
  
 
 
 
 

CREATES Research Paper 2008-48 
 
 
 
 

Expected Stock Returns and Variance Risk Premia 
 

Tim Bollerslev, George Tauchen and Hao Zhou 
  
 
 

 
 

School of Economics and Management 
University of Aarhus 

Building 1322, DK-8000 Aarhus C 
Denmark 

 
 
 

 

 

 



Expected Stock Returns and

Variance Risk Premia∗

Tim Bollerslev†, George Tauchen‡and Hao Zhou§

First Draft: September 2006
This Version: July 2008

Abstract

Motivated by the implications from a stylized self-contained general equilibrium
model incorporating the effects of time-varying economic uncertainty, we show that
the difference between implied and realized variation, or the variance risk premium, is
able to explain a non-trivial fraction of the time series variation in post 1990 aggregate
stock market returns, with high (low) premia predicting high (low) future returns. Our
empirical results depend crucially on the use of “model-free,” as opposed to Black-
Scholes, options implied volatilities, along with accurate realized variation measures
constructed from high-frequency intraday, as opposed to daily, data. The magnitude
of the predictability is particularly strong at the intermediate quarterly return horizon,
where it dominates that afforded by other popular predictor variables, like the P/E
ratio, the default spread, and the consumption-wealth ratio (CAY).

JEL classification: C22, C51, C52, G12, G13, G14.
Keywords: Equilibrium asset pricing; stochastic volatility; risk neutral expectation; return
predictability; option implied volatility; realized volatility; variance risk premium.

∗Bollerslev’s work was supported by a grant from the NSF to the NBER and CREATES funded by the
Danish National Research Foundation. The paper combines results in an earlier paper with the same title
by the first and the third author, and a paper by the second author titled ”Stochastic Volatility in General
Equilibrium.” Excellent research assistance was provide by Natalia Sizova. We would also like to thank an
anonymous referee, John Ammer, Torben Andersen, Federico Bandi, Ravi Bansal, Oleg Bondarenko, Craig
Burnside, Robert Hodrick, Pete Kyle, David Lando, Benoit Perron, Monika Piazzesi, Raman Uppal, Tuomo
Vuolteenaho, Jonathan Wright, Amir Yaron, Motohiro Yogo, Alex Ziegler, and seminar participants at the
Federal Reserve Board, the 2007 conference on ”Return Predictability” at Copenhagen Business School, the
2007 SITE conference at Stanford, the 2007 NBER Summer Institute, the 2007 conference on ”Measuring
Dependence in Finance” at Cass Business School, and the 2008 Winter Meetings of the American Finance
Association for helpful discussions. The views presented here are solely those of the authors and do not
necessarily represent those of the Federal Reserve Board or its staff.

†Department of Economics, Duke University, Durham NC 27708, USA, and NBER and CREATES, Email
boller@econ.duke.edu, Phone 919-660-1846, Fax 919-684-8974.

‡Department of Economics, Duke University, Durham NC 27708, USA, Email george.tauchen@duke.edu,
Phone 919-660-1812, Fax 919-684-8974.

§Division of Research and Statistics, Federal Reserve Board, Mail Stop 91, Washington DC 20551 USA,
E-mail hao.zhou@frb.gov, Phone 202-452-3360, Fax 202-728-5887.



Expected Stock Returns and

Variance Risk Premia

Abstract

Motivated by the implications from a stylized self-contained general equilibrium model

incorporating the effects of time-varying economic uncertainty, we show that the difference

between implied and realized variation, or the variance risk premium, is able to explain a

non-trivial fraction of the time series variation in post 1990 aggregate stock market returns,

with high (low) premia predicting high (low) future returns. Our empirical results depend

crucially on the use of “model-free,” as opposed to Black-Scholes, options implied volatilities,

along with accurate realized variation measures constructed from high-frequency intraday,

as opposed to daily, data. The magnitude of the predictability is particularly strong at the

intermediate quarterly return horizon, where it dominates that afforded by other popular

predictor variables, like the P/E ratio, the default spread, and the consumption-wealth ratio

(CAY).
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1 Introduction

Is the return on the stock market predictable? This age-old question still ranks among

the most studied and contentious in all of economics. To the extent that a consensus has

emerged it seems to be that the predictability is the strongest over long multi-year horizons.

There is also evidence that the degree of predictability have diminished somewhat over

the past two decades.1 In lieu of this, we show that the difference between “model-free”

implied and realized variances, which we term the variance risk premium, explains a non-

trivial fraction of the variation in post 1990 aggregate stock market returns, with high (low)

values of the premium associated with subsequent high (low) returns. The magnitude of the

predictability is particularly strong at the quarterly return horizon, where it dominates that

afforded by other popular predictor variables, like the P/E ratio, the default spread, and the

consumption-wealth ratio (CAY).

Our empirical investigations are directly motivated by the implications from a stylized

self-contained general equilibrium model. The model may be seen as an extension of the

long-run risk model pioneered by Bansal and Yaron (2004), who emphasized the importance

of long-run risk in consumption growth for explaining the equity premium and the dynamic

dependencies in returns over long multi-year horizons. In contrast, we explicitly exclude pre-

dictability in consumption growth, focusing instead on the implications of allowing for richer

and empirically more realistic volatility dynamics. Our model generates a two-factor struc-

ture for the endogenously determined equity risk premium, in which the factors are directly

related to the underlying volatility dynamics of consumption growth. Different volatility

concepts defined within the model load differently on these fundamental risk factors. In par-

ticular, the difference between the risk-neutralized expected return variation and the realized

return variation effectively isolates the factor associated with the volatility of consumption

growth volatility. Consequently, the variance risk premium should serve as an especially

useful predictor for the returns over horizons for which that risk factor is relatively more

important. In a reasonably calibrated version of the model this translates into population

1For recent discussions in support of return predictability, see, e.g., Lewellen (2004) and Cochrane (2008).
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return predictability regressions that show the most explanatory power over intermediate

“quarterly” return horizons.

The dual variance concepts underlying our empirical investigations of these theoretical

relations are both fairly new. On the one hand, several recent studies have argued for the use

of so-called “model-free” realized variances computed by the summation of high-frequency

intraday squared returns. These types of measures generally afford much more accurate ex-

post observations on the actual return variation than the more traditional sample variances

based on daily or coarser frequency return observations (see, e.g., Andersen, Bollerslev,

Diebold, and Ebens, 2001a; Barndorff-Nielsen and Shephard, 2002; Meddahi, 2002).2 On

the other hand, the recently developed so-called “model-free” implied variances provide

ex-ante risk-neutral expectations of the future return variation. In contrast to the standard

option-implied variances based on the Black-Scholes pricing formula, or some variant thereof,

the “model-free” implied variances are computed from a collection of option prices without

the use of a specific pricing model (see, e.g., Carr and Madan, 1998; Britten-Jones and

Neuberger, 2000; Jiang and Tian, 2005).

Our main empirical finding that the difference between the “model-free” implied and

realized variances is able to explain a non-trivial fraction of the variation in quarterly stock

market returns over the 1990 to 2007 sample period is new, and easily dominates that afforded

by other more commonly employed predictor variables.3 Moreover, combining the variance

risk premium with some of these other predictor variables, most notably the P/E ratio,

results in even greater return predictability and joint significance of the predictor variables.

This in turn suggests that volatility and consumption risk both play important roles in

determining the returns, with their relative contributions varying across return horizons.

The plan for the rest of the paper is as follows. Section 2 outlines the basic theoretical

model and corresponding predictability regressions that motivate our empirical investiga-

2Earlier empirical studies exploring similar ideas include Schwert (1990) and Hsieh (1991).
3Related empirical links between stock market returns and various notions of variance risk have been

informally explored by finance professionals. For example, Beckers and Bouten (2005) report that a market
timing strategy based on the ratio of implied to historical volatilities doubles the Sharpe ratio relative to
that of a constant S&P 500 exposure. Many equity-oriented hedge funds also actively trade variance risk in
the highly liquid OTC variance swap market; see, e.g., Bondarenko (2004).
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tions. Section 3 discusses the “model-free” implied and realized variances that we use in

empirically quantifying the variance risk premium, along with practical data considerations.

Section 4 presents our main empirical findings and robustness checks. Section 5 concludes.

2 Volatility in Equilibrium

The classical intertemporal CAPM model of Merton (1973) is often used to motivate the

existence of a traditional risk-return tradeoff in aggregate market returns. Despite an ex-

tensive empirical literature devoted to the estimation of such a premium, the search for

a significant time-invariant expected return-volatility tradeoff type relationship has largely

proven elusive.4 In this section we present a stylized general equilibrium model designed

to illuminate new and more complex theoretical linkages between financial market volatility

and expected returns.

The model involves a standard endowment economy with Epstein-Zin-Weil recursive

preferences.5 The basic setup builds on and extends the discrete-time long-run risk model

pioneered by Bansal and Yaron (2004), by allowing for richer volatility dynamics in the

form of stochastically time-varying volatility-of-volatility.6 This in turn results in an em-

pirically more realistic two-factor structure for the aggregate stock market volatility, and

importantly suggests new and interesting channels through which the endogenously gener-

ated time-varying risk premia on consumption and volatility risk might manifest themselves

empirically. To simplify the analysis and focus on the role of time-varying volatility, we

explicitly exclude the long-run risk factor in consumption growth highlighted in the original

Bansal and Yaron (2004) model.

4A significant equilibrium relationship, explicitly allowing for temporal variation in the price of risk, has
recently been estimated by Bekaert et al. (2008). Also, Ang et al. (2006) find that innovations in aggregate
volatility carry a statistically significant (negative) risk premium and that cross-sectionally idiosyncratic
volatility is negatively related with average stock returns.

5The Epstein and Zin (1991) and Weil (1989) preferences are rooted in the dynamic choice theory of
Kreps and Porteus (1978).

6Empirical evidence in support of time-varying consumption growth volatility has recently been presented
by Bansal et al. (2005), Bekaert and Liu (2004), Bekaert et al. (2008), Lettau et al. (2008), among others.
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2.1 Model Setup and Assumptions

To begin, suppose that the geometric growth rate of consumption in the economy, gt+1 =

log(Ct+1/Ct), is unpredictable,

gt+1 = µg + σg,tzg,t+1, (1)

where µg denotes the constant mean growth rate, σg,t refers to the conditional variance of

the growth rate, and {zg,t} is an i.i.d. N(0, 1) innovation process.7 Further, assume that the

volatility dynamics are governed by the following discrete-time versions of continuous-time

square root type processes,

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1, (2)

qt+1 = aq + ρqqt + ϕq

√
qtzq,t+1, (3)

where the parameters satisfy aσ > 0, aq > 0, |ρσ| < 1, |ρq| < 1, ϕq > 0, and {zσ,t} and {zq,t}

are independent i.i.d. N(0, 1) processes jointly independent of {zg,t}. The stochastic volatility

process σ2
g,t+1 represents time-varying economic uncertainty in consumption growth, with the

volatility-of-volatility process qt in effect inducing an additional source of temporal variation

in that same process. Both processes play a crucial role in generating the time varying

volatility risk premia discussed below. The assumption of independent innovations across all

three equations explicitly rules out any return-volatility correlations that might otherwise

arise via purely statistical channels.8

7The growth rate of consumption is identically equal to the dividend growth rate in this Lucas-tree
economy.

8Direct estimation of the stylized model defined by equations (1) to (3) would require the use latent
variable techniques. Instead, as a way to gauge the specification, we calculated a robust estimate for σ2

g,t

by exponentially smoothing the squared (de-meaned) growth rate in U.S. real expenditures on non-durable
goods and services (gt−µ̂g)

2 over the 1947Q2 to 2007Q4 sample period, using a smoothing parameter of 0.06.
Consistent with the basic model structure in equation (2), the serial dependencies in the resulting σ̂2

g,t series
appear to be well described by an AR(1) model with ρσ close to unity. Consistent with the Great Moderation,
the variances are generally also much lower over the latter part of the sample. Moreover, on estimating an
AR(1)-GARCH(1,1) model for σ̂2

g,t, the estimates for the two GARCH parameters equal 0.238 and 0.655,
respectively, and the Wald test for their joint significance and the absence of any ARCH effects (129.9)
has a p-value of virtually zero, thus strongly supporting the notion of time-varying volatility-of-volatility in
consumption growth, or Var(qt) > 0.

4



We assume that the representative agent in the economy is equipped with Epstein-Zin-

Weil recursive preferences. Consequently, the logarithm of the intertemporal marginal rate

of substitution, mt+1 ≡ log(Mt+1), may be expressed as,

mt+1 = θ log δ − θψ−1gt+1 + (θ − 1)rt+1, (4)

where

θ ≡ (1 − γ)(1 − ψ−1)−1, (5)

δ denotes the subjective discount factor, ψ equals the inter-temporal elasticity of substitution,

γ refers to the coefficient of risk aversion, and rt+1 is the time t to t + 1 return on the

consumption asset. We will maintain the assumptions that γ > 1 and ψ > 1, which in turn

implies that θ < 0.9 These restrictions ensure, among other things, that volatility carries

a positive risk premium, and that asset prices fall on news of positive volatility shocks,

consistent with the so-called leverage effect. Importantly, these effects are not the result of

any direct statistical linkages between return and volatility, but instead arise endogenously

within the model.

2.2 Model Solution and Equity Premium

Let wt denote the logarithm of the price-dividend ratio, or equivalently the price-consumption

or wealth-consumption ratio, of the asset that pays the consumption endowment, {Ct+i}∞i=1.

The standard solution method for finding the equilibrium in a model like the one defined

above then consists in conjecturing a solution for wt as an affine function of the state variables,

σ2
g,t and qt,

wt = A0 + Aσσ
2
g,t + Aqqt, (6)

solving for the coefficients A0, Aσ and Aq, using the standard Campbell-Shiller approxi-

mation rt+1 = κ0 + κ1wt+1 − wt + gt+1. The resulting equilibrium solutions for the three

9The assumption that γ > 1 is generally agreed upon, but the assumption that ψ > 1 is a matter of some
debate; see, e.g., the discussion in Bansal and Yaron (2004).
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coefficients may be expressed as,

A0 =
log δ + (1 − ψ−1)µg + κ0 + κ1 [Aσaσ + Aqaq]

(1 − κ1)
, (7)

Aσ =
(1 − γ)2

2θ(1 − κ1ρσ)
, (8)

Aq =
1 − κ1ρq −

√

(1 − κ1ρq)2 − θ2κ4
1ϕ

2
qA

2
σ

θκ2
1ϕ

2
q

. (9)

The aforementioned restrictions that γ > 1 and ψ > 1, readily imply that the impact

coefficient associated with both of the volatility state variables are negative; i.e., Aσ < 0 and

Aq < 0.10

From the solution for the A’s it is now relatively straightforward to deduce the reduced

form expressions for other variables of interest. In particular, the time t to t+1 return must

satisfy the following relation,

rt+1 = − log δ + ψ−1µg − (1 − γ)2

2θ
σ2

g,t + (κ1ρq − 1)Aqqt +

σg,tzg,t+1 + κ1
√
qt [Aσzσ,t+1 + Aqϕqzq,t+1] .

(10)

As is evident, increases in endowment volatility, σ2
g,t, and the volatility-of-volatility, qt, both

increase the return, reflecting the compensation for bearing volatility risk. On the other

hand, innovations in future volatility, zσ,t+1 and zq,t+1, both impact the return negatively,

consistent with a leverage type effect.

To further appreciate the implications of richer time-varying volatility dynamics, it is

instructive to consider the model-implied equity premium, πr,t ≡ −Covt(mt+1, rt+1),

πr,t = γσ2
g,t + (1 − θ)κ2

1(A
2
qϕ

2
q + A2

σ)qt. (11)

The premium is composed of two separate terms. The first term, γσ2
g,t, motivated the classic

risk-return tradeoff relationship, which has undergone extensive, yet empirically elusive,

investigations. The term doesn’t really represent a volatility risk premium per se, however.

Instead, it arises within the model as the presence of time-varying volatility in effect induces

shifts in the price of consumption risk. The second term, (1−θ)κ2
1(A

2
qϕ

2
q +A2

σ)qt, represents a

10The solution for Aq in equation (9) represents one of a pair of roots to a quadratic equation, but it is
the economically meaningful root for reasons discussed below.
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true premium for volatility risk.11 It is a confounding of a risk premium on shocks to volatility,

zσ,t+1, and shocks to the volatility-of-volatility, zq,t+1. As such it represents a fundamentally

different source of risk from that of the traditional consumption risk term. The existence of

the volatility risk premium depends crucially on the dual assumptions of recursive utility,

or θ 6= 1, as volatility would otherwise not be a priced factor, and time varying volatility-

of-volatility, in the form of the qt process. This additional source of uncertainty is absent in

the model of Bansal and Yaron (2004). The restrictions that γ > 1 and ψ > 1 implies that

the volatility risk premium is positive.

2.3 Volatility Risk and Return Predictability

The expression for the equity premium in equation (11) provides a direct relationship between

the expected excess equilibrium return and the two volatility factors, σ2
g,t and qt. Both

of these factors are inherently latent. Importantly, however, each of the factors manifest

themselves differently in different volatility concepts that are naturally defined within the

model. In particular, the difference between the actual and the risk-neutral expected variance

effectively isolates the qt factor, which as explained above constitutes the source of the true

volatility risk premium.

To formally establish this result, denote the conditional variance of the time t to t + 1

return as σ2
r,t ≡ Vart(rt+1). It follows from equation (10) that

σ2
r,t = σ2

g,t + κ2
1

(

A2
σ + A2

qϕ
2
q

)

qt, (12)

which is directly influenced by each of the two stochastic factors, the underlying economic

volatility, σ2
g,t, and the volatility of that volatility, qt. This conditional variance is, of course,

known at time t. Consider instead the one-period ahead conditional variance,

σ2
r,t+1 = σ2

g,t+1 + κ2
1

(

A2
σ + A2

qϕ
2
q

)

qt+1, (13)

which is unknown, or stochastic, at time t. The difference between the objective and risk-

neutral expectations of σ2
r,t+1 as of time t will depend upon the way in which volatility risk

11The specific root in equation (9) implies that A2
qϕ

2
q → 0 for ϕq → 0, which guarantees that the premium

disappears when qt is constant, as would be required by the lack of arbitrage.
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is priced.

It follows readily that the time t objective conditional expectation equals,

Et(σ
2
r,t+1) = aσ + κ2

1

(

A2
σ + A2

qϕ
2
q

)

aq + ρσσ
2
g,t + κ2

1

(

A2
σ + A2

qϕ
2
q

)

ρqqt. (14)

The corresponding model-implied risk-neutral conditional expectation

EQ
t (σ2

r,t+1) ≡ Et(σ
2
r,t+1Mt+1)Et(Mt+1)

−1 cannot easily be computed in closed form. However,

it is possible to calculate the following close log-linear approximation,

EQ
t (σ2

r,t+1) ≈ log
[

e−rf,tEt

(

emt+1+σ2
r,t+1

)]

− 1

2
Vart

(

σ2
r,t+1

)

= Et(σ
2
r,t+1) + (θ − 1)κ1

[

Aσ + Aqκ
2
1

(

A2
σ + A2

qϕ
2
q

)

ϕ2
q

]

qt, (15)

where rf,t denotes the one-period risk free rate implied by the model. A number of inter-

esting implications arise from comparing these two different expectations of the same future

variance.

In particular, any temporal variation in the endogenously generated variance risk pre-

mium,

EQ
t (σ2

r,t+1) − Et(σ
2
r,t+1) = (θ − 1)κ1

[

Aσ + Aqκ
2
1

(

A2
σ + A2

qϕ
2
q

)

ϕ2
q

]

qt, (16)

is due solely to the volatility-of-volatility, or qt. Moreover, provided that θ < 0, Aσ < 0, and

Aq < 0, as would be implied by γ > 1 and ψ > 1, this difference between the risk-neutral

and objective expected variation is guaranteed to be positive. If ϕq = 0, and therefore qt = q

is constant, the variance premium reduces to,

EQ
t (σ2

r,t+1) − Et(σ
2
r,t+1) = (θ − 1)κ1Aσq,

which, of course, would also be constant. Comparing the expression in equation (16) to

the expression for the equity premium in equation (11), suggests that the variance risk

premium should serve as useful predictor for the actual realized returns over horizons for

which the volatility-of-volatility, or qt, constitutes the dominant source of the variation in

the equity premium. For highly persistent volatility dynamics, or ρσ ≈ 1, the objective

expected future volatility will obviously be close to the value of the current volatility, so that

8



the same qualitative implications holds true for the variance difference obtained by replacing

Et(σ
2
r,t+1) in equation (16) with the current variance.

There is also an implicit positive volatility risk-return tradeoff embedded in the solution

of our stylized equilibrium model. Specifically, the reduced form equation (11) for the risk

premium, πt, and equation (12) for the conditional variance, σ2
r,t, implicitly entails a positive

association between return volatility and the risk premium.12 This association corresponds

very closely to that of the first-order term in Corollary 3.5 of Ang and Liu (2007), who note

that a positive volatility risk-return relationship can arise in models with first-order risk

aversion parameterized by the Epstein-Zin-Weil recursive preferences.13

As is well known, however, empirical efforts aimed at documenting a significant positive

association between the risk premium and stock price volatility have met with mixed success

at best. The relationship is often statistically insignificant or even estimated to be nega-

tive. These conflicting findings have been obtained with many different data sets, estimation

techniques, and control variables, with no single robust empirical consensus emerging; Ang

and Liu (2007) contains a recent thorough discussion of the most important studies. In

the empirical results reported on below, we also find that expected excess returns are in-

significantly related to current volatility. Apparently, in the actual data, factor loadings of

equations like (11) and (12) along with higher order nonlinearities and measurement prob-

lems serve to mask the expected positive association between the risk premium and stock

price volatility.14

At the same time, the preceding theoretical analysis motivates our new approach based on

information from derivatives markets (or Q-measure information) for better estimating the

so-far elusive risk-return tradeoff. From equation (16) the variance difference EQ
t (σ2

r,t+1) −

Et(σ
2
r,t+1) is directly related to the volatility-of-volatility factor, qt, which appears in the

12Keep in mind that we always assume ψ > 1 and γ > 1, implying θ < 0. The risk return relationship
could be negative under other parameter values.

13It is not exactly same, as Ang and Liu (2007) examine a model with pre-specified dynamics for a
conditional standard deviation, while our model pre-specifies the dynamics of the conditional variance.
Nonetheless, the economic intuition behind the effects of the recursive preferences are essentially the same.

14Our log-linear approximation used to solve the model excludes the higher order effects described in Ang
and Liu (2007) that they show can cloud the volatility risk-return tradeoff.
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expression (11) for the risk premium. As discussed further below, the use of derivatives

market data allows us to directly measure EQ
t (σ2

r,t+1). Thus, using the derivatives data to

get EQ
t (σ2

r,t+1) along with empirical proxies for the actual volatility, we can potentially get a

“cleaner” measure of the factor that drives the volatility risk premium, in turn allowing for

more precise empirical estimation of a risk-return tradeoff relationship.

The equilibrium model underlying these return-volatility relations is somewhat stylized

and not rich enough to be estimated directly with actual data. Nonetheless, it is still useful

to consider the implications from a calibrated version of the theoretical model to help guide

and interpret our subsequent empirical reduced form predictability regressions.

2.4 Calibrated Return Regressions

The difference between the risk neutral expected and actual variances underlying our key

empirical findings, naturally corresponds to EQ
t (σ2

r,t+1)− σ2
r,t−1 within the discrete-time the-

oretical model. In the regressions discussed below both of our directly observable variance

measures span one month, and we correspondingly refer to the unit time interval in the cali-

brated equilibrium model as a “month.” In addition to the basic “monthly” return horizon,

we also consider longer (scaled by the horizon) multi-period return regressions of the form,

1

h

h
∑

j=1

rt+j = b0(h) + b1(h)
(

EQ
t (σ2

r,t+1) − σ2
r,t−1

)

+ ut+h,t. (17)

The slope coefficient,

b1(h) =
Cov

(

1
h

∑h

j=1 rt+j , E
Q
t (σ2

r,t+1) − σ2
r,t−1

)

Var
(

EQ
t (σ2

r,t+1) − σ2
r,t−1

) , (18)

and the explanatory power, as measured by the coefficient of determination,

R2(h) =
Cov

(

1
h

∑h

j=1 rt+j , E
Q
t (σ2

r,t+1) − σ2
r,t−1

)2

Var
(

1
h

∑h

j=1 rt+j

)

Var
(

EQ
t (σ2

r,t+1) − σ2
r,t−1

) , (19)

from this regression are both directly related to the latent qt process and how the persistence

and magnitude of that process compare to that of the other risk factors. The actual numerical

values of the two variances and the covariance, and in turn the model-implied b1(h) and

10



R2(h), obviously depend upon the specific values of the parameters in equations (1) to (6).

The variance of the multi-period returns and the covariance of those returns with the variance

premium furthermore depend non-trivially on the return horizon, h.15

To more directly gauge how the predictability vary with the model parameters and h, we

plot in Figure 1 the population b1(h)’s and R2(h)’s for four different parameter configurations

and return horizons ranging from “one month” (h = 1) to “two years” (h = 24). The values

for δ = 0.997, γ = 10.0, ψ = 1.5, µg = 0.0015, and E(σg) = 0.0078 in the baseline model

(Model A) are all adapted directly from Bansal and Yaron (2004). Additionally, we fix the

persistence of the variance at ρσ = 0.978, the persistence of the volatility-of-volatility at

ρq = 0.8, the expected volatility-of-volatility at aq(1 − ρq)
−1 = 1.0−6, and the volatility of

that process at φq = 1.0−3. The mean annualized risk-free rate and equity premium implied

by these particular model parameters equal 0.48 and 8.21 percent, respectively.

The model-implied slope coefficients depicted in the top panel in the figure all decline

monotonically with the return horizon. For the baseline model (Model A) b1(h) starts out at

0.26 declining to 0.10 at the annual horizon. Decreasing (increasing) the persistence in the

qt process from ρq = 0.8 to 0.6 (0.95) keeping all of the other model parameters the same as

in Model B (Model C), results in systematically lower (higher) population slope coefficients.

Increasing the value of the inter-temporal elasticity of substitution from ψ = 1.5 to 2.5

(Model D) magnifies the relation between the returns and the variance risk premium and

results in systematically higher b1(h)’s across all return horizons.

15Tedious calculations yield,

R2(h) =

(

1 − θ

θ
Aq(1 − κ1ρq)κ1

[

(1 − γ)2

2(1 − κ1ρσ)
+ 2A2

qϕ
2
q(1 − κ1ρq)

]

Varq
1 − ρh

q

1 − ρq

)2

·

[

(

θ − 1

θ
κ1

)2 [
(1 − γ)2

2(1 − κ1ρσ)
+ 2A2

qϕ
2
q(1 − κ1ρq)

]2

Varq + (1 − ρ2
q)Varq + (1 − ρ2

σ)Varσ2
g

]−1

·
[

haq

1 − ρσ

+

[

(1 − κ1)
2

(1 − ρσ)2
(

h(1 − ρ2
σ) + 4ρh+1

σ − 2ρh
σ − 2ρ2

σ

)

+ (1 − 2ρh
σκ1 + κ2

1)

]

Varσ2
g

+

[

(1 − κ1)
2

(1 − ρq)2
(

h(1 − ρ2
q) + 4ρh+1

q − 2ρh
q − 2ρ2

q

)

+ (1 − 2ρh
qκ1 + κ2

1)

]

Varq

]−1

,

where Varσ2
g = aq(1 − ρq)

−1(1 − ρ2
σ)−1 and Varq = φ2

qaq(1 − ρ2
q)

−1(1 − ρ2
σ)−1. The corresponding formula

for the slope coefficient b1(h) follows readily from this expression.
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Turning to the model-implied R2(h)’s depicted in the bottom panel in the figure, the de-

gree of predictability for the baseline model (Model A) starts out fairly low at the “monthly”

horizon, rising to its maximum around a “quarter,” gradually tapering off thereafter for

longer return horizons. In line with the results for the slope coefficients, lowering the degree

of persistence in the qt process to ρq = 0.6 (Model B) results in substantially lower overall

predictability, and also shifts the peak in the R2(h)’s from a “quarter” to “two-months.”

Conversely, increasing the persistence to ρq = 0.95 (Model C) increases the relative impor-

tance of stochastically varying volatility-of-volatility and further prolongs the inherent return

predictability. Lastly, changing the value of the inter-temporal elasticity of substitution from

ψ = 1.5 to 2.5 (Model D) enhances the importance of time-varying volatility-of-volatility and

increases the R2(h)’s relative to those for the baseline model (Model A), with the maximum

again occurring around the “quarterly” return horizon.

As these calibrations make clear, the simple stylized general equilibrium model can give

rise to quite sizeable regression coefficients and return predictability. Importantly, the cal-

ibrations also reveal a general hump shape in the implied R2’s as function of the return

horizon, with the location of the peak directly related to the value of ρq. At an intuitive

level, the variance risk premium or the “variance swap” on the right-hand-side of the regres-

sion, EQ
t (σ2

r,t+1)−σ2
r,t−1, may be seen as a pure volatility bet where everything else gets “risk

neutralized” out. Since volatility is explicitly priced under the Epstein-Zin-Weil recursive

preference structure, this variance difference earns exactly that volatility risk premium and

nothing else. The price of this risk changes if the variance of the priced factor changes. But

this corresponds excatly to the volatility-of-volatility, or the qt process within the theoretical

model.

We next turn to a discussion of the procedures and data that we actually use in empirically

quantifying the EQ
t (σ2

r,t+1) and σ2
r,t variance measures.
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3 Empirical Measurements

The theoretical model outlined in the previous section suggests that the difference between

current return variation and the market’s risk-neutral expectation of future return variation

may serve as a useful predictor for the future returns by effectively isolating the system-

atic risk associated with the volatility-of-volatility. To measure the variance risk premium

and investigate this conjecture, we rely on two relatively new non-parametric “model-free”

variation concepts.

3.1 Model-Free Variation Measures

To formally define the procedure that we use in quantifying the market’s expected return

variation, let Ct(T,K) denote the price of a European call option maturing at time T with

strike price K, and B(t, T ) denote the price of a time t zero-coupon bond maturing at time

T . As shown by Carr and Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999) and

Britten-Jones and Neuberger (2000), the market’s risk-neutral expectation of the total return

variation between time t and t+1 conditional on time t information, or the implied variance

IVt, may then be expressed in a “model-free” fashion as the following portfolio of European

calls,

IVt ≡
m
∑

i=1





Ct

(

t+ 1, Ki

B(t,t+1)

)

− Ct

(

t, Ki

B(t,t)

)

K2
i

−
Ct

(

t+ 1, Ki−1

B(t,t+1)

)

− Ct

(

t, Ki−1

B(t,t)

)

K2
i−1



∆K

−→ 2

∫ Km

K0

Ct

(

t+ 1, K
B(t,t+1)

)

− Ct

(

t, K
B(t,t)

)

K2
dK, (20)

−→ EQ
t [Return Variation(t, t+ 1)],

where ∆K = (Km − K0)/m, Ki = K0 + i∆K, and m → ∞ for the second equation to

hold, while Km → ∞ and K0 → 0 for the third equation to hold; i.e., an ever increasing

number of calls with strikes spanning zero to infinity.16 This “model-free” measure therefore

provides a natural empirical analog to EQ
t (σ2

r,t+1) in the discrete-time model discussed in

16The expression in equation (20) is a special case of the “model-free” forward implied variance from T1

to T2 conditional on time t information for general jump-diffusion processes (Bondarenko, 2004; Jiang and
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the previous section. In practice, of course, IVt must be constructed on the basis of a finite

number of strikes (m). Fortunately, even with relatively few different options this tend to

provide a fairly accurate approximation to the true (unobserved) risk-neutral expectation

of the future return variation, and, in particular, a much better approximation than the

one based on inversion of the standard Black-Scholes formula with close to at-the-money

option(s) (see, e.g., Jiang and Tian, 2005; Bollerslev, Gibson, and Zhou, 2006).

In order to define the measure that we use in quantifying the actual return variation, let

pt denote the logarithmic price of the asset. The realized variation over the discrete t− 1 to

t time interval may then be measured in a “model-free” fashion by

RVt ≡
n
∑

j=1

[

pt−1+ j

n
− pt−1+ j−1

n
(∆)

]2

−→ Return Variation(t− 1, t), (21)

where the convergence relies on n → ∞; i.e., an increasing number of within period price

observations. As demonstrated in the literature (see, e.g., Andersen, Bollerslev, Diebold,

and Ebens, 2001a; Andersen, Bollerslev, Diebold, and Labys, 2001b; Barndorff-Nielsen and

Shephard, 2002; Meddahi, 2002), this “model-free” realized variance measure based on high-

frequency intraday data affords much more accurate ex-post observations of the true (un-

observed) return variation than do the more traditional sample variances based on daily or

coarser frequency returns. It also provides a non-parametric empirical analog to σ2
r,t in the

discrete-time model in the previous section. In practice, of course, as discussed further be-

low, various market microstructure frictions invariably limit the highest sampling frequency

that may be used in reliably estimating RVt.

The variance risk premium, or difference, underlying our key empirical findings is defined

by the difference between this ex-ante risk neutral expectation of the future return variation

over the [t, t + 1] time interval and the ex-post realized return variation over the [t − 1, t]

Tian, 2005; Carr and Wu, 2008),

IVt ≡ 2

∫ ∞

0

Ct

(

T2,
K

B(t,T2)

)

− Ct

(

T1,
K

B(t,T1)

)

K2
dK = EQ

t [Return Variation (T1, T2)].

Letting T1 = t and T2 = t+ 1, results in the one-period implied variance defined in the text.
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time interval,

V RPt ≡ IVt − RVt, (22)

affording a “model-free” empirical equivalent to the variance difference on the right-hand-

side in the regression equation (17). Compared to the the variance premium in equation

(16), the variance difference has the advantage that IVt and RVt, and therefore V RPt, are

directly observable at time t. This is obviously important from a forecasting perspective.

However, below we also briefly discuss complimentary empirical results in which we regress

the returns on an estimate for the expected premium, EV RPt ≡ IVt − Et(RVt+1), in which

we approximate Et(RVt+1) by the one-step-ahead forecasts from a simple reduced form time

series model for RVt. Of course, the two premia trivially coincide under the assumption that

RVt is a martingale difference sequence, or Et(RVt+1) = RVt, corresponding to ρσ = 1 in the

stylized discrete-time theoretical model developed in the previous section.

Closely related measures of variance risk premia have recently been investigated from

different empirical perspectives in other studies. In particular, Bollerslev, Gibson, and Zhou

(2006) find that the temporal variation in a measure of EV RPt for the aggregate market

portfolio, as implied by a standard Heston (1993) one-factor stochastic volatility model,

may in part be explained by a set of macro-finance variables, including some of the more

traditional predictor variables considered below. Similarly, Todorov (2007) has explored the

joint dynamics of IVt and Et(RVt+1) within the context of a very general continuous time

specification allowing for separate jump and diffusive risk premiums. The difference between

implied and realized variance measures has also previously been associated empirically with

notions of aggregate market risk aversion by Rosenberg and Engle (2002), while Bakshi and

Madan (2006) have formally shown that the volatility spread may be expressed as a nonlinear

function of the aggregate degree of risk aversion in a simple representative agent setting.

3.2 Data Description

Our empirical analysis is based on the aggregate S&P500 composite index as a proxy for the

aggregate market portfolio. Due to the dual requirements of reliable high-frequency data and
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options implied volatilities, our sample “only” spans the period from January 1990 through

December 2007.

We rely on monthly data for the “new” VIX index for quantifying IVt. The VIX index

is based on the highly liquid S&P500 index options along with the “model-free” approach

discussed above explicitly tailored to replicate the risk-neutral variance of a fixed 30-day ma-

turity. The data is obtained directly from the Chicago Board of Options Exchange (CBOE).17

The VIX index is invariably subject to some approximation error (see, e.g., the discussion

in Jiang and Tian, 2007), but the CBOE procedure for calculating the VIX has arguably

emerged as the industry standard. Thus, in order to facilitate replication and comparison

with other studies, we purposely rely on the readily available squared VIX index as our

measure for the risk-neutral expected variance.

The intraday data for the S&P500 composite index that we use in the construction of

our “model-free” RVt measure is provided by the Institute of Financial Markets. The theory

behind the realized variation measures dictates that the sampling frequency, or n in the

expression for RVt above, goes to infinity. However, a host of practical market microstructure

features, including price discreteness, bid-ask spreads, and non-synchronous trading effects,

imply that the underlying semi-martingale assumption for the returns is violated at the

very highest sampling frequencies. In practice it therefore becomes necessary to strike a

balance between the desire to use very finely sampled data to minimize the estimation error

on the one hand and not be overwhelmed by “noise” in the high-frequency prices on the

other. A number of studies, using the volatility signature plot first proposed by Andersen

et al. (2000), suggest that for highly liquid assets, such as the S&P 500 index analyzed here,

a five-minute sampling frequency provides a reasonable choice (see, e.g., the discussion in

Hansen and Lunde, 2006). Following this recommendation, we base our monthly realized

variance measure for the S&P500 on the summation of the 78 within day five-minute squared

returns covering the normal trading hours from 9:30am to 4:00pm along with the close-to-

17The CBOE replaced the “old” VIX index, based on S&P100 options and Black-Scholes implied volatili-
ties, with the “new” VIX index, based on S&P500 options and “model-free” implied volatilities, in September
2003. Historical data on both indexes are available from the official CBOE website. A more detailed descrip-
tion of the procedure actually used in approximating the integral in the calculation of the VIX is provided
in the white paper on the CBOE website.
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open overnight return.18 For a typical month with 22 trading days, this leaves us with a

total of n = 22 × 78 = 1, 716 “five-minute” returns.

To illustrate the data, Figure 2 plots the monthly time series of implied variances, realized

variances, and their differences. Both of the variance measures are somewhat higher during

the 1997 to 2002 part of the sample. The more distinct spikes in the measures generally also

coincide. Consistent with the theoretical model developed in the previous section, and the

earlier empirical evidence cited above, the spread between the implied and realized variances

is almost always positive.

In addition to the variance risk premium, we also consider a set of other more traditional

predictor variables (see, e.g., Lamont, 1998; Lettau and Ludvigson, 2001; Ang and Bekaert,

2007). Specifically, we obtain monthly P/E ratios and dividend yields for the S&P500 directly

from Standard & Poor’s. Data on the 3-month T-bill, the default spread (between Moody’s

BAA and AAA corporate bond spreads), the term spread (between the 10-year T-bond and

the 3-month T-bill yields), and the stochastically de-trended risk-free rate (the 1-month T-

bill rate minus its backward 12-month moving averages) are taken from the public website

of the Federal Reserve Bank of St. Louis. The consumption-wealth ratio (CAY), as defined

in Lettau and Ludvigson (2001), is downloaded from Lettau and Ludvigson’s website.19

Basic summary statistics for the monthly returns and predictor variables are given in Ta-

ble 1. The mean excess return on the S&P500 over the sample equals 6.44 percent annually.

The sample means for the implied and realized variances are 33.23 and 14.93, respectively,

corresponding to a variance risk premium of 18.30 (in percentages squared). The numbers

for the traditional forecasting variables are all directly in line with those reported in previous

studies. In particular, all of the variables are highly persistent with first order autocorrela-

tions ranging from 0.94 to 0.99. In contrast, the serial correlation in the implied and realized

variances equal 0.79 and 0.70, respectively, and the first order autocorrelation for their dif-

ference only equals 0.49. As such, this alleviates one of the common concerns related to

18Recent studies, e.g., Zhang et al. (2005) and Barndorff-Nielsen et al. (2008), have proposed more efficient
and complicated ways in which to accommodate the market microstructure effects that allow for finer sam-
pling. However, the simple-to-implement RVt estimator based on the summation of (not too-finely sampled)
high-frequency squared returns that we rely on here remains the dominant method in practical applications.

19We define a monthly CAY series from the most recent quarterly observation.
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the use of highly persistent predictor variables and the possibility of spurious or unbalanced

regressions.20 Anticipating some of the results discussed next, the traditional predictor vari-

ables all correlate fairly weakly with the contemporaneous monthly excess returns, while the

sample correlations between the monthly returns and the different variance measures are

much higher (in an absolute sense) ranging from -0.34 to -0.23.

4 Forecasting Stock Market Returns

All of our forecasts are based on simple linear regressions of the S&P500 excess returns

on different sets of lagged predictor variables. We always rely on monthly observations.

All of the reported t-statistics are based on heteroskedasticity and serial correlation consis-

tent standard errors that explicitly take account of the overlap in the regressions following

Hodrick (1992).21 We focus our discussion on the estimated slope coefficients and their sta-

tistical significance as determined by the robust t-statistics. We also report the forecasts

accuracy of the regressions as measured by the corresponding adjusted R2’s. However, as

previously noted, for the more traditional highly persistent predictor variables the R2’s for

the overlapping multi-period return regressions need to be interpreted with great caution.22

4.1 Main Empirical Findings

We begin by reporting in Table 2 the results for our empirical equivalent to the key return

regression defined in equation (17). The degree of predictability starts out fairly low at the

monthly horizon with an R2 of just above one percent. The robust t-statistic for testing

the estimated slope coefficient associated with the variance difference IV −RV greater than

20Inference issues related to the use of highly persistent predictor variables have been studied extensively
in the literature, see, e.g., Stambaugh (1999), Ferson, Sarkissian, and Simin (2003), Lewellen (2004), and
Campbell and Yogo (2006) and the references therein. Some authors have gone as far as to attribute the
apparent predictability to the use of strongly serially correlated predictor variables, e.g., Boudoukh et al.
(2008) and Goyal and Welch (2003, 2008).

21Ang and Bekaert (2007) have forcefully shown that in the context of predictive regressions with over-
lapping observations, the standard errors obtained by summing the regressors in the past, as advocated by
Hodrick (1992), are generally more reliable than the more traditional standard errors based on the summation
of the residuals into the future, as in, e.g., Newey and West (1987).

22Boudoukh et al. (2008) have recently shown that even in the absence of any increase in the true pre-
dictability, the values of the R2’s with highly persistent predictor variables and overlapping returns will by
construction increase roughly proportional with the return horizon and the length of the overlap.
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zero still exceeds the one-sided five-percent significance level. The quarterly return regression

results in a much more impressive t-statistic of 2.86 and a corresponding R2 of 6.82 percent.

The t-statistic remains significant at the 6-month horizon, but the numerical values and

significance then gradually tapers off for longer return horizons.

Taken as a whole, the results in Table 2 reveal a clear pattern in the degree of pre-

dictability afforded by the variance risk premium, with the largest t-statistic and maximum

R2 occurring at the quarterly horizon. These findings are directly in line with the qualitative

implications from the theoretical model developed in Section 2, in which the variance risk

premium effectively isolates the systematic risk factor associated with time-varying volatility

of consumption growth volatility. More specifically, comparing the empirical estimates for all

of the monthly horizons ranging from one month (h = 1) to two years (h = 24) reported in

Figure 3 to the theoretical population counterparts for the four benchmark models depicted

in Figure 1, the similarities in the general shapes of the estimated and implied slope coeffi-

cients and R2’s as a function of the return horizon are quite striking. Of course, the values of

the R2’s at the intermediate 3-6 month horizon for the actual return regressions are slightly

larger than the R2’s for any of the calibrated models, suggesting that additional systematic

risk factors, temporal variation in the degree of risk aversion, and/or the influence of period

specific idiosyncratic events are needed to fully explain the empirical results.

To better appreciate the findings in a wider empirical context, Tables 3 to 5 report

the results from comparable monthly, quarterly and annual return regressions, respectively,

involving the more traditional predictor variables in Table 1.23 Not surprisingly, the degree

of predictability at the monthly horizon is systematically very low, although the individual

regressions for both the P/E ratio and CAY does result in t-statistics slightly above two

(numerically).24 Combining the variance difference with the P/E ratio results in a monthly

23For comparability with the other slope coefficients, the P/E, P/D and DFSP variables have been scaled
by a factor of 12. Many other predictor variables have, of course, been proposed in the literature. While it
is literally impossible to investigate all of these suggestions, we also experimented with the bond factor of
Cochrane and Piazzesi (2005), but found that it offered little predictability over the 1990-2007 sample period.
Similarly, return regressions based on the corporate payout ratio (D/E) resulted in a negative adjusted R2

over the present sample.
24By estimating the cointegrating relationship in-sample, the traditional CAY variable suffers from a

“look-ahead” bias. Brennan and Xia (2005) argue that this “explains” most of the predictability afforded by
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R2 of 3.77 percent, in excess of the sum of the two R2’s from the individual regressions. Both

of the coefficients also remain statistically significant in the joint regression. Adding the term

spread (TMSP) and the relative risk-free rate (RREL) to the multiple regression actually

reduces the (adjusted) R2, but the variance premium remains statistically significant.

The quarterly regressions reported in Table 4 further underscore the significance of the

reulst in Table 2. None of the t-statistics for any of the other predictor variables come close

to the aforementioned t-statistic for the variance premium (2.86), and with the possible

exception of P/E (-1.97) and CAY (1.78), all are insignificant at conventional levels. Of

course, the R2’s for some of the other predictor variables, most notably the P/E and P/D

ratios and CAY, are fairly close to the R2 for the variance premium. However, whereas

the monthly variance premium exhibit relatively weak serial correlation, all of these other

predictor variables are close to unit root type processes, which as previously noted renders

the R2’s based on overlapping regressions difficult to interpret.

Turning to the multiple regressions reported in the right panel of the table, we find

that combining the variance premium with the P/E ratio results in even more impressive

t-statistics of 3.43 and -2.42, respectively. Intuitively, the variance risk premium and the

P/E ratio may jointly capture important short- and long-run risks embedded in the market

returns. This would also be consistent with the qualitative implications from a more elabo-

rate equilibrium model combining the model in Section 2 above with the long-run risk model

of Bansal and Yaron (2004), allowing for time-varying volatility and volatility-of-volatility

as well as predictability in the mean of consumption growth. A similar empirical pattern,

albeit to a lessor extend, obtains when including the CAY variable along with the variance

premium, resulting in t-statistics of 3.02 and 1.99, respectively. On the other hand, combin-

ing the P/E ratio and CAY in the same quarterly return regressions results in insignificant

t-statistics for both. Even though the term spread and the relative short rate are insignifi-

cant by themselves, both variables contribute marginally to a joint predictive regression with

CAY. Also, on implementing the aforemention adjustment in Stambaugh (1986, 1999) to take account of the
finite-sample bias in the estimated coefficients due to the serial correlation in the regressors, the adjustment
term for IVt−RVt equals 0.02, compared to 0.52 and 0.51 for P/E and CAY, respectively. These latter large
adjustments are directly in line with the numbers reported in the extant literature.
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the variance premium and the P/E ratio, resulting in the highest overall adjusted R2 in the

table. Lastly, it is worth noting that regardless of the other variables included in the forecast

regressions, the estimated coefficients for the variance risk premium remain quite stable and

statistically significant at the 0.001 level or better.

Many of the empirical studies cited above have, of course, argued that the degree of

predictability afforded by the different valuation ratios and predictor variables included in

Table 1 tend to be the strongest over longer multi-year horizons. Our limited post 1990

sample prevents us from effectively studying issues having to do with longer return horizons

spanning multiple years. However, we do report in Table 5 the regression results for annual

returns based on monthly overlapping observations, but again caution that with such a short

calendar time span and large overlap, the estimation results, and especially the R2’s, must

be carefully interpreted. Indeed, in spite of the large R2’s, the t-statistics for P/E, P/D and

CAY are all just barely significant. As before, including the variance premium with either of

these other variables results in larger (in an absolute sense) t-statistics for both. In parallel

to Tables 3 and 4, the overall largest t-statistic (2.96) is again associated with the variance

premium in the multiple regression reported in the last column in the table.

The simple regressions involving RV or IV reported in Tables 3 to 5 always result in

insignificant t-statistics and low R2’s. This is, of course, to be expected from the extant

risk-return literature, which has largely searched in vain for such a tradeoff relationship. To

further explore this issue and the interplay between the two volatility measures, we report

in Table 6 the results obtained by including RV and V RP = IV − RV in the same return

regressions. Looking at the quarterly return horizon in the middle part of the table, it is

noteworthy that while V RP is highly significant, RV remains insignificant in the joint regres-

sion. As such, this implicitly attributes the same numerical but opposite signed effects to IV

and RV . Following the discussion in Section 2, it appears that the variance difference V RP

effectively isolates the factor that drives the volatility risk premium, thereby allowing for

the estimation of a meaningful and significant risk-return tradeoff relationship. Meanwhile,

previous studies in the risk-return literature (e.g., Scruggs, 1998; Guo and Whitelaw, 2006)

have argued that additional control factors, including interest rates, are needed in order to
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reliably estimate the relationship between expected return and volatility.25 To investigate

this, we include the P/E ratio, the term spread and the short rate in the return regressions.

This only reinforces the superior predictability afforded by the variance premium. Whereas

many of the t-statistics for the variance premium (all at the quarterly horizon) are highly

significant, none of the t-statistics associated with RV and the more traditional risk-return

tradeoff estimated in the literature are significant.

4.2 Other Variation Measures

The regressions results discussed above were directly motivated by the stylized equilibrium

model in Section 2, in which the dynamics were cast in variance form, and in which the dif-

ferent variation measures were approximated empirically by their “model-free” counterparts.

We next discuss a series of additional return regressions and sensitivity checks based on other

variation measures and volatility transforms designed to address the robustness and validity

of our findings in a wider sense. To conserve space, we will focus our summary discussion

on the quarterly return horizon that produced the most significant results. Also, we do not

include any additional tables, but more detailed tabular information related to these results

is available upon request.

4.2.1 “Old” Variance Measures

The “model-free” implied and realized variances underlying our empirical results are both

relatively new. As a first robustness check, we replace the “model-free” variance measures

with the standard at-the-money Black-Scholes implied variance IV ∗, and the realized vari-

ance based on low-frequency daily returns RV ∗. Interestingly, the regressions based on these

“old” variance measures generally do not give rise to the same strong conclusions. The

variance risk premium defined by the difference between the Black-Scholes implied variance

and the daily return based realized variance still dominates each of the variance measures in

isolation with t-statistics of 1.72 versus 0.97 and 0.31, respectively. However, the R2 for the

“model-free” variance premium in Table 4 (6.82 percent) is much larger than the 2.16 percent

25With higher interest rates generally associated with more turbulent financial markets, this may also be
seen as proxying for the qt process in the stylized equilibrium model.
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obtained with the difference between the “old” variance measures. Replacing the realized

variance based on daily data with the corresponding high-frequency based measure results

in a marginally significant t-statistic of 1.85 and increases the R2 to 3.30 percent. Similarly,

replacing the Black-Scholes implied variance with the “model-free” implied variance results

in a t-statistic of 2.34 and increases the R2 to 4.45 percent.26

All-in-all, these results clearly show that our use of the new “model-free” variance mea-

sures is crucial in effectively uncovering the variance risk premium. Estimation of the same

predictive regressions based on the traditional Black-Scholes implied variances and/or re-

alized variances constructed from lower frequency daily data do not give rise to nearly as

significant results.

4.2.2 Volatility Risk Premia

The regressions discussed so far have all been cast in variance form.27 This, of course, directly

mirrors the expressions for the variance premia and predictability regressions derived within

the context of the theoretical model in Section 2. However, the volatility, or other nonlinear

monotone transforms of the variance, is often used as an alternative and empirically more

robust measure of risk (e.g., Merton, 1980). Replacing the “model-free” variance measures

with their volatility, or standard deviation, counterparts, yields a t-statistic of 2.75 and an

R2 of 6.51 percent for the volatility difference
√
IV −

√
RV , compared to 2.86 and 6.82

percent for the variance difference IV −RV . Again, including
√
IV and

√
RV individually

results in insignificant t-statistics of 1.01 and -0.12, respectively. The results for the multiple

regressions obtained by including the P/E ratio, CAY, and the term structure variables

together with the volatility difference are comparable to the ones for the variance premium,

but all of the t-statistics and R2’s fall short of those reported in Table 4.

26This indirectly suggests that much of the useful information about the temporal variation in the risk-
neutralized variance resides in options away from the money.

27This corresponds to the common use of variance denominated contracts in the over-the-counter swap
market (see, e.g., Demeterfi, Derman, Kamal, and Zou, 1999; Mixon, 2007). The CBOE futures on the VIX
are also stated in variance form.
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4.2.3 Expected Variation Premium

The empirical variance risk premium defined in equation (22) is based on the difference

between the market’s (risk-neutral) expected variation and the current realized variation.

Both of these measures, and in turn the premium, are directly observable at time t in a

completely “model-free” fashion. The resulting regressions with V RP on the right-hand-

side also directly mirror the population regressions analyzed within the stylized equilibrium

model in Section 2. More generally, however, our empirical findings that higher (lower) values

of the variance premium are associated with higher (lower) future returns, may in part be

attributed to the effect that when the market anticipates high (low) volatility going forward,

there is a discount (premium) built into prices, in turn resulting in high (low) future returns.

To more clearly separate this effect from temporal variation in the volatility risk premium

per se, it is useful to consider a regression of the returns on an estimate of the previously

defined forward looking,28 or expected, variance premium, EV RPt ≡ IVt − Et(RVt+1).

In contrast, to all of the other predictor variables and “model-free” empirical measures

considered so far, this necessitates an explicit forecasting model for RVt. Numerous paramet-

ric and nonparametric volatility forecasting procedures have been proposed in the literature

(see, e.g., Andersen, Bollerslev, Christoffersen, and Diebold, 2006). We here rely on the

simple-to-implement, yet empirically highly accurate, reduced form HAR-RV model advo-

cated by Corsi (2004) and Andersen et al. (2007) among others, in which the forecast for

the one-month-ahead volatility is a linear function of the current daily, weekly and monthly

realized volatilities. Regressing the quarterly overlapping returns on a constant and this

expected variance premium results in a t-statistic of 2.27 and an R2 of 4.27.29 Although

this t-statistic for EVRP is somewhat lower than the one for VRP (2.86), it is still higher

than the t-statistics for any of the other predictor variables in Table 4. Of course, given the

high degree of volatility persistence inherent in the S&P500 returns, it is hardly surprising

that the expected variance difference and the directly observable variance difference perform

28Related to this, Ang et al. (2008) rely on forward looking volatility estimates constructed by instrumental
variables procedures in their analysis of cross-sectional pricing of idiosyncratic volatility.

29Since our estimation of the HAR-RV model for RVt is based on the full sample, the results are subject
to a standard “look-ahead” bias and additional parameter estimation error uncertainty.
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fairly similar from a forecasting perspective.30

5 Conclusion

We provide empirical evidence that stock market returns are predictable by the difference be-

tween “model-free” implied and realized variances, or the variance risk premium. The results

appear remarkably robust across different specifications and/or the inclusion of alternative

predictor variables. The degree of predictability is the largest at intermediate quarterly hori-

zons, but the premium still help explain the observed return variation at shorter monthly

and longer annual horizons. Our empirical findings are broadly consistent with the implica-

tions from a simple representative agent economy with recursive preferences that explicitly

incorporates the equilibrium effects of economic uncertainty and time-varying volatility-of-

volatility, although the magnitudes of the estimated effects appear too large to be fully

explained by the new stylized theoretical model.

The wedge between the “model-free” risk-neutral expected and actual variance underlying

our empirical results may alternatively be seen as a proxy for the aggregate degree of risk

aversion in the market.31 Although it might be difficult to contemplate systematic changes

in the level of risk aversion at the frequencies emphasized in our empirical work, time-

varying volatility risk and time-varying risk-aversion likely both play an important role in

explaining temporal variation in expected returns (e.g., Bekaert, Engstrom, and Grenadier,

2005; Bekaert, Engstrom, and Xing, 2008). Recent work directly motivated by the empirical

results first reported here based on more elaborate equilibrium models (Drechsler and Yaron,

2008) and cross-sectional pricing relations (Nyberg and Wilhelmsson, 2007) should prove an

important next step in sorting out these issues and further clarify the economic mechanisms

behind the predictability afforded by the variance risk premium.

30The sample correlation between EVRP and VRP equals 0.85, which far exceeds that for any other pair
of predictor variables in Table 1.

31More complicated model-specific measures of risk aversion based on the information in options prices have
previously been explored empirically by a number of studies (see, e.g., Aı̈t-Sahalia and Lo, 2000; Rosenberg
and Engle, 2002; Brandt and Wang, 2003; Gordon and St-Amour, 2004; Wu, 2005; Garcia, Lewis, Pastorello,
and Renault, 2006; Ziegler, 2007).
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Table 1 Summary Statistics

The sample period extends from January 1990 to December 2007. All variables are reported in annualized percentage form whenever
appropriate. Rmt −Rft denotes the logarithmic return on the S&P500 in excess of the 3-month T-bill rate. IVt denotes the “model-free”
implied variance, or VIX index. RVt refers to the “model-free” realized variance constructed from high-frequency 5-minute returns. The
predictor variables include the price-earning ratio log(Pt/Et), the price-dividend ratio log(Pt/Dt), the default spread DFSPt defined as
the difference between Moody’s BAA and AAA bond yield indices, the term spread TMSPt defined as the difference between the 10-year
and 3-month Treasury yields, and the stochastically de-trended risk free rate RRELt defined as the 1-month T-bill rate minus its trailing
twelve month moving averages. Monthly observations on the consumption-wealth ratio CAYt are defined by the most recently available
quarterly observations.

Rmt −Rft IVt −RVt IVt RVt log(Pt/Et) log(Pt/Dt) DFSPt TMSPt RRELt CAYt

Summary Statistics

Mean 6.44 18.30 33.23 14.93 3.13 3.92 0.84 1.69 -0.11 0.33

Std Dev 47.19 15.13 23.73 15.25 0.26 0.34 0.20 1.19 0.78 1.80

Skewness -0.65 2.14 2.02 2.72 0.42 -0.19 0.90 0.09 -0.35 -0.09

Kurtosis 4.38 12.06 9.11 12.98 2.44 1.98 3.28 1.79 2.75 1.94

AR(1) -0.03 0.49 0.79 0.70 0.97 0.99 0.94 0.98 0.94 0.96

Correlation Matrix

Rmt −Rft 1.00 -0.30 -0.34 -0.23 -0.08 -0.07 -0.05 -0.02 0.00 -0.05

IVt −RVt 1.00 0.78 0.22 0.19 0.11 0.10 -0.08 -0.27 -0.04

IVt 1.00 0.78 0.41 0.35 0.26 -0.14 -0.31 -0.21

RVt 1.00 0.45 0.44 0.31 -0.14 -0.21 -0.30

log(Pt/Et) 1.00 0.65 0.25 0.29 -0.24 -0.59

log(Pt/Dt) 1.00 -0.03 -0.36 0.09 -0.87

DFSPt 1.00 0.21 -0.43 -0.03

TMSPt 1.00 -0.36 0.35

RRELt 1.00 -0.18

CAYt 1.00
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Table 2 Variance Premium Return Regressions

The sample period extends from January 1990 to December 2007. All of the regressions are based on monthly observations. Robust
t-statistics accounting for the overlap following Hodrick (1992) are reported in parentheses. All variable definitions are identical to Table
1.

Monthly Return Horizon 1 3 6 9 12 15 18 24

Constant -0.55 -2.08 1.12 3.63 4.62 4.84 5.61 6.48

(-0.13) (-0.56) (0.33) (1.15) (1.50) (1.59) (1.81) (2.07)

IVt −RVt 0.39 0.47 0.30 0.17 0.12 0.11 0.06 0.01

(1.76) (2.86) (2.15) (1.36) (1.00) (0.94) (0.56) (0.11)

Adj. R2 (%) 1.07 6.82 5.42 2.30 1.23 1.00 0.05 -0.50
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Table 3 Monthly Return Regressions

The sample period extends from January 1990 to December 2007. Robust t-statistics following Hodrick (1992) are reported in parentheses.
All variable definitions are identical to Table 1, except for P/E, P/D and DFSP which have been scaled by a factor of 12.

Simple Multiple

Constant -0.55 -0.19 4.88 92.72 75.51 14.23 7.73 6.67 5.45 101.13 -2.52 78.02 91.20 101.86

(-0.13) (-0.04) (1.20) (2.22) (1.87) (0.91) (1.32) (2.12) (1.53) (2.42) (-0.55) (1.49) (1.74) (2.28)

IVt −RVt 0.39 0.49 0.42 0.50 0.57

(1.76) (2.16) (1.87) (2.10) (2.34)

IVt 0.20

(1.30)

RVt 0.11

(0.41)

log(Pt/Et) -2.30 -2.76 -1.90 -2.49 -2.93

(-2.02) (-2.40) (-1.36) (-1.76) (-2.31)

log(Pt/Dt) -1.47

(-1.68)

DFSPt -0.77

(-0.50)

TMSPt -0.72 2.87

(-0.28) (0.96)

RRELt 1.63 3.29

(0.43) (0.76)

CAYt 3.71 3.94 1.78 1.46

(2.04) (2.20) (0.87) (0.72)

Adj. R2 (%) 1.07 0.57 -0.34 1.80 1.11 -0.31 -0.43 -0.40 1.44 3.77 2.78 1.89 3.86 3.34
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Table 4 Quarterly Return Regressions

The sample period extends from January 1990 to December 2007. All of the regressions are based on overlapping monthly observations.
Robust t-statistics accounting for the overlap following Hodrick (1992) are reported in parentheses. All variable definitions are identical
Tables 1 and 3.

Simple Multiple

Constant -2.08 0.24 6.60 92.41 73.35 20.63 7.39 6.92 5.53 101.89 -4.12 85.93 100.06 98.21

(-0.56) (0.06) (1.60) (2.17) (1.81) (1.32) (1.24) (2.18) (1.54) (2.40) (-1.00) (1.67) (1.93) (2.18)

IVt −RVt 0.47 0.58 0.51 0.59 0.70

(2.86) (3.43) (3.02) (3.38) (4.01)

IVt 0.19

(1.41)

RVt 0.00

(0.00)

log(Pt/Et) -2.28 -2.82 -2.11 -2.77 -2.95

(-1.97) (-2.42) (-1.54) (-1.98) (-2.33)

log(Pt/Dt) -1.42

(-1.62)

DFSPt -1.39

(-0.90)

TMSPt -0.46 4.08

(-0.17) (1.42)

RRELt 3.27 6.39

(0.88) (1.56)

CAYt 3.23 3.52 1.08 0.74

(1.78) (1.99) (0.53) (0.37)

Adj. R2 (%) 6.82 2.49 -0.47 6.55 4.19 1.18 -0.43 0.43 4.13 16.76 11.87 7.21 17.42 19.74
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Table 5 Annual Return Regressions

The sample period extends from January 1990 to December 2007. All of the regressions are based on overlapping monthly obervations.
Robust t-statistics accounting for the overlap following Hodrick (1992) are reported in parentheses. All variable definitions are identical
to Tables 1 and 3.

Simple Multiple

Constant 4.62 7.62 9.49 78.47 79.83 15.59 5.37 7.29 5.42 81.00 1.91 52.85 55.11 74.04

(1.50) (2.44) (3.20) (2.05) (2.17) (1.13) (0.90) (2.33) (1.47) (2.15) (0.53) (1.03) (1.08) (1.88)

IVt −RVt 0.12 0.19 0.18 0.20 0.33

(1.00) (1.68) (1.51) (1.74) (2.96)

IVt -0.02

(-0.21)

RVt -0.17

(-1.20)

log(Pt/Et) -1.90 -2.06 -1.24 -1.40 -2.14

(-1.80) (-2.00) (-0.91) (-1.03) (-1.92)

log(Pt/Dt) -1.55

(-1.92)

DFSPt -0.87

(-0.64)

TMSPt 0.88 4.53

(0.35) (1.69)

RRELt 4.09 6.29

(1.11) (1.75)

CAYt 3.48 3.62 2.13 2.12

(1.99) (2.12) (0.99) (0.99)

Adj. R2 (%) 1.23 -0.37 2.89 16.34 19.53 1.79 0.01 4.54 18.15 20.12 21.18 21.46 25.52 32.58
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Table 6 Risk-Return Trade-Off

The sample period extends from January 1990 to December 2007. All of the regressions are run at a monthly frequency. Robust t-
statistics accounting for the overlap following Hodrick (1992) are reported in parentheses. All variable definitions are identical to Tables
1 and 3.

Monthly Returns Quarterly Returns Annual Returns

Constant -0.83 112.29 134.16 -0.88 113.52 121.71 6.84 78.82 81.17

(-0.18) (2.88) (2.85) (-0.21) (2.77) (2.71) (2.22) (2.28) (2.16)

RVt 0.03 0.32 0.46 -0.11 0.17 0.33 -0.22 -0.03 0.10

(0.10) (1.22) (1.58) (-0.41) (0.65) (1.11) (-1.25) (-0.23) (0.75)

IVt −RVt 0.38 0.45 0.54 0.50 0.56 0.69 0.17 0.20 0.33

(1.68) (2.02) (2.43) (2.91) (3.42) (4.22) (1.43) (1.73) (2.94)

log(Pt/Et) -3.43 -4.06 -3.18 -3.76 -1.99 -2.39

(-2.91) (-2.93) (-2.80) (-2.87) (-2.13) (-2.23)

TMSPt 4.95 5.52 4.97

(1.48) (1.68) (1.82)

RRELt 5.09 7.55 6.62

(1.17) (1.82) (1.87)

Adj. R2 (%) 0.61 4.17 4.45 6.78 17.11 21.81 5.80 19.80 33.00
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Figure 1 Model-Implied Slopes and R2’s

The figure shows the population slope coefficients and R2’s from regressions of the scaled
h-period returns on the variance difference implied by the equilibrium model. The four
different lines refer to the four different parameter configurations discussed in the main text.
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Figure 2 Implied and Realized Variances, and Variance Risk Premium

This figure plots the implied variance (top panel), the realized variance (middle panel), and
the difference (bottom panel) for the S&P 500 market index from January 1990 to December
2007. The shaded areas represent NBER recessions.
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Figure 3 Estimated Slopes and R2’s

The figure shows the estimated slope coefficients and pointwise ninety-five percent confidence
intervals, along with the corresponding R2’s from the regressions of the scaled h-period
S&P 500 returns on the variance difference. All of the regressions are based on monthly
observations from January 1990 to December 2007.
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