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Abstract

This paper proposes a methodology for modelling time series of realized covari-

ance matrices in order to forecast multivariate risks. The approach allows for

flexible dynamic dependence patterns and guarantees positive definiteness of

the resulting forecasts without imposing parameter restrictions. We provide an

empirical application of the model, in which we show by means of stochastic

dominance tests that the returns from an optimal portfolio based on the model’s

forecasts second-order dominate returns of portfolios optimized on the basis of

traditional MGARCH models. This result implies that any risk-averse investor,

regardless of the type of utility function, would be better-off using our model.
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1 Introduction

Multivariate volatility modelling is of particular importance to the fields of risk man-

agement, portfolio management and asset pricing. Typical approaches employed in the

modelling of multivariate volatility are the multivariate GARCH (MGARCH) models

(for a comprehensive review see Bauwens, Laurent, and Rombouts (2006)), stochastic

volatility (SV) models (reviewed in Asai, McAleer, and Yu (2006)) and, more recently,

realized covariance models (see Barndorff-Nielsen and Shephard (2004) and Andersen,

Bollerslev, Diebold, and Ebens (2001), among others). While the MGARCH and SV

approaches model the volatility process as latent, the realized covariance methods em-

ploy high-frequency data to enable highly precise estimation of the daily covariance

of the underlying assets, thus making it observable.

A prominent feature of volatility is the presence of long memory, which led, within the

GARCH framework, to the development of the integrated GARCH (Engle and Boller-

slev (1986)), the fractionally integrated GARCH (Baillie, Bollerslev, and Mikkelsen

(1996)) and the linear ARCH (Robinson (1991), Giraitis, Robinson, and Surgailis

(2000)) models. With high frequency data, the long persistence in a series of real-

ized volatilities is portrayed by a slow decay in the autocorrelation function (see e.g.,

Andersen and Bollerslev (1997), Andersen, Bollerslev, Diebold, and Ebens (2001)),

and is modeled by means of fractionally integrated ARMA (ARFIMA) processes by

Andersen, Bollerslev, Diebold, and Labys (2003), Oomen (2001) and Koopman, Jung-

backer, and Hol (2005), among others.

Recently, the literature on MGARCH models has been advancing towards flexible

model specifications applicable to higher dimensional problems. Yet there is little

research on time series models for covariance matrices estimated with high frequency

data. The existing literature concerning the dynamic modelling of realized covari-

ance matrices has typically concentrated on univariate approaches for a time series

of realized volatilities or a single realized covariance (correlation) series. Andersen,

Bollerslev, Diebold, and Ebens (2001) model the series of log-realized volatilities and

realized correlations with univariate ARFIMA models, while Corsi (2005) and Corsi

and Audrino (2007) apply univariate Heterogenous Autoregressive (HAR) models to

capture the high persistence of the series through an autoregressive representation

of volatilities/correlations realized over different time horizons. However, the matrix

constructed from the variance and correlation forecasts obtained from these univariate
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models is not guaranteed to be positive definite. In order to obtain a forecast of the

entire covariance matrix, Voev (2007) proposes a methodology in which the univari-

ate variance and covariance forecasts can be combined to produce a positive definite

matrix forecast. A drawback of this approach is that the dynamic linkages among

the variance and covariance series (e.g., volatility spillovers) is neglected. Among the

few proposed models for the dynamics of the whole realized covariance matrix are

the Wishart Autoregressive (WAR) model of Gourieroux, Jasiak, and Sufana (2005),

based on the distribution of the sample variance-covariance matrix, known in the lit-

erature as the Wishart distribution, and the model of Bauer and Vorkink (2006), who

employ the matrix log transformation to guarantee positive definiteness of the matrix

forecast. The WAR model, however, is incapable of producing long memory type de-

pendence patterns and is built on latent processes, whose interpretation is difficult and

which makes the introduction of exogenous forecasting variables hard. The study of

Bauer and Vorkink (2006) differs from ours in that it introduces a latent factor model

for the log-transform of the covariance matrix and investigates the forecasting power

of various predictive variables, such as past returns, risk-free interest rate, dividend

yield, credit spread and slope of the term structure.

The model developed in this paper has the advantages of all above-mentioned ap-

proaches while alleviating their limitations. We propose the following 3-step proce-

dure: firstly, decompose the series of covariance matrices into their Cholesky factors,

secondly forecast the Cholesky series with a well defined time series model and thirdly

reconstruct the matrix forecast. The positivity of the matrix forecast is thus ensured

by the “squaring” of the Cholesky factors which can be modelled as flexibly as needed

without imposing any parameter restrictions. The degree of parameterization (flexi-

bility) of the dynamic model for the Cholesky series should be guided by the dimension

of the matrix we are considering, as well as by the application we have in mind; do we

aim at a good in-sample fit, or are we more interested in out-of-sample forecasting?

In this paper our aim will be the latter and hence we tend to favor very moderately

parameterized models. In fact, our preferred specification has only three dynamic

parameters regardless of the dimension of the covariance matrix – an AR-, an MA-

and a parameter for the degree of fractional integration motivated by the strong per-

sistence of the series. An additional advantage is that the inclusion of an arbitrary

number of explanatory predictive variables is straightforward. The model can be seen

as an application and extension of the multivariate ARFIMA model of Sowell (1989)

which we estimate by conditional maximum likelihood (ML) based on the work of

Beran (1995). The conditional approach is preferred over the exact ML methods pro-
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posed in the univariate case by Sowell (1992) and An and Bloomfield (1993), since

the exact ML approach requires the inversion of a Tn × Tn matrix, where T is the

sample size, and n is the dimension of the process. For a nice review of inference on

and forecasting of ARFIMA models we direct the reader to Doornik and Ooms (2004).

A minor complication of the new approach is the difficulty of interpreting the model

coefficients. To overcome this problem, we derive the functional form of the marginal

effects (impulse responses) which reveal the dynamic linkages among the variance and

covariance series.

To assess the merits of our model we consider a risk-averse investor who faces the

problem of optimal portfolio selection. A crucial input to this problem is a covariance

matrix forecast. We provide him with three choices: a forecast based on our vector

ARFIMA (VARFIMA) model, a DCC (Engle (2002)) forecast and a BEKK (Engle

and Kroner (1995)) forecast. We then compare the ex-post realized performance of

the three sets of portfolio returns. It is common for similar comparisons to be carried

out by means of looking at the Sharpe ratio (see Fleming, Kirby, and Ostdiek (2001,

2003), and Şerban, Brockwell, Lehoczky, and Srivastava (2007), among others). This

is unsatisfactory from the point of view that the Sharpe ratio is only sufficient if the

investor has a quadratic utility and/or if the return distribution is fully described by

its first two moments (e.g., a normal distribution). Both of these conditions are at

best questionable. We provide a much more powerful comparison which holds for any

concave utility function and any return distribution by testing whether a given return

distribution stochastically dominates, in terms of second order stochastic dominance,

another return distribution. The results strongly suggest that any risk-averse investor

would prefer to use our forecasts.

The paper is structured as follows: Section 2 presents the model and the resulting

forecasting procedure, Section 3 reports estimation and forecasting results and Section

4 concludes.
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2 The Model

Let rt be a vector of daily log returns of dimension n × 1, where n represents the

number of assets considered. The process rt can be written as:

rt = E[rt|Ft−1] + ǫt, (1)

where Ft−1 is the information set consisting of all relevant information up to and

including t − 1 and

ǫt = H
1/2
t zt,

where Ht is a positive definite matrix of dimension n×n, H
1/2
t is its Cholesky decom-

position and zt is an n × 1 vector assumed to be i.i.d. with E[zt] = 0 and V [zt] = In.

The covariance matrix of the returns is given by:

V [rt|Ft−1] = V [ǫt|Ft−1] = Ht

Barndorff-Nielsen and Shephard (2004) and Andersen, Bollerslev, Diebold, and Ebens

(2001) propose the realized covariance matrix Yt as a consistent estimator of Ht.
1 The

Cholesky decomposition of the matrix Yt is given by the upper triangular matrix Pt,

for which P ′
tPt = Yt:

Yt =













Y11,t Y12,t . . . Y1n,t

Y12,t Y22,t . . . Y2n,t

...
...

. . .
...

Y1n,t . . . . . . Ynn,t













=













P11,t 0 . . . 0

P12,t P22,t . . . 0
...

...
. . .

...

P1n,t P2n,t . . . Pnn,t













·













P11,t P12,t . . . P1n,t

0 P22,t . . . P2n,t

...
...

. . .
...

0 0 . . . Pnn,t













Because the matrix Yt is symmetric and positive definite by construction, the elements

of the matrix Pt are all real (see e.g, Golub and van Loan (1996)). Let Xt = vech(Pt)

be the vector obtained by stacking the upper triangular components of the matrix Pt

1The realized covariance matrix is the sum of the products of high-frequency (e.g., 5-minute) returns
within a given day t. We show how to compute Yt in the empirical section.
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in a vector. Xt is of dimension m × 1, where m = n(n + 1)/2:

Xt = vech(Pt) =

















P11,t

P12,t

P22,t

...

Pnn,t

















≡

















X1,t

X2,t

X3,t

...

Xm,t

















.

We model the dynamics of the vector Xt by using the Vector Autoregressive Fraction-

ally Integrated Moving Average (VARFIMA(p, d, q)) model defined below:

Definition 1: The VARFIMA(p, d, q) model for the vector process Xt is defined as

Φ(L)D(L)[Xt − BZt] = Θ(L)εt, εt ∼ N(0, Σ), (2)

where Zt is a vector of exogenous variables of dimension k × 1, B is a matrix of

coefficients of dimension m × k, Φ(L) = Im − Φ1L − Φ2L
2 − . . . − ΦpL

p, Θ(L) =

Im + Θ1L + Θ2L
2 + . . . + ΘqL

q are matrix lag polynomials with Φi, i = 1, . . . , p

and Θj, j = 1, . . . , q – the AR- and MA-coefficient matrices, and D(L) = diag{(1 −

L)d1 , . . . , (1−L)dm}, where d1, . . . , dm are the degrees of fractional integration of each

of the m elements of the vector Xt. We assume that the roots of Φ(L) and Θ(L) lie

outside the unit circle. ⋄

The model presented here has been studied by Sowell (1989), who shows that an ele-

ment of the vector Xt, say Xit, is stationary if di < 0.5. Moreover, the whole vector

process Xt is stationary if di < 0.5 for i = 1, . . . , m. In Equation (2), one could

consider including exogenous variables that are documented to have an effect on stock

market volatility, such as lags of squared daily returns (Black (1976)), functions of

trading volume (Lamoureaux and Lastrapes (1990)), corporate bond returns (Schwert

(1989)) or short term interest rates (Glosten, Jagannathan, and Runkle (1993)).

The assumption of normally distributed error terms gives rise to a Gaussian likeli-

hood function, which, maximized under certain regularity conditions (see Gourieroux

and Monfort (1995)), and the assumption that the conditional mean function is well

specified, provides consistent estimates of the parameters of the VARFIMA model

defined above. Although the diagonal elements of the Cholesky decomposition are by

construction positive, the Gaussianity assumption for the corresponding error terms
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in Equation (4) is not problematic. The positive definiteness condition for the co-

variance matrix based on the forecasted Cholesky factors does not impose positivity

restrictions on the elements of the predicted Xt+s, for some s > 0. Any (invertible)

upper triangular matrix constructed from the elements of the forecast of Xt+s pro-

vides a positive definite matrix of predicted covariances. More formally, the reverse

transformation from Xt to Yt is given by:

Yt = upmat(xpnd(Xt))
′upmat(xpnd(Xt)),

where the xpnd operator is the inverse of the vech operator and the upmat operator

creates an upper triangular matrix. The (i, j)-element of Yt is related to Xt as follows:

Yij,t =

i(i+1)
2

∑

l=1+
i(i−1)

2

Xl,tXl+ j(j−1)
2

− i(i−1)
2

,t
, i, j = 1, . . . , n, j ≥ i. (3)

where Xl,t is the l-th element of Xt. This transformation embodies and illustrates

the main advantage of our model specification: it guarantees the positive definiteness

and symmetry of the covariance matrix without imposing any restrictions on the

parameters in the model for Xt. In terms of estimation, we face the problem that the

parameters of the unrestricted VARFIMA models are not identified, which results from

the non-uniqueness of VARMA models, discussed at length in Lütkepohl (2005). The

problem in the multivariate case is even more severe than in the univariate ARMA

case, in which root cancelation in the AR and MA-polynomials can occur. In the

multivariate case, even after assuming that the AR and the MA polynomials have no

common roots, one can still factor out infinitely many times a so-called unimodular lag

operator without changing the structure of the process.2 Lütkepohl (2005) discusses

two forms of a general VARMA model which are unique representations of a given

VARMA process: final equations form and echelon form. In our paper we consider

the final equations form, for which we provide a definition below.

Definition 2: The n-dimensional VARMA(p, q) representation Φ(L)Yt = Θ(L)εt is

said to be in final equations form if Θ0 = In and Φ(L) = 1 − φ1L − . . . − φpL
p is a

scalar operator with φp 6= 0. ⋄

Following this definition, we estimate the model in final equations form, restricting

2A unimodular lag operator is an operator whose determinant is a non-zero constant, i.e., the deter-
minant does not involve powers of L.
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Table 1: Number of parameters for the general VARFIMA(p, d, q) model
and its restricted specifications, considered in this paper.

Dimension Number of Model 1 Model 2
parameters

Φ(L) 1 × 1 p 1 1
D(L) m × m m m 1
B m × k km m∗ m∗

Θ(L) m × m qm2 m2 1

Total number
of parameters qm2 + (k + 1)m + p m2 + 2m + 1 m + 3

Note: ∗k = 1 (constant). Model 1 is an unrestricted VARFIMA(1, d, 1) and Model 2 is a
scalar VARFIMA(1, d, 1) with d1 = d2 = . . . = dm and a scalar Θ.

the AR polynomial to be a scalar polynomial. Apart from guaranteeing uniqueness

of the representation, this approach leads to a reduction in the number of param-

eters to be estimated. Table 1 gives the total number of parameters for a general

VARFIMA(p, d, q) model in final equations form, as well as for two restricted model

specifications considered in this paper and described below. Note, that we exclude Σ

as a parameter of the model since we refrain from estimating it, as will become clear

in the empirical section.

For our purposes, we employ the model in Equation (2) with AR and MA polynomials

of order one and a mean vector c of dimension m × 1 (Model 1):

Φ(L)D(L)[Xt − c] = Θ(L)εt, εt ∼ N(0, Σ) (4)

Given that m = n(n+1)
2

, where n represents the number of stocks considered in the

application, Model 1 has a total of (n2+n+2)2

4
parameters. In order to reduce the num-

ber of parameters, we assume in a restricted version of the model that all Cholesky

decomposition series are fractionally integrated with the same degree of integration

d = d1 = . . . = dm, and, consequently, D(L) = (1 − L)dIm. Further reduction of

the number of parameters is achieved by restricting the parameter matrix Θ to be

scalar (Model 2). In practice the mean vector c can be estimated in a first step as the

sample mean of Xt which leaves only three parameters for estimation in the second

step. This approach is related to correlation targeting in DCC models in which the

unconditional correlation matrix is set equal to the sample correlation matrix of the

series in order to reduce the number of parameters to be estimated.
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Forecasting

In what follows, we present the theory of forecasting with the VARFIMA model pre-

sented above. The forecasting performance of the model is assessed in the next section

by using historical stock return data.

For ease of exposition and since the exogenous regressors in the model in Equation

(2) are by assumption predetermined, we neglect the term BZt. The fractionally

differenced series D(L)Xt follows a stationary VARMA process, and therefore we can

obtain forecasting formulas through its infinite Vector Moving Average (VMA(∞))

representation (see e.g., Lütkepohl (2005), pp. 432− 434). For each j = 1, . . . , m, the

fractionally differenced series (1 − L)dj Xj,t is given by:

(1 − L)dj Xj,t =
∞

∑

h=0

δj,hXj,t−h = Xj,t +
∞

∑

h=1

δj,hXj,t−h, (5)

where δj,0 = 1 and δj,h =
∏

0<r≤h
r−1−dj

r
, h = 1, 2, . . .. Therefore, we can rewrite

Equation (2) as:

Φ(L)Λ(L)Xt = Θ(L)εt, (6)

where Λ(L) = Im +
∑∞

h=1 ∆hL
h and ∆h = diag{δ1,h, . . . , δm,h}. From Equation (6) we

can derive the VMA(∞) representation:

Xt = Φ(L)−1Λ(L)−1Θ(L)εt =

∞
∑

i=0

Ψiεt−i,

where Ψ0 = Im and the optimal predictor of Xt in terms of the VMA(∞) representa-

tion is given by:

Et[Xt+s] =
∞

∑

i=s

Ψiεt+s−i =
∞

∑

i=0

Ψs+iεt−i

The resulting forecast is unbiased (that is, the forecast errors have zero mean) and since

the εt are assumed to be normally distributed, the forecast errors are also normally

distributed as:

ut,t+s ≡ Xt+s − Et[Xt+s] ∼ N(0, Σs),

where

Σs = E[(Xt+s − Et[Xt+s])(Xt+s − Et[Xt+s])
′] = E[ut,t+su

′
t,t+s] =

s−1
∑

i=0

ΨiΣΨ′
i
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It follows that the forecast errors of the one-step ahead forecast, ut,t+1, are normally

distributed with zero-mean and variance-covariance matrix Σ1 = Σ. As seen in Equa-

tion (5), for each j = 1, . . . , m, the Xj,t process has an infinite autoregressive repre-

sentation that can be truncated at, say h = 1000 lags for practical purposes.

Having forecasted Xt+s, we construct the forecast of the daily volatility matrix Yt+s by

applying the transformation in Equation (3). As a brief aside, note that we are in fact

forecasting the series Yt, while ideally we would like to forecast Ht. Ht, however, is

not observable, implying that the quality of the forecast does not fully depend on the

dynamic specification of Yt but also on the quality of the realized covariance estimator.

It is beyond the scope of this paper to address the latter issue; the search for better

and better multivariate volatility measures using high frequency data is currently a

very active area of research. In this paper we use an estimator which has been shown

to be reliable and much more precise than any estimator based on daily data.

Let us define the forecast errors for the individual elements of Yt+s as eij,t+s =

Et[Yij,t+s] − Yij,t+s. Since the forecast of Yt+s is a quadratic transformation of the

forecast of Xt+s, the mean of eij,t+s is generally no longer zero, and depends on the

variance Σs of the forecast error ut,t+s. Thus, in order to obtain unbiased predictions,

each component of the covariance matrix forecast, Et[Yij,t+s], should be corrected for

the bias given by Et[eij,t+s] ≡ σ∗
s,ij 6= 0. From Equation (3), it follows that the bias

correction for Et[Yij,t+s] can be obtained from the elements of the matrix Σs using the

following formula:

σ∗
s,ij =

i(i+1)
2

∑

l=1+
i(i−1)

2

σ
s(l,l+ j(j−1)

2
− i(i−1)

2
)
, (7)

where j ≥ i, i = 1, . . . , n and σs(u,v) is the (u, v)-element of Σs.

Since the model is applied to a transformation of the realized covariance matrix,

namely the series of Cholesky factors, the parameters in Equation (2) are not directly

interpretable. However, one can derive the dynamic linkages among the variance

and covariance series as functions of these parameters. The elements of the pre-

dicted covariance matrix Et[Yt+s] are (nonlinear) functions of elements of the forecast

Et[Xt+s] ≡ E [Xt+s|Ft], and, therefore, functions of the estimated parameter vector

and the variables included in Ft, which in our case is the history of the process Xt up

to time t, denoted by X t. We can write the (i, j)-element of the predicted covariance
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matrix as (see Equation 3):

Et[Yij,t+s] =

i(i+1)
2

∑

l=1+ i(i−1)
2

Et

[

Xl,t+sXl+ j(j−1)
2

− i(i−1)
2

,t+s

]

≡ Gi,j,s(X t, ϑ), (8)

where i, j = 1, . . . , n, j ≥ i and Et [Xl,t+s] is the l-th element of the vector Et [Xt+s].

Gi,j,s(·) is a scalar function of X t and ϑ, corresponding to the (i, j)-element of the

matrix Et[Yt+s], and ϑ is the vector of all model parameters. For example, the impact

of a shock in the covariance Yij,t on the predicted variance Et[Yii,t+s] can be computed

as follows:

∂Et[Yii,t+s]

∂Yij,t

=
∂Gi,i,s

∂Gi,j,0

=
m

∑

r=1

∂Gi,i,s

∂Xr,t

∂Xr,t

∂Gi,j,0

= F s,t
ii,ij(X t, ϑ), (9)

where Gi,j,0 ≡ Yij,t =
∑

i(i+1)
2

l=1+
i(i−1)

2

Xl,tXl+
j(j−1)

2
−

i(i−1)
2

,t
, j ≥ i and F s,t

ii,ij(·) is a scalar

function. In a similar way, one can derive the the impact of the variance Yii,t on the

predicted covariance Et[Yij,t+s]:

∂Et[Yij,t+s]

∂Yii,t
=

∂Gi,j,s

∂Gi,i,0
=

m
∑

r=1

∂Gi,j,s

∂Xr,t

∂Xr,t

∂Gi,i,0
= F s,t

ij,ii(X t, ϑ), (10)

where Gi,i,0 ≡ Yii,t =
∑

i(i+1)
2

l=1+
i(i−1)

2

X2
l,t. The expressions for Gi,j,s, Gi,i,s, F s,t

ii,ij and F s,t
ij,ii

are derived in Appendix A. In Section 3 we report estimated values of such marginal

effects for our empirical example.

3 Empirical Application

In this section we present results from estimating and forecasting the VARFIMA

model using historical return data for n = 6 stocks traded at the New York Stock

Exchange (NYSE). For the estimation, we use a multivariate extension of the condi-

tional maximum likelihood approach of Beran (1995). It is important to state that

in this empirical paper, we focus mainly on evaluating the out-of-sample performance

rather than on in-sample fit of the model: while in-sample evaluation methods are in

general limited and cumbersome when applied to highly dimensional models (Engle

and Sheppard (2007), Bauwens, Laurent, and Rombouts (2006)) and less relevant for

practical purposes, the out-of-sample assessment of covariance models is of key impor-
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tance for the evaluation of our ability to precisely predict financial risks. We compare

our model to two very popular MGARCH models – the DCC of Engle (2002) and the

BEKK of Engle and Kroner (1995) – by applying statistical and economic criteria,

such as ex-post performance of mean-variance optimal portfolios.

3.1 Data

We use tick-by-tick bid and ask quotes from the NYSE Trade and Quotations (TAQ)

database sampled from 9:45 until 16:00 over the period January 1, 2001 to June 30,

2006 (1381 trading days). Although the NYSE market opens at 9:30, we filter out the

quotes recorded in the first 15 minutes in order to eliminate the opening auction effect

on the price process. For the current analysis, we select the following six stocks: Amer-

ican Express Inc. (AXP), Citigroup (C), Home Depot Inc. (HD), Hewlett-Packard

(HWP), International Business Machines (IBM) and JPMorgan Chase & Co (JPM).

All stocks trade on the NYSE and are highly liquid, which motivated the choice.

In order to obtain a regularly spaced sequence of midquotes, we use the previous-

tick interpolation method, described in Dacorogna, Gençay, Müller, Olsen, and Pictet

(2001). The mid-quotes are thus sampled at the 5-minute and daily frequency, from

which 5-minute and daily log returns are computed. Thus we obtain 75 intraday

observations which are used to compute the realized variance-covariance matrices for

each day. Table B.1 in Appendix B reports summary statistics of both 5-minute and

daily returns. We observe typical stylized facts such as overkurtosis and tendency for

negative skewness of intradaily and daily returns (across all six stocks, the average

kurtosis of 5-minute return series is about 269.2, while of daily returns is about 10.9).

For estimation, we scale up the daily and intradaily returns by 100, i.e., we consider

percentage returns.

For each t = 1, . . . , 1381, we construct series of daily realized covariance matrices, Yt,

from with 5-minute returns as:

Yt =
M

∑

j=1

rj,tr
′
j,t (11)

where M = 75 and rj,t is the n × 1 vector of 5-minute returns computed as

rj,t = pj∆,t − p(j−1)∆,t, j = 1, . . . , M

11



where ∆ = 1/M and pj∆,t is the log midquote price at time j∆ in day t. By con-

struction, the realized covariance matrices are symmetric and, for n < M , they are

positive definite almost surely. Since by sampling sparsely we disregard a lot of data,

we refine the estimator by considering subsamples. With ∆ = 300 sec, we construct

30 regularly ∆-spaced subgrids starting at seconds 1, 11, 21, . . . , 291, compute the re-

alized covariance matrix for each subgrid and average over the subgrids. The resulting

subsampled realized covariance is much more robust to noise and non-synchronicity

than the simple 5-minute based one. As we are interested in the covariance matrix

of the whole day (close-to-close), and Yt estimates only its open-to-close portion, we

use the scaling method introduced by Hansen and Lunde (2005) adapted to the multi-

variate case: we scale each (co)variance estimate corresponding to the trading period

by an average scaling factor, which incorporates the overnight information over all

series. This procedure preserves the positive-definiteness of the resulting covariance

matrix. Table B.2 in Appendix B reports summary statistics of realized variances and

covariances of the six stocks considered in the study. As already documented by An-

dersen, Bollerslev, Diebold, and Ebens (2001), both realized variance and covariance

distributions are extremely right skewed and leptokurtic.

After computing the series of realized covariance matrices, we construct the series of

Cholesky factors, which inherit the long memory property of realized (co)variances

documented by Andersen and Bollerslev (1997) and Andersen, Bollerslev, Diebold,

and Ebens (2001). To get an idea about the degree of fractional integration, we run

OLS regressions of log-autocorrelations on log-lags (see Beran (1998), pp. 89-92) and

obtain a cross-sectionally averaged estimate of 0.24.

3.2 MGARCH Models

For our comparative study we consider two popular MGARCH approaches for the

conditional covariance matrix: the DCC model (Engle (2002)) and the diagonal BEKK

model (Engle and Kroner (1995)). We assume here that the conditional mean of daily

returns is constant, E[rt|Ft−1] = µ (see Equation (1)) and we estimate it along with

the MGARCH parameters.

DCC GARCH

Engle (2002) proposed a multivariate GARCH model with univariate GARCH(1,1)

12



conditional variances, hii,t, and dynamic conditional correlations:

Ht = DtRtDt,

where Dt = diag(h
1/2
11,t . . . h

1/2
nn,t) and

hii,t = wi + αiǫ
2
i,t−1 + βihii,t−1,

where wi, αi, βi ≥ 0 and αi + βi < 1, ∀i = 1, . . . , n.

Rt = (diag(Qt))
− 1

2 Qt(diag(Qt))
− 1

2 ,

where Qt is an n × n symmetric and positive definite matrix given by:

Qt = (1 − θ1 − θ2)Q̄ + θ1ut−1u
′
t−1 + θ2Qt−1,

where ut is the vector of standardized residuals with elements

ui,t =
ǫi,t

√

hii,t

, i = 1, . . . , n

and Q̄ is the unconditional covariance of ut. For n = 6 assets, the DCC model implies

a total of 26 parameters, which are estimated by maximizing the normal pseudo-

likelihood.

Diagonal BEKK

Engle and Kroner (1995) suggested a multivariate GARCH model, where the condi-

tional return covariance matrix Ht is parameterized as a function of lags and lagged

squared innovations:

Ht = C ′C + A′ǫt−1ǫ
′
t−1A + B′Ht−1B,

where C is an upper n × n triangular matrix and A and B are n × n parameter ma-

trices. Under certain restrictions, described in Engle and Kroner (1995), the resulting

covariance matrices are assured to be positive definite and stationary. In the present

paper, we estimate the diagonal specification of the model, where A and B are diag-

onal matrices. The model includes 39 parameters, which are estimated by maximum

likelihood assuming conditional normality.

13



3.3 Estimation Results

Before turning to the forecasting evaluation, we present here estimation results for

the full sample of data. The results of the DCC and diagonal BEKK models are re-

ported in Table B.3. Due to the“curse of dimensionality”, the unrestricted VARFIMA

model (Model 1) with n = 6 (m = 21) implies the estimation of 484 parameters, and

therefore we present here the empirical results only for the scalar model (Model 2).

As discussed earlier, we set c equal to the sample mean X̄ of Xt and estimate the

model for Xt− X̄ with just three parameters: d, φ and θ. In order to avoid estimating

the m × m matrix Σ, we set it equal to the unconditional covariance matrix for a

stationary VARFIMA(1, d, 1) process for which we use an approximation based on

the VARMA(∞,1) representation truncated at 1000 lags. Thus Σ is a function of the

parameters d, φ and θ, and of the sample covariance matrix of Xt. The long memory

of the series is reflected in an estimated degree of fractional integration d of approxi-

mately 0.210; the autoregressive parameter is significantly positive (φ̂ = 0.025), while

the moving average parameter is significantly negative (θ̂ = −0.105). Similar results

are obtained by Oomen (2001) who estimates ARFIMA models for log realized volatil-

ities. As a result of pre-estimating c and using the sample covariance of Xt in the

computation of Σ, the resulting “second-step” QML standard errors of the estimated

parameters are incorrect. Therefore, to assure a robust inference of the model param-

eters, we derive the standard errors by employing the subsampling bootstrap method

developed by Politis and Romano (1994a) and Politis, Romano, and Wolf (1999) for

dependent and cross-correlated time series. The values of the standard deviations of

d̂, φ̂ and θ̂ are approximately 0.0063, 0.0052 and 0.0065, respectively, indicating that

the estimated parameters are significant at the 5% level.

As already mentioned in Section 2, although the estimated coefficients are not di-

rectly interpretable, we can measure the dynamic marginal effects among the series

(see Appendix A). For example, we find that the variance of the AXP stock returns

has a positive effect on the one-step ahead correlation between AXP and HWP re-

turns; the estimated value of the marginal effect of AXP variance on the conditional

expectation of the covariance between AXP and HWP returns is around 0.044 (based

on Equation (A6)). This well documented phenomenon is referred to in the literature

as the “volatility in correlation effect” (see Andersen, Bollerslev, Diebold, and Ebens

(2001)) and indicates the strong linkage between volatilities and correlations on the

stock market. The interested reader can obtain the values of all marginal effects from

the authors on request.
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Figure B.1 in Appendix B plots the autocorrelograms of the standardized residual

series of the estimated VARFIMA model. The residual autocorrelogram occasionally

reveals some remaining autocorrelation, which might be the result of truncating the

infinite AR polynomial in Equation (5) at h = 1000 for practical reasons. We em-

phasize again, however, that in the present study, we are more interested in analyzing

the out-of-sample performance of the new model, rather than concentrating on its in-

sample fit. Moreover, it is clear that the tight parametrization leads to a low in-sample

performance but might very well improve the quality of the out-of-sample forecasts

(see e.g., Engle and Sheppard (2007), among others).

3.4 Forecasting Results

In order to compare the forecasting performance of the three models, we divide the

overall sample of 1381 days into two subsamples: an in-sample period on which we es-

timate the model, and an out-of-sample period which serves to evaluate the forecasting

performance. The in-sample period contains initially the first 1181 observations. In

each forecasting step, we increase the in-sample period by one observation, re-estimate

the models and make a new one-step ahead forecast. This procedure is carried out

200 times, and as a result we obtain a total of 200 one-step ahead forecasts for each

covariance estimator. Given that there are no significant differences in the VARFIMA

forecasts with and without bias correction, we ignore the bias correction for compu-

tational reasons. As a quick comparison we mention that the cross-sectional average

root mean squared prediction errors for the VARFIMA, DCC and BEKK forecasts

are 0.508, 0.580 and 0.564, respectively. These are very crude “goodness” measures

and we do not claim that there are statistically significant differences among them.

They should, therefore, be interpreted as simply indicative. In this paper, we refrain

from further statistical forecast comparisons.

In order to asses the economic value of the three model forecasts, we construct portfo-

lios which are supposed to maximize the utility of a risk-averse investor. If the utility

function is second degree polynomial or logarithmic and/or the return distribution is

completely characterized by its first two moments (e.g. normal distribution), the port-

folio optimization reduces to finding the asset weights which minimize the portfolio

volatility while aiming for a target expected return or maximize the portfolio return

while targeting a certain volatility (Markowitz (1952)).
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We assume that an investor minimizes his portfolio volatility subject to a fixed ex-

pected return (10% p.a.). He is allowed (Scenario 1) or prohibited (Scenario 2) to sell

assets he does not own (short selling). In this context, the optimal portfolio is given

by the solution to the following quadratic problem:

min
wt+1|t

w′
t+1|tĤt+1|twt+1|t

subject to:

Scenario 1: w′
t+1|tEt[Rt+1] + (1 − w′

t+1|tι)Rf = R∗

Scenario 2: w′
t+1|tEt[Rt+1] + (1 − w′

t+1|tι)Rf = R∗, wt+1|t ≥ 0,

where Ĥt+1|t is the covariance forecast at day t for day t + 1, wt+1|t is the n× 1 vector

of portfolio weights chosen at day t for day t + 1, ι is an n × 1 vector of ones, Rf is

the risk free rate (3% p.a.) and R∗ is the target expected return (10% p.a.).

Given that there is hardly any predictable return variation at the daily level, we

assume that the expected returns are constant as in Fleming, Kirby, and Ostdiek

(2001, 2003). Having solved for the optimal weights based on the three different

conditional covariance forecasts, we compute the ex-post daily portfolio returns and

the corresponding Sharpe ratios, given by:

SR =
R̄p − Rf

σ̂Rp

,

where R̄p is the sample mean and σ̂Rp
– the sample standard deviation of the ex-post

realized portfolio return series.

Table 2: Annualized Sharpe ratios and standard deviations of out-of-sample
realized portfolio returns

Portfolio VARFIMA DCC BEKK
Sharpe Ratios

Scenario 1 0.976 0.615 0.491
Scenario 2 0.531 0.455 0.242

Standard Deviations

Scenario 1 12.71 12.97 13.16
Scenario 2 15.38 17.25 16.72

Table 2 reports the annualized realized Sharpe ratios and standard deviations of the
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three sets of minimum-covariance portfolios. The numbers in this table should be

interpreted simply as indicative that for the considered sample, the VARFIMA-based

portfolio delivers a smaller standard deviation and a higher Sharpe ratio than the

GARCH-based ones. We relegate the formal comparison of these results by means of

significance tests to the following discussion on stochastic dominance which is a much

more general way of assessing whether a given return distribution is “better” than

another one.

The assumption of a “mean-variance” investor is rather restrictive from an economic

point of view. A more meaningful evaluation of the optimality of the portfolios can

be achieved by comparing the whole distribution of the portfolio returns as opposed

to just the first two moments. For example, the skewness and the shape of the tails of

the return distribution are of significant relevance in the investment decision process.

Therefore, in what follows, we compare the VARFIMA-, DCC- and BEKK-based

portfolio return distributions by means of stochastic dominance tests. To this end we

need an additional definition.

Definition 3: Let X1 and X2 be two real random variables. It is said that X1 s-th

order stochastically dominates X2 (X1 �s X2, s > 0) if and only if F s
X1

(x) ≤ F s
X2

(x)

for all x with strict inequality for some x, where F s
Xi

(x) =
∫ x

−∞
F s−1

Xi
(t)dt for s ≥ 2,

F 1
Xi

(x) = FXi
(x) and FXi

(x) is the cumulative distribution function (CDF) of Xi,

i = 1, 2. ⋄

Fishburn (1980) and Bawa (1975), among others, show that X1 s-th order stochasti-

cally dominates X2 if and only if E[u(X1)] ≥ E[u(X2)] (with strict inequality for some

x from the common support of X1 and X2) for every function u with (−1)j+1u(j)(x) ≥ 0

for all j ∈ 1, . . . , s where u(j)(x) stands for the j-th derivative of u(x). The implica-

tions of this for our analysis are as follows: Let us have two optimal portfolio strategies

(forecasting models), A and B and Rp,A and Rp,B be the realized returns of the two

minimum-variance portfolios with CDF’s FA(x) and FB(x). A risk-averse investor

with an increasing utility function u(x), translating into u(1)(x) ≥ 0 and u(2)(x) ≤ 0,

chooses portfolio A over portfolio B if and only if portfolio A second order stochasti-

cally dominates portfolio B, i.e.,
∫ r

−∞
FA(x)dx ≤

∫ r

−∞
FB(x)dx for r ∈ Π, where Π is

the common support of Rp,A and Rp,B, with strict inequality for at least one r ∈ Π. In

this case the investor has a larger expected utility from portfolio A than from portfolio

B, E[u(Rp,A)] ≥ E[u(Rp,B)].
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Comparing the integrated cumulative distributions (i.e., F 2(·)) of the VARFIMA-

based portfolio pairwise against the DCC- and BEKK-based ones, we find that the

former is strictly smaller for each value of the common return support, which is a first

indication that the VARFIMA-based portfolio second order stochastically dominates

the other two portfolios. To check the robustness of these results, we apply a number

of stochastic dominance tests on the estimated distributions.

The literature on stochastic dominance tests is separated into two groups: one group

(McFadden (1989), Klekan, McFadden, and McFadden (1991), Barett and Donald

(2003), Linton, Maasoumi, and Whang (2005)) tests the null hypothesis of dominance

(H0 : A �2 B) against the alternative of non-dominance (H1 : A �2 B), while the

other group (Kaur, Rao, and Singh (1994), Davidson and Duclos (2000)) tests the

null hypothesis of non-dominance, against the alternative hypothesis of dominance.

Most of these tests are developed on the assumptions of i.i.d. and cross-independent

observations. Due to the fact that we deal with serially (due to GARCH effects) and

cross-dependent portfolio returns, we apply here two tests which account for these

features: the Linton, Maasoumi, and Whang (2005) (LMW) test and Kaur, Rao, and

Singh (1994) (KRS) test. We use the LMW test with the subsampling procedure

(Sub) of Politis and Romano (1994a) and Politis, Romano, and Wolf (1999) and the

stationary bootstrap (SB) procedure of Politis and Romano (1994b) to obtain consis-

tent critical values for the test.

Table 3 reports the p-values of the LMW and KRS tests for various null hypotheses

described in the first column. Regardless of the investment strategy, all tests with

the null hypothesis of stochastic dominance of the VARFIMA portfolio against the

other two portfolios have a p-value well in excess of 60% indicating a strong support

for the null. Changing the testing direction, we strongly reject the null hypothesis of

dominance of the MGARCH portfolios against the VARFIMA for Scenario 2 and with

the SB-based LMW test for Scenario 1. Similar results are obtained from the KRS

test with null hypotheses on non-dominance. Generally, for Scenario 2 we find ample

evidence for the dominance of the VARFIMA-based portfolio, while for Scenario 1 the

data is inconclusive, but still delivers some support for our model. Referring again

to Table 2, it is evident that for Scenario 2, the differences in the variance of the

portfolio distributions are substantial, which is the reason for the much more clear-

cut test results compared to Scenario 1. The relevance of the constrained portfolio

optimization problem in Scenario 2 is supported by the fact that many institutional
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investors are forbidden by law from short selling. Furthermore, a recent study of

Boehmer, Jones, and Zhang (2008) reveals that on the NYSE only up to 2% of short

sales are undertaken by individual traders. Thus, we conclude that combining the

precision of high-frequency data to measure realized volatility with a sensible time-

series model to forecast it, is a worthwhile strategy to pursue, as it has the potential

of providing added economic value.

Table 3: P-values of the LMW and KRS tests for 2nd order stochastic
dominance.

Scenario 1 Scenario 2

Test/Portfolio B DCC BEKK DCC BEKK

LMW Test

Sub
H0 : A �2 B 0.803 0.625 0.812 0.785
H0 : B �2 A 0.633 0.160 0.000 0.000

SB
H0 : A �2 B 0.930 0.960 0.871 0.792
H0 : B �2 A 0.019 0.009 0.000 0.000

KRS Test

SB
H0 : A �2 B 0.254 0.107 0.098 0.009
H0 : B �2 A 0.960 0.950 0.990 0.990

Note: Portfolio A denotes the minimum covariance portfolio based on the VARFIMA
forecasts. The critical values of the tests are derived from bootstrap procedures which
account for serial and cross dependence of the observations: subsampling bootstrap (“Sub”)
and stationary bootstrap (“SB”). The subsampling size is b = 90 observations. The “block”
length of the stationary bootstrap is driven by the average value of the first order serial
correlation of the series.
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4 Conclusion

In this paper, we present an approach for modelling the dynamics of realized covariance

matrices. The model we propose explicitly accounts for the empirically observed long

memory of financial volatility and allows for inclusion of predictive variables (e.g.,

traded volume, interest rates, etc.) which have been found to influence volatility.

The main feature of our specification is the decomposition of the realized covariance

matrices into their Cholesky factors. The dynamics of the elements of the Cholesky

decompositions are modelled with a multivariate vector fractionally integrated ARMA

(VARFIMA) model without imposing restrictions on the admissible parameter space.

By subsequent “squaring” of the forecasted Cholesky elements, we automatically ob-

tain positive definite covariance forecasts.

The model is estimated on six and a half years of daily realized covariances of six

stocks traded on the NYSE and shows a reasonable in-sample fit. More importantly,

we assess its forecasting performance by applying it to an optimal portfolio selection

problem. We compare the resulting optimal portfolio returns to the returns generated

by using forecasts of two well established multivariate GARCH models, the DCC of

Engle (2002) and the BEKK of Engle and Kroner (1995). By employing tests for

stochastic dominance, we show that among these three alternatives, any risk-averse

investor would achieve the highest expected utility by using our model’s forecasts to

optimize his portfolio.

The methodology presented in this study can be extended in a number of ways: one

interesting direction is to consider alternative estimation techniques such as non-linear

least squares and minimum distance estimation to overcome some of the difficulties

associated with the maximum likelihood approach used in this study. In order to fully

realize the potential of our methodology as well as to further test the performance

of the model, we believe it to be worthwhile to increase the number of assets under

consideration as well as to test the model on different time periods.
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A Appendix: Proofs

Derivation of the marginal effects in Equations (9) and (10)

We derive the expressions of Gi,j,s, Gi,i,s, F
s,t
ii,ij and F

s,t
ij,ij from Section 3, in the case of the

restricted version of the VARFIMA model (Model 2), estimated in the present study.

Given Equation (4), Model 2 can be written as follows:

(1 − φL)D(L)[Xt − c] = εt + θεt−1, εt ∼ N(0,Σ) (A1)

where φ and θ are scalars, D(L) = diag{(1 −L)d, . . . , (1−L)d} is of dimension m×m, and

c is a vector of dimension m × 1. In this context, we can write Equation (A1) as:

(1 − φL)(1 − L)d[Xl,t − cl] = εl,t + θεl,t−1, εl,t ∼ N(0, σll) l = 1, . . . ,m, (A2)

where σll is the (l, l)-element of Σ. Given the representation in Equation (5), we can write

Equation (A2) as follows:

(1 − φL)[Xl,t − cl +
∞

∑

h=1

δh(Xl,t−h − cl)] = εl,t + θεl,t−1,

where δh =
∏

0<r≤h
r−1−d

r , h = 1, 2, . . .. Thus for each l = 1, . . . ,m:

Xl,t = cl + (φ − δ1)(Xl,t−1 − cl) +

∞
∑

h=2

(φδh−1 − δh)(Xl,t−h − cl) + εl,t + θεl,t−1,

From the expression above, we can derive the conditional expectation of Yij,t+s from Equa-

tion (8) for any s ≥ 1 and i, j = 1, . . . , n with j ≥ i. We focus here on s = 1 (generalization

to s > 1 is straightforward):

Et[Yij,t+1] =

i(i+1)
2

∑

l=1+ i(i−1)
2

Et

[

Xl,t+1Xl+
j(j−1)

2
−

i(i−1)
2

,t+1

]

≡

i(i+1)
2

∑

l=1+ i(i−1)
2

Et [Xl,t+1Xp,t+1]
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=

i(i+1)
2

∑

l=1+ i(i−1)
2

Et[clcp + cl(φ − δ1)(Xp,t − cp) + cl

∞
∑

h=2

(φδh−1 − δh)(Xp,t−h+1 − cp)

+ clεp,t+1 + clθεp,t + cp(φ − δ1)(Xl,t − cl) + (φ − δ1)
2(Xl,t − cl)(Xp,t − cp)

+
∞
∑

h=2

(φ − δ1)(φδh−1 − δh)(Xl,t − cl)(Xp,t−h+1 − cp) + (φ − δ1)(Xl,t − cl)εp,t+1

+ (φ − δ1)θ(Xl,t − cl)εp,t + cp

∞
∑

h=2

(φδh−1 − δh)(Xl,t−h+1 − cl) +
∞

∑

h=2

(φ − δ1)(φδh−1 − δh)

× (Xp,t − cp)(Xl,t−h+1 − cl) +
∞

∑

h=2

(φδh−1 − δh)(Xl,t−h+1 − cl)
∞
∑

h=2

(φδh−1 − δh)(Xp,t−h+1 − cp)

+

∞
∑

h=2

(φδh−1 − δh)(Xl,t−h+1 − cl)εp,t+1 +

∞
∑

h=2

(φδh−1 − δh)θ(Xl,t−h+1 − cl)εp,t

+ cpεl,t+1 + (φ − δ1)(Xp,t − cp)εl,t+1 +

∞
∑

h=2

(φδh−1 − δh)(Xp,t−h+1 − cp)εl,t+1

+ εp,t+1εl,t+1 + θεl,t+1εp,t + cpθεl,t + θ(φ − δ1)(Xp,t − cp)εl,t

+

∞
∑

h=2

(φδh−1 − δh)θ(Xp,t−h+1 − cp)εl,t + θεl,tεp,t+1 + θ2εl,tεp,t]

≡ Gi,j,1(Xt, ϑ), (A3)

where the index p is defined (implicitly as a function of i, j) as p = l + j(j−1)
2 − i(i−1)

2 and

ϑ = (c′, φ, θ, d, . . . , vech(Σ))′.

From Equation (A3) we derive the expression of Gi,j,1(X t, ϑ) to be:

Gi,j,1(Xt, ϑ) =

i(i+1)
2

∑

l=1+
i(i−1)

2

(clcp + (φ − δ1) [cl(Xp,t − cp) + cp(Xl,t − cl) + (φ − δ1)(Xl,t − cl)(Xp,t − cp)]

+

∞
∑

h=2

(φ − δ1)(φδh−1 − δh) [(Xl,t − cl)(Xp,t−h+1 − cp) + (Xp,t − cp)(Xl,t−h+1 − cl)]

+
∞

∑

h=2

(φδh−1 − δh) [cl(Xp,t−h+1 − cp) + cp(Xl,t−h+1 − cl)]

+
∞

∑

h=2

(φδh−1 − δh)(Xl,t−h+1 − cl)
∞
∑

h=2

(φδh−1 − δh)(Xp,t−h+1 − cp)

+
∞

∑

h=2

θ(φδh−1 − δh) [εp,t(Xl,t−h+1 − cl) + εl,t(Xp,t−h+1 − cp)]

+ θ [clεp,t + cpεl,t] + (φ − δ1)θ [(Xl,t − cl)εp,t + εl,t(Xp,t − cp)] + Σl,p + θ2εl,tεp,t

)

. (A4)
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In a similar manner, we derive the Gi,i,1(Xt, ϑ) to be:

Gi,i,1(X t, ϑ) =

i(i+1)
2

∑

l=1+ i(i−1)
2

(

c2
l + (φ − δ1)

2(Xl,t − cl)
2 + 2cl(φ − δ1)(Xl,t − cl)

+
∞
∑

h=2

2(φ − δ1)(φδh−1 − δh)(Xl,t − cl)(Xl,t−h+1 − cl)

+

∞
∑

h=2

2cl(φδh−1 − δh)(Xl,t−h+1 − cl)

+

[

∞
∑

h=2

(φδh−1 − δh)(Xl,t−h+1 − cl)

]2

+ 2(φ − δ1)θ(Xl,t − cl)εl,t

+

∞
∑

h=2

2θ(φδh−1 − δh)εl,t(Xl,t−h+1 − cl)

+ 2θclεl,t + Σl,l + θ2ε2
l,t

)

, (A5)

Given that Gi,j,0(Xt, ϑ) =
∑

i(i+1)
2

l=1+ i(i−1)
2

Xl,tXp,t, we can derive F
s,t
ii,ij and F

s,t
ij,ii from Equations

(9) and (10) for any (i, j) combination.

For example, the marginal effect of the volatility Y11,t at time t on the conditional expectation

of the covariance Y12,t+1 at time t + 1 is given by:

F
1,t
12,11(X t, ϑ) =

∂Et[Y12,t+1]

∂Y11,t
=

∂G1,2,1(X t, ϑ)

∂G1,1,0(X t, ϑ)
=

∂G1,2,1(X t, ϑ)

∂X2
1,t

,

where G1,2,1(Xt, ϑ̂) is obtained from Equation (A4). Thus

F
1,t
12,11(Xt, ϑ) =

(φ − δ1 + θ) (c2 + (φ − δ1)(X2,t − c2) + θε2,t +
∑∞

h=2(φδh−1 − δh)(X2,t−h+1 − c2))

2X1,t
.

Similarly we can derive the marginal effect of the covariance Y12,t on the conditional expec-

tation of the volatility Y11,t+1 denoted by F
1,t
11,12:

F
1,t
11,12(Xt, ϑ) =

∂Et[Y11,t+1]

∂Y12,t
=

∂G1,1,1(Xt, ϑ)

∂G1,2,0(Xt, ϑ)
=

∂G1,1,1(X t, ϑ)

∂X1,tX2,t

=
∂G1,1,1(X t, ϑ)

∂X1,t

∂X1,t

∂X1,tX2,t
+

∂G1,1,1(Xt, ϑ)

∂X2,t

∂X2,t

∂X1,tX2,t
,

where G1,1,1(Xt, ϑ) is obtained from Equation (A5). Thus

F
1,t
11,12(Xt, ϑ) =

2(φ − δ1 + θ)[c1 + (φ − δ1)(X1,t − c1) + θε1,t +
∑∞

h=2(φδh−1 − δh)(X1,t−h+1 − c1)]

X2,t
.
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B Appendix: Tables and Figures

Table B.1: Summary statistics of 5-minute and daily stock returns

Stock Mean Max Min Std. dev Skew Kurt
5-minute returns

AXP 0.0113 0.0703 -0.1843 0.0022 -4.7063 485.0690
HWP -0.0016 0.1112 -0.1597 0.0031 -1.0157 256.3915
JPM -0.0037 0.0774 -0.1186 0.0025 -0.9637 137.7105
HD -0.0241 0.1082 -0.1271 0.0024 -2.2291 270.6422
C 0.0006 0.0845 -0.1035 0.0022 -0.4016 157.5951

IBM -0.0119 0.1086 -0.1071 0.0019 1.5253 307.8203
Daily returns

AXP 1.1391 0.1034 -0.1464 0.0193 -0.2277 8.5927
HWP 0.3494 0.1567 -0.2066 0.0267 -0.0234 10.7708
JPM -0.2844 0.1578 -0.2019 0.0218 0.0683 13.7154
HD -1.7161 0.1228 -0.1509 0.0210 -0.2066 9.2915
C 0.1761 0.1178 -0.1726 0.0184 -0.4100 13.2778

IBM -0.7115 0.1173 -0.1106 0.0177 0.4465 10.2498

Note: This table reports descriptive statistics of the 5-minute and daily returns for the

stocks AXP, C, HWP, JPM, HD and IBM over the period from 1st January 2001 to 30th

June 2006. The means are scaled by 104.
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Table B.2: Summary statistics of realized variances and realized covari-
ances of the stocks AXP, C, HWP, JPM HD and IBM

Stock Mean Max Min Std. dev Skew Kurt
Realized Variance

AXP 0.0390 0.8339 0.0011 0.0635 5.4105 46.2969
HWP 0.0656 1.4397 0.0028 0.0961 6.6996 75.0095
JPM 0.0490 2.8130 0.0017 0.1083 14.9024 334.1691
HD 0.0413 0.7317 0.0012 0.0533 4.9629 41.7344
C 0.0386 1.4113 0.0013 0.0738 10.0771 151.6528

IBM 0.0267 0.8111 0.0013 0.0387 8.1390 131.8510
Realized Covariance

AXP-HWP 0.0154 0.4085 -0.0145 0.0290 6.3709 61.8298
AXP-JPM 0.0169 0.6035 -0.0791 0.0325 8.3144 117.355
AXP-HD 0.0143 0.3223 -0.0060 0.0256 5.5456 48.0592
AXP-C 0.0171 0.4900 -0.0130 0.0312 5.8290 50.4219

AXP-IBM 0.0128 0.3288 -0.0185 0.0226 5.0769 43.5852
HWP-JPM 0.0170 0.4047 -0.0054 0.0294 6.2420 59.3477
HWP-HD 0.0150 0.3183 -0.1175 0.0249 7.0555 82.6114
HWP-C 0.0171 0.2913 -0.0473 0.0270 4.7059 34.1161

HWP-IBM 0.0150 0.3334 -0.0026 0.0233 14.3477 317.0420
JPM-HD 0.0152 0.3637 -0.0345 0.0268 5.8616 56.1417
JPM-C 0.0221 1.2769 -0.0552 0.0498 6.2820 61.3870

JPM-IBM 0.0141 0.4329 -0.0098 0.0253 5.3664 48.0463
HD-C 0.0156 0.4063 -0.0051 0.0269 7.4878 92.5154

HD-IBM 0.0127 0.2234 -0.0037 0.0195 4.8518 35.7024
C-IBM 0.0142 0.4839 -0.0151 0.0252 7.8865 110.4219

Note: This table reports the descriptive statistics of realized covariances and variances of

the six stocks. The realized variances and covariances are calculated from 5-minute intraday

returns, as described in the main text. The realized variances and covariances are scaled by

102.
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Table B.3: Estimation results of the diagonal BEKK(1,1,1) and DCC model

Parameter/Stock AXP HWP JPM HD C IBM

diagonal BEKK(1,1,1)
µi 0.1039 0.0578 -0.1042 0.0556 -0.0349 -0.0886

(0.0689) (0.0523) (0.0542) (0.0417) (0.0425) (0.0290)
C 0.0420 -0.0221 -0.0301 -0.0892 0.0485 -0.0139

(0.0219) (0.0386) (0.0246) (0.0441) (0.0223) (0.0278)
-0.0538 -0.0060 0.0706 0.0394 -0.0393
(0.0235) (0.0128) (0.0173) (0.0253) (0.0456)

-0.0042 -0.0171 0.0032 -0.1054
(0.0288) (0.0207) (0.0136) (0.0389)

0.1607 0.0850 0.1946
(0.0851) (0.0117) (0.0485)

0.1499 0.1777
(0.0304) (0.0292)

0.1412
(0.0340)

diag(A) 0.9845 0.9947 0.9788 0.9870 0.9814 0.9857
(0.0153) (0.0014) (0.0097) (0.0056) (0.0054) (0.0068)

diag(B) 0.0617 0.0620 0.0353 0.0336 0.0203 0.0180
(0.0410) (0.0611) (0.0358) (0.0440) (0.0309) (0.0350)

DCC of Engle (2002)
µi 0.0717 0.0490 0.0313 0.0182 0.0264 0.0262

(0.0354) (0.0589) (0.0340) (0.0418) (0.0320) (0.0534)
wi 0.0236 0.0144 0.0117 0.0155 0.0167 0.0273

(0.0157) (0.0163) (0.0079) (0.0139) (0.0137) (0.0550)
αi 0.0867 0.0097 0.0658 0.0403 0.0670 0.0714

(0.0341) (0.0046) (0.0270) (0.0138) (0.0359) (0.1191)
βi 0.9087 0.9871 0.9315 0.9549 0.9266 0.9194

(0.0314) (0.0065) (0.0252) (0.0165) (0.0373) (0.1259)
θ1 0.0067 θ2 0.9776

(0.0031) (0.0139)

Note: QML standard errors are reported in parenthesis.
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Figure B.1: ACF of the standardized residuals of the restricted VARFIMA
model (Model 2)
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