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Abstract

In this paper we consider a fractionally cointegrated error correction model and inves-

tigate asymptotic properties of the maximum likelihood (ML) estimators of the matrix of

the cointegration relations, the degree of fractional cointegration, the matrix of the speed

of adjustment to the equilibrium parameters, and the variance-covariance matrix of the

error term. We show that by using ML principles to estimate jointly all parameters of the

fractionally cointegrated system, consistent estimates are obtained. Their asymptotic distri-

butions are provided. The cointegration matrix is asymptotically mixed normal distributed,

while the degree of fracional cointegration and the speed of adjustment to the equilibrium

matrix have a joint normal distribution, which proves the intuition that the memory of

the cointegrating residuals a¤ects the speed of convergence to the long-run equilibrium,

but does not have any in�uence on the long-run relationship. The rate of convergence of

the estimators of the long-run relationships depends on the cointegration degree but it is

optimal for the strong cointegration case considered. We also prove that misspeci�cation

of the degree of fractional cointegation does not a¤ect the consistency of the estimators of

the cointegration relationships, although usual inference rules are not valid. The �ndings

are illustrated for �nite samples by Monte Carlo analysis. We also apply the developed

methodology in a study of the term structure of interest rates.
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1 Introduction

Cointegration is thought of as a stationary relation amongst nonstationary variables. It has
become a standard tool in econometrics since the seminal paper of Granger (1981). One of
the most commonly used procedures in econometric practice, the fully parametric inference
on I(1)=I(0) cointegrated systems in the framework of the Vector Error Correction Model
(VECM), has been developed by Johansen (1988, 1991, 1995). He suggests a maximum likeli-
hood (ML) procedure based on reduced rank regressions. The methodology consists in identi-
fying the number of cointegration vectors within the Vector AutoRegressive (VAR) model by
means of performing a sequence of likelihood ratio (LR) tests. If the variables are cointegrated,
after selecting the rank, cointegration vectors and the adjustment coe¢ cients are estimated.

However, the assumption that deviations from equilibrium are integrated of order zero is far
too restrictive. In a general set up it is possible to permit errors with fractional degree of
integration. This is an important generalization, since fractional cointegration has the same
economic implications as when the processes are integer-valued cointegrated in the sense that
there exists a long-run equilibrium amongst the variables. The only di¤erence is that the
rate of convergence to the equilibrium is slower in the fractional than in the standard case.
Moreover, since an I(1)=I(0) cointegration setup ignores the fractional cointegration parameter,
a fractionally integrated equilibrium error results in a misspeci�ed likelihood function.

It has been studied what happens if we use standard VECM models to make inference in
fractionally cointegrated systems. Gonzalo and Lee (1998) found that likelihood ratio tests
based on the standard models tend to �nd spurious cointegration between independent variables
that are not unit root processes. Further, Andersson and Gredenho¤ (1999) have shown by
simulation that trace test of no cointegration based on the standard model has power against
fractional alternatives, so using ML techniques we are likely to �nd the evidence of C(1; 1)
cointegration when in reality we have fractional cointegration. At the same time the ML
approach based on standard models gives the estimates of the "impact" matrix � = ��0 that are
severely biased and have large mean square errors if the variables are fractionally cointegrated.
So it can be much more severe to ignore fractional cointegration than to incorporate it when in
fact it is not present. Moreover, the fractional framework that we consider nests the standard
case.

In ×asak (2010) we have developed an asymptotic theory for LR tests based on the fractional
VECM. The procedure that leads to construction of LR tests simultaneously produces ML
estimates of all the parameters of the fractional VECM, the fractional cointegration degree,
the cointegrating vectors, speed of adjustment to the equilibrium coe¢ cients matrix, short
run correlation parameters and the variance-covariance matrix of the error term. Knowledge
of the properties of those estimators would allow us to propose more complex and complete
analysis of fractionally cointegrated systems in line of the analysis in Johansen (1988, 1991,
1995). Therefore in this paper we examine the properties of ML estimators of the fractional
VECM.
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The list of other work treating inference problems of cointegrated systems in a fractional con-
text, without pretension of completeness, includes the following papers. Robinson (1994) has
established the consistency for frequency domain narrow-band estimates of the fractional coin-
tegrating relationship in the stationary bivariate case. In a nonstationary framework the prop-
erties of this estimator have been studied by Marinucci and Robinson (2001) and Robinson and
Marinucci (2001, 2003). Robinson and Hualde (2003) considered estimation of the cointegrat-
ing relationship using the GLS estimator which is asymptotically mixed normal and leads to a
Wald test statistic with a standard �2 distribution under the null. Their model assumes "strong
cointegration", similarly to the model considered in this paper. The asymptotic properties of
the cointegrating vector in the "weak cointegration" case have been established in Hualde and
Robinson (2007).

Other works allow for deterministic components whose presence implies a competition between
stochastic and deterministic trends as discussed in Marinucci and Robinson (2000). Robinson
and Iacone (2005) have developed an asymptotic theory for the cointegrating vector in systems
generated by polynomial trends and processes that may be fractionally integrated. Chen and
Hurvich (2003a) have derived an asymptotic distribution of a tapered narrow-band least squares
estimator of the cointegrating parameter. Finally, Hassler, Marmol and Velasco (2008) have
examined bivariate regressions of nonstationary variables dominated by linear time trends.

Cointegration amongst stationary long memory processes is especially of interest in �nancial
applications. Christensen and Nielsen (2006) have found that the asymptotic distribution of
narrow band least squares (NBLS) is normal if regressors and errors obey the condition that
their collective memory is less than 0.5 and their coherency is zero at the origin. Nielsen and
Frederiksen (2007) have shown that if the zero coherence assumption is not satis�ed then a
bias term appears in the mean of the asymptotic distribution. They have also proposed a fully
modi�ed NBLS estimator in the spirit of Phillips and Hansen (1990) that does not have this
drawback. Nielsen (2007) has shown consistency of joint local Whittle quasi ML estimators of
integration orders of the regressors, errors and the cointegration vector.

Our work is in line with current research on fractional models that has been developed in a
fully parametric framework. Johansen (2008, 2009) has found a representation of the solution of
Fractional Vector Error Correction Model (FVECM) that we analyze in this paper. In Johansen
and Nielsen (2010 a,b) the likelihood analysis of the fractional model has been developed for the
univariate and multivariate case, respectively. Franchi (2009) has extended the representation
theory of Johansen (2008) for polynomial cofractional relations. Further Rossi and Santucci
de Magistris (2009) apply fractional VECM to analyze the joint dynamics of futures and spot
volatilities.

In this paper we consider a fractionally cointegrated system and investigate the asymptotic
properties of the ML estimators of the cointegration relations, the degree of fractional cointe-
gration, speed of adjustment to the equilibrium parameters and the variance-covariance matrix
of the error term. We demonstrate that using ML principles to estimate jointly all the parame-
ters of the fractionally cointegrated model we obtain consistent estimates of all of them with
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known asymptotic distribution. The cointegration matrix estimate results to be asymptotically
mixed normal distributed, while the degree of fractional cointegration and the speed of adjust-
ment to the equilibrium matrix have a joint normal distribution. This proves the intuition
that the memory of the cointegrating residuals a¤ects the speed of convergence to the long-run
equilibrium, but does not have any in�uence on the long-run relationship. However, the rate of
convergence of the estimators of the long-run relationships depends on the cointegration degree.
We also demonstrate that misspeci�cation of the degree of fractional cointegration does not
a¤ect the consistency of the cointegration relationships estimators, although usual inference
rules are no longer valid.

The paper is organized as follows. Section 2 describes the fractional cointegration framework.
Section 3 presents the model considered in the paper and the procedure that gives us estimates
of the fractionally cointegrated systems. In Section 4 we describe the main results regarding
joint consistency and the asymptotic distribution of all the estimators of the system. Section 5
discusses a model with short run dynamics. Section 6 presents Monte Carlo simulation. Section
7 includes empirical application. Section 8 concludes. Appendix A contains all the lemmas. In
Appendix B and C proofs of main results of this paper are given under di¤erent assumptions.

2 A framework description

We use the following de�nition of fractionally integrated process I(�); see Marinucci and Robin-
son (2001).

De�nition 1 A scalar process at; t 2 Z; is an I(�) process, � > 0, if there exists a zero mean
scalar process �t; t 2 Z; with positive and bounded spectral density at zero; such that

at = �
���t1(t>0); t 2 Z; � > 0; (1)

where 1(�) is the indicator function, � = 1�L; L is the lag operator and the fractional di¤erence
�lter is de�ned formally by:

(1� z)� =
1X
j=0

�j(�) z
j ; (2)

where �j(�) =
�(j��)

�(��)�(j+1) and �(�) is the gamma function.

The process at is said to be asymptotically stationary when � < 1
2 ; since it is nonstationary

only due to the truncation on the right-hand side of (1). The truncation is designed to cater
for cases � � 1

2 ; because otherwise the right-hand side of (1) does not converge in mean square
and hence at is not well de�ned.

We follow with the de�nition of cointegration, see for example Nielsen (2010):
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De�nition 2 The p-vector time series Xt is cointegrated if Xt 2 I(�); but there exists a full
rank p � r matrix � such that �0Xt 2 I(� � d) for d > 0: The number r is the cointegration
rank and the space spanned by the columns of � is the cointegration space.

In the standard cointegration setup � = d = 1 and we can use ML techniques as in Johansen
(1988, 1991, 1995). However if d < 1 we have fractional cointegration, which calls for a
generalization of the standard cointegration framework, since inference based on a standard
VECM may not be valid.

Johansen (2008) has shown how fractional VECM representations could be derived. Assume
that Xt is a p� 1 vector fractionally integrated of order � and there are r linear combinations
� of order � � d; and

�0��Xt = u1t; (3)

�0���dXt = u2t;

where ut = (u01t; u
0
2t)

0 is i.i.d. (0;�), � is p � (p� r) so that (�; �) has rank p and Xt = 0 for
t � 0: Then using the identity1

�?(�
0�?)

�1�0 + �?(�
0�?)

�1�0 = Ip

we can show that

��Xt = �?(�
0�?)

�1u1t + �?(�
0�?)

�1�du2t (4)

= �?(�
0�?)

�1u1t + �?(�
0�?)

�1u2t � �?(�0�?)�1
�
1��d

�
u2t

=
�
1��d

�
��0���dXt + "t

where "t = �?(�
0�?)

�1u1t + �?(�
0�?)

�1u2t is i.i.d. Recall that � is a p � r matrix of speed
of adjustment to the equilibrium coe¢ cients, � = ��?(�0�?)�1 and � satis�es �0� = �Ir;
r is a cointegration rank: The formulation (3) allows for modelling and estimating both the
cointegrating vectors � and "common trends" vectors � and has also been used by Breitung
and Hassler (2002):

To make a model more �exible it is a natural idea to add a lag structure to the model (4).
Granger (1986) has included lags of ��Xt and has proposed a model that can be presented as

A�(L)��Xt =
�
1��d

�
���d��0Xt�1 + d(L)"t; (5)

where A�(L) and d(L) are usual lag polynomials.

Johansen (2008, 2009) has proposed another model that comes from adding the fractional lag
operator Ld = 1� (1� L)d to model (4) and has the following form

A(Ld)�
�Xt =

�
1��d

�
���d��0Xt + "t: (6)

1Recall for a p �m matrix a we de�ne the orthogonal complement a? to be a p � (p �m) matrix of rank
p�m; for which a0a? = 0:
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An alternative model that allows for short run correlation in both the fractional cointegration
relationship and in the levels has been proposed in Avarucci (2007)

��Xt = ��
0(��d � 1)A (L)��Xt + (I �A (L))��Xt + "t; (7)

with a usual lag polynomial A (L) ; of order k, that can be also expressed as

��Xt = ��
0(��d � 1)��Xt +

kX
j=1

LjBj

n
(��d � 1)��Xt

o
+

kX
j=1

LjAj�
�Xt + "t; (8)

with the restriction Bj = �Aj�: We use this model in Section 5.

3 Model and ML estimation

In this paper as a �rst natural research step we consider the simplest version of the fractional
VECM model without lagged di¤erences, which is obviously a special case of models (5), (6)
and (7). Moreover we assume that � is known and we �x � = 1 to ease the notation. However,
� can take a value di¤erent from 1: We use the VECM representation

�Xt = ��
0
�
�1�d ��

�
Xt + "t (9)

together with the representation (3). Note that it implies that we impose the restriction
�0� = �Ir in the model (9), since only under this condition models (3) and (9) are equivalent.
We assume Gaussianity of the errors only to de�ne the likelihood function.

To estimate the parameters of model (9) we follow the procedure described in Johansen (1995),
but adjusted for the case of fractional VECM that has been already presented in ×asak (2010).
Let us de�ne Z0t = �Xt; Z1t(d) =

�
�1�d ��

�
Xt: The model expressed in these variables

becomes
Z0t = ��

0Z1t(d) + "t; t = 1; :::; T:

The log-likelihood function apart from a constant for model (9) is given by

L (�; �;
; d) = �1
2
T log j
j � 1

2

TX
t=1

[Z0t � ��0Z1t(d)]0
�1[Z0t � ��0Z1t(d)]:

De�ne as well

Sij(da; db) = T
�1

TX
t=1

Zit(da)Zjt(db)
0 i; j = 0; 1;

where S11(d) = S11(d; d) and note that Sij do not depend on d when i = j = 0.
For �xed d and �; parameters � and 
 are estimated by regressing Z0t on �0Z1t(d) and

�̂(�) = S01(d)�(�
0S11(d)�)

�1 (10)

while


̂(�) = S00 � S01(d)�(�0S11(d)�)�1�0S10(d) = S00 � �̂(�)(�0S11(d)�)�̂(�)0: (11)
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Plugging the estimates into the likelihood we get:

L�2=Tmax (�̂(�); �; 
̂(�); d) = L
�2=T
max (�; d) = jS00 � S01(d)�(�0S11(d)�)�1�0S10(d)j;

and �nally the maximum of the likelihood is obtained by solving the eigenvalue problem���(d)S11(d)� S10(d)S�100 S01(d)�� = 0 (12)

for eigenvalues �i(d) and eigenvectors �i(d), such that :

�i(d)S11(d)�i(d) = S10(d)S
�1
00 S01(d)�i(d);

and �0j(d)S11(d)�i(d) = 1 if i = j and 0 otherwise.
Note that the eigenvectors diagonalize the matrix S10(d)S�100 S01(d) since

�0j(d)S10(d)S
�1
00 S01(d)�i(d) = �i(d)

if i = j and 0 otherwise. Thus by simultaneously diagonalizing the matrices S11(d) and
S10(d)S

�1
00 S01(d) we can estimate the r�dimensional cointegrating space as the space spanned

by the eigenvectors corresponding to the r largest eigenvalues. With this choice of � we can
estimate d by maximizing the log-likelihood; i.e.

~d = argmax Lmax(d)
d

; (13)

where

Lmax(d) =

"
jS00j

rY
i=1

�
1� �̂i(d)

�#�T
2

:

Note that we assume that the cointegration rank is known already, or alternatively we can
establish it using for example the sequence of the tests considered in ×asak and Velasco (2010).

4 Consistency and asymptotic distribution

First let us make the following assumption.

Assumption 1 "t are independent and identically distributed vectors with mean zero, positive
de�nite covariance matrix 
; and Ejj"tjjq < 1; q � 4; q > 2= (2d0 � 1) ; d0 > 1

2 ; where d0
denotes the true value of d:

The moment condition on "t is needed to obtain weak convergence of partial sums to fractional
Brownian motion.

Then we de�ne for d 2 (0:5; 1] and omitting the dependence on the true value of d; d0;

lim
t!1

V ar

2664
Z0t

�0Z1t (d)

�0Z
(1)
1t (d)

3775 =
26664

�00 �0� (d)
�
�0� (d)

��0 (d) ��� (d)
�
��� (d)

�
��0 (d)

�
��� (d) ���� (d)

37775 (14)
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where

Z
(1)
1t (d) :=

@

@d
Z1t(d):

Note that

�0� (d0) = ���� (d0)

�00 = ���� (d0)�
0 +


and using Lemma 7 in Appendix A calculate

��� (d0) = a0 � ����
�
��� (d0) = c0 � ����
���� (d0) =

�2

6
� ����

where ���� = �0
� and a0 =
1X
1

�j (d0)
2 and c0 = �

1X
1

j�1�j (d0) :

To derive theoretical results we also use the following normalization of �̂ and �̂; as in Johansen
(1995). We choose the coordinate system (�; 
) and expand

�̂ = ���
0
�̂ + �

0�̂;

where
_
� = �

�
�0�
��1etc. and de�ne the estimator

~� = �̂
�
��
0
�̂
��1

= � + �

0~� = � + �
UT

where UT = 
0~�. This way of normalizing is convenient for the analysis, since it has the
property that ~� � � is contained in the space spanned by 
 and hence orthogonal to �: Note
that since ~� is just a linear transformation of the columns of �̂ it also maximizes the likelihood
function and hence ~� satis�es the likelihood equations. The normalization depends on �; so
for practice it is not so useful, but it is convenient in the analysis. We de�ne ~� = �̂�̂

0�� so that
~�~�

0
= �̂�̂

0
:

For d0 2 D � (0:5; 1]; where D is a closed set, we demonstrate following Johansen (1995) that
the following theorem holds.

Theorem 1 The estimators ~d; ~� = �̂
�
��
0
�̂
��1

; ~� = �̂�̂
0��, 
̂ are consistent. Moreover ~��� =

oP (T
1
2
�d0):

Note that Theorem 1 gives the consistency of all the parameters of the fractional VECM we
have proposed to estimate jointly by ML.

Theorem 2 For any �xed d; d 6= d0; d > 0:5 so that q > 2= (2d� 1) in Assumption 1 the
estimator ~� = �̂

�
��
0
�̂
��1

remains consistent with a rate ~� � � = oP (T
1
2
�d); but ~� and 
̂ are

not consistent anymore.
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Theorem 2 tells us that if instead of estimating d we plug in any �xed d; d > 0:5 to estimate
other parameters of fractional VECM we will still obtain a consistent estimate of �, but not of
� and 
; which might suggest that the bias and large mean square errors of the estimator of the
impact matrix � = ��0 found by Andersson and Gredenho¤ (1999) came from the estimation
of � rather than �:

Theorem 3 Under Assumption 1 and for d0 2 IntD � (0:5; 1] the asymptotic distribution of
~� is mixed Gaussian and given by

T d0UT = T
d0
0

�
~� � �

�
!d

�

0C

Z 1

0
Wd0 (�)Wd0 (�)

0 d�C 0


��1

0C

Z 1

0
Wd0 (�) dV

0
�;

where Wd0 (�) is p-dimensional standard fractional Brownian motion with parameter d0 2
(0:5; 1]

Wd0 (�) = �
�1 (d0)

Z �

0
(� � z)d0�1 dW (z) ;

Wd0 (�) and dV�(�) are independent and dV� (�) =
�
�0
�1�

��1
�0
�1dW (�) with W a Brown-

ian motion with covariance matrix 
:
The conditional variance of the limit distribution is given by�

C

Z 1

0
Wd0 (�)Wd0 (�)

0 d�C 0
��1



�
�0
�1�

��1
and C = �? (�

0
?�?)

�1 �0?:

We can observe that the distribution of ~� given by Theorem 3 is similar to the distribution
found in Johansen (1995) for d0 = 1 �xed. It is also equal to the distribution that Robinson
and Hualde (2003) found for their GLS estimator when r = 1. The convergence rate of ~� is
optimal, hence ~� � � 2 OP

�
T�d0

�
:

We would like to emphasize the fact that the estimator ~� is asymptotically independent of the
estimators of ~� and ~d, which means that estimation of other parameters of the system do not
a¤ect the estimate of the long run-relationship.

Note that since the asymptotic distribution of ~� remains mixed normal, we can test for the
values of the cointegration vectors using Wald test being �2 distributed. Thus, following
Johansen (1991) we state Theorem 4.

Theorem 4 If only one cointegrating vector � is present (r = 1) and we want to test the hy-
pothesis K 0� = 0; then the test statistic T (K 0~�(~�S11~�)�1~�

0
K)((�̂

�1
1 �1)(K 0v̂(v̂S11v̂)�1v̂0K))�1

is asymptotically �2 with one degree of freedom. Here �̂1 is the maximum eigenvalue and ~� the
corresponding eigenvector of the equation (12). The remaining eigenvectors form v̂:

In Section 6 we perform a simulation of the Wald test and check that it has proper size and
good power to test the values of the cointegration vector in �nite samples.
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Theorem 5 The joint asymptotic distribution of ~� and ~d is given by"
T

1
2 ( ~d� d0)

T
1
2 vec(~�� �)

#
!d N (0;	) ;

where

	 =

24 !�1 c0!
�1vec (�)0

c0!
�1vec (�) 1

a0

�
���1�� 
 


�
+

c20
!a20
vec (�) vec (�)0

35
and

! =
�2

6

�
1� �20

�
tr
�
�����

0
�1�
�
; 2

�20 =
c20

a0�2=6
:

The asymptotic distribution of ~� is root-T consistent and we can observe that it is related
with the asymptotic distribution of ~d: Therefore, estimation of the degree of the fractional
cointegration d a¤ects the speed of the adjustment to the equilibrium coe¢ cients, which agrees
with common intuition about the speed of the convergence to the long run equilibrium. The
asymptotic variance is the usual result when d0 = 1 is known with the extra multiplicative
term a0 and the contribution from estimation of d equal to

�
c20=!a

2
0

�
vec (�) vec (�)0 :

The cointegration degree estimator ~d is also root-T consistent and has an asymptotic normal
distribution. The asymptotic variance includes the factor

�
1� �20

��1
> 1 due to estimation

of �; the factor tr
�
�����

0
�1�
��1 due to estimation inside the ECM and �nally, the factor�

�2=6
��1 is the usual asymptotic variance for ML estimators of memory parameters in univari-

ate ARFIMA(0; d; 0) : Note that �
2

6

�
1� �20

�
���� = ���� (d0)�

�
��� (d0) �

�1
�� (d0)

�
��� (d0) :

We present proofs of Theorem 1, 2, 3 and 5 in Appendix B. In fact the same conclusions can
be obtained using standard results on the existence of a consistent sequence of solutions to
stochastic optimization problems, such as Lemma 1 in Andrews and Sun (2004). In Appendix
C this is investigated under the assumption that 
 is known and r = 1 in order to simplify the
presentation.

5 Short run dynamics

The results obtained in the previous section could be extended to a general model allowing for
short run dynamics. The likelihood analysis of model (6) has been developed for the univariate
case in Johansen and Nielsen (2010a) and for the multivariate case in Johansen and Nielsen
(2010b). We show how to extend our results for the model (7)-(8) proposed in Avarucci (2007).
His model allows for short run correlation in both the fractional cointegration relationship and

2or simpler ! =
�
�2

6
� c20

a0

�
tr
�
�����

0
�1�
�
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in the levels. Note that this model can be shown to encompass triangular models used in the
literature (cf. Robinson and Hualde (2003)) and has nice representations if the roots of the
equation jA (z) j = 0 are out of the unit circle, � > d: Basically, this model implies that there
is fractional cointegration amongst the prewhitened series Xy

t = A (L)Xt: It can also be seen
as a multivariate extension of Hualde and Robinson�s (2007) bivariate cointegrated model.

The model (7) is nonlinear in � and A1; : : : ; Ak; but we propose to estimate the unrestricted
linear model (8) without imposing Bj = �Aj�: Then the estimation procedure runs as in
Johansen (1995), but with an initial step to prewhiten the main series ��Xt and �(��d �
1)��Xt on k-lags of both

�
(��d � 1)��Xt

	
and ��Xt as in equation (8): This estimate is

ine¢ cient compared with the ML estimator, but is much simpler to compute and analyze.

Let us maintain the assumption that � is known and � = 1 to ease the notation. We
are interested in the asymptotic distributions of ~�; ~d and the linear parameter estimates�
~�; ~A1; : : : ; ~Ak

�
: If we employ unrestricted estimation, then we could investigate the prop-

erties of�
~�; ~A1; : : : ; ~Ak; ~B1; : : : ; ~Bk

�
, though Bj are redundant parameters. We can derive all asymp-

totic results in a similar way to the case with no lag estimation, but obviously the distributions
are a¤ected by lag correction compared to those of Theorem 3.

To derive the asymptotic results we should make appropriate changes in the formulas in Ap-
pendix B. For instance replace ��� (d) by the limit variance of the residuals of the projection of
(��d�1)��0Xt on k lags of

�
(��d � 1)�Xt

	
and �Xt: However, the nice covariance structure

in terms of constants a0 and c0 need not be kept now. The asymptotic properties of ~d can
be deduced from the expansion (30), where now ���� (d0) ; _��� (d0) and ��� (d0) have to be

replaced by the limit variance and covariances of (�0Z1t (d0) ; �0Z
(1)
1t (d0)), �

+
�� (d0) ; etc., when

projected on k lags of
�
(��d � 1)�Xt

	
and �Xt: Then the following theorem holds.

Theorem 6 In model (7) the estimator ~� has the same properties as in Theorems 1 and 3,
and the estimators ~d, ~�; ~A1; : : : ; ~Ak have an asymptotic normal joint distribution.

The asymptotic distribution of ~d is

T 1=2( ~d� d0)!d N
�
0; �!�1

�
where

�! = tr
nh
��+�� (d0)� _�+�� (d0) �

+�1
�� (d0) _�

+
�� (d0)

i
�0
�1�

o
:

For example �+�� (d0) ; can be estimated consistently by

1

T

TX
t=1

~�
0
Z+1t

�
~d
�
Z+01t

�
~d
�
~�

where Z+1t
�
~d
�
are the OLS residuals of projecting Z1t

�
~d
�
against k lags of

n
(1��� ~d)�Xt

o
and �Xt; t = 1; : : : ; T and ~� and ~d are ML estimates of � and d:
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For ~� we could obtain a similar expression to (31), in terms of the projected series, and for
~Aj a parallel result as in Johansen (1995), Theorem 13.5, but corrected for the d estimation
increment as in Theorem 3.

6 Some Monte Carlo evidence

To evaluate the small sample properties of the ML estimators of the cointegrated fractional
VECM model we have designed the following Monte Carlo experiment. We have generated
the two equation model (see Engle, Granger (1987), Banerjee et al. (1993), p.137 or Lyhagen
(1998))

xt + byt = ut (15)

xt + ayt = et

where �1�d0ut = "1t, �et = "2t and "1t; "2t are both independently and standard bivariate
normally distributed with expectation zero. d0 is the true cointegration degree and we have
considered d0 2 (0:5; 1]: Note that if d0 = 1 then we are in the special case of Johansen�s unit
root framework. � = [1 b]0 is the cointegrating vector, � = [1 � a]0 is the vector of the speed
of the adjustment to the equilibrium coe¢ cients. In all simulations we used the parameters a
and b equal to 1 and 2 respectively. Note that model (15) is a special case of the model (3),
with � = �?:

All Monte Carlo simulations were done using OxMetrix 6.01 (see Doornik and Ooms (2006)
and Doornik (2002)). To maximize the likelihood function we used the MaxSQPF procedure.
For all simulations we have made 10,000 iterations. We have calculated bias and standard error
of the estimators ~d; ~� and ~� of the parameters of the system (15) simulated with the values
of the true d; d0 = 0:55; 0:65; 0:75; 0:85; 0:95; 1 and sample sizes of T = 50; 100; 200 and 500
observations. We report results for T = 200 in Table 1 and comment on all of them below.

Table 1. Bias and standard error of estimators ~d; ~�, ~� for T = 200 observations

d0 0.55 0.65 0.75 0.85 0.95 1

bias ~d 0.068 0.060 0.058 0.053 0.049 0.047

std ~d 0.166 0.143 0.128 0.117 0.108 0.104

bias~� 0.003 0.002 0.001 0.000 0.000 0.000

std~� 0.062 0.043 0.030 0.021 0.015 0.012

bias ~�1 0.002 -0.027 -0.036 -0.028 -0.027 -0.024

std ~�1 0.785 0.351 0.264 0.231 0.198 0.183

bias ~�2 0.000 0.028 0.035 0.029 0.027 0.025

std ~�2 0.703 0.300 0.213 0.180 0.150 0.138

Bias and standard errors of ~d; ~� and ~� are all decreasing with d0 and with sample size T: For
� we obtain very good estimates already for moderate values of d0 in larger samples. We can
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estimate � much better than � even for small values of d0 where ~� has convergence rate close
to T

1
2 :

We have also compared the small sample properties of the estimators ~� and ~� to the small
sample properties of ML estimators �̂

J
and �̂J obtained based on the standard VECM with

d = 1: Estimates ~� and �̂
J
do not di¤er signi�cantly, while estimates ~� have in general smaller

bias than estimates �̂J and bigger standard deviation. The signi�cance of the di¤erence in
standard deviation seems to be decreasing with the value of d0.

Further, we have simulated the size and the power of the Wald test given in Theorem 4. We
have used again the system described by (15). To check the size we have tested the true linear
restriction K 0� = 0 with K = [�2; 1], while to check the power we have tested the false linear
restriction K 0� = 0 with K = [�3; 1]: We have compared the performance of the Wald test
based on the fractional VECM with Wald test based on standard VECM. In Table 2 we report
size of both tests. Power is not reported to save space.

Table 2. Percentage of rejections by Wald test under the null. Nominal size 5%:

estimated ~d

T / d 0.55 0.65 0.75 0.85 0.95 1

50 36 32 30 29 28 27

100 23 21 21 19 19 19

200 15 15 14 13 14 14

500 10 10 10 10 9 10

�xed d = 1

T / d 0.55 0.65 0.75 0.85 0.95 1

50 39 33 25 18 12 9

100 42 37 30 20 10 7

200 50 44 34 22 10 6

500 60 54 43 28 11 6

We can see that the Wald test has quite distorted size for all values of d0 in small samples.
However size is getting closer to its nominal value when sample size T increases. The bigger d0
is the faster we get to the nominal size when the sample size T increases. It is due to the fact
that the convergence rate of � is T�d0 ; see Theorem 3. We can easily observe that if we base
Wald test on standard VECM model in case when we have fractionally cointegrated system
then the size distortions are bigger for small values of d0 and in fact they seem to diverge, while
for values of d0 relatively close to 1 the standard test has less distorted size. Power properties
of both versions of the Wald test are comparable and very good.
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We have also constructed t-tests, to test for the values of d, based on the results of Theorem
5. Results are presented in Tables 3-5.

Table 3. Percentage of rejections by two-sided t-test under the null. Nominal size 5%:

T / d 0.55 0.65 0.75 0.85 0.95 1

50 28 27 27 26 25 24

100 18 18 18 17 17 17

200 13 12 12 12 12 12

500 9 9 9 9 8 9

1000 8 8 7 7 7 7

Table 4. Percentage of rejections by one-sided (against the alternative d > d0) t-test under the
null. Nominal size 5%:

T / d 0.55 0.65 0.75 0.85 0.95 1

50 26 28 28 28 29 28

100 19 20 20 20 21 21

200 15 15 15 15 16 15

500 11 11 11 11 11 11

1000 9 9 9 9 9 9

Table 5. Percentage of rejections by one-sided (against the alternative d < d0) t-test under the
null. Nominal size 5%:

T / d 0.55 0.65 0.75 0.85 0.95 1

50 12 9 8 7 6 5

100 8 7 6 5 4 4

200 7 5 5 4 3 4

500 5 5 4 4 3 4

1000 5 4 4 4 4 4

We can observe that t-tests also have quite distorted size in small samples. The size distortions
seem to be decreasing with the value of d0 and the sample size T . One-sided test (against the
alternative d < d0) is performing better than other two versions of the test in the sense that it
has less distorted size. It seems that the size distortions of t-tests are caused by bias of ~d: We
have computed the following feasible estimate of variance !�1T of the asymptotic distribution
of the estimator ~d; where

!T

�
~d
�
=
�2

6

�
1� �20T

�
~d
��
tr
�
~�
0

̂~� ~�0
̂�1~�

�
;

�20T

�
~d
�
=

c20T

�
~d
�

a0T

�
~d
�
�2=6

; a0T

�
~d
�
=

TX
1

n
�j

�
~d
�o2

; c0T

�
~d
�
= �

TX
1

j�1�j
�
~d
�

14



and have compared average value of the standard deviation obtained throughout the iterations
with the corresponding true value of ! calculated for given sample size T and true value of
cointegration degree d0: Results are presented in Tables 6 and 7 and seem to be reasonably
close, so the estimated standard deviation should not be the cause of the problem.

Table 6. Asymptotic standard deviation of ~d; (sqrt(T � !))�1

T / d 0.55 0.65 0.75 0.85 0.95 1

100 0.18 0.16 0.15 0.14 0.13 0.13

200 0.13 0.11 0.10 0.10 0.09 0.09

500 0.08 0.07 0.07 0.06 0.06 0.06

Table 7. Average standard error of ~d; (sqrt(T � !T ( ~d)))�1 for 10,000 replications

T / d 0.55 0.65 0.75 0.85 0.95 1

100 0.19 0.17 0.15 0.14 0.13 0.13

200 0.13 0.12 0.11 0.10 0.09 0.09

500 0.08 0.07 0.07 0.06 0.06 0.06

Further we have checked how the misspeci�cation of d a¤ects the estimation of ~�: Note the result
in Theorem 3, that estimator of � remains consistent for any value of d > 0:5: We simulated
model (15) with d0 = 0:55; 0:75; 0:95 and sample sizes T = 100; 200; 500 and estimated �
using �xed values of d; d = 0:55; 0:65; 0:75; 0:85; 0:95: We do not report results to save space,
but we observed that the bias and standard deviation of ~� were decreasing with the sample
size for each d �xed and that the values of the bias and standard deviation of ~� corresponding
to di¤erent d0s did not seem to di¤er signi�cantly.

Finally, we have examined what happens if ~d is restricted to belong to the interval D =[0:5; 1]
in our estimation: Note that all the results in this paper are developed for d > 0:5 and we
assume that � is known and in our Monte Carlo experiment we know that it is equal to 1; so
we could use this extra piece of information in the estimation. We have checked how imposing
such restriction on ~d a¤ects all the results obtained in this section. We have also drawn esti-
mated densities and histograms of small sample distributions of our estimates of d; � and � for
d0 = 0:55; 0:75; 0:95 and sample sizes T = 50; 100; 200; 500 to compare their shapes when d is
estimated with and without restrictions.

In bigger samples the e¤ect of imposing such restriction disappears, however in small samples
we can observe the following consequences. In general, the standard deviation of all estimators
is decreased. The e¤ect on the bias is not completely clear, but it seems to be decreased in
several cases as well. Estimates of � seem to be the most in�uenced ones, while the estimate
of � is the least in�uenced. The Wald test seems to have smaller size distortions, while t-tests
demonstrate very irregular behavior. We have observed that when we impose restriction d 2 D
then in small samples and when d0 is close to the boundary of D, the distribution of ~d has a
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camel-shape. But when we let d to be estimated freely then we get a normal distribution in
small samples. The shape of the distribution of � and �1; �2 does not seem to be a¤ected by
imposing the restriction on d:

7 An empirical example of the term structure of interest rates

To illustrate the usefulness and properties of the described methodology we apply it to the
problem of the modelling of the term structure of interest rates. There has been a lot of
interest in this issue in the current literature, see for example Chen and Hurvich (2003b) and
Nielsen (2010). For comparision purposes we follow quite closely the description of the problem
and the analysis done in a recent paper by Iacone (2009).

Note that the problem of modelling the behavior of interest rates with di¤erent maturities
is indeed quite interesting, since as Iacone (2009) argues such a model is necessary both to
measure the e¤ects of monetary policy and to price �nancial assets. Moreover it is an important
tool for policy evaluation since the Federal Reserve operates only in one market, the market
characterized by contracts with very short maturity, so it is necessary to model the conduction
of the monetary policy impulses to the rates of contracts with longer maturities, as a part of a
model of the transmission of monetary policy to the �nal goals. Therefore a VAR model seems
to be an ideal setup to model the interactions between interest rates with di¤erent maturities
in order to take into account the transmission of the monetary policy impulses.

It has been noted by Iacone (2009) as well that modelling the interactions across rates is also
important for the economic agents who would like to forecast the e¤ects of future monetary
policy decisions on the price of �nancial assets. Practical example of how to extract the market�s
expectations on future policy rates from a given term structure and how to use them to price
�nancial instruments was discussed by Soderlind and Svensson (1997).

A theoretical model for the term structure of interest rates was discussed by Fisher (1896)
and is known as the "Expectations Hypothesis". It implies that given market e¢ ciency and
rational expectations, the interest rates of contracts which only di¤er in maturity, should be
linked by a no-arbitrage relation. Therefore, the return from investing in a contract with
maturity over multiple periods should be equivalent to the expected return from investing in
multiple consecutive contracts, provided that these span jointly the same time. If the Fisher
equation holds, central banks may also �nd the information in the term structure of interest
rates valuable because long term rates include the market�s expectations of future in�ation.
However, there has been a lot of evidence in the literature that the Expectation Hypothesis
does not hold and the same conclusion has also been obtained in Iacone (2009).

Iacone (2009) has developed a semiparametric analysis of the US$ interest rates with maturities
of 1, 3 and 6 months. The o¤er rate LIBOR has been used over the period 01/1963-04/2006
of the London interbank deposit, as LIBOR is not a¤ected by any regulation imposed by the
central bank, and thus it is a typical measure of the cost of funds in US$. He has found evidence

16



that 3 considered series share the same order of integration, so it is possible to perform a similar
analysis in a VAR framework. The order of the integration has been estimated to be 0.88 and
the 3 series have been found to cointegrate with cointegration rank 2. However the 3-variate
analysis in a VAR framework would impose the assumption that both cointegration relations
share the same degree of memory, so we choose to perform the analysis of 3 bivariate systems
to avoid the problem. We use the fact that �̂ equals 0.88. The plot of the raw interest rates
series are depicted in Figure 1.

Figure 1. Plot of the raw data
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We consider the same data set in order to be able to compare not only the conclusions, but also
the values of the parameter estimates. We estimate the basic version of the model presented
in section 3, as it seems to be a right choice looking at PACF of the process. We also tested
the existence of the break in levels of considered series using the test of Sibbertsen and Kruse
(2009) and it indicated no break in the series. So we conclude it is quite reasonable to use the
model without short run dynamics. The results of the model estimation are presented in Table
8.

17



Table 8. Estimation results for the model ��̂Xt = ��0
�
��̂�d ���̂

�
Xt + "t:

model 1,3 1,6 3,6

~d 0.68 0.59 0.88

~ds 0.20 0.29 -

~� 1 1 1

-0.98 -0.98 -0.98

~� -0.76 -0.47 -0.20

0.19 0.16 -0.04

trace test 191.5 89.2 29.3

�max test 190.8 85.8 31.3

The results indicate that we �nd cointegration between each pair of interest rates. The coin-
tegration vector is very close to [1;�1] in each case and the cointegration residuals are always
asymptotically stationary. The estimated order of integration of the spreads s(j)t = i

(j)
t � i(1)t

is denoted by ~ds: We can see that transmission is slower the longer the distance (in maturity)
from the market where FED is present.

Overall we reach the same conclusions and the results we obtained do not di¤er signi�cantly
from Iacone (2009)�s results. We �nd evidence of cointegration, which is an important result
because it means that transmission of impulses along the term structure is still fast enough
to let the central bank conduct an active monetary policy. However, the spreads are more
persistent than they should be in order for the Expectation Hypothesis to hold.

Possible critics of the above empirical example would be that estimating the equations pairwise
de�es the multivariate model presented in the paper. However, in order to estimate jointly the
3-variate model with 2 cointegrating relations we would need to impose assumption that both
cointegrating relations share the same degree of fractional cointegration, which we considered
too restrictive in the given empirical example. Please note that up to date no representation
theorem has been proved for any model that would allow for fractional cointegration with
cointegrating relations with di¤erent memory.

8 Conclusions

In this paper we consider a fractional generalization of the likelihood-based analysis of the
cointegrated systems. We describe the estimation procedure based on the reduced rank regres-
sions, which is an adapted to the fractional case version of the procedure proposed in Johansen
(1995). We estimate all the parameters of fractionally cointegrated system by ML under the
assumption that we know cointegration rank. The novelty of fractional cointegration analysis
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with respect to standard likelihood-based analysis is the inclusion of an additional parame-
ter, the fractional cointegration degree. The novelty of likelihood-based approach with respect
to other fractional methods is that our analysis is fully parametric and allows model based
inference.

We investigate asymptotic properties of the ML estimators of a fractional VECM model and
we prove that all parameters can be estimated consistently. We show that the asymptotic
distribution of the estimator of the cointegration matrix � is independent of other estimates
and remains mixed normal as in the standard case, hence we can test for the values of cointe-
gration vectors using Wald test. The asymptotic distributions of the estimators of the speed of
the adjustment to the equilibrium coe¢ cients � and cointegration degree d are joint normal,
which proves the intuition that the memory of the cointegrating residuals a¤ects the speed
of convergence to the long-run equilibrium, but does not have any in�uence on the long-run
relationship. The rate of convergence of the estimators of the long-run relationships depends
on the cointegration degree but it is optimal for the strong cointegration case considered.

We also prove that misspeci�cation of the degree of fractional cointegation does not a¤ect
the consistency of the estimators of the cointegration relationships, although usual inference
rules are not valid. We investigate small sample properties of our estimators by Monte Carlo
experiment. We also illustrate applicability of developed methodology by means of real data
example, a study of the term structure of interest rates.

There are many possible extensions of the described methodology. First of all we could extend
the analysis of short run dynamics and include the estimation of the levels of persistence of
the original series. Second it would be very interesting for the empirical analysis to include
deterministic terms in the considered models and to allow for structural breaks and di¤erent
memory of the cointegration relationships. Further we could extend the analysis to the "weak
cointegration" case, where the gap between orders of integration of the observables and the
cointegration errors is smaller than 1=2, and to the case where original variables are stationary.
This would be an interesting extension to be used in �nancial applications. However, the
"strong cointegration case" considered in this paper seems to be the most important case for
macroeconomic and econometric practice.
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9 Appendix A

Lemma 7 Under the triangular model (3); so that �0�Xt = �0�d0"t; we have

��0 (d) = �0
��0

=b(d;d0)z }| {
1X
1

f�j (d0)� �j (d0 � d)g�j (d0) := ���� �
0 � b (d; d0)

��� (d) = �0
�
1X
1

f�j (d0)� �j (d0 � d)g2| {z }
=a(d;d0)

:= ���� � a (d; d0)

where ���� = �0
�: Denote a0 := a (d0; d0) = b (d0; d0) :

Proof. Let us demonstrate the result for ��� (d) = lim
t!1

V ar(�0Z1t (d)).

V ar(�0Z1t (d)) = E

(
1

T

TX
t=1

�0Z1t (d)Z
0
1t (d)�

)
=
1

T

TX
t=1

E
n�
��d � 1

�
�0�Xt

o
f�X 0

t�
�
��d � 1

�
g

=
1

T

TX
t=1

E
n�
�d0�d ��d0

�
�0"t

o
f"0t�

�
�d0�d ��d0

�
g

which converges to

�0
�
1X
1

f�j (d0 � d)� �j (d0)g2 :

Other elements of (14) could be calculated in a similar way noting for example that

�0Z
(1)
1t (d) = �0

@

@d
Z1t(d) =

@

@d
f
�
��d � 1

�
�0�Xtg

=
@

@d
f��d � 1g�d0�0"t = � log�(�d0�d�0"t)
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S
(i)
10 (d) = T

�1
TX
t=1

n
(@=@d)i Z1t(d)

o
Z 00t
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S
(i;j)
11 (da; db) = T

�1
TX
t=1

n
(@=@d)i Z1t(da)

on
(@=@d)j Z1t(db)

o0
:
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Lemma 8 Under the triangular model (3); so that �0�Xt = �0�d0"t; we have that, uniformly
in d 2 D � (0:5; 1];

(a) �0S11 (d)� ! p���(d) := a (d; d0) ����

(b) �0S
(i)
1" (d) = Op

�
T�1=2

�
; i = 0; 1; 2:

(c) T 1=2�d�0S
(i;j)
11 (d) �
 ! p0; i; j = 0; 1; 2:

(d) T 1=2�d�
0S
(i)
1" (d) = Op

�
T�1=2

�
; i = 0; 1; 2:

Proof. We �rst give the proof for (a) : We have that Z1t (d) =
�
��d � 1

�
�Xt; so that

�0Z1t (d) =
�
��d � 1

�
�0�Xt =

�
��d � 1

�
�0�d0"t =

�
�d0�d ��d0

�
�0"t =

t�1X
j=1

�j (d)�
0"t�j ;

where �j (d) = �j (d0 � d)� �j (d0) : Then

E
�
�0S11 (d)�

�
= �0
�

1

T

TX
t=1

t�1X
j=1

f�j (d0 � d)� �j (d0)g2

= a (d; d0)�
0
� + o (1) :

We can write

�0S11 (d)� � a (d; d0)�0
� = �0S11 (d)� � E
�
�0S11 (d)�

�
+E

�
�0S11 (d)�

�
� a (d; d0)�0
�;

where the second line converges uniformly in d to 0; and writing

BT (d) = �
0S11 (d)� � E

�
�0S11 (d)�

�
it is easy to show that BT (d) = op (1) for each �xed d. Now we show tightness in d of BT (d)
implying that supd jBT (d) j = op (1) : For a typical element of BT (d) and da; db 2 D; we have
that

E
�
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; (16)

where ut =
�
�0"t

�r
; vt =

�
�0"t

�s.
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Now note that

1
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t=1

t�1X
j=1

�
�j (da)

2 � �j (db)2
�

=
1

T

TX
t=1
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j=1

 
�2j (d0 � da)� �2j (d0 � db)

�2�j (d0) f�j (d0 � da)� �j (d0 � db)g

!
;

for an intermediate point d� between da and db and _�j = (@=@x)�j (x) ; is in absolute value no
larger than

K

T
jda � dbj

TX
t=1

t�1X
j=1

 
_�j (d0 � d�)�j (d0 � d�)
�2�j (d0) _�j (d0 � d�)

!
� Kjda � dbj

uniformly in T; because _�j (d0 � d�)�j (d0 � d�) and �j (d0) _�j (d0 � d�) are square summable
and can be bounded byKj�1��; for some � > 0; since d0; da; db 2 (0:5; 1] and therefore jd0�d�j <
0:5:

On the other hand (16) has terms with four typical forms, cf. proof of Theorem 1 in ×asak
(2010). The di¤erence with respect to this case is that the weight functions �j (d) are now
square summable for any combination of parameters and they can be bounded by Kj���1=2;
for some � > 0; while the di¤erences j�j (da) � �j (db) j can be bounded by jda � dbjKj���1=2
for some � > 0; uniformly in j: Then the contribution of (16) is of order of magnitude0@ 1

T

TX
t=1

t�1X
j=1

jda � dbj
�
Kj���1=2

�21A2 � Kjda � dbj2;
which shows the tightness of BT and the uniformity of (a).

For the proof of (b) we note that E
h
�0S

(i)
1" (d)

i
= 0; while the variance of a typical element of

S
(0)
1" (d) is

Var
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�0S1" (d)

	
r
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X
t

X
j

�j (d)
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�
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�
;

and the uniformity in d for any i can be shown using similar techniques. For terms involving
derivatives, note that the asymptotic approximations for the derivatives of �j (�) for large j are
like those for �j (�) up to logarithmic terms.

For the proof of (c) we note that

�
0Z1t (d) =
�
��d � 1

�
�
0�Xt =

�
��d � 1

�
�
0"t =

t�1X
j=1

�j (�d) �
0"t�j ;

so that for i; j = 0;

T 1=2�d�0S11 (d) �
 = T
�1=2�d�0

TX
t=1

tX
j=1

tX
i=1

�j (d)�i (�d) "t�j"0t�i�
:
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Further note that

E
h
T 1=2�d�0S11 (d) �


i
= T�1=2�d�0

TX
t=1

tX
j=1

�j (d)�j (�d) 
�


= O

0@T�1=2�d TX
t=1

tX
j=1

j�3=2+d��

1A
= O

�
T��

�
= o (1)

for some � > 0; and similarly we can show that for each d; V ar
�
T 1=2�d�0S11 (d) �


�
= o (1)

as T ! 1: Then tightness follows as in the proof of Theorem 1 in ×asak (2010) and thus
supd jT 1=2�d�0S11 (d) �
j = op (1) : The argument for other values of i and j is similar.

The proof of (d) follows combining ideas of the proofs of (b) and (c) :

Lemma 9 Under the triangular model (3); so that �0�Xt = �0�d0"t; we have that, uniformly
in d such that jd� d0j � T��; for some � > 0; and for all � > 0;

(a) �0S11 (d)� ! p��� (d0) = a0 ����

�0S
(1;0)
11 (d)� ! p

�
��� (d0) = c0 ����

�0S
(1;1)
11 (d)� ! p

���� (d0) =
�2

6
����

(b) �0S
(i)
1" (d) = Op

�
T�1=2

�
; i = 0; 1; 2:

(c) �0S
(i;j)
11 (d) �
 = Op

�
T d0�1+�

�
; i; j = 0; 1; 2:

(d) �
0S
(i)
1" (d) = Op

�
T d0�1+�

�
; i = 0; 1; 2:

(e) �0
n
S
(i)
1" (d0)� S

(i)
1" (d)

o
= op

�
T�1=2

�
; i = 0; 1:

�
0 fS1" (d0)� S1" (d)g = op

�
T d0�1

�
:

�
0 fS11 (d0)� S11 (d)g �
 = op

�
T 2d0�1

�
:

When d0 = 1 we can set � = 0:

Proof. Omitted, the proofs of (a)� (b) being similar to Lemma 8. For the proof of (e) follow
the methods of the proof in Appendix B in ×asak (2010).

Lemma 10 Let the process Xt be given by (3), choose 
 orthogonal to � such that (�; 
) has
full rank p. Then for any d 2 (0:5; 1] as T !1

T 1�d�
0S1�(d)
d! �
0C

Z 1

0
Wd (�) dW (�)0

T 1�2d�
0S11(d)�

d! �
0C

Z 1

0
Wd (�)Wd (�)

0 d�C 0�
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where C = �? (�
0
?�?)

�1 �0?:

Proof. The result follows by similar arguments as in Theorem B.13 of Johansen (1995) and
weak convergence follows from Marinucci and Robinson (2000).

Lemma 11

T 1=2tr

�
�

� �
��� (d0) �

�1
�� (d0)�

0S1" (d0)� �0S(1)1" (d0)
�

�1

�
!d N

�
0; !2

�
:

Proof. Use the martingale Central Limit Theorem and that

lim
T!1

V ar

�
T 1=2tr

�
�

� �
��� (d0) �

�1
�� (d0)�

0S1" (d0)� �0S(1)1" (d0)
�

�1

��
= lim

T!1
V ar

 
1

T 1=2

TX
t=1

� �
��� (d0) �

�1
�� (d0)�

0Zt (d0)� �0Z(1)t (d0)

�0
�
�1"t

!

= lim
T!1

1

T

TX
t=1

trE

8>><>>:
� �
��� (d0) �

�1
�� (d0)�

0Zt (d0)� �0Z(1)t (d0)

�
�
� �
��� (d0) �

�1
�� (d0)�

0Zt (d0)� �0Z(1)t (d0)

�0
�
�1�0

9>>=>>;
= tr

��
���� (d0)�

�
��� (d0) �

�1
�� (d0)

�
��� (d0)

�
�0
�1�

�
= tr

��
�2

6
���� �

c20
a0
����

�
�0
�1�

�
= !:

Lemma 12 The solutions �(d) of

j�(d)��� (d)� ��0 (d) ��100 �0� (d) j = 0; (17)

are maximized with respect to d when d = d0:

Proof. Note that equation (17) can be expressed as

j�(d)��� (d0)
a (d; d0)

a0
� ��0 (d0) ��100 �0� (d0)

�
b (d; d0)

a0

�2
j = 0; (18)

or equivalently

j�(d)��� (d0)� ��0 (d0) ��100 �0� (d0)
1

a0

�
b2 (d; d0)

a (d; d0)

�
j = 0: (19)
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So the solutions �(d) are maximized with respect to d when the scalar factor

b2 (d; d0)

a (d; d0)
=

(
P1
1 f�j (d0)� �j (d0 � d)g�j (d0))

2P1
1 f�j (d0)� �j (d0 � d)g

2

=

�P1
1

�
�j (d0)� �j

�
��
�	
�j (d0)

�2P1
1

�
�j (d0)� �j

�
��
�	2

: = c
�
��
�
:=
b2
�
��
�

a
�
��
�

is maximized, where �� = d0 � d; and we omit the dependence on d0: Note also that

c
�
��
�
=
b2 (d; d0)

a (d; d0)
�

1X
1

�j (d0)
2 for all ��;

using Cauchy-Swartz inequality, therefore we conclude that

c
�
��
�
<

1X
1

�j (d0)
2 for all �� 6= 0, d 6= d0

because there will be no perfect correlation amongst the sequences �j (d0) and �j (d0)� �j
�
��
�

if �j
�
��
�
6= 0, which is the only case were �j

�
��
�
is constant for all j > 0; j��j < 1 whereas

c (0) =
b2 (d0; d0)

a (d0; d0)
=
(
P1
1 f�j (d0)� �j (0)g�j (d0))

2P1
1 f�j (d0)� �j (0)g

2

=

�P1
1 �

2
j (d0)

�2
P1
1 �j (d0)

2 =

1X
1

�j (d0)
2 for �� = 0:

Note that results of Lemma 12 imply that the likelihood function is maximized at d = d0 in
the limit.

10 Appendix B

Proof. (of Theorem 1) De�ne the matrix AT (d) =
�
�; T

1
2
�d�


�
. By Lemmas 8 and 10, for

any value of d; d > 0:5 the ordered eigenvalues of

j�(d)A0T (d)S11(d)AT (d)�A0T (d)S10(d)S�100 S01(d)AT (d)j = 0 (20)

converge uniformly to those of

j�(d)��� (d)� ��0 (d) ��100 �0� (d) j j�(d)
Z 1

0
Wd (�)Wd (�)

0 duj = 0 (21)

and the space spanned by the r �rst eigenvectors of (20) converges to the space spanned by
the �rst unit vectors or equivalently to the space spanned by vectors with zeros in the last
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p � r coordinates. The space spanned by the �rst r eigenvectors of (20) is sp(A�1T (d) �̂) =

sp(A�1T (d) ~�); where A�1T
~� =

�
��; T�

1
2
+d


�0
~� = (I; T�

1
2
+dU 0T )

0: Thus we �nd that T�
1
2
+dUT

P!

0: This shows consistency of ~� and moreover that ~� � � = oP (T
1
2
�d): Note that (21) has p� r

zero roots and r positive roots given by the solutions of

j�(d)��� (d)� ��0 (d) ��100 �0� (d) j = 0; (22)

which can be expressed as

j�(d)��� (d0)
a (d; d0)

a0
� ��0 (d0) ��100 �0� (d0)

�
b (d; d0)

a0

�2
j = 0; (23)

so following Lemma 12 we get consistency of ~d:

Moreover, if d = ~d; ~d is a consistent estimate of d; then (22) converges to

j�(d0)��� (d0)� ��0 (d0) ��100 �0� (d0) j = 0:

Next recall ~� � � = �
UT ; so

~�
0
S11

�
~d
�
~� = (� + �
UT )

0 S11
�
~d
�
(� + �
UT )

= �0S11
�
~d
�
� + �0S11

�
~d
�
�
UT + (�
UT )

0 S11
�
~d
�
� + (�
UT )

0 S11
�
~d
�
(�
UT ) :

Since UT = oP (T
1
2
�d0) for this case; by consistency of ~d and, by Lemma 9, we have that for all

� > 0

~�
0
S11

�
~d
�
~� = �0S11

�
~d
�
� +OP (T

d0�1+�)oP (T
1
2
�d0) + oP (T

1�2d0)OP (T
2d0�2+�)

= �0S11
�
~d
�
� + oP (T

��1=2) + oP (T
��1)

= �0S11 (d0)� + oP (1)
P! ��� (d0)

and also

~�
0
S10

�
~d
�
= (� + �
UT )

0 S10
�
~d
�
= �0S10

�
~d
�
+ oP (T

1
2
�d0)

P! ��0 (d0) :

Further consider ~� = S01
�
~d
�
~�
�
~�
0
S11

�
~d
�
~�
��1

; which converges towards

�0� (d0) �
�1
�� (d0) = �

����a0
�
����a0

��1
= �

and

̂ = S00 � S01

�
~d
�
~�
�
~�
0
S11

�
~d
�
~�
��1

~�
0
S10

�
~d
�
;

which converges towards

�00 � �0� (d0) ��1�� (d0)��0 (d0) = �00 � �����a0
�
����a0

��1 �����0a0 =
= �00 � ������0a0 = �00 � ����(d0)�0 = 
:
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Proof. (of Theorem 2) Using again Lemmas 8 and 10 we have consistency of ~� and ~� � � =
oP (T

1
2
�d) for any d; d > 0:5; however, we do not have consistency of estimators of � and 
 for

a �xed d 6= ~d; because ~� converges towards

�0� (d) �
�1
�� (d) = �

����b (d; d0)
�
����a (d; d0)

��1
=
b (d; d0)

a (d; d0)
�;

while 
̂ converges towards

�00 � �0� (d) ��1�� (d)��0 (d) = �00 � �����a0
�
����a(d; d0)

��1 �����0a0
= �00 � �a0 [a(d; d0)]�1 �����0a0 = �00 � �

a0
a(d; d0)

��� (d0)�
0 6= 
:

Proof. (of Theorems 3 and 5) The estimators ~�; ~�; ~d and 
̂ satisfy the likelihood equations,
so we derive expressions for the derivatives of L(�; �; d;
); the concentrated log-likelihood
function, with respect to �, � and d.

The expressions for the derivatives of L(�; �; d;
) with respect to � and � in the directions b
and a are respectively:

D� L(�; �; d;
) (b) = tr

(

�1

 
TX
t=1

"̂tZ
0
1t (d) b�

0

!)
= Ttr

�
�0
�1

�
S01 (d)� ��0S11 (d)

�
b
	
;

D� L(�; �; d;
) (a) = tr

(

�1

 
TX
t=1

"̂tZ
0
1t (d)�a

0

!)
= Ttrf
�1

�
S01 (d)� ��0S11 (d)

�
�a0g;

where "̂t = Z0t � ��0Z1t(d)
and the expression for the derivative with respect to d is

Dd L(�; �; d;
) (d) = tr

(

�1

 
TX
t=1

"̂tZ
0
1t (d)��

0

!)
= Ttrf
�1

�
S
(1)
01 (d)� ��0S

(0;1)
11 (d)

�
��0g:

From these results we can derive the �rst order conditions that are satis�ed at a maximum
point. At the point (~�; ~�; ~d) the derivatives are zero in all directions hence the likelihood
equations are:

~�0
̂�1
�
S01

�
~d
�
� ~�~�0S11

�
~d
��

= 0; (24)�
S01

�
~d
�
� ~�~�0S11

�
~d
��
~� = 0;

trf
̂�1
�
S
(1)
01

�
~d
�
� ~�~�0S(0;1)11

�
~d
��
~�~�0g = 0:

Now substitute S(1)01
�
~d
�
= S

(1)
"1 (

~d) + ��0S
(0;1)
11 (d0; ~d) in the third equation with the obvious

de�nition for S(1)"1 ( ~d);

trf
̂�1
0@ S

(1)
"1 (

~d)~�~�0 � (~�� �)�0S(0;1)11 (d0; ~d)~�~�
0 � ~�(~� � �)0S(0;1)11 (d0; ~d)~�~�

0+

�~�~�0
h
S
(0;1)
11

�
~d
�
� S(0;1)11 (d0; ~d)

i
~�~�0

1Ag = 0
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and using Taylor expansion, Lemma 9 and consistency of ~� and ~d

~�
0 h
S
(0;1)
11

�
~d
�
� S(0;1)11 (d0; ~d)

i
~� = ~�

0
S
(1;1)
11

�
d0; ~d

�
~�( ~d� d0) +Op

�
( ~d� d0)2

�
=

�2

6
����

�
~d� d0

�
(1 + op (1)) ;

we get that

trf
̂�1
0@ S

(1)
"1 (

~d)~�~�0 � (~�� �)�0S(0;1)11 (d0; ~d)~�~�
0 � ~�(~� � �)0S(0;1)11 (d0; ~d)~�~�

0+

��2

6 ~�
���� ~�

0
�
~d� d0

�
(1 + op (1))

1Ag = 0;
so

~d� d0 =
�
�2

6
���� ~�

0
̂�1~�
��1

� (1 + op (1))

� tr
n

̂�1

h
S
(1)
"1 (

~d)~�~�0 � (~�� �)�0S(0;1)11 (d0; ~d)~�~�
0 � ~�(~� � �)0S(0;1)11 (d0; ~d)~�~�

0
io

and therefore

T
1
2

�
~d� d0

�
=
�
�2

6
���� ~�

0
̂�1~�
��1

� (1 + op (1))

� tr

8<:
̂�1
24 T

1
2S

(1)
"1 (

~d)
�
~� � �

�
~�0 + T

1
2S

(1)
"1 (

~d)�~�0

�(~�� �)T 1
2�0S

(0;1)
11 (d0; ~d)~�~�

0 � ~�T 1
2 (~� � �)0S(0;1)11 (d0; ~d)~�~�

0

359=; : (25)

Then, using Lemma 9 and consistency of ~�; we get

T 1=2( ~d� d0) = Op (1) +Op
�
T 1=2

�
k~�� �k+Op

�
T d0�1=2+�

�


~� � �


 :
Next consider the second equation in (24) and insert S01( ~d) = ��0S11(d0; ~d) + S"1( ~d);

0 = (S"1

�
~d
�
+ ��0S11

�
d0; ~d

�
� ~�~�0S11

�
~d
�
)~�

= S"1

�
~d
�
~� � (~�� �)~�0S11

�
~d
�
~� + ��0S11

�
d0; ~d

�
~� � �~�0S11

�
~d
�
~�:

Then, standardizing ~�� � we obtain

T
1
2 (~�� �) =

n
T

1
2S"1

�
~d
�
� + T

1
2S"1

�
~d
�
(~� � �) + T

1
2��0S11

�
d0; ~d

�
~� � T

1
2�~�S11

�
~d
�
~�
o

�
h
~�
0
S11

�
~d
�
~�
i�1

and rearranging terms and using Lemma 9 and consistency of ~� we get

T
1
2 (~�� �) =

8<: T
1
2S"1

�
~d
�
� + T

1
2S"1

�
~d
�
(~� � �)� T 1

2�
�
~� � �

�0
S11

�
d0; ~d

�
~�

�T 1
2�~�

0 n
S11

�
~d
�
� S11

�
d0; ~d

�o
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9=;
�
�
a0 ����

��1
(1 + op (1)) :
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Then using Taylor expansion and Lemma 9,

~�
0 n
S11

�
~d
�
� S11

�
d0; ~d

�o
~� = ~�

0 n
S
(1;0)
11

�
d0; ~d

�o
~�
�
~d� d0

�
+Op

��
~d� d0

�2�
= c0 ����

�
~d� d0

�
(1 + op (1))

so that using again Lemma 9, it holds for all � > 0;

T
1
2 (~�� �) = Op (1) + T

1=2Op

�
T d0�1+�

�
op

�
T 1=2�d0

�
+Op

�
T

1
2T��

�
= Op (1) + op (T

�) +Op

�
T

1
2T��

�
so ~�� � = Op

�
T�� + T ��1=2

�
: In fact in the limit

T
1
2 (~�� �) =

�
T

1
2S"1

�
~d
�
~� � T

1
2�

�
��� (d0)

�
~d� d0

�
+Op

�
T d0�1=2+�

��
~� � �

��
�(26)

�f��1�� (d0) (1 + op (1))g (27)

Consider now the �rst equation (24) and insert S01
�
~d
�
= ��0S11(d0; ~d) + S"1( ~d) to get

0 = ~�0
̂�1
�
S"1

�
~d
�
+ ��0S11

�
d0; ~d

�
� ~�~�0S11

�
~d
��

= ~�0
̂�1
�
S"1

�
~d
�
+ ��0fS11

�
d0; ~d

�
� S11

�
~d
�
g � ~�(~� � �)0S11

�
~d
�
� (~�� �)�0S11

�
~d
��
:

We next multiply by �
 from the right and insert ~� � � = �
UT ;

0 = ~�0
̂�1
�
S"1

�
~d
�
�
 + ��0fS11

�
d0; ~d

�
� S11

�
~d
�
g�
 � ~�U 0T �
0S11

�
~d
�
�
 � (~�� �)�0S11

�
~d
�
�

�

so that

T d0U 0T =
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~�0
̂�1~�

��1
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̂�1T 1�d0S"1

�
~d
�
�
 (28)

+~�0
̂�1T 1�d0��0fS11
�
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�
� S11

�
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�
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̂�1T 1�d0(~�� �)�0S11
�
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�
�
g
h
T 1�2d0�
0S11

�
~d
�
�

i�1

:

Then, using Taylor expansion again and following Lemma 9, for any � > 0;

�0fS11
�
d0; ~d

�
� S11

�
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�
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 = ��0fS(1;0)11

�
d0; ~d

�
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( ~d� d0) +Op

�
( ~d� d0)2

�
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�
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��
~d� d0

�
and by Lemmas 10 and 9, consistency of ~�; ~
 and using the rate of convergence for ~d and ~�;

T d0U 0T = Op (1)
n
Op (1) +Op (T
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 ~d� d


+ k~�� �kio (29)

= Op (1) fOp (1) +Op
�
T ���

�
+Op(T

��1=2)g
= Op (1)
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and therefore ~� � � = Op
�
T�d0

�
; 0:5 < d0 � 1:

Now substituting (26) into (25) and ignoring the negligible terms in ~� � �; we �nd that in the
limit �

~d� d0
���

���� (d0)�
�
��� (d0) �

�1
�� (d0)

_��� (d0)

�
�0
�1�
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=
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�1
�� (d0)�
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and therefore,

~d� d0 = �!�1tr
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�1�

� �
��� (d0) �

�1
�� (d0)�

0S1" (d0)� �0S(1)1" (d0)
��
(1 + op (1))

and the distribution of ~d follows using Lemma 11.

For the distribution of ~� we can �rst write

~d� d0 = �!�1tr
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�
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Taking vec�s and using that

vec (AXB) =
�
B0 
A

�
vec (X) ; tr

�
A0BCD0

�
= vec (A) (D 
B) vec (C) ;

and ignoring op (1) terms,
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i
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Then the distribution for T
1
2 vec(~���) follows by a standard martingale di¤erence CLT, noting

that the contributions to its asymptotic variance are

V ((33)) =
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V ((32)) = ���1�� 
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Finally recall (28).
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and note what happened to the middle term
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:

By Lemma 10 and the T
1
2 consistency of ~� for d0 > 1

2 ; the last term of (28) converges in
probability to zero and the consistency of 
̂ then implies that

T d0UT =
h
�
0T 1�2d0S11 (d0) �
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�
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�1�
�
�0
�1�

��1
+ oP (1) ;

which converges in d towards the limit given in the theorem.

11 Appendix C

In this appendix an alternative proof of main results of this paper is provided. This proof
is based on Lemma 1 in Andrews and Sun (2004) and shows that su¢ cient conditions for the
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existence of a consistent sequence of solutions of a sequence of stochastic optimization problems
are satis�ed.

Proof. Assuming r = 1 and that 
 is known the �rst derivatives of the log-likelihood
L (a; b; d) = L (a; b;
; d) are

L� (�) =
@

@b
L (a; b; d) = T

�
S10 (d)� S11 (d) ba0

�

�1a

L� (�) =
@

@a
L (a; b; d) = T
�1

�
S01 (d)� ab0S11 (d)

�
b

Ld (�) =
@

@d
L (a; b; d) = Ttr

n
ab0
�
S
(1)
10 (d)� S

(1)
11 (d) ba

0
�

�1

o
where � = (b0; a0; d)0 ; while the second derivatives are
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We check the conditions of Lemma 1 in Andrews and Sun (2004) for
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while
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and
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Therefore
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�0
L�� (�0)B

�1
T converges to a matrix that is positive de�nite with probability

one.

The fourth point in Andrews and Sun�s Lemma can be checked if
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which follows by pointwise convergence and tightness of T 1�2d0�
0S11 (d) �
; cf. Theorem 1 of
×asak (2010).

For the second statement, we have that by the triangle inequality
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A typical term is then
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where �j � jd�1 as j ! 1; whereas the weights of the �lter �d0�d � 1 can be bounded by
jd0 � djj�1 log j for jd0 � dj � T�1=2 log T: Then
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is Op (T ) using the same techniques as in the proof of Lemma 8, and therefore (35) is op (1)
uniformly in d and b:

References

[1] Andersson, M. K., Gredenho¤, M. P. (1999), On the maximum likelihood cointegration
procedure under a fractional equilibrium error, Economics Letters, 65, 143-147.

[2] Andrews, D. W. K., Sun, Y. (2004), Adaptive Local Polynomial Whittle Estimation of
Long-range Dependence, Econometrica, 72, 569�614.

[3] Avarucci, M. (2007), Three Essays on Fractional Cointegration, PhD Thesis, University
of Rome "Tor Vergata".

[4] Breitung, J., Hassler, U. (2002), Inference on the Cointegration Rank in Fractionally
Integrated Processes, Journal of Econometrics, 110, 167-185.

[5] Chen, W., Hurvich, C. (2003a), Estimating fractional cointegration in the presence of
polynomial trends, Journal of Econometrics, 117, 95-121.

[6] Chen, W., Hurvich, C. (2003b), Semiparametric Estimation of Multivariate Fractional
Cointegration, Journal of American Statistical Association, 98, 629-642.

[7] Chen, W., Hurvich, C. (2006), Semiparametric Estimation of Fractional Cointegrating
Subspaces, Annals of Statistics, 34, 2939-2979.

34



[8] Christensen, B. J., Nielsen, M. Ø. (2006), Asymptotic normality of narrow-band least
square in the stationary fractional cointegration model and volatility forecasting, Journal
of Econometrics, 133, 343-371.

[9] Davidson, J. (2002), A model of fractional cointegration, and tests for cointegration using
the bootstrap, Journal of Econometrics, 110, 187-212.

[10] Dittmann, I. (2004), Error correction models for fractionally cointegrated time series,
Journal of Time Series Analysis, 25, 27-32.

[11] Dolado, J. J., Marmol, F. (2004), Asymptotic inference results for Multivariate long-
memory processes, The Econometrics Journal, 7, 168-190.

[12] Doornik, J. A. (2002), Object-Oriented Matrix Programming Using Ox, 3rd ed. London,
Timberlake Consultants Press and Oxford, www.doornik.com/ox/.

[13] Doornik, J. A., Ooms, M. (2006), Introduction to Ox, www.doornik.com/ox/OxIntro.pdf.

[14] Dueker, M., Startz, R. (1998), Maximum-likelihood estimation of fractional cointegration
with an application to U.S. and Canadian bond rates. Review of Economics and Statistics,
80, 420-426.

[15] Engle, R. F., Granger, C. W. J. (1987), Co-integration and Error Correction: Represen-
tation, Estimation and Testing, Econometrica, 55, 251-276.

[16] Fisher, I. (1896), Appreciation and interest, Publications of the American Economic As-
sociation, 11, 1�98.

[17] Franchi, M. (2009), A representation theory for polynomial cofractionality in vector au-
toregressive models, Econometric Theory, in press.

[18] Gil-Alaña, L. A. (2003), Testing of Fractional Cointegration in Macroeconomic Time Se-
ries, Oxford Bulletin of Economics and Statistics, 65, 517-529.

[19] Gil-Alaña, L. A. (2004), A Joint Test of Fractional Integration and Structural Breaks at
a Known Period of Time, Journal of Time Series Analysis, 25, 691-700.

[20] Granger, C. W. J. (1986), Developments in the Study of Cointegrated Economic Variables,
Oxford Bulletin of Economics and Statistics, 48, 213-28.

[21] Hassler, U., Marmol, F., Velasco, C. (2008), Fractional cointegration in the presence of
linear trends, Journal of Time Series Analysis, 29, 1088-1103.

[22] Hualde, J., Robinson, P. M. (2006), Semiparametric Estimation of Fractional Cointegra-
tion, Working Paper 07/06, Universidad de Navarra.

[23] Hualde, J., Robinson, P. M. (2007), Root-N-Consistent Estimation Of Weak Fractional
Cointegration, Journal of Econometrics, 127, 450-484.

[24] Iacone, F. (2009), A Semiparametric Analysis of the Term Structure of the US Interest
Rates, Oxford Bulletin of Economics and statistics, 71, 475-490.

35



[25] Johansen, S. (1988), Statistical Analysis of Cointegration Vectors, Journal of Economic
Dynamics and Control, 12, 231-254.

[26] Johansen, S. (1991), Estimation and Hypothesis Testing of Cointegration Vectors in
Gaussian Vector Autoregressive Models, Econometrica, 59, 1551-1580.

[27] Johansen, S. (1995), Likelihood-based inference in cointegrated Vector Auto-Regressive
Models. Oxford University Press, Oxford.

[28] Johansen, S. (2009), Representation of cointegrated autoregressive processes with applica-
tion to fractional processes, Econometric Reviews, 28, 121-145.

[29] Johansen, S. (2008), A representation theory for a class of vector autoregressive models
for fractional processes, Econometric Theory, 24, 651-676.

[30] Johansen, S., Nielsen, M. Ø. (2010a), Likelihood inference for a nonstationary fractional
autoregressive model, Journal of Econometrics, forthcoming.

[31] Johansen, S., Nielsen, M. Ø. (2010b), Likelihood inference for a vector autoregressive
model which allows for fractional and cofractional processes, work in progress.

[32] Lobato, I., Velasco, C. (2006), Optimal Fractional Dickey-Fuller tests, Econometrics Jour-
nal, 9, 492-510.

[33] Lyhagen J. (1998), Maximum likelihood estimation of the multivariate fractional cointe-
grating model, Working Paper Series in Economics and Finance, 233, Stockholm School
of Economics.

[34] ×asak, K. (2010), Likelihood based testing for no fractional cointegration, Journal of
Econometrics, forthcoming.

[35] ×asak, K., Velasco, C. (2010), Fractional Cointegration Rank Estimation, work in progress.

[36] Marinucci D. (2000), Spectral Regression For Cointegrated Time Series With Long-
Memory Innovations, Journal of Time Series Analysis, 21, 685-705.

[37] Marinucci, D., Robinson, P. M. (2000), Weak convergence of multivariate fractional
processes, Stochastic Processes and their Applications, 86, 103-120.

[38] Marinucci, D., Robinson, P. M. (2001), Semiparametric fractional cointegration analysis,
Journal of Econometrics 105, 225-247.

[39] Marmol, F., Velasco, C. (2004), Consistent testing of cointegrating relationships, Econo-
metrica, 72 (6), 1809-1844.

[40] Nielsen, M. Ø. (2007), Local Whittle analysis of stationary fractional cointegration and
implied-realized volatility relation, Journal of Business and Economic Statistics, 25, 427-
446.

[41] Nielsen, M. Ø., Frederiksen, P. (2007), Fully modi�ed narrow-band least squares estimation
of stationary fractional cointegration, Preprint.

36



[42] Nielsen, M. Ø. (2010), Nonparametric cointegration analysis of fractional systems with
unknown integration orders, Journal of Econometrics, in press.

[43] Phillips, P. C. B. (1991), Optimal Inference in Cointegrated Systems, Econometrica, 59
(2), 283-306.

[44] Phillips, P. C. B., Hansen, B. E. (1990), Statistical inference in instrumental variable
regression with I(1) variables, Review of Economic Studies, 57, 99-125.

[45] Robinson, P. M. (1994), E¢ cient tests of nonstationary hypotheses, Journal of the Amer-
ican Statistical Association 89, 1420-1072.

[46] Robinson, P. M., Hualde, J. (2003), Cointegration in Fractional Systems with Unknown
Integration Orders, Econometrica, Econometric Society, 71, 1727-1766.

[47] Robinson, P. M., Iacone, F. (2005), Cointegration in fractional systems with deterministic
trends, Journal of Econometrics, 129, 263-298.

[48] Robinson, P. M., Marinucci, D. (2001), Narrow-Band Analysis of Nonstationary Process,
The Annals of Statistics, 29, 947-986.

[49] Robinson, P. M., Marinucci, D. (2003), Frequency Domain Analysis of Fractional Cointe-
gration, in P. M. Robinson, Time Series with Long Memory, Oxford University Press.

[50] Robinson, P. M., Yajima, Y. (2002), Determination of cointegrating rank in fractional
systems, Journal of Econometrics, 106, 217-241.

[51] Rossi, E., Santucci de Magistris, P. (2009), A No Arbitrage Fractional Cointegration Analy-
sis of the Range Based Volatility, CREATES Research Paper, 2009-31.

[52] Sibbertsen, P., Kruse, R. (2009), Testing for a break in persistence under long-range
dependencies, Journal of Time Series Analysis, 30, 263-285.

[53] Sims, C. A., Stock, J. H., Watson, M. W. (1990), Inference in linear time series with some
unit root, Econometrica, 58, 113-144.

[54] Soderlind, P., Svensson, L. (1997), New techniques to extract market expectations from
�nancial instruments, Journal of Monetary Economics, 40, 383-429.

[55] Velasco, C. (2003), Gaussian Semi-parametric Estimation of Fractional Cointegration,
Journal of Time Series Analysis, 24, 345-378.

37



Research Papers 
2008  
 

2008-37: Dennis Kristensen: Uniform Convergence Rates of Kernel Estimators 
with Heterogenous, Dependent Data 

2008-38: Christian M. Dahl and Emma M. Iglesias: The limiting properties of 
the QMLE in a general class of asymmetric volatility models 

2008-39: Roxana Chiriac and Valeri Voev: Modelling and Forecasting 
Multivariate Realized Volatility 

2008-40: Stig Vinther Møller: Consumption growth and time-varying expected 
stock returns 

2008-41: Lars Stentoft: American Option Pricing using GARCH models and the 
Normal Inverse Gaussian distribution 

2008-42: Ole E. Barndorff-Nielsen, Silja Kinnebrock and Neil Shephard: 
Measuring downside risk — realised semivariance 

2008-43: Martin Møller Andreasen: Explaining Macroeconomic and Term 
Structure Dynamics Jointly in a Non-linear DSGE Model 

2008-44: Christian M. Dahl, Henrik Hansen and John Smidt: The cyclical 
component factor model 

2008-45: Christian M. Dahl and Yu Qin: The limiting behavior of the estimated 
parameters in a misspecified random field regression model 

2008-46: Bent Jesper Christensen, Christian M. Dahl and Emma M. Iglesias: 
Semiparametric Inference in a GARCH-in-Mean Model 

2008-47: Charlotte Christiansen: Mean Reversion in US and International Short 
Rates 

2008-48: Tim Bollerslev, George Tauchen and Hao Zhou: Expected Stock 
Returns and Variance Risk Premia 

2008-49: Tim Bollerslev: Glossary to ARCH (GARCH) 

2008-50: Giuseppe Cavaliere, Anders Rahbek and A.M.Robert Taylor: Testing 
for Co-integration in Vector Autoregressions with Non-Stationary 
Volatility 

2008-51: Bent Jesper Christensen and Michael Sørensen: Optimal inference in 
dynamic models with conditional moment restrictions 

2008-52: Katarzyna Lasak: Likelihood based testing for no fractional 
cointegration 

2008-53: Katarzyna Lasak: Maximum likelihood estimation of fractionally 
cointegrated systems 

 


