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Abstract

We develop an unobserved components approach to study surveys of forecasts containing mul-

tiple forecast horizons. Under the assumption that forecasters optimally update their beliefs about

past, current and future state variables as new information arrives, we use our model to extract

information on the degree of predictability of the state variable and the importance of measurement

errors on that variable. Empirical estimates of the model are obtained using survey forecasts of

annual GDP growth and inflation in the US with forecast horizons ranging from 1 to 24 months.

The model is found to closely match the joint realization of forecast errors at different horizons

and is used to demonstrate how uncertainty about macroeconomic variables is resolved.

Keywords: Fixed-event forecasts, multiple forecast horizons, Kalman filtering, survey data.

*We thank seminar participants at the Board of Governors of the Federal Reserve, Cambridge,

City University London, Duke, European Central Bank, London School of Economics, NBER Sum-

mer Institute, ESAM08 meetings in Wellington, Oxford, Universite Libre Bruxelles (ECARES),

Tilburg and Stanford (SITE workshop) for helpful comments.

Patton: Department of Economics, University of Oxford, Manor Road, Oxford OX1 3UQ, UK.

Email: andrew.patton@economics.ox.ac.uk. Timmermann: UCSD, 9500 Gilman Drive, La Jolla,

CA 92093-0553, USA. Email: atimmerm@ucsd.edu. Timmermann is also affiliated with CREATES

at the University of Aarhus, a research center funded by the Danish National Research Foundation.



1 Introduction

Economic agents’ expectations about the state of the economy play an important

role in economic analysis. In recent remarks, Chairman of the Federal Reserve Ben

Bernanke quotes academic work as showing that “the process of [the public’s] learn-

ing can affect the dynamics and even the potential stability of the economy.” He

goes on to state that “Undoubtedly, the state of inflation expectations greatly influ-

ences actual inflation and thus the central bank’s ability to achieve price stability.”

(Bernanke (2007)).

How rapidly uncertainty about macroeconomic variables is resolved through time

is an important part of this learning process, partly due to the irreversibility and lags

in many economic decisions (Kydland and Prescott (1982) and Dixit and Pindyck

(1994)) and partly because of its welfare implications: Ramey and Ramey (1995)

link output growth to the degree of uncertainty surrounding it, arguing that firms

scale back planned output during periods with high levels of uncertainty.

Consequently, much can be learned by studying how forecasters update their

beliefs over time about the same “event”. As a simple illustration, consider Figure

1, which shows consensus forecasts from surveys of US GDP growth for 2002 as

this evolved each month from January 2001 (corresponding to a 24-month horizon)

to December 2002 (a one-month horizon). A comparison of the initial and final

forecasts−at 3.5% and 2.5%, respectively−shows a fairly sizeable reduction in the

predicted growth, but fails to reveal the full picture of the dramatic revisions that

occurred in the interim. At the beginning of September 2001, the growth forecast

for 2002 was 2.7%. Following the events of 9/11, the October 2001 forecast fell to

1.2%, i.e. by a full 1.5%−the largest single-month forecast revision observed in more
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than a decade. It declined even further to 0.8% in November 2001 before stabilizing.

Expectations of 2002 GDP growth then increased by 1.7% from January through

April of 2002, from which point the subsequent forecasts were within 0.5% of the

actual growth figure, which came in just below 2.5%.

Analysis of “fixed event” survey data such as that presented in Figure 1 is com-

plicated by several factors. First, since forecasts are recorded at both long and short

horizons, there is considerable overlap in the forecasts and forecast errors. Second,

measurement errors in the underlying variables affect agents’ forecasts introduces a

signal extraction problem in agents’ learning process and causes further dependence

in forecast errors measured at different horizons. For these reasons, only limited re-

sults are available using this type of data, see Nordhaus (1987), Swidler and Ketcher

(1990), Davies and Lahiri (1995), Clements (1997), and Isiklar, Lahiri and Loungani

(2006).

This paper develops a new approach for extracting information on how rapidly

agents learn about the state of the economy and characterizing their views about

temporary and persistent components in the predicted variable. Specifically, we

develop a framework for studying panels of forecasts containing numerous different

forecast horizons (“large H”) recorded for relatively few time periods (“small T”).

The first contribution of this paper is to analytically reveal the rich information

available by studying how forecasts of a variable measured at a low frequency (e.g.,

annual GDP growth) are updated at a higher frequency (monthly, in our case). We

do so by modeling agents’ learning problem−accounting for how they simultane-

ously backcast, nowcast and forecast past, current and future variables. We then

seek to exploit this information using method-of-moments-based estimation tech-

niques that match the properties of forecasts observed across different horizons with
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the moments implied by our model for agents’ updating process. To conduct infer-

ence, we propose a method for simulating standard errors of the moments that are

consistent with the underlying model. To our knowledge, this approach for mod-

elling learning and conducting inference has not previously been considered in the

literature.

The “large H” nature of our data enables us to answer a number of interesting

questions that are intractable with forecasts of just one or two different horizons,

such as the importance of measurement errors, the rate at which uncertainty about

macroeconomic variables (as measured by root mean-squared forecast errors, RMSE)

is resolved as the forecast horizon is reduced, and forecasters’ beliefs about the

current state of the economy (as measured by their “nowcasts” of GDP growth and

inflation).

The second contribution of this paper is empirical: we use consensus forecasts

of US inflation and GDP growth over 1991-2004, and find many interesting results.

Consistent with our model, we find that the rate of uncertainty resolution is faster

at short and medium horizons than at long horizons, due in part to the presence of

a persistent component in the predicted series, in part to forecasters’ access to noisy

data on current-period realizations. Measurement error appears to be important in

forecasts of GDP growth but not for inflation, a finding that is consistent with other

studies of measurement error in macroeconomic variables, but using different data

sets, see Croushore and Stark (2001) for example. Comparing the filtered estimates

of the persistent component in output growth to the observed outcomes, our analysis

reveals that the forecasters were surprised by the strong GDP growth during most

of the 1990s. The forecasters were also surprised by the low and declining inflation

during the 1990s, with the estimated persistent component generally coming in above
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the realized rate of inflation.

The plan of the paper is as follows. Section 2 presents our model for how fore-

casters update their predictions as the forecast horizon shrinks. Section 3 presents

empirical results using data from Consensus Economics over the period 1990-2004

and Section 4 concludes. Proofs are contained in an appendix.

2 Multi-horizon Forecast Errors

We start by developing a model for how forecasters update their beliefs about macro-

economic variables such as output growth and inflation. Our analysis makes use of

the rich information available in high frequency revisions of forecasts of a variable

observed at a lower frequency, e.g., monthly revisions to forecasts of annual inflation.

Since we shall be concerned with flow variables that agents gradually learn about

as new information arrives prior to and during the period of their measurement, the

fact that part of the outcome may be known prior to the end of the measurement

period (the “event date”) introduces additional complications, and means that the

timing of the forecasts has to be carefully considered.

Our analysis assumes that agents have a squared loss function over the forecast

error, et,t−h ≡ zt − ẑt,t−h, where zt is the predicted variable, ẑt,t−h is the forecast

computed at time t − h, t is the event date and h is the forecast horizon. Other

loss functions have been discussed by, e.g., Patton and Timmermann (2007). One

advantage of assuming squared loss is that it is easier to justify focusing on aggregate

or consensus forecasts, as we shall be doing here, computed as an average of the

individual forecasts. Under this loss function, the optimal h−period forecast is
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simply the conditional expectation of zt given information at time t− h,Ft−h:

ẑ∗t,t−h = E[zt|Ft−h]. (1)

We test the assumption of forecast rationality under squared loss empirically in

Section 3.1 and find that it cannot be rejected.

To study agents’ learning process we keep the event date, t, fixed and vary the

forecast horizon, h. As illustrated in Figure 1, this allows us to track how agents

update their beliefs through time.

2.1 A Benchmark Model

Since the predicted variable in our application is measured less frequently than the

forecasts are revised, it is convenient to describe the target variable as a rolling sum

of a higher-frequency variable. To this end, let yt denote the single-period variable

(e.g., monthly log-first differences of GDP or a log-price index tracking inflation),

while the rolling sum of the 12 most recent single-period observations of y is denoted

zt :

zt =
11X
j=0

yt−j. (2)

Our model is based on a decomposition of yt into a persistent (and thus predictable)

first-order autoregressive component, xt, and a temporary component, ut:

yt = xt + ut (3)

xt = φxt−1 + εt, − 1 < φ < 1

ut ∼ iid (0, σ2u), εt ∼ iid (0, σ2ε), E[utεs] = 0 ∀ t, s.

Here φ measures the persistence of xt, while ut and εt are innovations assumed

to be both serially uncorrelated and mutually uncorrelated. Setting yt to be a
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combination of an AR(1) process and an unpredictable process implies that yt follows

an ARMA(1,1), see Granger and Newbold (1986) for example. Without loss of

generality, we assume that the unconditional mean of xt, and thus yt and zt, is zero.

The assumption that the predicted variable contains a first-order autoregressive

component, while clearly an approximation, is likely to capture well the presence

of a persistent component in most macroeconomic data. For example, much of the

dynamics in the common factors extracted from large cross-sections of macroeco-

nomic variables by Stock and Watson (2002a) is captured by low-order autoregres-

sive terms. It is straight-forward to allow more lags or other observed variables to

enter in the forecasting model, although the latter approach is complicated by the

existence of literally hundreds of economic state variables that could be adopted

in such models, (Stock and Watson (2002b, 2006)), “real time” revisions to such

data (Diebold and Rudebusch (1991)) and uncertainty about which models agents

actually use (Garratt et al. (2003)).

We first present results under simple, but unrealistic, assumptions about the

forecasters’ information set in order to reveal some basic properties of the problem.

We introduce more realistic assumptions in the next section. Under the assumption

that both xt and yt are observed at time t, the simplicity of our benchmark model

allows an analytic characterization of how the mean squared forecast error (MSE)

evolves as a function of the forecast horizon (h):

Proposition 1 Suppose that yt can be decomposed into a persistent component (xt)

and a temporary component (ut) satisfying equation (3) and forecasters minimize

the squared loss given the information set Ft = σ ([xt−j, yt−j] , j = 0, 1, 2, ...). Then
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the mean squared forecast error as a function of the forecast horizon is given by:

E
£
e2t,t−h

¤
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
12σ2u +

1
(1−φ)2

µ
12− 2φ(1−φ

12)
1−φ +

φ2(1−φ24)
1−φ2

¶
σ2εσ

2
ε

+
φ2(1−φ12)

2
(1−φ2h−24)

(1−φ)3(1+φ) , for h ≥ 12

hσ2u +
1

(1−φ)2

µ
h− 2φ(1−φ

h)
1−φ +

φ2(1−φ2h)
1−φ2

¶
σ2ε, for h < 12

Proposition 1 is proved in the Appendix and is simple to interpret: The first

term in the expression for the mean squared error (MSE) captures the unpredictable

component, ut. The second term captures uncertainty about shocks to the remaining

values of the persistent component, xt, over the measurement period. The additional

term in the expression for h ≥ 12 comes from having to predict xt−11, the initial

value of the persistent component at the beginning of the measurement period.

As h → ∞, the optimal forecast converges to the unconditional mean of zt

(normalized to zero in our model). This forecast generates the upper bound for the

MSE of an optimal forecast, which is the unconditional variance of zt :

lim
h→∞

E
£
e2t,t−h

¤
= 12σ2u+

σ2ε
(1− φ)2

Ã
12− 2

φ
¡
1− φ12

¢
1− φ

+
φ2
¡
1− φ24

¢
+ φ2

¡
1− φ12

¢2
1− φ2

!
.

(4)

To illustrate Proposition 1, Figure 2 plots the root mean squared error (RMSE)

for h = 1, 2, ..., 24 using parameters similar to those we obtain in the empirical

analysis for U.S. GDP growth. Holding the unconditional variance of annual GDP

growth, σ2z, and the ratio of the transitory component variance to the persistent

component variance, σ2u/σ
2
x, fixed we show the impact of varying the persistence

parameter, φ. The figure shows the large impact that this parameter has on the

shape of the RMSE function. The variance of the forecast error grows linearly, for

h < 12, as a function of the length of the forecast horizon if y has no persistent
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component (φ = 0). Conversely, the presence of a persistent component gives rise

to a more gradual decline in the forecast error variance as the horizon is reduced.

In effect uncertainty is resolved more gradually, the higher the value of φ. Notice

also how the change in RMSE gets smaller at the longest horizons, irrespective of

the value of φ.

2.2 Measurement Errors

Proposition 1 is helpful in establishing intuition for the drivers of how macroeco-

nomic uncertainty gets resolved through time. However, it also has some signifi-

cant shortcomings. Most obviously, it assumes that forecasters observe both the

predicted variable, y, and its persistent component, x, without error, and so un-

certainty vanishes completely as h → 0. Macroeconomic variables are, however, to

varying degrees, subject to measurement errors as reflected in data revisions and

changes in benchmark weights. Such errors are less important for survey-based in-

flation measures such as the consumer price index (CPI). Revisions are, however,

very common for measures of output, such as GDP (see Croushore and Stark (2001),

Mahadeva and Muscatelli (2005) and Croushore (2006) for example).

Measurement errors make the forecasters’ problem more difficult and introduces

a signal extraction problem: the greater the measurement error, the noisier are past

observations of y and hence the less precise the forecasters’ readings of the state

of the economy. They also mean that forecasters cannot simply “plug in” observed

values of past y’s during the measurement period (h < 12): these quantities must

also be estimated.

To account for these effects, we cast our original model in state-space form with
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a state equation⎡⎢⎣ 1 −1
0 1

⎤⎥⎦
⎡⎢⎣ yt

xt

⎤⎥⎦ =

⎡⎢⎣ 0 0

0 φ

⎤⎥⎦
⎡⎢⎣ yt−1

xt−1

⎤⎥⎦+
⎡⎢⎣ ut

εt

⎤⎥⎦ (5)

⎡⎢⎣ ut

εt

⎤⎥⎦ ∼ iid

⎛⎜⎝0,
⎡⎢⎣ σ2u 0

0 σ2ε

⎤⎥⎦
⎞⎟⎠ .

That is, we leave the data generating process as it was in the benchmark model.

Next we assume that agents only observe yt with error, and that xt is unobserved.

This setup is far more realistic for economic data which are often subject to mea-

surement error and whose persistent components are not directly observable. The

measurement equation for this system then becomes:

ỹt = yt + ηt, ηt ∼ iid (0, σ2η). (6)

Since we are focusing on the aggregate, or consensus, forecast, we shall not be

concerned with heterogeneity across individual forecasters’ information sets. See

Patton and Timmermann (2008) for an analysis that explicitly focuses on modeling

cross-sectional dispersion in forecasts.

Despite its simplicity, this model does not yield a formula for the term structure

of RMSE-values that is readily interpretable. The key difficulty that arises is best

illustrated by considering “current-year” forecasts (1 ≤ h < 12). When producing

a current-year forecast at time t − h, economic agents must use past and current

information to “backcast” realizations yt−11, ..., yt−h−1; they must also produce a

“nowcast” for the current month yt−h, and, finally, must predict future realizations,

yt−h+1, .., yt. When the persistent component, xt, is not observable, the resulting

forecast errors will generally be serially correlated even after conditioning on all

information that is available to the agents. For example, a large positive realization
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of the measurement error, ηt−h, will not only lead to overly optimistic projections

for current and future values of y, but will increase the entire sequence of backcast

values. Handling this problem is difficult and requires expressing past, current and

future forecast errors in terms of the primitive shocks, ut, εt and ηt, which are serially

uncorrelated. We next show how to accomplish this.

We assume that our forecasters know the form and parameters of the data gen-

erating process, presented in equations (5) and (6), and we further assume that

they use the Kalman filter to optimally predict (forecast, nowcast and backcast)

the values of yt needed for the forecast of the annual variable, zt. Thus the learn-

ing problem faced by the forecasters in our model relates to the latent state of the

economy (measured by xt and yt), but not to the parameters of the model. This

simplification is necessitated by our short time series of data.

Given our focus on zt in equation (2), it is convenient to extend the state vector

presented in equation (5) to also include 11 lags of yt, and define:

ξt ≡ [xt, yt, yt−1, ..., yt−11]
0 (7)

F ≡

⎡⎢⎢⎢⎢⎣
φ 0012

φ 0012

011 I11 011

⎤⎥⎥⎥⎥⎦
where now

zt = ω0ξt,

and ω = [0, ι012]
0. Here 0k is a k× 1 vector of zeros, ιp is a p× 1 vector of ones, and

Ik is a k × k identity matrix. The state equation is:

ξt = Fξt−1 + vt, (8)
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where νt ≡ [εt, εt + ut,0
0
11]

0, and the measurement equation is

ỹt = H
0ξt +wt. (9)

In our application the measurement variable is a scalar, ỹt = yt + ηt, and so H =

[0, 1,0011]
0 , but we will present our theoretical framework for the general case that

ỹt is a vector. The innovations to the state and measurement equations are:

νt ∼ iid N (0,Q) (10)

Q =

⎡⎢⎢⎢⎢⎣
σ2ε σ2ε 0011

σ2ε σ2u + σ2ε 0011

011 011 011×11

⎤⎥⎥⎥⎥⎦
wt ∼ iid N (0,R) ,

where 0k×p is a k×p matrix of zeros. In our applicationR = σ2η. Further, we assume

E [vtw
0
s] = 0 ∀ s, t. (11)

We also assume that the forecaster has been using the Kalman filter long enough

that all updating matrices are at their steady-state values. This is done simply to

remove any “start of sample” effects that may or may not be present in the data.

Let:

F̃t = σ
¡
ỹt, ỹt−1, ..., ỹ1

¢
ξ̂t|t−1 ≡ E

h
ξt|F̃t−1

i
≡ Et−1 [ξt]

ŷt|t−1 ≡ E
h
ỹt|F̃t−1

i
≡ Et−1 [ỹt] .
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Following Hamilton (1994), define the following matrices

Pt+1|t ≡ E

∙³
ξt+1 − ξ̂t+1|t

´³
ξt+1−ξ̂t+1|t

´0¸
= (F−KtH

0)Pt|t−1 (F
0−HK0

t) +KtRK
0
t+Q→ P∗1

Kt ≡ FPt|t−1H
¡
H0Pt|t−1H+R

¢−1 →K∗ (12)

Pt|t ≡ E

∙³
ξt−ξ̂t|t

´³
ξt−ξ̂t|t

´0¸
= Pt|t−1−Pt|t−1H

¡
H0Pt|t−1H+R

¢−1
H0Pt|t−1

→ P∗1−P∗1H (H0P∗1H+R)
−1
H0P∗1≡ P∗0.

The convergence of Pt|t−1, Pt|t and Kt to their steady-state values relies on |φ| < 1,

and we impose this in the estimation. To initialize these matrices we use their

unconditional equivalents, P1|0 ≡ E
£
(ξt−E [ξt]) (ξt −E [ξt])

0¤ and ξ̂1|0 = E [ξt] .

Estimates of the state variables are updated via

ξ̂t|t= ξ̂t|t−1+Pt|t−1H
¡
H0Pt|t−1H+R

¢−1 ³
ỹt−H0ξ̂t|t−1

´
, (13)

while the multi-step prediction error uses

ξ̂t+s|t = Fsξ̂t|t

Pt+s|t ≡ E

∙³
ξt+s−ξ̂t+s|t

´³
ξt+s−ξ̂t+s|t

´0¸
(14)

= FsPt|t (F
0)
s
+

s−1X
j=0

FjQ (F0)
j → P∗s, for s ≥ 1.

The full set of MSE-values across different horizons can now be extracted from P ∗s :

ẑ∗t,t−h ≡ E
h
zt|F̃t−h

i
= ω0ξ̂t|t−h

yielding E
h¡
zt − ẑ∗t,t−h

¢2i
= ω0P∗hω, for h ≥ 0. (15)

Note that for h < 12 the optimal forecast ẑ∗t,t−h will involve a combination of fore-

casts, E
h
yt−h+j|F̃t−h

i
for j > 0, nowcasts, E

h
yt−h|F̃t−h

i
, and backcasts, E

h
yt−h−k|F̃t−h

i
12



for k > 0. Our use of an extended state equation means that these terms are all

captured in the above expressions without having to handle them separately.

Figure 3 uses these equations to illustrate the impact of measurement error on

the RMSE-values at different horizons. The degree of measurement error is de-

scribed as σ2η = k2σ2u, so k measures the size of the measurement error in terms

of the innovation variance for y. In the absence of measurement errors the RMSE

will converge to zero as h → 0, whereas in the presence of measurement error the

RMSE will converge to some positive quantity. As the horizon, h, shrinks towards

zero, the relative importance of measurement errors grows. Moreover, the RMSE

function gets flatter as the size of the measurement error increases. Note, however,

that measurement error plays no part for long-horizon forecasts, since its impact on

overall uncertainty is small relative to other sources of uncertainty, and so Figure 3

resembles Figure 2 for long horizon forecasts. This also shows that the persistence

(φ) and measurement error (σ2η) parameters are separately identified by jointly con-

sidering long and short horizon forecast errors, and illustrates the rich information

contained in survey forecasts covering multiple forecast horizons.

The analytical results in this section show that a simple model of the forecasting

environment faced by macroeconomic forecasters in practice can accommodate a

rich set of empirical phenomena: with just four free parameters a variety of RMSE

patterns is obtained. Further, by studying such a model in detail we gain some

quantitative insight into the key drivers of macroeconomic forecast errors. We next

move on to matching the parameters of our model to data.
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2.3 Estimation

Our strategy for estimation is to choose the parameters that enable the model to

match the observed forecast errors as closely as possible. To this end, we estimate

the parameters using the Generalized Methods of Moments (GMM), see Hansen

(1982), based on the moment conditions obtained by matching the sample MSE,

T−1
PT

t=1 e
2
t,t−h at various forecast horizons to the population mean squared errors,

MSEh (θ), implied by our model. Our parameter estimates are obtained from:

θ̂T ≡ argmin
θ

gT (θ)
0WTgT (θ) (16)

gT (θ) ≡
1

T

TX
t=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e2t,t−1 −MSE1 (θ)

e2t,t−2 −MSE2 (θ)

...

e2t,t−H −MSEH (θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

where θ ≡
£
σ2u, σ

2
ε, σ

2
η, φ
¤0
and MSEh (θ) is obtained using Proposition 1 or the

updating equations leading to (15).

In situations with large H there are several over-identifying restrictions, and so

the choice of weighting matrix,WT , in the GMM estimation is important. We use

the identity matrix as the weighting matrix so that all horizons get equal weight in

the estimation procedure; this is not fully efficient, but is justified by our focus on

modeling the entire term structure of forecast errors. Nevertheless, we still require

the covariance matrix of the sample moments to compute standard errors and a

test of the over-identifying conditions. As we shall see, our sample is only T = 14

years long while we have H = 24 forecast horizons, and so it is not feasible to

estimate this matrix directly from the data since this would require controlling

for the correlation between the sample moments induced by overlaps across the 24
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horizons. Fortunately, given the simple structure of our model, for a given parameter

value we can compute a model-implied covariance matrix of the sample moments.

Under the assumption that the model is correctly specified, this matrix captures the

correlation between sample moments induced by overlaps and serial persistence.

To obtain P∗1, P
∗
0, and K

∗ we simulate 100 non-overlapping years of data and

update Pt|t−1, Pt|t and Kt following Hamilton (1994). We use these matrices at the

end of the 100th year as estimates ofP∗1, P
∗
0, andK

∗. To obtain the covariance matrix

of the moments, used to compute standard errors and the test of over-identifying

restrictions, we use the model-implied covariance matrix of the moments, based on

the parameter estimate from the first-stage GMM parameter estimate. This matrix

is not available in closed-form and so we simulate 1,000 non-overlapping years of

data to estimate it, imposing that the innovations to these processes (νt and wt) are

Normally distributed, and using the expressions given above to obtain the Kalman

filter forecasts.

We use only six forecast horizons (h = 1, 3, 6, 12, 18, 24) in the estimation, rather

than the full set of 24, in response to studies of the finite-sample properties of

GMM estimates (see Tauchen, 1986, for example) which find that using many more

moment conditions than required for identification leads to poor approximations

from the asymptotic theory, particularly when the moments are highly correlated,

as in our application. We have also estimated the models presented in this paper

using the full set of 24 moment conditions and the results were qualitatively similar.
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3 Empirical Results

After a brief introduction to the data, we present estimation results both for the

simple model that ignores measurement errors and for the extended model that

accounts for such errors. Finally, we use our estimates to shed light on the persistent

and transitory components of GDP growth and inflation implied by the forecasts.

3.1 Data

Our data is taken from the Consensus Economics Inc. forecasts which comprise

polls of more than 600 private sector forecasters and are widely considered by orga-

nizations such as the IMF and the U.S. Federal Reserve. Each month participants

are asked about their views of a range of variables for the major economies and

the consensus (average) forecast is recorded. Our analysis focuses on US real GDP

growth and Consumer Price Index (CPI) inflation for the current and subsequent

year. This gives us 24 monthly next-year and current-year forecasts over the period

1991-2004 or a total of 24× 14 = 336 monthly observations. Naturally our observa-

tions are not independent draws but are subject to a set of tight restrictions across

horizons, as revealed by the analysis in the previous section. We use data from the

IMF to measure the realized value of the target variable (GDP growth or inflation),

and we follow Romer and Romer (2000) and use second release of this data. Results

are very similar when the first release is used instead as recommended by Corradi,

Fernandez and Swanson (2007).

Our analysis takes the target variable, zt, as the December-on-December change

in the log-level of US real GDP or the Consumer Price Index, which can of course be

written as the sum of the month-on-month changes in the log-levels of these series,
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denoted yt, as in equation (2) . The Consensus Economics survey formally defines

the target variable slightly differently to this, see Patton and Timmermann (2008)

for details, but the impact of this difference on our results is negligible.

As a prelude to our analysis of the RMSE function, we initially undertook a

range of statistical tests that check for biases and serial correlation in the forecast

errors. We tested for biases in the forecasts by testing whether the forecast errors

were mean zero and by estimating “Mincer-Zarnowitz” (1969) regressions

yt = βh0 + βh1 ŷt,t−h + �t,t−h (18)

and testing that βh0 = 0, β
h
1 = 1 for h = 1, ..., 24, which is requirement for unbiased

forecasts. The results are presented in Table 1. For GDP growth, there was no

evidence of a bias and none of the Mincer-Zarnowitz F−tests rejected the null. For

inflation, the test for bias did reject for some horizons, whereas the Mincer-Zarnowitz

F−test did not reject the optimality of these forecasts. Hence we shall proceed to

estimate the parameters of our model under the assumption that forecasters use

information efficiently.

3.2 Parameter Estimates and Tests

The simple benchmark model contains just three free parameters, namely the vari-

ance of the innovations in the temporary (σ2u) and persistent (σ
2
ε) components, and

the persistence parameter, φ, for the predictable component. The expressions for

the MSE as a function of h, stated in Proposition 1 for the benchmark model and

in equation (15) for the model that allows for measurement error, enable us to use

GMM to estimate the unknown parameters given a panel of forecast errors measured

at various horizons. These parameters are not separately identifiable if forecasts for
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a single horizon are all that is available so access to multi-horizon forecasts is crucial

to our analysis. Since the variance of the h-period forecast error grows linearly in σ2u

while σ2ε and φ generally affect the MSE in a non-linear fashion, these parameters

can be identified from a sequence of MSE-values corresponding to different forecast

horizons, h, provided at least three different horizons are available.

Figure 4 plots the RMSE-values for output growth and inflation at the 24 dif-

ferent horizons. In the case of output growth the RMSE shrinks from about 1.8%

at the 24-month horizon to 1% at the 12-month horizon and 0.5% at the 1-month

horizon. For inflation it ranges from 0.8% at the two-year horizon to 0.4% at the

12-month horizon and less than 0.1% at the 1-month horizon. Forecast precision

improves systematically as the forecast horizon is reduced, as expected. Moreover,

consistent with Proposition 1, the rate at which the RMSE declines is smaller in the

next-year forecasts (h ≥ 12) than in current-year forecasts (h < 12).

The fitted values from the model without measurement error, also shown in

Figure 4, clearly illustrate the limitation of this specification. This model assumes

that forecasters get a very precise reading of the outcome towards the end of the

current year and hence forces the fitted estimate of the RMSE to decline sharply at

short forecast horizons. This property is clearly at odds with the GDP growth data

and means that the benchmark model without measurement error does not succeed

in simultaneously capturing the behavior of the RMSE at both the short and long

horizons. For inflation forecasts the assumption of zero measurement error appears

consistent with the data. Table 2 presents the parameter estimates and provides a

formal test of this model. Unsurprisingly, in view of Figure 4, the model is strongly

rejected for GDP growth but not for inflation.

The model extended to allow for measurement errors introduces an extra para-
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meter, σ2η, which reflects the magnitude of measurement errors. Even though both

σ2η and σ2u are well-identified in theory, in practice they are difficult to estimate

separately. We therefore set ση to be proportional to σu : ση = k · σu and estimate

the model for k = {0.01, 0.25, 0.5, 1, 2, 3, 4, 5, 10}. The goodness-of-fit of the model

(as measured by Hansen’s (1982) J-test of over-identifying restrictions) is generally

robust for 1 ≤ k ≤ 4. We set k = 2 in the estimation.

Table 3 presents parameter estimates for the model with measurement errors

fitted to the consensus forecasts. This model passes the specification tests for both

GDP growth and inflation and thus there is little statistical evidence against our

simple specification even for output growth, once measurement errors are considered.

Table 3 reveals that the predictable component of inflation is slightly more persistent

than that in output growth.

Figure 4 shows that the specification with measurement errors does a much better

job at matching the decay pattern in observed RMSE for US output growth as the

forecast horizon, h, shrinks to zero. In the case of US inflation, the models with

and without measurement error are identical, as the best estimate of the variance of

the measurement error is zero. This is consistent with Croushore and Stark (2001)

who report that revisions in reported GDP figures tend to be larger than those in

reported inflation figures.

3.3 Components of GDP Growth and Inflation

Our model for the multi-horizon patterns in forecast errors is based on a decomposi-

tion of the target variable, GDP growth or inflation, into a persistent component, xt,

and an unpredictable component, ut. The GMM estimation procedure used above

does not require the estimation of the sample paths for xt and ut, but with the
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estimated parameter vector and the panel of forecasts we are able to infer the fore-

casters’ estimated values of these variables. Without a model for the persistent and

transitory components of these series it would be impossible to extract estimates of

the forecasters’ beliefs about the persistent components of GDP growth and infla-

tion. We can use the long horizon forecasts (h ≥ 12) to infer the forecasters’ estimate

of the persistent component, and the short horizon (h < 12) forecasts to infer the

forecasters’ estimate of the unpredictable component. Intuitively, one can think of

our estimates of these two components as an alternative representation of the two

forecasts the forecasters make at each point in time (the “next year”, h ≥ 12, and

the “current year”, h < 12, forecasts). We can obtain both of these components

without needing to make any further identifying assumptions, and without needing

to employ any data other than the collection of forecasts. The most economically

interesting piece is the persistent component and below we focus on that.

To show how we derive estimates of the persistent components, it is convenient to

consider a smaller state variable, ξ̈t ≡ [yt, xt]0 . For concreteness, consider estimates

based on the first row in our panel, so the annual target variable is z25, and the first

forecast is ẑ25,1. Let

χ25 ≡
11X
j=0

ξ̈25−j =

⎡⎢⎢⎣
11P
j=0

y25−j

11P
j=0

x25−j

⎤⎥⎥⎦
then

χ̂25,1 =
11X
j=0

b̈
ξ25−j,1 =

Ã
11X
j=0

F24−j

!b̈
ξ1,1 ≡ F13F(11)

b̈
ξ1,1,
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where F(k) ≡
kP

j=0

Fj. Thus

ẑ25,1 = e01χ̂25,1

= e01F
13F(11)

b̈
ξ1,1

=
φ13
¡
1− φ12

¢
1− φ

E
h
x1|F̃1

i
,

so E
h
x1|F̃1

i
=

1− φ

φ13
¡
1− φ12

¢ · ẑ25,1,
where e1 ≡ [1, 0]0 . Since the 24-month forecast is proportional to the “nowcast”

of the predictable component, with the proportionality constant being a simple

function of the parameter of the data generating process, we can back out the

forecaster’s “nowcast” of the predictable component from the forecast. This same

step holds for all “long horizon” forecasts:

χ̂25,25−h = Fh−11F(11)
b̈
ξ25−h,25−h, for h ≥ 12

and so E
h
x25−h|F̃25−h

i
=

1− φ

φh−11
¡
1− φ12

¢ · ẑ25,25−h, for h ≥ 12.
Thus using the long-horizon forecasts we can extract the filtered estimate of the

predictable component of the target variable. This is, of course, available monthly,

which is more frequently than data is available on GDP growth, although some

inflation series are available monthly.

Our model above assumed, without loss of generality for the study of RMSE,

that all variables have zero mean. This of course is not true in reality, and does

have implications for our estimates of xt. The expressions derived above can be

re-interpreted as expressions for E
h
xt − μ|F̃t

i
and E

h
yt − μ|F̃t

i
when μ 6= 0. Mod-

ifying the subsequent calculations the forecasts become:

χ25 ≡
11X
j=0

ξ1,1,25−j =

⎡⎢⎢⎣
11P
j=0

(y25−j − μ)

11P
j=0

(x25−j − μ)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

11P
j=0

y25−j

11P
j=0

x25−j

⎤⎥⎥⎦− 12μ.
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Thus we can simply de-mean the observed forecasts (using, for example, one-twelfth

the sample mean of the zt series), compute E
h
xt|F̃t

i
and E

h
yt|F̃t

i
as above, and

then add back the means to the estimates. This corresponds to estimating the

parameter μ by GMM, using simply the sample mean of the zt series.

In Figure 5 we present for each month in our sample the estimated persistent

components of GDP growth and inflation, as implied by the observed consensus

forecasts and the parameters of our model. For reference we plot both the “filtered”

estimates, which are estimates of E
h
xt|F̃t

i
, and the “smoothed” estimates, which

are estimates ofE
h
xt|F̃T

i
.The estimates for GDP growth reveal that the forecasters

in the survey estimated the level of GDP growth in the early 1990s quite well, but

were surprised by the strong GDP growth in the mid to late 1990s: the estimated

persistent component of GDP growth hovered around 1.5% annualized, whereas

the actual GDP growth in that period was closer to 4%. Since the 2001 recession

the persistent component has consistently been above the realized values of GDP

growth.

Similarly, the forecasters in the survey were surprised by the declining inflation of

the 1990s, with our estimated persistent component generally coming out above the

realized values of inflation. In the latter part of the sample the estimated persistent

component is more in line with realized inflation, consistent with the view that

forecasters took some time to adjust their views on long-run inflation in the US.

4 Conclusion

This paper studied how macroeconomic uncertainty is resolved over time. To this

end we considered survey forecasts of macroeconomic variables which hold the
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“event” date constant, while reducing the length of the forecast horizon. We pro-

posed a simple, parsimonious unobserved components model and developed tools

for estimation and inference based on simulation methods that account for agents’

learning problem. Our methods can be used to estimate the size of measurement er-

rors in the underlying variables and the degree of persistence in the data generating

process. They can also be used to extract information on forecasters’ beliefs about

the underlying state of the economy and thus to characterize the types of forecast

errors that agents made over a given historical sample.

5 Appendix A

Proof of Proposition 1. Since zt =
P11

j=0 yt−j and yt = xt + ut, where xt is the

persistent component, forecasting zt given information h months prior to the end of

the measurement period, Ft−h = {xt−h, yt−h, xt−h−1, yt−h−1, ...}, requires accounting

for the persistence in x. Note that

xt−h+1 = φxt−h + εt−h+1

xt−h+2 = φ2xt−h + φεt−h+1 + εt−h+2

...

xt = φhxt−h +
h−1X
j=0

φjεt−j.

Adding up these terms we find that, for h ≥ 12,

zt =
11X
j=0

xt−j +
11X
j=0

ut−j

=
φ(1− φ12)

1− φ
xt−12 +

1

1− φ

11X
j=0

(1− φ12−j)εt−12+1+j +
11X
j=0

ut−j.

23



Thus the optimal forecast for h ≥ 12 is

ẑ∗t,t−h ≡ E [zt|Ft−h] =
11X
j=0

E [yt−j|Ft−h] =
11X
j=0

E [xt−j|Ft−h] =
11X
j=0

φh−jxt−h,

so ẑ∗t,t−h =
φh−11

¡
1− φ12

¢
1− φ

xt−h , for h ≥ 12.

For the current-year forecasts (h < 12) the optimal forecast of zt makes use of those

realizations of y that have already been observed. Thus the optimal forecast is:

ẑ∗t,t−h =
11X
j=0

E [yt−j|Ft−h] =
11X
j=h

yt−j +
h−1X
j=0

E [xt−j|Ft−h] =
11X
j=h

yt−j +
h−1X
j=0

φh−jxt−h,

so ẑ∗t,t−h =
11X
j=h

yt−j +
φ
¡
1− φh

¢
1− φ

xt−h , for h < 12.

Using these expressions for the optimal forecasts we can derive the forecast error,

et,t−h ≡ zt − ẑ∗t,t−h, as a function of the forecast horizon. For h ≥ 12,

et,t−h =
11X
j=0

ut−j +
11X
j=0

xt−j −
φh−11

¡
1− φ12

¢
1− φ

xt−h

=
11X
j=0

ut−j +
11X
j=0

1− φj+1

1− φ
εt−j +

h−1X
j=12

φj−11
¡
1− φ12

¢
1− φ

εt−j.

In computing the variance of et,t−h we exploit the fact that u and ε are independent

of each other at all lags. For h ≥12,

E
£
e2t,t−h

¤
=

11X
j=0

E
£
u2t−j

¤
+

11X
j=0

¡
1− φj+1

¢2
(1− φ)2

E
£
ε2t−j

¤
+

h−1X
j=12

φ2j−22
¡
1− φ12

¢2
(1− φ)2

E
£
ε2t−j

¤
= 12σ2u +

σ2ε
(1− φ)2

11X
j=0

¡
1− φj+1

¢2
+

¡
1− φ12

¢2
(1− φ)2

σ2ε

h−1X
j=12

φ2j−22

= 12σ2u +
σ2ε

(1− φ)2

Ã
12− 2

φ
¡
1− φ12

¢
1− φ

+
φ2
¡
1− φ24

¢¡
1− φ2

¢ !

+
φ2
¡
1− φ12

¢2 ¡
1− φ2h−24

¢
(1− φ)3 (1 + φ)

σ2ε,
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as presented in the proposition. For h < 12 we have:

et,t−h =
11X
j=0

yt−j −
11X
j=h

yt−j −
φ
¡
1− φh

¢
1− φ

xt−h

=
h−1X
j=0

ut−j +
h−1X
j=0

1− φj+1

1− φ
εt−j

so E
£
e2t,t−h

¤
=

h−1X
j=0

E
£
u2t−j

¤
+

h−1X
j=0

¡
1− φj+1

¢2
(1− φ)2

E
£
ε2t−j

¤
= hσ2u +

σ2ε
(1− φ)2

Ã
h− 2

φ
¡
1− φh

¢
1− φ

+
φ2
¡
1− φ2h

¢
1− φ2

!
.
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Table 1: Testing rationality of consensus forecasts of US GDP growth
and Inflation

Bias MZ p-values
Horizon GDP growth Inflation GDP growth Inflation
1 0.11 0.01 0.99 1.00
2 0.07 0.02 0.99 1.00
3 0.03 0.04∗ 0.99 1.00
4 0.02 0.06∗ 0.99 1.00
5 0.01 0.08∗ 0.99 1.00
6 0.05 0.08∗ 0.99 1.00
7 0.07 0.11∗ 0.98 1.00
8 0.07 0.08 0.97 1.00
9 -0.06 0.01 0.98 0.99
10 -0.16 -0.03 0.98 0.97
11 -0.26 -0.05 0.97 0.96
12 -0.34 0.03 0.95 0.96
13 -0.33 0.11 0.95 0.96
14 -0.35 0.16 0.94 0.96
15 -0.29 0.22 0.95 0.97
16 -0.14 0.28 0.95 0.97
17 -0.10 0.26 0.99 0.98
18 -0.06 0.29 0.99 0.98
19 -0.07 0.33∗ 0.99 0.98
20 -0.07 0.36∗ 0.99 0.98
21 -0.08 0.33∗ 0.99 0.97
22 -0.07 0.32 0.99 0.97
23 -0.07 0.35∗ 0.99 0.97
24 -0.09 0.37∗ 0.98 0.98

Notes: ∗ indicates that the bias is significant at the 5% level based on Newey-West
(1987) autocorrelation and heteroskedasticity robust standard errors. The first two
columns report the average bias in the forecast, for each variable and each horizon,
which should be zero for a rational forecast. The final two columns give the p-values
from a joint test that βh0 = 0 ∩ βh1 = 1 in the Mincer-Zarnowitz regression of the
realized value of the target variable on the forecast: yt = βh0 + βh1 ŷt,t−h + �t,t−h, for
each horizon h.
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Table 2: GMM parameter estimates of the consensus forecast model:
No measurement error

σu σε φ J p-val

GDP growth 0.229
(0.405)

0.050
(0.031)

0.930
(0.033)

0.000

Inflation 0.000
(––)

0.023
(0.007)

0.953
(0.047)

0.935

Notes: The table reports the GMM estimates of the parameters of the Kalman
filter model fitted to the consensus forecasts with standard errors in parentheses,
estimated imposing that there is no measurement error (i.e., that ση = 0). p-values
from the test of over-identifying restrictions are given in the column titled “J p-val”.

Table 3: GMM parameter estimates of the consensus forecast model:
Allowing for measurement error

σu σε φ ση J p-val

GDP growth 0.063
(0.012)

0.054
(0.013)

0.936
(0.034)

0.126
(––)

0.403

Inflation 0.000
(––)

0.023
(0.007)

0.953
(0.047)

0.000
(––)

0.935

Notes: The table reports the GMM estimates of the parameters of the Kalman
filter model fitted to the consensus forecasts with standard errors in parentheses.
p-values from the test of over-identifying restrictions are given in the column titled
“J p-val”. The parameter ση was fixed at 2σu and is reported here for reference
only.
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Figure 1: Evolution in consensus forecasts for US GDP growth in 2002, for horizons
ranging from 24 months (January 2001) to 24 months (December 2002).
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Figure 2: Root-mean squared forecast errors as a function of the forecast horizon
(h) for various degrees of persistence (φ) in the predictable component
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Figure 3: Root-mean squared forecast errors as a function of the forecast horizon (h)
for various degrees of measurement error in the predicted variable. In this example,
the degree of measurement error is described as ση = kσu, where σu is the standard
deviation of the unpredictable component of yt.
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Figure 4: Root mean squared forecast errors for US GDP growth and Inflation as a
function of the forecast horizon.
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Figure 5: Estimates of the persistent component (xhat) of GDP growth and inflation
for each month in the sample period, as implied by the observed forecasts and the
estimated model for the multi-horizon forecast errors.
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