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Abstract

Forecasting using factor models based on large data sets have received am-

ple attention due to the models’ ability to increase forecast accuracy with

respect to a range of key macroeconomic variables in the US and the UK.

However, forecasts based on such factor models do not uniformly outper-

form the simple autoregressive model when using data from other countries.

In this paper we propose to estimate the factors based on the pure cyclical

components of the series entering the large data set. Monte Carlo evidence

and an empirical illustration using Danish data shows that this procedure

can indeed improve on pseudo real time forecast accuracy.

Key words: Factor model; Cyclical components; Estimation; Real time

forecasting.

JEL Codes: C13, C22, C52, G53.

1 Introduction

The diffusion index model developed by Stock and Watson (1998, 2002a, b) has

been shown to have very good forecasting properties when predicting macroe-

conomic variables, mainly using US, UK and Euro-wide data. See Stock and
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Watson (1998, 2002a, b), Marcellino, Stock and Watson (2003), Artis, Banerjee

and Marcellino (2005) and Banerjee and Marcellino (2006) among others. How-

ever, the diffusion index model does not outperform simpler models in all cases,

and several recent studies propose extensions, and improvements, of the model.

Bai and Ng (forthcoming) focus on the estimation of the latent factors by looking

at a polynomial extension of the factor series (that is, including squared terms of

the series) and by looking at a selection procedure for the factor series. In Bai

and Ng (2008) the focus is on improvements of the forecasting equation, taking

the estimated factors as given. Moving in a slightly different direction, Armah

and Swanson (2007) look at construction of “factor proxies” which is, essentially,

a modification of the classical leading indicator model in which the leading in-

dicators are selected based on their similiarity with the latent factors, estimated

using the diffusion index methodology.

In this paper we propose a relatively simple method to potentially improve the

forecast accuracy of the diffusion index model. We illustrate the usefulness of the

modification in a small Monte Carlo study and by an empirical illustration based

on Danish data. Our approach is inspired by the work of Camacho and Sancho

(2004) and Kaiser and Maravall (1999). The basic idea is to remove not only the

trend, the seasonal components and outliers but also the irregular component in

all series entering the large data set which is used for estimation of the factors. In

some cases this might just be a minor modification of the pre-filtering of the data,

but in situations where the irregular component is relatively large, we conjecture

that this modification of the pre-filtering in the diffusion index model will provide

more accurate estimates of the factors.

As argued by Dahl et al. (2005) the irregular component in Danish data seems

to be much more dominating than in, say, US data. This might explain why the

forecast performance of diffusion index models estimated on Danish data is rela-

tively disappointing in the sense that the forecast accuracy of the diffusion index

model is not significantly better than the accuracy of standard autoregressive

models. Here, we show that when the factors are based on estimates of the

“pure” cyclical components, the predictive accuracy of the diffusion index model

is improved substantially.

The paper is structured as follows. After explaining the basic idea in Section

2, we present results of a simple Monte Carlo study in Section 3. The Monte

Carlo study shows that pre-filtering the data has the potential of improving the

forecast accuracy of the traditional diffusion index model. In Section 4 we provide

an empirical illustration using Danish data to forecast four key macroeconomic

variables out of sample. The illustration provides additional evidence that pre-

filtering the data can improve forecasting accuracy when the time series contain

large irregular components.
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2 The modelling framework

Consider the large collection of time series X = (X ′
1,X

′
2, . . . ,X

′
T ), where Xt =

(x1t, x2t,...,xNt)
′. Assume that each series, xit, can be represented as

xit = git + cit + sit + eit (1)

for i = 1, 2, ..., N and t = 1, 2, ..., T , where git denotes a trend component, cit

the business cycle component, sit a seasonal component and eit the irregular

component.

In the existing work on diffusion index models it is common to make prior

adjustments of each time series, xit, (i) by removing the seasonal component, sit,

(applying the popular X11 filter); (ii) by removing the trend component, git, (ap-

plying first (log) differences), and (iii) by screening for outliers (say, by removing

observations in excess of some predetermined threshold value). Consequently, us-

ing the “traditional” Stock and Watson (1998, 2002a,b) approach, the estimator

of the common factors is based on the relation

x̂it = αiFt + ηit, (2)

where x̂it is the trend and seasonally adjusted series (assuming there are no out-

liers), Ft = (f1t, f2t, ..., fkt)
′ are the common factors and αi = (αi1, αi2, ..., αik)

are the factor loadings. In addition, it is typically assumed that ηit is an idiosyn-

cratic error term.

The main contribution of this paper is to propose a modification of (2) by

explicitly assuming that it is the business cycle component of the series, cit, that

admits a linear factor representation with k common factors, i.e.,

cit = αiFt + υit, (3)

where υit has the same properties as ηit.

Clearly, this assumption is admissible within the traditional diffusion index

model. We can define the true trend and seasonally adjusted series x̃it
def
= cit+eit,

and assume that the estimator x̂it satisfies the condition

x̂it = x̃it + ǫ̂it, (4)

where ǫ̂it is the estimation error associated with the trend and seasonal adjust-

ment procedure. Given (1), (3) and (4) we have the factor model

x̂it = αiFt + υit + eit + ǫ̂it, (5)

which is observationally equivalent to (2) with

ηit = υit + eit + ǫ̂it.
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Given the representation in (1) and the factor model (3), and assuming that we

could actually observe cit, it would obviously be more informative to estimate Ft

based on (3) instead of (2). In reality, however, we do not observe cit. Still, an

alternative to model (2) is to use estimates of the cyclical components based on

the individual series. Specifically, if we let ĉit be an estimator of cit and let ǫ̂c
it

denote the associated estimation error, equation (3) can be represented as1

ĉit = αiFt + υit − ǫ̂c
it, (6)

Now, the estimator of Ft based on (6) is not guaranteed to be more informative

relative to the estimator based on (2). In (3) the error term is υit + eit + ǫ̂it while

model (6) has the error term υit − ǫ̂c
it. Thus, assuming orthogonality of the error

components the relative efficiency of the estimators depends on the variance of

eit + ǫ̂it and the variance of ǫ̂c
it. The relative size of these variances cannot be

determined analytically as it depends on the variances of the idiosyncratic com-

ponents, the estimator of the cyclical components–and, hence, the time series

dimension, T–and the number of series in the factor model, N . Thus, it is pri-

marily an empirical question as to which approach is most informative/efficient.

However, if data is very noisy due to large variance in the irregular component

of the series, this will tend to favour the estimation approach based on (6) for

given dimensions of the data matrix, X.

Our main interest is out-of-sample forecasting of, say, yt which typically is

an element of X̂t = (x̂1t, x̂2t, . . . , x̂Nt)
′. Following the approach by Stock and

Watson (2002a,b), the approximating cyclical diffusion index h-periods ahead

forecasting model can be represented as

(yt+h − yt) =
k∑

j=1

βc
j f̂

c
jt +

p∑

j=1

γc
j∆yt−j + vc

t , (7)

for t = 1, 2, . . . , T , where the estimated factors F̂ c
t = (f̂ c

1t, ..., f̂
c
kt)

′ are based on (6)

using principal components. We wish to compare (7) to the “regular” diffusion

index forecasting model

(yt+h − yt) =

k∑

j=1

βr
j f̂ r

jt +

p∑

j=1

γr
j ∆yt−j + vr

t , (8)

where the estimator F̂ r
t = (f̂ r

1t, . . . , f̂
r
kt)

′ is obtained based on (2) and to the pure

autoregressive linear model

(yt+h − yt) =

p∑

j=1

γl
j∆yt−j + vl

t. (9)

1An estimate of cit can be obtained given some additional assumptions about the underlying

stochastic processes driving each of the unobserved components in (1) as shown by Harvey

(1989), and more recently discussed by Durbin and Koopman (2001).
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3 A Monte Carlo simulation study

In this section we provide a simple Monte Carlo simulation study illustrating the

potential efficiency of the cyclical component factor model relative to the regular

factor model. The comparison will be based on relative MSE measured in-sample.

It should be emphasized that the only purpose of the Monte Carlo study is to

illustrate that there can exist situations in which the cyclical component factor

model has smaller MSE than the regular factor model. Whether this is actually

the case based on real data and out-of-sample is an entirely different and mainly

empirically question which we will address in the subsequent section.

3.1 A simple sampling scheme for generating observables

A convenient and simple method of generating so-called similar/common cy-

cles has been suggested by Harvey and Koopman (1997) and Carvalho, Harvey

and Trimbur (2007). Following their approach the cyclical component Ct =

(c1t, c2t, ...cNt)
′ takes the representation

(
Ct

C∗
t

)
=

[
ρ

(
cos λc sinλc

− sin λc cos λc

)
⊗ IN

](
Ct−1

C∗
t−1

)
+

(
κt

κ∗
t

)
(10)

for t = 1, ..., T, where κt and κ∗
t are Gaussian disturbances such that E (κtκ

′
t) =

E (κ∗
t κ

∗′
t ) = Σκ and E (κtκ

∗′
t ) = 0. In the representation ρ ∈ [0; 1) is denoted

the dampening factor, while the cycle parameter λc satisfies 0 ≤ λc ≤ π.

Note, that if Σκ has reduced rank then there exists common cycles. Conse-

quently, if the rank of Σκ is two then there exists two common cycles according

to the representation.

Based on the generated matrix C = (C′
1, ...,C

′
T )′ we compute the true factors

Ft = (f1t, ..., fkt) by standard principal components routines. We have hereby

explicitly assumed that C has a factor representation. Finally, the observables

(yt,Xt) are generated recursively as

yt = γyt−1 +

k∑

j=1

βjfjt + vt,

Xt = Ct + et,

for all t = 1, 2, . . . , T where vt ∼ N(0, σ2
v) and et ∼ N(0, σ2

eIN ).

In order to make the data generating process empirically relevant to some

degree we have chosen population parameter configurations similar to estimated

magnitudes reported in Table 8 in Carvalho, Harvey and Trimbur (2007) based

on US/Canadian data. That is, in terms of generating C according to (10) we

have chosen ρ = 0.9, λc = 0.2 and k = 2. Furthermore, we have used that we can

write κ = Λω1 and κ∗ = Λω2, where Λ is an N×k matrix and ωs ∼ N(0k, Ik) for
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s = 1, 2. Hence Σκ = ΛΛ′ has reduced rank, equal to k (the number of common

cyclical factors), as desired. In the simulations Λ is drawn from the (independent)

uniform distribution on the unit interval. In order to generate X we have chosen

to consider a relative dense sequence of values for σ2
e = (0.25, 0.5, . . . , 4.75, 5) since

this parameter will be pivotal for the relative efficiency of the cyclical component

factor model approach as we have argued above. Finally, in order to generate yt

we have chosen γ = 0.5, β1 = β2 = 1 and σ2
v = 1.

3.2 The estimation procedure and the results

Given the matrix of observables, (yt,Xt) the estimation procedure for the cyclical

components factor model and the regular factor model can be summarized as

follows:

Cyclical components factor model (c)

1. For each of the N time series, xit, the cyclical component is estimated using

using the linear Gaussian State Space representation and the Kalman filter.2

2. Based on the estimated cyclical components, ĉit, the factors, f̂ c
jt, for j = 1, 2

and t = 1, 2, ..., T are estimated using a principal components decomposi-

tion.

3. The variable yt, is regressed on yt−1 and f̂ c
jt, for j = 1, 2 and the mean

squared error, MSE(c) = 1
T

∑
t (v̂c

t )
2, is computed.

Regular factor model (r)

1. Based on the time series xit, the factors, f̂ r
jt, for j = 1, 2 and t = 1, 2, ..., T

are estimated using a principal components decomposition.

2. The variable yt, is regressed on yt−1 and f̂ r
jt for j = 1, 2 and the mean

squared error, MSE(r) = 1
T

∑
t (v̂r

t )
2, is computed.

In Figure 1 we report the results on the relative efficiency of the cyclical

component factor model defined as MSE(c)/MSE(r) for alternative values of

σ2
e and for different values of N and T .3

All three panels in Figure 1 clearly indicate that a larger variance in the irreg-

ular component increases the efficiency of the cyclical component factor model

relative to the regular factor model. For example, in the case where N = 100 and

T = 500 (top panel) the cyclical component factor model becomes more efficient

whenever σ2
e > 2. Furthermore, and perhaps somewhat surprisingly, the relative

efficiency is almost unaffected by changes in the sample size. This implies that

2We used the SSF-package for Ox by Koopman et al. (1999)
3The results are based on 1000 Monte Carlo replications for each value of σ2

e , N, T.
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Figure 1: Efficiency of the cyclical component factor model relative to the regular

factor model
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In each plot the x-axis shows the variance of the irregular component σ2

e while the y-axis shows

the MSE of the cyclical component factor model relative to the MSE of the regular factormodel:

MSE(c)/MSE(r).

the algorithms employed (the SSF-package) for estimating the cyclical compo-

nents appear quite efficient even in small to moderate samples. Finally, as the

number of time series increases from N = 100 over N = 250 to N = 500 the

relative efficiency of the cyclical component factor model falls uniformly over T

and σ2
e and in the case where N = 500 (bottom panel) the cyclical component

factor model only becomes efficient when σ2
e > 4.5.

Summing up, the limited simulation evidence provided in this section clearly

illustrates that when the variance of the irregular component is relatively high and

the dimension of X moderate (when N is of small to moderate size) the cyclical

component factor model may be a potent alternative to the regular factor model

approach.

4 Empirical Illustration

The empirical illustration is based on Danish data, which in general is character-

ized by being much more volatile relative to US data. For example, as pointed

out by Dahl et al. (2005), the volatility in the Danish GDP growth rate is about

twice as high as the volatility in US GDP growth, whereas the volatility in the

industrial production in Denmark is about seven times higher than the volatility
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in US industrial production. Dahl et al. (2005) argues, that this could be due

to the presence of more noise in the Danish data and this may explain why the

regular diffusion index model based on Danish data does not perform well in

terms of forecast accuracy as shown by Dahl et al. (2005). This provides a strong

motivation for improving the factor model by computing the factors based on

preliminary estimates of the cycle component, which should be a less noisy signal

of the underlying business cycle component. In this study our main interest is

on forecasting private consumption, GDP, employment and the deflator for pri-

vate consumption (inflation), which are all important policy variables and are all

measured on a quarterly basis.

4.1 The data and the estimated factors

The data set for Denmark, our X, contains 172 monthly and 74 quarterly se-

ries over the period 1986m1 - 2003m12. To obtain a good representation of the

Danish economy we include a wide range of output variables, labour market vari-

ables, prices, monetary aggregates, interest rates, stock prices, exchange rates,

imports, exports, net trade, and other miscellaneous series. This selection proce-

dure closely follows the suggestions in Stock and Watson (2002a,b) and is aimed

at getting as balanced and complete a list of important variables as possible. A

description of the entire list of the variables is reported in Dahl et al. (2005).4

When combining monthly as well as quarterly data in X and C they become

unbalanced data matrices. We therefore employ the EM algorithm described

in Stock and Watson (1998,2002a,b) to fill out the missing observations. The

number of factors in the factor model is determined by the information criteria

(ICp1), suggested by Bai and Ng (2002).

4.2 The forecasting framework

We wish to compare the out-of-sample forecast accuracy of the cyclical diffusion

index model, (7), relative to the forecasts of the traditional diffusion index model,

(8), and a pure autoregressive model, (9). Specifically we want to forecast the

growth rates of private consumption, GDP, employment and inflation one and

four quarters ahead, respectively. The first period in the pseudo out-of-sample

is 1995q1 and the last period is 2003q4. The forecasting framework is best illus-

trated by an example. Consider the one period ahead forecast of the growth rate

of say GDP: First, we estimate the factors using data from 1986m1 to 1994m12.

These factors are estimated at a monthly frequency and subsequently collapsed

into quarters. Then, we estimate the forecasting equations by ordinary least

squares, applying an automated general-to-specific procedure, using data up to

and including 1994q4. Given that the right-hand-side variables, including the

4The data and documentation can be obtained from the corresponding author.
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factors, are lagged, only observations up to 1994q3 are used in the estimation.

Finally, the forecasts (and the forecast errors) are calculated using the specific

version of the estimated equations. In the one period ahead forecast for the

growth rate in 1995q1 observations of the factors in 1994q4 are used (along with

lagged values of the variable to forecast).

It turns out that the results are very sensitive to the initial choice of the max-

imum number of factors, k, and the maximum number of autoregressive lags, p,

used in the general specifications of the forecasting equations. As pointed out by

Dahl et al. (2005) it is possible to choose combinations of k and p which make

the forecasts based on (7) outperform the other models, while other combina-

tions do not. Obviously, this indicates that there is a risk of data snooping as

described by White (2000) and one should be careful interpreting such findings

as an indication in favor of the diffusion index model.5

We try to avoid the data snooping pitfall by reporting the predictive outcome

of the models selected by an automated general-to-specific selection mechanism

starting from a range of different general models. In particular, we make fore-

casts for all possible combinations of initial settings of k = 1, 2 and p = 1, . . . , 8.

This implies that for each variable and forecast horizon 16 measures of forecast

accuracy (we use the mean squared forecast error, MSFE) are computed over the

out-of-sample period for the two diffusion index models. For the autoregressive

model we compute 8 MSFEs for each variable and forecast horizon. The auto-

mated model selection procedure we employ for each k and p is the traditional

general-to-specific approach in which regressors are omitted sequentially based on

SIC. The search for improvements in SIC is done in the direction of sequentially

removing the variable with the smallest t-value first. It should be noted that by

using this fully automated specification procedure we may end up with identical

forecasting equations for some periods as the estimated factors may be excluded

from the forecast equations whereby they become simple autoregressions.

Pseudo out-of-sample MSFE for forecast horizons of 1 and 4 quarters, and

the relative MSFEs, for the four variables of interest are reported in Table 1. The

results shown in the Table are from the initial choice of k and p that resulted

in the most accurate out-of-sample forecast. Thus, these specific results are only

fully valid if the forecaster is believed to know the “optimal” parameters to be

used in the general-to-specific procedure.

The last column in Table 1 shows that, overall, the gains in forecast accuracy

by applying the regular diffusion index model over the autoregressive model are

modest. These results confirm the findings based on monthly Danish data re-

ported in Dahl et al. (2005). Most noticeable, however, is the amount by which

the MSFE is reduced by employing the cyclical factor model given by (7). The

improvement in forecast accuracy is present for all forecast horizons and variables.

5See also Phillips (2005).
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Table 1: Recursive out-of-sample forecast comparisons using the estimated cycli-

cal components.

MSFE Relative MSFE

F AR CF CF/F CF/AR F/AR

Private Consumption

h = 1 0.139 0.125 0.095 0.688 0.765 1.112

h = 4 0.256 0.266 0.247 0.963 0.926 0.960

GDP

h = 1 0.046 0.045 0.039 0.859 0.869 1.011

h = 4 0.136 0.151 0.089 0.651 0.590 0.906

Employment

h = 1 28.729 28.945 26.612 0.926 0.919 0.992

h = 4 131.140 126.950 99.752 0.760 0.785 1.033

Inflation

h = 1 0.013 0.013 0.013 0.999 0.999 1.000

h = 4 0.071 0.071 0.059 0.824 0.824 1.000
Initial sample: 1986q1-1994q4. Final sample: 1986q1-2003q4. Only the results based on the

“best” performing models are reported. For a description of the specification search, see

discussion in main text. CF, F and AR denote the cyclical diffusion index model (7), the

regular diffusion index model (8) and the autoregressive model (9), respectively. CF/F, CF/AR

and F/AR are the forecast accuracy ratios and, finally, h denotes the forecast horizon.

Compared to the regular diffusion index model the improvement is substantial

for most horizons and variables – with a maximum reduction of MSFE of 35%

(GDP at a 4-quarter (one-year) horizon).

As previously mentioned the results reported in Table 1 are based on the

”best” initial choice of k and p, i.e., the values of k and p that yield the lowest

MSFE in the pseudo out-of-sample forecasting). As these parameters are not

known in real time, the results provided in Table 1 should be interpreted with

caution. However, in Figures 2 and 3 we have depicted not only the MSFE

associated with the best performing models but all the 16 MSFEs that were

calculated for each model based on our search over alternative initial settings for

k and p in the forecasting equation.6 For each model, the MSFEs have been

sorted based on the size, with the best performing initial specification (identical

to the results in Table 1) to the left, and the worst performing initial specification

to the right. The figures show that the forecasting accuracy is indeed sensitive

to the initial settings.

When the forecast horizon is one quarter (Figure 2), we notice that the MSFEs

6For the linear autoregressive model there are only 8 MSFEs for each variable and forecast

horizon. To increase the readability of the plots we report each of these results twice, resulting

in the 16 bars shown in the figures.

10



Figure 2: Distribution of MSFE (h = 1) for the regular diffusion index model (1’st bar),

the linear AR model (2’nd bar) and the cyclical diffusion index model (3’rd bar).
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Figure 3: Distribution of MSFE (h = 4) for the regular diffusion index model (1’st bar),

the linear AR model (2’nd bar) and the cyclical diffusion index model (3’rd bar).
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are generally lowest for the cyclical diffusion index model. Yet, the improvement

in forecasting accuracy compared to the regular diffusion index model and the

autoregressive model is not universal. For some of the initial settings the cyclical

diffusion index model performs no better, and in some cases even worse, than the

best performing variants of the other models (compare the rightmost MSFE’s of

the cyclical diffusion model with the leftmost MSFE’s of the other models).

For the one-year-ahead forecast horizon the improvement in forecasting accu-

racy is very pronounced (Figure 3). The MSFEs based on the cyclical diffusion

index model are again generally lower than the MSFEs of the other models. For

the case of GDP, employment and inflation the cyclical diffusion index model

outperforms the regular diffusion index model and the autoregressive model ir-

respectively of the initial settings. That is, even the worst performing variant

of the cyclical model is better than the best performing rival model for these

three variables. Only for private consumption is the improvement of forecasting

accuracy contingent on choosing the “best” initial settings. Overall, we find the

evidence based on Figures 2 and 3 to be very encouraging as it indicates a rea-

sonable degree of robustness in our findings on the increased forecast accuracy of

the cyclical component factor model.

5 Conclusion

We have suggested a new and simple approach to improve the out-of-sample fore-

cast of factor models based on large data sets which was introduced by Stock and

Watson (1998, 2002a,b). The basic idea is to assume that it is the pure cyclical

component of the series that allows a factor representation. We suggest using an

estimator of the pure cyclical components based on the SSF-package of Koop-

man et al. (1999) which numerically is easy to obtain. Monte Carlo simulations

suggest that the modification may actually improve the forecast performance of

the factor model when the variances of the irregular components are large while

the number of time series in the factor model is relatively small. Our empirical

illustration demonstrates that our approach improves the out-of-sample forecast

accuracy substantially relative to the regular diffusion index model for four Dan-

ish macroeconomic variables.
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