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Abstract

A new semiparametric estimator for an empirical asset pricing model with general nonpara-

metric risk-return tradeoff and a GARCH process for the underlying volatility is introduced.

The estimator does not rely on any initial parametric estimator of the conditional mean func-

tion, and this feature facilitates the derivation of asymptotic theory under possible nonlinearity

of unspecified form of the risk-return tradeoff. Besides the nonlinear GARCH-in-mean effect,

our specification accommodates exogenous regressors that are typically used as conditioning

variables entering linearly in the mean equation, such as the dividend yield. Using the profile

likelihood approach, we show that our estimator under stated conditions is consistent, asymp-

totically normal, and efficient, i.e. it achieves the semiparametric lower bound. A sampling

experiment provides evidence on finite sample properties as well as comparisons with the fully
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parametric approach and the iterative semiparametric approach using a parametric initial esti-

mate proposed by Conrad and Mammen (2008). An empirical application to the daily S&P 500

stock market returns suggests that the linear relation between conditional expected return and

conditional variance of returns from the literature is misspecified, and this could be the reason

for the disagreement on the sign of the relation.

Key words: Efficiency bound; GARCH-M model; Profile likelihood; Risk-return relation;

Semiparametric inference.

JEL Codes: C13, C14, C22, G12.

1 Introduction

The relation between risk and return is of central importance in asset pricing, hedging, derivative

pricing, and risk management. The fundamental proposition that asset prices and hence conditional

expected returns should reflect investors’ willingness to bear risk has been the object of extensive

research. Early theoretical and empirical contributions on the risk-return relation were due to Mer-

ton (1973, 1980). Merton’s intertemporal capital asset pricing model predicts a positive and linear

relation between the expectation and the variance of returns. Essentially, investors must be compen-

sated for taking on additional risk. Perhaps surprisingly, both significance and even the sign of the

linear relation between expected return and variance of return has proved elusive in empirical work.

In the present paper, we explore the possibility that the mixed empirical evidence may be due

to misspecification of the functional form of the risk-return relation. In fact, the conditions for

linearity are rather restrictive, and probably unlikely to hold in practice. Instead, we allow for a

general nonparametric risk-return tradeoff, and model the conditional variances as a GARCH process.

Besides the nonlinear GARCH-in-mean effect, our specification accommodates exogenous regressors

that are typically used as conditioning variables entering linearly in the mean equation, such as the

dividend yield. We introduce a new semiparametric estimation procedure for the resulting GARCH-

in-mean (or GARCH-M) type model that does not rely on an initial parametric (linear) estimate

of the risk-return relation, which would necessarily be inconsistent if the true relation is indeed

nonlinear, and this feature is the key to establishing the asymptotic properties of our estimator.

Using the profile likelihood approach, we prove that our semiparametric estimator is consistent,

asymptotically normal, and achieves the semiparametric efficiency bound.

The literature on the risk-return tradeoff is massive. Motivated by Merton’s linear relation

between expected return and variance, the original GARCH-M model proposed by Engle, Lilien, and

Robins (1987) allows for the direct effect of conditional variance on asset prices through required
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returns in a GARCH-type model by introducing conditional variance into the conditional mean return

equation in a linear fashion. Empirical studies of the risk-return tradeoff applying GARCH-type

models to stock returns have obtained mixed results regarding both the sign and the significance of

this variance-in-mean effect, see e.g. Bollerslev, Engle, and Wooldridge (1988), Chou (1988), Glosten,

Jagannathan, and Runkle (1993), Nelson (1991), Campbell and Hentschel (1992), Chou, Engle, and

Kane (1992), Backus and Gregory (1993), and Harrison and Zhang (1999). Poterba and Summers

(1986) show that the stock market level is determined by the risk-return tradeoff in conjunction

with the degree of serial correlation in volatility. Indeed, recent work in asset pricing focussing on

volatility innovations examines cross-sectional risk premia induced by covariance between volatility

changes and stock returns and finds negative premia, e.g., Ang, Hodrick, Xing, and Zhang (2006).

The idea is that since innovations in volatility are higher during recessions, stocks which co-vary

with volatility pay off in bad states, and so should require smaller risk premia. Christensen and

Nielsen (2007) consider aggregate time series data on returns and innovations in realized as well

as option-implied volatility and obtain results consistent with the cross-sectional findings. On the

other hand, a positive risk-return tradeoff has been indicated by Brandt and Kang (2004), who use

a latent VAR methodology, and Ghysels, Santa-Clara, and Valkanov (2005) using weighted rolling

sample windows in the variance measurements. For a survey of these and related studies, see Lettau

and Ludvigson (forthcoming).

Thus, there is mixed evidence on the risk-return relation in the literature. One possible source

of the disagreement is misspecification of the way in which conditional variance enters the condi-

tional mean return equation. Indeed, already Merton (1980) in his early empirical study regressed

returns not only on sample variances, but also on realized sample standard deviations (volatilities)

of returns over subintervals, to determine which relation was more stable. The coefficient in the first

regression would be interpreted as the rate of relative risk aversion of the representative investor in

the intertemporal capital asset pricing if this relation were most stable, whereas the coefficient on

volatility in the alternative (square root) version of the regression would be interpreted as the slope

of the capital market line or Sharpe ratio if this proved more stable. Considerations and debates

of this type have lead to the interest in specifying a more flexible model encompassing these and

other alternative risk-return relations. Flexibility, however, comes at the cost of more complicated

statistical properties. Hodgson and Vorkink (2003) estimate the density function of a multivari-

ate GARCH-M model in a semiparametric fashion, but do not provide a formal asymptotic theory.

Linton and Perron (2003) use a mean equation given by

yt = µ
(
σ2

t

)
+ εtσt,

where yt is the daily return, E (ε2
tσ

2
t |It−1) = σ2

t is the conditional return variance, It−1 denotes the
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sigma field generated by the information available up to time t − 1, εt ∼ iid (0, 1) , and µ (·) is a

smooth mean function determining the functional form of the risk-return relation. The specification

is estimated semiparametrically, using an EGARCH process for the conditional variance, but again no

asymptotic theory is provided. As the authors state, “...unfortunately, in our model, we cannot define

the corresponding profile quantity µ̂φ (σ2
t ) so easily, since σ2

t depends, in addition to the parameters,

on lagged ε′s, which in turn depend on lagged µ′s. Therefore, we need to know the entire function µ (.)

(or at least its values at the T sample points) to construct µ̂φ (σ2
t ) .” Conrad and Mammen (2008)

propose a specification test for GARCH-M models, but they do not show the asymptotic theory

for the quasi maximum likelihood (QML) estimator they use as a starting point of their iterative

procedure. In fact, this initial estimator would be inconsistent if the true risk-return relation were

nonlinear. Sun and Stengos (2006) propose yet another type of semiparametric GARCH-M model

that like our specification is closely related to the original GARCH-M of Engle, Lilien, and Robins

(1987).

The model of the present paper is an extension of the double autoregressive model of Ling (2004)

and is amenable to asymptotic analysis based on the profile likelihood methodology, along the lines

of Severini and Wong (1992). We provide an estimator that reaches the semiparametric lower bound.

Our estimation procedure is easy to apply and readily allows calculation of consistent standard errors.

Section 2 below presents our new model and semiparametric estimator, and we state conditions

under which our estimator is consistent, asymptotically normal, and attains the semiparametric

lower bound. Section 3 describes in detail our semiparametric estimation algorithm. In a sampling

experiment we explore finite sample accuracy and compare with the parametric approach and the

iterative approach with parametric initial estimate proposed by Conrad and Mammen (2008). Fi-

nally, an empirical application to the daily S&P 500 stock market returns suggests that the linear

relation between conditional expected return and conditional variance of returns from the literature

is misspecified, and this could be the reason for the disagreement on the significance and sign of the

relation. Section 4 concludes. Appendix 1 collects the proofs of lemmas and theorems. Appendix 2

contains Figures and Tables.

2 Asymptotic Theory: The Semiparametric Lower Bound

We extend the model of Ling (2004) to include a general risk-return relation. Writing yt for the daily

returns, the model we specify is

yt = µ
(
σ2

t

)
+ εtσt, (1a)

σ2
t = ω + γy2

t−1 + βσ2
t−1, (1b)
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where E (ε2
tσ

2
t |It−1) = σ2

t is the conditional variance of return, It−1 denotes the sigma field generated

by the information available up to time t − 1, and εt ∼ iid (0, 1) (see assumption A1 below). We

write φ = (ω, γ, β)′ , and µ (·) is a smooth conditional mean function. In contrast to Linton and

Perron (2003) and Conrad and Mammen (2008), we follow Ling (2004) and use the squared lagged

return y2
t−1 in (1b), rather than the squared lagged innovation ε2

t−1 as in the traditional GARCH(1,1)

equation σ2
t = ω + γε2

t−1σ
2
t−1 + βσ2

t−1. Linton and Perron (2003) do not show any asymptotic results,

and although Conrad and Mammen (2008) propose an algorithm and a test for GARCH-M effects

using QML to get starting values, they actually require a consistent estimator for the starting values

(e.g., in their assumption 5), and the QML estimator is necessarily inconsistent if µ(·) is indeed

nonlinear. Further, the main tool of Conrad and Mammen (2008) is empirical process theory, and

this involves high level assumptions such as E [exp (ρ |εt|)] < ∞ for ρ > 0. The two main differences

between our approach and that of Conrad and Mammen (2008) are that (1) we do not use QML or

any other inconsistent estimator as starting value, and (2) instead of empirical process theory we use

a profile likelihood approach.

The conditional quasi log-likelihood corresponding to (1a)-(1b) is given by

LT (φ, µ (·)) = ln lT (φ, µ (·)) = −1

2

T∑

t=1

ln
(
σ2

t

)
− 1

2

T∑

t=1

(yt − µ (σ2
t ))

2

σ2
t

,

with lT denoting the conditional quasi likelihood. Note that as φ varies, LT (φ, µ (·)) varies because by

(1b) σ2
t depends on φ = (ω, γ, β)′, for each t. If it were feasible to compute the function, say µ̂φ(·), that

for given φ maximizes LT (φ, µ (·)), then we might consider the profile quasi log-likelihood function

LT (φ, µ̂φ (·)). Maximizing this with respect to φ would yield an asymptotically efficient estimator

(indeed, the semiparametric MLE). The main idea in the profile likelihood approach to obtaining an

efficient semiparametric estimator (see Severini and Wong (1992)) is to first get a consistent estimator

µ̂φ(·) of a least favorable curve µφ (·) . The efficient semiparametric estimator of φ is then obtained

by maximizing the quasi log-likelihood function LT (φ, µ̂φ (·)) (indeed, the generalized profile quasi

log-likelihood function) with respect to φ. Here, the least favorable curve µφ (·) has the properties

that (i) maximizing LT (φ, µφ (·)) with respect to φ yields an asymptotically efficient estimator, and

(ii) if µ̂φ(·) is a consistent estimator of the least favorable curve µφ (·) , the estimators of φ obtained

by maximizing LT (φ, µφ (·)) and LT (φ, µ̂φ (·)) are asymptotically equivalent.

The marginal Fisher information for φ in this semiparametric setting is defined as

iφ = E0

[(
∂LT

∂φ
(φ0, µφ0

(·)) +
∂LT

∂µφ(·)
(φ0, µφ0

(·))µ′

φ0
(·)
)

×
(

∂LT

∂φ
(φ0, µφ0

(·)) +
∂LT

∂µφ (·) (φ0, µφ0
(·))µ′

φ0
(·)
)

′
]

,
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where ∂LT /∂µφ(·) is the Frechet derivative of LT (φ, µφ (·)) with respect to the function µφ (·), whereas

µ′

φ (·) is the ordinary derivative dµφ (·) /dφ, and subscript 0 throughout denotes evaluation at the

true parameter. With this, i−1
φ gives the semiparametric lower bound on the asymptotic variance of

estimators of φ, just like the inverse Fisher information provides the Cramer-Rao lower bound in a

parametric model.

Following Severini and Wong (1992, Lemma 8) and Su and Jin (2008), we will work with Tφ (yt),

a scalar function of yt depending on a φ and such that µφ (σ2
t ) = E [Tφ (yt) |It−1] . Initially, we will

have Tφ (yt) = yt, but this will be modified later. We also denote from now on by fφj (yt|It−1) for

j = 0, 1, 2 the conditional density of

T
(j)
φ (yt) =

∂j

∂φj
Tφ (yt) .

Finally f (σ2
t ) denotes the marginal density of σ2

t .

For clarity of exposition, we provide our results in four stages. First, we consider the case where

µ (·) is known function and provide the asymptotic theory of the QMLE. Secondly, we consider the

case of an unknown least favorable curve µφ (·) that we estimate nonparametrically. Third, we provide

the asymptotic theory of the semiparametric estimator when µφ (·) is estimated nonparametrically

and QML is used in the second stage. The fourth stage allows for the introduction of correctly

specified exogenous variables in the mean equation.

2.1 Asymptotic theory: the parametric case

We start by assuming that in (1a)-(1b) we know the mean function µ (·) , e.g., µ (σ2
t ) may be given

by λσ2
t or λσt, for known λ.

We now introduce our assumptions. For ease in referring to these in later sections, we carry a

subscript φ on µ in the notation. Assumption A1 is a collection of conditions related to the distur-

bance and the conditional variance. They are quite standard in the literature of QML estimation of

GARCH processes (see e.g. Berkes and Horváth (2004), Jensen and Rahbek (2004a, 2004b), Strau-

mann and Mikosch (2006) and Dahl and Iglesias (2007)). Assumption A2 gives conditions for µφ (·)
to take values inside the interior of the parameter space. Assumption A3 is a typical assumption

needed in the GARCH context as in Jensen and Rahbek (2004a, 2004b) to get local identification.

Assumption A

A1 σt is a strictly stationary process satisfying εt ∼ i.i.d. (0, 1) with E (ε4
t − 1) = ζ < ∞, and

E (|εt|2r) < ∞ for some r > 2. Furthermore, σt is a sequence of strong mixing random variables
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with mixing numbers αm, m = 1, 2, . . . , that satisfy αm ≤ Cm−(4r−2)/(2r−2)−δ for positive C and

δ, as m → ∞. Moreover, ω, γ and β are strictly positive, σ2
0 is a finite positive constant, φ ∈ Φ

and φ0 ∈ int (Φ) . Finally, E [ln (γε2
t + β)] < 0, and σ2

0 (φ) is a drawing from the stationary

distribution.

A2 M denotes a compact subset of the real line such that µφ (σ2
t ) ∈ int (M) for all σ2

t and all t.

A3 µφ (·) is three times differentiable with

E

∣∣∣∣∣∣
(yt − µφ (σ2

t ))
∂µφ(σ2

t )
∂ω

σ2
t

∣∣∣∣∣∣
< ∞, E

∣∣∣∣∣∣

(yt − µφ (σ2
t ))

∂µφ(σ2
t )

∂γ

σ2
t

∣∣∣∣∣∣
< ∞,

E

∣∣∣∣∣∣

(yt − µφ (σ2
t ))

∂µφ(σ2
t )

∂β

σ2
t

∣∣∣∣∣∣
< ∞.

We also assume that there are constants C1, C2, C3, C4, C5 and C6 so that

1

T

T∑

t=1

(
∂µφ(σ2

t )
∂ω

)2

σ2
t

| φ=φ0

p→ C1 < ∞,
1

T

T∑

t=1

(
∂µφ(σ2

t )
∂γ

)2

σ2
t

|φ=φ0

p→ C2 < ∞,

1

T

T∑

t=1

(
∂µφ(σ2

t )
∂β

)2

σ2
t

| φ=φ0

p→ C3 < ∞,
1

T

T∑

t=1

∂µφ(σ2
t )

∂β

∂µφ(σ2
t )

∂γ

σ2
t

|φ=φ0

p→ C4 < ∞,

1

T

T∑

t=1

∂µφ(σ2
t )

∂ω

∂µφ(σ2
t )

∂γ

σ2
t

| φ=φ0

p→ C5 < ∞,
1

T

T∑

t=1

∂µφ(σ2
t )

∂ω

∂µφ(σ2
t )

∂β

σ2
t

|φ=φ0

p→ C6 < ∞.

Also, there exists a neighborhood N (φ0) given by (12) in Definition 1 for which

(a) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂2µφ(σ2
t )

∂i∂j

∂µφ(σ2
t )

∂k

σ2
t

∣∣∣∣∣≤
1
T

∑T
t=1 w11t,

(b) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂µφ(σ2
t )

∂i

∂µφ(σ2
t )

∂j

∂σ2
t

∂k

σ4
t

∣∣∣∣∣≤
1
T

∑T
t=1 w12t,

(c) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂µφ(σ2
t )

∂k

∂2σ2
t

∂i∂j

σ4
t

∣∣∣∣∣≤
1
T

∑T
t=1 w13t,
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(d) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂µφ(σ2
t )

∂k

∂σ2
t

∂i

∂σ2
t

∂j

σ6
t

∣∣∣∣∣≤
1
T

∑T
t=1 w14t,

(e) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂2µφ(σ2
t )

∂i∂j

∂σ2
t

∂k

σ4
t

∣∣∣∣∣≤
1
T

∑T
t=1 w15t,

(f ) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂3µφ(σ2
t )

∂i∂j∂k

σ2
t

∣∣∣∣∣≤
1
T

∑T
t=1 w16t,

where w11t, ..., w16t are stationary and have finite moments, for any i, j, k = ω, γ, β, E (wlt) = Ml <

∞, ∀l = 11, ..., 16. Finally, 1
T

∑T
t=1 wlt

a.s.−→ Ml, ∀l = 11, ..., 16.

Let φ̂ be the quasi-maximum likelihood (QML) estimator of φ. The following theorems provide the

first asymptotic theory for parametric GARCH-M models. It should be noted that this is for our

type of variance specification (1b).

Theorem A1. Let µφ (·) denote a known correctly specified curve. Further, for each for each T

define φ̂ ≡ φ̂T to be any element of int (Φ) satisfying

LT

(
φ̂, µφ̂ (·)

)
= sup

φ∈Φ
LT (φ, µφ (·)) ,

then under assumption A

φ̂
p−→ φ0

as T → ∞.

Theorem A1 shows consistency. Asymptotic normality for known mean function is established next.

Theorem B1. Suppose that Assumption A holds. Then (a)
√

T (φ̂ − φ0)
d−→ N(0, i−1

φ ),

where iφ is given in Lemmas 2-3 in Appendix 1. Finally, let

îφ= −T−1 ∂2LT

∂φ∂φ′
(φ, µφ (·)) |φ=φ̂,

then (b)

îφ
p−→ iφ as T → ∞.

Proofs of Theorems A1 and B1. The proofs proceed by the classic Cramér type conditions

for consistency and asymptotic normality (central limit theorem for the score, convergence of the

Hessian and uniformly bounded third-order derivatives, see Lehmann (1999)) established e.g. as in

Jensen and Rahbek (2004a, 2004b). Detailed proofs are provided in Appendix 1.�
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2.2 Nonparametric estimation of least favorable curve

We now relax the assumption that µ (·) is known and we estimate this function nonparametrically.

We need to add Assumption B below. Assumptions B1-B6 give conditions for the nonparametric esti-

mator of the least favorable curve given φ, along the lines of the smoothness and nuisance parameter

conditions of Severini and Wong (1992). Note that in our case, Tφ (yt) = yt.

Assumption B

B1 E
{

supφ

∣∣∣T (j)
φ (yt)

∣∣∣
}

< ∞, j = 0, 1, 2, 3 for any t.

B2 For some even integer v ≥ 10, supφ E
{∣∣∣T (j)

φ (yt)
∣∣∣
v}

< ∞, j = 0, 1, 2 for any t.

B3 supφ supyt,yt−1

∣∣∣f (r)
φj (yt|It−1)

∣∣∣ < ∞, j = 0, 1, 2; r = 0, 1, 2, 3, 4 for any t. fφj (yt|It−1) belongs

conditionally to the exponential family.

B4 supyt

∣∣f (r) (σ2
t )
∣∣ < ∞, r = 0, 1, 2, 3, 4 for any t.

B5 0 < infyt f (σ2
t ) ≤ supyt

f (σ2
t ) < ∞ for any t.

B6 K (·) satisfies
∫

K (u) du = 1,
∫

uK (u) du = 0,
∫

u2K (u) du < ∞, supu

∣∣K(r) (u)
∣∣ < ∞, r =

0, ..., 4 and hT is a sequence of constants satisfying hT → 0 as T → ∞. hT = O (T−α) with

1/8 < α < (v − 2) / (4 (v + 4)) .

Lemma 1 provides the result on nonparametric estimation of a least favorable curve. The proof is

given in Appendix 1.

Lemma 1. Suppose that assumptions A2 and B hold. Define µ̂φ (·) by

µ̂φ

(
σ2
)

=

∑
j yjK

((
σ2 − σ2

j

)
/hT

)
∑

j K
((

σ2 − σ2
j

)
/hT

) .

Then µ̂φ (·) is a consistent estimator of a least favorable curve.

Note that µ̂φ (·) depends on σ2
1 , ..., σ

2
T , and hence on φ, by (1b). The result is elegant since the

estimator takes the simple Nadaraya-Watson form, yet it is consistent for a least favorable curve in

the profile likelihood approach.
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2.3 Asymptotic theory: the semiparametric case

We consider now the case that in (1a)-(1b) we know neither the parameter φ nor the function µ (·) .

We combine the results of the previous subsections on estimation of φ given µ (·), and the estimation

of µ (·) given φ. We need to add an extra assumption C. Note that in this case, assumptions B1-B6

can be relaxed in case we are not interested in reaching the semiparametric efficiency lower bound, but

only in asymptotic normality and consistency. Assumption C1 is a standard condition corresponding

to the global identifiability condition of Severini and Wong (1992). It is needed in order to get a

consistent estimator of the least favorable curve as well as asymptotic normality in the second stage,

and also to reach the semiparametric lower bound.

Assumption C

C1 (a) For fixed but arbitrary φ1 ∈ int (Φ) and µ1φ (·) with µ1φ (σ2
t ) ∈ int (M) for all σ2

t we define

ϕ (φ, µφ (·)) =

∫
lT (y, φ, µφ (·)) f

(
y; φ1, µ1φ

(
σ2

t

))
dy,

for all φ ∈ int (Φ) , all µφ (·) with µφ (σ2
t ) ∈ int (M) . If φ 6= φ1, then

ϕ (φ, µφ (·)) < ϕ (φ1, µ1φ (·)) .

(b) Let ĩφ (φ, µφ (·)) denote the marginal Fisher information for φ in the parametric model, that

is

ĩφ (φ, µφ (·)) = Eφ,µφ(·)

(
∂LT

∂φ
(y; φ, µφ (·))

(
∂LT

∂φ
(y; φ, µφ (·))

)
′
)

−Eφ,µφ(·)

[(
∂LT

∂φ
(y; φ, µφ (·)) ∂LT

∂µφ (·) (y; φ, µφ (·))
)

×
(

∂LT

∂φ
(y; φ, µφ (·)) ∂LT

∂µφ (·) (y; φ, µφ (·))
)

′
]

Eφ,µφ(·)

(
∂LT

∂φ
(y; φ, µφ (·)) ∂LT

∂φ
(y; φ, µφ (·))′

)
−1

.

Assume that ĩφ (φ, µφ (·)) > 0 for all φ ∈ int (Φ) ,all µφ (·) with µφ (σ2
t ) ∈ int (M) .

We now provide the asymptotic theory combining the estimators φ̂ and µ̂φ (·), with the latter esti-

mating consistently a least favorable curve in the profile likelihood framework.

10



Theorem A2. Let µ̂φ (·) be a consistent estimator of a least favorable curve µφ (·), as given in

Lemma 1 . Further, for each T, define φ̂ ≡ φ̂T to be any element of int (Φ) satisfying

LT

(
φ̂, µ̂φ̂ (·)

)
= sup

φ∈Φ
LT (φ, µ̂φ (·)) .

Then, under assumptions A, B, and C

φ̂
p−→ φ0

as T → ∞.

Theorem A2 shows consistency of the estimator of φ obtained by maximizing the generalized profile

log-likelihood.

Theorem B2. Suppose that assumptions A, B, and C hold. Then (a)
√

T (φ̂ − φ0)
d−→ N(0, i−1

φ ),

where iφ is given in Lemmas 2-3 in Appendix 1. Finally, let

îφ= −T−1 ∂2LT

∂φ∂φ′
(φ, µ̂φ (·)) |φ=φ̂,

where µ̂φ (·) is given in Lemma 1, then (b)

îφ
p−→ iφ as T → ∞.

Proofs of Theorems A2 and B2. The proofs proceed as those for Theorems A1 and B1,

but with µφ (·) replaced by µ̂φ (·) , based on the asymptotic equivalence result of Severini and Wong

(1992) stated in Corollary 1 in Appendix 1.�

Theorem B2 shows that the semiparametric estimator is asymptotically normal and achieves the

semiparametric lower bound. In addition, part (b) provides for the consistent estimation of standard

errors using the second derivative matrix of the generalized profile log-likelihood.

2.4 Exogenous conditioning variables in the mean equation

Here, we generalize the semiparametric GARCH-M model to accommodate exogenous regressors

since conditioning variables typically are entered linearly into the mean equation, e.g., the dividend

yield. We extend the theory from (1a)-(1b) to the model given by

yt = x′

tα + µ
(
σ2

t

)
+ εtσt, (2a)

σ2
t = ω + γy2

t−1 + βσ2
t−1, (2b)

11



where xt is a vector of pre-determined regressors that are correctly specified in the mean equation

and α is p× 1 vector of parameters. We avoid identification issues by not allowing lagged dependent

variables or an intercept in xt. Note that now φ = (α′, ω, γ, β)′ and Tφ (yt) = yt − x′

tα. We now

extend Theorems A2 and B2 to allow for exogenous variables, and to this end we strengthen our

assumptions as follows. As in Assumption A, we carry a subscript φ on µ in the notation.

Assumption D

D1 Let µφ (·) denote a smooth mean function that is three times differentiable with

E

∣∣∣∣∣∣
(yt − µφ (σ2

t ) − x′

tα)
∂µφ(σ2

t )
∂ω

σ2
t

∣∣∣∣∣∣
< ∞, E

∣∣∣∣∣∣

(yt − µφ (σ2
t ) − x′

tα)
∂µφ(σ2

t )
∂γ

σ2
t

∣∣∣∣∣∣
< ∞,

E

∣∣∣∣∣∣

(yt − µφ (σ2
t ) − x′

tα)
∂µφ(σ2

t )
∂β

σ2
t

∣∣∣∣∣∣
< ∞, E

∣∣∣∣∣∣
(yt − µφ (σ2

t ) − x′

tα)
∂µφ(σ2

t )
∂α

σ2
t

∣∣∣∣∣∣
< ∞.

We also assume that there are constants C1, C2,...,C10 so that

1

T

T∑

t=1

(
∂µφ(σ2

t )
∂ω

)2

σ2
t

| φ=φ0

p→ C1 < ∞,
1

T

T∑

t=1

(
∂µφ(σ2

t )
∂γ

)2

σ2
t

|φ=φ0

p→ C2 < ∞,

1

T

T∑

t=1

(
∂µφ(σ2

t )
∂β

)2

σ2
t

| φ=φ0

p→ C3 < ∞,
1

T

T∑

t=1

∂µφ(σ2
t )

∂β

∂µφ(σ2
t )

∂γ

σ2
t

|φ=φ0

p→ C4 < ∞,

1

T

T∑

t=1

∂µφ(σ2
t )

∂ω

∂µφ(σ2
t )

∂γ

σ2
t

| φ=φ0

p→ C5 < ∞,
1

T

T∑

t=1

∂µφ(σ2
t )

∂ω

∂µφ(σ2
t )

∂β

σ2
t

|φ=φ0

p→ C6 < ∞,

1

T

T∑

t=1

∂µφ(σ2
t )

∂α

(
∂µφ(σ2

t )
∂α

)
′

σ2
t

| φ=φ0

p→ C7 < ∞,
1

T

T∑

t=1

∂µφ(σ2
t )

∂α

∂µφ(σ2
t )

∂ω

σ2
t

|φ=φ0

p→ C8 < ∞,

1

T

T∑

t=1

∂µφ(σ2
t )

∂α

∂µφ(σ2
t )

∂γ

σ2
t

| φ=φ0

p→ C9 < ∞,
1

T

T∑

t=1

∂µφ(σ2
t )

∂α

∂µφ(σ2
t )

∂β

σ2
t

|φ=φ0

p→ C10 < ∞.

Also, there exists a neighborhood N (φ0) given by (12) in Definition 1 for which

12



(a) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂2µφ(σ2
t )

∂i∂j

∂µφ(σ2
t )

∂k

σ2
t

∣∣∣∣∣≤
1
T

∑T
t=1 w11t,

(b) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂µφ(σ2
t )

∂i

∂µφ(σ2
t )

∂j

∂σ2
t

∂k

σ4
t

∣∣∣∣∣≤
1
T

∑T
t=1 w12t,

(c) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂µφ(σ2
t )

∂k

∂2σ2
t

∂i∂j

σ4
t

∣∣∣∣∣≤
1
T

∑T
t=1 w13t,

(d) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂µφ(σ2
t )

∂k

∂σ2
t

∂i

∂σ2
t

∂j

σ6
t

∣∣∣∣∣≤
1
T

∑T
t=1 w14t,

(e) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂2µφ(σ2
t )

∂i∂j

∂σ2
t

∂k

σ4
t

∣∣∣∣∣≤
1
T

∑T
t=1 w15t,

(f ) supφ∈N(φ0)

∣∣∣∣∣
1
T

∑T
t=1

∂3µφ(σ2
t )

∂i∂j∂k

σ2
t

∣∣∣∣∣≤
1
T

∑T
t=1 w16t,

where w11t, ..., w16t are stationary and have finite moments, for any i, j, k = ω, γ, β, α′, E (wlt) =

Ml < ∞, ∀l = 11, ..., 16. Finally, 1
T

∑T
t=1 wlt

a.s.−→ Ml, ∀l = 11, ..., 16.

D2 Define µ̂φ (·) by

µ̂φ

(
σ2
)

=

∑
j

(
yj − x′

jα
)
K
((

σ2 − σ2
j

)
/hT

)
∑

j K
((

σ2 − σ2
j

)
/hT

) .

We now provide the asymptotic theory for the generalized semiparametric model.

Theorem A3. Let µ̂φ (σ2
t ) be the consistent estimator from D2 of a least favorable curve µφ (·)

with µφ (σ2
t ) ∈ int (M) for all σ2

t and all t, and define for each T φ̂ ≡ φ̂T =
(
α̂′

T , ω̂T , γ̂T , β̂T

)
′

in

(2a)-(2b) to be any element of int (Φ) satisfying

LT

(
φ̂, µ̂φ̂ (·)

)
= sup

φ∈Φ
LT (φ, µ̂φ (·)) .

Then under assumptions A, B, C, and D

φ̂
p−→ φ0

as T → ∞.

By Theorem A3, the maximizer of the generalized profile log-likelihood remains consistent in the

presence of exogenous regressors.

13



Theorem B3. Suppose that assumptions A, B, C, and D hold in (2a)-(2b). Then (a)
√

T (φ̂ − φ0)
d−→ N(0, i−1

φ ),

where iφ is given in Lemmas 2-3 in Appendix 1. Finally, let

îφ= −T−1 ∂2LT

∂φ∂φ′
(φ, µ̂φ (·)) |φ=φ̂,

where µ̂φ (·) is an estimator of µφ (·) as given in D2, then (b)

îφ
p−→ iφ as T → ∞.

Proofs of Theorems A3 and B3. The proofs proceeds as those for Theorems A2 and B2

except that we need the extra derivatives with respect to the α vector to take into account the

introduction of exogenous variables. See Appendix 1 for details.�

Theorem B3 shows that asymptotic normality carries over to the case with exogenous regressors.

Again, the semiparametric efficiency bound i−1
φ is achieved, and part (b) provides consistent standard

errors based on the second derivative matrix of the generalized profile log-likelihood function.

3 Illustrations

We begin this section by describing in detail our semiparametric estimation algorithm. Secondly, we

carry out a simulation study on the accuracy of the new approach and provide comparisons to the

parametric approach as well as the iterative approach with parametric initial estimate proposed by

Conrad and Mammen (2008). Finally, we present an empirical illustration, applying our method to

the daily S&P 500 stock index return series in order to analyze the shape of the classical risk-return

relation.

3.1 Estimation of conditional mean and variance

In the general setting, we wish to estimate the unknown function µ(·) as well as all the unknown

parameters φ = (α′, ω, γ, β)′ in the representation of our generalized semiparametric GARCH(1,1)-M

model given by

yt − x′

tα = µ(σ2
t ) + et, (3)

et = εtσt, (4)

σ2
t = ω + γy2

t−1 + βσ2
t−1, (5)

zt = yt − x′

tα, (6)
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corresponding to (2a)-(2b), where xt is a vector of pre-determined regressors without an intercept

or lagged dependent variables. Consider first the case where σ2
t is observed (i.e., the parameters

θ = (ω, γ, β)′ are known) and we are interested in estimating µ(·) and α, only. The kernel based

estimator of µ(·) given α in this case is given by

µ̂(σ2) =
∑

j

wj

(
σ2
)
zj (7)

=
∑

j

wj

(
σ2
)
yj −

∑

j

wj

(
σ2
)
x′

jα,

where

wj

(
σ2
)

=
K
((

σ2 − σ2
j

)
/hT

)
∑T

s=1 K ((σ2 − σ2
s) /hT )

(8)

and again K (·) and hT denote the kernel function and bandwidth, respectively. Plugging the kernel

estimator back into (3) yields

yt = x′

tα + µ̂(σ2
t ) + et, (9)

which may conveniently be written as

yt −
∑

j

wj

(
σ2

t

)
yj =

(
xt −

∑

j

wj

(
σ2

t

)
xj

)
′

α + êt. (10)

From (10), an estimator of α is easily obtained by QMLE (or simply WLS - weighted least squares).

Consider next the case where we do not observe σ2
t and we need to estimate φ = (α′, ω, γ, β)′.

The derivations above suggest the following iterative estimation procedure.

Step 1: Provide a set of initial parameters (i = 0) θ̂(i) and compute σ̂
2(i)
t = σ2

t

(
θ̂(i)
)

for t = 1, 2, ..., T

by iterating on equation (5).

Step 2: Based on the sequence
{

σ̂
2(i)
t

}T

t=1
, compute first α̂(i) based on (10), and secondly µ̂

(i)
t =

µ̂(σ̂
2(i)
t ) for t = 1, 2, ..., T from (7).

Step 3: Update θ̂(i) and
{
σ̂

2(i)
t

}T

t=1
(i.e., find θ̂(i+1) =

(
ω̂, γ̂, β̂

)
′

and consequently
{
σ̂

2(i+1)
t

}T

t=1
) by

performing QML on the GARCH(1,1) model

ŷ
(i)
t = σtǫt,

σ2
t = ω + γy2

t−1 + βσ2
t−1,

where

ŷ
(i)
t ≡ yt − x′

tα̂
(i) − µ̂

(i)
t .
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Step 4: Repeat Steps 2 and 3 for a finite fixed number of iterations or until convergence.

In the simulations we used a fixed number of iterations. For a convergence criterion one could use

the suggestions by Linton and Perron (2004, page 357) or Conrad and Mammen (2008, page 19).

Alternatively, Steps 2 and 3 could be replaced by the following.

Step 2’: Conditional on the sequence
{

σ̂
2(i)
t

}T

t=1
and

ỹ
(i)
t = yt −

∑

j

wj

(
σ̂

2(i)
t

)
yj,

x̃
(i)
t =

(
xt −

∑

j

wj

(
σ̂

2(i)
t

)
xj

)
,

update θ̂(i) and α̂(i) (i.e., find θ̂(i+1) =
(
ω̂, γ̂, β̂

)
′

and α̂(i+1) = α̂) by performing QML on the

GARCH(1,1) model

ỹ
(i)
t = x̃

(i)′
t α + εtσt,

σ2
t = ω + γy2

t−1 + βσ2
t−1.

Step 3’: Based on θ̂(i+1), update the sequences
{
σ̂

2(i+1)
t

}T

t=1
and

{
ỹ

(i+1)
t , x̃

(i+1)
t

}T

t=1
.

Under the alternative algorithm, µ̂(σ̂2
t ) is computed in the final iteration (i = I) simply as µ̂(σ̂2

t ) =

µ̂(σ̂
2(I)
t ). For the choice of bandwidth parameter we recommend using cross validation, following

Linton and Perron (2003). The quasi log-likelihood function is maximized at each point on a grid

and the leave-one-out maximizer is chosen.

In order to compute nonparametric confidence bands, we suggest the following wild bootstrap

algorithm, which is similar to the one described in Linton and Perron (2003).

Step 1: Based on the estimated parameters/functions φ̂ = (ω̂, γ̂, β̂)′, σ̂2
t , µ̂(σ̂2

t ), and ε̂t = (yt − µ̂(σ̂2
t )) /σ̂t,

calculate εc
t = ε̂t − T−1

∑
ε̂t.

Step 2: Let zt be a discrete variable taking the values −1 and 1. Draw a random sample (z1, z2, ..., zT )

and construct the sequence ε∗t = εc
tzt for t = 1, 2, ..., T.
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Step 3: Given initial starting values for y0 and σ̂2
0, define recursively

(σ̂∗

t )
2 = ω̂ + γ̂

(
y∗

t−1

)2
+ β̂

(
σ̂∗

t−1

)2
,

y∗

t = µ̂((σ̂∗

t )
2 ;
{
σ̂2

s

}T

s=1
, h) + σ̂∗

t ε
∗

t ,

for t = 1, 2, ..., T.

Step 4: Given the bootstrapped sequence {y∗

t }T
t=1 , calculate φ̂ and {µ̂∗

t}T
t=1 by the the proposed

semiparametric estimation algorithm.

Step 5: Repeat steps 2-4 m times. The pointwise α and 1−α percent confidence bands around µ̂(σ̂2
t )

are then constructed as the α and 1−α empirical quantiles of the m bootstrapped estimates of

µ̂(σ̂2
t ). As a by-product, standard errors of φ̂ are estimated from the sample standard deviation

of the m bootstrapped estimates φ̂∗.

3.2 Monte Carlo Simulation

In this section we examine the finite sample properties of our semiparametric GARCH(1,1)-M estima-

tion procedure. We compare the performance of our approach to the performance of the parametric

GARCH(1,1)-M model, as well as to the semiparametric approach suggested recently by Conrad and

Mammen (2008), and for comparison purposes we work with the data generating processes suggested

by these authors, given as

N1 : µ(σ2
t ) = 0.05σ2

t ,

N2 : µ(σ2
t ) = 0.5σ2

t ,

N3 : µ(σ2
t ) = σ2

t ,

A1 : µ(σ2
t ) = σ2

t + 0.5 sin (10σ2
t ) ,

A2 : µ(σ2
t ) = 0.5σ2

t + 0.1 sin (0.5 + 20σ2
t ) ,

A3 : µ(σ2
t ) = σ2

t + 0.12 sin (3 + 30σ2
t ) ,

with θ =
(
ω, γ, β(CM)

)
′

= (0.01, 0.1, 0.85)′ , i.e.,

σ
2(CM)
t = 0.01 + 0.1ε2

t−1 + 0.85σ2
t−1.

Since our volatility process (1b) is defined differently from that in Conrad and Mammen (2008), we

cannot use the exact same value for θ and obtain processes with the same properties as theirs. In

order to obtain comparable processes we fix ω = 0.01, γ = 0.1, and set β such that

E(σ2
t ) = E(σ

2(CM)
t ),

E(µ(σ2
t )

2) = E(µ(σ
2(CM)
t )2).
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This yields the relationship

β = β(CM) −
(
1 − γ − β(CM)

)
ω−1γE(µ(σ

2(CM)
t )2))

= β(CM) − γ
E(µ(σ

2(CM)
t )2)

E(σ
2(CM)
t )

,

where E(µ(σ
2(CM)
t )2) is obtained by simulation. By this procedure, our GARCH-M specifications

are based on the following values of β : β(N1) = 0.85, β(N2) = 0.84, β(N3) = 0.82, β(A1) = 0.68,

β(A2) = 0.84, β(A3) = 0.82. The residual ǫt is drawn form a standard normal distribution.

[Table 1 about here]

Table 1 presents the medians as well as the 25% and 75% quantiles of the estimated parameters

in 200 replications based on the parametric GARCH(1,1)-M approach with µ(σ2
t ) = µ + λσ2

t . As

expected, the median parameter estimates under the data generating processes N1-N3 are very close

to the true parameter values. As noted by Conrad and Mammen (2008), the in-mean parameter λ

is relative well estimated when the model is correctly specified (N1-N3), particularly when the true

value is relatively large (as in N3 where λ = 1).

[Table 2 about here]

Table 2 presents the corresponding results based on our semiparametric GARCH(1,1)-M estima-

tor. From the table it is clear that the semiparametric estimator yields very precise estimates of the

conditional variance function parameters θ = (ω, γ, β)′ under N1-N3. The semiparametric estimate

of γ is slightly lower than the parametric estimate, while the estimates of ω and β are practically

identical. Furthermore, the ranges between the 25% and 75% quantiles are approximately the same,

indicating that the precisions of the semiparametric estimates are comparable to the parametric

maximum likelihood estimates.

[Figure 1 about here]

Figure 1 shows the true mean functions and the pointwise median of the parametric and semipara-

metric estimates, along with the pointwise 25% and 75% quantiles of the semi parametric estimate.

Under the models N1, N2, and N3, both estimation procedures seem to do equally well in recovering

the true structure of the conditional mean function.

Table 1 also presents the mean and variance parameter estimates from the parametric GARCH(1,1)-

M approach with µ(σ2
t ) = µ + λσ2

t applied to the data generating processes A1, A2, and A3, i.e.,
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the model is misspecified. While the estimates of the variance function parameters are perhaps sur-

prisingly accurate, the mean function parameters are clearly inconsistently estimated. In particular,

using the parametric GARCH(1,1)-M model to approximate A1 would lead to a significantly negative

estimate of λ, thus falsely indicating a negative risk–return relationship.

In Table 2 similar results are presented based on the semiparametric approach. Again the esti-

mated variance function parameters are close to their true values and quite accurately estimated.

[Figure 2 about here]

Figure 2 reveals that the semiparametric estimate of the mean function again performs very well

in uncovering the true mean function. The parametric estimate which is restricted to be linear fails

to do so.

[Table 3 about here]

Finally, we use the Conrad and Mammen (2008) semiparametric GARCH(1,1)-M approach adapted

to our model (1a)-(1b). This approach is essentially identical to our approach, except that it is based

on an initial estimate of σ2
t from a parametric GARCH(1,1)-M specification. The results are presented

in Table 3 and show that if the Conrad and Mammen (2008) approach is iterated until convergence,

it provides exactly the same results as our approach. This feature is expected asymptotically, but is

perhaps a bit surprising in finite samples. The result is a consequence of the fact that the parametric

variance function estimates are quite robust to mean function misspecification, as illustrated in Table

1. However, the extent to which this result generalizes to other in-mean functional forms is unknown.

To be sure, the asymptotic theory, which we establish for our approach, has not been established for

the case of an initial estimate of σ2
t based on a parametric specification.

3.3 Empirical Illustration

As a further illustration, we apply the semiparametric GARCH(1,1)-M estimator to the daily returns

on the Standard and Poors (S&P) 500 stock market index from January 2, 1990 to December 31,

2007, for a total of T = 4, 537 daily returns in the time series. The continuously compounded cum

dividend returns are defined as yt = log(pt + dt) − log(pt−1), where pt is the closing index level and

dt the dividend paid to the index on day t, obtained from CRSP.

In addition to the stock returns, we also collect daily data for the same period on a set of

four explanatory variables, denoted xt, that have been used in the literature as state variables for

conditional mean returns, namely, the dividend yield, term spread, default spread, and momentum.

The dividend yield or dividend-price ratio has been used for modelling conditional mean returns by
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Campbell and Shiller (1988a, 1988b), Fama and French (1988, 1989), and many others. We compute

it as the sum
∑

j>0 dt−j of dividends to the index over the 12 month period up to and including date

t− 1 divided by pt−1, so that it is known at the beginning of the time interval over which the return

yt is realized. The term spread or yield curve slope has been used for conditioning mean returns by

Campbell (1987) and Fama and French (1988, 1989), among others. It was also used by Campbell

(1987) to condition return variances, and in this capacity it may through the risk-return tradeoff be a

candidate regressor in the conditional mean equation, too, as an alternative to the GARCH-variance

σ2
t that enters through µ(·). The term spread is computed as the difference between the yields on the

10-year Treasury bond and the 12-month T-bill from CRSP. The credit or default spread has been

used for conditional mean returns by Fama and French (1988, 1989) and others, and for conditional

variances by Schwert (1989) and others. It is calculated as the difference between Moody’s seasoned

Baa-rated and Aaa-rated corporate bond yields from the homepage of the Federal Reserve Bank of

St. Louis. Finally, trend or momentum factors have been used by Keim and Stambaugh (1986),

Carhart (1997) and others. We define momentum as log pt−1 − log p, where p is the average index

level across the 12-month period ending on date t − 1.

[Table 4 about here]

For benchmarking purposes, we first estimate the parametric models, then turn to the new semi-

parametric estimator. Table 4 shows estimation results for the GARCH(1,1) model without variance-

in-mean effects but with xt entering linearly in the conditional mean specification. Model 1 in the

first column includes all explanatory variables in xt. The estimates of the parameters θ = (ω, γ, β)

in the variance equation are strongly significant, with β large (at .94) and the sum of γ and β close

to unity, which is standard. Dividend yield, default spread, and momentum all enter the conditional

mean return with significantly positive coefficients, whereas the term spread is insignificant. Models

2 through 6 in the remaining columns are for the cases where each regressor enters alone, or none

is used. The GARCH parameters in the variance equation are relatively robust to these reductions.

None of the regressors is significant if entered alone, consistent with the notion that the model is

misspecified if any of the regressors (except possibly the term spread) is left out.

[Table 5 about here]

Results from estimation of the parametric GARCH(1,1) model obtained by adding the conditional

variance to the mean equation in a linear fashion appear in Table 5, which is laid out as Table 4.

The variance equation parameters are largely unaltered by changing the mean specification. The

risk-return tradeoff parameter λ, the new parameter compared to Table 4, is significantly positive
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throughout the table, except in Model 3 (only term spread included from xt) which is not the

preferred model in the table. In Model 1 including all regressors (first column) dividend yield and

momentum enter significantly as in Table 4, but the default spread drops out when adding σ2
t to the

mean specification. Again, Model 1 is preferred within the table, and the model with M-effect (Table

5) is preferred over the pure GARCH (Table 4). The point estimate of λ in Model 1, at .13, would

suggest a moderate degree of relative risk aversion in the representative investor.

[Table 6 about here]

Table 6 shows the similar results when σt replaces σ2
t in the mean equation, and the findings are

similar: The risk-return tradeoff is positive and significant, the variance parameters θ are robust to

changes in the mean specification, and the preferred model retains in addition dividend yield and

momentum in the mean equation, whereas any regressor from xt is insignificant if entered individually.

Various information criteria (not reported) did not yield much guidance regarding whether it is the

conditional variance or its square root (i.e., conditional volatility) that enters the conditional mean

return.

[Table 7 about here]

Our new semiparametric estimator is applied next, and the results are shown in Table 7. The

model with all explanatory variables included (first column) is clearly preferred over that without xt in

the mean equation, thus verifying the empirical relevance of our generalization of the semiparametric

model to include exogenous linear regressors. In the preferred specification (Model 1), momentum

enters positively as in the parametric models, whereas the default spread now regains significance

(it was lost in the parametric case when entering the M-effect, moving from Table 4 to Table 5),

and dividend yield now gets a negative coefficient. The results make sense, i.e., higher credit or

default spread indicates increased risk and so required return is up, and similarly momentum is

expected to enter positively, whereas expected returns should be down if more is paid out in the

form of dividends, consistent with dividends being valued positively by investors. The empirical

findings are that the semiparametric approach makes a difference for inferences, and the received

estimates appear plausible. As before, the variance equation parameters are robust to changes in

mean specification, but using the semiparametric estimator we do recover significance of the trend

or momentum variable also when entered alone (Model 6 in Table 7).

[Figures 3 + 4 about here]

Figure 3 shows the estimated in-mean risk-return tradeoff function µ(·) from Model 1, Table 7,

along with 25% and 75% quantile curves (the argument σ2 is on the first axis). From the figure, the
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estimated effect is first flat, then convex. Also shown are the parametric fits (Model 1 from Tables

5 and 6) with either variance or volatility in-mean, producing linear or even concave curves. This

is strong evidence against the parametric specifications. The results using the new semiparametric

estimator show that it is large variance events that matter for conditional mean returns. Also shown

is the estimated curve using the approach proposed by Conrad and Mammen (2008), and this hovers

slightly above ours, in particular for medium to moderately high variance levels, although we do not

know whether the proposed estimator is consistent or if so how to draw inference.

[Table 8 about here]

For comparison Table 8 shows the parameter estimates using their method adapted to our model

specification, and here reported standard errors are based on the wild bootstrap as in Tables 4 through

7, again for comparison purposes. The results in Tables 7 and 8 are similar. Finally, dropping xt

(Model 2 in Tables 5 through 8) produces the alternative estimated curves shown in Figure 4. It

is clear that while the shape is similar, and the parametric specifications again are clearly rejected,

the level does change. Furthermore, the Conrad and Mammen (2008) estimated curve is now below

ours, showing that there is not always a simple systematic ordering of the two estimators.

All in all, the empirical illustration verifies the usefulness of our new semiparametric estimator.

The parametric alternatives are misspecified, the risk-return relation appears positive and convex in

shape, and certain economic conditioning variables are relevant in the mean specification.

4 Conclusions

We have proposed a new semiparametric estimator for an empirical asset pricing model with general

nonparametric risk-return tradeoff and a GARCH process for the underlying volatility. The estimator

does not rely on any initial parametric estimator of the conditional mean function, and this feature

facilitates the derivation of asymptotic theory under possible nonlinearity of unspecified form of

the risk-return tradeoff. Using the profile likelihood approach, we have shown that our estimator

under stated conditions is consistent, asymptotically normal, and achieves the semiparametric lower

bound, including in our generalized semiparametric model where we also allow for the presence of

exogenous variables in the mean equation. The sampling experiment provides evidence on finite

sample properties and comparisons with the parametric approach and the iterative approach with

parametric initial estimate proposed by Conrad and Mammen (2008). Note that in Theorems A1 and

B1, we also provide the first order asymptotic theory for a GARCH-M-type model where we know the

correctly specified mean function. To the best of our knowledge, this is a separate contribution, since
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the result is not available in the literature. Finally, the empirical application to daily stock market

returns suggests that the linear relation between expected return and variance from the literature is

misspecified, and this could be the reason for the disagreement on the sign and significance of the

relation.
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Appendix 1

Proof of Lemma 1 The proof of Lemma 1 follows Lemmas 7-9 in Severini and Wong (1992).

Define

ĝφ

(
σ2
)

=
1

ThT

∑

j

yjK

((
σ2 − σ2

j

)

hT

)
; gφ
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σ2
)

= µφ

(
σ2
)
f
(
σ2
)
,

and

f̂
(
σ2
)

=
1

ThT

∑

j

K

((
σ2 − σ2

j

)

hT

)
; fφ

(
yt, σ

2
)

= fφ0

(
yt|σ2

)
f
(
σ2
)
,

ĝ
(r)
φ (z) =

∂r

∂zr
ĝφ (z) ; g

(r)
φ (z) =

∂r

∂zr
gφ (z) .

Then, following Lemma 8 of Severini and Wong (1992), we have that

∣∣∣E
{
ĝ

(r)
φ (z)

}
− g

(r)
φ (z)

∣∣∣ = O
(
h2

T

)
,

µ̂φ

(
σ2
)

=

∑
j yjK

((
σ2 − σ2

j

)
/hT

)
∑

j K
((

σ2 − σ2
j

)
/hT

)

for any γ > 0 and

sup
φ

∥∥∥∥∥
∂k

∂ (σ2)k

∂j

∂φj
µ̂φ

(
σ2
)
− ∂k

∂ (σ2)k

∂j

∂φj
µφ

(
σ2
)
∥∥∥∥∥

= Op

(
T−v/(2v+4)h

−(k+(v+4)/(v+2))
T T γ + h2

T

)

as T −→ ∞ and for j = 0, 1, 2 and k = 0, 1.�

Proof of Theorem A1 The proof follows from Lemmas 2-4 that are given in the proof of Theorem

B1 below.�

Proof of Theorem B1 The proof of part (a) follows from Lemmas 2-4 below. The proof technique

for the QMLE in the parametric part (as in Jensen and Rahbek (2004a, 2004b)) utilizes the classic

Cramér type conditions for consistency and asymptotic normality (central limit theorem for the

score, convergence of the Hessian and uniformly bounded third-order derivatives); see e.g. Lehmann

(1999).
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4.1 First order derivatives

The first order derivatives are given by
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Also, note that it is possible to prove, following Lumsdaine (1996, Lemma 6, page 587) the asymptotic

negligibility of the initial value σ2
0. Then we have the following

Lemma 2 Under Assumption A, and with the expressions of the first order derivatives evaluated

at the true parameters,

1√
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)
,
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with µi = E (β0/ (γ0ε
2
t + β0))

i
, i = 1, 2 as T −→ ∞.

Proof of Lemma 2 We have by the law of iterated expectations that E (s1t|It−1) = E (s2t|It−1) =

E (s3t|It−1) = 0. Also, we can show straightforwardly that

E |s1t| < ∞, E |s2t| < ∞, E |s3t| < ∞. (11)

Moreover, using the ergodic theorem,

1

T

T∑

t=1

E
(
s2
1t|It−1

)
=

1

T

T∑

t=1

ζ

4

(
∂σ2

t

∂ω

σ2
t

)2

+
1

T

T∑

t=1

(
∂µφ(σ2

t )
∂ω

)2

σ2
t

p→ ζ

4ω2
0

+ C1 > 0,

1

T

T∑

t=1

E
(
s2
2t|It−1

)
=

1

T

T∑

t=1

ζ

4




∂σ2
t

∂γ

σ2
t




2

+
1

T

T∑

t=1

(
∂µφ(σ2

t )
∂γ

)2

σ2
t

p→ ζ

4γ2
0

+ C2 > 0,

1

T

T∑

t=1

E
(
s2
3t|It−1

)
=

1

T

T∑

t=1

ζ

4




∂σ2
t

∂β

σ2
t




2

+
1

T

T∑

t=1

(
∂µφ(σ2

t )
∂β

)2

σ2
t

p→ ζ (1 + µ1)µ2

4β2
0 (1 − µ1) (1 − µ2)

+ C3 > 0.

We use the central limit theorem in Brown (1971) and the ergodic theorem (as in Lumsdaine (1996,

page 594, proof of Theorem 3). The Lindeberg type condition also follows as in Jensen and Rahbek

(2004a, 2004b). This completes the proof of Lemma 2.�
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4.2 Second order derivatives

The second order derivatives are given by
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Lemma 3 Under Assumption A, and with the expressions of the second order derivatives evaluated

at the true parameters
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Proof of Lemma 3 By the ergodic theorem (for simplicity we drop the subscript of the parameters

evaluated at the true values),
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and this concludes the proof of Lemma 3.�

30



4.3 Third order derivatives

With σ2
t = σ2

t (φ) and for any i, j, k = ω, β, γ, the third order derivatives are given by
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We have now

Definition 1 Following Jensen and Rahbek (2004b), we introduce bounds on each parameter in φ0,

ωL < ω0 < ωU , βL < β0 < βU , γL < γ0 < γU ,
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and we define the neighborhood N (φ0) around φ0 as

N (φ0) = {φ : ωL ≤ ω ≤ ωU , βL ≤ β ≤ βU , γL < γ < γU} . (12)

Then

Lemma 4 Under Assumption A, there exists a neighborhood N (φ0) of the type given by (12) in

Definition 1 for which
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where w1t, ..., w9t and w10t are stationary and have finite moments, E (wit) = Mi < ∞, ∀i =

1, ..., 10. Furthermore 1
T

∑T
t=1 wit

a.s.−→ Mi, ∀i = 1, ..., 10.

Proof of Lemma 4 Following Jensen and Rahbek (2004b, Lemma 10), we start with part (a),
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are bounded by functions that have the desired

moments. By assumption A3,
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,
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∂i∂j∂k
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also are

bounded by functions that have the desired moments. Parts (b)-(j) of Lemma 4 follow by the same

arguments.�

Part (b) of Theorem B1 follows directly from Theorem A1.�

Proofs of Theorems A2 and B2 It follows from the asymptotic equivalence result provided in

Severini and Wong (1992) and stated in the following Corollary

Corollary 1 Under Assumptions A, B and C, maximizing the quasi log-likelihood function LT (φ, µ̂φ (·))
evaluated at µ̂φ (·) , is asymptotically equivalent to maximizing LT (φ, µφ (·)) , since it reaches the same

maximum as LT (φ, µφ (·)).

Proof of Corollary 1 It follows from the asymptotic equivalence result of Severini and Wong

(1992, page 1775).�

This completes the proof of Theorems A2 and B2.�

Proofs of Theorems A3 and B3 It follows from the proofs of Theorems A2 and B2 and with

the introduction of Assumption D.�
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Appendix 2: Figures and Tables

Figure 1: Parametric and semiparametric estimates for models N1, N2 and N3.
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Figure 2: Parametric and semiparametric estimates for models A1, A2 and A3.

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350

0.25

0.50

A1

True Function 
Efficient semiparametric estimator (Q50) 
Parametric estimator 

CI low (Q25) 
CI high (Q75) 

 

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350

0.1

0.3

A2
True Function 
Efficient semiparametric estimator (Q50) 
Parametric estimator 

CI low (Q25) 
CI high (Q75) 

 

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

A3
True Function 
Efficient semiparametric estimator (Q50) 
Parametric estimator 

CI low (Q25) 
CI high (Q75) 

 

35



Figure 3: Parametric and semiparametric estimates of the M-effects based on the model for S&P 500

with covariates included for the period Jan. 1, 1990 - Dec 31, 2007.
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Figure 4: Parametric and semiparametric estimates of the M-effects based on the model for S&P 500

without covariates for the period Jan. 1, 1990 - Dec 31, 2007.
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Table 1: MC results on precision of estimators: Parametric GARCH(1,1)-M approach

Q25 ω Q75 Q25 γ Q75 Q25 β Q75 Q25 µ Q75 Q25 λ Q75

N1 0.007 0.011 0.015 0.087 0.103 0.122 0.813 0.842 0.870 -0.023 -0.004 0.026 -0.094 0.056 0.181

N2 0.008 0.011 0.014 0.084 0.101 0.119 0.802 0.837 0.858 -0.019 0.002 0.026 0.342 0.475 0.625

N3 0.009 0.012 0.014 0.083 0.096 0.111 0.786 0.808 0.836 -0.020 0.003 0.025 0.813 0.976 1.107

A1 0.026 0.038 0.051 0.096 0.111 0.125 0.470 0.534 0.606 0.592 0.664 0.740 -0.899 -0.541 -0.225

A2 0.007 0.010 0.014 0.087 0.102 0.121 0.812 0.836 0.865 0.023 0.058 0.094 -0.168 0.065 0.279

A3 0.008 0.010 0.013 0.075 0.089 0.100 0.813 0.834 0.856 -0.049 -0.018 0.010 0.948 1.109 1.371

The number of Monte Carlo replications equals 200. Sample size is 1000
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Table 2: MC results on precision of estimators: Efficient semiparametric GARCH(1,1)-M

approach

Q25 ω Q75 Q25 γ Q75 Q25 β Q75

N1 0.008 0.011 0.015 0.081 0.097 0.114 0.820 0.845 0.872

N2 0.008 0.011 0.015 0.079 0.094 0.109 0.805 0.834 0.861

N3 0.009 0.012 0.014 0.077 0.087 0.104 0.788 0.811 0.845

A1 0.013 0.018 0.029 0.082 0.093 0.106 0.595 0.644 0.681

A2 0.008 0.011 0.014 0.077 0.092 0.109 0.814 0.841 0.868

A3 0.009 0.011 0.015 0.076 0.090 0.101 0.791 0.821 0.845

The number of Monte Carlo replications equals 200. Sample size is 1000

Table 3: MC results on precision of estimators: The Conrad and Mammen GARCH(1,1)-M

approach.

Q25 ω Q75 Q25 γ Q75 Q25 β Q75

N1 0.008 0.011 0.015 0.080 0.097 0.114 0.819 0.845 0.872

N2 0.008 0.011 0.015 0.079 0.094 0.109 0.806 0.833 0.862

N3 0.009 0.012 0.014 0.077 0.087 0.104 0.788 0.811 0.846

A1 0.013 0.018 0.029 0.082 0.093 0.106 0.594 0.644 0.681

A2 0.008 0.011 0.014 0.077 0.092 0.109 0.814 0.839 0.868

A3 0.009 0.011 0.014 0.076 0.090 0.101 0.791 0.821 0.845

The number of Monte Carlo replications equals 200. Sample size is 1000
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Table 4: Parametric GARCH(1,1)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ω 0.006*** 0.007*** 0.005*** 0.000 0.001 0.003*

(0.002) (0.002) (0.002) (0.000) (0.001) (0.002)

γ 0.055*** 0.054*** 0.056*** 0.061*** 0.078*** 0.068***

(0.009) (0.008) (0.008) (0.009) (0.010) (0.008)

β 0.939*** 0.937*** 0.940*** 0.944*** 0.931*** 0.930***

(0.010) (0.009) (0.009) (0.007) (0.008) (0.008)

µ -0.277*** 0.041*** 0.072*** -0.015 0.023 0.040***

(0.067) (0.012) (0.018) (0.054) (0.039) (0.016)

Term spread 0.007 -0.009

(0.012) (0.010)

Default spread 0.162** 0.090

(0.063) (0.069)

Dividend yield 3.229* 0.970

(1.894) (1.705)

Momentum 2.048*** 0.004

(0.241) (0.201)

Numbers in parentheses are wild bootstrap standard errors.

Sample: Jan 2. 1990 - Dec 31. 2007

*: significant at 10 percent level, two-sided (normal dist.).

**: significant at 5 percent level, two-sided (normal dist.).

***: significant at 1 percent level, two-sided (normal dist.).
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Table 5: Parametric GARCH(1,1)-M w. σ2
t in mean

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ω 0.007*** 0.007*** 0.006*** 0.004*** 0.006*** 0.008***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

γ 0.056*** 0.055*** 0.056*** 0.053*** 0.060*** 0.058***

(0.009) (0.008) (0.008) (0.007) (0.008) (0.008)

β 0.937*** 0.936*** 0.938*** 0.943*** 0.935*** 0.935***

(0.010) (0.009) (0.009) (0.008) (0.008) (0.008)

µ -0.387*** 0.011 0.048** -0.041 0.047 0.031

(0.069) (0.018) (0.023) (0.054) (0.051) (0.026)

λ 0.125*** 0.048** 0.038 0.054** 0.086*** 0.090***

(0.028) (0.022) (0.024) (0.025) (0.029) (0.028)

Term spread 0.009 -0.009

(0.012) (0.010)

Default spread 0.085 0.085

(0.066) (0.075)

Dividend yield 6.613*** -1.850

(2.065) (1.748)

Momentum 2.378*** -0.133

(0.241) (0.215)

Numbers in parentheses are wild bootstrap standard errors.

Sample: Jan 2. 1990 - Dec 31. 2007

*: significant at 10 percent level, two-sided (normal dist.).

**: significant at 5 percent level, two-sided (normal dist.).

***: significant at 1 percent level, two-sided (normal dist.).
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Table 6: Parametric GARCH(1,1)-M w. σt in mean

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ω 0.007*** 0.007*** 0.006*** 0.004** 0.006*** 0.008***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

γ 0.055*** 0.055*** 0.057*** 0.053*** 0.060*** 0.057***

(0.009) (0.008) (0.008) (0.007) (0.008) (0.007)

β 0.937*** 0.936*** 0.938*** 0.944*** 0.935*** 0.936***

(0.010) (0.009) (0.009) (0.008) (0.008) (0.008)

µ -0.442*** -0.024 0.023 -0.078 -0.027 -0.058

(0.078) (0.035) (0.040) (0.054) (0.074) (0.047)

λ 0.198*** 0.086** 0.065 0.097* 0.167*** 0.191***

(0.055) (0.043) (0.047) (0.051) (0.060) (0.055)

Term spread 0.008 -0.010

(0.012) (0.010)

Default spread 0.089 0.083

(0.067) (0.076)

Dividend yield 6.030*** -1.749

(2.063) (1.780)

Momentum 2.268*** -0.114

(0.240) (0.213)

Numbers in parentheses are wild bootstrap standard errors.

Sample: Jan 2. 1990 - Dec 31. 2007

*: significant at 10 percent level, two-sided (normal dist.).

**: significant at 5 percent level, two-sided (normal dist.).

***: significant at 1 percent level, two-sided (normal dist.).
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Table 7: Efficient semiparametric GARCH(1,1)-M

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ω 0.006*** 0.006*** 0.006*** 0.006*** 0.006*** 0.006***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

γ 0.053*** 0.055*** 0.055*** 0.054*** 0.054*** 0.054***

(0.009) (0.008) (0.008) (0.008) (0.007) (0.007)

β 0.940*** 0.939*** 0.940*** 0.940*** 0.940*** 0.940***

(0.010) (0.009) (0.009) (0.008) (0.008) (0.008)

Term spread 0.012 -0.011

(0.012) (0.012)

Default spread 0.288*** -0.065

(0.077) (0.076)

Dividend yield -2.041*** -0.599

(0.270) (2.018)

Momentum 1.971*** 1.897***

(0.263) (0.247)

Numbers in parentheses are wild bootstrap standard errors.

Sample: Jan 2. 1990 - Dec 31. 2007

*: significant at 10 percent level, two-sided (normal dist.).

**: significant at 5 percent level, two-sided (normal dist.).

***: significant at 1 percent level, two-sided (normal dist.).
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Table 8: Conrad and Mammen semiparametric GARCH(1,1)-M

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ω 0.006** 0.006** 0.007** 0.006*** 0.006** 0.006**

(0.003) (0.003) (0.003) (0.002) (0.003) (0.003)

γ 0.056*** 0.056*** 0.057*** 0.056*** 0.056*** 0.057***

(0.007) (0.007) (0.008) (0.007) (0.008) (0.008)

β 0.938*** 0.938*** 0.938*** 0.938*** 0.938*** 0.938***

(0.009) (0.008) (0.008) (0.007) (0.009) (0.009)

Term spread 0.012 -0.011

(0.015) (0.012)

Default spread 0.288** -0.066

(0.122) (0.074)

Dividend yield -2.042*** -0.565

(0.327) (1.853)

Momentum 1.971*** 1.893***

(0.307) (0.201)

Numbers in parentheses are wild bootstrap standard errors.

Sample: Jan 2. 1990 - Dec 31. 2007

*: significant at 10 percent level, two-sided (normal dist.).

**: significant at 5 percent level, two-sided (normal dist.).

***: significant at 1 percent level, two-sided (normal dist.).
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