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Abstract

In this paper we analyze the limiting properties of the estimated parameters

in a general class of asymmetric volatility models which are closely related to the

traditional exponential GARCH model. The new representation has three main

advantages over the traditional EGARCH: (1) It allows a much more flexible rep-
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resentation of the conditional variance function. (2) It is possible to provide a com-

plete characterization of the asymptotic distribution of the QML estimator based

on the new class of nonlinear volatility models, something which has proven very

difficult even for the traditional EGARCH. (3) It can produce asymmetric news

impact curves where, contrary to the traditional EGARCH, the resulting variances

do not excessively exceed the ones associated with the standard GARCH model,

irrespectively of the sign of an impact of moderate size. Furthermore, the new

class of models considered can create a wide array of news impact curves which

provide the researcher with a richer choice set relative to the traditional EGARCH.

We also show in a Monte Carlo experiment the good finite sample performance of

our asymptotic theoretical results and we compare them with those obtained from

a parametric and the residual based bootstrap. Finally, we provide an empirical

illustration.

Key words: Asymmetric volatility models; Asymmetric news impact curves; Quasi

maximum likelihood estimation; Asymptotic Theory; Bootstrap.

JEL Codes: C12, C13, C15, C22, C51, C52, E43.

1 Introduction

Since the influential work of Engle (1981), a huge amount of literature on conditional

heteroskedasticity has appeared in econometrics. ARCH (Autoregressive Conditional

Heteroskedastic) models have obtained an enormous attention. A main shortcoming of

the ARCH model of Engle (1981) and the generalized ARCH model by Bollerslev (1986)

(these models have been studied in the pioneering papers by Lee and Hansen (1994)

and Lumsdaine (1996)), is that they do not allow for asymmetries, i.e., the so-called

leverage effects. The empirical relevance of leverage effects in particular has motivated

an extensive search for asymmetric volatility models and many specifications have been

suggested. The exponential GARCH (EGARCH) specification, by Nelson (1991) is prob-

ably one of the best known examples and has become a very important tool in volatility

modelling. Surprisingly, however, very little is known about the statistical properties

of the EGARCH model, particular estimation and inference theory seems to be lacking.

He, Teräsvirta and Malmsten (2002) have analyzed the moment structure of first-order
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exponential GARCH models, but to the best of our knowledge there does not exist a

formal proof establishing the limiting properties of maximum likelihood or quasi max-

imum likelihood (QML) estimators associated with this model, see, e.g., Mikosch and

Straumann (2006) and Linton (2007).

This paper makes three main contributions. First, we propose a new exponential

GARCH model that allows for a more flexible specification of the conditional variance

function relative to the traditional EGARCH specification. Secondly, we provide a proof

of the asymptotic normality of the QML estimator associated with the relative general

class of specifications we propose. We illustrate - by a Monte Carlo simulation study

- the finite sample performance of the asymptotic results and make comparisons with

those obtained from parametric and residual based bootstraps. In some cases, we have

evidence of the existence of possible refinements along the lines of Corradi and Iglesias

(2008). Thirdly, we provide an empirical illustration, comparing the new EGARCH

specification with the traditional EGARCH as well as the GARCH model. We show that

the news impact curve of our new model is likely to offer a better fit to US interest rate

data. Moreover, we show that contrary to the traditional EGARCH, the new model is

able to generate news impacts that are highly asymmetric but do not exceed the news

impacts generated by the GARCH and the EGARCH. In other words, the news impact

curves generated by the new model are uniformly flatter than the news impact curves

associated with the GARCH/EGARCH. We will argue that this, mainly due to stability

issues related to the traditional EGARCH, is an important feature of the new EGARCH

specification. Finally, we should note that since we allow for a very general class of

conditional volatility functions, our approach can create many alternative news impact

curves and they can all be tested in the framework suggested by Engle and Ng (1993).

The organization of the paper is as follows: Section 2 presents the new model and the

first order validity of the QML method in this setting. Section 3 provides an empirical

illustration, showing some advantages of our new specification. In addition, we provide

simulation based evidence on the performance of the theoretically derived asymptotic

approximation/distribution and comparisons to the parametric and the residual based

bootstrap are made. Finally, Section 4 concludes. All the proofs are collected in the

Appendix.

3



2 An EGARCH-type model with a general volatility

function

We consider the following process, where yt is the time series of interest, and its condi-

tional variance, given by σ2
t (θ) , is taking the following representation

yt = σt (θ) υt, (1)

lnσ2

t (θ) = ω + β lnσ2

t−1 (θ) + ψg (yt−1) + φyt−1, (2)

for θ =
(
ω, β, ψ, φ, σ2

0 (θ)
)
.́ In what follows, the unobserved initial variance is param-

eterized as γ = σ2
0 (θ) . In Lemma 1 in the Appendix, we will prove that this initial

variance is asymptotically negligible (along the lines of Lemma 6 in Lumsdaine (1996)).

The true parameter vector is defined as θ0 = (ω0, β0, ψ0, φ0, γ0)́ and we let υt be a se-

quence of independent and identically distributed random variables with mean zero. We

sometimes abbreviate σ2
t (θ) = σ2

t > 0, which is a Ft−1-measurable function, where Ft−1

is the sigma algebra generated by {υt−1, υt−2, ...} . Furthermore, we define g (yt−1) as a

measurable function of yt−1, although the function could be generalized to include more

lags. It should also be noted that the model includes as a special case the log-GARCH

model of Geweke (1986) and Pantula (1986).

In what follows, we assume for simplicity that ω and γ are known constants. However,

the extension to the case where ω is estimated follows straightforwardly (but tediously)

using the same procedures as in the proofs in the Appendix (along the same lines as how

the ARCH parameter is treated in Jensen and Rahbek (2004b, Section 3.5)). Moreover,

the initial value of the conditional variance and the intercept in the conditional variance

can be deduced from the unconditional variance.

Note that the process given by (1) - (2) has a structure that is very similar to the

traditional exponential generalized autoregressive model (EGARCH) of Nelson (1991),

where (2) is replaced by

lnσ2

t (θ) = ω + β lnσ2

t−1 (θ) + ψg (υt−1) + φυt−1.

As Linton (2007) points out, “no results have yet been published for consistent and

asymptotic normality of EGARCH from primitive conditions, although simulation evi-
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dence does suggest normality is a good approximation in large samples”. Quoting also

Mikosch and Straumann (2006), “the theoretical properties of the QMLE in EGARCH

have not been studied in the literature”, and “at the moment we cannot provide a proof

of the asymptotic normality of the QMLE in the general EGARCH model”.

In our “new” model, the main difference to the EGARCH of Nelson (1991) is that g(·)
is a function of yt−1 instead of υt−1, and φ is associated yt−1 instead of υt−1. This feature

is what makes the proof of the asymptotic normality in our “new” model different to the

proof based on the traditional EGARCH, as dealing with the recursive nature of υt−1 in

the conditional variance function is avoided. However, since one can specify alternative

choices of measurable g-functions, the specification is not limited to the EGARCH-type.

It should be emphasized that including yt−1 instead of υt−1 in the conditional vari-

ance function is a commonly used approach. A leading example includes the double

autoregressive model of Ling (2004), where

yt + φyt−1 = ǫt, σ2

t = ω + αy2

t−1.

Similarly, Danielsson (1994) proposes a type of stochastic volatility model where asym-

metries using yt−1 are introduced in the conditional variance equation. However, most

examples can perhaps be found in the nonparametric literature, see, e.g. Linton and

Mammen (2005) and the references therein, where the volatility function typically is

specified as function of lags of observed data, i.e.,

σt = σt (yt−1, ..., yt−p) .

Hence, specifying the process (1) - (2) and letting yt−1 enter the conditional volatility

function is by no means a new idea. In particular, one can argue that we are merely

extending the approach by Ling (2004) by introducing the existence of asymmetries and

leverage effects in the conditional volatility.

2.1 Asymptotics

In order to establish the asymptotic results we will make the following set of assumptions

which are all fairly common in the GARCH literature:
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Assumptions A1-A5

A1 υt ∼ i.i.d. (0, 1) ,

A2 |β| < 1, |ψ| <∞, and |φ| <∞,

A3 E
((

1 − υ2
t

)2)
= ζ <∞,

A4 σ2
0 (θ) = γ is a drawing from the stationary distribution,

A5 yt is a strictly stationary and ergodic process with E
[
(|g (yt)|)4

]
<∞ and E

[
(|yt|)4

]
<

∞.

Note that Assumptions A1-A5 allow for a very general class of conditional variance

functions. Assumption A1 and A3 are restrictions on the innovation process and are both

common. Assumption A4 restricts the initial value of σ2
0 to be a drawing from a stationary

distribution, but in the Appendix, in Lemma 1, we will show the asymptotic negligibility

of treating it as a fixed and bounded constant. A1 could probably be replaced by the

weaker martingale difference sequence assumption without altering the main results of

the paper, but at the expense of adding to the complexity of the proofs. Therefore in this

paper we are considering only strong-EGARCH type models. Assumption A2 and A4

restrict the unknown parameters to be defined on a compact parameters space. In the

traditional EGARCH model, the existence of the rth moment in υt requires the existence

of rth moment of yt. Therefore, as it is widely used in the EGARCH literature as well as

in the literature on more general asymmetric volatility models, we impose the moments

restriction directly on yt (and g(yt)) as in A5. Carrasco and Chen (2002) show that

Nelson’s (1991) EGARCH process will be strictly stationary and geometrically ergodic

under general conditions similar to Assumptions A1-A4. However, when replacing υt−1

with yt−1 in the conditional variance specification it is no longer possible to use the

methodology in Carrasco and Chen (2002) or the more general approach by Cline and

Pu (1999) to establish strictly stationarity and ergodicity of yt and/or σ2
t . Establishing

such properties of yt and/or σ2
t within the current model setup will be very challenging

but a topic for future research.

In general, A5 imposes restrictions on the parameter space. However, there are some

special cases where we can provide the specific conditions for strict stationarity and

6



ergodicity of yt. For example, if we set φ = 0 and g (yt−1) = ln y2
t−1 in (1)-(2), we obtain

yt = σt (θ) υt,

lnσ2

t (θ) = β lnσ2

t−1 (θ) + ω + ψ ln y2

t−1,

= β lnσ2

t−1 (θ) + ω + ψ
(
ln υ2

t−1 + lnσ2

t−1 (θ)
)
,

= (β + ψ) lnσ2

t−1 (θ) +
(
ω + ψ

(
ln υ2

t−1

))
,

where, following Carrasco and Chen (2002, Proposition 5, page 23), if |β + ψ| < 1 and

there is an integer s ≥ 1 such that E
∣∣ω + ψ ln

(
υ2

t

)∣∣s <∞, we have that σ2
t (θ) is Markov

geometrically ergodic. If σ2
0 is initialized from the invariant measure, then yt and σ2

t (θ)

are strictly stationary and β−mixing with exponential decay. Also, E
∣∣lnσ2

t (θ)
∣∣s < ∞.

If moreover s = 2, then we have simultaneously that ht is geometrically ergodic and

E
∣∣lnσ2

t (θ)
∣∣2 <∞.

Within the scope of this paper we will, however, continue under the maintained as-

sumption A5 that yt is a strictly stationary and geometrically ergodic process. Assump-

tion A5 is common in the GARCH literature, see, e.g., Kristensen and Linton (2006).

Finally, it should be noted, that given Assumptions A2 and A5 in particular, then also

g(yt) and σ2
t are strictly stationary and ergodic processes, see, e.g., Theorem 3.35, page

42, in White (1984). Strict stationarity of σ2
t would actually “only” require Assumptions

A1, A2, A4, strictly stationarity of yt, E
(
υ2

t

)
< ∞ and var (ψg (yt) + φyt) < ∞ as in

He et al (2002). Note also that g (yt) needs a finite expectation, but it does not have to

be equal to zero. To get a specification very similar to Nelson’s (1991) EGARCH, one

could in finite samples choose g (x) = |x| − |x|, where |x| denotes the sample mean of

|x|.
The quasi-likelihood function associated with (1) - (2) is given by

lT (θ) =
T∑

t=1

lt (θ) = −1

2

T∑

t=1

(
lnσ2

t +
y2

t

σ2
t

)
. (3)

The following Theorem 1 establishes the asymptotic normality of the QML estimator

which is the main theoretical result of the paper.

Theorem 1 Let Assumptions A1-A5 hold. With (ω, γ)
′

fixed at their true values,

(ω0, γ0)́ , consider the model given by the quasi log-likelihood function as in (3). Then,
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there exists a fixed open neighborhood U = U (β0, ψ0, φ0) of (β0, ψ0, φ0)́ such that

with probability tending to one as T −→ ∞, lT (β, ψ, φ) has a unique maximum point
(
β̂, ψ̂, φ̂

)
´in U. In addition, the QML estimator

(
β̂, ψ̂, φ̂

)
´is consistent and asymptoti-

cally normal,
√
T
[(
β̂, ψ̂, φ̂

)
− (β0, ψ0, φ0)

]
´

d−→ N
(
0,Ω−1

)
,

where

Ω =
1

ζ





̟2
1 ̟12 ̟13

̟12 ̟2
2 ̟23

̟13 ̟23 ̟2
3




,

and the typical element of Ω is defined by Propositions 1 and 2 given in the Appendix.

Proof of Theorem 1 The proof of Theorem 1 is given in the Appendix

Theorem 1 provides the first order asymptotic theory for the QMLE applied to our

model (1) - (2), when (ω, γ)
′

is fixed at their true values (ω0, γ0)́ . The extension to

the case where ω is estimated is straightforward by using the same methodology as the

one applied in the Appendix. In empirical applications, one would replace the unknown

quantities in Ω with the estimates obtained from the QML estimation procedure in

order to obtain the estimated standard errors. In the following section, the finite sample

performance of the asymptotic distribution given by Theorem 1 will be analyzed in detail.

3 Illustrations

In this section we compare and illustrate the empirical properties of the new EGARCH(1,1)

specification. We are interested in analyzing how well the asymptotic approximation that

we provide in our Theorem 1 performs in finite samples. We first provide a Monte Carlo

study of a bootstrapped version of the QML estimator and discuss results obtained using

first order the asymptotic theory provided in Theorem 1. Subsequently, we provide an

empirical illustration based on one-month U.S. Treasury bill yields.
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3.1 A Monte Carlo study in finite samples: bootstrap and first

order asymptotic results

Hidalgo and Zaffaroni (2007) show that if the residual based bootstrap is applied to

the QMLE in the context of an ARCH(∞) model, then first order validity is obtained.

Gonçalves and White (2004) document the advantages of bootstrapping an objective

function in the context of non-markovian models and provide the conditions for the

block-bootstrap to be first order asymptotically valid. Corradi and Iglesias (2008) show

the conditions under which, when bootstrapping a GARCH(1,1) model, one can obtain

the refinements of the bootstrap procedure of Gonçalves and White (2004).

However, to the best of our knowledge, there are no results available in the literature

with respect to applying the bootstrap to a GARCH-type model with leverage effect.

In this section we provide simulated plots for the density function of the QMLE of ψ

(the parameter directly related to the leverage effect) in (1)-(2). We provide four cases

for the estimation of that density function: (1) first we show the true density function

obtained by Monte Carlo (True density); (2) then we use our asymptotic theoretical

results in Theorem 1 and we plug in the QMLE (Asymptotic density). (3) Later we

apply a parametric bootstrap and we draw the bootstrap resamples assuming υt to be

a N (0, 1) (Parametric bootstrap), and (4) finally we apply a residual based bootstrap

along the lines of Hidalgo and Zaffaroni (2007, pages 842-843) by drawing from the em-

pirical distribution of the residuals (Residual based bootstrap). The number of bootstrap

resamples is 999 and we use 1000 replications. The results are available in Figure 1. We

consider two cases: the case of υt being a N (0, 1) distribution (the first column of Fig-

ure 1) and also a t-distribution of 10 degrees of freedom (the second column of Figure

1). Moreover, we show the graphs for two sample sizes: 1000 (the first row of Figure

1) and 20000 (the second row of Figure 1). The data generating process (DGP) uses

(ω, β, ψ, φ) = (0.04, 0.6,−0.5, 0.1) and g (yt−1) = |yt−1| − |yt−1|.
When the true density of the innovation process is a normal distribution, our asymp-

totic density obtained from Theorem 1 is not very far away from the true density, even for

a limited sample size of 1000 observations. Moreover, as expected (along the lines of the

results of Corradi and Iglesias (2008) for the regular GARCH(1,1)), both the parametric
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Figure 1: Alternative densities of
√
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and residual based bootstrap are closer to the true density, suggesting the possible exis-

tence of refinements in this context. When the innovation process follows a t-distribution

with 10 degrees of freedom, then again as expected (as in Corradi and Iglesias (2008)),

the parametric and the residual based bootstrap provide a worst approximation of the

true density, and the gains of the bootstrap are smaller versus asymptotic theory.
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Table 1: Alternative point estimates of s.e.(T 1/2ψ̂) based on Gaussian errors

Asymptotic Par. bootstrap Residual bootstrap True (simulated)

T= 500 7.666 5.274 14.401 7.412

T= 1000 7.533 7.354 10.523 7.686

T= 2500 7.531 6.793 10.386 7.557

T= 5000 7.476 7.340 10.235 7.649

T=10000 7.501 7.391 10.409 7.575

T=15000 7.564 7.633 10.603 7.579

T=20000 7.604 7.639 10.809 7.560

To provide further evidence of the finite sample performance of our asymptotic ap-

proximation in Theorem 1, Table 1 shows, for different sample sizes (T ) and when υt is

simulated as a N (0, 1) distribution, alternative point estimates of the element of Ω
−1

related to the QMLE of ψ in our Theorem 1. We again show the results for the simu-

lated true value (True (simulated)), when we use our asymptotic results in Theorem 1

(Asymptotic) and we plug in the QMLE, when we apply a parametric bootstrap (Par.

bootstrap) and also the residual based bootstrap (Res. bootstrap). Our asymptotic

approximation of the variance using Theorem 1 provides a very good approximation of

the true value, and as expected, in this case the parametric bootstrap provides a much

better approximation than the residual based bootstrap (similar results are reported in

Corradi and Iglesias (2008) in the regular GARCH(1,1) model).

Table 2 provides the same results as Table 1, but now when υt is simulated as a

t-distribution with 10 degrees of freedom. In this case again, our asymptotic result of

Theorem 1 shows a very good approximation to the true values, and now as expected

(along the lines of Corradi and Iglesias (2008) for the regular GARCH(1,1)), the paramet-

ric bootstrap offers a worst approximation than in Table 1 (since we are assuming that

υt is a N (0, 1) distribution while it is truly a t-distribution with 10 degrees of freedom),

and the residual based bootstrap provides better results.

From the limited simulations provided in this section we can conclude that, based on

our DGP, our asymptotic results in Theorem 1 provide a very good approximation in
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Table 2: Alternative point estimates of s.e.(T 1/2ψ̂) based on Student t(10) errors

Asymptotic Par. bootstrap Residual bootstrap True (simulated)

T= 500 6.765 5.901 7.557 6.839

T= 1000 6.786 6.070 7.683 6.694

T= 2500 6.789 6.322 8.665 6.622

T= 5000 6.659 6.117 9.074 6.765

T=10000 6.719 6.031 8.933 6.511

T=15000 6.661 5.914 9.018 6.656

T=20000 6.659 5.910 9.151 6.676

finite samples. It should be noted that the traditional EGARCH model has a tendency

to exhibit exploding behavior when simulating/bootstrapping the processes, particularly

when the volatility process is parameterized such that it is stationary and ergodic but still

highly persistent; see, e.g., the simulations performed by Andersen and Lund (1997). The

approximation properties could therefore be affected in finite samples for other choices

of DGP, particularly if more persistence in the volatility process is observed/imposed.

3.2 Empirical application

We use one-month U.S. Treasury bill yields (the average of bid and ask) which are col-

lected from the risk-free rate file of the Center for Research and Security Prices (CRSP).

The sample period is June 1964 to December 1989, for a total of 307 monthly obser-

vations, and corresponds to the sample period used by Chan, Karolyi, Longstaff and

Sanders (1992) and Ball and Torous (1999)1. Ball and Torous (1999) show that Nelson’s

EGARCH model performs very well based on this data set (they show that the stochas-

tic volatility model does not outperform the traditional EGARCH. See Ball and Torous

(1999, pages 2348 and 2349)) and it would therefore be interesting to see how the new

1Standard augmented Dickey-Fuller (1979) and Phillips-Perron (1988) tests allow us not to reject the

hypothesis of a unit root in the level of the series at 10% and 5% significant levels respectively. However,

for the first difference, with both tests we reject the null of a unit root at the 1% significance level. Note

that from A5, we need stationarity in our time series.
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EGARCH specification compares. The empirical models under consideration are given

as

∆rt = k +
6∑

i=1

δi∆rt−1−i + σtυt, (4)

where υt ∼ i.i.d(0, 1) and σt evolves according to the following dynamic representations:

• Nelson’s EGARCH(1,1), denoted EGARCH(Nelson)

lnσ2

t = ω + β lnσ2

t−1 + ψg(υt−1) + φυt−1,

where g(υt−1) = |υt−1| − E |υt−1| .

• Dahl-Iglesias EGARCH(1,1), denoted EGARCH(DI)

lnσ2

t = ω + β lnσ2

t−1 + ψg(∆rt−1) + φ∆rt−1,

where g(∆rt−1) = |∆rt−1| − |∆rt−1| and |∆rt−1| denotes the sample mean of

|∆rt−1|.

• GARCH(1,1)

σ2

t = ω + βσ2

t−1 + ψg(σt−1υt−1),

where g(σt−1υt−1) = σ2
t−1υ

2
t−1.

The estimation results are summarized in Table 3. Note first that Ball and Torous

(1999) do not introduce an autoregressive process in the mean equation such as (4).

However, they only check for possible neglected autocorrelation in the residuals up to

lag 10. We carry out a much more detailed battery of tests where we check for possible

autocorrelation up to lag 40; and in order to remove all neglected serial correlation up to

that order, we need to include lags in the mean equation. Although the mean equation

is of lesser interest here it should be noted that all lags of the dependent variable enters

insignificantly in the EGARCH(DI) specification. The main implication of this is that

the asymptotics derived in the previous section then can be expected to hold for the

model. In addition, the estimates for the parameters in Table 3 fall inside the regions

that are allowed by Assumption A2. Moreover, Assumption A5 can and has been checked

by simulating a number of sequences of ∆rt based on the estimated model, similar to
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Andersen and Lund (1997). If the simulated sequences appear to be mean and variance

reverting, this gives support to the assumption. Regarding the conditional variance

function note that the estimated parameters are of almost the same magnitude for the

two EGARCH specifications and they are all significant. However, as we will see later the

estimated conditional volatility for the two EGARCH models will evolve quite differently

over time. Furthermore, the implied/estimated news impact curves also turn out not to

be similar. As in Ball and Torous (1999) the estimator of φ in the EGARCH models

is significantly positive. This implies that a positive impulse to the interest rate will

have a larger impact on the volatility than a negative impulse. Impulses or news that

affect interest rates upwards might be considered bad news so the estimated effects are

qualitatively in line with the conventional wisdom that bad news has a larger effect than

good news on volatility on the financial securities. A final important remark is that one

of the main advantages of our model is that the news impact curve generated by our new

model is uniformly flatter that the news impact curve associated with the traditional

GARCH/EGARCH. In terms of estimated parameters, this advantage manifests itself

through the estimation of ψ in Table 3: 0.386 for the new model instead of 0.525 for a

standard EGARCH. Danielsson (1994) got exactly the same kind of result in the context

of stochastic volatility: 0.06 instead of 0.229.

Next, we investigate whether the models are well specified. From rows 1 through

4 in Table 4 we see that we cannot reject that the standardized residuals satisfy the

model assumption regarding their two first moments. All the estimated models pass the

Ljung-Box (LB) tests for neglected serial dependence and neglected ARCH. We consider

3 different test for neglected serial dependence up to order 4, which are described in

Wooldridge (1991): HE-LM-AR(4) is the standard LM test, see, e.g., Engle (1982),

while “W Proc 3.1” and “W Robust” (described on page 16 and 21 in Wooldridge,

1991, respectively) are robust to misspecification of the conditional variance function.

Following the robust specification testing methodology of Wooldridge (1991), we also

test for the existence of omitted variables σ̂t−1 and σ̂t−2 since the so-called mean-effects

as discussed in Engle et al (1987) are commonly found in interest rate series. From

Table 4 we see that all the specifications pass all the above mentioned tests − with one

exception − at the commonly used 5 per cent nominal significance level. Whereas at the
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Table 3: Estimation results:

EGARCH(Nelson) EGARCH(DI) GARCH

k 0.036*** 0.040 0.009

(0.008) (0.031) (0.029)

δ1 -0.123*** -0.077 -0.185**

(0.033) (0.068) (0.073)

δ2 -0.010 0.009 0.019

(0.011) (0.064) (0.068)

δ3 0.010 -0.049 0.025

(0.024) (0.068) (0.057)

δ4 -0.011 -0.011 0.017

(0.038) (0.065) (0.054)

δ5 0.030 0.049 -0.017

(0.030) (0.063) (0.050)

δ6 -0.038 -0.049 -0.031

(0.037) (0.061) (0.058)

ω -0.030 -0.034* 0.062**

(0.037) (0.020) (0.026)

φ 0.185*** 0.310*** ·
(0.048) (0.066) ·

ψ 0.525*** 0.386*** 0.505***

(0.128) (0.133) (0.158)

β 0.928*** 0.854*** 0.479***

(0.034) (0.051) (0.132)

logL 0.700 -4.781 -7.629

s.e. in parenthesis.

’*’: significant on 10 percent level, double-sided (normal dist.).

’**’: significant on 5 percent level, double-sided (normal dist.).

’***’: significant on 1 percent level, double-sided (normal dist.).

15



1% we reject that σt−1 should be included in the new EGARCH specification, the term

clearly cannot be omitted from neither Nelson’s EGARCH nor the GARCH model.

As argued by Engle and Ng (1993) the news impact curve implied by volatility mod-

els is very important for portfolio selection and assets pricing. It also turns out that

it is useful for model specification and by testing whether the news impact curve of a

model offers a good fit to the data which can highlight the quality of the model. The

final three specification tests in Table 4 are aimed at this target and are described in

Engle and Ng (1993): Engle-Ng Spec. Test 1 and Engle-Ng Spec. Test 2 are stan-

dard LM test for whether {|∆rt−1| , ∆rt−1} and {|υt−1| , υt−1} respectively are omit-

ted from the volatility function/news impact curve (described on page 1758 in Engle

and Ng, 1993). Finally, the Engle-Ng Joint Test is a standard LM test for whether

{I (ǫt−1 < 0) , I (ǫt−1 < 0) ǫt−1, I (ǫt−1 ≥ 0) ǫt−1} are omitted from the volatility func-

tion/ news impact curve, where ǫt = σtυt and I (·) denotes the indicator function. From

inspection of Table 4 we see that it is not possible to reject that news impact curve im-

plied by the EGARCH(DI) adequately captures the observed features in the data. The

Engle-Ng Spec. Test 1 indicates that {|∆rt−1| , ∆rt−1} should have been included in

Nelson’s EGARCH model and the GARCH model. On the other hand and based on

Engle-Ng Spec. Test 2 there is not any strong evidence that {|υt−1| , υt−1} should have

been included in neither EGARCH(DI) nor the GARCH model. Most striking, however,

is the results implied by the Engle-Ng Joint Test: The EGARCH(DI) clearly passes this

diagnostic test. This, on the contrary, is not true for Nelson’s EGARCH as well as the

GARCH; both models clearly fail to capture the basic asymmetries in news impact curve

implied by the data.

From inspection of Figure 2 we see how different the predictions from the three

volatility models turn out to be. The estimated GARCH volatility increases primarily

due to the large negative shocks in Sept. 1974, Apr. 1980, Oct. 1984, Oct. 1987 and

Dec 1988. The estimated EGARCH volatility is to a lesser extent also affected by these

events. This is in contrast to the estimated EGARCH(DI) volatility which is virtually

unaffected by these specific shocks. The main increase in the EGARCH(DI) volatility

occurs as a result of a series of large positive shocks from 1980 - 1982. Surprisingly, the

size of this increase in volatility in this period is not predicted by neither the GARCH
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Table 4: Model specification results:

EGARCH(Nelson) EGARCH(DI) GARCH

ET (v̂t) = 0 -9.7*10−5 -0.013 0.0544

[0.496] [0.589 ] [0.168]

ET (v̂2t ) = 1 0.981 0.979 0.988

[0.626] [0.624] [0.582]

LB[10,AR] 3.326 4.083 4.538

[0.973] [0.944] [0.920]

LB[20,AR] 19.976 23.086 21.489

[0.459] [0.285] [0.369]

LB[40,AR] 55.075* 53.686* 50.043

[0.057] [0.073] [0.133]

LB[10,ARCH] 4.447 6.896 2.194

[0.925] [0.735] [0.995]

LB[20,ARCH] 10.952 18.645 13.265

[0.947] [0.545] [0.866]

LB[40,ARCH] 28.713 37.889 25.316

[0.908] [0.566] [0.966]

W Robust 20.482* 20.021* 16.689

[0.058] [0.066] [0.161]

W Proc 3.1 17.480 17.480 17.480

[0.132] [0.132] [0.132]

HE-LM-AR(4) 14.240 17.413 15.457

[0.285] [0.134] [0.217]

Omitted σ̂t−1 11.362*** 5.350** 10.501***

[0.001] [ 0.020] [0.001]

Omitted σ̂t−2 1.473 4.7*10−5 2.383

[0.224] [0.994] [0.122]

Engle-Ng Spec. Test 1 7.176** · 8.009**

[0.027] · [0.018]

Engle-Ng Spec. Test 2 · 4.189 5.555*

· [0.123] [0.062]

Engle-Ng Joint Test 20.537*** 3.334 16.599***

[0.002] [0.765] [0.001]

p-values in brackets.

LB[XX,AR] is the Ljung-Box test for neglected serial dependence up to order XX

LB[XX,ARCH] is the Ljung-Box test for neglected ARCH up to order XX

Engle-Ng Spec. Test 1 uses |∆rt−1| and ∆rt−1 under the alternative

Engle-Ng Spec. Test 2 uses |vt−1| and vt−1 under the alternative

17



Figure 2: The t-bill rates (∆rt) and estimated volatility functions
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nor the EGARCH model. Strong recessions in 1980 and 1982 implied that the Federal

Reserve kept monetary policy tight as the only anti-inflationary instrument available in

this period (see e.g. Cline (1989)).

The estimated news impact curves depicted in Figure 3 confirm why the estimated

EGARCH(DI) volatility does not change much due to the large negative shocks referred to

previously. In particular, only relatively large positive shock will affect the EGARCH(DI)

volatility but the effect of such news will be uniformly smaller than their effect on the

estimated GARCH-volatility and EGARCH-volatility. We believe this is a very nice

feature of the model, since one of the main arguments against the EGARCH specification

is that it often predicts too much volatility in case of bad news and as a result tends to

become “unstable”, see e.g. Engle and Ng (1993) and the simulation studies in Andersen

and Lund (1997) and Ball and Torous (1999). Note also, that in Figure 3 we only show

the shape of the NIC of the new EGARCH model where g(∆rt−1) = |∆rt−1| − |∆rt−1|.
But this is only one possible NIC that our new model can generate since we can allow

for different g(∆rt−1) functions. This gives the researcher a lot of flexibility to generate

alternative NIC’s if data cannot support the EGARCH type specification.
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Figure 3: The estimated news impact curves
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4 Conclusions

In this paper we propose a new asymmetric volatility model along the lines of the tra-

ditional exponential GARCH model. Our new model has the advantage over the tradi-

tional EGARCH that allows a much more flexible function in the conditional variance.

We prove the asymptotic normality of the QML estimator in this setting. A Monte Carlo

simulation study shows that if we apply different types of bootstrapping procedure to

the QML estimator in our model, we obtain very similar results compared to first order

asymptotic theory. When the true innovation process follows a normal distribution the

bootstrap based results indicate the possible existence of refinements versus first order

asymptotic theory along the lines of the results in Corradi and Iglesias (2008) for the

regular GARCH(1,1) model. Finally, we show how the new EGARCH model can gener-

ate asymmetric news impact curves without the disadvantage of significantly increasing

the volatility in relation to the traditional GARCH model. Note also, that since we

allow for a general class of functions in the conditional variance, the model can create

many different shapes of the news impact curves. An empirical application completes

the paper.
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Appendix

All the main results and proofs of this paper are summarized in this Appendix. In order to cut down

the size of this paper we have excluded detailed derivations of the 2nd and 3rd order derivatives of

the quasi likelihood functions. These derivations can be obtained from the corresponding author upon

request. To establish the main theoretical result given by Theorem 1 we first state and prove five very

useful lemmas. In addition, for easy reference, all the first, second and third order derivatives of the

log-likelihood function given by (3) have been provided. These derivatives are summarized in Result

1, Result 2 and Result 3 respectively. Before starting with the first order derivatives, we show the

asymptotic negligibility of the initial value σ2
0 in Lemma 1.

Lemma 1 Let Assumptions A1-A5 hold. In (2) we assume that the initial value σ2
0 is a constant,

chosen arbitrarily. Define now

ulT (θ) =

T∑

t=1

ult (θ) = −1

2

T∑

t=1

(
u lnσ2

t +
y2

t

uσ
2
t

)
,

u lnσ2

t (θ) = ωt−1

i=0
βi + φ

t−1∑

i=1

βiyt−i−1 + ψ

t−1∑

i=1

βig (yt−i−1) + βt
u lnσ2

0 (θ) ,

where in u lnσ2
t (θ) , the initial value lnσ2

0 (θ) is drawn from the stationary distribution. Then, if the

true parameter vector θ0 ∈ Θ is in the interior or Θ,

sup
θ∈Θ

∣∣∣T−1/2 [ulT (θ) − lT (θ)]
∣∣∣ p→ 0,

sup
θ∈Θ+

∣∣∣∣∣T
1/2

[
T−1

T∑

t=1

∂2
ult (θ)

∂θ∂θ′
− T−1

T∑

t=1

∂2lt (θ)

∂θ∂θ′

]∣∣∣∣∣
p→ 0,

sup
θ∈Θ+

∣∣∣∣∣T
1/2

[
T−1

T∑

t=1

∂ult (θ)

∂θ

∂ult (θ)

∂θ′
− T−1

T∑

t=1

∂lt (θ)

∂θ

∂lt (θ)

∂θ′

]∣∣∣∣∣
p→ 0.

Proof of Lemma 1 The proof follows along the lines of Lumsdaine (1996, Lemma 6, page 587),

replacing σ2
t (θ) by the corresponding lnσ2

t (θ) .
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Result 1: The first order derivatives of the loglikelihood function

∂

∂β
lT (θ) ≡

T∑

t=1

s1t (θ) = −1

2

T∑

t=1

(
1 − y2t

σ2
t

)(
lnσ2

t−1 + β
∂σ2
t−1/∂β

σ2
t−1

)
,

∂

∂ψ
lT (θ) ≡

T∑

t=1

s2t (θ) = −1

2

T∑

t=1

(
1 − y2t

σ2
t

)(
β
∂σ2
t−1/∂ψ

σ2
t−1

+ g (yt−1)

)
,

∂

∂φ
lT (θ) ≡

T∑

t=1

s3t (θ) = −1

2

T∑

t=1

(
1 − y2t

σ2
t

)(

β
∂σ2
t−1/∂φ

σ2
t−1

+ yt−1

)

.

In particular,

s1t (θ0) = −1

2

(
1 − υ2

t

)
lnσ2

t−1 − 1

2

(
1 − υ2

t

)
β0

(
∂σ2
t−1/∂β

σ2
t−1

|θ0

)
, (5)

s2t (θ0) = −1

2

(
t∑

i=1

β
(i−1)
0

(
1 − υ2

t

)
g (yt−i)

)
, (6)

s3t (θ0) = −1

2

(
t∑

i=1

β
(i−1)
0

(
1 − υ2

t

)
yt−i

)
. (7)

Lemma 2 Let Assumptions A1-A5 hold and define the sequence It−1 = {yt−1, yt−2, ...} to be sub-σ-

algebras of I. Then {sit (θ0) , It−1} for i = 1, 2, 3, are martingale difference sequences.

Proof of Lemma 2 Note that for each t a) sit (θ0) is measurable It, and b) It−1 ⊂ It. It is also quite

trivial to see that c) Pr (E (sit (θ0) |It−1) = 0) = 1. To complete the proof of Lemma 2 we need to verify

that d) E (|sit (θ0)|) < ∞ for i = 1, 2, 3, see, e.g., Definition 7.4, page 191 in Bierens (2004). We begin

with the case where i = 1 by first noticing that

|s1t (θ0) | ≤ |1
2

(
1 − υ2

t

)
lnσ2

t−1| +
∣∣∣∣∣
1

2

(
1 − υ2

t

)
β0

(
∂σ2
t−1/∂β

σ2
t−1
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)∣∣∣∣∣ , (8)

where

∂σ2
t−1/∂β

σ2
t−1

|θ0 = (t− 1) βt−2
0 lnσ2
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(t− 1) βt−2

0

(β0 − 1)
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β2
0 − 2β0 + 1
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(i− 1) βi−2
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Substituting in the expression for lnσ2
t−1, the first term in on the right hand side of (8) can be bounded

as

∣∣(1 − υ2
t

)
lnσ2

t−1

∣∣ ≤
∣∣∣∣
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∣∣ ,
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and by using that E |XY | ≤
√

EX2 EY 2 we obtain

E
∣∣(1 − υ2
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Consequently E
∣∣(1 − υ2

t

)
lnσ2

t−1

∣∣ < ∞ by Assumptions A1-A5 uniformly in t. Next, we turn to the

second term in (8). First, notice that for all finite s = 0,±1,±2, ... and T <∞ it holds that

sup
t<T
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Given Assumptions A1-A5 and the results in (9) and (10) it can now be established that
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y2t−i−1

)
<∞,

sup
t>0

E

(
t−1∑

i=1

(i− 1) |β0|i−2
∣∣(1 − υ2

t

)
g (yt−i−1)

∣∣
)

≤ sup
t>0

|β0| − 2 |β0|t − |β0|t − t |β0|t−1 + |β0|t−1

|β0| − 2 |β0|2 + |β0|3
×

√
E
((

1 − υ2
t

)2)
√

E
(
g (yt−i−1)

2
)
<∞,

Note that the term
|β0|−2|β0|

t−|β0|
t−t|β0|

t−1+|β0|
t−1

|β0|−2|β0|
2+|β0|

3 attains maximum at t = 1
− ln|β0|+|β0| ln|β0|

(− |β0| + |β0| ln |β0| + 1) .

Consequently E

∣∣∣∣
(
1 − υ2

t

) ∂σ2
t−1/∂β

σ2
t−1

∣∣∣∣ < ∞ uniformly on t and it can be concluded that E |s1t (θ0)| < ∞

for all t.
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Under Assumptions A1-A5, condition d) in the cases where i = 2, 3 follows easily as

E |s2t (θ0) | ≤ 1

2

(
t∑

i=1

|β0|i−1 E
∣∣(1 − υ2

t

)
g (yt−i)

∣∣
)

,

≤ 1

2

1

|β0| − 1

(
|β0|t − 1

)
√

E
((

1 − υ2
t

)2)
√

E
(
g (yt)

2
)
<∞,

uniformly in t, i.e. supt E |s2t (θ0) | <∞ and

E |s3t (θ0) | ≤ 1

2

(
t∑

i=1

|β0|i−1 E
∣∣(1 − υ2

t

)
yt−i

∣∣
)
,

≤ 1

2

1

β0 − 1

(
|β0|t − 1

)
√

E
((

1 − υ2
t

)2)√
E
(
y2t
)
< ∞,

also uniformly in t. This completes the proof of Lemma 2.

Lemma 3 Define the processes

u1t (θ0) =
t∑

i=1

β
(i−1)
0 lnσ2

t−i (θ0) ,

u2t (θ0) =
t∑

i=1

β
(i−1)
0 g (yt−i) ,

u3t (θ0) =
t∑

i=1

β
(i−1)
0 yt−i.

Given Assumptions A1-A5, then

E (|uit (θ0)|p) ≤ Mi,p < ∞,

for p = 1, 2, 3 and i = 1, 2, 3.

Proof of Lemma 3 Consider first u2t (θ0) and define

d2t (θ0) =
t∑

i=1

|β0|i−1 |g (yt−i)| .

¿From the triangle inequality it follows that

|u2t (θ0)| ≤ d2t (θ0) ,

for all t. Furthermore, since E |g (yt−i)| <∞ (by A5) it follows that

E (d2t (θ0)) =
1

|β0| − 1

(
|β0|t − 1

)
E |g (yt−i)| ,

< ∞ for all t.

Consequently,

E (|u2t (θ0)|) <∞.
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Secondly, notice that

E
(
|u2t (θ0)|2

)
= E




∣∣∣∣∣

(
t∑

i=1

β
(i−1)
0 g (yt−i)

)∣∣∣∣∣

2


 ,

≤ E




t∑

i=1

t∑

j=1

|β0|(j+i−2) |g (yt−i) g (yt−j)|



 ,

≤ |β0| − 2 |β0|t+1 + |β0|2t+1

1 + |β0| (|β0| − 2)
E
(
|g (yt)|2

)
,

< ∞,

since E
(
|g (yt)|2

)
exists by Assumption A5. Higher order moments of u2t (θ0) exist to the extent that

the higher order moments of g (yt) exist. Using similar techniques it is easy to show that the moments

of u3t exist to the degree that the moments of yt exist, i.e., up to order 4 by Assumption 5. Notice also

that u2t (θ0) and u3t (θ0) are strictly stationary. Next, note that we can write

|u1t (θ0)| =

∣∣∣∣∣

t∑

i=1

β
(i−1)
0 lnσ2

t−i (θ0)

∣∣∣∣∣ ,

≤
t∑

i=1

|β0|(i−1)




t−i−1∑

j=0

|β0|j + |β0|t−i
∣∣lnσ2

0

∣∣ + |ψ0|
t−i∑

j=1

|β0|j−1 |g (yt−i−j)| + |φ0|
t−i∑

j=1

|β0|j−1 |yt−i−j |



 ,

=
t∑

i=1

t−i−1∑

j=0

|β0|(j+i−1) +
t∑

i=1

|β0|(t+2∗i−1)
∣∣lnσ2

0

∣∣

+ |ψ0|
t∑

i=1

t−i∑

j=1

|β0|(j+i−2) |g (yt−i−j)| + |φ0|
t∑

i=1

t−i∑

j=1

|β0|(j+i−2) |yt−i−j | ,

= t
|β0|t

|β0|2 − |β0|
+

1 − |β0|t

|β0|2 − 2 |β0| + 1
+

1

|β0|2 − 1

(
|β0|3t+1 − |β0|t+1

)

+ |ψ0|
t∑

i=1

t−i∑

j=1

|β0|(j+i−2) |g (yt−i−j)| + |φ0|
t∑

i=1

t−i∑

j=1

|β0|(j+i−2) |yt−i−j | ,

≡ d1t (θ0) ,

and it is easy to see that the moments of d1t (θ0) will exists to the degree that the moments of |g (yt−i−j)|)

and |yt−i−j | are bounded (as assumed in A5). Consequently, as |u1t (θ0)| ≤ d1t (θ0) uniformly on t, the

corresponding moments of |u1t (θ0)| will exist. This completes the proof of Lemma 3.

Lemma 4 Let Assumptions A1-A5 hold. Then

1

T

T∑

t=1

s2it
a.s.→ ζ

4
̟2
i , (11)

where i = 1, 2, 3 as T → ∞.

Proof of Lemma 4 Define zit (θ0) = u2
it (θ0) /T and rewrite (11) as

1

4T

T∑

t=1

(
1 − υ2

t

)2
(

t∑

i=1

β
(i−1)
0 lnσ2

t−i (θ0)

)2

=
1

4

T∑

t=1

(
1 − υ2

t

)2
z1t (θ0) .
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Note that by Lemma 3

lim
T→∞

1

4

T∑

t=1

E
((

1 − υ2
t

)2
z1t (θ0)

)
≤ lim

T→∞

ζ

4

T∑

t=1

M1,2

T
,

=
ζ

4
M1,2 <∞,

where Mi,p is defined in Lemma 3. From Proposition 3.52 page 48 in White (1984) it then follows that

1

4

T∑

t=1

(
1 − υ2

t

)2
z1t (θ0)

a.s.→ ζ

4
̟2

1.

Similarly, by Lemma 3

lim
T→∞

1

4

T∑

t=1

E
((

1 − υ2
t

)2
z2t (θ0)

)
≤ ζ

4
M2,2,

lim
T→∞

1

4

T∑

t=1

E
((

1 − υ2
t

)2
z3t (θ0)

)
≤ ζ

4
M3,2,

implying that

1

4

T∑

t=1

(
1 − υ2

t

)2
z2t (θ0)

a.s.→ ζ

4
̟2

2,

1

4

T∑

t=1

(
1 − υ2

t

)2
z3t (θ0)

a.s.→ ζ

4
̟2

3.

This completes the proof of Lemma 4.

Lemma 5 Let Assumptions A1-A5 hold and define δ > 0. Then

lim
T→∞

1

T

T∑

t=1

E
(
s2it (θ0) 1

{
|sit (θ0)| > δ

√
T
})

→ 0,

for all δ > 0 for i = 1, 2, 3.

Proof of Lemma 5 Consider first the following moment

E
(
s2it (θ0) 1

{
|sit (θ0)| > δ

√
T
})

= E

(
1

4

(
1 − υ2

t

)2
u2
it (θ0) 1

{
|sit (θ0)| > δ

√
T
})

,

≤ E

(
1

4

(
1 − υ2

t

)2
u2
it (θ0)

)
,

=
ζ

4
E
(
u2
it (θ0)

)
,

< ∞. (12)

uniformly on i and t. The first inequality follows since

1

4

(
1 − υ2

t

)2
u2
it (θ0) 1

{
|sit (θ0)| > δ

√
T
}

≤ 1

4

(
1 − υ2

t

)2
u2
it (θ0) ,

and the last inequality is due to Lemma 3. As shown in Lemma 3, uit (θ0) is strictly stationary implying

that sit (θ0) will share the same property, see, e.g., Theorem 3.35, page 42 in White (1984). The

implication of this property is that there exists an integer S > 0 such that for all t, j > S then

E
(
s2it (θ0) 1

{
|sit (θ0)| > δ

√
T
})

= E
(
s2ij (θ0) 1

{
|sij (θ0)| > δ

√
T
})

.
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Hence,

lim
T→∞

1

T

T∑

t=1

E
(
s2it (θ0) 1

{
|sit (θ0)| > δ

√
T
})

= lim
T→∞

1

T

S∑

t=1

E
(
s2it (θ0) 1

{
|sit (θ0)| > δ

√
T
})

+ lim
T→∞

1

T

T∑

t=S+1

E
(
s2it (θ0) 1

{
|sit (θ0)| > δ

√
T
})

,

= lim
T→∞

1

T

S∑

t=1

E
(
s2it (θ0) 1

{
|sit (θ0)| > δ

√
T
})

+ lim
T→∞

(
T − (S + 1)

T

)
E
(
s2iS+1 (θ0) 1

{
|siS+1 (θ0)| > δ

√
T
})

,

≤ lim
T→∞

1

T

S∑

t=1

ζ

4
E
(
u2
it (θ0)

)

+ lim
T→∞

E
(
s2iS+1 (θ0) 1

{
|siS+1 (θ0)| > δ

√
T
})

,

≤ lim
T→∞

Sζ

T4
Mi,2 + E

(
s2iS+1 (θ0) lim

T→∞
1
{
|siS+1 (θ0)| > δ

√
T
})

,

→ 0,

since lim
T→∞

1
{
|siS+1 (θ0)| > δ

√
T
}

= 0 for all i = 1, 2, 3, uniformly in δ and lim
T→∞

Sζ
T4
Mi,2 = 0 (since

S, ζ and Mi,2 are all bounded). Note that the dominated convergence theorem (implying that limE (x) =

E (limx)) is used in the second inequality which is feasible due to the result in (12). Also max
m≥T

1
{
|siS+1 (θ0)| > δ

√
m
}

converges to zero in probability as T → ∞. This completes the proof of Lemma 5.

Lemma 6 Given Assumptions A1-A5 then

sup
T≥1

1

T

T∑

t=1

E
(
s2it (θ0)

)
< ∞. (13)

Proof of Lemma 6 The result of Lemma 3 implies that for all i and t

E
(
s2it (θ0)

)
=

ζ

4
E
(
u2
it (θ0)

)
,

≤ ζ

4
Mi,2,

< ∞.

Then

1

T

T∑

t=1

E
(
s2it (θ0)

)
≤ 1

T

T∑

t=1

ζ

4
Mi,2,

≤ ζ

4
Mi,2,

and the result in (13) follows which completes the proof.
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Proposition 1 Let Assumptions A1-A5 hold and let the scores be as defined in (5)-(7). Then

1√
T

T∑

t=1

sit (θ0)
d−→ N

(
0,
ζ

4
̟2
i

)
,

for T → ∞ and i = 1, 2, 3, where ̟2
i is defined as in Lemma 4.

Proof of Proposition 1 By Lemma 2 sit (θ0) , for all i, is a martingale difference sequence. Further-

more, the results of Lemmas 4, 5 and 6 above corresponds exactly to the conditions a), b), and c) in

Theorem 7.10 in Bierens (2004) respectively. The result of Proposition 1 therefore follows immediately.

Result 2: The second order derivatives of the loglikelihood function

∂2

∂β2
lT (θ) = −1

2

T∑

t=1




(

1 − y2t
σ2
t

)( t∑

i=1

(
(i− 1)β(i−2) lnσ2

t−i + β(i−1) lnσ2
t−i−1

))

+
y2t
σ2
t

(
t∑

i=1

β(i−1) lnσ2
t−i

)2


 ,

∂2

∂ψ2
lT (θ) = −1

2

T∑

t=1

y2t
σ2
t

(
t∑

i=1

β(i−1)g (yt−i)

)2

,

∂2

∂φ2
lT (θ) = −1

2

T∑

t=1

y2t
σ2
t

(
t∑

i=1

β(i−1)yt−i

)2

,

∂2

∂β∂ψ
lT (θ) = −1

2

T∑

t=1

((
1 − y2t

σ2
t

)( t∑

i=1

β(i−1)g (yt−i)

)

+
y2t
σ2
t

(
t∑

i=1

β(i−1) lnσ2
t−i

)(
t∑

i=1

β(i−1)g (yt−i)

))

,

∂2

∂β∂φ
lT (θ) = −1

2

T∑

t=1

((
1 − y2t

σ2
t

)( t∑

i=1

β(i−1)yt−i

)
+
y2t
σ2
t

(
t∑

i=1

β(i−1) lnσ2
t−i

)(
t∑

i=1

β(i−1)yt−i

))
,

∂2

∂ψ∂φ
lT (θ) = −1

2

T∑

t=1

y2t
σ2
t

(
t∑

i=1

β(i−1)g (yt−i)

)(
t∑

i=1

β(i−1)yt−i

)
.

Proposition 2 Let Assumptions A1-A5 hold. Then

(a) 1
T

(
− ∂2

∂β2 lT (θ) |θ=θ0
)

p−→ 1
2
̟2

1 > 0,

(b) 1
T

(
− ∂2

∂ψ2 lT (θ) |θ=θ0
)

p−→ 1
2
̟2

2 > 0,

(c) 1
T

(
− ∂2

∂φ2 lT (θ) |θ=θ0
)

p−→ 1
2
̟2

3 > 0,

(d) 1
T

(
− ∂2

∂β∂ψ
lT (θ) |θ=θ0

)
p−→ 1

2
̟12,

(e) 1
T

(
− ∂2

∂β∂φ
lT (θ) |θ=θ0

)
p−→ 1

2
̟13,

(f) 1
T

(
− ∂2

∂ψ∂φ
lT (θ) |θ=θ0

)
p−→ 1

2
̟23,

as T −→ ∞.

30



Proof of Proposition 2 Define zit (θ0) and σ2
i for i = 1, 2, 3, as in the proof of Lemma 4. Further,

consider

u4t(θ0) ≡
t∑

i=1

(
(i− 1) β

(i−2)
0 lnσ2

t−i (θ0) + β
(i−1)
0 lnσ2

t−i−1 (θ0)
)
.

Then,

1

T

(
− ∂2

∂β2
lT (θ) |θ=θ0

)
=

1

2T

T∑

t=1

(
1 − υ2

t

)
u4t(θ0) +

1

2

T∑

t=1

υ2
t z1t (θ0) ,

p−→ 1

2
̟2

1,

as T→ ∞ since, by the ergodicity theorem,

1

2T

T∑

t=1

(
1 − υ2

t

)
u4t(θ0)

p−→ 1

2
E
((

1 − υ2
t

))
E (u4t(θ0)) ,

as υt is iid, E
((

1 − υ2
t

))
= 0 and E (u4t(θ0)) < ∞. This completes the proof of (a). Similarly, it follows

that

1

T

(
− ∂2

∂ψ2
lT (θ) |θ=θ0

)
=

1

2

T∑

t=1

υ2
t z2t (θ0) ,

p−→ 1

2
̟2

2,

1

T

(
− ∂2

∂φ2
lT (θ) |θ=θ0

)
=

1

2

T∑

t=1

υ2
t z3t (θ0) ,

p−→ 1

2
̟2

3,

as T → ∞ hereby proving (b) and (c).

Consider next the cross derivatives in (d) - (f) and let E (uit (θ0)ujt (θ0)) = σij for i 6= j where

uit (θ0) is defined as in Lemma 3. By applying the ergodicity theorem and the results on the existence

of moments of uit (θ0) in Lemma 3, then

1

T

(
− ∂2

∂β∂ψ
lT (θ) |θ=θ0

)
=

1

2T

T∑

t=1

(
1 − υ2

t

)
u2t (θ0) +

1

2T

T∑

t=1

υ2
t u1t (θ0) u2t (θ0) ,

p−→ 1

2
̟12,

1

T

(
− ∂2

∂β∂φ
lT (θ) |θ=θ0

)
=

1

2T

T∑

t=1

(
1 − υ2

t

)
u3t (θ0) +

1

2T

T∑

t=1

υ2
t u1t (θ0) u3t (θ0) ,

p−→ 1

2
̟13.

1

T

(
− ∂2

∂ψ∂φ
lT (θ) |θ=θ0

)
=

1

2T

T∑

t=1

υ2
t u2t (θ0)u3t (θ0) ,

p−→ 1

2
̟23.

as T → ∞. This completes the proof of Proposition 2.
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Result 3: The third order derivatives

∂3lT (θ)

(∂β)3
= −1

2

T∑

t=1

(
1 − y2t σ

−2
t

) ( t∑

i=1

(i− 1) (i− 2) β(i−3) lnσ2
t−i

)

−1

2

T∑

t=1

(
1 − y2t σ

−2
t

)



t∑

i=1

t−i∑

j=1

(i+ j − 2)β(i+j−3) lnσ2
t−i−j





−1

2

T∑

t=1

(
1 − y2t σ

−2
t

)



t∑

i=1

t−i∑

j=1

t−i−n∑

n=1

β(i+j+n−3) lnσ2
t−i−j−n





−1

2

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1) lnσ2
t−i

)3

+
T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1) lnσ2
t−i

)


(

t∑

i=1

(i− 1) β(i−2) lnσ2
t−i

)
+




t∑

i=1

t−i∑

j=1

β(i+j−2) lnσ2
t−i−j







 ,

∂3lT (θ)

(∂ψ)3
= −1

2

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1)g (yt−i)

)3

,

∂3lT (θ)

(∂φ)3
= −1

2

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1)yt−i

)3

,

∂3lT (θ)

(∂β)2 ∂ψ
= −

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

(i− 1) βi−2g (yt−i)

)(
t∑

i=1

β(i−1) lnσ2
t−i

)

−1

2

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1)g (yt−i)

)(
t∑

i=1

(i− 1)β(i−2) lnσ2
t−i

)

−1

2

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1)g (yt−i)

)






t∑

i=1

t−i∑

j=1

β(i+j−2) lnσ2
t−i−j



 −
(

t∑

i=1

β(i−1) lnσ2
t−i

)2




−1

2

T∑

t=1

(
1 − y2t σ

−2
t

) ( t∑

i=1

(i− 1) (i− 2) βi−3g (yt−i)

)
,

∂3lT (θ)

(∂ψ)2 ∂β
= −

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

(i− 1) βi−2g (yt−i)

)(
t∑

i=1

β(i−1)g (yt−i)

)

+
1

2

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1) lnσ2
t−i

)(
t∑

i=1

β(i−1)g (yt−i)

)2

,
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and

∂3lT (θ)

(∂β)2 ∂φ
= −

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

(i− 1)βi−2yt−i

)(
t∑

i=1

β(i−1) lnσ2
t−i

)

−1

2

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1)yt−i

)(
t∑

i=1

(i− 1)β(i−2) lnσ2
t−i

)

−1

2

T∑

t=1

y2t σ
−2
t








t∑

i=1

t−i∑

j=1

β(i+j−2) lnσ2
t−i−j



 −
(

t∑

i=1

β(i−1) lnσ2
t−i

)2




−1

2

T∑

t=1

(
1 − y2t σ

−2
t

) ( t∑

i=1

(i− 1) (i− 2)βi−3yt−i

)

∂3lT (θ)

∂β (∂φ)2
= −1

2

T∑

t=1

y2t σ
−2
t

(
2

(
t∑

i=1

(i− 1)βi−2yt−i

)(
t∑

i=1

β(i−1)yt−i

))

+
1

2

T∑

t=1

y2t σ
−2
t




(

t∑

i=1

β(i−1) lnσ2
t−i

)(
t∑

i=1

β(i−1)yt−i

)2


 ,

∂3lT (θ)

(∂ψ)2 ∂φ
=

1

2

T∑

t=1

y2t σ
−2
t




(

t∑

i=1

β(i−1)yt−i

)(
t∑

i=1

β(i−1)g (yt−i)

)2


 ,

∂2lT (θ)

∂ψ (∂φ)2
=

1

2

T∑

t=1

y2t σ
−2
t




(

t∑

i=1

β(i−1)g (yt−i)

)(
t∑

i=1

β(i−1)yt−i

)2


 ,

∂3lT (θ)

∂ψ∂φ∂β
= −1

2

T∑

t=1

y2t σ
−2
t

((
t∑

i=1

(i− 1)βi−2yt−i

)(
t∑

i=1

β(i−1)g (yt−i)

))

−1

2

T∑

t=1

y2t σ
−2
t

((
t∑

i=1

β(i−1)yt−i

)(
t∑

i=1

(i− 1)βi−2g (yt−i)

))

+
1

2

T∑

t=1

y2t σ
−2
t

(
t∑

i=1

β(i−1) lnσ2
t−i

)(
t∑

i=1

β(i−1)yt−i

)(
t∑

i=1

β(i−1)g (yt−i)

)
,

Definition 1 Denote θ0 = (β0, ψ0, φ0, γ0 )́ . Define the lower and upper values for each parameter in

θ0 as

βL < β0 < βU ; ψL < ψ0 < ψU ,

φL < φ0 < φU ; γL < γ0 < γU ,

and the neighborhood N (θ0) around θ0 as

N (θ0) = {θ\βL ≤ β ≤ βU , ψL ≤ ψ ≤ ψU , φL ≤ φ ≤ φU , and γL < γ < γU} . (14)

Proposition 3 Under Assumptions A1-A5, there exists a neighborhood N (θ0) given in (14) for which

(a) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂β3
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w1t; (b) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂ψ3
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w2t;
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(c) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂φ3
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w3t; (d) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂β2∂ψ
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w4t;

(e) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂β2∂φ
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w5t; (f) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂ψ2∂φ
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w6t;

(g) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂β∂ψ2
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w7t; (h) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂β∂φ2
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w8t;

(i) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂ψ∂φ2
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w9t (j) sup
θ∈N(θ0)

∣∣∣∣
∂3

∂β∂ψ∂φ
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w10t,

where w1t, ...,w9t and w10t are stationary and have finite moments, E (wit) = Mi < ∞,∀i = 1, ..., 10.

Furthermore 1
T

∑T
t=1 wit

a.s.→ Mi,∀i = 1, ...,10.

Proof of Proposition 3 We define in this Proposition σ2
t to be the conditional variance evaluated

at θ and σ2
t (θ0) when evaluated at the true parameter. Then, following Jensen and Rahbek (2004a,

2004b), by definition
y2t

σ2
t (θ0)

= υ2
t .

Therefore

σ2
t (θ0)

σ2
t

=
exp

(∑t−1
i=0 β

i
0 + βt0 lnσ2

0 + ψ0
∑t
i=1 β

(i−1)
0 g (yt−i) + φ0

∑t
i=1 β

(i−1)
0 yt−i

)

exp
(∑t−1

i=0 β
i + βt lnσ2

0 + ψ
∑t
i=1 β

(i−1)g (yt−i) + φ
∑t
i=1 β

(i−1)yt−i
)

= exp
(
lnσ2

0 (β0 − β)t
) t−1∏

i=0

exp
(
(β0 − β)i

) t∏

i=1

exp
(
ψ0β

(i−1)
0 g (yt−i)

)

exp
(
ψβ(i−1)g (yt−i)

)

×
t∏

i=1

exp
(
φ0β

(i−1)
0 yt−i

)

exp
(
φβ(i−1)yt−i

) ≤ B1,

where for β0 ≤ β ≤ βU , ψ0 ≤ ψ ≤ ψU , φ0 ≤ φ ≤ φU , and γ0 < γ < γU we have that

B1 = exp
(∣∣lnσ2

0 (β0 − βU )
∣∣t
) t−1∏

i=0

exp
(∣∣∣(β0 − βU )i

∣∣∣
) t∏

i=1

1/ exp
(∣∣∣
(
ψUβ

(i−1)
U − ψ0β

(i−1)
0

)
yt−i

∣∣∣
)

×
t∏

i=1

1/ exp
(∣∣∣
(
φUβ

(i−1)
U − φ0β

(i−1)
0

)
yt−i

∣∣∣
)
,

and for βL ≤ β ≤ β0, ψL ≤ ψ ≤ ψ0, φL ≤ φ ≤ φ0, and γL < γ < γ0 we get

B1 = exp
(∣∣lnσ2

0 (βL − β0)
t
∣∣)
t−1∏

i=0

exp
(∣∣∣(βL − β0)

i
∣∣∣
) t∏

i=1

1/ exp
(∣∣∣
(
ψ0β

(i−1)
0 − ψLβ

(i−1)
L

)
yt−i

∣∣∣
)

×
t∏

i=1

1/ exp
(∣∣∣
(
φ0β

(i−1)
0 − φLβ

(i−1)
L

)
yt−i

∣∣∣
)
,

and where for example we have obtained the inequality of the term
exp

(
φ0β

(i−1)
0 yt−i

)

exp
(
φUβ

(i−1)
U

yt−i

) ≤ 1

exp
(∣∣∣
(
φUβ

(i−1)
U

−φ0β
(i−1)
0

)
yt−i

∣∣∣
)

along the same lines of expression (23) in Jensen and Rahbek (2004b). Then, under assumptions A1-A5,
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B1 < ∞. Therefore expression
σ2

t
(θ0)

σ2
t

is uniformly bounded in a region around the true value of the

parameter space. We start now with the proof of (a). We can define, due to the expression of the third

order derivatives, that
∣∣∣∣
∂3

∂β3
lT (θ)

∣∣∣∣ ≤
1

T

T∑

t=1

w1t (θ) ,

with

w1t (θ) =
1

2

(
1 + υ2

t

σ2
t (θ0)

σ2
t

)(∣∣∣∣∣

t∑

i=1

(i− 1) (i− 2) β(i−3) lnσ2
t−i

∣∣∣∣∣

)

+
1

2

(
1 + υ2

t

σ2
t (θ0)

σ2
t

)



∣∣∣∣∣∣

t∑

i=1

t−i∑

j=1

(i+ j − 2) β(i+j−3) lnσ2
t−i−j

∣∣∣∣∣∣





+
1

2

(
1 + υ2

t

σ2
t (θ0)

σ2
t

)



∣∣∣∣∣∣

t∑

i=1

t−i∑

j=1

t−i−n∑

n=1

β(i+j+n−3) lnσ2
t−i−j−n

∣∣∣∣∣∣





+
1

2

T∑

t=1

υ2
t

σ2
t (θ0)

σ2
t

(∣∣∣∣∣

t∑

i=1

β(i−1) lnσ2
t−i

∣∣∣∣∣

)3

+
T∑

t=1

υ2
t

σ2
t (θ0)

σ2
t

(∣∣∣∣∣

t∑

i=1

β(i−1) lnσ2
t−i

∣∣∣∣∣

) 


(∣∣∣∣∣

t∑

i=1

(i− 1) β(i−2) lnσ2
t−i

∣∣∣∣∣

)

+





∣∣∣∣∣∣

t∑

i=1

t−i∑

j=1

β(i+j−2) lnσ2
t−i−j

∣∣∣∣∣∣







 ,

where we prove now that each of the quantities in w1t (θ) are bounded by functions that have any desired

moments, and E (w1t) = M1 < ∞ under assumptions A1-A5. The proof involves, the same as before,

to use the expressions given in the proof of Proposition 2. For example from Lemma 3

sup
θ∈N(θ0)

∣∣∣∣∣

t∑

i=1

β(i−1) lnσ2
t−i (θ)

∣∣∣∣∣ ,

≤ sup
θ∈N(θ0)

c[t
|β|t

|β|2 − |β|
+

1 − |β|t

|β|2 − 2 |β| + 1
+

1

|β|2 − 1

(
|β|3t+1 − |β|t+1

)

+ |ψ|
t∑

i=1

t−i∑

j=1

|β|(j+i−2) |g (yt−i−j)| + |φ|
t∑

i=1

t−i∑

j=1

|β|(j+i−2) |yt−i−j |]

≡ A1t,

where moments of A1t will exists to the degree that the moments of |g (yt−i−j)|) and |yt−i−j | are

bounded (as assumed in A5). Consequently, as sup
θ∈N(θ0)

∣∣∣
∑t
i=1 β

(i−1) lnσ2
t−i (θ)

∣∣∣ ≤ A1t uniformly on

t, the corresponding moments of sup
θ∈N(θ0)

∣∣∣
∑t
i=1 β

(i−1) lnσ2
t−i (θ)

∣∣∣ will exist to the degree that the mo-

ments of |g (yt−i−j)|) and |yt−i−j | are bounded. We apply the same inequality to each of the terms in

w1t (θ) and we find the dominating function w1t where sup
θ∈N(θ0)

w1t (θ) ≤ w1t. Finally, the convergence

1
T

∑T
t=1 w1t

a.s.→ M1 follows by the ergodic theorem. In relation to (b), we have that

w2t (θ) = υ2
t

σ2
t (θ0)

2σ2
t

(∣∣∣∣∣

t∑

i=1

β(i−1)g (yt−i)

∣∣∣∣∣

)3

.

After we find the dominating function given in Lemma 3, E (w2t) = M2 < ∞ under assumptions A1-A5,

and where E
[
(|g (yt−i)|)3

]
< ∞. We use again the bounds given in Definition 1 following Jensen and
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Rahbek (2004b). (c) follows exactly the same as (b) but where we need to impose E
[
(|yt−i|)3

]
< ∞,

which is true by the assumptions.(d) needs

w4t (θ) = υ2
t

σ2
t (θ0)

σ2
t

(∣∣∣∣∣

t∑

i=1

(i− 1) βi−2g (yt−i)

∣∣∣∣∣

) (∣∣∣∣∣

t∑

i=1

β(i−1) lnσ2
t−i

∣∣∣∣∣

)

+
1

2
υ2
t

σ2
t (θ0)

σ2
t

(∣∣∣∣∣

t∑

i=1

β(i−1)g (yt−i)

∣∣∣∣∣

) (∣∣∣∣∣

t∑

i=1

(i− 1) β(i−2) lnσ2
t−i

∣∣∣∣∣

)

+
1

2
υ2
t

σ2
t (θ0)

σ2
t

(∣∣∣∣∣

t∑

i=1

β(i−1)g (yt−i)

∣∣∣∣∣

) 







∣∣∣∣∣∣

t∑

i=1

t−i∑

j=1

β(i+j−2) lnσ2
t−i−j

∣∣∣∣∣∣



 −
(∣∣∣∣∣

t∑

i=1

β(i−1) lnσ2
t−i

∣∣∣∣∣

)2




+
1

2

(
1 + υ2

t

σ2
t (θ0)

σ2
t

)(∣∣∣∣∣

t∑

i=1

(i− 1) (i− 2)βi−3g (yt−i)

∣∣∣∣∣

)
,

where again all the quantities are bounded by functions with the desired moments under assumptions

A1-A5 and the dominating functions are given in Lemma 3 and the in the proof of Proposition 2.

Expression (e) follows directly from the proof of (d). (f) follows from (b), but under the assumption

that E
[
|yt−i| (|g (yt−i)|)2

]
< ∞. Expressions (g) and (h) follow as well directly from the assumptions

and the previous line of proof. (i) requires E
[
(|yt−i|)2 (|g (yt−i)|)

]
<∞, and finally, (j) follows directly

from the assumptions and the same proof structure. The proof is completed with the convergence

1
T

∑T
t=1 wit

a.s.−→Mi,∀i = 1, ...,10, that follows for expressions (a)-(j) from the ergodic theorem.

Proof of Theorem 1 Given the conditions provided by Propositions 1 - 3 the results of Theorem 1

follow straightforwardly from Lemma 1, page 1206 in Jensen and Rahbek (2004b).
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