4 

TBILL 
Forecasts for the quarterly average 
three-month Treasury bill rate. 
Percentage points. 

None 1982q1- 
2006q4 

UNEMP 
Forecasts for the quarterly average 
unemployment rate. SA, percentage 
points. 

None 1981q3- 
2006q4 
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Table 3: Empirical Application to Forecasts From the 
Survey of Professional Forecasters 

RMSE Ratio
EW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BAM 1.01 0.94 0.95 0.95 1.04 1.05 1.04 1.02 1.01 1.00 1.01 1.00 1.03 0.99 0.97 0.97
SIC 1.00 0.94 0.97 0.95 1.04 1.05 1.03 1.00 1.01 0.99 1.10 1.06 1.03 0.99 0.97 0.97
GR1 1.15 1.10 1.15 1.17 1.22 1.10 1.11 1.17 1.13 4.28 1.23 1.09 1.39 1.43 1.43 1.17
GR2 1.09 1.03 1.13 1.21 1.15 1.07 1.03 1.18 1.12 1.04 1.12 0.97 1.34 1.28 1.19 1.12
GR3 1.08 0.99 1.07 1.11 1.07 1.07 1.01 1.02 1.09 1.24 1.08 0.95 1.31 1.18 1.11 1.14
Shrink 1 1.07 1.01 1.07 1.11 1.08 1.03 1.00 1.04 1.09 1.01 1.04 0.96 1.25 1.19 1.09 1.03
Shrink 2 1.05 0.99 1.03 1.06 1.02 0.98 0.98 0.98 1.02 0.99 1.01 0.97 1.11 1.09 1.04 0.99
Odds 1.05 0.99 1.03 1.02 1.03 1.01 0.98 0.98 1.01 1.22 1.03 0.98 1.16 1.07 1.12 0.98
Previous Best 1.12 0.98 1.06 1.07 1.01 1.04 0.95 1.04 1.05 1.23 1.05 0.97 1.17 1.11 1.12 0.98
Inverse of MSE 1.00 0.99 1.01 0.99 1.02 1.03 1.03 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
EM 1.03 1.06 1.06 1.07 1.02 1.01 0.99 1.00 1.02 1.10 1.32 1.25 1.02 1.02 0.98 1.01

RMSE Ratio
EW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BAM 1.01 1.00 0.99 1.00 0.97 0.98 0.93 0.90 1.02 1.01 0.99 0.98 0.98 1.02 1.01 1.05
SIC 0.99 1.00 1.00 1.00 0.97 0.98 0.93 0.89 1.01 1.01 1.00 0.97 0.99 1.03 1.01 1.06
GR1 0.99 0.96 1.48 1.07 1.47 2.50 4.46 1.14 1.13 1.08 1.16 1.36 2.81 6.15 1.16 1.36
GR2 1.00 1.09 1.64 1.11 1.31 1.87 2.98 0.95 1.05 1.10 1.13 1.02 1.30 2.44 1.17 1.26
GR3 1.15 1.24 1.21 0.99 1.15 1.13 1.04 1.00 1.07 1.03 1.10 1.00 1.21 1.11 1.10 1.14
Shrink 1 0.98 1.08 1.42 1.04 1.20 1.79 2.58 1.02 1.02 1.01 1.08 0.98 1.22 1.94 1.07 1.15
Shrink 2 1.00 1.09 1.22 1.08 1.10 1.64 1.55 1.07 1.00 0.97 1.03 1.01 1.08 1.03 0.98 1.01
Odds 1.06 1.16 1.17 1.02 1.03 1.15 1.22 1.10 0.97 1.02 0.98 0.98 1.05 1.03 0.96 1.04
Previous Best 1.08 1.55 1.58 0.99 1.03 1.12 2.15 1.06 1.13 1.11 1.00 0.97 1.06 1.12 0.95 1.07
Inverse of MSE 1.03 1.01 1.03 1.01 0.98 0.95 0.91 0.92 1.00 1.00 0.99 0.98 1.01 1.00 0.99 1.01
EM 1.45 1.12 1.33 1.04 1.06 1.25 1.11 0.96 1.03 1.05 1.01 1.02 1.06 1.03 1.02 1.05

RMSE Ratio
EW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BAM 1.03 1.07 1.04 1.03 1.01 1.02 1.04 1.03 0.97 0.98 0.96 0.96 1.01 1.02 1.04 1.02
SIC 0.99 1.01 1.01 1.00 1.02 1.02 1.01 1.01 0.98 0.96 1.01 1.04 1.01 1.02 1.10 1.02
GR1 1.23 1.28 2.07 1.28 1.31 1.82 1.29 1.95 1.26 1.10 1.15 1.37 1.47 1.24 1.72 1.20
GR2 1.13 1.20 1.59 1.11 1.17 1.29 1.25 1.23 1.03 1.07 0.99 1.02 1.22 1.20 1.25 1.06
GR3 1.04 1.04 1.13 1.23 1.17 1.04 1.15 1.07 1.00 1.02 0.88 1.06 1.14 1.11 1.11 1.07
Shrink 1 1.05 1.12 1.15 1.04 1.11 1.18 1.14 1.02 1.02 1.03 0.95 1.00 1.16 1.15 1.13 1.05
Shrink 2 1.01 1.03 1.03 0.99 1.02 1.03 1.01 1.00 1.02 1.07 1.01 0.95 1.04 1.07 1.03 1.00
Odds 1.03 1.05 1.02 1.01 1.03 1.04 0.99 1.01 1.01 1.03 0.90 0.99 1.02 1.02 1.03 1.00
Previous Best 1.10 1.11 1.04 1.04 1.08 1.06 0.96 0.96 1.00 1.08 0.92 1.05 1.07 1.06 1.08 1.03
Inverse of MSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00
EM 1.06 1.06 1.10 1.18 1.03 1.19 1.05 1.04 1.01 1.04 1.03 1.07 1.35 1.09 1.02 1.05

RMSE Ratio
EW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BAM 1.12 1.21 1.12 1.04 0.97 1.00 1.02 1.02
SIC 1.01 0.96 0.98 0.96 0.99 1.00 0.99 0.93
GR1 1.30 1.12 1.18 1.17 1.13 1.18 1.14 1.17
GR2 1.15 1.05 0.99 1.12 1.16 1.27 1.15 1.25
GR3 1.09 1.02 0.98 1.04 1.14 1.29 1.22 1.24
Shrink 1 1.14 1.04 0.99 1.06 1.10 1.17 1.06 1.17
Shrink 2 1.10 1.06 1.02 1.09 1.03 1.08 1.05 1.12
Odds 1.09 1.03 1.03 1.03 1.07 1.05 1.04 1.05
Previous Best 1.14 1.05 1.03 1.04 1.19 1.00 1.12 1.10
Inverse of MSE 1.25 1.01 0.96 0.91 0.95 0.94 0.97 1.11
EM 1.01 1.00 0.94 0.93 1 1.06 1.07 1.09 1.04

CPI CPROF HOUSING INDPROD
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

NGDP PGDP RCBI RCONSUM
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

RFEDGOV RGDP RRESINV RSLGOV
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

TBILL UNEMP
1 2 3 4 1 2 3 4

Notes: Root mean squared error (RMSE) ratios are computed using the RMSE of the equal-weighted model (EW) in the 
denominator. Integers in the table header (1 2 3 4) refer to the forecast horizon in quarters. See Table 2 for a definition of the 
series. 
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Table 4: Measures of Heterogeneity Across Forecasters 

Measures 1 2 3 4 1 2 3 4 1 2 3 4

Nfore 99 98 96 91 76 74 72 69 84 85 80 71
Bias_het 0.36 0.41 0.42 0.47 0.34 0.30 0.27 0.25 0.30 0.27 0.22 0.26
Stdev_het 0.45 0.53 0.39 0.38 0.29 0.29 0.27 0.28 0.64 0.29 0.32 0.39
alpha 1.22 *** 1.54 *** 1.39 *** 1.84 *** 2.40 2.72 0.58 0.93 1.86 2.30 2.56 1.90
beta 0.58 *** 0.46 *** 0.48 *** 0.34 *** 0.85 0.82 1.17 1.27 0.79 0.53 ** 0.72 0.91

1 2 3 4 1 2 3 4 1 2 3 4
Nfore 93 93 89 86 93 93 91 86 97 97 95 89
Bias_het 0.32 0.35 0.37 0.36 0.29 0.31 0.29 0.28 0.35 0.54 0.52 0.62
Stdev_het 0.87 1.09 0.54 1.09 0.37 0.44 0.57 0.96 3.44 2.93 2.04 3.12
alpha -1.79 ** 0.72 1.81 2.32 ** 2.60 ** 4.71 *** 4.34 *** 4.54 *** 0.34 * 0.67 *** 0.62 *** 0.66 ***
beta 1.42 * 0.67 0.39 ** 0.27 ** 0.59 ** 0.22 *** 0.30 *** 0.26 *** 0.78 *** 0.63 *** 0.62 *** 0.59 ***

1 2 3 4 1 2 3 4 1 2 3 4
Nfore 88 88 86 84 88 90 88 84 78 80 77 72
Bias_het 0.25 0.32 0.37 0.39 0.22 0.29 0.30 0.30 0.16 0.20 0.21 0.20
Stdev_het 0.31 0.31 0.27 0.37 0.82 0.72 0.53 0.59 0.63 0.40 0.19 0.21
alpha -4.04 -0.49 7.63 16.81 ** 0.02 1.16 3.85 *** 2.82 ** -1.31 * -0.82 -0.42 0.09
beta 1.07 0.85 0.49 ** 0.12 *** 1.23 0.81 -0.19 *** 0.20 * 1.89 *** 1.76 *** 1.33 1.69 **

1 2 3 4 1 2 3 4 1 2 3 4
Nfore 96 97 95 89 85 86 83 82 81 81 79 78
Bias_het 0.28 0.30 0.31 0.31 0.30 0.25 0.26 0.31 0.20 0.19 0.23 1.50
Stdev_het 0.33 0.67 0.49 0.68 0.60 0.65 0.53 0.54 0.54 0.99 0.58 180.15
alpha -0.76 1.16 2.89 *** 2.21 ** 1.56 * 2.99 *** 3.33 *** 2.98 *** -0.11 0.64 1.18 2.42 ***
beta 1.34 * 0.64 0.07 *** 0.32 ** 1.36 ** 0.80 0.70 * 0.82 1.34 0.87 0.67 0.04 ***

1 2 3 4 1 2 3 4
Nfore 90 90 88 83 98 98 96 89
Bias_het 0.07 0.11 0.14 0.19 0.07 0.11 0.16 0.18
Stdev_het 0.39 1.35 2.01 1.42 0.11 0.16 0.23 0.29
alpha -0.02 0.28 0.38 0.41 -0.17 ** -0.20 -0.05 0.26
beta 1.00 0.91 *** 0.87 *** 0.84 *** 1.02 1.02 1.00 0.94

UNEMPTBILL

HOUSING

INDPROD

CPI CPROF

NGDP PGDP

RCONSUM RFEDGOV

RGDP RRESINV RSLGOV

RCBI

  
Notes: Nfore is the number of forecasters with more than 10 forecasts (per variable-horizon). Bias_het is variation in the 
bias of the Nfore forecasters, computed as the standard deviation in the bias across forecasters divided by the variance of 
the outcome variable (for the whole sample). Stdev_het is the heterogeneity in the variances, computed as the standard 
deviation across the Nfore forecasters of the variance (per forecaster) of the forecast error divided by the variance of the 
outcome variable (for the same periods of the forecasts). Alpha and beta are the parameter estimates of the bias-adjusted 
mean based on full-sample information. 
* p<0.10. ** p<0.05. *** p<0.01 with alpha equal to zero and beta equal to one under the null hypothesis. 

  
Table 5: Results from Probit estimation 

Variable
CPI 1(-)** 2(-)** 3(-)** 4(-)*

CPROF

HOUSING 1(+)*

INDPROD 2(-)*

NGDP

PGDP 3(-)* 1(+)*

RCBI 3(-)** 4(+)*

RCONSUM 2(-)* 4(-)*

RFEDGOV

RGDP 2(-)* 3(-)*

RRESINV 2(-)* 3(-)** 4(-)*

RSLGOV 4(-)*

TBILL 1(-)* 2(-)* 3(-)** 4(-)

UNEMP 1(-)* 2(-)** 3(-)** 4(-)*

no. of previous forecasts Relative RMSE

 
Notes: This table indicates significance and signs of coefficients in a probit regression of forecasters’ exit from the 
survey using the survey participants’ previous number of reported forecasts and their RMSE computed relative to 
the average RMSE as regressors. * indicates significance at the 10% level; ** indicates significance at the 5% 
level. (-) represents a negative, while (+) is a positive coefficient estimate. 
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Figure 1: Participants in the Survey of Professional Forecasters  

(PGDP) 
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Notes: The ID corresponds to the identification number assigned to each forecaster in the survey. The 
columns represent the quarter when the survey was taken. The Xs show when a particular forecaster 
responded to the PGDP part of the survey and provided a one-step-ahead forecast for inflation. 
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