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Abstract

This paper examines the limiting properties of the estimated parameters in

the random field regression model recently proposed by Hamilton (Econometrica,

2001). Though the model is parametric, it enjoys the flexibility of the nonparametric

approach since it can approximate a large collection of nonlinear functions and it

has the added advantage that there is no “curse of dimensionality.”Contrary to

existing literature on the asymptotic properties of the estimated parameters in

random field models our results do not require that the explanatory variables are

sampled on a grid. However, as a consequence the random field model specification

introduces non-stationarity and non-ergodicity in the misspecified model and it

becomes non-trivial, relative to the existing literature, to establish the limiting
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Ohio State and Purdue for very helpful comments. Notation follows Abadir and Magnus (2002). The

first author gratefully acknowledges the research support of CREATES (funded by the Danish National

Research Foundation).
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behavior of the estimated parameters. The asymptotic results are obtained by

applying some convenient new uniform convergence results that we propose. This

theory may have applications beyond those presented here. Our results indicate that

classical statistical inference techniques, in general, works very well for random field

regression models in finite samples and that these models succesfully can fit and

uncover many types of nonlinear structures in data.

Key words: Random fields regressions; Estimation; Inference; Asymptotics.

JEL Codes: C12, C13, C14, C45.

1 Introduction

Hamilton (2001) proposes a novel parametric regression model approach based on ran-

dom fields for estimating an unknown conditional mean function. The strength of this

approach is that it does not rely on any functional form being specified prior to esti-

mation. Random field models have wide applications in geostatistics, environmental,

ecological and agricultural sciences and have been used to model images, temperature,

wind, epidemiology, pollution etc. However, in all of these applications, the random field

model has been treated as the true data generating process. In most economic applica-

tions it would be safe to assume that the parametric random field almost surely would

be misspecified in the sense that the true data generating process is not a random field

process. However, despite of misspecification, Hamilton (2001, p. 550-551) shows that it

is possible to obtain a consistent estimator of the conditional mean function under very

general conditions. Furthermore, empirical evidence and evidence based on simulations,

see, e.g., Dahl (2002), Hamilton (2001,2003), Dahl and González-Rivera (2003a,b) and

Dahl and Hylleberg (2004) show that the random field approach is promising in terms of

having relatively better small sample fitting and forecasting abilities compared to a wide

range of parametric and nonparametric alternatives based on samples of macroeconomic

variables.

Allowing for misspecification in parametric regression analysis has become popular

in econometrics, since typically very limited information is available regarding the actual

data generating process. There are many approaches to analyzing, estimating and view-
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ing misspecified parametric models. Distributional misspecifications or quasi maximum

likelihood theory is perhaps the most common form of misspecification and originated

in econometrics from White (1982, 1994) and Gourieroux, Monfort and Trognon (1984).

In addition there is an extensive literature on so-called local misspecification of pop-

ulation moment conditions, where misspecification is present in finite samples but not

asymptotically, see, e.g., Gallant and White (1988), Hansen and Sargent(1993), Watson

(1993), Diebold et al. (1998), Hansen and Jagannathan (1997), and Kitamura (1997).

In this paper we restrict attention to non-local misspecification of the first conditional

population moment of the variable of interest, such that the nature of the misspecifica-

tion is considered to remain constant throughout the sample. White (1980b,1981,1982)

and Domowitz and White (1982) considered this type of misspecification and elegantly

derived large sample behavior of the least squares estimator. More recent work includes

Maasoumi and Phillips (1982), White (1994) and Hall and Inoue (2003) who derive

the limiting properties of the non-locally misspecified IV, QMLE and GMM estimators

respectively under standard regularity conditions.

In particular, the main purpose of this paper is to establish the large sample behavior

of the likelihood based parameter estimates in a possible functional form misspecified

random field regression model. An important common feature in most of the existing

work on the asymptotic theory is that the objective function (either the log likelihood or

the moment conditions) can be written in sums of a double array of stationary and ergodic

random variables, or at least random variables with bounded moment conditions, see for

example White (1994) or Davidson (1994). It then becomes a relatively straightforward

task to establish the limiting behavior of the estimated parameters using a battery of

law of large numbers and central limit theorems. Contrary to most (if not all) of the

existing literature on the asymptotic properties of the estimated parameters in (correctly

specified) random field models, our results are not based on an assumption that the

explanatory variables are sampled on a grid, which would be too restrictive for the

method to claim any empirical relevance in economics. However, under the general

settings of the random field model of Hamilton (2001), although the objective function,

which is the log likelihood function, can be written in sums of a double array of random

variables (as shown in subsection 2.3), these will not be stationary nor ergodic and do
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not have bounded moment conditions. Consequently, a new approach is proposed to

establish the required convergent results.

Our results not only provide theoretical/asymptotic descriptions of the properties

of the estimated parameters in Hamilton’s random field regression model, but many

of the results may also be useful in spatial statistical analysis where a wide range of

new and alternative parameterized covariance functions are used but where the limiting

properties of the estimated models are still unknown. It should be emphasized that

although convergence results are provided, the limiting functions typically cannot be

given any closed form solutions. As a result one should be careful interpreting, say, the

estimated parameters in any strict sense. Finally, it is worth mentioning that as a by-

product of the theoretical analysis, a new simple two-stage estimator is proposed, which

based on a limited set of simulation experiments seem to be as accurate, but much faster,

relative to Hamilton’s (2001) original proposed maximum likelihood estimator.

The paper is organized as follows: In Section 2 the random field regression model

is introduced and assumptions about the data generating process are made. Section

3 establishes consistency and asymptotic normality of the estimated parameters of the

possible misspecified random field regression. In Section 4 various finite sample properties

of the estimated parameters are illustrated based on a small simulation study. Finally,

Section 5 concludes.

2 Preliminaries

In this section, the random field regression model introduced by Hamilton (2001) is

presented. Generally, Hamilton’s notation is adapted with only minor modifications.

The required assumptions will also be discussed and motivated in this section.

2.1 The random field regression model

The basic idea underlying the flexible regression model approach suggested by Hamilton

(2001) is to view not only the endogenous variable as a realization of a stochastic process

but the functional form of the conditional mean function itself as the outcome of a random
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process. Let yt ∈ R, xt· ∈ Rk and consider the model

yt = µ(xt·) + ǫ̃t, (1)

where ǫ̃t is a sequence of independent N(0, σ2) distributed error terms and µ(·) : Rk → R

is a random function of a (k, 1) vector xt·, which is assumed to be deterministic.1 Let

the mean of the conditional distribution, i.e. µ(xt·), be represented as having a linear

part and a stochastic nonlinear part, i.e., as

µ(xt·) = xt·β + λm(g ⊙ xt·), (2)

where for any choice of z, m(z) is a realization from a Gaussian random field satisfying

m(z) ∼ N(0, 1), (3)

E(m(z)′m(w)) = H(h), (4)

and where h is defined as h ≡ 1
2 [(z−w)′(z−w)]

1
2 .2 The realization of m(·) is viewed as

being predetermined and independent of {x1·, ...,xT ·, ǫ̃1, ..., ǫ̃T }. The covariance matrix

H(h) is defined by

H(h) =





Gk−1(h, 1)/Gk−1(0, 1)

0

if h ≤ 1

if h > 1
, (5)

where Gk(h, r), 0 < h ≤ r is3

Gk(h, r) =

∫ r

h

(r2 − z2)
k
2 dz. (6)

1Without loss of generality it is assumed that all variables are demeaned.
2Here g is a k × 1 vector of parameters and ⊙ denotes element-by-element multiplication i.e. g⊙ xt·

is the Hadamard product. β is a (k, 1) vector of coefficients.
3Gk(h, r) can then be computed recursively from

G0(h, r) = r − h

G1(h, r) = (π/4)r2 − 0.5h(r2 − h2)1/2 − (r2/2) sin−1(h/r)

Gk(h, r) = −
h

1 + k
(r2 − h2)k/2 +

kr2

1 + k
Gk−2(h, r)

for k = 2, 3,....
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Closed form expressions for H(h), for k = 1, .., 5 can easily be obtained and are provided

in Hamilton (2001).45 This particular choice of covariance matrix perhaps seems some-

what restrictive. This is, however, not true. Hamilton (2001, p. 550-551) shows that

if the ”true” conditional mean function (data generating process) can be represented

as Taylor series expansions or Fourier sine series expansions then it can be estimated

consistently based on choice of H(h) given by (5). These results suggest that the class

of nonlinear functions that can be estimated consistently using (5) is quite flexible.

Since it is not possible to directly observe m(z) - for any choice of z - the functional

form of µ(xt·) cannot be observed. Hence, inference about the unknown parameters of

the model summarized by (β, λ, g, σ) must be based on observing the realizations of yt

and xt· only. For that purpose rewrite model (1) as

y = Xβ + ε, (7)

where y is a (T, 1) vector with tth element equal to yt, X a (T, k) matrix with tth row

equal to xt· and ε is a (T, 1) random vector with tth element equal to λm(g ⊙ xt·) + ǫ̃t

and ε ∼ N(0T , λ
2H + σ2IT ). To avoid identification issues and to simplify the analysis,

the shape parameters g in the random field model will be treated as fixed and focus will

be on deriving the limiting properties of the estimates of β (the parameters of the linear

part of the model), and (λ1, σ1) = (λ2, σ2) (the parameters of the nonlinear part of the

model). The following assumptions on the parameters entering the nonlinear part of (1)

are imposed:

Assumption 1 The parameter vector g = (g1, g2, ..., gk)′ in the random field model (1)

consists of predetermined constants. In particular, gi = 1

2
√

ks2
i

, for i = 1, . . . , k, where

s2i = 1
T

∑T

t=1(xti − x̄i)
2, and x̄i is the sample mean of the ith explanatory variable.

4The correlation between m(z) and m(w) is given by the volume of the intersection of a k dimensional

unit spheroid centered at z and a k dimensional unit spheroid centered at w relative to the volume of

a k dimensional unit spheroid. Hence, the correlation between m(z) and m(w) is zero if the Euclidean

distance between z and w is ≥ 2.
5The reader interested in a critical review on the choice of an appropriate covariance function is

referred to Dahl and González-Rivera (2003)
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Assumption 2 Let λ1 ∈ Γ0 and let θ = (λ1, σ1)
′ ∈ Θ ⊆ R2

+, where Θ is a compact

parameter space. In particular, there exist sufficiently small but positive real numbers

θ = (λ, σ)′, and sufficiently large positive real numbers θ = (λ, σ), such that λ1 ∈ [λ, λ]

and σ1 ∈ [σ, σ].

Assumption 1 is adapted from the Bayesian analysis in Section 5 in Hamilton (2001), and

corresponds to fixing the parameters at the mean of a ”prior” log-normal distribution.

Assumption 2 is almost similar to Assumption 5 in McDonald and Newey (1988) where θ

is referred to as the distributional parameter vector. Assumption 2 is not very restrictive

in the present context and is very common in large sample theory. It is important to

notice that Assumption 2 exclude the case where the actual data is generated from a

linear model, since λ1 = 0 cannot be an element of Θ. This restriction turns out to

simplify many proofs considerably. In addition, when λ1 = 0, the limiting behavior of

the estimated parameters has already been established by White (1980b) and Hamil-

ton (2001). In the next section, we will show that the parameter space of β, denoted B,

is also compact implying that the product space Θ ×B is compact.

2.2 The data generating process

We make the following definitions and assumptions regarding the explanatory variables

and the actual data generating process.

Definition 1 The deterministic sequence {xt·},with xt· ∈ A and A a closed rectangular

subset of Rk, is said to be dense for A uniformly on the compact space A×Γ0 ⊂ Rk ×R

if there exists a continuous f : A→ R such that f(x) > 0 for all x and such that for any

ǫ > 0, and any continuous φ : A×A×Γ0 → R there exists an N such that for all T ≥ N,

sup
A×Γ0

∣∣∣∣∣
1

T

T∑

s=1

φ(xt·,xs·;λ1) −
∫

A

φ(xt·,x;λ1)f(x)dx

∣∣∣∣∣ < ǫ

Definition 2 Let A, Γ0 and φ(·) be given as in Assumption 2 and Definition 1 and let

l : A × Γ0 → R be an arbitrary continuous function. We say that l(·) is representable
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with respect to φ(·) if there exists a continuous function f : A→ R such that

l(xt·;λ1) =

∫

A

φ(xt·,x;λ1)f(x)dx

Assumption 3 Let xt· be dense according to Definition 1 and let yt be generated

according to yt = ψ(xt·) + et, for t = 1, 2, ..., T , where ψ : Rk → R is given as ψ(xt·) =

xt·β + l(xt·;λ1) and l(xt·;λ1) denotes a representable function given by Definition 2.

Finally, let et be an i.i.d. Gaussian distributed error term with zero mean and variance

σ2
e .

Note that l(xt·;λ1) can be any smooth nonlinear function of xt·. By defining the sample

version of l(·) as

lT (xt·;λ1) =
1

T

T∑

s=1

φ(xt·,xs·;λ1),

it follows directly from Assumption 3 that lT (xt·;λ1)
p−→ l(xt·;λ1) uniformly on A ×

Γ0 for ∀t, hereby providing a necessary link between the approximating random field

model and the true data generating process. Hamilton (2001) discusses only pointwise

convergence of lT (·) to l(·), in xt· for ∀t. By Assumption 3 we require uniform convergence

in xt· which essential implies that l(·) can be replaced by lT (·) asymptotically, simplifying

many of the proofs. It can be argued that denseness is in fact a weaker condition than

i.i.d. and that the assumption will generally be satisfied for most exogenous/endogenous

explanatory variables applied in econometrics/economics. Assumption 3 implies that

all probability measures can be conditioned on X, that is, we can take X as if it was a

matrix of constants. However, we believe that the results would apply directly to the case

where xt· are i.i.d. random variables (see also Hamilton’s (2001) discussion). In addition

we make the following standard assumptions regarding the existence of the second order

moments.

Assumption 4 Let Ψ (X) = (ψ(x1·), ..., ψ(xT ·))
′

where ψ(xt·) is defined as in As-

sumption 3. Assume: i . lim
T→∞

1
T
X ′X converges to a finite nonsingular matrix. ii .

lim
T→∞

1
T
Ψ (X)′Ψ (X) converges to a finite scalar uniformly in β. iii . lim

T→∞

1
T
X

′
Ψ (X)

converges to a finite (k,1) vector uniformly in β.
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The conditions of Assumption 4 are essentially the requirements needed to ensure con-

vergence and asymptotic normality of the non-locally misspecified OLS estimator, see,

e.g., White (1980b).

2.3 The likelihood function

From (7) it is easily seen that the random field model can be viewed as a GLS model

with non-spherical covariance function λ1H + σ1IT and joint log likelihood function

ℓ(λ1, σ1,β;X,y) = −T
2

ln(2π) − 1

2
ln |λ1H + σ1IT | (8)

−1

2
(y −Xβ) (λ1H + σ1IT )

−1
(y −Xβ) .

For three reasons the parameters of the linear and nonlinear part will be treated differ-

ently analytically . First, because the main interest is the large sample behavior of the

estimates of θ. Secondly, because the choice of the linear (or perhaps a known nonlinear)

part can be done quite flexibly, as it will not affect the asymptotic representability of

lT (·). Thirdly, because it appears that the estimation of β and θ can be done faster

and with good numerical precision separately in a two-stage procedure. However, before

turning to estimation, an analytically more convenient representation of the likelihood

function is needed and for that purpose the following lemmas and notation become useful

(all proofs are provided in the mathematical appendix):

Lemma 1 Let λ1H + σ1IT be the covariance matrix of the random field model given

by (1). Then there exists an orthogonal matrix P , such that PP ′ = P ′P = IT and

λ1H + σ1IT = P ′V P , where V = diag(λ1h1 + σ1, ..., λ1hT + σ1), and 0 ≤ h1 ≤ . . . ≤
hT are the eigenvalues of H . The column vectors of P ′ are the eigenvectors of H ,

corresponding to ht, for t = 1, . . . , T .

Lemma 2 Let ht be defined as in Lemma 1. For any sample X of sample size T ,
∑T

t=1 ht = T.
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Definition 3 Let P and Ψ (X) be defined as in Lemma 1 and Assumption 4 respec-

tively. Define i. v = (v1, . . . , vT )′ = y − X ′β, ii. w = (w1, . . . , wT )′ = Pv, iii.

c = (c1, . . . , cT )′ = Ψ (X) −Xβ. iv. b = (b1, . . . , bT )′ = Pc.

Lemma 2 provides an upper bound on ht, which is equal to the sample size. It furthermore

states, that the sample and population average of ht always will be identical and equal to

unity. Lemma 1 and Definition 3 make it possible to write the log likelihood as a sample

average. To see this note that Definition 3 implies that v′v = w′w and by using Lemma

1 the last term of (8) can be rewritten as

1

2
v′ (λ1H + σ1IT )

−1
v =

1

2
tr
(
v′ (P ′V P )

−1
v
)

(9)

=
1

2
tr
(
Pvv′P ′V −1

)

=
1

2

T∑

t=1

w2
t (λ1ht + σ1)

−1.

Similarly, the second term of (8) can be written as

−1

2
ln |λ1H + σ1IT | = −1

2
ln |P ′V P |

= −1

2
ln |V |

= −1

2

T∑

t=1

ln(λ1ht + σ1). (10)

Consequently, by ignoring the constant term and after dividing by T, (8) can be repre-

sented as

QT (θ,β) = − 1

2T

T∑

t=1

qt(θ,β), (11)

where qt(θ,β) = log(λ1ht + σ1) +w2
t (λ1ht + σ1). Notice that wt, for each t = 1, 2, ..., T,

depends on the entire sample, i.e., {yt,xt·}T
t=1 . However, due to normality of vt (As-

sumption 3) and since var (w) = P ′ var (v)P = σ2
eIT , qt(θ,β) for t = 1, 2, ..., T will be

independent but not identical distributed random variables. The representation of the

log likelihood function given by (11) shows that it is a sum of double array independent
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random variables, discussed by, for example, White (1994) and Davidson (1994) . We

have not been able to find any Law of Large Number theorem directly applicable to (11),

mainly because the eigenvalues as well as the moments of wt generally are unbounded

with unknown memory properties. As a consequence we will develop some new tools

to establish the asymptotic properties in the following section and we suspect that this

theory may have applications beyond the present one.

3 Asymptotics

The asymptotic theory of maximum likelihood estimators associated with random field

models are particularly rich in the literature on spatial statistical analysis. A gen-

eral treatment of the limiting behavior of the maximum likelihood estimator that ap-

plies to correctly specified random fields is provided by Sweeting (1980). However, as

pointed out by Ying (1991, 1993) and Mardia and Marshall (1984), the elementary condi-

tions/assumption of Sweeting’s results are typically very hard to verify/justify. However,

by applying Sweeting’s results and assuming that sample points are taken on a grid with

fixed spacing (such that as the sample size increases, the sampling domain also increases)

Mardia and Marshall (1984) are able to establish consistency and asymptotic normality

of the estimated parameters based on the correctly specified spherical random field re-

gression model similar to Hamilton’s model for k = 3. Ying (1991,1993) establishes the

asymptotic properties of maximum likelihood estimator when the explanatory variables

are sampled on a dense and compact grid using an Ornstein-Uhlenbeck type covariance

function. Ying’s result are very specific to the choice of covariance function since his

results depends critically on being able to write the determinant and the inverse of the

covariance matrix in an explicit form. Van der Vaart (1996) shows asymptotic efficiency

of the maximum likelihood estimator using Ying’s (1991,1993) setup. Loh and Lam

(2000), and ABT and Welch (1998) partially generalize the findings by Ying and Van der

Vaarts by including a broader class of covariance functions than the Ornstein-Uhlenbeck

covariance function. The class of covariance functions they consider all satisfy the so-

called ”product correlation rule”, which as in Ying’s work makes it feasible to calculate

simple analytical expression for the inverse and the determinant of these matrices. In
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the context of misspecification analysis, Currin et. al. (1991), Sacks, Schiller, and Welch

(1989), and Sacks, Welch, Mitchell, and Wynn (1989) use the random field model to

study deviations of the data generating processes from a purely deterministic data gen-

erating process in a computer experiment design. They assume that the deterministic

function is equal to the first moment of the random field model implying that deviations

from the deterministic data generating process would be equivalent to functional mis-

specification of the variance. Unfortunately, the main interest in these paper is not on

the asymptotic properties of the estimated parameters and their results are not directly

applicable here.

It is clear that the results from the existing literature cannot be employed directly in

the present context. Many of the results cited above, either on model misspecification

or in terms of the class of covariance function used, need to be generalized in order to

study the asymptotic properties of the estimated parameters in Hamilton’s random field

regression model. Furthermore, we will not be willing to restrict the explanatory variables

to be sampled on a grid, and will consider data on the variable of interest to be generated

from a wide range of smooth nonlinear functional forms. We will generalize some of the

convergence results in Hamilton (2001) and show that these results are basically design

free in terms of the choice of covariance functions. Many of the asymptotic results will

be based on a new theorem we provide which links uniform convergence of a sequence of

functions to uniform convergence of the associated sequence of the differentiated function

(see, Theorem 5). Under a set of very week (standard) regularity condition this result

enables us to establish asymptotic consistency and normality of the estimated parameters

in a very broad class of misspecified random field regression models.

3.1 Consistency

Contrary to Hamilton (2001), we suggest estimating the parameters of the linear part of

the model by OLS in a first stage, initially ignoring the possible nonlinear part of the

model. This approach is well known from estimation theory of the general GLS model.

In the present context the two-stage procedure can furthermore be motivated by the

following lemmas.
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Lemma 3 Let the Assumptions 1 − 4 hold. Then the parameter space Θ ×B ⊆ Rk+2

is compact.

Lemma 4 Let the assumptions of Lemma 3 hold. Then the OLS estimator β̂ is con-

sistent with respect to a fixed population magnitude β∗ ∈ B ⊆ Rk given as

β∗ =

(
lim

T→∞

1

T
X ′X

)−1

lim
T→∞

1

T
X

′

Ψ (X), (12)

where B is a compact parameter space.

Accordingly, the first step OLS estimator will asymptotically provide a consistent esti-

mate of β∗ under rather weak conditions. Note that for the consistency result of Lemma

4 to hold, the parameter space B needs to be compact. However, under the assumptions

of Lemma 3 this is true by Lemma A1 in McDonald and Newey (1988). To prove consis-

tency of θ we will use the following very general theorem suggested by Wooldridge (1994),

and reported below for convenience, where β is treated as a ”nuisance” parameter:

Theorem 1 Let Θ and B be sets in finite-dimensional real spaces and let {QT (θ,β)}T

be the sequence of objective functions defined by (11). Then θ̂ = arg max QT (θ,β∗)

satisfies θ̂
p→ θ∗ if the following conditions hold: i. Θ and B are compact sets. ii.

β̂
p→ β∗ ∈ int(B). iii. QT (θ,β) is a continuous measurable function for ∀T . iv.

∃Q∗ (θ,β) such that QT (θ,β)
p−→ Q∗ (θ,β) as T → ∞ uniformly on Θ × B. v. There

exists a unique maximizer θ∗ ∈ int(Θ) of Q∗ (θ,β∗).

Note that conditions i. and ii. already have been established by Lemma 3 and 4, and

condition iii. is satisfied trivially. The proof of the existence of a function Q∗ (θ,β) such

that QT (θ,β)
p−→ Q∗ (θ,β) as T → ∞ uniformly on Θ × B can be completed in the

following two steps. First, existence of a non-stochastic sequence of functions Q∗
T (θ,β)

is established, where Q∗
T (θ,β) depends upon the sample X, such that, QT (θ,β)

p−→
Q∗

T (θ,β), as T → ∞ uniformly in X on Θ × B. Secondly, a unique non-stochastic

function Q∗ (θ,β) is shown to exist, that does not depend upon the sample X, where

Q∗
T (θ,β)

p−→ Q∗ (θ,β) uniformly in X on Θ × B for T → ∞. To complete the second
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step a generalization of Theorem 4.4 p. 549 in Hamilton (2001) is needed, regarding the

convergence of the continuous covariance function

pt (z,w;θ) = E ((ξt (z) − µ (z)) (ξt (w) − µ (w))) , (13)

where ξt (xt·) = E (µ (xt·) |yt,xt·, yt−1,xt−1·, ...). Theorem 4.4 in Hamilton is obviously

essential for his proof of consistency of the random field estimator of the conditional

mean function, however, pointwise convergence of the covariance function pt(·) as in

Hamilton (2001) turns out not to be sufficient for establishing the existence of Q∗ (θ,β)

uniformly on Θ × B. Using the conditioning rules of multivariate normal random vari-

ables, pt (z,w;θ) given by (13) can be expressed as a functional recursion which enables

us to establish its limit as T grows to infinity.

Theorem 2 Under Assumptions 2 and 3, let pt : A × A → R for t = 0, 1, 2, ..., T, be

defined as

pt(z,w;θ) = pt−1(z,w;θ) − pt−1(z,xt·;θ)pt−1(z,xt·;θ)

pt−1(xt·,xt·;θ) + σ1
, (14)

where p0(z,w;λ1) is a semi-positive continuous (covariance) function, i.e., p0(z,w;λ1) =

λ1 E (m (z)m (w)). Then, for all (z,w) ∈ A2

lim
T→∞

sup
Θ×A2

pT (z,w;θ) → 0. (15)

Theorem 2 establishes that pt (z,w;θ) converges uniformly to zero on A2×Θ as T → ∞
under a fairly weak set of conditions. This result is very important since it enable us to

establish consistency of the estimated conditional mean function on A2 × Θ.

Theorem 3 Let p0 : A × A → R2 and φ̃ : A → R be arbitrary continuous functions

with p0(·, ·;λ1) semi-positive. For a given sample of T observations, construct

lT (x;λ1) =
1

T

T∑

t=1

p0(x,xt·;λ1)φ̃(xt·). (16)
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Next, consider a sequence of samples of size T = 1, 2, ...,where the T th sample {yt,xt·}T
t=1

is generated from (by Assumption 3)

yt = xt·β + lT (x;λ1) + et, (17)

E (etes) =





σ2
ǫ t = s

0 otherwise
, (18)

for t = 1, 2, ..., T . Let ξT (z) and pT (z,w;θ) be generated from the recursions

ξt(z) = ξt−1(z) −
pt−1(z,xt·;θ) (yt − ξt−1(xt·))

pt−1(xt·,xt·;θ) + σ1
, (19)

and (14) respectively, starting with p0(z,w;λ1) for σ1 > 0. If {xt·} is dense according

to Definition 1, then

lim
T→∞

1

T

∑
E [ξt(xt·) − xt·β − lT (xt·;λ1)]

2
= 0, (20)

uniformly on Θ ×A.

This theorem generalizes Theorem 4.7 in Hamilton (2001) as it guarantees uniform con-

vergence of the estimated conditional mean function. By varying φ̃(·), Theorem 3 de-

scribes the general class of nonlinear models for which it is possibly to obtain a consistent

estimator of ψ(xt·) using the random field regression model in (1) with covariance func-

tion p0(·, ·;λ1) used to start the iterations (14) and (19). The result given by equation

(20) will be crucial in verification of condition iv. in Theorem 1. The next lemma and

the following Theorem 4 defines the non-stochastic sequence Q∗
T (θ,β) as the expectation

of QT (θ,β) and gives the conditions for the uniform convergence of QT (θ,β) .

Lemma 5 Let Assumptions 1 - 4 hold and consider QT (θ,β) as defined in (11). Then,

E (QT (θ,β)) = Q∗
T (θ,β) , (21)

for

Q∗
T (θ,β) = − 1

2T

T∑

t=1

log (λ1ht + σ1) −
1

2T

T∑

t=1

σ2
e + b2t

λ1ht + σ1
, (22)

where ht and bt are defined in Lemma 1 and by Definition 3 respectively.
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Theorem 4 Let Assumptions 1 - 4 hold and let QT (θ,β) and Q∗
T (θ,β) be given by

(11) and (22) respectively. Then

lim
T→∞

sup
Θ×B

|QT (θ,β) −Q∗
T (θ,β)| p−→ 0. (23)

Theorem 4 completes the first step in verifying condition iv. of Theorem 1. To complete

the second step, the following two propositions (derived from Theorem 3) are essential.

Proposition 1 Let Assumptions 1-4 hold and let bt and ht be defined as in Lemma 5.

Then,

lim
T→∞

sup
Θ×B

1

T

T∑

t=1

b2t
(λ1ht + σ1)2

→ 0, (24)

lim
T→∞

sup
Θ×B

1

T

T∑

t=1

h2
t

(λ1ht + σ1)2
→ 0. (25)

Proposition 2 Define RT ≡ 1
T

∑T

t=1 ln(λ1ht + σ1), UT ≡ 1
T

∑T

t=1
b2t

λ1ht+σ1
, Ri.j

T =

∂i+jRT

(∂λ1)i(∂σ1)j , and U i.j
T = ∂i+jUT

(∂λ1)i(∂σ1)j . Furthermore, denote Ri.j = lim
T→∞

supΘR
i.j
T and

U i.j = lim
T→∞

supΘ×B U
i.j
T . Given the assumptions of Proposition 1, R2.0, R1.1, R2.1, R1.2,

U0.1, U0.2 and U1.1 all equal zero.

Using the notation introduced in Proposition 2, Q∗
T (θ,β) can be expressed as

Q∗
T (θ,β) = −1

2

(
RT + σ2

eR
0,1
T + UT

)
. (26)

To determine the existence of the limit of Q∗
T (θ,β) we therefore need to determine the

existence of the limit of RT , R
0,1
T and UT . Using Propositions 1 and 2 we can establish

the following lemmas.

Lemma 6 Let RT ,Ri.j
T ,UT ,U i.j

T be defined as in Proposition 2 and consider the collec-

tions of sequences ̥I.J , defined as

̥I.J =
{
{RT }T ,

{
Ri.j

T

}

T
, {UT }T ,

{
U i.j

T

}

T
; i = 0, 1, ...I, j = 0, 1, ..., J

}
. (27)

Given the assumptions of Proposition 1, each element of ̥4.4 is composed of a sequence

of uniformly bounded functions on Θ ×B.
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Lemma 7 Let ̥I.J be defined as in Lemma 6. Given the assumptions of Proposition

1, each element of ̥3.3 is composed of a sequence of equicontinuous functions on Θ×B.

Theorem 7.16 in Rudin (1976), states that uniform convergence of a sequence of functions

implies the convergence of the sequence of the integrated functions. But the convergence

of a sequence of the differentiated functions is not guaranteed. However, under some

mild equicontinuity conditions, this result can be shown to hold. We have the following

result.

Theorem 5 Let {fn(x, y)}n and {Dxfn(x, y)}n be two equicontinuous sequences of

functions on a compact set X ×Y ⊂ R2. Then, if {fn(x, y)}n converges pointwisely, both

{fn(x, y)}n and {Dxfn(x, y)}n converges uniformly. In particular, if limn→∞ fn(x, y) =

f0(x, y), then limn→∞ Dxfn(x, y) = Dxf0(x, y) uniformly on X × Y.

The main challenge in showing the convergence of RT , R
0,1
T and UT is how to handle the

eigenvalues ht. As already mentioned very little is known about the limiting properties of

ht. Furthermore, since the eigenvalues will change not only with t, but also with T all the

summands in the elements of ̥I.J will change with the sample size. This prevents the

use of the standard convergence results on sums of infinite sequences. Based on Lemmas

6 and 7, Theorem 5, and Theorem 7.16 in Rudin (1976) the following theorem can be

establish.

Theorem 6 Let the assumptions of Proposition 2 hold. If just a single element in each

of the two collections of sequences given as

{
{RT }T ,

{
Ri.j

T

}

T
; i = 0, 1, ...4, j = 0, 1, ..., 4

}
, (28)

and {
{UT }T ,

{
U i.j

T

}

T
; i = 0, 1, ...4, j = 0, 1, ..., 4

}
, (29)

converges uniformly on Θ×B , then each element of ̥3.3 converges uniformly on Θ×B.

All the terms of Q∗
T (θ,β) belongs to ̥3.3 and since more than one of the elements

converge by Proposition 2 there must exists a limiting function Q∗(θ,β), by Theorem
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6 such that limT→∞Q∗
T (θ,β) = Q∗(θ,β) uniformly on Θ × B. Consequently, we can

conclude that condition iv. in Theorem 1 is satisfied under the Assumptions 1 - 4.

3.1.1 Identifiable uniqueness of θ

Finally, we need to justify the existence and uniqueness of the maximizer θ∗ of Q∗(θ,β),

which is last condition in Theorem 1. In the standard likelihood framework under sta-

tionarity and ergodicity, the information inequality, see, e.g., Lemma 2.2 in Newey and

McFadden (1994) usually guarantees this identification condition, under most distribu-

tional assumptions. However, in case of misspecification, the identification condition

does not seem trivial. Typically identifiable uniqueness is simply assumed under the

claim that it is a weak condition. In the random field regression model it is possible to

be more explicit.

Theorem 7 Let the assumptions of Proposition 1 hold. If σ2
e >

1
2σ1, then Q∗(θ,β∗) =

lim
T→∞

Q∗
T (θ,β∗) is concave uniformly on Θ ×B.

Theorem 7 completes the proof of the validity of the conditions of Theorem 1 implying

that under Assumptions 1 − 4, θ̂ and β̂ will be consistent with respect to θ∗ and β∗. It

is not possible to check the condition of Theorem 7 prior to estimation. However, under

Assumptions 1 − 4 a consistent estimator of σ2
e can be obtained according to

σ̂2
e =

1
T
µ̂′µ̂

σ̂1R̂0.2
T

, (30)

where µ̂ = y −
(
Xβ̂T + λ̂1H

′
(
λ̂1H + σ̂1IT

)−1 (
y −Xβ̂T

))
and R̂0.2

T = R0.2
T

(
θ̂
)
, as

shown by Qin, Dahl and González-Rivera (2004) . Hence post estimation we recommend

checking the condition σ̂2
e >

1
2 σ̂1 in order to get an indication as to whether θ is identified

in the sample or not.

3.2 The asymptotic distribution of θ̂

The limiting distribution of β̂ under Assumptions 1 - 4 has already been provided by

White (1980b), and the main focus of this section will be to establish the asymptotic
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distribution of the second stage estimator of the vector θ. Following Proposition 2,

we define RT = 1
T

∑T
t=1Rt, UT = 1

T

∑T
t=1 Ut, etc. Note that wt ∼ IN(bt, σ

2
e), for

t = 1, . . . , T . Accordingly, wt = bt + σezt, where zt is i.i.d. N(0, 1) for ∀t, T . Then (22)

can be written as

QT (θ,β) = − 1

2T

T∑

t=1

log(λ1ht + σ1) −
1

2T

T∑

t=1

(bt + σezt)
2

λ1ht + σ1

= − 1

T

T∑

t=1

(
1

2
Rt +

1

2
Ut + σebtR

0,1
t zt +

1

2
σ2

eR
0,1
t z2

t

)
, (31)

with associated gradient vector

DθQT (θ,β) =



 − 1
T

∑T
t=1[

1
2R

1,0
t + 1

2U
1,0
t + σebtR

1,1
t zt + 1

2σ
2
eR

1,1
t z2

t ]

− 1
T

∑T

t=1[
1
2R

0,1
t + 1

2U
0,1
t + σebtR

0,2
t zt + 1

2σ
2
eR

0,2
t z2

t ]



 . (32)

In relation to the first stage estimation, we similarly define

mT (β) = − 1

T

T∑

t=1

(yt − xt·β)2, (33)

as the objective function of the OLS estimation with gradient vector

DβmT (β) =
2

T

T∑

t=1

xt·(yt − xt·β). (34)

Assume that x·i denotes the ith column of X and define a·i = Px·i, for ∀i = 1, . . . , k

where P is as defined in Lemma 1. Notice that
∑T

t=1 atiatj = a·i
′a·j = x·i

′P ′Px·j =

x·i
′x·j =

∑T

t=1 xtixti for ∀i, j = 1, . . . , k. Using this notation we can rewrite (34) as

DβmT (β) =
2

T
(a′

·1w, . . . ,a
′
·kw)′ (35)

=
2

T
(

T∑

t=1

at1 (bt + σezt) , . . . ,

T∑

t=1

atk (bt + σezt))
′. (36)

Let ζ = (θ′,β′)′. The joint gradient vector can then be written as

gT (ζ) = (DθQT (θ,β)′,DβmT (β)′)′ (37)

=
1

T

T∑

t=1

gt(θ,β), (38)

19



where

gt(θ,β) =




− 1
2R

1,0
t − 1

2U
1,0
t − σebtR

1,1
t zt − 1

2σ
2
eR

1,1
t z2

t

− 1
2R

0,1
t − 1

2U
0,1
t − σebtR

0,2
t zt − 1

2σ
2
eR

0,2
t z2

t

at1bt + σeat1zt

...

atkbt + σeatkzt




. (39)

Furthermore, notice that

E (gt(θ,β)) =




− 1
2R

1,0
t − 1

2U
1,0
t − 1

2σ
2
eR

1,1
t

− 1
2R

0,1
t − 1

2U
0,1
t − 1

2σ
2
eR

0,2
t

at1bt
...

atkbt




,

hence

gT (ζ) =
1

T

T∑

t=1

(gt(θ,β) + E (gt(θ,β))) , (40)

where

gt(θ,β) = σe




−R1,1
t

[
btzt + 1

2σe

(
z2

t − 1
)]

−R0,2
t

[
btzt + 1

2σe

(
z2

t − 1
)]

at1zt

...

atkzt




.

Note that gt(θ,β) is an independent (k+2)− dimensional random vector with E (gt(θ,β)) =

0 and cov (gt(θ,β)) = Σt.
6 Using Hoadley’s (1971) Theorem A.6 (p. 1990), the asymp-

totic distribution of gT (ζ) can now be established.

Theorem 8 Let gT (θ,β) be given by equation (40). Under Assumptions 1 - 4,
√
TgT (θ∗,β∗)

d−→ N(0,Σ∗) as T → ∞, whereΣ∗ = Σ (θ∗,β∗) = [Σ∗
11 Σ∗

12 : Σ∗′
12 Σ∗

22]

6For an explicit expression for Σt, see the proof of Theorem 8.
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and

Σ∗
11 =


 0 0

0 1
12σ

4
eR

0,4


 ,

Σ∗
22 = σ2

e lim
T→∞

1

T
X ′X,

Σ∗
12 = O.

Theorem 9 Define ζ = (θ′,β′)′ and let QT (ζ) and mT (β) be given by (31) and (33)

respectively. Under Assumptions 1 - 4 the following conditions are satisfied: i. ζ̂T
p−→ ζ∗.

ii. QT (ζ) andmT (β) are twice continuously differentiable. iii.
√
TgT (ζ∗)=(

√
TDθQT (ζ∗)′,

√
TDβmT (β∗)′)′ converges to a normal random variable N(0,Σ∗) in distribution. iv.

D2
θθQT (ζ), and D2

ββmT (β) converges to nonsingular matrices for any ζ in a neighbor-

hood of ζ∗. Under the additional assumption, that D2
θβQT (ζ) converges to a nonsingular

matrix for any ζ in a neighborhood of ζ∗ conditions i. - iv. imply that

√
T
(
ζ̂T − ζ∗

)
d−→ N(0,M∗), (41)

where M∗ = G∗−1Σ∗G∗−1, for G∗ = limT→∞GT (ζ∗), and

GT (ζ) = DζgT (ζ)

=


 D2

θθQT (ζ) D2
θβQT (ζ)

0 D2
ββmT (β)


 .

In particular, as the primary interest is in θ, notice that,

√
T (θ̂T − θ∗) d−→ N(0,M∗

11),

where M11 is the upper left corner of M , with

M∗
11 = (D2

θθQ
∗(ζ∗))−1Σ∗

11(D
2
θθQ

∗(ζ∗))−1 + (42)

Tσ2
e(D2

θθQ
∗(ζ∗))−1D2

θβQ
∗(ζ∗)( lim

T→∞
X ′X)−1(D2

θβQ
∗(ζ∗))′(D2

θθQ
∗(ζ∗))−1.

A consistent estimator of the covariance matrix M∗
11 can be obtained by using M̂11 =

M11(ζ̂T , σ̂
2
e) where σ̂2

e is given by equation (30). It can be expected that M̂11 will give
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an over confident estimate of the precision of the estimated parameters in small samples.

As it is common, we therefore recommend to based the variance estimator on (42) using

the sample counterparts D2
θθQT (ζ̂), D2

θθQT (ζ̂), D2
θβQT (ζ̂) and the sample variance of

gt(θ,β) instead of 1
T
Σ∗. Finally, we recommend substituting ψ(X) with µ̂ as defined in

relation to equation (30).

Hamilton (2001) suggests a Bayesian method to construct confidence bands in associ-

ation with the estimated conditional mean function. Utilizing the asymptotic results, in

particular Theorem 9, we are able to construct confidence bands that, besides from being

easier to compute, have a moderately better coverage of the true conditional mean func-

tion and do not rely on specifying ”arbitrary” priors for the unknown parameters of the

model. Level α confidence bands can be constructed by the following simple procedure:

First, fix the parameter vector β at β̂T , and sample θj from N
(
θ̂T ,

1
T
M̂11(ζ̂T , σ̂

2
e)
)
,

where M̂11 is a consistent estimator of M∗
11 given by (42). Secondly, for each θj, gener-

ate the predictor ξ̂j
s(x

∗
s·) from equation (3.4) on page 543 in Hamilton (2001). Thirdly,

sort the values
(
ξ̂1s(x∗

s·), . . . , ξ̂
N
s (x∗

s·)
)

in an ascending order as
(
ξ̂j1
s (x∗

s·), . . . , ξ̂
jN
s (x∗

s·)
)
.

The confidence band is then given as
(
ξ̂

jα/2N
s (x∗

s·), ξ̂
j(1−α/2)N)
s (x∗

s·)
)

for s = 1, 2, ..., S,

where x∗
s· is the vector of regressors that can take values not realized in the sample.

Another obvious and important application of the asymptotic normality of ζ̂T is that

it facilitates tests of the presence of nonlinearity in the actual data generating process

through λ1, see, e.g., Hamilton (2001) and Dahl and González-Rivera (2003a).

4 Simulation Experiments

The analysis of actual data with the random field regression model is still in a pre-

liminary state of development. In empirical applications the approach have been suc-

cessfully employed to detect nonlinearities and modelling/forecasting US unemployment

rates (Hamilton, 2001), oil prices (Hamilton, 2003), industrial production, Dahl and

González-Rivera (2003a) and Dahl and Hylleberg (2004) and US GDP growth rates,

Dahl and González-Rivera (2003b). Furthermore, Dahl (2002) provides an extensive

comparison of the random field model to non-parametric approaches. He points out that

the Hamilton’s estimator of the conditional mean function becomes identical to the cu-
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Table 1: Alternative nonlinear data generating processes, using et ∼ N(0, 1).

Index True DGP

Model 1 yt = 2x1t1{x1t>0} + 1.5x2t + et

Model 2 yt = 2x1t−1
x1t+3.5 − exp(0.5x2t) + et

Model 3 yt = x2
1t + e0.5x1t−1x2t + et

Model 4 yt = 3 sin(x1t + x2t) + et

bic spline smoother when the conditional mean function is viewed as a realization of a

Brownian motion process.7 However, based on simulations Dahl (2002) shows that the

random field approach has superior predictive accuracy compared to the spline smoother,

when the data is generated from popular econometric models such as LSTAR/ESTAR

and various bilinear specifications.

In this section, we focus on analyzing the finite sample properties of the estimated

parameters (by simulations) and comparing to the theoretical large sample results derived

in the previous section. We will use four alternative data generating processes (DGPs)

summarized in Table 1. Model 1 and 2 are additive models and Model 3 and 4 are

nonadditive models. Model 1 is a threshold model, similar to the model used in Example

1 in Hamilton (2001). Although the model is non-differentiable, Hamilton shows that

it is well approximated by the random field regression model. Model 2 and 3 have

complicated nonlinear structures. Model 4 is a trigonometric model or first order Fourier

expansion. Lemma 4.10, p. 551 in Hamilton (2001) shows the adequacy of using a random

field regression model to this type of model. The explanatory variables xt· are sampled

independently from a uniform distribution, i.e., from U(−3, 3). The coefficients in the

four models are selected such that their nonlinearity can be reflected on the sampled

region. As to the choice of the uniform distribution this turns out not to be important

as long as the sample of the explanatory variables is sufficiently dense.

First, a small sample comparison of the proposed two-stage estimation routine and

7Using the results of Kimeldorf and Wahba (1971) and Wahba (1978, 1990) we show how this result

generalizes to xt ∈ R
k.
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Table 2: Mean squared errors (MSE) associated with 100 out-of-sample prediction er-

rors. MSE2 and MSEH are based the two-stage estimation procedure and Hamilton’s

maximum likelihood estimator respectively. Standard errors are abbreviated s.e. The

number of Monte Carlo replications equals 1000.

MSE2 (s.e.) MSEH (s.e.)

T = 200

Model 1 1.075 (0.059) 1.071 (0.077)

Model 2 1.431 (0.111) 1.505 (0.253)

Model 3 1.268 (0.108) 1.224 (0.189)

Model 4 1.229 (0.091) 1.226 (0.135)

T = 500

Model 1 1.055 (0.044) 1.058 (0.045)

Model 2 1.301 (0.094) 1.433 (0.139)

Model 3 1.069 (0.085) 1.079 (0.137)

Model 4 1.116 (0.073) 1.111 (0.085)

Hamilton’s maximum likelihood estimation algorithm (MLE) is made. In Table 2, the

mean squared errors (MSE) associated with 100 out-of-sample prediction points are re-

ported, using the two estimation algorithms under each of the four alternative data

generating processes. From Table 2 we see, as expected, that the two-stage estima-

tion algorithm performs almost identical to the MLE, even in smaller samples. This

result might favor the two-stage estimation approach, since it is somewhat faster than

Hamilton’s algorithm. In what follows only the two-stage estimation approach will be

used. Next, we compare the simulated distribution of the estimated parameters with the

asymptotic distribution described by Theorem 9 . Again data is generated according to

the four models described in Table 1. We let the sample size grow gradually from T = 200

to T = 1000. For each model and each T , we generate 1000 samples and estimate the

nonlinear parameters based on each sample. The resulting simulated densities of λ̂1 and

σ̂1 are then plotted against the asymptotic density, see Figure 1.
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Figure 1: Asymptotic and simulated densities associated with the estimated parameters

λ̂1 and σ̂1 entering the nonlinear part of the random field regression model. Black solid

line: Asymptotic densities using Â var (see below for definition). Solid line: Simulated

densities when T = 200. Dotted line: Simulated densities when T = 500. Dashed lines:

Simulated densities when T = 1000. The left diagrams shows the densities of λ̂1 and the

right shows those of σ̂1 for Model 1 (first row) to Model 4 (fourth row), respectively.
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Figure 1 confirms that for larger samples the asymptotic density provides a fairly

accurate approximation of the true sample density. It also becomes clear that the asymp-

totic standard errors may not be a good estimator of the standard errors of the estimated

parameters in finite samples. In order to evaluate various alternative estimates of the vari-

ance/standard errors, we need to define a ”true” standard error as a benchmark. Given

a data generating process from Table 1, we do this by generating the empirical standard

error of the estimated parameter using a Monte Carlo simulation design similar to the

one already described, and take this empirical standard error as the ”true” finite sample

standard error. In Table 3, we let the sample size be T = 100, and perform 1000 Monte

Carlo replications. In the comparison of alternative estimates we include two candidates

based on the asymptotic variance matrix given by (42), denoted A var = A var
(
ξ̂, σ2

e

)

and Â var = Â var
(
ξ̂, µ̂, σ̂2

e

)
respectively, where the latter is a consistent estimator of the

asymptotic variance as discussed in the previous section. In addition, it seems natural

to include the variance estimator based on the sample version of the Hessian matrix, as

in Hamilton (2001). Finally, we also provide a simple parametric bootstrap estimator of

the variance, which is used extensively in the spline smoother literature, see, e.g., Wahba

(1990). In the bootstrap estimation, we generate samples of the dependent variable

from the fitted random field model, as if the fitted random field model was the actual

data generating process. This procedure is valid since the random field model gives an

asymptotically consistent estimate of the mean function response. Based on the boot-

strap samples we then calculate a sequence of estimated parameters and the empirical

standard error of this sample will be referred to as the bootstrap standard errors. The

results are summarized in Table 3.

The estimated standard errors based on the asymptotic variance matrices seems to

underestimate the actual standard errors of λ̂1 (as expected) but are too conservative

regarding the precision of σ̂1, which perhaps is somewhat surprising. Hessian based

estimators are in general overestimating the standard errors, particularly with respect to

λ̂1 (by about 50 per cent). Overall, the consistent estimate of the asymptotic variance

Â var and the bootstrap estimator seem to be the preferred estimators although the

bootstrap estimator tends to slightly underestimate the actual standard error of λ̂1.
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Table 3: Alternative estimates of the standard errors (s.e.) of the estimated parame-

ters for T = 200 using 1000 Monte Carlo replications. ”True” represents the Monte

Carlo generated true finite sample s.e., , Â var denotes the consistent estimator of the

asymptotic s.e., A var is the asymptotic s.e., Bootstrap is the bootstrapped s.e. and

Hessian the s.e. derived from Hessian of the likelihood function. After each model

label, a consistent estimator of σ2
e is provided in the parenthesis.

Index ”True” Â var A var Bootstrap Hessian

Model 1 (σ̂2
e = 1.220)

s.e. of λ̂1 ( = 0.847) 0.147 0.158 0.022 0.149 0.310

s.e. of σ̂1 ( = 1.063) 0.111 0.126 0.157 0.119 0.138

Model 2 (σ̂2
e = 1.297)

s.e. of λ̂1 (= 3.455) 0.521 0.559 0.050 0.448 0.935

s.e. of σ̂1 (= 0.893) 0.144 0.145 0.185 0.129 0.185

Model 3 (σ̂2
e = 1.175)

s.e. of λ̂1 (= 6.026) 0.476 0.600 0.038 0.550 1.100

s.e. of σ̂1 (= 0.617) 0.121 0.142 0.147 0.105 0.151

Model 4 (σ̂2
e = 1.159)

s.e. of λ̂1 (= 3.232) 0.295 0.380 0.015 0.353 0.720

s.e. of σ̂1 (= 0.786) 0.111 0.129 0.141 0.103 0.142
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Figure 2: Confidence bands when x2 is fixed at the sample mean x̄2 of the second variable

for all four models in Table 1. The diagrams from left to right and from top to bottom

are for Model 1 through 4, respectively. Black solid line: the Monte Carlo sample mean

of µ̄(x1, x̄2|y) as a function of x1. Black dashed line: 90% confidence band constructed

from the asymptotic distribution of the parameters. Solid line: Conditional mean of the

true DGP. Dotted line: 90% Bayesian confidence band as in Hamilton (2001).
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Finally, we illustrate how the asymptotic results of Theorem 9 can be used to con-

struct prediction confidence bands that have very good coverage properties in terms of

”containing” the true conditional mean function of the variable of interest. As a com-

parison, the Bayesian confidence bands proposed by Hamilton (2001) are also plotted.

Â var described in the last simulation study is used as the estimator of the variance. In

Figure 2, a 90% confidence band is plotted for each of the four models. We use 200

sample points for estimation purpose and use 5000 Monte Carlo replications to simulate

the confidence bands. In order to contain the plots in two dimensions, xt2 is fixed at the

sample average x̄·2.

From Figure 2 it seems that the confidence bands based on the asymptotic variance

estimate in general are very close to the Bayesian confidence bands, but with perhaps a

slightly better coverage of the actual mean function, particularly at the endpoints. These

results are very encouraging since they indicate that by using the asymptotic properties

of the estimated parameters of the random field regression model we should be able to

uncover the shape of the unknown conditional mean function without having to make

any choices with respect to bandwidth/kernel as in a non-parametric approach or with

respect to priors as in the Bayesian approach.

5 Conclusion

In this paper, the large sample behavior of the maximum likelihood estimates of the

unknown parameters in a non-locally misspecified random field regression model is char-

acterized. We show how to write the log likelihood function in the form of a sum of

a double array of independently but not identically distributed random variables and

derive conditions under which the log likelihood function and its derivatives converges

uniformly to limits that are fixed and independent of the sample. Based on these uni-

form convergence results, we demonstrate how asymptotic consistency and normality of

the likelihood based estimators can be established. Simulation studies shows that in

samples of small to moderate size the estimator of the asymptotic variance as well as

a bootstrapped variance estimator both are reasonable accurate estimators of the esti-

mated nonlinear parameters in the random field model. Finally, we find that confidence
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bands constructed using the asymptotic distribution of the estimated parameters has

a good coverage of actual conditional mean function of the variable of interest relative

to existing approaches. In summary, our results indicate that classical statistical infer-

ence techniques in generally works very well for random field regression models in finite

samples and that these models successfully can fit and uncover many types of nonlinear

structures in data. The results are very encouraging and render the parametric random

field model as a good alternative specification relative to its nonparametric counterparts,

particularly in small samples.
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Mathematical Appendix

Proof of Lemma 1 See, e.g., Magnus and Neudecker (1999) Theorem 13, p. 16.

Proof of Lemma 2 Notice from the definition of H , that tr(H) = T. By Lemma 1

we can write H = P ′VHP , where VH = diag(h1, ..., hT ) and PP ′ = I. Then is follows

easily that T = tr (P ′VHP ) = tr (VHPP
′) =

∑T

t=1 ht.

Proof of Lemma 3 See, e.g., White (1980) and Amemiya (1985).

Proof of Lemma 4 See, e.g., Lemma A1 in McDonald and Newey (1988).

Proof of Theorem 1 See, Wooldridge (1994).

Proof of Theorem 2 The proof follows the proof of Theorem 4.4 in Hamilton (2001),

however, since Hamilton is concerned only with pointwise convergence, two modifica-

tions to his proof are needed. First, observe the following three properties of pt : i .

{pt(z, z;λ1, σ1)}t is a sequence of continuous functions on the compact set A × A. ii .

{pt(z, z;λ1, σ1)}t converges pointwise to a continuous function p∞(z, z;λ1, σ1) on A×A.

iii . pt+1(z, z;λ1, σ1) ≤ pt(z, z;λ1, σ1), ∀z ∈ A, t = 0, 1, 2, ..., T. Given the conditions i .−
iii ., lim

T→∞
pT (z, z;λ1, σ1) exists uniformly on A×Θ, from Theorem 7.13 in Rudin (1976).

Secondly, from the specification of Gk(h, r) in Lemma 2.1, Hamilton (2001), it is obvi-

ous that p0(z,w;λ1) is uniform continuous in z and w on A × A. Applying these two

modifications in Hamilton’s proof and using the Cauchy-Schwarz inequality we obtain

pt(z,w;λ1, σ1) ≤
√
pt(z, z;λ1, σ1)2pt(w,w;λ1, σ1)2,

for ∀t which establishes the proof of uniform convergence in z and w. Convergence

uniformly in λ1 and σ1 follows then by applying Assumption 2 (compactness of the

parameter space).

Proof of Theorem 3 Define LT (λ1) = (lT (x1·;λ1), lT (x2·;λ1), ..., lT (xT ·;λ1))
′
, ξT =

(ξT (x1·), ξT (x2·), ..., ξT (xT ·))
′, and φ̃T =

(
φ̃(x1·), φ̃(x2·), ..., φ̃(xT ·)

)′
, such that we can

35



write

LT (λ1) =
1

T
P0(λ1)φ̃T ,

ξT = Xβ + P0(λ1) (P0(λ1) + σ1IT )
−1

(y −Xβ) .

By using

PT (λ1) =
[
P0(λ1) − P0(λ1) (P0(λ1) + σ1IT )−1

P0(λ1)
]
,

we obtain

ξT −Xβ −LT (λ1) = P0(λ1) (P0(λ1) + σ1IT )
−1

(y −Xβ) −LT (λ1)

= − 1

T
PT (λ1)φT + P0(λ1) (P0(λ1) + σ1IT )−1

e.

Hence, we can apply the result of Theorem 4.7 in Hamilton (2001) and combined with

the result of our Theorem 2 establish that the convergence in (20) is indeed uniform in

λ1, σ1 and X on Θ ×B and A.

Proof of Lemma 5 First, notice given the denseness condition in X the first term of

(11) is a fixed constant and we can focus entirely on the second term. Let v be given by

Definition 3 and notice that

E

(
1

2T
v′(λ1H + σ1IT )−1v

)
=

1

2T

T∑

t=1

E
(
w2

t

)
(λ1ht + σ1)

−1
,

where wt for ∀t equals w2
t =

(∑T
i=1 Pti (yi − xiβ)

)2

=
(∑T

i=1 Ptivi

)2

. Consequently,

E
(
w2

t

)
= E

(
T∑

i=1

Ptivi

)2

= var

(
T∑

i=1

Ptivi

)
+

(
E

(
T∑

i=1

Ptivi

))2

=

T∑

i=1

P 2
ti var (vi) +

(
T∑

i=1

Pti (ψ (xi) − xiβ)

)2

= σ2
e +

(
T∑

i=1

Ptici

)2

= σ2
e + b2t .

We can then write E
(

1
2T
v′(λ1H + σ1IT )−1v

)
= 1

2T

∑T

t=1
σ2

e+b2t
λ1ht+σ1

, which completes the

proof.
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Proof of Theorem 4 First, define fT (w,X,θ,β) ≡ QT (θ,β) − Q∗
T (θ,β) such that

fT (w,X,θ,β) = 1
2T

∑T
t=1

w2
t−σ2

e−b2t
λ1ht+σ1

. Secondly, notice that E [fT (w,X,θ,β)] = 0, and

since wt ∼ IN(bt, σ
2
e) it follows immediately that,

E
[
fT (w,X,θ,β)2

]
=

1

T 2

T∑

t=1

2σ4
e + 4σ2

eb
2
t

(λ1ht + σ1)2
,

By Chebyshev’s inequality, fT (w,X,θ,β)
p−→ 0 uniformly as T → ∞, if

lim
T→∞

1

T 2

T∑

t=1

(
2σ4

e

(λ1ht + σ1)2
+

4σ2
eb

2
t

(λ1ht + σ1)2

)
= 0, (43)

uniformly in θ,β and X. As ht > 0, for ∀t,

lim
T→∞

1

T 2

T∑

t=1

2σ4
e

(λ1ht + σ1)2
< lim

T→∞

1

T 2

T∑

t=1

2σ4
e

σ2
1

= lim
T→∞

1

T

2σ4
e

σ2
1

= 0,

by Assumption 2 uniformly in θ,β and X. Finally, limT→∞
1

T 2

∑T
t=1

b2t
(λ1ht+σ1)2 =0

uniformly in θ,β and X by Proposition 1, which completes the proof.

Proof of Proposition 1 Let ψ(xt·) be defined as in Assumption 3 and consider

Ψ(X) = (ψ(x1·), ..., ψ(xT ·))
′
. Using Equation (3.5) in Hamilton (2001) and Assump-

tions 3 and 4, we can write

S = Ψ(X) −
(
Xβ + λ1H (λ1H + σ1IT )−1 (y −Xβ)

)

=
(
IT − λ1H (λ1H + σ1IT )

−1
)

(Ψ(X) −Xβ) − λ1H (λ1H + σ1IT )
−1
e

= P ′V2P (Ψ(X) −Xβ) − P ′V3Pe,

where V2 = diag
(

σ1

λ1h1+σ1
, ..., σ1

λ1hT +σ1

)
, V3 = diag

(
λ1h1

λ1h1+σ1
, ..., λ1hT

λ1hT +σ1

)
, e = y −

Ψ(X), and PP ′ = I. Then

1

T
E(S′S) =

1

T
b′V 2

2 b+
1

T
E
(
e′P ′V 2

3 Pe
)

=
1

T
tr
(
bb′V 2

2

)
+

1

T
tr
(
P E (ee′)P ′V 2

3

)

=
1

T
tr
(
bb′V 2

2

)
+

1

T
tr
(
σ2

eV
2
3

)

=
1

T

T∑

t=1

σ2
1b

2
t

(λ1ht + σ1)2
+

1

T

T∑

t=1

σ2
eλ

2
1h

2
t

(λ1ht + σ1)2
.

From Theorem 3, we know that limT→∞
1
T

E(S′S) = 0, uniformly in θ,β and X and

given Assumptions 1 − 4 this condition is satisfied if and only if (24) and (25) are true.
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Proof of Proposition 2 First, notice that R2.0
T = − 1

T

∑T
t=1

(
h2

t

(σ1+λ1ht)
2

)
and from

Proposition 1, R2.0 = 0. Next, notice that

R1.1
T =

1

T

T∑

t=1

ht

(λ1ht + σ1)2

≤ 1

Tσ1

T∑

t=1

ht

(λ1ht + σ1)

≤ 1

σ1

√√√√ 1

T

T∑

t=1

h2
t

(λ1ht + σ1)2
=

1

σ1

√
R2.0

T ,

and consequently R1.1 ≤ 1
σ1

√
lim

T→∞
R2.0

T = 0. From R2.1
T = 2

T

∑T

t=1

(
h2

t

(σ1+λ1ht)
3

)
≤

2
σ1
R2.0

T , and R1.2
T = 2

T

∑T
t=1

(
ht

(σ1+λ1ht)
3

)
≤ 2

σ2
1

√
R2.0

T , we have R2.1 = R1.2 = 0.

From Proposition 1, U0.1 = lim
T→∞

− 1
T

∑T
t=1

(
b2t

(σ1+λ1ht)
2

)
= 0. Furthermore, since

0 < ht

σ1+λ1ht
≤ 1

λ1
we can write U1.1

T = 1
T

∑T

t=1
htb

2
t

(λ1ht+σ1)3
≤ 1

λ1
U0.1

T , and U0.2
T =

2
T

∑T

t=1

(
b2t

(σ1+λ1ht)
3

)
≤ 1

σ1
U0.1

T . It follows that U1.1 = U0.2 = 0, which completes the

proof.

Proof of Lemma 6 Since it is trivial (but very space-consuming) to show that each

of the 34 elements in ̥4.4 is bounded on Θ×B the proof is left out, but can be obtained

from the authors upon request.

Proof of Lemma 7 Notice, that ̥4.4 contains the derivatives of all the elements in

̥3.3, and by Lemma 6, all elements in ̥4.4 are uniformly bounded. The result of Lemma

7 then follows immediately.

Proof of Theorem 5 The objective is to show that the sequence {Dxfn(x, y)}n con-

verges to Dxf0(x, y). If so, it follows from equicontinuity of {Dxfn(x, y)}n that the

convergence is uniform on X × Y. Now, suppose that {Dxfn(x, y)}n does not converge

to Dxf0(x, y). Then ∃(x0, y0) ∈ X × Y, and ∃ε > 0, such that for any N1 ∈ N, and

N ′ = N ′(N1) > N1 it holds that

∣∣DxfN ′(x0, y0) − Dxf0(x
0, y0)

∣∣ > ǫ. (44)
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For ∀n ∈ N ∪ {0}, there exists a sufficiently small number ∆ > 0, such that,

fn(x+ ∆, y) − fn(x, y) = Dxfn(x̃, y)∆, (45)

where x̃ is a value between x+ ∆ and x. By the equicontinuity of {Dxfn(x, y)}n, ∆ can

be made arbitrarily small, such that

|Dxfn(x, y) − Dxfn(x̃, y)| ≤ ε

4
, (46)

is satisfied, for any n ∈ N ∪ {0} and any (x, y) ∈ X × Y. Hence, by combining (45) and

(46) ∣∣∣∣Dxfn(x, y) − fn(x+ ∆, y) − fn(x, y)

∆

∣∣∣∣ ≤
ε

4
, (47)

for ∀n ∈ N ∪ {0} and ∀(x, y) ∈ X ×Y. Notice, that ∆ = ∆(ε), i.e., ∆ depends on ε, but

not N ′. Therefore,
∣∣∣∣DxfN ′(x, y) − fN ′(x+ ∆, y) − fN ′(x, y)

∆

∣∣∣∣ ≤ ε

4
, (48)

∣∣∣∣Dxf0(x, y) −
f0(x + ∆, y) − f0(x, y)

∆

∣∣∣∣ ≤ ε

4
, (49)

and consequently

|DxfN ′(x, y) − Dxf0(x, y)| ≤
∣∣∣∣
fN ′(x+ ∆, y) − fN ′(x, y)

∆
− f0(x+ ∆, y) − f0(x, y)

∆

∣∣∣∣

+
ε

2

=

∣∣∣∣
fN ′(x+ ∆, y) − f0(x+ ∆, y)

∆
− fN ′(x, y) − f0(x, y)

∆

∣∣∣∣

+
ε

2

≤
∣∣∣∣
fN ′(x+ ∆, y) − f0(x+ ∆, y)

∆

∣∣∣∣+
∣∣∣∣
fN ′(x, y) − f0(x, y)

∆

∣∣∣∣

+
ε

2
. (50)

uniformly on X × Y. By equicontinuity and convergence of {fn(x, y)}n, there exists a

sufficiently large number N2 ∈ N, such that ∀n ≥ N2

|fn(x, y) − f0(x, y)| <
ε

4
∆,

or equivalently ∣∣∣∣
fn(x, y) − f0(x, y)

∆

∣∣∣∣ <
ε

4
,
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uniformly on X × Y. By choosing N1 ≥ N2, and (x, y) = (x0, y0), the inequality (50)

reduces to

∣∣DxfN ′(x0, y0) − Dxf0(x
0, y0)

∣∣ <
ε

4
+
ε

4
+
ε

2

= ε,

and hence contradicts the statement in (44), which completes the proof.

Proof of Theorem 6 By combining Lemmas 6 and 7 and Theorem 7.16 p. 151 in

Rudin (1976) we have that if
{
RI.J

T

}
T

and
{
U I.J

T

}
T

converges uniformly on Θ × B,

then
{
Ri.j

T

}

T
and

{
U i.j

T

}

T
converges uniformly on Θ × B for all i < 4, and j < 4.

Furthermore, by combining Lemmas 6 and 7 and Theorem 5 we have that if {RT }T and

{UT }T converges uniformly on Θ × B, then
{
Ri.j

T

}

T
and

{
U i.j

T

}

T
converges uniformly

on Θ ×B for all i, j = 1, 2, ..., 4, hereby completing the proof.

Proof of Theorem 7 Consider the sequence of functions Q∗
T (θ,β∗), given by equation

(22) of which the limit is Q∗(θ,β∗). The Hessian matrix HT (θ,β∗) associated with

Q∗
T (θ,β∗) is given as

HT (θ,β∗) =



 D2
λ1λ1

Q∗
T (λ1, σ1,β

∗) D2
λ1σ1

Q∗
T (λ1, σ1,β

∗)

D2
λ1σ1

Q∗
T (λ1, σ1,β

∗) D2
σ1σ1

Q∗
T (λ1, σ1,β

∗)



 ,

and from Theorem 6

lim
T→∞

H(θ,β∗) =



 D2
λ1λ1

Q∗(λ1, σ1,β
∗) D2

λ1σ1
Q∗(λ1, σ1,β

∗)

D2
λ1σ1

Q∗(λ1, σ1,β
∗) D2

σ1σ1
Q∗(λ1, σ1,β

∗)





= H(θ,β∗),

uniformly on Θ ×B. Using Proposition 2 we can write

D2
λ1λ1

Q∗(λ1, σ1,β
∗) =

1

T

T∑

t=1

h2
t

(λ1ht + σ1)3
[
1

2
(λ1ht + σ1) − σ2

e − b2t ]

= −1

2

(
R2.0

T + σ2
eR

2.1
T + U2.0

T

)
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D2
σ1σ1

Q∗(λ1, σ1,β
∗) =

1

T

T∑

t=1

1

(λ1ht + σ1)3
[
1

2
(λ1ht + σ1) − σ2

e − b2t ]

= −1

2

(
R0.2

T + σ2
eR

0.3
T + U0.2

T

)

D2
λ1σ1

Q∗(λ1, σ1,β
∗) =

1

T

T∑

t=1

ht

(λ1ht + σ1)3
[
1

2
(λ1ht + σ1) − σ2

e − b2t ]

= −1

2

(
R1.1

T + σ2
eR

1.2
T + U1.1

T

)

and

lim
T→∞

H(θ,β∗) =


 limT→∞ − 1

2U
2.0
T 0

0 limT→∞ − 1
2

(
R0.2

T + σ2
eR

0.3
T

)


 (51)

where the existence of limT→∞ −U2.0
T and limT→∞ − 1

2

(
R0.2

T + σ2
eR

0.3
T

)
is guaranteed

by Assumption 2 and Theorem 6. For the matrix in (51) to be negative definite, the

condition limT→∞ − 1
2

(
R0.2

T + σ2
eR

0.3
T

)
< 0 must hold (since limT→∞ − 1

2U
2.0
T < 0, as

U2.0
T > 0 uniformly in T ). This restriction can be written as

lim
T→∞

(
R0.2

T + σ2
eR

0.3
T

)
> 0 (52)

lim
T→∞

1

T

T∑

t=1

((
2σ2

e

(σ1 + λ1ht)
3

)
−
(

1

(σ1 + λ1ht)
2

))
> 0

lim
T→∞

1

T

T∑

t=1

1

(σ1 + λ1ht)
3

(
2σ2

e − λ1ht − σ1

)
> 0

Notice that

lim
T→∞

1

T

T∑

t=1

λ1ht

(σ1 + λ1ht)
3 = λ1 lim

T→∞
R1.2

T

= 0

Consequently, the restriction in (52) becomes

lim
T→∞

1

T

T∑

t=1

1

(σ1 + λ1ht)
3

(
2σ2

e − σ1

)
> 0

Hence, a sufficient condition for negative definiteness of H(θ,β∗) is that σ2
e >

1
2σ1.
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Proposition A.1 Define Σ11t = cov(DθQt(θ,β)), and Σ11 = lim
T→∞

1
T

∑T

t=1Σ11t.

Given Assumptions 1 - 4,

Σ11 =


 0 0

0 1
12σ

4
eR

0,4


 .

Using arguments similar to the ones used in Theorem 6, it is clear that R0,4 exists.

Proof of Proposition A.1 Recall from the properties of a standard normal random

variable that E z4
t = 3 and var(z2

t ) = 2. From straightforward calculations,

Σ11t =


 σ2

eb
2
t (R

1,1
t )2 + 1

2σ
4
e(R1,1

t )2 σ2
eb

2
tR

1,1
t R0,2

t + 1
2σ

4
eR

1,1
t R0,2

t

σ2
eb

2
tR

1,1
t R0,2

t + 1
2σ

4
eR

1,1
t R0,2

t σ2
eb

2
t (R

0,2
t )2 + 1

2σ
4
e(R0,2

t )2




We have the following limiting results regarding the components of Σ11: First,

lim
T→∞

1

T

T∑

t=1

b2t (R
1,1
t )2 = lim

T→∞

1

T

T∑

t=1

h2
t b

2
t

(λ1ht + σ1)4

≤ C1 lim
T→∞

1

T

T∑

t=1

b2t
(λ1ht + σ1)2

= 0

by Proposition 1, where C1 is the uniform upper bound of
h2

t

(λ1ht+σ1)2 . Secondly,

lim
T→∞

1

T

T∑

t=1

(R1,1
t )2 = lim

T→∞

1

T

T∑

t=1

h2
t

(λ1ht + σ1)4

≤ C2 lim
T→∞

1

T

T∑

t=1

h2
t

(λ1ht + σ1)2

= 0

by Proposition 1, where C2 is the uniform upper bound of 1
(λ1ht+σ1)2 . Thirdly,

lim
T→∞

1

T

T∑

t=1

b2tR
1,1
t R0,2

t = lim
T→∞

1

T

T∑

t=1

htb
2
t

(λ1ht + σ1)4

≤ C3 lim
T→∞

1

T

T∑

t=1

b2t
(λ1ht + σ1)2

= 0
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by Proposition 1, where C3 is the uniform upper bound of ht

(λ1ht+σ1)2 . Fourthly,

lim
T→∞

1

T

T∑

t=1

R1,1
t R0,2

t = lim
T→∞

1

T

T∑

t=1

ht

(λ1ht + σ1)4

≤ C4 lim
T→∞

1

T

T∑

t=1

ht

λ1ht + σ1

≤ C4

√√√√ lim
T→∞

1

T

T∑

t=1

h2
t

(λ1ht + σ1)2

= 0

by Proposition 1, where C4 is the uniform upper bound of 1
(λ1ht+σ1)3

, and the second

inequality is by Cauchy-Schwarz. Finally,

lim
T→∞

1

T

T∑

t=1

b2t (R
0,2
t )2 = lim

T→∞

1

T

T∑

t=1

b2t
(λ1ht + σ1)4

≤ C2 lim
T→∞

1

T

T∑

t=1

b2t
(λ1ht + σ1)2

= 0.

Consequently,

Σ11 =


 0 0

0 1
12σ

4
eR

0,4




where R0,4 is given by Proposition 2, which completes the proof.

Proposition A.2 DefineΣ12t = cov (DθQt(θ,β),Dβmt(β)), andΣ12 = lim
T→∞

1
T

∑T
t=1Σ12t.

Given Assumptions 1 - 4, Σ12 = Σ′
21 = O.

Proof of Proposition A.2 Since cov(zt,T , z
2
t,T ) = 0, it follows that

Σ12t =




σ2
ebtat1R

1,1
t σ2

ebtat1R
0,2
t

σ2
ebtat2R

1,1
t σ2

ebtat2R
0,2
t

...
...

σ2
ebtatkR

1,1
t σ2

ebtatkR
0,2
t



.
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For all j = 1, 2, ..., k,

lim
T→∞

1

T

T∑

t=1

btatjR
1,1
t = lim

T→∞

1

T

T∑

t=1

btatjht

(λ1ht + σ1)2

≤ ( lim
T→∞

1

T

T∑

t=1

b2t
(λ1ht + σ1)2

)
1
2 ( lim

T→∞

1

T

T∑

t=1

h2
tatj

2

(λ1ht + σ1)2
)

1
2

= 0,

by Proposition 1, uniform boundedness of
h2

t,T

(λ1ht,T +σ1)2 , the fact that lim
T→∞

1
T

∑T

t=1 a
2
tj =

lim
T→∞

1
T

∑T
t=1 x

2
tj converges to a constant by Assumption 4 and the Cauchy-Schwarz in-

equality. Using similar techniques it can be shown that lim
T→∞

1
T

∑T

t=1 btatjR
2,0
t = 0 for

all j = 1, 2, ..., k, which completes the proof.

Proposition A.3 Define Σ22t = cov (Dβmt(β)), and Σ22 = lim
T→∞

1
T

∑T
t=1Σ22t. Given

Assumptions 1 - 4, Σ22 = σ2
e lim

T→∞

1
T
X

′
X.

Proof of Proposition A.3 The result follows since lim
T→∞

1
T
a′
·ia·j = lim

T→∞

1
T
x′
·ix·j con-

verges to constants for all i, j = 1, 2, ..., k.

Proof of Theorem 8 Given Assumptions 1 - 4 it has already been established that

gt(θ,β) is an independent (k + 2)− dimensional random vector with E (gt(θ,β)) = 0

and cov (gt(θ,β)) = Σt. Furthermore, from Propositions A.1 - A.3 we have established

that Σ = lim
T→∞

1
T

∑T

t=1Σt, where Σ is a positive definite matrix. To complete the proof

of Theorem 8 according to Hoadley’s (1971) Theorem A.6, it needs only to be shown

that

lim
T→∞

1

T 2

T∑

t=1

E (γ′gt(θ,β))
4

= 0 (53)

for all γ ∈ Rk+2. Condition (53) is satisfied since E (γ′gt(θ,β))
4

will depend on the

moments of zt which are all finite (recall that zt is a standard normal random variable).

In particular, by using Propositions 1 and 2 it can be shown that 1
T

∑T

t=1 E (γ′gt(θ,β))
4

is uniformly bounded (and convergent) for any fixed γ, which completes the proof. From

(40) and consistency of the estimated parameters the result of Theorem 8 follows imme-

diately.
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Proof of Theorem 9 The proof of the theorem roughly follows Newey and McFadden

(1994). First notice that condition i. was shown in Section 3 while condition iii. follows

from Theorem 8. Condition ii. is trivially satisfied whereas the first part of condition iv.

has been be verified in the proof of Theorem 7. The second part of condition iv. holds

under Assumptions 1-4 since

D2
ββmT (β) = − 1

T
X ′X.

Finally notice that from expanding gT (ζ̂T ) about ζ∗ gives,

gT (ζ̂T ) = gT (ζ∗) +GT (ζ)(ζ̂T − ζ∗),

where ζ is the mean value of ζ̂T and ζ∗. Multiplying both sides by
√
T and rearranging

yields
√
T
(
ζ̂T − ζ∗

)
= −G−1

T

(
ζ
) [√

TgT (ζ∗)
]
.

Consistency wrt. ζ∗ implies that ζ
p−→ ζ∗. Hence by conditions i.-iv. and the Slutzky

theorem,
√
T
(
ζ̂T − ζ∗

)
d−→ N

(
0,G∗−1

T (ζ∗)Σ∗G∗−1
T (ζ∗)′

)
.

where

G−1
T (ζ) =


 (D2

θθQT (ζ)−1 −(D2
θθQT (ζ))−1D2

θβQT (ζ)(D2
ββmT (β))−1

0 (D2
ββmT (β))−1


 .

and Σ∗ is defined in Theorem 8.
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