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Abstract

We propose to use a variant of the local polynomial Whittle estimator to estimate the memory

parameter in volatility for long memory stochastic volatility models with potential nonstation-

arity in the volatility process. We show that the estimator is asymptotically normal and capable

of obtaining bias reduction as well as a rate of convergence arbitrarily close to the parametric

rate, n1=2. A Monte Carlo study is conducted to support the theoretical results, and an analysis

of daily exchange rates demonstrates the empirical usefulness of the estimators.

JEL Classi�cations: C14, C22.

Keywords: Bias reduction, local Whittle estimation, long memory stochastic volatility model.

1 Introduction

The past two decades have witnessed increasing interest in fractionally integrated processes as a

convenient way to model long memory properties of many time series. There is now a broad range of

applications in e.g. �nance and macroeconomics, see Baillie (1996) or Henry & Za¤aroni (2003) for

some examples, and especially long memory in volatility has received considerable recent interest1.

A popular way of modeling the observed persistence in volatility of �nancial returns is the long

memory stochastic volatility (LMSV) model introduced by Breidt, Crato & de Lima (1998) and

Harvey (1998). The LMSV model for �nancial returns takes the form

rt = � exp (yt=2)ut; (1)
�We are grateful to Torben G. Andersen, Niels Haldrup, Esben Høg, Asger Lunde, Frank S. Nielsen, two anonymous

referees, an anonymous associate editor, and the co-editor Eric Ghysels for comments. This work was partly done

while Frederiksen was visiting Northwestern University and Nielsen was visiting Queen�s University and the University

of Aarhus, their hospitality is gratefully acknowledged. We are grateful for �nancial support from the Danish Social

Sciences Research Council (grant no. FSE 275-05-0220) and the Center for Econometric Analysis of Time Series

(CREATES, funded by the Danish National Research Foundation).
yPlease address correspondence to: Per Frederiksen, Equity Trading & Derivatives, Nordea Markets, 1401 Copen-

hagen C, Denmark; phone: +45 3333 6683; e-mail: per.frederiksen@nordea.com
1See, for example, Ding, Granger & Engle (1993), Baillie, Bollerslev & Mikkelsen (1996), Comte & Renault (1998),

Ray & Tsay (2000), Andersen, Bollerslev, Diebold & Ebens (2001), Andersen, Bollerslev, Diebold & Labys (2001,

2003), Hurvich & Ray (2003), and Arteche (2004), among others.
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where � > 0 is a scale parameter, ut is a white noise return shock with mean zero and unit variance,

and yt is a zero-mean, stationary log-volatility process with spectral density

fy (�) = �
�2d� (�) ; (2)

where � (�) is an even, positive, continuous function on [��; �), which we think of as the spectral
density of the short-memory component of yt. This impiles that the log-squared returns series

becomes a long memory signal plus noise process, zt = log r2t = yt + wt, where the signal yt is the

log-volatility of returns and the noise term wt = log u2t+log �
2 is white noise. The persistence in such

series, parameterized by the long memory parameter d, has been widely documented empirically,

especially using the popular log-periodogram regression (LPR) estimator of Geweke & Porter-

Hudak (1983) and Robinson (1995b) or the local Whittle (LW) estimator of Künsch (1987) and

Robinson (1995a). Although the LPR and LW estimators preserve consistency and asymptotic

normality when applied to the LMSV model, see Deo & Hurvich (2001) and Arteche (2004), these

authors show both theoretically and via simulations that they are heavily biased in that case.

Consequently, much e¤ort has been devoted to developing improved methods for the LMSV model,

and in particular Sun & Phillips (2003) (for LPR) and Hurvich & Ray (2003) and Hurvich, Moulines

& Soulier (2005) (for LW) have proposed estimators that model the additive noise to reduce bias.

In this paper we extend the local Whittle estimator of Hurvich & Ray (2003) by modeling the

spectral density of the short-memory component � (�) of the log-volatility process as a polynomial

(of �nite and even order) instead of a constant near frequency zero. Assuming that the added

noise process is a martingale di¤erence (as e¢ cient markets theory as well as empirical evidence in

section 4.2 below suggests) while the short-memory component of the signal is more dynamic, this

approach yields an (order of magnitude) reduction in bias compared to the estimator of Hurvich &

Ray (2003) and achieves a faster convergence rate. For pure long memory processes, i.e. processes

without the noise wt, this approach of modeling the (log-)spectral density of the short-memory

dynamics by a polynomial was introduced by Andrews & Sun (2004) for the LW estimator, but is

novel in the context we examine here.

We show that the estimator is consistent for d 2 (0; 1) and asymptotically normal for d 2 (0; 3=4)
with rate of convergence that is arbitrarily close to the parametric rate, n1=2, if the spectral density

is su¢ ciently smooth near frequency zero. We also show that the local polynomial approximation

in�ates the asymptotic variance of the long memory estimator by a multiplicative constant, but

this is clearly o¤-set (at least in theory) by the faster convergence rate. In a companion paper,

Frederiksen, Nielsen & Nielsen (2007), we analyze a local polynomial estimator of the memory

parameter in a type of local level or random walk plus noise model, i.e. zt = yt + vt, where the

noise vt is allowed to be serially correlated. The proofs of the results in this paper and those in

Frederiksen et al. (2007) are very technical but very similar. Therefore, to keep focus here on a

description of the properties of the new estimator for the LMSV model along with supporting �nite

sample results, both simulations and empirical illustrations, we refer to Frederiksen et al. (2007)

for proofs.
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In a Monte Carlo study we present results to support the new estimator�s theoretical properties.

The results clearly indicate the importance of the extra �exibility of using a polynomial instead of

a constant in approximating the spectral density of the short-memory component near frequency

zero. The simulations also show that high bandwidth parameter values are feasible (and may even

be preferable) with the new estimator, which is not so for existing methods. Finally, an analysis of

daily log-squared exchange rate returns demonstrates the empirical usefulness of the estimator.

The remainder of the paper is organized as follows. Next we introduce the LW approach and

formally de�ne the local polynomial Whittle estimator of the LMSV model. In section 3 we establish

the properties of the estimator, and section 4 investigates the estimators �nite sample performance

by simulations and by an empirical study of exchange rate volatility. Section 5 concludes.

2 Local Whittle estimation of d in the LMSV model

Standard local Whittle (LW) estimation of long memory by Künsch (1987) and Robinson (1995a)

relies on approximating � (�) by a constant, say G, near frequency zero. Based on a sample of size

n, the LW estimator is de�ned as

d̂LW = argmin
d2(�1=2;1]

24log Ĝ(d)� 2d 1
m

mX
j=1

log �j

35 ; Ĝ(d) =
1

m

mX
j=1

�2dj Iy (�j) ;

where m = m (n) is the bandwidth which tends to in�nity as n!1 but at a slower rate than n,

�j = 2�j=n are the Fourier frequencies, and Iy (�) = 1
2�n

��Pn
t=1 yte

it�
��2 is the periodogram of yt.

In pure long memory processes, Andrews & Sun (2004) have suggested to model the logarithm of

� (�) in the vicinity of the origin by a polynomial instead of a constant. Compared to the standard

LW estimator, this approach reduces the order of magnitude of the asymptotic bias and achieves a

faster rate of convergence, but in�ates the asymptotic variance only by a multiplicative constant.

The validity of these LW estimators is to some extent diminished when the observed series is

no longer a pure long memory process, but a LMSV model. For the LMSV model, the leading bias

term is of order O(�2dm ) implying a slower rate of convergence, see Arteche (2004).
2 Thus, we turn

next to a modi�cation of the LW estimator that explicitly takes both the additive noise term, wt,

and the short-memory component of yt into account.

We now impose the following assumption also applied by, e.g., Breidt et al. (1998), Deo &

Hurvich (2001), and Arteche (2004), among others.

A1 The processes fytg and fwtg are independent.

The assumption of independence between the processes fytg and fwtg rules out the so-called
leverage e¤ect, which has been found to be important for stock return volatility (as in, e.g., the

FIEGARCH model of Bollerslev & Mikkelsen (1996)) but which does not appear to be relevant for

2For the pure long memory process, the leading bias term is O(�2m).
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the exchange rate returns we examine in our empirical study in section 4. We indicate below how

Assumption A1 could be relaxed.

To allow possibly nonstationary volatility as in, e.g., Hurvich & Ray (2003) we generalize (1) to

rt =

(
� exp (yt=2)ut

� exp
�Pt

s=1 xs=2
�
ut

if d 2 (0; 1=2) ;
if d 2 [1=2; 1) ;

(3)

such that

zt =

(
yt + wtPt
s=1 xs + wt

if d 2 (0; 1=2) ;
if d 2 [1=2; 1) ;

(4)

where, if d 2 [1=2; 1), xt has spectrum of the form (2) with memory parameter dx = d�1. De�ning
yt =

Pt
s=1 xs if d 2 [1=2; 1), this approach allows log-squared returns zt = yt + wt to possibly be

nonstationary with memory parameter d 2 (0; 1). Since f
Pt
s=1 xsg is nonstationary, zt does not

have a spectral density if d 2 [1=2; 1) but it has a pseudo spectral density, e.g. Hurvich & Ray

(1995) and Velasco (1999). Under Assumption A1 the (pseudo) spectral density of zt in (4) is3

fz (�) =

(
fy (�) + fw (�)��1� ei����2 fx (�) + fw (�) if d 2 (0; 1=2)

if d 2 [1=2; 1)

)
=
�2w
2�

�
1 +

2�� (�)

�2w
��2d

�
: (5)

In contrast to the standard LW estimator, Hurvich & Ray (2003) explicitly take the added noise

term into account by locally (near � = 0) �tting the model (5) with � (�) approximated by a

constant, and they denote this LWN (local Whittle with noise) estimation.

We now apply the bias-reduction idea of Andrews & Sun (2004) and propose to approximate

the spectral density of the short-run dynamics, i.e. � (�), near frequency zero by a polynomial.

Taking ��2d outside the parenthesis in (5), we thus propose to locally �t the model

g (�) = ��2dG (1 + h(d;�; �)) as �! 0, (6)

where h(d;�; �) = � (�;�) + �r+1�
2d and �(�;�) =

Pr
l=1 �l�

2l is an even polynomial of order 2r

that locally approximates � (�) =�(0) � 1. This allows us to improve on the asymptotic bias (see
section 3) incurred by approximating � (�) by a constant, i.e. �(�;�) = 0, as assumed in Hurvich

& Ray (2003) and parameterization (P1) of Hurvich et al. (2005).

Concentrating with respect to G, the local polynomial Whittle with noise (LPWN) criterion

function for the LMSV model thus becomes

L (d;�) = log Ĝ (d;�) +
1

m

mX
j=1

log
�
��2dj (1 + h(d;�; �j))

�
; (7)

where Ĝ (d;�) = 1
m

Pm
j=1 �

2d
j Iz (�j) = (1 + h(d;�; �j)). The proposed LPWN estimator is de�ned

as the minimizer of (7) over the admissible set (d;�) 2 D ��.
3To accommodate the leverage e¤ect, Assumption A1 could allow contemporaneous correlation, while the return

process remains a martingale di¤erence sequence by replacing yt with yt�1 in (3). An additional assumption of

distributional symmetry around (0; 0) would imply that the spectral density decomposition in (5) holds, see Hurvich

et al. (2005). Alternatively, the model could be modi�ed along the lines of model (P2) of Hurvich et al. (2005). We

do not attempt this here as the leverage e¤ect is presumably not relevant for the exchange rate returns studied below.
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3 Properties of the LPWN estimator

Here we introduce the remaining assumptions needed to establish consistency and asymptotic nor-

mality of the LPWN estimator for the LMSV model, and consequently we present the main theorem.

In the following, true values of the parameters are denoted by subscript zero and bxc denotes the
integer part of a real number x.

A2 The spectral density of zt is fz (�) = ��2d0G0
�(�)
�(0) +

�2w
2� , where � (�) is a real, even, positive,

continuous function on [��; �) and d0 2 D = [d1; d2] with 0 < d1 < d2 < 1.

A3 The function � (�) is smooth of order s at � = 0, where s > 2r and s � 1. That is, in a

neighborhood of � = 0, � (�) is bsc times continuously di¤erentiable with bsc�derivative,
�(bsc), satisfying j�(bsc) (�)� �(bsc) (0) j � C j�js�bsc for some constant C <1.

Note that Assumption A3 holds for all s <1 when yt is a �nite order ARFIMA process. The

assumptions on � (�) are similar to those of Andrews & Sun (2004), and allow us to establish the

following Taylor expansion of � (�) around � = 0 (recall that the odd order derivatives of an even

function are zero at frequency zero),

� (�)

�(0)
= 1 +

bs=2cX
l=1

�l�
2l +O (�s) = 1 + �(�;�) +O(�minfs;2+2rg) as �! 0;

where �l = 1
(2l)!�(0)

@2l

@�2l
� (�)j�=0. Thus, the approximation (6) to (5) is

log (fz (�) =g (�)) = log

�
�2w

2�� (0)
�2d +

� (�)

� (0)

�
� log (1 + h(d;�; �))

= log

 
1 +

O(�minfs;2+2rg)

1 + �(�;�) + �r+1�
2d

!
as �! 0;

fz (�)

g (�)
= 1 +O(�minfs;2+2rg) as �! 0;

and the true values of G and � are G0 = � (0) and �0 = (�0;1; :::; �0;r+1)
0, where

�0;l =
1

(2l)!�(0)

@2l

@�2l
� (�)j�=0 ; l = 1; : : : ; r; and �0;r+1 =

�2w
� (0) 2�

:

A4 (a) The signal process yt has zero mean and admits an in�nite order moving average rep-
resentation yt =

P1
j=0 �j"t�j (stationary case) or �yt = xt =

P1
j=0 �j"t�j (nonstationary

case), where
P1
j=0 �

2
j < 1 and "t satis�es, for all t, E ("tj Ft�1) = 0, E

�
"2t
��Ft�1� = 1,

E
�
"3t
��Ft�1� = �3 <1, and E �"4t ��Ft�1� = �4 <1 almost surely, where Ft�1 is the �-�eld

generated by f"s; s < tg.

(b) There exists a random variable " with E("2) < 1 such that for all � > 0 and some K > 0,

P (j"tj > �) < KP (j"j > �).
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(c) In a neighborhood of the origin, @
@�� (�) = O (j� (�) j=�) as �! 0, where � (�) =

P1
k=0 �ke

ik�.

(d) The noise process wt is zero mean white noise with variance �2w and such that supt2NE(w
4
t ) <

1. Furthermore, for all (s; t; r; v) 2 N4 such that s < t and r < v we have that E(wtwswrwv) =
�4w if s = r; t = v and zero otherwise.

Since our estimator is a function of the periodogram at nonzero frequencies only, we assume

without loss of generality4 that the signal process yt has zero mean. Importantly, Assumption A4

allows for non-Gaussian processes. Note that Assumptions A1-A4 imply the assumptions needed

on yt and wt to prove consistency and asymptotic normality (if, in addition, d2 < 3=4) of the LWN

estimator of Hurvich & Ray (2003).

A5 � is a compact and convex subset of Rr+1 and �0 lies in the interior of �.

A6 (i) The bandwidth m = m (n) is such that m�1 +mn�1 ! 0:

A6 (ii) The bandwidth m = m (n) is such that m1+4maxfr;d0gn�4maxfr;d0g !1 and m'+1=2n�' !
0, where ' = min fs; 2 + 2rg.

Note that the two conditions in Assumption A6(ii) are always compatible because s > 2r by

Assumption A3. Also note that if � (�) is in�nitely smooth near frequency zero (e.g. ARFIMA

models) then the second condition in Assumption A6(ii) implies that any r can be chosen and the

estimator is n1=2�� consistent for all � > 0. In that case the rate of convergence is arbitrarily close

to the parametric rate.

The following theorem presents the asymptotic properties of the LPWN estimator. The proof

is very similar to the proof in Frederiksen et al. (2007), and is therefore omitted.

Theorem 1 (i) If Assumptions A1-A5 and A6(i) hold then d̂� d0 = oP ((log n)�5).
(ii) If Assumptions A1-A5 and A6(ii) hold and d0 lies in the interior of D = [d1; d2] with

0 < d1 < d2 < 3=4, then d̂ and �̂ are both consistent and

Bn

 
d̂� d0
�̂ � �0

!
d! N(0;
�1r ); 
r =

0B@ 4 �0r �

�r �r 
r

� 
 0r !

1CA ;
where Bn = Bn (d0) is the (r + 2)� (r + 2) deterministic diagonal matrix with diagonal elements

(Bn)11 =
p
m, (Bn)k+1;k+1 =

p
m�2km for k = 1; : : : ; r, and (Bn)r+2;r+2 =

p
m�2d0m ;

�r and 
r = 
r(d0) are r-vectors with k-th element

(�r)k = �
4k

(1 + 2k)2
and (
r)k =

4kd0
(1 + 2d0 + 2k) (1 + 2d0) (1 + 2k)

for k = 1; : : : ; r; (8)

4 In the nonstationary case the zero mean assumption implies that zt is free of linear trends which entails a loss of

generality. However, from an economic viewpoint, deterministic trends in volatility are somewhat arti�cial.
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�r is the r � r matrix with (i; k)-th element

(�r)ik =
4ik

(1 + 2i+ 2k) (1 + 2i) (1 + 2k)
for i; k = 1; : : : ; r; (9)

� = �(d0) =
�4d0

(1+2d0)
2 , and ! = !(d0) =

4d20
(1+4d0)(1+2d0)

2 . If r = 0 de�ne 
0 =

 
4 �

� !

!
.

First of all, we note that by setting r = 0 we obtain as a special case the results for the LWN

estimator of Hurvich & Ray (2003). Secondly, the leading (r + 1)� (r + 1) submatrix of 
r is the
same as that obtained by Andrews & Sun (2004). Third, we note that the asymptotic variance of
p
m(d̂�d0) is free of the polynomial parameters �0, but it depends on d0. Moreover, the use of the

polynomial �(�;�) increases the asymptotic variance of d̂ by a multiplicative constant compared

to the LWN estimator of Hurvich & Ray (2003). Andrews & Sun (2004) obtain a similar result for

their polynomial LW estimator in a non-volatility model.

Assumption A6(ii) allows the bandwidth m to be much higher than for the LWN estimator and

the standard LW estimator, which require that (assuming s � 2) m5n�4 ! 0 and m4d0+1n�4d0 !
0, respectively, see Hurvich & Ray (2003) and Arteche (2004). Thus, Theorem 1 provides an

improvement in the rate of convergence relative to existing estimators in the LMSV model. This

comes at the cost of an increase in the asymptotic variance by a multiplicative constant, but this

is clearly more than o¤-set by the faster rate of convergence, at least for large n. Moreover, as in

Andrews & Sun (2004) we could calculate the asymptotic bias which would be of order (m=n)',

where ' = min fs; 2 + 2rg, as opposed to (m=n)2 and (m=n)2d0 , respectively, for the LWN and LW
estimators in Hurvich & Ray (2003) and Arteche (2004). Thus, as in Andrews & Sun (2004) for

the pure long memory case, the asymptotic bias has smaller order of magnitude when modeling the

spectral density of the short-memory component locally by a polynomial instead of a constant.

4 Finite sample comparison

We now compare the our LPWN estimator with Hurvich & Ray�s (2003) LWN estimator in a Monte

Carlo simulation study and in an empirical analysis of long memory in exchange rate volatility.

4.1 Monte Carlo simulations

The �nite sample performance of the LW estimator in the LMSV model is rather well known, e.g.

Hurvich & Ray (2003) and Haldrup & Nielsen (2007), the former of which also demonstrates that

the LWN estimator is superior to the LW estimator in terms of bias and RMSE in that case. For

this reason, and to conserve space, we only compare the LWN and LPWN (with r = 1) estimators.5

We generate data according to the LMSV model (3) and (4), i.e. zt = yt + wt, where

(1� �L) (1� L)d yt = (1 + �L)�t; �t � NID(0; �2�);
5The results for the LW and polynomial LW estimators are available from the authors upon request.
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Table 1: Simulation results with � = � = 0
d = 0:4 d = 0:6

LWN LPWN LWN LPWN
nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 1024 0.0210 0.1936 0.0290 0.1808 0.0238 0.1395 0.0355 0.1452

2048 0.0030 0.1404 -0.0147 0.1381 0.0159 0.1030 0.0242 0.1103
4096 0.0055 0.1034 -0.0111 0.1004 0.0126 0.0763 0.0171 0.0821

10 1024 0.0103 0.2332 0.0054 0.2181 0.0202 0.1633 0.0048 0.1622
2048 -0.0003 0.1812 -0.0328 0.1775 0.0164 0.1204 0.0030 0.1161
4096 0.0067 0.1299 -0.0256 0.1287 0.0133 0.0867 0.0001 0.0868

20 1024 -0.0022 0.2835 -0.0035 0.2658 0.0155 0.1994 -0.0134 0.1979
2048 -0.0028 0.2365 -0.0436 0.2373 0.0167 0.1431 -0.0192 0.1462
4096 0.0107 0.1734 -0.0328 0.1750 0.0147 0.1024 -0.0151 0.1073

Panel B: m =
�
n0:8

�
5 1024 0.0111 0.1608 -0.0117 0.1532 0.0147 0.1175 -0.0049 0.1272

2048 0.0016 0.1105 -0.0248 0.1167 0.0168 0.0795 -0.0023 0.0913
4096 0.0055 0.0791 -0.0130 0.0870 0.0110 0.0576 0.0007 0.0688

10 1024 0.0155 0.2164 -0.0140 0.2056 0.0164 0.1448 -0.0220 0.1510
2048 0.0027 0.1508 -0.0354 0.1545 0.0185 0.0962 -0.0132 0.1081
4096 0.0061 0.1014 -0.0228 0.1091 0.0116 0.0682 -0.0076 0.0753

20 1024 0.0076 0.2758 -0.0236 0.2559 0.0161 0.1820 -0.0323 0.1925
2048 0.0106 0.2238 -0.0300 0.2203 0.0205 0.1199 -0.0184 0.1342
4096 0.0104 0.1417 -0.0279 0.1492 0.0130 0.0838 -0.0117 0.0920

Notes: Results are based on 10,000 replications. The LPWN estimator is implemented with r = 1.

and wt = log u2t with ut � NID(0; 1). Note that the variance of wt = log u2t is �
2
w = �2=2

regardless of the variance of ut. Thus, the (long-run) noise-to-signal ratio, nsr =
�2w(1��)2
�2�(1+�)

2 ; is

governed by the short-memory parameters � and � and the variance parameter �2�. For each

Monte Carlo DGP we generated 1000 arti�cial time series with 1024; 2048; and 4096 observations6.

The signal yt is generated by premultiplying a vector of i:i:d: standard normal variates by the

Choleski decomposition of the n � n autocovariance matrix of the desired fractionally integrated
process, see also Beran (1994, pp. 215-217). To generate nonstationary series with d � 1=2, we

simulate the ARFIMA process with integration order d � 1 and cumulate the resulting series. In
the maximization of the likelihood functions for the LWN and LPWN estimators, the value of d was

constrained to lie in the interval [0:01; 0:99], c.f. Assumption A2, and the polynomial terms �r+1
and 1 +�(�; �j) were constrained to be non-negative. If no maximum was found in the interior of

the parameter space, we followed Hurvich & Ray (2003) and split the parameter space into several

subspaces and started the iterations at the midpoints of each subspace. Then the interior (in its

subspace) solution with the best likelihood value was chosen as the estimator. As the starting value

for d for the LWN estimator, we used the LW estimate if it was in the interior of [0:01; 0:99] and

otherwise we used 0:4, and for the polynomial term we used zero. For the LPWN estimator we

used the LWN estimates as starting values for (d; �r+1) if they were in the interior of the parameter

space and otherwise we used (0:4; 0), and for (�1; :::; �r) we used zero. The simulations were run in

6The sample sizes are chosen as powers of two in order to use the fast Fourier transform in calculating the

periodogram. This speeds up the simulations considerably.

8



Table 2: Simulation results with � = 0:8; � = 0
d = 0:4 d = 0:6

LWN LPWN LWN LPWN
nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 1024 0.0435 0.1745 0.0444 0.1696 0.0826 0.1519 0.1095 0.1807

2048 0.0112 0.1142 0.0053 0.1212 0.0562 0.1069 0.0757 0.1398
4096 -0.0023 0.0847 -0.0039 0.0930 0.0409 0.0763 0.0577 0.1069

10 1024 0.0234 0.2258 0.0012 0.2074 0.0570 0.1635 0.0395 0.1567
2048 0.0032 0.1624 -0.0317 0.1569 0.0384 0.1171 0.0187 0.1140
4096 -0.0100 0.1111 -0.0396 0.1159 0.0290 0.0804 0.0145 0.0801

20 1024 -0.0033 0.2695 -0.0113 0.2639 0.0339 0.1943 -0.0110 0.1912
2048 -0.0018 0.2224 -0.0484 0.2219 0.0247 0.1403 -0.0244 0.1421
4096 -0.0079 0.1570 -0.0553 0.1668 0.0208 0.0927 -0.0165 0.0981

Panel B: m =
�
n0:8

�
5 1024 0.0890 0.1722 0.0210 0.1551 0.1264 0.1664 0.0724 0.1506

2048 0.0622 0.1134 -0.0019 0.1024 0.1054 0.1288 0.0518 0.1086
4096 0.0506 0.0834 -0.0057 0.0800 0.0931 0.1071 0.0399 0.0812

10 1024 0.0631 0.2156 0.0010 0.2076 0.0945 0.1640 0.0256 0.1554
2048 0.0389 0.1368 -0.0245 0.1374 0.0762 0.1190 0.0146 0.1061
4096 0.0298 0.0919 -0.0228 0.1021 0.0668 0.0912 0.0152 0.0743

20 1024 0.0309 0.2724 -0.0105 0.2646 0.0682 0.1841 -0.0039 0.1909
2048 0.0296 0.2016 -0.0324 0.2051 0.0539 0.1286 -0.0046 0.1317
4096 0.0199 0.1299 -0.0324 0.1431 0.0474 0.0894 0.0024 0.0866

Notes: Results are based on 10,000 replications. The LPWN estimator is implemented with r = 1.

Ox, see Doornik (2006).

We use the memory parameter values d = 0:4 or d = 0:6 since it is well documented in the

literature (see the references in the introduction) that volatility exhibits long memory and empir-

ically relevant values of the memory parameter are near the stationarity/nonstationarity bound-

ary of 1=2. For the short-run dynamics we choose either � 2 f�0:8;�0:5; 0; 0:5; 0:8g; � = 0 or

� = 0; � 2 f�0:8;�0:5; 0; 0:5; 0:8g. To conserve space we present a subset of the results that cor-
respond most closely to the parameter values found in the empirical study below. For the nsr we

choose nsr 2 f5; 10; 20g; and the variance parameter �2� is set as a function of � and � such that
the nsr has the desired value. High values of the nsr are very well documented in the literature,

e.g. Breidt et al. (1998) and Hurvich & Ray (2003), and are also supported by our empirical study

below. Thus, we in fact put most emphasis on the simulation results with nsr = 10 and nsr = 20.

Tables 1-4 present the results of the simulations. Generally, higher sample size and higher nsr

makes it easier to disentangle the signal and noise components resulting in better estimates. In the

presence of short-run dynamics, the LWN estimator generally performs better when the bandwidth

is small, whereas the LPWN estimator is also well behaved for the larger bandwidth.

In the case of no short-run dynamics (Table 1) there are no large biases for either estimator, but

surprisingly the RMSEs for the two estimators are very similar. When considering autoregressive

short-run dynamics in yt (� = 0:8; � = 0) in Table 2, the situation for the smaller bandwidth in

Panel A is very similar to the case with no short-run dynamics. However, for the higher bandwidth

in Panel B the LWN is biased, especially when also d = 0:6. On the other hand, the LPWN is
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Table 3: Simulation results with � = 0; � = �0:5
d = 0:4 d = 0:6

LWN LPWN LWN LPWN
nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 1024 0.0731 0.2266 0.0363 0.2057 0.0464 0.1499 0.0447 0.1514

2048 0.0391 0.1622 -0.0026 0.1504 0.0330 0.1094 0.0255 0.1149
4096 0.0303 0.1123 -0.0006 0.1044 0.0238 0.0778 0.0196 0.0804

10 1024 0.0499 0.2583 0.0200 0.2434 0.0363 0.1671 0.0082 0.1602
2048 0.0327 0.1991 -0.0189 0.1908 0.0286 0.1230 -0.0022 0.1230
4096 0.0240 0.1364 -0.0194 0.1356 0.0210 0.0858 0.0024 0.0860

20 1024 0.0081 0.2933 -0.0017 0.2823 0.0224 0.1927 -0.0169 0.1960
2048 0.0220 0.2459 -0.0266 0.2451 0.0261 0.1471 -0.0200 0.1514
4096 0.0182 0.1767 -0.0320 0.1827 0.0177 0.0990 -0.0150 0.1051

Panel B: m =
�
n0:8

�
5 1024 0.1779 0.2652 0.0364 0.2179 0.0948 0.1537 0.0217 0.1429

2048 0.1262 0.1817 0.0034 0.1442 0.0724 0.1111 0.0113 0.1011
4096 0.1009 0.1321 0.0076 0.1016 0.0567 0.0820 0.0089 0.0737

10 1024 0.1290 0.2745 0.0284 0.2604 0.0789 0.1635 0.0063 0.1631
2048 0.0997 0.1964 -0.0026 0.1848 0.0598 0.1148 0.0003 0.1152
4096 0.0801 0.1340 0.0006 0.1231 0.0468 0.0828 0.0030 0.0797

20 1024 0.0727 0.3057 0.0127 0.3017 0.0587 0.1820 -0.0089 0.1938
2048 0.0744 0.2426 -0.0044 0.2369 0.0497 0.1302 -0.0066 0.1378
4096 0.0651 0.1649 -0.0065 0.1650 0.0376 0.0901 -0.0033 0.0920

Notes: Results are based on 10,000 replications. The LPWN estimator is implemented with r = 1.

Table 4: Simulation results with � = 0; � = �0:8
d = 0:4 d = 0:6

LWN LPWN LWN LPWN
nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 1024 0.2302 0.3722 0.1571 0.3200 0.1754 0.2453 0.0976 0.2213

2048 0.2545 0.3357 0.0693 0.2434 0.1612 0.2031 0.0627 0.1546
4096 0.2330 0.2678 0.0241 0.1457 0.1258 0.1544 0.0375 0.1054

10 1024 0.1834 0.3521 0.1327 0.3283 0.1579 0.2470 0.0777 0.2310
2048 0.2106 0.3156 0.0620 0.2612 0.1446 0.1978 0.0443 0.1607
4096 0.2041 0.2557 0.0273 0.1799 0.1121 0.1478 0.0252 0.1125

20 1024 0.1106 0.3389 0.0870 0.3384 0.1176 0.2466 0.0567 0.2459
2048 0.1432 0.3141 0.0460 0.2960 0.1192 0.1943 0.0266 0.1811
4096 0.1667 0.2609 0.0329 0.2304 0.0953 0.1446 0.0137 0.1275

Panel B: m =
�
n0:8

�
5 1024 �* �* �* �* 0.2318 0.3135 0.1980 0.2803

2048 �* �* �* �* 0.2818 0.3053 0.1548 0.2289
4096 0.1754 0.3969 0.0942 0.2176 0.2647 0.2760 0.0909 0.1560

10 1024 �* �* �* �* 0.2085 0.3041 0.1586 0.2722
2048 �* �* �* �* 0.2541 0.2854 0.1110 0.2127
4096 0.1413 0.3786 0.1003 0.2345 0.2379 0.2523 0.0621 0.1489

20 1024 �* �* �* �* 0.1674 0.2861 0.1127 0.2723
2048 �* �* �* �* 0.2099 0.2565 0.0699 0.2037
4096 0.0947 0.3544 0.0619 0.2255 0.1993 0.2219 0.0354 0.1343

Notes: Results are based on 10,000 replications. The LPWN estimator is implemented with r = 1. An asterisk
indicates that, in more than 30% of replications, either there was no convergence or no interior solution was found.

mostly able to completely remove the bias and consequently also has better RMSE in many cases.
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In Tables 3 and 4 we present the results for the case with short-run dynamics of the moving

average type (� = 0; � = �0:5 and � = 0; � = �0:8, respectively). When � = �0:5, the LWN
estimator is biased for the larger bandwidth, whereas the LPWN estimator shows essentially no

bias and also has a smaller RMSE than the LWN estimator in many cases. When � = �0:8, there
were some numerical problems optimizing the likelihood functions for a few con�gurations of the

parameters, but for almost all other con�gurations of nsr, d, n, and m, the LWN estimator is

severely biased. The LPWN estimator is in every case in Table 4 able to obtain large reductions

in the bias and in many cases able to almost eliminate the bias, especially when the sample size

is large. Moreover, the RMSE of the LPWN estimator is clearly superior to that of the LWN

estimator for this model, with smaller values in all entries in the table.

Thus, these simulations illustrate the bias-reducing abilities of the new estimator in the LMSV

model with empirically relevant values of the long memory parameter, signal-to-noise ratio, and

short-run dynamics. Finally, based on the simulations presented here and also the unreported

simulations for alternative values of the short-run parameters, � and �, it appears that the higher

bandwidth value m = bn0:8c may actually be preferable to m = bn0:7c for the LPWN estimator in
terms of RMSE and often also in terms of bias. The latter �nding that a higher bandwidth value

may lead to lower bias for the local polynomial estimator is due to the fact that the polynomial

parameters, �, are only consistently estimated if the bandwidth grows su¢ ciently fast relative to

the sample size, see the �rst term of Assumption A6(ii). So in that sense, high bandwidth values

generate better estimates of the polynomial parameters leading to lower bias.7

4.2 Long memory in exchange rate volatility

This section analyses empirically the long memory in volatility of daily returns series of DEM/USD,

YEN/USD, and USD/GBP exchange rates obtained from the U.S. Federal Reserve Board of Gov-

ernors H.10 release. The sample covers the period 12/1/1986 �11/30/2006 for a total of n = 5; 186

observations.8 Even though less than 1% of the returns were zero, we based the analysis on adjusted

log-squared returns using the method of Fuller (1996, pp. 495-496), i.e. log ~r2t = log
�
r2t + �

�
� �
r2t+�

,

where � = 0:02
n

Pn
t=1 r

2
t , instead of removing the zero observations.

In Figure 1 we plot the estimated values of d for the three volatility series using the LW,

LWN, and LPWN (r = 1) estimators. The estimates are shown for a range of relevant values of

the bandwidth parameter, m 2 [50; 2000], and in the case of the LPWN estimator we include an

approximate asymptotic con�dence interval given by plus/minus two asymptotic standard errors.

Following assumption A6(ii) and the suggestion by Hurvich & Ray (2003), we emphasize the higher

7A detailed theoretical investigation of whether this is due to a general theoretical result and of the related issue

of optimal bandwidth choice is beyond the scope of this paper. However, the �ndings in our simulations that higher

bandwidths are preferable are in line with some theoretical results for the pure (non-volatility) long memory model,

see e.g. Andrews & Sun (2004, sections 6-7) and the references therein.
8After the adoption of the Euro on January 1, 1999, the DEM/USD exchange rate has been calculated using the

USD/EUR exchange rate and the �xed 1.95583 DEM/EUR exchange rate.
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Figure 1: Estimated long memory in exchange rate volatility
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Table 5: Estimated parameters of the parametric volatility model
Exchange rate d̂ �̂ �̂ �̂2� �̂2w
DEM/USD 0:4100

(0:1027)
0:2875
(0:1081)

�0:6466
(0:0775)

0:2479
(0:1633)

0:2773
(0:1597)

YEN/USD 0:4884
(0:0763)

� �0:5087
(0:0921)

0:1474
(0:0433)

0:3833
(0:0430)

USD/GBP 0:5687
(0:0749)

� � 0:0138
(0:0078)

0:5057
(0:0133)

Note: Standard errors in parentheses.

bandwidth values where the estimates (and con�dence intervals) also appear more stable.

The results in Figure 1 show that the LW estimate is smaller than the LWN and LPWN estimates

for essentially all bandwidth choices, and the LW estimate is decreasing in the bandwidth. This

is expected based on theoretical properties of the LW estimator for the LMSV model. The LWN

estimate is higher and shows signs of nonstationarity for higher bandwidth values, whereas the

LPWN estimate is in between the LW and LWN estimates. This suggests that the LWN estimate

may be upwards biased due to not taking into account the short-run dynamics in the signal process.

Indeed, the parametric model below suggests a moving average component with negative coe¢ cient,

which according to Table 2 leads to upwards biased LWN estimates when the bandwidth is large

and the nsr is high. However, the LPWN estimator takes possible short-run dynamics in the signal

into account by the polynomial approximation, and hence indicates that the memory parameters

for the exchange rate volatility series are not as high as suggested by the LWN estimates.

To stress the importance of the polynomial approximation for the signal process, we also �tted a

parametric LMSV-ARFIMA(1,d,1) model to the periodogram of log ~r2t using the Whittle likelihood,

see Fox & Taqqu (1986) and Breidt et al. (1998). The �tted model has spectral density

fz(�) =
�2�
2�
(2 sin�=2)�2d

(1 + 2� cos�+ �2)

(1� 2� cos�+ �2) +
�2w
2�
:

We removed insigni�cant AR and/or MA parameters with resulting estimates reported in Table 5.

Note that there is signi�cant short-run dynamics in the signal in two of the three series, and that

the estimated (long-run) nsr�s, �̂
2
w(1��̂)2
�̂2�(1+�̂)

2
, are high (4.55, 10.77, and 36.64, respectively).

The high nsr�s and signi�cant and negative MA coe¢ cients stress the importance of the LPWN

estimator. Thus, looking at the simulation results for high nsr�s and negative MA coe¢ cients, the

LPWN estimator seems to provide a very useful alternative in empirically relevant scenarios.

5 Concluding remarks

We have proposed a variant of the local polynomial Whittle estimator to semiparametrically es-

timate the degree of persistence for long memory stochastic volatility models with potential non-

stationarity in the volatility process. The estimator is asymptotically normal and can obtain bias

reduction as well as a rate of convergence arbitrarily close to the parametric rate, for general short-

memory dynamics in the volatility process. A Monte Carlo study supports the theoretical results,
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and an analysis of daily exchange rates demonstrates the empirical usefulness of the estimators.

References

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Ebens, H. (2001), �The distribution of realized

stock return volatility�, Journal of Financial Economics 61, 43�76.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2001), �The distribution of realized

exchange rate volatility�, Journal of the American Statistical Association 96, 42�55.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2003), �Modelling and forecasting

realized volatility�, Econometrica 71, 579�625.

Andrews, D. W. K. & Sun, Y. (2004), �Adaptive local polynomial Whittle estimation of long-range

dependence�, Econometrica 72, 569�614.

Arteche, J. (2004), �Gaussian semiparametric estimation in long memory in stochastic volatility

and signal plus noise models�, Journal of Econometrics 119, 131�154.

Baillie, R. T. (1996), �Long memory processes and fractional integration in econometrics�, Journal

of Econometrics 73, 5�59.

Baillie, R. T., Bollerslev, T. & Mikkelsen, H. O. (1996), �Fractionally integrated generalized au-

toregressive conditional heteroscedasticity�, Journal of Econometrics 74, 3�30.

Beran, J. (1994), Statistics for Long-Memory Processes, Chapman-Hall, New York.

Bollerslev, T. & Mikkelsen, H. O. (1996), �Modeling and pricing long memory in stock market

volatility�, Journal of Econometrics 73, 151�184.

Breidt, F. J., Crato, N. & de Lima, P. (1998), �The detection and estimation of long memory in

stochastic volatility�, Journal of Econometrics 83, 325�348.

Comte, F. & Renault, E. (1998), �Long memory in continuous-time stochastic volatility models�,

Mathematical Finance 8, 291�323.

Deo, R. S. & Hurvich, C. M. (2001), �On the log periodogram regression estimator of the memory

parameter in long memory stochastic volatility models�, Econometric Theory 17, 686�710.

Ding, Z., Granger, C. W. J. & Engle, R. F. (1993), �A long memory property of stock returns and

a new model�, Journal of Empirical Finance 1, 83�106.

Doornik, J. A. (2006), Ox: An Object-Oriented Matrix Language, Timberlake Consultants, London.

Fox, R. & Taqqu, M. S. (1986), �Large-sample properties of parameter estimates for strongly de-

pendent stationary Gaussian series�, Journal of Time Series Analysis 4, 221�238.

14



Frederiksen, P. H., Nielsen, F. S. & Nielsen, M. Ø. (2007), �Local polynomial Whittle estimation of

perturbed fractional processes�, Working paper, Cornell University .

Fuller, W. A. (1996), Introduction to statistical time series, Wiley, New York.

Geweke, J. & Porter-Hudak, S. (1983), �The estimation and application of long-memory time series

models�, Journal of Time Series Analysis 4, 221�238.

Haldrup, N. & Nielsen, M. Ø. (2007), �Estimation of fractional integration in the presence of data

noise�, Computational Statistics and Data Analysis 51, 3100�3114.

Harvey, A. (1998), Long memory in stochastic volatility, in J. Knight & S. Satchell, eds, �Forecasting

Volatility in Financial Markets�, Butterworth-Heinemann, London, pp. 307�320.

Henry, M. & Za¤aroni, P. (2003), The long range paradigm for macroeconomics and �nance, in

P. Doukhan, G. Oppenheim & M. S. Taqqu, eds, �Theory and Applications of Long-Range

Dependence�, Birkhäuser, Boston, pp. 417�438.

Hurvich, C. M., Moulines, E. & Soulier, P. (2005), �Estimating long memory in volatility�, Econo-

metrica 73, 1283�1328.

Hurvich, C. M. & Ray, B. K. (1995), �Estimation of the memory parameter for nonstationary or

noninvertible fractionally integrated processes�, Journal of Time Series Analysis 16, 17�41.

Hurvich, C. M. & Ray, B. K. (2003), �The local Whittle estimator of long-memory stochastic

volatility�, Journal of Financial Econometrics 1, 445�470.

Künsch, H. R. (1987), Statistical aspects of self-similar processes, in Y. Prokhorov & V. V. Sazanov,

eds, �Proceedings of the First World Congress of the Bernoulli Society�, Vol. 1, VNU Science

Press, Utrecht, pp. 67�74.

Ray, B. K. & Tsay, R. (2000), �Long-range dependence in daily stock volatility�, Journal of Business

and Economic Statistics 18, 254�262.

Robinson, P. M. (1995a), �Gaussian semiparametric estimation of long range dependence�, Annals

of Statistics 23, 1630�1661.

Robinson, P. M. (1995b), �Log-periodogram regression of time series with long range dependence�,

Annals of Statistics 23, 1048�1072.

Sun, Y. & Phillips, P. C. B. (2003), �Nonlinear log-periodogram regression for perturbed fractional

processes�, Journal of Econometrics 115, 355�389.

Velasco, C. (1999), �Gaussian semiparametric estimation of non-stationary time series�, Journal of

Time Series Analysis 20, 87�127.

15



Research Papers 
2008  
 

2008-22: Mark Podolskij and Daniel Ziggel: A Range-Based Test for the 
Parametric Form of the Volatility in Diffusion Models 

2008-23: Silja Kinnebrock and Mark Podolskij: An Econometric Analysis of 
Modulated Realised Covariance, Regression and Correlation in Noisy 
Diffusion Models 

2008-24: Matias D. Cattaneo, Richard K. Crump and Michael Jansson: Small 
Bandwidth Asymptotics for Density-Weighted Average Derivatives 

2008-25: Mark Podolskij and Mathias Vetter: Bipower-type estimation in a 
noisy diffusion setting 

2008-26: Martin Møller Andreasen: Ensuring the Validity of the Micro 
Foundation in DSGE Models 

2008-27: Tom Engsted and Thomas Q. Pedersen: Return predictability and 
intertemporal asset allocation: Evidence from a bias-adjusted VAR 
model 

2008-28: Frank S. Nielsen: Local polynomial Whittle estimation covering non-
stationary fractional processes 

2008-29: Per Frederiksen, Frank S. Nielsen and Morten Ørregaard Nielsen: 
Local polynomial Whittle estimation of perturbed fractional 
processes 

2008-30: Mika Meitz and Pentti Saikkonen: Parameter estimation in nonlinear 
AR-GARCH models 

2008-31: Ingmar Nolte and Valeri Voev: Estimating High-Frequency Based (Co-) 
Variances: A Unified Approach 

2008-32: Martin Møller Andreasen: How to Maximize the Likelihood Function 
for a DSGE Model 

2008-33: Martin Møller Andreasen: Non-linear DSGE Models, The Central 
Difference Kalman Filter, and The Mean Shifted Particle Filter 

2008-34: Mark Podolskij and Daniel Ziggel: New tests for jumps: a threshold-
based approach 

2008-35: Per Frederiksen and Morten Ørregaard Nielsen: Bias-reduced 
estimation of long memory stochastic volatility 

 


