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Abstract

In this paper we propose a test to determine whether jumps are present in a discretely

sampled process or not. We use the concept of truncated power variation to construct

our test statistics for (i) semimartingale models and (ii) semimartingale models with noise.

The test statistics converge to infinity if jumps are present and have a normal distribution

otherwise. Our method is valid (under very weak assumptions) for all semimartingales

with absolute continuous characteristics and rather general model for the noise process.

We finally implement the test and present the simulation results. Our simulations suggest

that for semimartingale models the new test is much more powerful then tests proposed by

Barndorff-Nielsen and Shephard (2006) and Aı̈t-Sahalia and Jacod (2008).
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1 Introduction

The last years have seen a rapidly growing literature on statistical methods for high

frequency data (see e.g. Barndorff-Nielsen and Shephard (2004a,b), Barndorff-Nielsen,

Graversen, Jacod, Podolskij and Shephard (2006) or Jacod (2008)). In econometrics price

processes are typically modeled by semimartingales, which constitute a natural class of

models under the assumption of no-leverage (see Delbaen and Schachermayer (1994)).

In general, semimartingales are càdlàg processes, which can be written as a sum of a

continuous and a discontinuous component. For various applications it is important

to be able to separate these two parts based on discrete (high frequency) observations.

In particular, practitioners want to decide whether the discretely observed path of a

semimartingale is continuous or not.

Quite recently, several methods have been proposed to test for jumps in semimartin-

gale models. Barndorff-Nielsen and Shephard (2006) use the concept of bipower variation

to construct a consistent estimator of the quadratic variation of the discontinuous part.

This estimator is then applied to test whether a semimartingale has jumps or not. On

the other hand, Aı̈t-Sahalia and Jacod (2008) compare the power variation at different

sampling frequencies to construct a test for jumps. Both tests apply for general Itô

semimartingales when additionally the volatility process is also a semimartingale. Some

further approaches can be found in Jiang and Oomen (2005) or in Lee and Mykland

(2007).

In this paper we propose a threshold-based procedure to test for jumps. Our method

is based upon the truncated power variation which has been originally introduced by

Mancini (2001,2004) to obtain jump-robust estimates of some functionals of the volatility

process. We combine this approach with the wild bootstrap idea (see Wu (1986)) to

define a new class of test statistics. Our test statistics converge to a standard normal

distribution when the semimartingale is continuous, whereas they tend to infinity for

semimartingales with non-vanishing jump part. Furthermore, we construct tests for

jumps in semimartingale models with noise, which are now intensively studied in the

econometric literature (see e.g. Zhang, Mykland and Aı̈t-Sahalia (2005) or Hansen and

Lunde (2006)).

The advantage of our method is twofold. On the one hand, our test procedure ap-

plies for all Itô semimartingales and we require no further assumptions on the volatility

process. On the other hand, the threshold-based class of statistics has very good finite

sample properties. The power of our tests is much higher compared with the tests of

Barndorff-Nielsen and Shephard (2006) and Aı̈t-Sahalia and Jacod (2008), while we also

obtain a reasonable approximation of the level.
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This paper is organised as follows. In Chapter 2 we present the asymptotic results

for the threshold-based class of test statistics in the pure semimartingale setting. The

theoretical comparison (via local alternatives) with the tests developed by Barndorff-

Nielsen and Shephard (2006) and Aı̈t-Sahalia and Jacod (2008) is given in Section 3.

The construction of test statistics for semimartingale models with noise is discussed

in Section 4. Finally, we illustrate the finite sample performance of our procedure in

Sections 5 and 6. All proofs are given in the Appendix.

2 The main setting, the statistical problem and the new class

of test statistics

We consider a semimartingale (Xt)t≥0 of the form

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs + (x1{|x|≤1}) ∗ (µ− ν) + (x1{|x|>1}) ∗ µ, (2.1)

defined on the filtered probability space (Ω,F , (Ft)t≥0, P ). Here W denotes a one-

dimensional Brownian motion, a is a locally bounded and predictable drift term, σ

is an adapted and càdlàg volatility process, µ is a jump measure and ν is its predictable

compensator. Moreover, we make the following assumption on the compensator ν:

(H) ν is of the form

ν(dt, dx) = dt Ft(dx)

with
∫

(1 ∧ x2)dFt(x) being a locally bounded and predictable process.

We observe the time continuous process X over a given interval [0, t] at equidistant

time points ti = i
n
, i = 1, ..., [nt]. Based on discrete observations (X i

n
(ω))0≤i≤[nt] we

want to decide whether the unobserved path (Xs(ω))s∈[0,t] is continuous or not. As it has

been already mentioned in Aı̈t-Sahalia and Jacod (2008) we are only able to make sta-

tistical decisions about the particular (unobserved) path (Xs(ω))s∈[0,t]. It is impossible

to say whether the semimartingale model allows for jumps, because there is a positive

probability that the path (Xs(ω))s∈[0,t] has no jumps although the model (2.1) allows the

process X to jump (this is the case for compound Poisson processes). Consequently, we

want to decide to which of the following two complementary sets the path (Xs(ω))s∈[0,t]

belongs: 
Ωj
t = {ω : s 7→ Xs(ω) is discontinuous on [0,t]}

Ωc
t = {ω : s 7→ Xs(ω) is continuous on [0,t]}.

(2.2)
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2.1 Realised truncated power variation

To construct a new class of test statistics we use the concept of realised power variation

and realised truncated power variation. Recall that the realised power variation of the

process X is given by

V (X, p)nt = n
p
2
−1

[nt]∑
i=1

|∆n
iX|p , (2.3)

with ∆n
iX = X i

n
−X i−1

n
. It is well-known (see, for instance, Barndorff-Nielsen, Graversen,

Jacod, Podolskij and Shephard (2006)) that

V (X, 2)nt
P−→ [X]t =

∫ t

0

σ2
sds+

∑
0≤s≤t

|∆Xs|2 , (2.4)

where ∆Xs = Xs −Xs−, whereas

V (X, p)nt
P−→


µp
∫ t

0
|σs|pds on Ωc

t

∞ on Ωj
t

(2.5)

when p > 2 (µp = E[|u|p] with u ∼ N(0, 1)).

The realised truncated power variation, originally proposed by Mancini (2001,2004),

is given by

V (X, p)nt = n
p
2
−1

[nt]∑
i=1

|∆n
iX|p1{|∆n

i X|≤cn−$} , (2.6)

where c > 0 and $ ∈ (0, 1/2). The threshold given in (2.6) eliminates the increments

∆n
iX which are affected by jumps, while the increments ∆n

iX are (asymptotically) not in-

fluenced by the threshold when there are no jumps on the interval [ i−1
n
, i
n
]. Consequently,

V (X, p)nt is robust to jumps, i.e.

V (X, p)nt
P−→ µp

∫ t

0

|σs|pds (2.7)

for any p ≥ 2 (this is a straightforward extension of the results presented in Jacod (2008)

and Cont and Mancini (2007)). Moreover, under a further assumption on the activity of

the jump part of X (and on the parameter $), the efficiency of V (X, p)nt is the same as

the efficiency of V (X, p)nt (see again Jacod (2008)).

The results of (2.4), (2.5) and (2.7) suggest to use the statistic V (X, p)nt − V (X, p)nt

(or
V (X,p)n

t

V (X,p)n
t
− 1) for p ≥ 2 to decide whether the process X jumps or not. However, the

derivation of the distribution theory (on Ωc
t) for the above statistics turns out to be a

difficult task.
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2.2 New class of test statistics

Inspired by the wild bootstrap procedure (see Wu (1986)) we introduce external (i.e.

independent of F) positive i.i.d. random variables (ηi)1≤i≤[nt] with E[ηi] = 1 and

E[|ηi|2] <∞, and define a new class of test statistics by

T (X, p)nt = n
p−1
2

[nt]∑
i=1

|4n
iX|p

(
1− ηi1{|4n

i X|≤cn−$}

)
, p ≥ 2. (2.8)

The choice of the distribution of η crucially influences the level and power performance

of the test statistic T (X, p)nt . In the next section we will explain how to choose the

distribution of η.

All processes are now defined on a canonical extension (Ω∗,F∗, (F∗t )t≥0, P
∗) of the

original filtered probability space (Ω,F , (Ft)t≥0, P ), which also supports the random

variables (ηi)1≤i≤[nt].

In what follows we will intensively use the concept of stable convergence. Recall that

a sequence (Yn) is said to converge towards Y F -stably in law (Yn
F−st−→ Y ) when the

weak convergence

(Yn, Z)
D−→ (Y, Z)

holds for any F -measurable variable Z. This is obviously a slightly stronger mode of

convergence than convergence in law (see Renyi (1963), Aldous and Eagleson (1978) or

Jacod and Shiryaev (2003) for more details on stable convergence).

The next theorem demonstrates the stable limit of T (X, p)nt on Ωc
t and Ωj

t .

Theorem 1 Assume that condition (H) holds and E[|ηi|2+δ] < ∞ for some δ > 0. For

any p ≥ 2 and any t > 0, we obtain the following results:

(i) On Ωc
t we have

T (X, p)nt
F−st−→

√
Var[ηi]µ2p

∫ t

0

|σs|pdW
′

s , (2.9)

where W
′

is a new Brownian motion, defined on the extension (Ω′,F ′, (F ′t)t≥0, P
′)

of the probability space (Ω∗,F∗, (F∗t )t≥0, P
∗), which is independent of F∗.

(ii) On Ωj
t we have

T (X, p)nt
P ∗−→∞. (2.10)

Proof: see Appendix.

Note that the limiting random variable in (2.9) is mixed normal with F -conditional

variance given by the expression

ρ2(p)t = Var[ηi]µ2p

∫ t

0

|σs|2pds. (2.11)
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By (2.7) we obtain a jump-robust estimate of ρ2(p)t, i.e.

ρ2(p)nt = Var[ηi]V (X, 2p)nt
P−→ ρ2(p)t.

Finally let us define the standardized statistics

S(p)nt =
T (X, p)nt
ρ(p)t

, Ŝ(p)nt =
T (X, p)nt
ρ(p)nt

. (2.12)

By the properties of stable convergence we obtain the following corollary.

Corollary 1 Assume that condition (H) holds and E[|ηi|2+δ] <∞ for some δ > 0. For

any p ≥ 2 and any t > 0, we obtain the following results:

(i) On Ωc
t we have

S(p)nt
F−st−→ U , Ŝ(p)nt

F−st−→ U , (2.13)

where U is a standard normal random variable, defined on the extension (Ω′,F ′, (F ′t)t≥0, P
′)

of the probability space (Ω∗,F∗, (F∗t )t≥0, P
∗), which is independent of F∗.

(ii) On Ωj
t we have

S(p)nt
P ∗−→∞ , Ŝ(p)nt

P ∗−→∞. (2.14)

Using again the properties of stable convergence and applying Corollary 1 we deduce

that

P ∗(Ŝ(p)nt > c1−α| Ωc
t) → α ,

P ∗(Ŝ(p)nt > c1−α| Ωj
t) → 1 ,

where c1−α is the (1− α)-quantile of a standard normal distribution.

2.3 The choice of the distribution of ηi

Here we use the motivation from Section 2.1. As we have already mentioned before it is

natural to use the statistic V (X, p)nt − V (X, p)nt for p ≥ 2 to decide whether the process

X jumps or not. Since the distribution theory for the afore-mentioned statistic is not

available we require a ”small perturbation” of the increments. Therefore we suggest to

sample (ηi)1≤i≤[nt] from the following distribution

P η =
1

2
(δ1−τ + δ1+τ ) , (2.15)

where δ stands for the Dirac measure. We propose to choose the constant τ relatively

small, e.g. τ = 0.1 or 0.05. Note that for small values of τ our class of statistics T (X, p)nt

5
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is quite close to
√
n(V (X, p)nt − V (X, p)nt ). This feature ensures a very good power

performance of our test statistics.

On the other hand the symmetry of the distribution of ηi around 1 is responsible for

a reasonable level approximation of our test. This is partially justified by the following

proposition.

Proposition 2 Assume that Xt = σWt. Then, for any p ≥ 2, it holds that

P ∗(Ŝ(p)nt ≤ x) = Φ(x) +O(n−1) , (2.16)

where Φ denotes the standard normal distribution.

Notice the absence of the term of order n−1/2 on the right-hand side of (2.16). This

means that we have a second-order refinement.

3 Comparison with other test procedures via local alternatives

In this section we discuss the behaviour of the statistic T (X, p)nt under local alternatives

and compare it with the behaviour of the tests proposed by Barndorff-Nielsen and Shep-

hard (2006) and Aı̈t-Sahalia and Jacod (2008). Let us briefly recall the ideas of these

tests.

Barndorff-Nielsen and Shephard (2006) propose to use the (1, 1)-bipower variation,

i.e.

V (X, 1, 1)nt =

[nt]−1∑
i=1

|∆n
iX||∆n

i+1X| , (3.1)

to construct a test for jumps. Indeed, under assumption (H), V (X, 1, 1)nt is robust to

jumps of the process X (see e.g. Aı̈t-Sahalia and Jacod (2008)) and it holds that

V (X, 1, 1)nt
P−→ µ2

1

∫ t

0

σ2
sds. (3.2)

The authors propose to use the simple statistic

TBS(X)nt =
√
n(V (X, 2)nt − µ−2

1 V (X, 1, 1)nt ) (3.3)

to decide whether the process X has jumps or not. To show a stable central limit theo-

rem (on Ωc
t) the following assumption is required:

(V) The volatility process σ is itself a semimartingale with absolute continuous charac-

teristics and it does not vanish on [0, t].
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On Ωc
t , under assumption (V), it holds for any t > 0

TBS(X)nt√
κQQn

t

F−st−→ U , (3.4)

where U is defined as in Corollary 1, κ = π2

4
+ π − 5 and QQn

t is given by

QQn
t = nµ−4

1

[nt]−3∑
i=1

|∆n
iX||∆n

i+1X||∆n
i+2X||∆n

i+3X|.

On the other hand
TBS(X)n

t√
κQQn

t

converges to infinity on Ωj
t .

Remark 1 In fact, Barndorff-Nielsen and Shephard (2006) propose to use the ratio

statistic

TBS,r(X)nt =
√
n
(

1− µ−2
1 V (X, 1, 1)nt
V (X, 2)nt

)/√
κmax(QQn

t /(µ
−2
1 V (X, 1, 1)nt )2, 1/t) (3.5)

to test for jumps. The above statistic turns out to have better finite sample properties.

However, it has the same behaviour as TBS(X)nt under local alternatives.

Aı̈t-Sahalia and Jacod (2008) compare V (X, p)nt (with p > 3) at different sampling

frequences to construct a test for jumps. In particular, they analyze the behaviour of

the statistic

TAJ(X)nt =
√
n
(2V (X, 4)

n/2
t

V (X, 4)nt
− 2
)
. (3.6)

On Ωc
t , under assumption (V), it holds for any t > 0

TAJ(X)nt√
V̂ n
t

F−st−→ U , (3.7)

where U is defined as in Corollary 1 and V̂ n
t is given by

V̂ n
t = κ′

V (X, 8)nt
(V (X, 4)nt )2

with κ′ = 32
7

. On Ωj
t Aı̈t-Sahalia and Jacod (2008) also showed the stable convergence

of the statistic (3.6) when 2 is replaced by 1 in the definition of TAJ(X)nt .

Now we consider local alternatives of the form

X
(n)
t = X0 +

∫ t

0

asds+

∫ t

0

σsdWs + γnJt ,

where Jt is a compound Poisson process and γn is some sequence with γn → 0. We

obtain the following theorem.

7
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Theorem 3 For any t > 0 we have the following results.

(i) Consider the assumptions of Theorem 1 and set γn = n−
p−1
2p . If $ < p−1

2p
it holds

T (X(n), p)nt
F−st−→

√
Var[ηi]µ2p

∫ t

0

|σs|pdW
′

s +
∑

0≤s≤t

|∆Js|p

for any p ≥ 2 and t > 0.

(ii) Consider the assumption (V) and set γn = n−
1
4 . It holds

TBS(X(n))nt
F−st−→ U c

t +
∑

0≤s≤t

|∆Js|2 ,

where U c
t is the stable limit of TBS(X(n))nt when J = 0 given by

U c
t =

√
κ

∫ t

0

σ4
sds U ,

where U is defined as in Corollary 1 (see Barndorff-Nielsen and Shephard (2006)

for the proof in the continuous case [i.e. when J = 0]).

(iii) Consider the assumption (V) and set γn = n−
3
8 . It holds

TAJ(X(n))nt
F−st−→ U

′c
t +

2
∑

0≤s≤t |∆Js|4

3
∫ t

0
σ4
sds

,

where U
′c
t is the stable limit of TAJ(X(n))nt when J = 0 given by

U
′c
t =

√
κ′µ8

∫ t
0
σ8
sds

µ4

∫ t
0
σ4
sds

U ,

where U is defined as in Corollary 1 (see Aı̈t-Sahalia and Jacod (2008) for the proof

in the continuous case).

Proof: see Appendix.

Notice that the rate at which our class of test statistics uncovers local alternatives is

varying between γn = n−1/4 (for p = 2) and γn = n−1/2 (for p → ∞). In this respect

T (X(n), p)nt outperforms TBS(X(n))nt for p > 2, while T (X(n), p)nt outperforms TAJ(X(n))nt

for p > 4.

However, the main reason for a better power performance of our test statistic T (X, p)nt

(see the simulation results) is different. At moderate sampling frequencies the power of

the test crucially depends on the robustness properties of statistic V (X, p)nt , which is

implicitly used to construct T (X, p)nt . Once the threshold in the definition of V (X, p)nt

uncovers a jump it is immediately eliminated by the indicator function. The test statistics

proposed by Barndorff-Nielsen and Shephard (2006) and Aı̈t-Sahalia and Jacod (2008)

do not have this property.
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4 The noise case

In this section we present an extension of our theory to noisy semimartingales. Assume

first that the semimartingale X given in (2.1) is defined on some filtered probability space

(Ω0,F0, (F0
t )t≥0, P

0). However, we do not directly observe the process X, but a process

Z which is contaminated by the noise. The modelling of the noise process is adapted

from Jacod, Li, Mykland, Podolskij and Vetter (2007). More precisely, we consider the

process Z, observed at time points i/n, i = 0, 1, . . . , [nt], which is given as

Zt = Xt + εt , (4.1)

where εt’s are the errors which are, conditionally on X, centered and independent. This

can be formally constructed as follows. For any t ≥ 0, consider a transition probability

Qt(ω
0, dz) from (Ω0,F0

t ) into IR. We endow the space Ω1 = IR[0,∞) with the product

(Borel) σ-field F1 ((εt)t≥0 is regarded as the canonical process on this space). The prob-

ability measure Q(ω0, dω1) is given as a product ⊗t≥0Qt(ω
0, ·). The filtered probability

space (Ω,F , (Ft)t≥0, P ), on which the process Z lives, is defined as

Ω = Ω0 × Ω1, F = F0 ×F1, Ft = ∩s>tF0
s ×F1

s ,

P (dω0, dω1) = P 0(dω0)Q(ω0, dω1).

}
(4.2)

Furthermore, we assume that∫
zQt(ω

0, dz) = Xt(ω
0), and α2

t (ω
0) = E[Z2

t |F0](ω0)−X2
t (ω0) is càdlàg. (4.3)

Finally, we define the process

Nt(q) =

∫
|z|qQt(ω

0, dz). (4.4)

Remark 2 Typical examples of a process Z which satisfies the above construction and

condition (4.3) are the following.

(i) (Additive i.i.d. process) When

Z i
n

= X i
n

+ ε i
n
,

where (ε i
n
)i is an i.i.d. process with expectation 0 and variance α2, condition (4.3)

is obviously satisfied.

(ii) (Additive i.i.d. process + rounding) Consider the process

Z i
n

= γ
[X i

n
+ ε i

n

γ

]
,

9
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where γ > 0, (ε i
n
)i is as in (i) and has an U([0, γ]) distribution. Then

α2
t = γ2

({Xt

γ

}
−
{Xt

γ

}2)
,

and condition (4.3) is fulfilled (here {x} denotes the fractional part of x).

Since the ”true” process X is contaminated by noise we need to ”pre-filter” the data.

For this purpose we use the method which has been proposed in Jacod, Li, Mykland,

Podolskij and Vetter (2007) and Podolskij and Vetter (2008) (see also Podolskij and

Vetter (2006)).

First, we choose a sequence kn of integers, which satisfies

kn√
n

= θ + o(n−
1
4 ) (4.5)

for some θ > 0, and a nonzero real-valued function g : IR→ IR, which fulfills the following

conditions

(i) g vanishes outside of (0, 1)

(ii) g is continuous and piecewise C1

(iii) Its derivative g′ is piecewise Lipschitz.

We associate with g the following real valued numbers

ψ1 =

∫ 1

0

(g′(s))2ds , ψ2 =

∫ 1

0

(g(s))2 ds. (4.6)

Furthermore, we define the quantity

Z
n

i =
kn−1∑
j=1

g
( j
kn

)
∆n
i+jZ. (4.7)

Next, we choose the constants c > 0 and $ ∈ (0, 1/4). Finally, we introduce external

(i.e. independent of F) positive i.i.d. random variables (ηi)0≤i≤[nt] with E[ηi] = 1 and

E[|ηi|2] <∞, and define a class of test statistics by

T noise(Z, p)nt = n(p−2)/4

[nt]−kn+1∑
i=0

|Zn

i |p
(

1− ηi1{|Zn
i |≤cn−$}

)
, p ≥ 2. (4.8)

Note that T noise(X, p)nt has the same structure as T (X, p)nt .

All processes are defined on a canonical extension (Ω∗,F∗, (F∗t )t≥0, P
∗) of the original

filtered probability space (Ω,F , (Ft)t≥0, P ), which also supports the random variables

(ηi)0≤i≤[nt].

10
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Remark 3 If V is a continuous semimartingale or a noise process constructed as above,

then

V
n

i = Op(n
−1/4)

(see e.g. Jacod, Li, Mykland, Podolskij and Vetter (2007) for more details). This explains

the condition on $, i.e. $ ∈ (0, 1/4).

To formulate the theoretical results we need to introduce the following sets

Ωc
t = Ω0,c

t × Ω1 and Ωj
t = Ω0,j

t × Ω1

with

Ω0,c
t = {ω0| s 7→ Xs(ω

0) is continuous on [0, t]},

Ω0,j
t = {ω0| s 7→ Xs(ω

0) is discontinuous on [0, t]}.

Finally, we define the statistic

Γ(p)nt = Var[ηi]n
(p−2)/2

[nt]−kn+1∑
i=0

|Zn

i |2p1{|Zn
i |≤cn−$} (4.9)

and set

Snoise(p)nt =
T noise(Z, p)nt√

Γ(p)nt
. (4.10)

The main result of this section is the following theorem.

Theorem 4 Assume that condition (H) holds, E[|ηi|2+δ] < ∞ for some δ > 0 and the

process Nt(q) defined in (4.4) is locally bounded for some q > 2p
1−4$

. For any p ≥ 2 and

any t > 0, we obtain the following results:

(i) On Ωc
t we have

Snoise(p)nt
F−st−→ U , (4.11)

where U is a standard normal random variable, defined on the extension (Ω′,F ′, (F ′t)t≥0, P
′)

of the probability space (Ω∗,F∗, (F∗t )t≥0, P
∗), which is independent of F∗.

(ii) On Ωj
t we have

Snoise(p)nt
P ∗−→∞. (4.12)

Proof: see Appendix.

Now we deduce from Theorem 4 that

P ∗(Snoise(p)nt > c1−α| Ωc
t) → α ,

P ∗(Snoise(p)nt > c1−α| Ωj
t) → 1 ,

where c1−α is the (1− α)-quantile of a standard normal distribution.

11
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Remark 4 As in Section 2 we suggest to generate the external variables (ηi)1≤i≤[nt] from

the distribution

P η =
1

2
(δ1−τ + δ1+τ ) (4.13)

for relatively small values of τ (e.g. τ = 0.1 or 0.05).

5 The choice of the threshold

In this section we investigate how to choose the threshold in our test statistic. A sensible

choice of c and $ is crucial for the finite sample performance of our test.

5.1 Semimartingale model

Although the asymptotic results are valid for all c > 0 and $ ∈ (0, 1/2), it is very

important for the finite sample performance to choose both constants in a reasonable

way. We have to ensure that the threshold is sharp enough to detect and eliminate

jumps, while increments of the continuous part should not be affected by the threshold.

Here we present an easy but effective way to determine c and $.

First, we compute a robust estimator for the integrated volatility
∫ t

0
σ2
sds. A suitable

estimator for this quantity is given by µ−2
1 V (X, 1, 1)nt (see (3.2)). Next, we choose

c = 2.3
√
V (X, 1, 1)nt ,

where the quantity 2.3 is approximately the 99%-quantile of the standard normal distri-

bution. Notice that
√
V (X, 1, 1)nt represents the ”average” level of volatility. Therefore,

we expect that the most increments of the continuous part do not exceed the threshold

cn−1/2.

The constant $ obviously controls the rate of convergence of the threshold. This

means, the bigger $ is the faster converges the threshold to zero. Consequently, jumps

become faster eliminated for large values of $. On the other hand too large values of $

increase the probability to declare an increments of the continuous part as a jump. As

a balance between this effects we suggest to use $ = 0.4.

5.2 Semimartingale model with noise

The choice of the constants become more involved in the semimartingale model with

noise. Notice the strong dependence between neighbored Z̄n
i ’s. Consequently, there is a

high probability of eliminating more than one summand if the threshold classifies a big

increment of the continuous part as a jump. Therefore, we have to choose the threshold

very carefully.

12
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We suggest the following procedure. First, we choose

c = 2.3

√
µ−2

1 BT (1, 1)nt +
ψ1

θ
NV n

t , (5.1)

where

BT (1, 1)nt = n−
1
2

[nt]−2kn+1∑
i=0

|Z̄n
i ||Z̄n

i+kn
|

and

NV n
t =

V (Z, 2, 0)nt
2n

.

The structure of c is similar to the case without noise. By the results of Podolskij and

Vetter (2008) we have that

µ−2
1 BT (1, 1)nt +

ψ1

θ
NV n

t
P ∗−→
∫ t

0

(θψ2σ
2
s +

ψ1

θ
α2
s)ds.

On the other hand the quantity Z̄n
i is asymptotically distributed as n−1/4N(0, θψ2σ

2
i
n

+
ψ1

θ
α2

i
n

) when Z does not jump on the interval [ i
n
, i+kn

n
]. Consequently, when Z has no

jumps the most quantities Z̄n
i should not exceed the threshold cn−1/4 (if the processes σ2

and α2 are not very volatile). By applying the same intuition as for pure semimartingale

models we recommend to use $ = 0.17.

6 Simulation results

In this section we investigate the performance of the different test statistics in finite

samples. First, we compare our test statistic Ŝ(p)nt with p = 2 and p = 4 with the test

statistics TBS(X)nt , TBS,r(X)nt of Barndorff-Nielsen and Shephard (2006) and the test

statistic TAJ(X)nt proposed by Aı̈t-Sahalia and Jacod (2008). After that we investigate

the behavior of the test statistic Snoise(p)nt (with p = 2) in semimartingale models with

noise.

We assume that all processes live on the interval [0, 1]. We consider two different

continuous semimartingale models. The first model is a Brownian semimartingale with

constant volatility σ = 2, i.e.

Xt = 2Wt. (6.1)

Second, we consider a two factor model. It is specified by the stochastic differential

equation

dXt = µdt+ σtdWt (6.2)

with

σt = exp(β0 + β1τt), dτt = ατtdt+ dBt, corr(dWt, dBt) = ρ.

13
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The parametes are chosen as µ = 0, β0 = 0.3125, β1 = 0.125, α = −0.025 and ρ =

−0.3. The two factor model with the afore-mentioned parameters has been adapted from

Barndorff-Nielsen, Hansen, Lunde and Shephard (2006) and Podolskij and Vetter (2006).

In this model the level of the volatility process σ2 varies from 1.4 to 2.1. Furthermore, we

generate the external i.i.d. sequence (ηi)1≤i≤n from the distribution (2.15) with τ = 0.05.

We consider three different types of jump models:

(i) One jump with a fixed jump size

(ii) Two jumps with fixed jump sizes

(iii) Three jumps with random N(0, a2)-distributed jump sizes

All jump times are independent and U([0, 1])-distributed. Moreover, we adapt the jump

size(s) to the particular model to make it comparable with the magnitude of the volatility

process σ.

To study the performance of the test statistic Snoise(p)nt defined in (4.10) for semi-

martingales with noise, we consider an i.i.d. model for the noise process ε, which is as-

sumed to be independent of the semimartingale. These random variables (ε i
n
) are gener-

ated according to a N(0, 0.00052) distribution. Moreover, we use g(x) = (min(x, 1−x))+

and θ = 1/3 as proposed in Jacod, Li, Mykland, Podolskij and Vetter (2007).

We did 10000 simulation runs for each model. The simulation results are reported in

Tables 1-10.

6.1 Level performance

We start with the pure semimartingale models. We compare the level performance of

test statistics for different levels (α = 1%, 2.5%, 5%, 10%, 25%) and different sample sizes

(n = 100, 200, 500, 1000, 3000, 10000). The simulated level results are listed in Table 1

(for the constant volatility model (6.1)) and Table 5 (for the two factor model (6.2)).

We observe that the test statistics (3.4), (3.5) proposed by Barndorff-Nielsen and

Shephard (2006) and our test statistics Ŝ(2)nt and Ŝ(4)nt tend to overestimate the true

level, while the testing procedure (3.7) proposed by Aı̈t-Sahalia and Jacod (2008) un-

derestimates it. The particular performance of the tests depends on the sample size.

While the ratio statistic TBS,r(X)nt of Barndorff-Nielsen and Shephard (2006) and the

test statistic TAJ(X)nt of Aı̈t-Sahalia and Jacod (2008) yield better results for small sam-

ple sizes, our test statistics Ŝ(2)nt and Ŝ(4)nt have the best performance for n = 1000 and

larger (Ŝ(4)nt is slightly better than Ŝ(2)nt ). However, all test statistics perform rather

well.

14
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Now we consider the noisy semimartingale. The corresponding results for Snoise(2)nt

are reported in Tables 9 and 10. We observe that the asymptotic theory starts to work for

relatively large sample sizes, i.e. for n = 900, 1600, 2500. It is not surprising, because the

semimartingale process is corrupted by noise, so we expect a slower speed of convergence.

Quite interestingly, the performance of Snoise(2)nt looks rather good for very small sample

sizes. However, this issue is due to the fact that different finite sample effects seem to

eliminate each other as it has been reported in Podolskij and Vetter (2006).

6.2 Power performance

We start with the no-noise case. The continuous part of the semimartingale is gen-

erated according to the models (6.1) and (6.2). We add to the continuous part the

following jump processes: (i) one jump with the jump size 0.4 for (6.1) and 0.26 for

(6.2), (ii) two jumps with jump sizes
√

0.08 and −
√

0.08 for (6.1) and
√

0.262/2 and

−
√

0.262/2 for (6.2), (iii) three jumps with N(0, 0.16
3

)-distributed jump sizes for (6.1)

and with N(0, 0.262

3
)-distributed jump sizes for (6.2). All jump times are independent

and U([0, 1])-distributed. Notice that the quadratic variation of the jump is kept (approx-

imately) constant (0.16 for model (6.1) and 0.262 for model (6.2)). The corresponding

power performance is reported in Tables 2 - 4 and 6 - 8.

The results are striking. Our test statistics Ŝ(2)nt and Ŝ(4)nt yield by far the best

power performance for all models. More precisely, our method detects the jumps at

relatively small sample frequencies (i.e. n = 500, 1000), whereas the testing procedures

of Barndorff-Nielsen and Shephard (2006) and Aı̈t-Sahalia and Jacod (2008) start to

work at quite high sample frequencies (i.e. n = 3000, 10000). Besides, the results show

that it is more difficult to find small jumps than one big jump (which is not surprising).

Finally, let us consider the semimartingale model with noise. We generate the same

semimartingale processes as described above. The power performance of the test statistic

Snoise(2)nt is presented in Tables 9 and 10.

We observe that the jumps are much harder to detect in models with noise. This

is due to the slower convergence rate of the threshold. Consequently, much more data

points are required to detect jumps. Our test yields good results for the case of one big

jump when the sample size is rather high (i.e. n = 4900−22500). If the jumps are small

it takes extremely large samples to uncover them. Nevertheless, the power performance

seems to be quite reasonable since we consider noisy observations of semimartingales.
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7 Appendix

7.1 Proofs

By standard truncation technique (see e.g. Barndorff-Nielsen, Graversen, Jacod, Podol-

skij and Shephard (2006)) we can assume w.l.o.g. that the processes a and σ are bounded.

We denote all constants which appear in the proofs by C or by Cp when they depend on

an additional parameter p.

In the following we will often use the inequality

E[|∆n
iX

c|l] ≤ Cln
− l

2 , l > 0 , (7.1)

where Xc denotes the continuous part of X, which is deduced by the Burkholder in-

equality.

Proof of Theorem 1: (i) Assume first that the process X has no jumps on the inter-

val [0, t], i.e. we are on the set Ωc
t . It suffices to show that

S(p)nt
F−st−→ U

(see (2.13) of Corollary 1). Then, by the properties of stable convergence, we also obtain

T (X, p)nt
F−st−→

√
Var[ηi]µ2p

∫ t

0

|σs|pdW
′

s.

Note that by (7.1) we have

n
p−1
2

[nt]∑
i=1

|4n
iX|pηi1{|4n

i X|>cn−$} ≤ Cln
p−1
2

+l$

[nt]∑
i=1

|4n
iX|p+lηi = OP ∗(n

l($−1/2)+1/2)

for any l > 0. Choosing l > 1
2($−1/2)

we obtain the approximation

T (X, p)nt = n
p−1
2

[nt]∑
i=1

|4n
iX|p

(
1− ηi

)
+ oP ∗(1) =: T̃ (X, p)nt + oP ∗(1).

From Theorem 2 in Podolskij and Ziggel (2007) we deduce that

P ∗
( T̃ (X, p)nt

ρ(p)t
≤ x| F

)
P−→ Φ(x) ,

where Φ is the distribution function of a standard normal variable and ρ(p)t is defined

in (2.11). Set

Yn =
T̃ (X, p)nt
ρ(p)t

16
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and consider a F -measurable variable Z. Then we obtain as n→∞

E∗[1{Yn≤x,Z≤z}] = E∗[1{Z≤z}P
∗(Yn ≤ x| F)] −→ Φ(x)P (Z ≤ z) = P ′(U ≤ x, Z ≤ z) ,

where U is defined in (2.13). It follows by definition that

S(p)nt
F−st−→ U

and we are done.

(ii) By the results of Aı̈t-Sahalia and Jacod (2008) we obtain under assumption (H),

for any p ≥ 2,

[nt]∑
i=1

|4n
iX|p

(
1− ηi1{|4n

i X|≤cn−$}

)
P ∗−→

∑
0≤s≤t

|∆Xs|p.

Hence, on Ωj
t we have

T (X, p)nt
P ∗−→∞ ,

which completes the proof of Theorem 1. �

Proof of Proposition 2: Recall that X = σW and the distribution of η is given by

(2.15). As in the proof of Theorem 1 we obtain the approximation

Ŝ(p)nt =
n

p−1
2

∑[nt]
i=1 |4n

iX|p
(

1− ηi
)

√
Var[ηi]V (X, 2p)nt

+OP ∗(n
−1) =: S̃(p)nt +OP ∗(n

−1)

on Ωc
t . For the conditional cumulants of S̃(p)nt we deduce the following identities

k1 := plimn→∞
√
nE[S̃(p)nt |F ] = 0 ,

k3 := plimn→∞
√
n
(
E[(S̃(p)nt )3|F ]− 3E[(S̃(p)nt )2|F ]E[(S̃(p)nt )|F ] + 2(E[(S̃(p)nt )|F ])3

)
= 0 ,

where the second identity follows from the fact that η has a symmetric distribution

(around 1). Using a standard Edgeworth expansion (see Hall (1992), p. 48) we conclude

that

P ∗
(
S̃(p)nt ≤ x| F

)
= Φ(x) +Rn(x) ,

where Rn(x) satisfies E[|Rn(x)|] = O(n−1). By taking the expectation we obtain

P ∗
(
S̃(p)nt ≤ x

)
= Φ(x) +O(n−1) ,
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which completes the proof of Proposition 2. �

Proof of Theorem 3: First, we introduce the decomposition

X
(n)
t = Xc

t +X
j,(n)
t ,

where Xc
t denotes the continuous part of X

(n)
t and X

j,(n)
t = γnJt.

(i) Set γn = n−
p−1
2p . Observe that

T (X(n), p)nt = n
p−1
2

∑
i∈In

t

|4n
iX

(n)|p
(

1− ηi1{|4n
i X

(n)|≤cn−$}

)
+ n

p−1
2

∑
i∈(In

t )c

|4n
iX

(n)|p
(

1− ηi1{|4n
i X

(n)|≤cn−$}

)
with Int = {i| the process J jumps on [ i−1

n
, i
n
]}. Note that the first sum is finite (a.s.),

because J is a compound Poisson process. By Theorem 1 we have

n
p−1
2

∑
i∈(In

t )c

|4n
iX

(n)|p
(

1− ηi1{|4n
i X

(n)|≤cn−$}

)
F−st−→

√
Var[ηi]µ2p

∫ t

0

|σs|pdW
′

s ,

and, since $ < p−1
2p

,

n
p−1
2

∑
i∈In

t

|4n
iX

(n)|p
(

1− ηi1{|4n
i X

(n)|≤cn−$}

)
P ∗−→

∑
0≤s≤t

|∆Js|p.

Consequently, it holds that

T (X(n), p)nt
F−st−→

√
Var[ηi]µ2p

∫ t

0

|σs|pdW
′

s +
∑

0≤s≤t

|∆Js|p

for any p ≥ 2 and t > 0.

(ii) Set γn = n−
1
2 . Observe that (recall (7.1))

TBS(X)nt =
√
n(V (Xc, 2)nt − µ−2

1 V (Xc, 1, 1)nt + V (Xj,(n), 2)nt ) + oP ∗(1).

As above we obtain

TBS(X(n))nt
F−st−→ U c

t +
∑

0≤s≤t

|∆Js|2 ,

where U c
t is given in Theorem 3.

(iii) Set γn = n−
3
8 . Since J has only finitely many jumps, we deduce by (7.1)

TAJ(X(n))nt =
√
n
(2V (Xc, 4)

n/2
t

V (Xc, 4)nt
− 2
)

+ 2
√
n
V (Xj,(n), 2)

n/2
t

V (Xc, 4)nt
+ oP ∗(1).
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Consequently, we have

TAJ(X(n))nt
F−st−→ U

′c
t +

2
∑

0≤s≤t |∆Js|4

3
∫ t

0
σ4
sds

,

where U
′c
t is given in Theorem 3. �

Proof of Theorem 4: Since the process (α2
t ) defined in (4.3) is supposed to be càdlàg, we

can assume without loss of generality that (α2
t ) is bounded.

Notice the identity

Z
n

i =
kn−1∑
j=1

g
( j
kn

)
∆n
i+jZ =

kn−1∑
j=0

(
g
( j
kn

)
− g
(j + 1

kn

))
Z i+j

n
. (7.2)

By Burkholder inequality we obtain

E[|Xcn

i |q] ≤ Cn−q/4 (7.3)

for all q ≥ 0 and uniformly in i (Xc denotes the continuous part of X). On the other

hand, using the right-hand side of (7.2), we deduce the following inequality for the noise

process (when the process Nt(2p) is locally bounded):

E[|εni |q] ≤ Cn−q/4 , (7.4)

which holds for any q < 2p and uniformly in i.

(i) Assume that the process X has no jumps, i.e. we are on Ωc
t . Due to inequalities

(7.3) and (7.4) we obtain the approximations (see the proof of Theorem 1 (i))

T noise(Z, p)nt = n(p−2)/4

[nt]−kn+1∑
i=0

|Zn

i |p
(

1− ηi
)

+ oP∗(1) =: T
noise

(Z, p)nt + oP∗(1)

and

Γ(p)nt = Var[ηi]n
(p−2)/2

[nt]−kn+1∑
i=0

|Zn

i |2p + oP∗(1) =: Γ(p)nt + oP∗(1).

Since Var
(
T
noise

(Z, p)nt | F
)

= Γ(p)nt we deduce that

P ∗
(
Snoise(p)nt ≤ x| F

)
P−→ Φ(x) ,

where Φ is the distribution function of a standard normal variable (this follows by the

same methods that are used in the proof of Theorem 2 in Podolskij and Ziggel (2007)).

The arguments of the proof of Theorem 1 yield the convergence

Snoise(p)nt
F−st−→ U ,

19



M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

where U is defined in (4.11), and we are done.

(ii) By the results of Podolskij and Vetter (2008) (see the proof of Lemma 1 therein) we

obtain under assumption (H), for any p ≥ 2,

1

kn

[nt]−kn+1∑
i=0

|Zn

i |p
(

1− ηi1{|Zn
i |≤cn−$}

)
P ∗−→
∫ 1

0

|g(u)|pdu
∑

0≤s≤t

|∆Xs|p,

and

Γ(p)nt
P ∗−→ Var[ηi]µ2p

∫ t

0

(
ψ2θσ

2
s +

ψ1

θ
α2
s

)p
ds.

Hence, on Ωj
t we have

Snoise(p)nt
P ∗−→∞ ,

which completes the proof of Theorem 4. �
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7.1 Simulation Results

n 100 200 500 1000 3000 10000

TBS(X)nt -1% 5.7 3.93 2.77 2.23 2.01 1.5

TBS(X)nt -2.5% 7.78 5.81 4.39 3.75 3.48 2.99

TBS(X)nt -5% 11.37 9.05 7.32 6.65 6.42 5.71

TBS(X)nt -10% 17.1 14.41 12.88 11.58 11.51 10.58

TBS(X)nt -25% 30.83 29.12 27.54 25.76 26.21 25.77

TBS,r(X)nt -1% 2.36 1.9 1.79 1.53 1.57 1.37

TBS,r(X)nt -2.5% 4.01 3.42 3.1 2.9 3.02 2.64

TBS,r(X)nt -5% 7.12 6.4 5.71 5.62 5.77 5.41

TBS,r(X)nt -10% 12.86 11.76 11.18 10.54 10.91 10.19

TBS,r(X)nt -25% 28.55 27.52 26.54 25.21 25.72 25.53

Ŝ(2)nt -1% 4.68 3.12 2.45 1.78 1.41 1.38

Ŝ(2)nt -2.5% 5.94 4.37 3.58 3.13 2.53 2.61

Ŝ(2)nt -5% 8.65 6.78 5.99 5.41 4.93 5.01

Ŝ(2)nt -10% 13.67 11.72 10.65 9.94 10.14 9.74

Ŝ(2)nt -25% 28.27 26.75 25.89 24.75 25.28 24.51

Ŝ(4)nt -1% 4.21 2.75 2.16 1.71 1.2 1.26

Ŝ(4)nt -2.5% 5.38 3.93 3.45 2.87 2.46 2.55

Ŝ(4)nt -5% 8.26 6.65 6.06 5.35 4.99 5.21

Ŝ(4)nt -10% 14.53 12.18 11.4 10.37 10.14 10.16

Ŝ(4)nt -25% 30.47 27.85 26.8 25.79 25.39 24.72

TAJ(X)nt -1% 0.35 0.38 0.56 0.71 0.96 0.86

TAJ(X)nt -2.5% 1.05 1.1 1.35 1.88 2.04 2.06

TAJ(X)nt -5% 3.18 3.3 3.69 4.27 4.35 4.37

TAJ(X)nt -10% 8.77 8.62 9.36 9.45 9.62 9.19

TAJ(X)nt -25% 27.41 25.99 26.38 25.19 24.43 25.09

Table 1: This table shows the level performance for the model (6.1).
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 200 500 1000 3000 10000

TBS(X)nt -1% 6.66 6.07 9.71 16.1 49.17 97.09

TBS(X)nt -2.5% 9.5 8.6 13.81 22.17 59.18 98.4

TBS(X)nt -5% 13.3 13.01 19.98 31 69.06 99.23

TBS(X)nt -10% 19.61 20.04 29.28 42.71 78.81 99.68

TBS(X)nt -25% 35.09 36.85 48.41 63.83 91.07 99.94

TBS,r(X)nt -1% 2.92 3.2 6.53 13.15 46.03 96.78

TBS,r(X)nt -2.5% 4.95 5.55 10.69 19.08 56.68 98.28

TBS,r(X)nt -5% 8.79 9.48 16.89 28.05 67.55 99.19

TBS,r(X)nt -10% 15.15 16.75 26.61 40.78 77.97 99.68

TBS,r(X)nt -25% 32.79 35.03 47.53 63.09 90.91 99.94

Ŝ(2)nt -1% 8.6 15.24 56.6 95.11 100 100

Ŝ(2)nt -2.5% 9.88 16.37 57.24 95.18 100 100

Ŝ(2)nt -5% 12.73 18.76 58.29 95.28 100 100

Ŝ(2)nt -10% 17.34 23.05 60.63 95.55 100 100

Ŝ(2)nt -25% 31.18 35.94 66.7 96.28 100 100

Ŝ(4)nt -1% 8.05 14.8 56.27 95.1 100 100

Ŝ(4)nt -2.5% 9.31 15.8 56.82 95.14 100 100

Ŝ(4)nt -5% 12.06 18.37 58.02 95.27 100 100

Ŝ(4)nt -10% 18.05 23.74 60.69 95.61 100 100

Ŝ(4)nt -25% 32.7 37.66 68.03 96.4 100 100

TAJ(X)nt -1% 0.42 1.05 5.65 26.49 87.34 99.89

TAJ(X)nt -2.5% 1.26 2.46 9.57 34.24 89.91 99.93

TAJ(X)nt -5% 3.55 5.34 15.14 43.21 92 99.96

TAJ(X)nt -10% 9.44 12.21 24.91 53.62 93.79 99.97

TAJ(X)nt -25% 28.83 32.26 45.21 70.38 96.21 99.99

Table 2: This table shows the power performance for a jump-diffusion process. The process is

generated according to the model (6.1) plus one jump with the jump size 0.4.
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 200 500 1000 3000 10000

TBS(X)nt -1% 5.88 5.4 7.1 12.44 41.24 95.65

TBS(X)nt -2.5% 8.39 7.76 10.4 17.39 50.8 97.41

TBS(X)nt -5% 11.92 11.82 15.77 25.06 61.8 98.77

TBS(X)nt -10% 17.84 18.13 24.24 36.18 73.72 99.62

TBS(X)nt -25% 32.47 34.42 43.16 56.77 88.5 99.92

TBS,r(X)nt -1% 2.46 2.81 4.68 9.59 38.36 95.27

TBS,r(X)nt -2.5% 4.27 4.88 7.81 14.88 48.28 97.23

TBS,r(X)nt -5% 7.66 8.49 12.96 22.47 60.03 98.73

TBS,r(X)nt -10% 13.82 15.13 21.72 34.07 72.73 99.58

TBS,r(X)nt -25% 30.3 32.59 42.2 56.19 88.3 99.92

Ŝ(2)nt -1% 6.09 7.44 24.18 68.5 99.95 99.99

Ŝ(2)nt -2.5% 7.27 8.26 25.1 68.86 99.95 99.99

Ŝ(2)nt -5% 9.82 11.02 26.86 69.63 99.95 99.99

Ŝ(2)nt -10% 14.96 15.75 30.81 71.1 99.95 99.99

Ŝ(2)nt -25% 29.55 30.02 42.1 75.83 99.97 99.99

Ŝ(4)nt -1% 5.61 7.01 23.81 68.31 99.95 99.99

Ŝ(4)nt -2.5% 6.73 8.24 24.73 68.72 99.95 99.99

Ŝ(4)nt -5% 9.26 10.78 26.81 69.57 99.95 99.99

Ŝ(4)nt -10% 15.1 16.42 31.19 71.49 99.95 99.99

Ŝ(4)nt -25% 31.25 31.75 43.46 76.46 99.95 99.99

TAJ(X)nt -1% 0.29 0.58 1.49 7.11 73.07 99.86

TAJ(X)nt -2.5% 0.95 1.52 2.81 11.2 78.11 99.89

TAJ(X)nt -5% 3.31 3.93 6.39 17.69 83.33 99.92

TAJ(X)nt -10% 9.21 9.96 13.4 28.47 88.04 99.93

TAJ(X)nt -25% 28.32 28.58 34.87 52.16 93.26 99.96

Table 3: This table shows the power performance for a jump-diffusion process. The process is

generated according to the model (6.1) plus two jumps with jump sizes
√

0.08 and −
√

0.08.
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 200 500 1000 3000 10000

TBS(X)nt -1% 6.3 6.41 10.09 17.37 37.88 64.97

TBS(X)nt -2.5% 8.66 8.97 13.7 21.89 42.76 68.98

TBS(X)nt -5% 12.5 13.37 19.18 28.09 49.22 73.78

TBS(X)nt -10% 18.96 19.66 26.95 36.85 57.11 78.82

TBS(X)nt -25% 33.52 36.3 44.11 54.04 71.47 86.84

TBS,r(X)nt -1% 2.38 3.85 7.68 15.03 36.2 64.41

TBS,r(X)nt -2.5% 4.5 5.83 11.07 19.53 41.48 68.36

TBS,r(X)nt -5% 8.05 9.64 16.52 25.96 56.4 73.25

TBS,r(X)nt -10% 14.35 16.51 24.77 35.07 71.1 78.51

TBS,r(X)nt -25% 30.95 34.58 43.18 53.41 80.82 86.77

Ŝ(2)nt -1% 8.14 14.07 33.02 53.5 80.98 94.6

Ŝ(2)nt -2.5% 9.44 15.24 33.94 54.09 81.44 94.68

Ŝ(2)nt -5% 12.36 17.38 35.56 55.11 82.51 94.78

Ŝ(2)nt -10% 17.05 21.85 38.95 57.5 82.57 94.99

Ŝ(2)nt -25% 31.23 34.47 49 65.02 85.57 95.73

Ŝ(4)nt -1% 7.67 13.74 32.84 53.27 80.81 94.64

Ŝ(4)nt -2.5% 8.79 14.82 33.68 53.8 81.02 94.69

Ŝ(4)nt -5% 11.55 17.09 35.49 55.19 81.5 94.75

Ŝ(4)nt -10% 17.6 22.31 39.18 57.79 82.46 95

Ŝ(4)nt -25% 33.53 36.51 49.82 65.22 85.56 95.74

TAJ(X)nt -1% 0.4 0.98 5.12 15.85 50.49 83.57

TAJ(X)nt -2.5% 1.38 2.22 7.97 19.56 54.19 85.05

TAJ(X)nt -5% 3.82 5.23 12.27 25.2 58.94 86.79

TAJ(X)nt -10% 9.88 11.63 19.96 33.42 64.62 88.78

TAJ(X)nt -25% 29.8 31.23 39.14 51.47 75.1 92.24

Table 4: This table shows the power performance for a jump-diffusion process. The process is

generated according to the model (6.1) plus three N(0, 0.16
3 )-distributed jumps.
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 200 500 1000 3000 10000

TBS(X)nt -1% 5.56 4 2.69 2.07 1.85 1.35

TBS(X)nt -2.5% 7.6 5.9 4.49 3.67 3.25 2.67

TBS(X)nt -5% 10.99 9.17 7.23 6.98 5.95 5.19

TBS(X)nt -10% 16.3 14.83 12.43 11.74 11.46 10.37

TBS(X)nt -25% 30.9 29.29 27.22 26.7 25.95 25.18

TBS,r(X)nt -1% 2.29 1.9 1.65 1.37 1.5 1.1

TBS,r(X)nt -2.5% 3.93 3.49 3.12 2.85 2.9 2.44

TBS,r(X)nt -5% 6.92 6.28 5.69 5.83 5.45 4.9

TBS,r(X)nt -10% 12.55 12.22 10.9 10.92 10.88 10.06

TBS,r(X)nt -25% 28.57 27.52 26.43 25.99 25.6 25.03

Ŝ(2)nt -1% 5.08 3.79 2.71 1.97 1.68 1.25

Ŝ(2)nt -2.5% 6.63 4.91 3.91 3.14 2.78 2.4

Ŝ(2)nt -5% 9.24 7.4 6.53 5.21 4.95 4.9

Ŝ(2)nt -10% 14.48 12.14 11.39 10.12 9.84 9.92

Ŝ(2)nt -25% 29.58 26.66 25.62 25.12 24.63 24.91

Ŝ(4)nt -1% 4.4 3.51 2.32 1.68 1.37 1.37

Ŝ(4)nt -2.5% 5.69 4.57 3.73 3.06 2.5 2.54

Ŝ(4)nt -5% 8.74 7.09 6.27 5.48 4.91 4.86

Ŝ(4)nt -10% 15.1 12.56 11.34 10.57 9.74 9.93

Ŝ(4)nt -25% 31.23 27.9 26.63 25.86 24.82 24.78

TAJ(X)nt -1% 0.37 0.41 0.47 0.6 0.7 1.13

TAJ(X)nt -2.5% 1.1 1.17 1.27 1.53 1.6 2.29

TAJ(X)nt -5% 3.33 3.62 3.6 3.78 3.74 4.6

TAJ(X)nt -10% 9.3 9.83 9.1 9.1 8.88 9.55

TAJ(X)nt -25% 28.36 28.03 25.62 25.8 25.68 25.1

Table 5: This table shows the level performance for the model (6.2).
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 200 500 1000 3000 10000

TBS(X)nt -1% 6.61 6.11 8.39 14.69 41.41 92.03

TBS(X)nt -2.5% 8.96 9.07 12.1 20.12 50.89 94.67

TBS(X)nt -5% 12.74 13.09 18 27.98 61.15 96.87

TBS(X)nt -10% 18.81 19.59 26.66 39.22 72.28 98.31

TBS(X)nt -25% 33.81 36.09 45.57 59.48 86.85 99.52

TBS,r(X)nt -1% 2.62 3.33 6.02 11.85 38.52 91.45

TBS,r(X)nt -2.5% 4.94 5.51 9.52 17.23 48.58 94.39

TBS,r(X)nt -5% 8.25 9.74 15.2 25.66 59.64 96.7

TBS,r(X)nt -10% 14.64 16.72 24.53 37.22 71.38 98.3

TBS,r(X)nt -25% 31.83 34.45 44.75 58.78 86.64 99.51

Ŝ(2)nt -1% 7.83 13.41 48.41 90.1 100 100

Ŝ(2)nt -2.5% 9.03 14.63 49.02 90.3 100 100

Ŝ(2)nt -5% 11.57 16.78 50.4 90.54 100 100

Ŝ(2)nt -10% 16.68 21.21 52.96 91.04 100 100

Ŝ(2)nt -25% 30.73 34.39 60.66 92.52 100 100

Ŝ(4)nt -1% 7.57 13.01 48.12 90.06 100 100

Ŝ(4)nt -2.5% 8.52 14.06 48.88 90.12 100 100

Ŝ(4)nt -5% 11.13 16.43 50.32 90.4 100 100

Ŝ(4)nt -10% 17.15 21.51 53.25 91.04 100 100

Ŝ(4)nt -25% 32.74 35.54 61.54 92.97 100 100

TAJ(X)nt -1% 0.37 0.82 5.13 21.3 81.54 99.81

TAJ(X)nt -2.5% 1.08 1.87 8.13 28.06 84.87 99.85

TAJ(X)nt -5% 3.6 4.73 13.37 36.82 88.19 99.94

TAJ(X)nt -10% 10.26 10.98 21.59 47.45 91.18 99.96

TAJ(X)nt -25% 30.98 30.83 42.2 65.11 94.66 99.97

Table 6: This table shows the power performance for a jump-diffusion process. The process is

generated according to the model (6.2) plus one jump with the jump size 0.26.
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 200 500 1000 3000 10000

TBS(X)nt -1% 6.15 5.47 6.87 11.14 34.5 89.2

TBS(X)nt -2.5% 8.24 7.92 9.71 16.3 43.05 92.79

TBS(X)nt -5% 11.92 12.03 14.94 22.95 53.41 95.58

TBS(X)nt -10% 17.69 18.47 22.87 32.86 65.88 97.94

TBS(X)nt -25% 32.7 34.36 41.99 53.68 82.36 99.47

TBS,r(X)nt -1% 2.43 2.92 4.76 8.88 31.69 88.55

TBS,r(X)nt -2.5% 4.55 5.02 7.65 13.6 40.82 92.41

TBS,r(X)nt -5% 7.8 8.57 12.3 20.78 51.75 95.4

TBS,r(X)nt -10% 13.8 15.33 20.72 30.97 64.92 97.85

TBS,r(X)nt -25% 30.22 32.82 40.82 53.07 82.17 99.46

Ŝ(2)nt -1% 6.26 7.9 20.84 57.82 99.84 100

Ŝ(2)nt -2.5% 7.36 9.22 21.76 58.37 99.85 100

Ŝ(2)nt -5% 9.93 11.56 23.7 59.37 99.86 100

Ŝ(2)nt -10% 14.82 16.36 27.77 61.83 99.86 100

Ŝ(2)nt -25% 29.08 30.26 39.49 68.29 99.87 100

Ŝ(4)nt -1% 5.71 7.56 20.61 57.64 99.84 100

Ŝ(4)nt -2.5% 6.78 8.78 21.46 58.16 99.84 100

Ŝ(4)nt -5% 9.68 11.35 23.61 59.48 99.84 100

Ŝ(4)nt -10% 15.58 16.35 28.29 62.09 99.85 100

Ŝ(4)nt -25% 31.13 31.55 40.54 69.19 99.89 100

TAJ(X)nt -1% 0.33 0.61 1.54 5.86 61.82 99.61

TAJ(X)nt -2.5% 1.15 1.73 2.91 9.35 68.18 99.71

TAJ(X)nt -5% 3.47 4.3 6.29 15.39 74.6 99.77

TAJ(X)nt -10% 9.36 9.94 12.99 25.23 81.16 99.82

TAJ(X)nt -25% 28.65 29.44 34.3 47.87 89.57 99.93

Table 7: This table shows the power performance for a jump-diffusion process. The pro-

cess is generated according to the model (6.2) plus two jumps with jump sizes
√

0.262/2 and

−
√

0.262/2.
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 200 500 1000 3000 10000

TBS(X)nt -1% 6.55 6.48 9.64 15.27 34.94 60.08

TBS(X)nt -2.5% 8.74 9.02 12.69 19.65 40.27 64.42

TBS(X)nt -5% 12.23 13.17 17.59 25.8 46.87 69.41

TBS(X)nt -10% 18.17 19.37 25 34.04 55.03 75.42

TBS(X)nt -25% 32.96 36.06 42.74 52.01 69.74 84.39

TBS,r(X)nt -1% 2.77 3.59 7.39 13.22 33.51 59.24

TBS,r(X)nt -2.5% 4.75 5.86 10.37 17.39 38.88 63.89

TBS,r(X)nt -5% 8.31 9.86 15.18 23.91 45.94 69.03

TBS,r(X)nt -10% 14.03 16.4 22.98 32.49 54.11 75.24

TBS,r(X)nt -25% 30.66 34.4 41.85 51.41 69.53 84.33

Ŝ(2)nt -1% 8.14 12.98 29.72 50.57 79.03 93.4

Ŝ(2)nt -2.5% 9.27 14.03 30.54 51.35 79.24 93.52

Ŝ(2)nt -5% 11.37 16.13 32.05 52.72 79.7 93.74

Ŝ(2)nt -10% 16.52 20.72 35.85 55.32 80.84 94.12

Ŝ(2)nt -25% 31.03 34.69 45.96 63.07 84.02 95.08

Ŝ(4)nt -1% 7.52 12.64 29.37 50.33 78.98 93.44

Ŝ(4)nt -2.5% 8.69 13.59 30.32 50.89 79.22 93.54

Ŝ(4)nt -5% 11.22 16.35 32.06 52.59 79.86 93.68

Ŝ(4)nt -10% 16.53 21.41 36.11 55.57 81.05 94.04

Ŝ(4)nt -25% 32.79 35.7 47.36 63.47 84.6 94.98

TAJ(X)nt -1% 0.34 0.89 4.42 13.89 46.56 79.57

TAJ(X)nt -2.5% 0.97 1.95 6.74 17.59 50.79 81.21

TAJ(X)nt -5% 3.38 4.59 10.9 23.02 55.64 83.28

TAJ(X)nt -10% 9.25 11.02 18.47 31.13 61.73 85.6

TAJ(X)nt -25% 28.92 30.36 38.21 49.43 73.14 90.25

Table 8: This table shows the power performance for a jump-diffusion process. The process is

generated according to the model (6.2) plus three jumps with N(0, 0.262

3 )-distributed jump sizes.
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 400 900 1600 2500 4900 10000 22500

Ŝ(2)nt -1% 1.71 3.74 4.03 3.26 2.8 1.91 1.41 1.18

Ŝ(2)nt -2.5% 3.06 4.96 5.13 4.5 3.97 3.06 2.54 2.53

Ŝ(2)nt -5% 5.79 7.44 7.7 7.06 6.39 5.59 4.71 4.97

Ŝ(2)nt -10% 10.82 12.24 12.69 11.73 11.2 10.87 10.03 10.23

Ŝ(2)nt -25% 26.05 27.23 27.48 26.46 25.66 26.13 24.12 25.4

n 100 400 900 1600 2500 4900 10000 22500

Ŝ(2)nt -1% 2.82 10.43 23.42 31.3 39.05 63.27 84.64 97.85

Ŝ(2)nt -2.5% 4.23 11.66 24.34 32.18 39.83 64.19 85.33 97.97

Ŝ(2)nt -5% 6.94 13.94 26.35 34.13 41.36 65.26 86.16 98.1

Ŝ(2)nt -10% 12.01 18.66 30.42 37.75 44.47 67.35 87.04 98.27

Ŝ(2)nt -25% 26.85 32.42 42.14 48.05 53.73 72.94 89.58 98.7

n 100 400 900 1600 2500 4900 10000 22500

Ŝ(2)nt -1% 2.14 6.63 11.02 13.09 15.39 26.12 42.73 72.36

Ŝ(2)nt -2.5% 3.37 7.68 12.08 14.07 16.68 27.34 44.22 73.28

Ŝ(2)nt -5% 5.64 10.19 14.26 16.16 18.87 29.05 46.52 74.58

Ŝ(2)nt -10% 10.72 14.59 18.83 20.89 23.14 32.92 49.84 76.58

Ŝ(2)nt -25% 26.21 28.88 32.57 34.25 35.93 43.79 58.95 81.13

n 100 400 900 1600 2500 4900 10000 22500

Ŝ(2)nt -1% 2.53 9.89 18.34 22.37 25.88 35.08 42.44 54.36

Ŝ(2)nt -2.5% 3.91 11.28 19.34 23.38 26.73 36.07 43.61 55.26

Ŝ(2)nt -5% 6.51 13.7 21.49 25.25 28.53 37.68 45.42 56.83

Ŝ(2)nt -10% 11.72 18.24 25.96 29 32.64 41.23 48.39 59.28

Ŝ(2)nt -25% 26.78 32.64 38.29 41.17 43.58 51 57.15 66.16

Table 9: This table shows the level (upper panel) and power (lower panels) performance for the

model (6.1) which is corrupted by noise. First, we added one jump with jump size 0.4 (second

panel). Then we added two jumps with jump sizes
√

0.08 and −
√

0.08 (third panel) and three

N(0, 0.16
3 )-distributed jumps (fourth panel).
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M. Podolskij and D. Ziggel: New tests for jumps: a threshold-based approach

n 100 400 900 1600 2500 4900 10000 22500

Ŝ(2)nt -1% 1.98 4.42 4.95 4.35 2.96 2.69 1.69 1.46

Ŝ(2)nt -2.5% 3.31 5.66 6.08 5.52 4.1 4.11 2.93 2.68

Ŝ(2)nt -5% 6.16 8.1 8.41 7.93 6.59 6.66 5.43 5.16

Ŝ(2)nt -10% 10.99 13.11 13.22 12.84 11.3 11.56 10.35 10

Ŝ(2)nt -25% 25.62 27.89 27.08 27.3 25.99 26.07 24.68 24.84

n 100 400 900 1600 2500 4900 10000 22500

Ŝ(2)nt -1% 2.6 9.86 20.88 27.14 33.1 53.65 74.48 93.75

Ŝ(2)nt -2.5% 3.99 11.07 21.88 28.08 33.96 54.88 75.45 94.02

Ŝ(2)nt -5% 6.74 13.33 23.74 29.78 35.63 56.35 76.85 94.48

Ŝ(2)nt -10% 11.74 17.66 27.92 33.26 38.91 58.74 78.45 95.12

Ŝ(2)nt -25% 26.24 31.76 39.83 44.76 48.91 65.7 82.12 96.07

n 100 400 900 1600 2500 4900 10000 22500

Ŝ(2)nt -1% 2.23 6.41 10.33 11.52 13.61 21.17 35.15 60.13

Ŝ(2)nt -2.5% 3.3 7.62 11.53 12.66 14.73 22.46 36.66 61.25

Ŝ(2)nt -5% 5.98 10.01 14.12 15.01 16.74 24.6 38.81 62.99

Ŝ(2)nt -10% 11.08 14.69 18.62 19.54 20.86 28.51 42.6 65.81

Ŝ(2)nt -25% 26.62 29.21 32.25 32.89 34.54 40.58 52.02 71.86

n 100 400 900 1600 2500 4900 10000 22500

Ŝ(2)nt -1% 2.82 8.99 16.54 19.9 22.61 31.73 38.89 50.49

Ŝ(2)nt -2.5% 4.16 10.2 17.42 20.92 23.69 32.86 40.02 51.3

Ŝ(2)nt -5% 6.51 12.4 19.06 22.8 25.81 34.96 41.95 52.87

Ŝ(2)nt -10% 11.91 17.26 23.35 26.89 29.81 38.43 45.05 55.66

Ŝ(2)nt -25% 26.52 30.46 36.71 38.44 41.41 48.9 54.49 63.25

Table 10: This table shows the level (upper panel) and the power (lower panels) performance for

the model (6.2) which is corrupted by noise. First, we added one jump with the jump size 0.26

(second panel). Then we added two jumps with jump sizes
√

0.262/2 and −
√

0.262/2 (third

panel) and three N(0, 0.262

3 )-distributed jumps. (fourth panel).
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