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Abstract

We consider two likelihood ratio tests, so-called maximum eigenvalue and trace tests, for

the null of no cointegration when fractional cointegration is allowed under the alternative,

which is a �rst step to generalize the so-called Johansen�s procedure to the fractional

cointegration case. The standard cointegration analysis only considers the assumption that

deviations from equilibrium can be integrated of order zero, which is very restrictive in many

cases and may imply an important loss of power in the fractional case. We consider the

alternative hypotheses with equilibrium deviations that can be mean reverting with order

of integration possibly greater than zero. Moreover, the degree of fractional cointegration

is not assumed to be known, and the asymptotic null distribution of both tests is found

when considering an interval of possible values. The power of the proposed tests under

fractional alternatives and size accuracy provided by the asymptotic distribution in �nite

samples are investigated.
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1 Introduction

Cointegration is commonly thought of as a stationary relation between nonstationary variables.

It has become a standard tool in econometrics since the seminal paper of Granger (1981).

Following the initial suggestion of Engle and Granger (1987), when the series of interest are

I(1), testing for cointegration in a single-equation framework can be conducted by means of

residual-based tests (cf. Phillips and Ouliaris (1990)). Residual-based tests rely on initial

regressions among the levels of the relevant time series. They are designed to test the null of

no cointegration by testing whether there is a unit root in the residuals against the alternative

that the regression errors are I(0).

Alternatively fully parametric inference on I(1)=I(0) cointegrated systems in the framework

of Error Correction Mechanism (ECM) representation has been developed by Johansen (1988,

1991, 1995). He suggests a maximum likelihood procedure based on reduced rank regressions.

His methodology consists in identifying the number of cointegration vectors within the vector

autoregression (VAR) model by performing a sequence of likelihood ratio tests. If the variables

are cointegrated, cointegration vectors, the speed of adjustment to the equilibrium coe¢ cients

and short-run dynamics are estimated after selecting the rank. Johansen�s procedure can be

preferred to the residual-based approach because it provides a simple way of testing for the

cointegration rank and of making inference on the parameters of complex cointegrated systems.

However, the assumption that deviations from equilibrium are integrated of order zero is far

too restrictive. In a general setup it is possible to permit errors with a fractional degree of

integration. This is an important generalization, since fractional cointegration has the same

economic implications as when the processes are integer-valued cointegrated, in the sense that

there exist long-run equilibria among the variables. The only di¤erence is that the rate of con-

vergence to the equilibrium is slower in the fractional than in the standard case. Moreover since

an I(1)=I(0) cointegration setup ignores the fractional cointegration parameter, a fractionally

integrated equilibrium error results in a misspeci�ed likelihood function, which may imply an

important loss of power for fractional cointegration testing.

There is a growing literature on fractional cointegration. A �rst group of contributions deals

with estimation of the cointegrating coe¢ cients in regression models; e.g. Marinucci (2000)

and Marinucci and Robinson (2001) study least squares and narrow band frequency domain

least squares estimates of cointegrating vector. Davidson (2002) considers methods for test-

ing the existence of cointegrating relationships using parametric bootstrap. Davidson (2006)

compares bootstrap tests for di¤erent residual-based statistics using alternative bias reduction

techniques. Gil-Alaña (2003, 2004) proposes a two-step testing procedure of fractional cointe-

gration in macroeconomic time series, based on Robinson�s (1994) test. Velasco (2003) considers

semiparametric consistent estimation of the memory parameters of a nonstationary fractionally

cointegrated vector time series. Marmol and Velasco (2004) propose tests of the null of coin-

tegration, without information on the degree of integration, based on Wald statistics for OLS

coe¢ cients. Hualde and Velasco (2008) employ GLS-type of estimator as in Robinson and

Hualde (2003) and obtain a chi-squared distribution for the Wald test under the null of no
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cointegration.

Other authors have considered (Gaussian) maximum likelihood (ML) techniques. Dueker and

Startz (1998) illustrate a cointegration testing methodology based on joint estimates of the

fractional orders of integration of a cointegrating vector and its parent series. Breitung and

Hassler (2002) propose a variant of e¢ cient score test, which allows us to determine the coin-

tegration rank of possibly fractionally integrated series, where the error correction terms may

be fractionally integrated as well. Nielsen (2005) proposes a Lagrange Multiplier (LM) test of

the null hypothesis of cointegration assuming that the (possibly) fractional order of integration

of the observables and the errors are known a priori. An LM test against fractional alterna-

tives requiring the knowledge of the integration orders of observables has been also proposed by

Breitung and Hassler (2006). Semiparametric methods have been used as well to design tests

for the cointegration rank in fractionally integrated systems, e.g. Robinson and Yajima (2002),

Chen and Hurvich (2006).

Gonzalo and Lee (1998) have found that likelihood ratio (LR) tests based on the standard

VECM models �nd spurious cointegration between independent variables that are not unit

root processes. Andersson and Gredenho¤ (1999) have shown that the likelihood ratio test of

no cointegration has power against fractional alternatives, so using standard likelihood based

approach we are likely to �nd the evidence of C(1; 1) cointegration when in reality we have

fractional cointegration. At the same time the standard ML approach on fractional cointegrated

systems gives severe bias and large mean square errors for the "impact" matrix �: So it is much

more severe to ignore fractional cointegration than to incorporate it when it is not present.

Lyhagen (1998), on the basis of a fractional ECM, has allowed errors to be fractionally inte-

grated and has found the asymptotic distribution of the trace test when the fractional degree

of cointegration is assumed to be known. He also has simulated bias and mean square error

of the estimators of cointegrating vector and adjustment coe¢ cients vector when the cointe-

gration rank is assumed to be one. However the assumption that the order of cointegration is

known is very restrictive and may have unexpected e¤ects on the power of the test in case of

misspeci�cation, so this restriction should be relaxed.

We examine the asymptotic distributions of the trace test and maximum eigenvalue test under

the null hypothesis of no cointegration, when the order of cointegration is not known and is

estimated by maximum likelihood under the alternative. We allow deviations from equilibrium

to be mean reverting with order of integration possibly greater than zero. The standard coin-

tegration case is also included in our setup. We �nd that our tests have more power than the

standard procedure when cointegration is fractional, while in the case of C(1; 1) both procedures

have essentially the same power.

The rest of the paper is organized as follows: Section 2 describes the fractional cointegration

framework. Section 3 presents the model considered in the paper and the procedure that

allows us to de�ne LR tests for no fractional cointegration that are in fact sup tests, which is

demonstrated in this paper. The asymptotic distribution of the sup trace and sup maximum

eigenvalue tests is presented in Section 4. Section 5 presents Monte Carlo analysis. We tabulate
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asymptotic distribution and investigate small sample properties of sup tests. In Section 6

we consider a model that allows the original variables to have an unknown level of persistence.

Section 7 concludes. Appendix A contains the proof of Theorem 1 that demonstrates asymptotic

distributions of sup tests. Appendix B contains the proof that asymptotic results do not change

if we consider the general model for levels integrated of any order and possibly unknown, which

is discussed in Section 6.

2 Framework description

First let us de�ne the fractionally integrated process I(�); following Marinucci and Robinson

(2001).

De�nition 1 We say that a scalar process at; t 2 Z; is an I(�) process, � > 0, if there exists a
zero mean scalar process �t; t 2 Z; with positive and bounded spectral density at zero; such that

at = �
���t1(t>0); t 2 Z; � > 0; (1)

where 1(�) is the indicator function, � = 1�L; L is the lag operator and the fractional di¤erence
�lter is de�ned formally by

(1� z)� = 1

�(��)

1X
j=0

� (j � �) zj
� (j + 1)

; (2)

and �(�) is gamma function.

The process at is said to be asymptotically stationary when � < 1
2 ; since it is nonstationary

only due to the truncation on the right-hand side of (1). The truncation is designed to cater

for cases � � 1
2 ; because otherwise the right-hand side of (1) does not converge in mean square

and hence at is not well de�ned.

Second let us de�ne cointegration, following Granger (1986).

De�nition 2 A set of I(�) variables is said to be cointegrated, or CI(�; d), if there exists a

linear combination that is I(� � d) for d > 0.

In the standard cointegration setup � = d = 1 and we can use ML techniques as in Johansen

(1988, 1991, 1995). However if � 6= 1 or d < 1 we have fractional cointegration, which calls

for a generalization of the standard cointegration framework that would encompass also the

fractional case.

The fractional cointegration setup that we consider in this paper is an extension of the Error

Correction Mechanism (ECM) framework. Johansen (1995) considers the following Vector Error
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Correction Model (VECM)

�Xt = �Xt�1 +
k�1X
i=1

�i�Xt�i +�Dt + �t; (3)

where Xt is a vector of I(1) series of order p � 1, �t is a p � 1 vector of Gaussian error with
variance-covariance matrix 
 and �; �1; :::;�k�1;� are freely varying parameters. Dt is a

matrix containing deterministic terms and other exogenous variables. When Xt is cointegrated

we have the reduced rank condition � = ��0; where the constant matrices � and � are p � r,
having rank r, representing the error correction and cointegrating coe¢ cients, respectively. So

in case of cointegration we can use the restricted form of the model, i.e.

�Xt = ��
0Xt�1 +

k�1X
i=1

�i�Xt�i +�Dt + �t:

A �rst generalization of the VECM to the fractional case has been suggested by Granger (1986).

Following Johansen (2008) and with the notation used in this paper it can be presented as

A�(L)��Xt =
�
1��d

�
���d��0Xt�1 + d(L)�t; (4)

where A�(L) and d(L) are lag polynomials; �t is independent identically distributed with zero

mean and positive de�nite covariance matrix 
: Johansen (2008) shows how this type of model

could be derived starting from the following representation

�0��Xt = u1t; (5)

�0���dXt = u2t;

where ut = (u01t; u
0
2t)

0 is i.i.d. (0;�) and � is p � (p� r) so that (�; �) has rank p: Model (5)
is a special case of model (4) with A�(z) = 1 and with no lagged Xt and parameter restriction

�0� = �Ir:

The formulation (5) allows for modelling and estimating both the cointegrating vector � and

"common trends" vector � and has also been used by Breitung and Hassler (2002):

To make the model more �exible it is a natural idea to add lag structure. Granger proposed to

add lags of ��Xt; which leads to model (4), while Johansen (2007, 2008) proposed a model that

comes from adding the fractional lag operator Ld = 1 � (1 � L)d; through the lag polynomial
A(Ld); to model (5) and has the following form

A(Ld)�
�Xt =

�
1��d

�
���d��0Xt + �t: (6)

The model we consider in this paper contains lag structure as in model (4) proposed by Granger

(1986). Note that under the null of no cointegration we can solve for Xt both models (4) and

(6). However the LR tests based on the model (4) have a nice property that estimating d;

d 2 D, by ML leads to sup test statistics. The null asymptotic distributions of these tests do
not depend on any nuisance parameters other than the interval D, which in fact is �xed for each
value of �: We �rst consider the case when � = 1 and in Section 7 we discuss generalization to

the case with any value of �, which can be also unknown.
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3 Model and tests for no cointegration

We consider the following model

�Xt = ��
0 ��1�d ���Xt + k�1X

i=1

�i�Xt�i + �t (7)

where Xt; �t and the parameters �; �; �1; :::;�k�1;� are as described in (3), �d is the fractional

di¤erencing operator de�ned in (2) and d is interpreted as degree of the fractional cointegration

if the system in (7) is cointegrated. Note that the assumption of Gaussianity will be used only

to derive the test statistics for di¤erent alternative hypotheses, but not to derive the asymptotic

properties of the tests.

The procedure described below is a version of the so-called Johansen�s procedure, see Johansen

(1995), adapted to the fractional VECM. First let�s de�ne

Z0t = �Xt; (8)

Z1t(d) =
�
�1�d ��

�
Xt

and let Z2t be stacked variables �Xt�1; :::;�Xt�k+1: First we prewhiten the original series Z0t
and Z1t, i.e. we regress Z0t and Z1t on Z2t and consider the regression�s residuals R0t and R1t
instead of Z0t and Z1t respectively. The model expressed in these variables becomes

R0t = ��
0R1t(d) + �t; t = 1; :::; T:

The log-likelihood function apart from a constant is given by

L (�; �;
; d) = �1
2
T log j
j � 1

2

TX
t=1

[R0t � ��0R1t(d)]0
�1[R0t � ��0R1t(d)]:

De�ne as well

Sij(d) = T
�1

TX
t=1

Rit(d)Rjt(d)
0 i; j = 0; 1

For �xed d and �; the parameters � and 
 are estimated by regressing R0t on �
0R1t(d). Plugging

the estimates into the likelihood we get

L�2=Tmax (�̂(�); �; 
̂(�); d) = L
�2=T
max (�; d) = jS00 � S01(d)�(�0S11(d)�)�1�0S10(d)j;

and �nally the maximum of the likelihood is obtained by solving the following eigenvalue problem���(d)S11(d)� S10(d)S�100 S01(d)�� = 0 (9)

for eigenvalues �i(d) and eigenvectors �i(d), such that

�i(d)S11(d)�i(d) = S10(d)S
�1
00 S01(d)�i(d);

and �0j(d)S11(d)�i(d) = 1 if i = j and 0 otherwise. Note that the eigenvectors diagonalize the

matrix S10(d)S
�1
00 S01(d) since

�0j(d)S10(d)S
�1
00 S01(d)�i(d) = �i(d)
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if i = j and 0 otherwise. Thus by simultaneously diagonalizing the matrices S11(d) and

S10(d)S
�1
00 S01(d) we can estimate the r�dimensional cointegrating space as the space spanned

by the eigenvectors corresponding to the r largest eigenvalues. With this choice of �

L�2=Tmax (d) = jS00j
rY
i=1

�
1� �̂i(d)

�
: (10)

The so-called Johansen�s procedure consists in performing a sequence of LR tests. The likelihood

under each hypothesis is maximized with the assumption imposed that d = 1: However in a

fractional cointegration framework d is unknown and has to be estimated. What we propose in

this paper is to estimate d by maximum likelihood, i.e.

d̂ = argmax
d2D

Lmax(d) (11)

where Lmax is the concentrated likelihood function de�ned in (10) and D = [0:5 + "; 1] with

" > 0 and small. Note that the maximization range has been chosen is such a way that we allow

deviations from equilibrium (cointegrating residuals) to be of all possible orders of integration

that would be asymptotically stationary.

As the �rst step of the so-called Johansen�s procedure the null hypothesis of no cointegration

needs to be tested. However under the null of no cointegration parameter d is not identi�ed,

while under the null of cointegration rank r with r > 0, d is identi�ed and can be consistently

estimated by (11), which has been proved in ×asak (2006). Thus asymptotic inference under

the null hypothesis of no cointegration will be di¤erent than asymptotic inference under the

null of cointegration rank r with r > 0:

In this paper we concentrate on testing the null of no cointegration or in other words we

present a testing procedure that allows us to answer the question whether there is fractional

cointegration in the system, which is a �rst step that has to be made in order to generalize the

so-called Johansen�s procedure to fractional cointegration case. Recall that the null hypothesis

being tested in this paper is � = 0 or d = 0; so under the null hypothesis, Xt is an I(1) not

cointegrated V AR(k � 1), like in the standard case.

We describe two LR tests that we call sup trace and sup maximum eigenvalue tests. The reason

we call our tests that way will become clear once we study the asymptotic distribution of the

proposed tests. Note that by means of sup trace test we test the null hypothesis

H0 : rank (�) = r0 = 0

against the alternative hypothesis

H1 : rank (�) = p

using the LR statistic de�ned by

sup trace = trace(d̂p) = �2 ln [LR (0jp)] = �T
pX
i=1

ln[1� �̂i(d̂p)]; (12)

where

d̂p = argmax
d2D

Lp(d) = argmax
d2D

trace(d)
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and Lp (d) denotes the maximized likelihood under the hypothesis of rank p for a given d.

The sup maximum eigenvalue (sup�max) statistic we use to test cointegrating rank 0 against

rank 1; i.e. to test

H0 : rank (�) = r0 = 0

against

H1 : rank (�) = 1

and the sup�max statistic is de�ned by

sup lambdamax = �max(d̂1) = �2 ln [LR (0j1)] = �T ln[1� �1(d̂1)] (13)

and

d̂1 = argmax
d2D

L1(d) = argmax
d2D

�max(d);

where L1 (d) denotes the maximized likelihood under the hypothesis of rank 1 for a given d.

Recall that we cannot hope that d̂1 or d̂p estimate consistently a nonexisting true value of d

and because of that our tests can be interpreted as sup LR tests, in the spirit of Davies (1977)

and Hansen (1996).

4 Asymptotic distribution

In this section we derive the asymptotic distribution of the likelihood ratio tests that we have

proposed in (12) and (13). We discuss the case with no lags and under the null of no cointegra-

tion.

First let�s state assumptions about the innovations, necessary to derive the asymptotic distrib-

utions of our likelihood ratio tests.

Assumption 1 "t are independent and identically distributed vectors with mean zero, positive
de�nite covariance matrix 
; and Ejj"tjjq <1; q � 4; q > 2= (2d� 1) :

Note that by law of large numbers under H0

S00
P! 
:

Further using the methods of Marinucci and Robinson (2000) we obtain that under Assumption

1

T 0:5�dZ1[T� ]
!!Wd(�); for d > 0:5;

where !! means convergence in the Skorohod J1 topology of D[0; 1]; Wd is a fractional Brownian

motion called by Marinucci and Robinson (1999) "Type II" fractional Brownian motion and

de�ned as

Wd(�) =

Z �

0

(� � s)d�1

� (d)
dW (s);
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and W (s) is vector Brownian motion with covariance matrix 
:

Then by the Continuous Mapping Theorem we have the following convergence for each d > 0:5

T 1�2dS11(d)
d!
Z 1

0

Wd(�)Wd(�)
0d� (14)

and, as in e.g. Robinson and Hualde (2003), Proposition 3,

T 1�dS10(d)
d!
Z 1

0

Wd(�)dW
0;

where d! denotes convergence in distribution.

The product moments T 1�2dS11(d), T 1�dS10(d) are Op (1) uniformly in d since we can show

weak convergence for d 2 D in the space C (D) of continuous functions in D (see Proof of

Theorem 1 in the Appendix A), S00 is also Op (1), so the roots �̂i(d) of equation (9) converge

to zero like T�1 under the null of no cointegration: This implies that

�T
pX
i=1

ln[1� �̂i(d)] = T
pX
i=1

�̂i(d) + op (1) :

The sum of the eigenvalues can be found as follows���(d)S11(d)� S10(d)S�100 S01(d)�� = 0
that is equivalent to solve the equation���(d)I � S�111 (d)S10(d)S�100 S01(d)�� = 0;
which shows that

T

pX
i=1

�̂i(d) = T trfS�111 (d)S10(d)S�100 S01(d)g:

From the above reasoning we �nd that for each d the product

S�111 (d)S10(d)S
�1
00 S01(d)

converges in distribution towards�Z 1

0

Wd (�)Wd (�)
0
d�

��1 Z 1

0

Wd (�) dW
0
�1

Z 1

0

(dW )Wd (�)
0
;

which we can write as


�1=2
�Z 1

0

Bd (�)Bd (�)
0
d�

��1 Z 1

0

Bd (�) dB
0
Z 1

0

(dB)Bd (�)
0
�

1=2

�0
; (15)

where Bd (�) = 
�1=2Wd (�) is the standard fractional Brownian motion. Then we can see that

asymptotic distribution of trace and maximum eigenvalue for a �xed d are respectively the trace

and the greatest eigenvalue of (15), i.e.

trace(d)
d! trace

"Z 1

0

(dB)Bd (�)
0
�Z 1

0

Bd (�)Bd (�)
0
d�

��1 Z 1

0

Bd (�) (dB)
0
#

�max(d)
d! �1

"Z 1

0

(dB)Bd (�)
0
�Z 1

0

Bd (�)Bd (�)
0
d�

��1 Z 1

0

Bd (�) (dB)
0
#
:
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In the case when d is estimated the following theorem applies.

Theorem 1 When d; d 2 D, is estimated by the maximum likelihood principle under the model

(7) the asymptotic distributions of trace and maximum eigenvalue statistics are given respectively

by

sup trace = trace(d̂p)
d! sup
d2D

trace [$(d)] ;

and

sup lambdamax = �max(d̂1)
d! sup
d2D

�1 [$(d)] ;

where D = [0:5 + "; 1] is a compact set, and

$(d) =

Z 1

0

(dB)Bd (�)
0
�Z 1

0

Bd (�)Bd (�)
0
d�

��1 Z 1

0

Bd (�) (dB)
0
;

where B is a p-dimensional Brownian motion on the unit interval, Bd (�) is the standard frac-

tional Brownian motion.

The proof is given in the Appendix A. Note that the same result would hold for any compact

subset D � (0:5; 1]. However we are interested exactly in the set D = [0:5+ "; 1] with " > 0 and
small, in order to allow the deviations from equilibrium to have all possible orders of integration

that would be asymptotically stationary. In the theoretical part we consider d that belongs to a

set D = [0:5+"; 1]; " > 0 and small, because for these values we have a proof of a non-degenerate
asymptotic distribution of our test statistics. But in Monte Carlo we use D = [0:5; 1]; since with
very small " there is no di¤erence between these two sets in practice. Moreover we have checked

by simulation that the limiting distribution given in Theorem 1 does not depend on the choice

of ":

Finally let us consider the behavior of our tests under the alternative. Note that if the null

hypothesis is not true and we have fractional cointegration, then one of the eigenvalues in (9)

will be positive in the limit (see Avarucci (2007)). Then

�2 ln [LR (0jp)] > �T ln
�
1� �̂1(d̂p)

�
p!1

and

�2 ln [LR (0j1)] = �T ln
�
1� �̂1(d̂1)

�
p!1:

So the asymptotic power of both tests is 1.
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5 Monte Carlo

The asymptotic distribution of the sup trace and sup maximum eigenvalue statistics have been

simulated using the approximation of fractional Brownian motion by fractionally integrated

series based on i.i.d Gaussian noise of length 1000. To maximize the likelihood function, the

MaxSQPF procedure has been used and optimization has been done on the interval D =[0:5; 1]:1

Quantiles of the simulated (with 100,000 repetitions) asymptotic distribution are given in Tables

1-2. All Monte Carlo simulations have been done using OxMetrics 4.02 (see Doornik and Ooms

(2007)).

Table 1. Quantiles of sup trace test

1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

1 0.0006 0.0035 0.012 0.045 0.87 3.71 4.98 6.28 8.07

2 0.42 0.71 1.07 1.65 5.37 10.92 12.84 14.67 16.90

3 2.64 3.50 4.41 5.77 13.44 21.73 24.30 26.67 29.64

4 7.06 8.68 10.25 12.53 25.81 36.72 39.95 42.86 46.52

5 13.92 16.23 18.63 22.09 42.59 55.88 59.76 63.24 67.49

6 23.38 26.62 29.95 35.11 63.67 78.87 83.19 87.14 91.93

7 35.56 40.02 44.60 52.37 88.81 105.87 110.84 115.32 120.89

8 50.74 56.53 63.18 77.58 117.84 136.83 142.47 147.61 153.80

9 69.15 76.69 87.20 124.92 150.68 171.61 177.81 183.49 190.27

10 91.42 102.65 128.49 163.12 187.27 210.32 217.29 223.54 230.94

Table 2. Quantiles of sup lambdamax test

1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

1 0.0006 0.0035 0.012 0.045 0.87 3.71 4.98 6.28 8.07

2 0.37 0.62 0.93 1.44 4.73 9.86 11.72 13.45 15.67

3 1.87 2.50 3.16 4.15 9.37 15.85 18.01 19.98 22.53

4 4.16 5.07 6.06 7.47 14.26 21.81 24.27 26.49 29.38

5 6.85 8.08 9.35 11.14 19.36 27.72 30.40 32.83 35.91

6 10.00 11.52 13.00 15.11 24.60 33.47 36.28 38.87 41.90

7 13.16 14.92 16.67 19.17 29.89 39.49 42.36 45.06 48.45

8 16.69 18.66 20.64 23.36 35.29 45.29 48.48 51.20 54.62

9 20.41 22.48 24.59 27.83 40.72 51.21 54.35 57.30 60.78

10 24.08 26.30 28.72 32.31 46.19 57.02 60.31 63.43 67.21

1We optimize on [0:5; 1] instead of [0:5+"; 1]; since we have checked by simulation that the limiting distribution

does not depend on the choice of ":
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To evaluate the �nite sample properties of sup tests we have simulated two versions of two

equation (p = 2) model (7), a basic model with no deterministic terms and no lagged di¤erences

(Model A), and a model with �rst lagged di¤erence (model B). The cointegrating vector � in

all cases has been normalized to a unit vector � = [1 0]0, which does not a¤ect the generality of

the experiment. The parametric space of � in such case is limited to a1 2 (�2; 0], a2 2 R:

In our simulation we have considered a1 = �1:9; �1:4; �0:9;�0:4; 0 and a2 = 0; 1; 2, which is
su¢ cient to examine the performance of our tests in the whole parametric space. Note that the

case a1 = a2 = 0 shows the behavior of the tests under the null hypothesis of no cointegration,

and a1 = 0 but a2 6= 0 covers in fact the case of I(2) variables.

Small sample properties of the proposed tests for d0 = 0:1; 0:3; 0:6; 0:8; 1 have been investigated

by simulation with 10; 000 repetitions and nominal size of 5%. For model B we have considered

�1 = 
Ip with values of 
 = 0:1; 0:5; 0:9. We have run our simulation experiment for samples

of T = 50; 100; 200; 250 observations.

In Table 3 we compare percentage of rejections of both sup tests under the null hypothesis of

no cointegration for both models A, B and di¤erent sample sizes.

Table 3. Percentage of rejections by sup trace and sup maximum eigenvalue tests under the

null hypothesis of no cointegration. Nominal size 5%.

sup trace sup lambdamax

model A B

T/ 
 0.1 0.5 0.9

50 4.9 6.8 8.6 19.4

100 4.9 5.3 6.1 12.5

200 4.8 4.9 5.4 8.3

250 4.7 4.9 5.2 7.8

model A B

T/ 
 0.1 0.5 0.9

50 5.0 6.9 8.3 18.4

100 4.8 5.1 5.7 12.1

200 4.7 4.9 5.4 8.3

250 4.8 4.9 5.3 7.8

The Monte Carlo simulation shows that in case of model A the size distortions of sup tests are

small and close to the nominal size of 5%:We observe that both sup tests are slightly undersized

in this case. For model B we observe that both tests are usually oversized. The size distortions

increase with 
; but decrease when T increases.

In Tables 4 and 5 we present the percentage of rejections by sup tests for model A and the value

of d0 = 0:6 under the alternative hypothesis. These tables illustrate behaviour of percentage

of rejection in the whole parametric space of �1 and �2: Further we comment on all results

obtained in this simulation experiment.
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Table 4. Percentage of rejections by sup trace test for model A with d0 = 0:6: Right-bottom

cell of each table shows the result under the null. Nominal size 5%.

T=50 T=100

�2= a1 -1.9 -1.4 -0.9 -0.4 0

2 100 100 100 100 100

1 100 100 99.8 99.3 99.7

0 100 99.8 85.7 23.4 4.9

�2= a1 -1.9 -1.4 -0.9 -0.4 0

2 100 100 100 100 100

1 100 100 100 100 100

0 100 100 99.9 58.9 4.9

T=200 T=250

�2= a1 -1.9 -1.4 -0.9 -0.4 0

2 100 100 100 100 100

1 100 100 100 100 100

0 100 100 99.9 97.1 4.8

�2= a1 -1.9 -1.4 -0.9 -0.4 0

2 100 100 100 100 100

1 100 100 100 100 100

0 100 100 99.9 99.5 4.7

Table 5. Percentage of rejections by sup maximum eigenvalue test for model A with d0 = 0:6:

Right-bottom cell of each table shows the result under the null. Nominal size 5%.

T=50 T=100

�2= a1 -1.9 -1.4 -0.9 -0.4 0

2 100 100 100 100 100

1 100 100 100 99.4 99.8

0 100 99.9 86.9 23.5 5.0

�2= a1 -1.9 -1.4 -0.9 -0.4 0

2 100 100 100 100 100

1 100 100 100 100 100

0 100 100 100 60.2 4.8

T=200 T=250

�2= a1 -1.9 -1.4 -0.9 -0.4 0

2 100 100 100 100 100

1 100 100 100 100 100

0 100 100 100 97.6 4.7

�2= a1 -1.9 -1.4 -0.9 -0.4 0

2 100 100 100 100 100

1 100 100 100 100 100

0 100 100 100 99.6 4.8

The results of the Monte Carlo experiment shows that the power of the sup trace test and the

sup maximum eigenvalue test increases with the value of true order of fractional cointegration

d0 under the alternative hypothesis and with the sample size T:We can also see that the power

decreases when � gets closer to zero, which is not strange since we expect problems in this

part of the parameters space. These results hold for all models simulated. We do not observe

signi�cant di¤erence in power between sup trace test and sup maximum eigenvalue test for any

of the considered models.

We have compared the performance of sup tests to LR tests based on the standard VECM. Sup

tests have smaller size distortions and better power to detect cointegration. The di¤erence in

power is more signi�cant the smaller d is, which is what we would naturally expect. Note that if

d0 6= 1 and we apply LR tests based on the standard VECM we �t a wrong model to the data,

which explains the gain of power using sup tests. For d0 = 1 both procedures perform equally

well, which is due to the fact that sup tests are quite powerful and they reach maximum power

for d < 1 already. Note also that a standard cointegration case is nested in our approach. We
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have also checked that our tests perform well for the values of d0 that are not covered by our

asymptotic results.

6 Model for a general integration degree

Although in most applications it is assumed that all variables are integrated of an integer order,

it is interesting to allow the original series to be integrated of an unknown and possibly fractional

order �; � > 0:5: Then we may consider a general VAR model for I(�) processes, i.e.

��Xt = �
�
���d ���

�
Xt +

k�1X
i=1

�i�
�Xt�i + �t (16)

In order to apply sup tests described in this paper we could proceed in the following way.

First pre-estimate � under the null hypothesis of no cointegration by ML or any other method,

which provides �̂; a consistent estimate of �. Further plug �̂ into the model (16) and follow the

procedure described in Section 3 to de�ne test statistics. In Appendix B we prove that under

Assumption 2 asymptotic distributions of sup tests have the same general form as in the basic

model (7).

Assumption 2 We have a pre-estimate �̂, such that

�̂ � � = Op
�
T��

�
; � > 0

where j�̂j � K for some �nite K;

The estimator of � (�̂) can be based on the whole vector Xt or can be obtained using only uni-

variate information, see for example Nielsen (2008), Shimotsu and Phillips (2005) or Robinson

and Velasco (2000).

Corollary 2 Asymptotic distributions of sup trace and sup maximum eigenvalue tests have the

same general form as in the basic model (7) and are given by Theorem 1.

Note that the critical values of our tests depend on the interval D = [� � 0:5 + "; �] of possible
values of d; on which we maximize the likelihood. The bounds of interval D are determined by

the fact that we want to allow deviations from equilibrium (cointegrating residuals) to be of all

possible orders of integration that would be asymptotically stationary. For practical purposes we

can simulate the tables of critical values for each �:We have checked by Monte Carlo simulation

that the critical values would converge to a limit when � !1 and also if "! 0:
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7 Conclusions

In this paper we have made a �rst attempt to generalize standard cointegration methodology

based on the Error Correction Mechanism (ECM) framework to fractional cointegration case.

We have considered two likelihood ratio tests for absence of cointegration against the alternative

hypotheses of fractional cointegration. These tests are more general than other tests considered

previously in the literature because of three aspects: original variables can be allowed to have

an unknown level of persistence, departures from equilibrium can be fractionally cointegrated

and the memory of the errors is estimated, not assumed a priori. A great advantage of the

considered tests is that they are simple and natural extensions of existing ones, so they can

be easily used by practitioners. By means of Monte Carlo simulation we have demonstrated

that proposed tests have very good power to detect cointegration, while size distortions are

small. There are many extensions to the setup considered in this paper to be developed in

the nearest future. We would like to propose a testing procedure for higher ranks, preferably

allowing di¤erent cointegrating relations to have di¤erent memory. We are also planning to

consider the estimation of d and linear parameters in the fractional ECM and the analysis of

their asymptotic properties.

8 Appendix A

Proof. (of Theorem 1). We provide here the proof for the model with no lagged di¤erences
and no deterministic terms. For the general version of the model (7) the proof follows as in

Johansen (1995, 2007) after prewhitening original variables Z0t and Z1t on Z2t and considering

the regressions residuals R0t and R1t instead of Z0t and Z1t respectively. This step has a

negligible e¤ect on the asymptotic distribution of tests because of nonstationarity of Z1t(d)

for d > 0:5:

First note that for each d we have

trace(d)
d! tracef

Z 1

0

(dB)B0d

�Z 1

0

BdB
0
ddu

��1 Z 1

0

Bd (dB)
0g;

where d! denotes usual standard convergence in distribution, which follows because of the joint

convergence of the matrices of sample moments to the corresponding stochastic integrals. Then

by the same argument we have convergence for �nitely many d0s:

Second recall that trace(d) is a continuous function in all elements of the matrices involved and

the random processes on the right hand side are continuous in d. Then if we check that the

process is tight in d 2 D; we have that

trace(d) =) tracef
Z 1

0

(dB)B0d

�Z 1

0

BdB
0
ddu

��1 Z 1

0

Bd (dB)
0g;

where =) denotes weak convergence for d 2 D in the space C (D) of continuous functions on
D, with the supremum norm.
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Third since sup function is well de�ned and continuous on C(D) and

trace(d̂p) = trace(argmax
d�D

trace(d)) = sup
d�D

trace(d);

we get by the Continuous Mapping Theorem that the asymptotic distribution of sup
d�D

trace(d)

is the distribution of the

sup
d�D

 
tracef

Z 1

0

(dB)B0d

�Z 1

0

BdB
0
ddu

��1 Z 1

0

Bd (dB)
0g
!
:

So to prove that Theorem 1 holds, it is enough to demonstrate that the elements of the sample

moments matrices (S11(d) and S10(d)) are tight in d, since trace(d) is a continuous function in

all elements of the matrices involved as we stated before. Note that S00 does not depend on

d and S01(d) = S010(d): We now give the proof for a typical element of S11: The tightness of

S10(d) follows by the same arguments.

Recall that in our case with no lags,

S11(d) = T
�1

TX
t=1

Z1t(d)Z1t(d)
0;

Z1t (d) =

tX
j=1

�j (d) "t�j :

Since (14) and that we can proceed componentwise, then for tightness, by Billingsley�s (1968)

Theorem 12:3, it is su¢ cient to check that

E
��T 1�2daSv;z11 (da)� T 1�2dbSv;z11 (db)��m � K jda � dbj
 ; (17)

for some m > 0; K <1 and 
 > 1; where Sv;z11 (d) is the (v; z) element of S11 (d) ; K and 
 are

generic constants that do not depend on T nor on (da; db):We will demonstrate that (17) holds

for m = 2 and 
 = 2: Then

Sv;z11 (d) = T�1
TX
t=1

Zv1t (d)Z
z
1t (d)

= T�1
TX
t=1

0@ tX
j=1

�j (d) "
v
t�j

1A tX
i=1

�i (d) "
z
t�i

!

so E
��T 1�2daSv;z11 (da)� T 1�2dbSv;z11 (db)��2 is equal to

TX
t=1

TX
t0=1

E fAt (da)�At (db)g fAt0 (da)�At0 (db)g

where

At (d) = A
v;z
t (d) = T�2d

0@ tX
j=1

�j (d) "
v
t�j

1A tX
i=1

�i (d) "
z
t�i

!
:

First let�s calculate the contribution of the expectation of the cross product At (da)At0 (db) ;

which is

�2vzT
�2da�2db

TX
t=1

TX
t0=1

tX
j=1

t0X
j0=1

�j (da)
2
�j0 (db)

2
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+ �vv�zzT
�2da�2db

X
t�t0

t^t0X
j0=1

t^t0X
i0=1

�j0(da)�i0(da)�t�t0+j0(db)�t�t0+i0(db)

+ �vv�zzT
�2da�2db

X
t<t0

t^t0X
j=1

t^t0X
i=1

�t0�t+j(da)�t0�t+i(da)�j(db)�i(db);

+ �2vzT
�2da�2db

X
t�t0

t^t0X
j0=1

t^t0X
i0=1

�j0(da)�i0(da)�t�t0+i0(db)�t�t0+j0(db)

+ �2vzT
�2da�2db

X
t<t0

t^t0X
j=1

t^t0X
i=1

�t0�t+i(da)�t0�t+j(da)�i(db)�j(db)

+�vzvzT
�2da�2db

0@X
t�t0

t0X
j0=1

�j0(da)
2�t�t0+j0(db)

2 +
X
t0>t

tX
j=1

�t0�t+j(da)
2�j(db)

2

1A :
Note that once we have evaluated this cross product we can obtain the contribution of the

other terms in exactly the same way, for instance that of At (da)At0 (da) by setting b = a in

the previous expression, At (db)At0 (db) by setting a = b; and At (db)At0 (da) by interchanging

a and b:

Combining all cross-products with the appropriate sign and setting ��j (d) = �j (d)T
�d; we get

that E
��T 1�2daSv;z11 (da)� T 1�2dbSv;z11 (db)��2 is

�2vz
X
t;t0

t^t0X
j;i=1

n
��j (da)

2 � ��j (db)
2
on
��i (da)

2 � ��i (db)
2
o2

(18)

+�vv�zz
X
t;t0

t^t0X
j;i=1

�
��j (da)�

�
i (da)� ��j (db)��i (db)

	
�
n
��jt�t0j+j(da)�

�
jt�t0j+i(da)� ��jt�t0j+j(db)��jt�t0j+i(db)

o
+�2vz

X
t;t0

t^t0X
j;i=1

�
��j (da)�

�
i (da)� ��j (db)��i (db)

	
�
n
��jt�t0j+i(da)�

�
jt�t0j+j(da)� ��jt�t0j+i(db)��jt�t0j+j(db)

o
+�vzvz

t^t0X
j;i=1

�
��j (da)

2 � ��j (db)2
	n
��jt�t0j+j(da)

2 � ��jt�t0j+j(db)2
o
:

From Lemma 3 given below we get that the value of (18) is bounded by Kjda � dbj2. Using
similar arguments it is possible to demonstrate that the remaining terms can also be bounded

by Kjda � dbj2 by the monotonicity of ��j (d) in j: This completes the proof.

Lemma 3 The absolute value of

TX
t=1

TX
t0=1

tX
j=1

t0X
j0=1

n�
��j (da)

2 � ��j (db)
2
��
��j0 (da)

2 � ��j0 (db)
2
�o

is bounded by Kjda � dbj2.
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Proof. We prove Lemma 3 by applying the Mean Value Theorem to ��j (d). First, observe

that �����0 (j + d)� (j + 1)
� � (j + d)
� (j + 1)

log j

���� � Kjd�1; (19)

since

�0 (j + d)

� (j + 1)
� � (j + d)
� (j + 1)

log j =
�0 (j + d)

� (j + d)

� (j + d)

� (j + 1)
� � (j + d)
� (j + 1)

log j

=

�
�0 (j + d)

� (j + d)
� log j

�
� (j + d)

� (j + 1)

= f	(j + d)� log jg � (j + d)
� (j + 1)

where � (j + d) � (j + 1)�1 � Kjd�1 for j ! 1 and 	(z) = (d=dz) log � (z) is the digamma

function, which satis�es

	(z) = log z +
1

2z
+O

�
z�2
�
; z !1;

so

	(j + d) = log (j + d) +O
�
j�1
�

= log j +O
�
j�1
�

as j !1; uniformly for d 2 D:

Now consider

T d
���� @@d��j (d)

���� =

���� @@d�j (d)� �j (d) log T
����

=

������0 (d) � (j + d) + � (d) �0 (j + d)�2 (d) � (j + 1)
� � (j + d)

� (d) � (j + 1)
log T

����
=

���� 1

�2 (d) � (j + 1)
f��0 (d) � (j + d) + � (d) �0 (j + d)� � (d) � (j + d) log Tg

����
�

�Kjd�1z }| {������0 (d) � (j + d)�2 (d) � (j + 1)

����
+

1

� (d)

8>>>><>>>>:
�Kjd�1z }| {�����0 (j + d)� (j + 1)
� � (j + d)
� (j + 1)

log j

����+
�Kjd�1(log j�log T )z }| {����� (j + d)� (j + 1)

(log j � log T )
����
9>>>>=>>>>;

� Kjd�1j log (j=T ) j;

uniformly for j = 1; :::; T and d 2 D, using �j (d) � Kjd�1 and (19):

Finally we get by the Mean Value Theorem that for some d� 2 [da; db]
TX
t=1

TX
t0=1

tX
j=1

t0X
j0=1

n�
��j (�da)

2 � ��j (�db)
2
��
��j0 (�da)

2 � ��j0 (�db)
2
�o

� KT�4d
�
jda � dbj2

8<:
TX
t=1

tX
j=1

j2d
��2j log (j=T ) j

9=;
2
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� KT�4d
�
jda � dbj2

8>>>>>><>>>>>>:
TX
t=1

t2d
��1 t�1

tX
j=1

(j=t)
2d��2 j log (j=t) j| {z }

�
R 1
0
x2d��2j log xjdx=c

+
TX
t=1

j log(t=T )j
tX

j=1

j2d
��2

9>>>>>>=>>>>>>;

2

� Kjda � dbj2

since db > da > 0:5 (the case da = db is trivial).

9 Appendix B

Proof. Here we prove that Theorem 1 holds for model (16) with a general degree of integration

estimated under Assumption (2). Again we only provide the proof for model with no lagged

di¤erences and no deterministic terms. For a general version of the model (16) the proof follows

by the same argument as in the Proof of Theorem 1.

Consider the simple version of model (16)

��Xt = �(�
��d ���)Xt + �t:

De�ne Z0 (�) = ��Xt, Z1 (�; d) = (���d ���)Xt and note that the sample moment matrices
Sij(�0; �̂; d) for i; j = 0; 1 are calculated by plugging in the estimator �̂; when the true value is

�0; while Sij(�0; �0; d) are calculated using the true value �0:

It is clear that for true � (�0) the asymptotic distributions of our tests do not change. For

estimated � (�̂) it does not change if Sij(�0; �̂; d) is close to Sij(�0; �0; d) for i; j = 0; 1 as

T !1; uniformly in d 2 D:
Let�s �rst demonstrate that it does hold for a properly normalized S11 and �̂ that satis�es

Assumption 2. We follow mainly arguments in Robinson and Hualde (2003) Lemma C.2 and

Lemma C.4.

Set A11 (d) = T 1�2d
n
S11(�0; �̂; d)� S11(�0; �0; d)

o
, so

A11 (d) = T�2d

"
TX
t=1

Z1t(�0; �̂; d)Z1t(�0; �̂; d)
0 �

TX
t=1

Z1t(�0; �0; d)Z1t(�0; �0; d)
0

#
(20)

= T�2d
TX
t=1

8<:
0@ tX
j=1

�j

�
�0 � �̂ + d

�
"t�j

1A tX
i=1

h
�i

�
�0 � �̂ + d

�
� �i (d)

i
"0t�i

!

+

0@ tX
j=1

h
�j

�
�0 � �̂ + d

�
� �j (d)

i
"t�j

1A tX
i=1

�i (d) "
0
t�i

!9=; :
De�ne

g (x) �
tX

j=1

�j (x) "t�j
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and note that r-th derivate of g

g(r) (x) =

tX
j=1

�
(r)
j (x) "t�j

Using Taylor expansion of order R; to be chosen later, for g
�
�0 � �̂ + d

�
we can

g
�
�0 � �̂ + d

�
= g (d) +

R�1X
r=1

�
�̂ � �0

�r
r!

g(r) (d) +

�
�̂ � �0

�R
R!

g(r) (d�)

=
tX

j=1

8><>:�j (d) +
R�1X
r=1

�
�̂ � �0

�r
r!

�
(r)
j (d) +

�
�̂ � �0

�R
R!

�
(R)
j (d�)

9>=>; "t�j ;
where d� is some intermediate point between d and d+ �0 � �̂; to get

A11 (d) = T
�2d

TX
t=1

tX
i=1

tX
j=1

24 PR�1
r;s=0

(�̂��0)
r+s

r!s! �
(r)
i (d)�

(s)
j (d) + 2

PR�1
r=0

(�̂��0)
r+R

r!R! �
(r)
i (d)�

(R)
j (d�)

+
(�̂��0)

2R

R!2 �
(R)
i (d�)�

(R)
j (d�)

35 "t�j"0t�i;
where the �rst summation requires that s+ r > 0:

Note that �j (d) � jd�1; �
(1)
j (d) � jd�1 log j; �

(2)
j (d) � jd�1 log2 j as j ! 1; cf. Delgado

and Velasco (2005) and Robinson and Hualde (2003) and that we have in A11 (d) terms of the

following three types,

A1 (r; s) = T�2d
TX
t=1

tX
i=1

tX
j=1

�
(r)
i (d)�

(s)
j (d) "t�j"

0
t�i; where r; s = 0; 1; 2; :::; R� 1; s+ r > 0

A2 (r) = T�2d
TX
t=1

tX
i=1

tX
j=1

�
(r)
i (d)�

(R)
j (d�) "t�j"

0
t�i; where r = 0; 1; 2; :::; R� 1

A3 = T�2d
TX
t=1

tX
i=1

tX
j=1

�
(R)
i (d�)�

(R)
j (d�) "t�j"

0
t�i

where we are interested in bounding
�
�̂ � �0

�r+s
A1 (r; s) ;

�
�̂ � �0

�R+r
A2 (r) and

�
�̂ � �0

�2R
A3

uniformly in d 2 D:

Let us work �rst with the term A1 = A1 (r; s). Recall that A = Op

�
E(A2)

1
2

�
and apply the

expectation to a typical element (v; z) of A1,

E
�
T 4dA21
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(s)
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(s)
i+jt0�tj (d) ;

where �vzvz is the fourth cumulant of "t: So �nally we obtain that

(log T )
�2R

A1 (r; s) = Op

�
(log T )

r+s�2R
�
= op (1)

for r; s < R; because

TX
t=1

TX
t0=1

24 tX
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t0X
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�
(r)
i (d)�

(s)
i (d)�

(r)
i0 (d)�
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35 =
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351A
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h
t2d�1 (t0)

2d�1
(log T )

2(r+s)
i!

= O
�
T 4d (log T )

2(r+s)
�
:

This shows the convergence to zero of the �nite dimensional distributions of (log T )�2RA1 (r; s)

for �xed d and each r and s: Using the argument in the proof of Theorem 1, we can show the

tightness of (log T )�2RA1 (r; s) for d 2 D, and therefore we conclude that
supd2D j (log T )

�2R
A1 (d) j = op (1) : Then, for � > 0 and r + s > 0;

sup
d2D

�
�̂ � �0

�r+s
A1 (r; s) = op

�
T��(r+s) (log T )

2R
�
= op (1) :

Let�s work now with

A2(r) = T
�2d
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t=1

tX
i=1

tX
j=1

�
(r)
i (d)�

(R)
j (d�) "t�j"

0
t�i; where r = 0; 1; 2; :::; R� 1

Note that by monotonicity of �(r)i (d) in d for i = 1; 2; : : : ;
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while for each � > 0;
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Then, for any � > 0;

sup
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A2 (r) = OP
�
T 1+�
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and �
�̂ � �0

�R+r
sup
d2D

A2 (r) = OP

�
T��(R+r)T 1+�

�
= op (1)

if R > 1=� and � > 0 small enough.

Let�s work with the term A3: Using that

sup
t=1;:::;T

sup
d2D

jg(R)t (d�)T�dj = OP (T �)

for any � > 0 we obtain that supd2D A3 = Op(T
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A3 =
�
�̂ � �0

�2R
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if R > 1=�: Then the proof follows for this choice of R:

For the proof for S10(d); we set A10 (d) = T 1�d
n
S10(�0; �̂; d)� S10(�0; �0; d)

o
, and proceed in

a similar way. However, we now need to consider terms like

T�d
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;

which after Taylor expansion lead us to consider

A�1 (r; s) = T�2d
TX
t=1

tX
i=1

tX
j=1

�
(r)
i (0)�

(s)
j (d) "t�j"

0
t�i; where s = 0; 1; 2; :::; R� 1; r = 1; 2; :::; R� 1

A�2 (r) = T�2d
TX
t=1

tX
i=1

tX
j=1

�
(r)
i (0)�

(R)
j (d�) "t�j"

0
t�i; where r = 1; 2; :::; R� 1

A��2 (s) = T�2d
TX
t=1

tX
i=1

tX
j=1

�
(s)
i (d)�

(R)
j (d��) "t�j"

0
t�i; where s = 0; 1; 2; :::; R� 1

A�3 = T�2d
TX
t=1

tX
i=1

tX
j=1

�
(R)
i (d��)�

(R)
j (d�) "t�j"

0
t�i

where d�� is middle point, so that jd��j � j�0 � �̂j:
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