
  
 
 
 
 

CREATES Research Paper 2008-37 
 
 
 
 

Uniform Convergence Rates of Kernel Estimators with 
Heterogenous, Dependent Data 

 
 

Dennis Kristensen 
 
 

 
 

School of Economics and Management 
University of Aarhus 

Building 1322, DK-8000 Aarhus C 
Denmark 

 
 
 

 

 

 



Uniform Convergence Rates of Kernel

Estimators with Heterogenous, Dependent Data�

Dennis Kristenseny

Columbia University and CREATESz

May 2008

Abstract

The main uniform convergence results of Hansen (2008) are generalized in two direc-

tions: Data is allowed to (i) be heterogenously dependent and (ii) depend on a (possibly

unbounded) parameter. These results are useful in semiparametric estimation problems

involving time-inhomogenous models and/or sampling of continuous-time processes. The

usefulness of these results are demonstrated by two applications: Kernel regression esti-

mation of a time-varying AR(1) model , and the kernel density estimation of a Markov

chain that has not been intialized at its stationary distribution.
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1 Motivation and Main Results

Uniform convergence rates of kernel estimators have many useful applications, in particular

in semiparametric estimation problems. Recently, Hansen (2008) provided a set of strong

results for the case where data is stationary and strong mixing. In this note, we extend his

results in two directions: First, we allow for heterogenous data where the random variables

are nonidentically distributed but still mixing. Second, data can potentially depend on a

parameter and we show uniform convergence also over both the parameter set. The main

conclusion of this note is that as long as the mixing coe¢ cients and suitably moments of

data are uniformly bounded as functions of the sample size and the parameter, the results of

Hansen (2008) still go through.

The �rst extension is useful in situations where data is non-stationary (but mixing) and

the distributions potentially vary with the sample size. Three speci�c examples where this

situation arises are (i) time-varying models (Dahlhaus et al., 1999; Cai, 2007; Kristensen,

2008a); (ii) continuous-time stochastic processes sampled at discrete time points where time

between observations shrink (Bandi and Phillips, 2003; Kristensen, 2008b); and (iii) Markov

chains that have not been intialised at their stationary distribution (Kim and Lee, 2004;

Yu, 1993). The second extension addresses a situation that often appears in semiparametric

problems where kernel estimators depend on the �nite-dimensional parameter of interest,

for example index models (Li and Wooldridge, 2002). Another application can be found in

the recent literature on nonparametric simulated maximum-likelihood estimation (Fermanian

and Salanie, 2004; Kristensen and Shin, 2008).

In this Section, we present the main results. In Section 2, the usefulness of these is

demonstrated by two examples: The �rst is to kernel regression estimation in the locally

stationary AR(1) model, and the second is kernel estimation of the stationary density of a

homogenous Markov chain that has not been intialised in the stationary distribution. All

proofs and lemmas can be found in Section 3.

Let (Yn;i (
) ; Xn;i (
)) 2 R�Rd, i = 1; :::; n, n = 1; 2; ::::, be a triangular array of ran-

dom variables and Fkn;i (
) = F (Yn;i (
) ; Xn;i (
) ; :::; Yn;k (
) ; Xn;k (
)) an associated sigma-
algebra. The random variables depend on a parameter 
 2 � � Rk. We are then interested
in deriving uniform convergence rates of the following sample average:

	̂ (x; 
) =
1

nhd

nX
i=1

Yn;i (
)K

�
Xn;i (
)� x

h

�
;

where K : Rd 7! R is some weight function and h > 0 is a bandwidth. Let fn;i (x; 
) and

fn;ij (x; y; 
) denote the densities of Xn;i and (Xn;i; Xn;j). We then de�ne for any triangular

array Wn;i (
) and for some M � 0:

B0 (
) = sup
i;n

sup
x2Rd

fn;i (x; 
) ; BW;1 (
) = sup
i;n
sup
x
E [jWn;i (
)j jXn;i (
) = x] fn;i (x; 
) ; (1)
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BW;2 (
) = sup
n

sup
ji�jj�M

sup
x;y
E [jWn;i (
)Wn;j (
)j jXn;i (
) = x;Xn;j (
) = y] fn;ij (x; y; 
) :

(2)

We are now ready to state the following conditions on the data where we write supi;n for

supn�1 sup1�i�n:

A.1 For all 
 2 �: The triangular array f(Yn;i (
) ; Xn;i (
)) : i = 1; :::; n, n � 1g is strongly
mixing, and its mixing coe¢ cients,

�n;i (
) = sup
�n�k�n

sup
A2Fkn;�1(
);B2F1n;n+i(
)

jP (A \B)� P (A)P (B)j ;

satisfy �n;i (
) � Ai�� for some 0 < A; � <1 (which do not depend on n and 
).

A.2 The functions 
 7! Yn;i (
) and 
 7! Xn;i (
) are di¤erentiable with derivatives _Yn;i (
)

and _Xn;i (
).

A.3 For some s > 2, uniformly over n and i,

E [jYn;i (
)js] <1; E[jj _Yn;i (
) jjs] <1; E[jYn;i (
)js jj _Xn;i (
) jjs] <1:

With �d = d+ k and for some q > 0, the mixing exponent � in (A.1) satis�es:

� >
1 + (s� 1)

�
1 + �d=q + �d

�
s� 2 :

A.4 The functions de�ned in Eq. (1)-(2) satisfy

B0 (
) � �B0

�
1 + k
k�

�
; BW;k (
) � �BW;k

�
1 + k
k�

�
, k = 1; 2;

for some constants �B0; �BW;3; � � 0 with W = Y , W = _Y and Y _X.

A.5 There exists constants q � d and �BW;3 � 0 such that

BW;3 (
) = sup
i;n
sup
x
kxkq E [jWn;i (
)j jXn;i (
) = x] fn;i (x; 
)

satis�es BW;3 (
) � �BW;3

�
1 + k
k�

�
for W = Y , W = _Y and Y _X.

Assumption (A.1) restricts the data to be strongly mixing and imposes uniform bounds

on the mixing coe¢ cients as functions of n and 
. We assume di¤erentiability in (A.2) and

then require that certain moments of the data and their derivatives exist in (A.3). We allow

the parameter space � to be unbounded and the functions Bk (
) in (A.4) to be unbounded

but with at most polynomial growth. This is particularly relevant in the case of NPSMLE

where 
 will contain past values of the observed process and one is not willing to assume

a compact support, see Kristensen and Shin (2008). When � is unbounded we will only be
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able to give uniform convergence over a (growing compact) subset of � which will depend

on the polynomial bound �. The polynomial bounds on the functions B0 (
) and BW;k (
),

k = 1; 2; 3, are imposed to simplify the uniform convergence results. They can be exchanged

for other bounds as discussed below. Finally, (A.5) is a strengthening of the condition on

B2;W (
) in (A.4), and corresponds to the condition imposed in Hansen (2008, Eq. 21), but

is here required to hold for W = _Y and Y _X in addition to W = Y .

In the case, where (Yn;i (
) ; Xn;i (
)) = (Yi; Xi), (A.1)-(A.4) collapse to Assumption 1-2

of Hansen (2008). In particular, we have _Y = _X = � = 0. However, we we do not impose

stationarity meaning, for example, that the density of Xi may depend on i, fi (x). More

general assumptions regarding the dependence of the data can be found in Andrews (1995)

who allows for near-epoch dependence. On the other hand, Andrews (1995) does not allow

for the distribution to depend on sample size and obtains less precise rates compared to the

ones stated here.

Due to heterogeneity, E[	̂ (x; 
)] does not necessarily have a well-de�ned limit as n!1
under (A.1)-(A.5). For example, in the case whereK is a standard kernel with

R
K (z) dz = 1,

in great generality it will hold that

E[	̂ (x; 
)] = n�1
nX
i=1

fn;i (x; 
)mn;i (x; 
) + o (1) ;

as n ! 1, where mn;i (x; 
) = E [Yn;i (
) jXn;i (
) = x]. To ensure that the sum on the

right hand side has a well-de�ned limit, further restrictions have to be imposed. In most

applications, fn;i (x; 
) = f (x; 
) + o (1) and mn;i (x; 
) = m (x; 
) + o (1), in which case

E[	̂ (x; 
)] = f (x; 
)m (x; 
)+o (1). The existence of such a limit of E[	̂ (x; 
)] is something

that should be veri�ed on a case-by-case basis, and for example holds under stationarity.

However, we will not impose any such restrictions here, since the main objective of this note is

to bound the variance of 	̂ (x; 
). For that purpose, (A.1)-(A.5) su¢ ce. Similar type of results

can be found in Andrews (1995) where the object of interest is a sum of densities/regression

functions, and no restrictions are imposed to ensure that this sum converges.

Next, we impose regularity conditions on the kernel:

A.6.1 The function K satis�es: jK (u)j � �K < 1 and
R
jK (u)j du � � < 1. There

exists �1; L < 1 such that either (i) K (u) = 0 for kuk > L and jK (u)�K (u0)j �
�1 ku� u0k, or (ii) K (u) is di¤erentiable with j@K (u) =@uj � �1 and, for some � > 1,
j@K (u) =@uj � �1 kuk�� for kuk � L.

A.6.2 For some �2 <1, jK (u)j � �2 kuk�� for kuk � L.

Assumption (A.6.1) and (A.6.2) are identical to Hansen (2008, Assumption 3) and Hansen

(2008, Eq. 22) respectively.
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Theorem 1 Assume that (A.1)-(A.4) and (A.6.1) hold and with

� =
� � 1� �d� �d=q � (1 + �) = (�s� 1)
� + 3� �d� (1 + �) = (�s� 1)

the bandwidth satis�es log (n) =
�
n�hd

�
! 0. Then with

cn = O
�
log (n)1=2 n1=2q

�
; dn = O

�
log (n)1=2 n1=2q

�
:

(i)

sup
kxk�cn

sup
k
k�dn

j	̂ (x; 
)� E[	̂ (x; 
)]j = OP
�
d�n

q
log (n) = (nhd)

�
(ii) If additionally (A.5) and (A.6.2) hold, then:

sup
x2Rd

sup
k
k�dn

j	̂ (x; 
)� E[	̂ (x; 
)]j = OP
�
d�n

q
log (n) = (nhd)

�
:

Remark 2 1. The results can be extended to uniform almost sure convergence by changing

the restrictions on �, � and cn as in Hansen (2008, Theorem 3 and 5).

2. The polynomial bounds imposed on Bk;W (
), k = 0; 1; 2; 3, and D (
) can be removed

and the above results will still go through with rate OP
�
�Bn
p
log (n) = (nhd)

�
where

�Bn = max
W=W; _Y ;Y _X

max
k=0;1;2;3

sup
k
k�dn

Bk;W (
) :

3. If Bk;W (
), k = 0; 1; 2; 3, are all uniformly bounded, then Theorem 1(ii) can be shown

to hold uniformly over 
 2 �.

2 Two Examples

We here present two applications of Theorem 1 when data is not parameter-dependent. For

an application of Theorem 1 with parameter-dependence, we refer to Kristensen and Shin

(2008). We here implicitly assume that the kernel satis�es (A.6.1)-(A.6.2) and is of order

r � 1:
R
K (z) zidz = 0, i = 1; :::; r � 1, and

R
K (z) jzjr dz <1.

The �rst example where Theorem 1 becomes relevant is in the nonparametric estimation

of time-varying regression models. We here consider the following sequence of time-varying

AR(1) models,

Wn;i = a

�
i

n

�
Wn;i�1 + "i; i = 1; :::; n;

where "i are assumed to be i.i.d.
�
0; �2

�
with E [j"tjs] < 1, s > 4. Here, the distribution of

Wn;i obviously both depends on i and n. Orbe et al. (2007, Lemma A.4) show that when

the autoregressive coe¢ cient function a (s) is uniformly bounded below one,

amax = sup
0�s�1

ja (s)j < 1 (3)
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then fWn;ig satis�es the strong mixing condition in (A.1) and supi;nE [jWn;ijs] <1.
We consider the following kernel estimator of the function a:

â (�) =
	̂1 (�)

	̂2 (�)
=

Pn
i=1K

�
i=n��
h

�
Wn;iWn;i�1Pn

i=1K
�
i=n��
h

�
W 2
n;i�1

:

By de�ning Xn;i = i=n (which for each n � 1 corresponds to i.i.d. draws from U [0; 1]), we

can now apply Theorem 1 to both 	̂1 (�) and 	̂2 (�). However, due to boundary problems,

the above estimator will be asymptotically biased at each of the two endpoints of the time

series, � = 0 and � = 1. We handle this by showing uniform convergence over the expanding

interval � 2 [b; 1� b] with b! 0. Alternatively, one could instead use a local linear estimator

or a boundary kernel since these will not su¤er from boundary biases, c.f. Cai (2007) and

Chen (2000) respectively, but we here maintain the above estimator for simplicity.

Theorem 3 Assume that (i) a : [0; 1] 7! R is r � 1 times continuously di¤erentiable and

satis�es Eq. (3), and (ii) E [j"tjs] < 1 for some s > 4. Then for any sequence b satisfying

h=b! 0:

sup
�2[b;1�b]

jâ (�)� a (�)j = OP (hr) +OP
�q

log (n) = (nhd)

�
:

The second example is where fXig is a d-dimensional, time-homogenous Markov chain
with transition density p (yjx), P (Xi+1 2 AjXi) =

R
A p (yjx) dy. We assume that the Markov

chain is mixing such that a stationary marginal density, f (x), exists. We then wish to

estimate f (x). If the observed sequence was not intialised at f (x), then it is non-stationary.

For example, if X0 = x for some given x then P (Xi 2 A) =
R
A pi (yjx) dy, i = 1; 2; :::, where

pi (yjx) =
Z
Rd
p (yjz) pi�1 (zjx) dz; (4)

with p1 (yjx) = p (yjx). However, the distribution will converge towards the stationary one
in the total variation norm, supA

��R
A pi (yjx) dy �

R
A f (x) dx

�� ! 0, i ! 1, with geometric
rate, c.f. Meyn and Tweedie (1993). So asymptotically we are able to recover the stationary

density pointwise by

f̂ (x) =
1

nh

nX
i=1

K

�
Xi � x
h

�
:

To obtain uniform convergence of the transition density (and thereby uniform convergence

of f̂) towards f however, convergence in the total variation norm does not su¢ ce. To obtain

this, we here impose the Strong Doeblin Condition, see Holden (2000):

9k � 19� 2 (0; 1) : pk (yjx) � �f (x) : (5)
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Theorem 4 Assume that the Markov chain fXig satis�es the strong Doeblin condition (5),
and its transition density y 7! p (yjx) is r � 1 times di¤erentiable @rp (yjx) =@yr being uni-
formly continuous for all x. Also, kxkq f (x) is bounded for some q � d. Then:

sup
x2Rd

���f̂ (x)� f (x)��� = OP (hr) +OP �qlog (n) = (nhd)� :
3 Proofs and Lemmas

We �rst state two lemmas that will be used to prove Theorem 1. The �rst lemma is an

extension of Hansen (2008, Theorem 1):

Lemma 5 Under (A.1)-(A.4) and (A.6.1), Var(	̂ (x; 
)) � �(
) =
�
nhd

�
as n ! 1 where

�(
) = ��
h
B20 (
)B

2
1;Y (
) +B2;Y (
) + 1

i
<1 for some constant �� <1.

Proof. We have

	̂ (x; 
)� E[	̂ (x; 
)] = 1

nhd

Xn

i=1
Zn;i (x; 
)

where

Zn;i (x; 
) := K

�
Xn;i (
)� x

h

�
Yn;i (
)� E

�
K

�
Xn;i (
)� x

h

�
Yn;i (
)

�
: (6)

Thus,

nhdVar(	̂ (x; 
)) = nhdE

"�
1

nhd

Xn

i=1
Zn;i (x; 
)

�2#

=
1

nhd
E

��Xn

i=1
Zn;i (x; 
)

�2�
� 1

nhd

nX
i=1

nX
j=1

jE [Zn;i (x; 
)Zn;j (x; 
)]j ; (7)

By following the arguments of Hansen (2008), we establish that

jE [Zn;i (x; 
)Zn;j (x; 
)]j �

8><>:
�� (
)hd; ji� jj �M�

�2B2;Y (
) + ��
2 (
)

�
h2d; M < ji� jj � h�d

6A��2=s (
) ji� jj�(2�2=s) h2d=s; hd < ji� jj
;

where �� (
) = �Ks�1�B0 (
)B1;Y (
). Plugging these bounds into the right hand side of Eq.

(7) establishes the result.

Next, we state a triangular version of Liebscher (1996, Theorem 2.1):
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Lemma 6 Let Zn;i be a zero-mean triangular array such that jZn;ij � bn with strong mixing
coe¢ cients �n (i). Then for any " > 0 and m � n with m < "bn=4:

P

 �����
nX
i=1

Zn;i

����� > "
!
� 4 exp

�
"2

64�2n;mn=m+ 8=3"bnm

�
+ 4

n

m
�n (m) ;

where �2n;m = E [
Pn
i=1 Zn;i].

In Hansen (2008, p. 739), Lemma 6 is stated for the case of a stationary sequence Zi but

the original result holds for triangular mixing arrays without imposing stationarity.

Proof of Theorem 1. De�ne

an =

r
log (n)

nhd
; �n = a

�1=(s�1)
n ; An =

n
(x; 
) 2 Rd � � : kxk � cn; k
k � dn

o
:

We follow the same steps as in Hansen (2008, Proof of Theorem 2). Write

	̂ (x; 
) =
1

nhd

nX
i=1

K

�
Xn;i (
)� x

h

�
Yn;i (
) I fjYn;i (
)j � �ng

+
1

nhd

nX
i=1

K

�
Xn;i (
)� x

h

�
Yn;i (
) I fjYn;i (
)j > �ng

= 	̂1 (x; 
) + 	̂2 (x; 
)

where the second term satis�es

E
h���	̂2 (x; 
)���i � ��(s�1)n

1

n

nX
i=1

Z
Rd
jK (u)j sup

An

E [jYn;i (
)js jXn;i (
) = x� hu] fn;i (x� hu; 
) du

� ��(s�1)n

Z
Rd
jK (u)j du�

�
sup
1�i�n

sup
An

E [jYn;i (
)js jXn;i (
) = z] fn;i (z; 
)
�

� ���(s�1)n sup
k
k�dn

B1;Y (
)

= O
�
and

�
n

�
such that by Markov�s Inequality, supx;j
j�dn

���	̂2 (x; 
)��� = OP (and
�
n): We can therefore re-

strict our attention to 	̂1 (x), and will in the following call this 	̂ (x; 
) with Yn;i (
) bounded.

We split up the set An into N � cdndknh�d�ka�d�kn balls of the form

An;j =
�
(x; 
) : kx� xjk � han;




 � 
j

 � han	 :

8



De�ne K� (z) as in Hansen (2008, Proof of Theorem 2) and K�� (z) := jK (z)j. Then,�����Yn;i (
)K
�
Xn;i (
)� x

h

�
� Yn;i

�

j
�
K

 
Xn;i

�

j
�
� xj

h

!�����
�

�����Yn;i �
j�K
�
Xn;i (
)� x

h

�
� Yn;i

�

j
�
K

 
Xn;i

�

j
�
� x

h

!�����
+

�����Yn;i (
)K
 
Xn;i

�

j
�
� x

h

!
� Yn;i

�

j
�
K

 
Xn;i

�

j
�
� x

h

!�����
+

�����Yn;i �
j�K
 
Xn;i

�

j
�
� x

h

!
� Yn;i

�

j
�
K

 
Xn;i

�

j
�
� xj

h

!�����
= : S1 + S2 + S3;

where

S1 �
��Yn;i �
j��� 

Xn;i (
)�Xn;i �
j�

 1hK�

 
Xn;i

�

j
�
� x

h

!

�



 � 
j



h

��Yn;i �
j��� 


 _Xn;i �
j�


K�

 
Xn;i

�

j
�
� x

h

!

S2 �


Yn;i (
)� Yn;i �
j�

K��

 
Xn;i

�

j
�
� x

h

!
�



 � 
j




 _Yn;i �
j�


K��

 
Xn;i

�

j
�
� x

h

!
;

S3 �
kx� x0k

h

��Yn;i �
j���K�

 
Xn;i

�

j
�
� xj

h

!
:

De�ning

	̂�1 (x; 
) =
�
nhd

��1X
i

Yn;i (
) _Xn;i
�

j
�
K�
�
Xn;i (
)� x

h

�
;

	̂�2 (x; 
) =
�
nhd

��1X
i

Yn;i (
)K
�
�
Xn;i (
)� x

h

�
;

	̂�� (x; 
) =
�
nhd

��1X
i

_Yn;i
�

j
�
K��

�
Xn;i (
)� x

h

�
;

we therefore obtain by the same arguments as in Hansen (2008, Proof of Theorem 2),

sup
An;j

���	̂ (x; 
)� 	̂ �xj ; 
j���� �
���	̂ �x; 
j�� E[	̂ �x; 
j�]���+ ���	̂�1 �x; 
j�� E[	̂�1 �x; 
j�]���
+
���	̂�2 �x; 
j�� E[	̂�2 �x; 
j�]���+ ���	̂�� �x; 
j�� E[	̂�� �x; 
j�]���

+2an

�
E[	̂�1

�
x; 
j

�
] + E[	̂�2

�
x; 
j

�
] + E[	̂��

�
x; 
j

�
]
�
:
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The last terms is of order O
�
and

�
n

�
since, by using the same arguments as in the Proof

of Lemma 5, E[ �	�k (x; 
)] �
q
��k (
) = (nh

d) and E[ �	�� (x; 
)] �
p
��� (
) = (nhd) where

��k (
) = O
�
d2�n
�
and ��� (
) = O

�
d2�n
�
. We now show that the �rst term converges with

the claimed rate; the three other ones involving �	�1, �	
�
2 and �	

�� are treated in the same way

since W = Y _X and _Y satisfy the same conditions as W = Y . With Zn;i (x; 
) de�ned in

Lemma 5,

jZn;i (x; 
)j � bn := C�n; E

24 nX
i=1

Zn;i (x; 
)

!235 � �(
)nhd
such that, with m = a�1n �

�1
n , Lemma 6 yields:

P

 �����
nX
i=1

Zn;i (x; 
)

����� > Mand�nnhd
!

� 4 exp

�
M2 log (n) d2�n

64� (
) + 6 �KMd�n

�
+ 4

n

m
�n (m)

� 4n�M(64+6
�K) + 4Ana1+�n �1+�n ;

where the last inequality follows by choosing M � �(
) =d2�n where

sup
k
k�dn

�(
)

d2�n
� �� sup

k
k�dn

B20 (
)B
2
1 (
) + 1

d2�n
� �� sup

k
k�dn

�B20
�B21 k
k

2� + 1

d2�n
= O (1) ; n!1:

In total,

P

�
sup
An

���	̂ (x; 
)� E h	̂ (x; 
)i��� > 3Man� = O (T1) +O (T2) ;
where

T1 = c
d
nd
k
nh
�(d+k)a�(d+k)n n�M(64+6

�K); T2 = c
d
nd
k
nh
�(d+k)a1+��(d+k)n �1+�n n:

We can now follow the same arguments as in Hansen (2008, Proof of Theorem 2) to obtain

that both of these are o (1), since we have speci�ed cn and dn to have the same order and �

have been chosen accordingly.

The second part follows along the same lines as Hansen (2008, Proof of Theorem 3) by

extending his arguments in the same manner as we have extended the ones of Hansen (2008,

Proof of Theorem 2).

Proof of Theorem 3. We �rst verify that (A.1)-(A.5) hold. By Orbe et al. (2004,

Lemma A.4), fWn;ig is strongly mixing with geometrically decreasing mixing coe¢ cients.
Thus, (A.1) holds with Yn;i = Wn;iWn;i�1 and Yn;i = W 2

n;i�1 respectively and Xn;i �i.i.d.
U [0; 1] with � = +1. (A.2) is satis�ed with � = 0 and any s > 2 as long as E

h
j"ij2s

i
<1.

The densities fn;i (x) = I f0 � x � 1g and fn;ij (x; y) = I f0 � x � 1; 0 � y � 1g, and

E [jWn;iWn;i�1j jXn;i = x] = ja (x)jE
�
W 2
n;i�1

�
;

E [(Wn;iWn;i�1) (Wn;jWn;j�1) jXn;i = x;Xn;j = y] = ja (x)j ja (y)jE
�
W 2
n;i�1Wn;j�1

�
;
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which are both bounded such that (A.4)-(A.5) hold. From Theorem 1, we then obtain

sup�2[0;1]

���	̂k (�)� E[	̂k (�)]��� = OP (log (n) = (nh)), k = 1; 2. Next, by Dahlhaus (1996a),

�n;i = E
h
W 2
n;i

i
= �(i=n) + o

�
n�1

�
, where � (i=n) := �2=

�
1� a2 (i=n)

�
. We therefore

obtain, using the same arguments as in e.g. Cai (2007), that uniformly over the interval

� 2 [b; 1� b],

E[	̂1 (�)] =

nX
i=1

K

�
i=n� �
h

�
a (i=n)

�
� (i=n) + o

�
n�1

��
= 	1 (�) +O (h

r) ;

E[	̂2 (�)] =

nX
i=1

K

�
i=n� �
h

��
� (i=n) + o

�
n�1

��
= 	2 (�) +O (h

r) ;

where 	1 (�) = a (�) � (�) and 	k (�) = � (�). By the mean-value theorem,

jâ (�)� a (�) j �

���	̂1 (�)�	1 (�)���
�	2 (�)

+

���	1 (�)��
�	22 (�)

���	̂2 (�)�	2 (�)��� ;
where �	k (�) 2 [	k (�) ; 	̂k (�)]. Since � 7! 	2 (�) is continuous and positive, 	2;min :=

inf�2[0;1]	2 (�) > 0, and inf�2[b;1�b] j	̂2 (�) � 	2 (�) j = oP (1), �	2 (�) � 	2;min=2 almost

surely as n ! 1. Similarly,
���	1 (�)�� � sup�2[0;1] j	1 (�)j =2 almost surely. This proves the

result.

Proof of Theorem 4. It is easily checked that (A.1)-(A.5) hold with Yn;i = 1 under the

conditions imposed on the Markov chain: The Doeblin condition implies strong geometric

mixing, c.f. Holden (2000), and the uniform continuity of @rp (yjx) =@yr implies the same
property of @rpi (yjx) =@yr by the recursion formula (4). Finally, kxkq f (x) being bounded
implies that kxkq pi (xjy) is bounded for all i � 1 and y. This gives us the desired bound for
the variance component. Next, by standard arguments,

E[f̂ (x)] =
1

n

nX
i=1

Z
K (z) pi (x+ zhjy) dz =

1

n

nX
i=1

pi (xjy) +O (hr)

uniformly over x and for any given initial value y. Due to the Doeblin condition, there exists

constants M <1 and � < 1 such that uniformly in x,

1

n

nX
i=1

jpi (xjy)� f (x)j � sup
z
f (z)� 1

n

nX
i=1

jpi (xjy)� f (x)j
f (x)

� sup
z
f (z)� M

n

nX
i=1

(1� �)�i

= O (1=n) ;

where the last inequality follows by Holden (2000, Theorem 1).
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