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1 Introduction

Likelihood based inference has long been a standard method for taking linearized DSGE models
to the data (see the references in Fernández-Villaverde & Rubio-Ramírez (2005b)). The fascinat-
ing work by Fernández-Villaverde & Rubio-Ramírez (2007a) shows how to do likelihood based
inference for non-linear DSGE modes with potential non-normal shocks. They use particle �l-
tering techniques for this purpose, and approximate the conditional state distributions through
repeated use of importance sampling and resampling. Fernándes-Villaverde and Rubio-Ramirez
(2005b, 2007a) use a particle �lter which we will refer to as the standard Particle Filter (PF).
Following their lead Justiniano & Primiceri (2008), An (2005), Strid (2006), Doh (2007), and
An & Schorfheide (2007) have successfully applied this �lter and estimated non-linear DSGE
models.

It is well-known that the standard PF su¤ers from the so-called "sample depletion problem",
which means that few particles get a positive weight in the importance sampling step of the �lter
and this leads to inaccuracy in the �lter. The sample depletion problem arises because the state
transition distribution is used as the proposal distribution in the importance sampling step of
the standard PF. This choice of proposal distribution is clearly sub-optimal because information
about the current observables is ignored. A simple way to reduce the sample depletion problem
is to increase the number of particles. This comes at the cost of increasing the computational
requirements which are already severe when using the standard PF to estimate DSGE models.
As we show in the present paper, with more than two shocks in a DSGE model a great deal
of inaccuracy may still remain in the �lter, even when a very large number of particles is used.
Hence, faster and more precise �ltering methods are needed in relation to DSGE models which
typically have more than two shocks. Developing and testing such methods is the purpose of
the present paper.

Recently, Norgaard, Poulsen & Ravn (2000) introduced the Central Di¤erence Kalman Fil-
ter (CDKF) for state estimation in a general non-linear and non-normal state space system.
Norgaard et al. (2000) show that this �lter outperforms the Extended Kalman Filter and the
second order Kalman Filter. The updating rule for the state vector in the CDKF is restricted
to be linear, and the recursive equations for the state estimator and its covariance matrix are
therefore only functions of �rst and second moments. The procedure adopted in the CDKF is to
approximate these moments up to second-order accuracy by a deterministic sampling approach
based on multivariate Stirling interpolations. This approximation method is computationable
very fast and reasonably accurate. The sampling approach implies that no derivatives are re-
quired in the CDKF, and this makes the �lter very robust and easy to implement. Furthermore,
the CDKF propagates and updates the square root of the state covariance matrix over time.
This feature increases the numerical stability of the �lter, and it ensures that all covariance
matrices in the �lter are symmetric and positive semide�nite as desired.

However, the CDKF does not rely on likelihood based methods. This implies that the CDKF
in general is a sub-optimal �lter and that unknown parameters in the DSGE model cannot be
estimated by Maximum Likelihood (ML) or Bayesian methods. The �rst contribution of this
paper is to show how parameters in non-linear DSGE models with potentially non-normal shocks
can be estimated by Quasi-Maximum Likelihood (QML) based on the CDKF. We focus on the
case where measurement errors are present in the observables, and we argue that the QML
estimator is consistent and asympotically normal when DSGE models are approximated up to
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second order. These properties also hold for DSGE models approximated up to third order if i)
third order terms are small or if ii) the state vector, the shocks, and the measurement errors all
are normally distributed. We also discuss the case where DSGE models are approximated up to
fourth or higher order. Here consistency and asympotic normality is harder to ensure because it
requires that all third and higher order terms are insigni�cant. The main advantage of the QML
estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second.
In our case, evaluating this function is approximately 120 times faster than approximating the
likelihood function by the standard PF with 60,000 particles.

The second contribution of this paper is to show how the CDKF can be used in an e¢ cient
way to improve the proposal distribution in particle �lters. That is, we focus on the weakest
component of the standard PF and derive a new particle �lter which we refer to as the Mean
Shifted Particle Filter (MSPFb). We show that the MSPFb outperforms the standard PF by
delivering more precise state estimates, and in general the MSPFb has lower Monte Carlo vari-
ation in the reported log-likelihood function. This is the case even if a low number of particles
is used in the MSPFb and a large number of particles is used in the standard PF. As a result,
the MSPFb is faster to compute than the standard PF.

We test the performance of i) the CDKF, ii) the standard PF, and iii) the MSPFb in a Monte
Carlo study. A more or less standard New Keynesian DSGE is chosen for this purpose because
the model is widely used in the literature (see Christiano, Eichenbaum & Evans (2005), Smets &
Wouters (2003), Altig, Christiano, Eichenbaum & Linde (2005), Fernández-Villaverde & Rubio-
Ramirez (2007b), among others). The solution to this model is here approximated up to second
order. In addition to the �ndings mentioned above, we highlight the following results from this
Monte Carlo study. First, with one or two shocks to the non-linear DSGE model, both particle
�lters outperform the CDKF in terms of root mean squared errors for the state vector. Second,
with three or more shocks, the CDKF clearly outperforms the standard PF and marginally the
MSPFb. Third, the �nite sample distributions for the QML estimator are shown to be well
approximated by the asymptotic distribution, and standard errors for the QML estimator can
be estimated by well-known techniques due to the smooth nature of the quasi log-likelihood
function. These results hold both with normal and non-normal shocks driving the economy.

Thus, the CDKF and the MSPFb are useful tools when taking non-linear DSGE models to
the data. For instance, the QML estimator based on the CDKF can be used in itself or simply
as a fast �rst check of a model�s ability to match the data. If additional e¢ ciency is called for,
the QML estimates can be used as good starting values for conducting full ML estimation by a
particle �lter. Such a maximisation should be easier to implement by the MSPFb compared to
using the standard PF, because the MSPFb requires fewer particles and in general has a lower
Monte Carlo variation in the reported log-likelihood function. For the same reasons, a Bayesian
researcher may also bene�t greatly from the MSPFb when performing the MCMC analysis. Note
�nally that the Bayesian researcher may also �nd the QML estimator useful because i) the QML
estimates can be used as good starting points for the Markov chain, and ii) the Hessian matrix
at the QML estimates can be used to specify the proposal distribution in the random walk
Metropolis algorithm for the MCMC analysis.

The rest of the paper is organized as follows. We present the state space representation
of DSGE models in section 1. Section 2 describes the CDKF and shows how to estimate the
parameters in a non-linear DSGE model by QML. Particle �lters are discussed in section 3, where
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we describe the standard PF and derive the new MSPFb. We set up a DSGE model in section
5 and construct a sequence of "test economies" for the Monte Carlo study. The performance of
the various �lters and the QML estimator are then examined in a Monte Carlo study in section
6. Section 7 concludes.

2 The state space representation of DSGE models

We consider the class of economic models which can be represented in a dynamic state space
system (see for instance Thomas F. Cooley (1995) and Schmitt-Grohé & Uribe (2004) for a
number of illustrations). The set of observables at time t is denoted by the vector yt which has
dimension ny � 1. These observables are a function of the state vector xt and a random vector
vt. We let xt have dimension nx � 1 and vt have dimension nv � 1. More formally,

yt = g (xt;vt;�) : (1)

The function g (�) is determined by i) the parameters � 2 � in the economic model and ii) the
equilibrium conditions describing the economy. The equations in (1) are known as the set of
measurement equations.

The law of motion for the state vector is given by

xt = h (xt�1;wt;�) ; (2)

where wt is a random vector of structural shocks with dimension nw � 1. The equations in (2)
are typically referred to as the set of transition equations. Our notation with one lag in these
equations is without loss of generality, because additional lags can be added to the transition
equations if we increase the dimension of the state vector. In general, the state vector xt is
not observable. Note however, that observable state variables can handled in this framework by
letting one or more elements in g (�) be the identity mapping. All the vectors yt, xt, vt, and wt

are assumed to have continuous support.
The state vector in many economic models can often be decomposed as

xt �
�
x1;t
x2;t

�
; (3)

where x1;t denotes the endogenous state variables and x2;t denotes the exogenous state variables,
i.e. the shocks hitting the economy. The dimension of these vectors are nx1 � 1 and nx2 � 1,
respectively, and nx1 + nx2 = nx. This implies that the set of transition equations can be
decomposed as

x1;t = h1 (xt�1;�) (4)

x2;t = h2 (x2;t�1;wt;�) : (5)

We do not impose any speci�c probability distributions for vt or wt. That is, we let vt �
p (vt;�) and wt � p (wt;�) and denote their individual covariance matrices by Rv (t) and
Rw (t), respectively. However, independence between vt and wt is assumed.
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3 The Central Di¤erence Kalman Filter

This section presents the CDKF. We start by deriving recursive equations for estimating the
unknown state vector xt in (1) and (2) based on a two-step procedure of prediction and updating.
Following Norgaard et al. (2000), the updating rule for the state vector is in this section restricted
to be a linear function of the observables. This implies that only �rst and second moments from
the state space system in (1) and (2) are needed during the state estimation. We then show
how these moments are approximated in the CDKF. Finally, a QML estimator is suggested for
estimating structural parameters in non-linear DSGE models.

3.1 A linear updating rule for the state vector

We use the standard notation that a "bar" denotes a prior estimates and a "hat" denotes
posterior estimates. For instance, �xt+1 � Et [xt+1] and x̂t+1 � Et+1 [xt+1]. Here, Et [�] is the
conditional expectation given the observations y1:t � fy1;y2; :::;ytg.1

The a priori state estimator follows directly from (2) and is given by

�xt+1 � Et [h (xt;wt+1;�)] : (6)

The conditional error covariance matrix for this estimator is denoted by

�Pxx (t+ 1) � Et
�
(xt+1 � �xt+1) (xt+1 � �xt+1)0

�
: (7)

For tractability, the updating rule for the a prior state estimator is restricted to

x̂t+1 = bt+1 +Kt+1yt+1; (8)

where bt+1 and Kt+1 are determined below. If we choose bt+1 such that the a prior and the
posterior state estimators are unbiased, then it follows directly that

bt+1 = �xt+1 �Kt+1�yt+1; (9)

where
�yt+1 � Et [g (xt+1;vt+1;�)] : (10)

This gives rise to the well-known updating rule

x̂t+1 = �xt+1 +Kt+1 (yt+1 � �yt+1) : (11)

The value of Kt+1 is determined such that the conditional error covariance matrix for x̂t+1 is
minimized. It is straightforward to show that this criterion implies (see Lewis (1986))

Kt+1 = Pxy (t+ 1)Pyy (t+ 1)
�1 ; (12)

1An alternative notation is x t+1jt = Et [xt+1] and x t+1jt+1 � Et+1 [xt+1] as in Hamilton (1994), for instance.
We choose �xt+1 and x̂t+1 because this notation is more parsimonious.
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where we have de�ned

Pxy (t+ 1) � Et
�
(xt+1 � �xt+1) (yt+1 � �yt+1)0

�
(13)

�Pyy (t+ 1) � Et
�
(yt+1 � �yt+1) (yt+1 � �yt+1)0

�
: (14)

The conditional error covariance matrix for x̂t+1 can be expressed as

P̂xx (t+ 1) � Et+1
�
(xt+1 � x̂t+1) (xt+1 � x̂t+1)0

�
(15)

= �Pxx (t+ 1)�Kt+1
�Pyy (t+ 1)K

0
t+1:

Thus, the optimal �ltering equations for the class of updating rules implied by (8) are given by
(6), (7), and (11) - (15).

Two remarks are in order. First, if we are able to accurately evaluate the required �rst
and second moments, then the a prior and the posterior state estimators in (6) and (11) are
unbiased by construction. This result holds even thought the state space system is non-linear
and no distributional assumptions are assumed for vt and wt. Second, in the case where g (�)
and h (�) are linear functions, the required �rst and second moments can be evaluated exactly,
and this leads to the standard Kalman Filter. Recall that the standard Kalman Filter has a
linear updating rule for the posterior state vector, and the �lter can be derived without imposing
distributional assumptions for vt and wt (see for instance Tanizaki (1996)).

However, the non-linearity in (1) and (2) implies that some approximation is needed to
calculate the required moments. One way to proceed is to linearize the state space system such
that

yt � g (�xt; �vt;�) +Gx;t (xt � �xt) +Gv;t (vt � �vt) (16)

xt+1 � h (x̂t; �wt+1;�) +Hx;t (xt � x̂t) +Hw;t (wt+1 � �wt+1) (17)

where

Gx;t �
@g (x; �vt;�)

@x

����
x=�xt

Gv;t �
@g (�xt;v;�)

@v

����
v=�vt

(18)

Hx;t �
@h (x; �wt+1;�)

@x

����
x=x̂t

Hw;t �
@h (x̂t;w;�)

@w

����
w=�wt+1

(19)

Given these approximations, the �rst and second moments in the �ltering equations are easy
to evaluate. This is the approach adopted in the Extended Kalman Filter (see for instance
Jazwinski (1970)). However, the approximations in (16) and (17) are only accurate up to �rst-
order, and the approximations do not take the probability distribution for the state vector into
account because the linearization is done around a single point. Hence, the approximations in
(16) and (17) often create signi�cant approximation errors (see Norgaard et al. (2000), Merwe
& Wan (2003), among others).

3.2 Multivariate Stirling interpolations

This section shows how the �rst and second moments in the �ltering equations above are ap-
proximated in the CDKF. We only describe the version of the CDKF based on a second order
approximation.
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The idea in the CDKF is to approximate the non-linear expectations in (6), (7), and (11) -
(15) by second-order multivariate Stirling interpolations. For this purpose we introduce addi-
tional notation. First, four squared and upper triangular Cholesky factorizations Sw (t), Sv (t),
�Sx (t), and Ŝx (t) are de�ned by

Rw (t) = Sw (t)Sw (t)
0 Rv (t) = Sv (t)Sv (t)

0 (20)

�Pxx (t) = �Sx (t) �Sx (t)
0 P̂xx (t) = Ŝx (t) Ŝx (t)

0 : (21)

For elements in the four matrices we use the notation

Sw (t+ 1) =
�
sw;1 sw;2 ::: sw;nw

�
Sv (t) =

�
sv;1 sv;2 ::: sv;nv

�
(22)

�Sx (t) =
�
�sx;1 �sx;2 ::: �sx;nx

�
Ŝx (t) =

�
ŝx;1 ŝx;2 ::: ŝx;nx

�
: (23)

Here, sw;j has dimension nw� 1 for j = 1; :::; nw, sv;j has dimension nv� 1 for j = 1; :::; nv, and
�sx;j and ŝx;j have dimension nx � 1 for j = 1; :::; nx. Next, we de�ne four matrices by

S
(1)
xx (t)

(nx�nx)
= f(hi (x̂t + hŝx;j ; �wt+1;�)� hi (x̂t � hŝx;j ; �wt+1;�)) =2hg (24)

S
(1)
xw (t)

(nx�nw)
= f(hi (x̂t; �wt+1 + hsw;j ;�)� hi (x̂t; �wt+1 � hsw;j ;�)) =2hg (25)

S
(1)
yx (t)

(ny�nx)
= f(gi (�xt + h�sx;j ; �vt;�)� gi (�xt � h�sx;j ; �vt;�)) =2hg (26)

S
(1)
yv (t)

(ny�nv)
= f(gi (�xt; �vt + hsv;j ;�)� gi (�xt; �vt � hsv;j ;�)) =2hg : (27)

Here, we use the notation h (�) �
�
h1 (�) h2 (�) ::: hnx (�)

�0
and similarly for the function

g (�). The matrices in (24) - (27) contain the �rst-order e¤ects of the general nonlinear functions
and this is denoted by the superscript (1). The corresponding matrices for the second-order
e¤ects are:

S
(2)
xx (t)

(nx�nx)
=

(p
h2 � 1
2h2

(hi (x̂t + hŝx;j ; �wt+1;�) + hi (x̂t � hŝx;j ; �wt+1;�)� 2hi (x̂t; �wt+1;�))

)
(28)

S
(2)
xw (t)

(nx�nw)
=

(p
h2 � 1
2h2

(hi (x̂t; �wt+1 + hsw;j ;�) + hi (x̂t; �wt+1 � hsw;j ;�)� 2hi (x̂t; �wt+1;�))

)
(29)

S
(2)
yx (t)

(ny�nx)
=

(p
h2 � 1
2h2

(gi (�xt + h�sx;j ; �vt;�) + gi (�xt � h�sx;j ; �vt;�)� 2gi (�xt; �vt;�))
)

(30)

S
(2)
yv (t)

(ny�nv)
=

(p
h2 � 1
2h2

(gi (�xt; �vt + hsv;j ;�) + gi (�xt; �vt � hsv;j ;�)� 2gi (�xt; �vt;�))
)
: (31)

Norgaard et al. (2000) recommend to determine the value of the scalar h based on the distribution
of the random variable subject to the multivariate Stirling interpolation. Here, it is optimal to
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let h2 be equal to the kurtosis of this distribution.

As shown by Norgaard et al. (2000), the a priori state estimator in the CDKF is

�xt+1 =
h2 � nx � nw

h2
h (x̂t; �wt+1;�) (32)

+
1

2h2
Pnx

p=1 (h (x̂t + hŝx;p; �wt+1;�) + h (x̂t � hŝx;p; �wt+1;�))

+
1

2h2
Pnw

p=1 (h (x̂t; �wt+1 + hsw;p;�) + h (x̂t; �wt+1 � hsw;p;�)) :

The a priori covariance matrix of this estimator is obtained by a Householder transformation of
the matrix h

S
(1)
xx (t) S

(1)
xw (t) S

(2)
xx (t) S

(2)
xw (t)

i
: (33)

We denote the Householder transformation of a rectangular matrix A by � (A). This transfor-
mation produces a squared and upper triangular matrix S = � (A) such that AA0= SS0. We
refer to Norgaard et al. (2000) and their references for more information on this transformation
and how to compute the S matrix. More formally, we let

�Sx (t+ 1) = �
�h

S
(1)
xx (t) S

(1)
xw (t) S

(2)
xx (t) S

(2)
xw (t)

i�
: (34)

From the construction of �Sx (t+ 1) and the de�nition of the Householder transformation

�Pxx (t+ 1) = S
(1)
xx (t)S

(1)
xx (t)

0 + S
(2)
xx (t)S

(2)
xx (t)

0 + S
(1)
xw (t)S

(1)
xw (t)

0 + S
(2)
xw (t)S

(2)
xw (t)

0 : (35)

For instance, S(1)xx (t)S
(1)
xx (t)

0 + S
(2)
xx (t)S

(2)
xx (t)

0 corresponds to Hx;tP̂xx (t)H
0
x;t in the Extended

Kalman Filter. However, the former is a more accurate approximation than the latter.
The a priori estimator for the vector of observables is given by

�yt+1 =
h2 � nx � nv

h2
g (�xt+1; �vt+1;�) (36)

+
1

2h2
Pnx

p=1 (g (�xt+1 + h�sx;p; �vt+1;�) + g (�xt+1 � h�sx;p; �vt+1;�))

+
1

2h2
Pnv

p=1 (g (�xt+1; �vt+1 + hsv;p;�) + g (�xt+1; �vt+1 � hsv;p;�)) :

The covariance matrix of this estimator is calculated based on

�Sy (t+ 1) = �
�h

S
(1)
yx (t+ 1) S

(1)
yv (t+ 1) S

(2)
yx (t+ 1) S

(2)
yv (t+ 1)

i�
; (37)

and the Kalman gain is given by

Kt+1 = �Sx (t+ 1)S
(1)
yx (t+ 1)

0 ��Sy (t+ 1) �Sy (t+ 1)0��1 : (38)
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Finally, the covariance matrix of the posterior state estimator follows from

Ŝx (t+ 1) = �([ �Sx (t+ 1)�Kt+1S
(1)
yx (t+ 1) Kt+1S

(1)
yv (t+ 1) (39)

Kt+1S
(2)
yx (t+ 1) Kt+1S

(2)
yv (t+ 1) ]):

Note that �Pxx (t+ 1), P̂xx (t+ 1), and �Pyy (t+ 1) by construction always are symmetric and
positive semide�nite in the CDKF. An overview of the CDKF is given in appendix A.

Predictions for the observables are obtained by iterating (32), (34), and (36) forward in time.
Särkkä (2008) shows how to derive a Forward-Backward smoother for the Unscented Kalman
Filter, and Dunik & Simandl (2006) derive a square root implementation of this smoother.2 We
emphasize that these smoothers are derived based on the additional assumption that the �ltered
and the smoothed state distributions are multivariate normal. Given the results in Norgaard
et al. (2000), it is straightforward to set up the Forward-Backward smoother for the CDKF.
This is done in appendix B.

3.3 A QML estimator based on the CDKF

When deriving the CDKF in the previous two subsections, no likelihood methods were used.
Hence, estimating the structural parameters (�) by ML or Bayesian inference is in general
not feasible with the CDKF. Instead, the structural parameters can be estimated by GMM or
simulation based methods (Hansen (1982), Du¢ e & Singleton (1993) and Smith (1993)).

Next, consider the typical case where the state space system in (1) and (2) simpli�es to

yt = g (xt;�) + vt and vt � IID (0;Rv (t)) (40)

xt = h (xt�1;�) + �wt and wt � IID (0;Rw (t)) : (41)

This situation can occur when i) measurement errors are assumed to be present in the observables
and ii) all structural shocks enter additively. The matrix � has dimension nx�nw and speci�es
the endogenous and exogenous state variables. If the distributions for vt and wt are bell-shaped,
then it seems reasonable to assume that yt+1jy1:t is approximately normally distributed, i.e.

yt+1jy1:t
as N

�
�yt+1; �Pyy (t+ 1) ;�

�
(42)

for t = 1; :::; T . If we further let the initial state vector x0 be uncorrelated with vt and wt for
all values of t, then the quasi log-likelihood function for the entire sample is

L (�;y1:T ) =
�nyT
2

log (2�)� 1
2

PT
t=1

�
log
����Pyy (t)���� (yt � �yt)0 �P�1yy (t) (yt � �yt)� : (43)

Thus, this quasi log-likelihood function is a smooth function in � and the function is therefore
easy to optimize. This is in contrast to log-likelihood functions in particle �lters where the

2The Unscented Kalman Filter (UKF) developed by Julier, Uhlmann & Durrant-Whyte (1995) is another
derivative free implementation of the �ltering equations presented in the previous subsection However, Norgaard
et al. (2000) show that the CDKF has marginally higher theoretical accuracy than the UKF.
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reported functions in general do not display smoothness in � (see Fernández-Villaverde & Rubio-
Ramírez (2007a) for further details). Another important thing to note in (43) is that the �rst
and second moments of this quasi log-likelihood function are correctly speci�ed up to second-
order accuracy. Bollerslev & Wooldrigde (1992) show consistency and asymptotic normality for
the QML estimator when: i) only the �rst and second moments are correctly speci�ed in the
quasi log-likelihood function, ii) the quasi log-likelihood function is derived based on the normal
distribution, and iii) standard regularity conditions hold (see Bollerslev & Wooldrigde (1992)).
That is, for

�̂QML = argmax
�2�

L (�;y1:T )

it holds that p
T
�
�̂QML � �0

�
d! N

�
0;A�10 B0A

�1
0

�
; (44)

where the zero subscript denotes the true value of theta (�0) and

A0 � �E
"
@2L (�;y1:T )

@�@�0

����
�=�0

#
(45)

B0 � E
�
s (�0;y1:T ) s (�0;y1:T )

0� (46)

s (�0;y1:T ) �
@L (�;y1:T )

@�

����
�=�0

: (47)

Thus, we can estimate � by QML provided that second-order accuracy of the �rst and second
moments in the quasi log-likelihood function is su¢ cient. To assess whether this is the case, we
must compare this degree of precision to the chosen approximation order of the DSGE model.
We introduce our way of reasoning by starting with a linerized DSGE model. Here, �rst and
second moments are only accurate up to �rst and second order, respectively, and the CDKF
reduces to the standard Kalman Filter which exactly captures the �rst and second moments to
the desired degree of precision. Thus, we recover the standard result that the QML estimator
is consistent and asymptotically normal for a linerized DSGE model.3

When a DSGE model is approximated up to second order accuracy, then �rst and second
moments in the model are accurate up to second and third order, respectively. This implies that
the second order precision in the CDKF is su¢ ciently accurate for the �rst moment, but not for
the second moments where approximation errors are present in the third order terms. However,
these errors are likely to be insigni�cant because the second moments of yt+1jy1:t are often very
small. The validity of such an argument can in all cases be veri�ed directly by inspection of
�Pyy (t).4 Thus, when a DSGE model is approximated up to second order, the precision delivered
by the CDKF should in all realistic settings be su¢ cient and the QML estimator can be expected
to be consistent and asymptotically normal.

For a DSGE model approximated up to third order, it holds that �rst and second moments
in the model are accurate up to third and fourth order, respectively. Using a similar argument
as above, the third and fourth order terms in the second moments are likely to be insigni�cant.
Hence, the precision deliver by the CDKF is su¢ cient if third order terms in the �rst moment

3 Inference is here used in the sense that the approximated DSGE model is the true data generating process.
4 In our benchmark model speci�ed below, the largest term in �Pyy (t) attains values around 0.0003 and the

typical values are around 0.00005.
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are small. Alternatively, if the state vector is taken to be normally distributed and the structural
shocks and the measurement noise are normally distributed, then the CDKF is actually accurate
up to third order (Norgaard et al. (2000)). Given this assumption, the CDKF correctly captures
the �rst moment of yt+1jy1:t, and errors in �Pyy (t) are only present in fourth order terms. Thus,
if i) third order terms are small or if ii) the state vector, the shocks, and the measurement errors
all are normally distributed, then the QML estimator can be expected to be consistent and
asymptotically normal even for DSGE models approximated up to third order.

Finally, when a fourth or higher approximation order is used for DSGE models, approxima-
tion errors are present in the �rst and second moment of yt+1jy1:t. The size of the errors in the
�rst moment are di¢ cult to evaluate a priori and this implies that consistency and asymptotic
normality for the QML estimator cannot be guarantied.

4 Particle Filters

The objective in particle �lters is to recursively estimate the entire probability distribution for
the sequence of unknown state vector given all available information at a given point in time
(y1:t). This posterior state distribution is denoted by p (x0:tjy1:t) where x0:t � fx0;x1; :::;xtg,
and the unknown state vector is typically estimated by the mean of the marginal distribution
p (xtjy1:t). The recursive estimation of p (x0:tjy1:t) is done based on the probability structure
of the state space in (1) and (2) and by sequential use of importance sampling and resampling.
Thus, particle �lters do not impose restrictions on the updating rule for the posterior state
vector as done in the previous section.

The outline for the remaining part of this section is as follows. We proceed by describing
the standard PF as presented in Doucet, de Freitas & Gordon (2001a). A few extensions of this
algorithm are then brie�y discussed in order to motivate our own extension of the standard PF.

We adopt the standard notation in terms of the state vector xt during the following presenta-
tion. Hence, to avoid stochastic singularity it is assumed that the dimension of vt is equal to or
larger than the number of observables, i.e. nv � ny. At the expense of a more evolved notation,
some of the structural shocks in wt can be used to avoid stochastic singularity, as shown by
Fernández-Villaverde & Rubio-Ramírez (2007a). We show in appendix C that the CDKF also
can be used in this case.

4.1 The standard particle �lter

The �rst requirement for particle �lters is that we can evaluate the two conditional probabilities
p (ytjxt;�) and p (xtjxt�1;�) for all values of xt and yt for t = 1; :::; T . Using the well-known
result we have

p (ytjxt;�) = p (vt;�)

����det�@g (xt;vt;�)@vt

������1 (48)

p (xtjxt�1;�) = p (wt;�)

����det�@h (xt�1;wt;�)

@wt

������1 ; (49)

provided the Jacobian of g (�) and h (�) exist and their determinants are di¤erent from zero. We
henceforth assume that the distributions in (48) and (49) are always well-de�ned.
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It is straightforward to show that the posterior state distribution has a recursive form given
by

p (x0:t+1jy1:t+1;�) = p (x0:tjy1:t;�)
p (yt+1jxt+1;�) p (xt+1jxt;�)

p (yt+1jy1:t;�)
: (50)

It is in general not possible to calculate p (yt+1jy1:t;�) or to sample from p (x0:tjy1:t;�). These
problems are solved by using importance sampling and the approximation

p (x0:tjy1:t;�) �
PN

i=1w
(i)
t �

�
x0:t � x(i)0:t

�
: (51)

Here, � (�) denotes the Dirac delta function and
n
x
(i)
0:t

oN
i=1

is a random draw from p (x0:tjy1:t;�).

Each element x(i)0:t is referred to as a particle and is assigned the weight w
(i)
t . The proposal

distribution for the importance sampling is denoted by � (�) and it is speci�ed by

� (x0:t+1jy1:t+1) = � (x0:tjy1:t)� (xt+1jx0:t;y1:t+1) : (52)

The structure of � (�) implies that p (x0:t+1jy1:t+1;�) is approximated without modifying the
past estimated state values, x0:t. The speci�c form of � (�) should be chosen such that its support
includes that of the posterior state distribution, p (x0:t+1jy1:t+1;�). It is straightforward to
show that the proposal distribution in (52) gives rise to the following recursive formula for the

importance sampling weights
�
w
(i)
t+1

�

w
(i)
t+1 = w

(i)
t

p
�
yt+1jx(i)t+1;�

�
p
�
x
(i)
t+1

���x(i)t ;��
�
�
x
(i)
t+1

���x(i)0:t;y1:t+1� ,for i = 1; :::; N: (53)

The normalized importance samplings weights are given by

~w
(i)
t+1 =

w
(i)
t+1PN

i=1w
(i)
t+1

,for i = 1; :::; N: (54)

A random sample from p (x0:t+1jy1:t+1;�) is then generated by sampling with replacement fromn
x
(i)
0:t+1

oN
i=1

with probabilities
n
~w
(i)
t

oN
i=1
. This new sample is denoted by

n
x̂
(i)
0:t+1

oN
i=1
, and the

particles in this sample have uniform weights, i.e. w(i)t+1 = 1=N . If this resampling step is omitted,
then the unconditional variance of wt increases over time, and after a few iterations only one
particle will have a non-zero weight. This means that a large number of particles essentially
are removed from the approximation of the posterior state distribution which deteriorates in
precision, a phenomenon referred to as the "sample depletion problem". The purpose of the
resampling step is to mitigate this problem by eleminating particles which are far from the true
state vector (i.e. particles with low values of ~w(i)t+1) and multiplying particles which are close to

the true state vector (i.e. particles with high values of ~w(i)t+1).
For any function f (x0:t+1) which is integrable with respect to p (x0:t+1jy1:t+1;�), it holds

that
E [f (x0:t+1)] =

1

N

PN
i=1 f

�
x̂
(i)
0:t+1

�
: (55)
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Here, Berzuini, Best, Gilks & Larizza (1997) provide a central limit theorem for this estimator.5

Finally, the contribution to the likelihood function can be estimated by

p (yt+1jy1:t;�) =
PN

i=1w
(i)
t+1: (56)

Doucet, Godsill & Andrieu (2000) show that the following proposal distribution

� (xt+1jx0:t;y1:t+1) = p (xt+1jxt;yt+1;�) (57)

is optimal in the sense that it minimizes the variance of the importance weights given x0:t and
y1:t+1. This proposal distribution is in general intractable and approximations are therefore
needed. The standard PF approximates � (�) by the transition distribution, i.e.

p (xt+1jxt;yt+1;�) ' p (xt+1jxt;�) : (58)

This is an obvious choice because i) it is easy to sample from p (xt+1jxt;�), ii) the probability of
xt+1 is conditioned on xt, and iii) the importance weights reduces to w

(i)
t+1 = w

(i)
t p

�
yt+1jx(i)t+1;�

�
in this case. However, the transition distribution does not use information about new observables
(yt+1), and this proposal distribution is therefore said to be "blind". It is in this sense that
the proposal distribution in the standard PF is sub-optimal. An overview of the standard PF is
presented in appendix D.

4.2 Two extensions of the standard Particle Filter

Omitting information about new observables in the proposal distribution is unfortunate for two
reasons. First, if new observations are very informative about the state values, then valuable
information is not present in the proposal distribution. This situation can occur if small changes
in the state vector generate large changes in the observables, and/or the observables are measured
with a high signal to noise ratio. Second, using a blind proposal distribution makes the standard
PF very sensitive to state outliers, because the posterior state distribution in this case is centered
in the tail of the transition distribution. Hence, state outliers generate a poor support overlap
between the proposal distribution and the posterior state distribution. The importance sampling
weights in the standard PF may therefore be very uneven distributed in such a situation, and
as a result many particles are needed to get a satisfying approximation of p (x0:t+1jy1:t+1;�).

One way to improve the performance of the standard PF is therefore to include information
about new observables in the proposal distribution. Doucet et al. (2000) suggest to do this by
using the Extended Kalman Filter (EKF) to generate a Gaussian approximation of the optimal
proposal distribution in (57). This is done by sending each particle through one iteration in the

5Liu & Chen (1998) recommend to do state estimation before the resampling step, i.e. by E [f (x0:t+1)] =PN
i=1 ~!

(i)
t+1f

�
x
(i)
0:t+1

�
, because the resampling step introduces additional random variation in the sample of par-

ticles. For 5,000 or more particles, the two estimators give almost identical results in our case, and the estimator
by Liu & Chen (1998) does not dominate (55). Moreover, the estimator in (55) is computationally faster than

the one recommended by Liu & Chen (1998), because 1
N

PN
i=1 f

�
x̂
(i)
0:t+1

�
= 1

N

Pn
i=1Nif

�
x̂
(i)
0:t+1

�
where Ni is

the number of repetitions of the i0th particle and n is typical must smaller than N .
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EKF to generate a new probability distribution, where the mean and the covariance matrix thus
contain information from new observables. The hope is that sampling from these distributions
moves particles to areas of high likelihood. More formally,

p
�
xt+1jx(i)t ;yt+1

�
' N

�
x̂
EKF;(i)
t+1 ; P̂

EKF;(i)
xx (t+ 1)

�
,for i = 1; :::; N: (59)

We use the notation x̂EKF;(i)t+1 to denote the posterior mean in the EKF for particle i, and

P̂
EKF;(i)
xx (t+ 1) to denote the posterior covariance matrix for this state estimate. Using this

proposal distribution in the PF leads to the Extended Kalman Particle Filter (EKPF). Doucet
et al. (2000) and Merwe, Doucet, de Freitas & Wan (2000) show that using the proposal dis-
tribution in (59) gives more precise state estimates compared to the state estimates from the
standard PF.

However, two drawbacks are related to (59). First, the EKPF is very time consuming to
implement, because the mean and the covariance matrix in (59) must be calculated for a large
number of particles in each time period.6 Second, the approximations of the �rst and second
moments in the EKF are only accurate up to �rst-order, and the approximations do not take
the probability distribution for the state vector into account.

Merwe et al. (2000) and Merwe & Wan (2003) suggest to solve the second problem related
to the EKPF by using the CDKF to calculate more accurate expressions for the mean and the
covariance matrix in (59). That is, they replace (59) with

p
�
xt+1jx(i)t ;yt+1

�
' N

�
x̂
CDKF;(i)
t+1 ; P̂

CDKF;(i)
xx (t+ 1)

�
,for i = 1; :::; N (60)

and this new �lter is called the Sigma Point Particle Filter (SPPF).7 In an application Merwe
et al. (2000) show that the SPPF clearly outperforms the EKPF. However, the SPPF is like
the EKPF very time consuming to calculate. For instance, Merwe & Wan (2003) report that
the SPPF is 20 times slower to compute than the standard PF for a dynamic state space model
with only one state variable and one observable! They use 500 particles in both cases. Thus,
the computational requirement for the SPPF is so severe that the �lter in practice is infeasible
in the context of DSGE models.

4.3 The Mean Shifted Particle Filter

This section addresses the computational issue for merging the CDKF with the PF. We do so
by suggesting a third approximation of the optimal proposal distribution in (57).

6The resampling implies that some of the particles in
n
x̂
(i)
t

oN
i=1

are identical. Hence, we only need to send

particles with di¤erent values through one iteration in the EKF, and this number of particles is often lower than
N .

7Merwe (2004) shows that the CDKF and the Unscented Kalman Filter can be nested in the class of Sigma
Point Kalman Filters. Thus, one only needs to choose a Sigma Point Kalman Filter to calculate the mean and the
covariance matrix in this proposal distribution. This motivates the name, Sigma Point Particle Filter. However,
Merwe & Wan (2003) prefer to use the CDKF and this motivate our presentation.
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Note �rst that the proposal distribution in the SPPF corresponds to

x
(i)
t+1 = x̂

(i)
t + �

CDKF;(i)
t+1 + Ŝ

CDKF;(i)
x (t+ 1) �

(i)
t+1 for i = 1; :::; N; (61)

where �t+1 � NID (0; I) and

�
(i)
t+1 � x̂

CDKF;(i)
t+1 � x̂(i)t for i = 1; :::; N: (62)

Thus, the proposal distribution in the SPPF can be interpreted as a mean correction
�
�
(i)
t+1

�
of draws from the previous posterior state distribution

�
x̂
(i)
t

�
plus a Gaussian noise component�

S
CDKF;(i)
x (t+ 1) �t+1

�
. We emphasize that �(i)t+1 and Ŝ

CDKF;(i)
x (t+ 1) are functions of yt+1

and that both functions may di¤er for di¤erent particles in (61). The latter feature is what makes
the SPPF �lter so time consuming to calculate. Note also that the reason the SPPF sends each
particle, and not just one or a small subset of particles, through the CDKF is to preserve
characteristics such as i) multimodal features, ii) thick tails, etc. in the previous posterior state
distribution. These characteristics may be important when estimating the current posterior
state distribution.

To reduce the computational cost of including information about current observables in the
proposal distribution, we suggest to replace (61) by

x
(i)
t+1 = x̂

(i)
t + �t+1 + Ŝ

CDKF
x (t+ 1) �

(i)
t+1 for i = 1; :::; N: (63)

That is, �t+1 and Ŝ
CDKF
x (t+ 1) are here the same for all particles. Thus, our new proposal

distribution corresponds to using the jittering method proposed by Gordon, Salmond & Smith
(1993) on the previous estimated state distribution with a mean correction. The idea is now to
calculate the values of �t+1 and Ŝ

CDKF
x by sending the posterior state estimate in the previous

period (x̂t) through one iteration in the CDKF where information about yt+1 is used. Then we
let

�t+1 � x̂CDKFt+1 � x̂t: (64)

In this way we still incorporate information about new observables in the proposal distribution,
and it is done in a very e¢ cient way, because only one iteration in the CDKF is needed in each
time period. Moreover, all features from the previous posterior state distribution are preserved
in (63).

The de�ning feature of our new proposal distribution in (63) is the mean shifting operation.
We therefore refer to a particle �lter with this proposal distribution as the Mean Shifted Particle
Filter (MSPF). In our implementation of the MSPF we choose to use one iteration in the standard
PF to estimate the �rst value of Ŝx (t). An overview of the MSPF is given in appendix E.

Prediction for the observables in the MSPF is straightforward, and smoothing can be done
alone the lines described by Simon J. Godsill & West (2004). The values for the unknown
structural parameters in the economy (�) can be estimated by standard ML or Bayesian methods
as described by Fernández-Villaverde & Rubio-Ramírez (2007a).
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5 A New Keynesian DSGE model

This section presents the DSGE model which we will use in the subsequent Monte Carlo study.
To avoid making the results in this Monte Carlo study dependent on the speci�c parameterization
of our DSGE model a sequence of "test economies" is constructed. That is, we generate a
sequence of DSGE models with di¤erent combinations of the structural parameters. The idea
is then to simulate data series from these economies, and based on this data to measure the
precision of the �lters. The construction of the test economies is the topic in the next three
subsections.

5.1 The Model

The DSGE model we use has the same basic structure as the models developed by Christiano
et al. (2005), Altig et al. (2005), and Schmitt-Grohé & Uribe (2006). We refer to these papers
for additional details. When presenting our model, we use the notation from the macroeconomic
literature. Hence, the notation in this section is unrelated to the notation used for the �lters in
previous sections.

The households: We start by assuming that the behavior of the households may be de-
scribed by a representative household. The household�s preferences are speci�ed by a utility
function de�ned over real per capita consumption (ct) and per capita labor supply (ht)

Ut = Et

1X
l=0

�lu (ct+l � bct�1+l; ht+l) : (65)

Here, Et is the conditional expectation given information available at time t and � 2 [0; 1[. The
function u (�; �) is a period utility index which we assume has the standard form

u (ct � bct�1; ht)=

�
(ct � bct�1)1��4 (1� ht)�4

�1��3 � 1
1��3

;

where b 2 [0; 1], �3 2 ]0; 1[ [ ]1;1[, and �4 2 ]0; 1[. The parameter b speci�cs the degree of the
internal habit e¤ect in the consumption good. This good is constructed from a continuum of
di¤erentiated goods (ci;t; i 2 [0; 1]) and the aggregation function

ct =

�Z 1

0
c
��1
�

i;t di

� �
��1

: (66)

Here, � > 1 is the intratemporal elasticity of substitution across the di¤erentiated goods.

The �rst constraint on the household is the law of motion for the physical capital stock (kt)
given by

kt+1 = (1� �) kt + it
�
1� S

�
it
it�1

��
: (67)

The parameter � 2 [0; 1] is the depreciation rate for the capital stock and it is gross investments.
The function S

�
it
it�1

�
= �

2 (
it
it�1

� �i)
2 with � � 0 adds investment adjustment costs to the
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economy based on changes in the growth rate of investments. The value of �i is determined in
such a way that there are no adjustment costs along the economy�s balanced growth path.

The second constraint is the household�s real period by period budget constraint

Etrt;t+1x
h
t+1 + ct (1 + l (vt)) + (et�t)

�1 it +m
h
t =

xht +m
h
t�1

�t
+ wtht + �t (68)

The function l (vt) = �1vt+�2=vt�2 (�1�2)0;5 determines the transactional costs imposed on the
household based on the velocity vt � ct=m

h
t , where �1 � 0 and �2 are subject to the constraint

that l (vt) � 0. The left hand side of (68) is the household�s total expenditures in period t which
include: i) state-contingent claims

�
Etrt;t+1x

h
t+1

�
, ii) consumption including transaction costs

(ct [1 + l (vt)]), iii) investments (et�t)
�1 it, and iv) the real money holdings

�
mh
t

�
. Changes in

et�t are investment speci�c shocks, which we specify as an exogenous AR(1) process with a
deterministic trend, i.e.

ln�t+1 = ln�t + ln
�
��;ss

�
(69)

ln (et+1) = �e ln (et) + �e;t+1: (70)

We let �e;t+1 be independent and identically distributed according to the Generalized Error
Distribution (GED) with: i) mean zero, ii) variance V ar (�e;t+1), and iii) tail thickness parameter
�e 2 (0;1). This is denoted by �e;t+1 s GID (0; V ar (�e;t+1) ; �e). For �e = 2 the GED
distribution reduces to the normal distribution, and for �e < 2 the GED distribution has thicker
tails than the normal distribution, and vice versa for �e > 2. We also require that �e 2 ]�1; 1[.

The right hand side of (68) is the household�s total wealth in period t which consists of:
i) pay-o¤ from state-contingent assets purchased in period t � 1

�
xht =�t

�
, ii) the real money

holdings from the previous period
�
mh
t�1=�t

�
, iii) real labor income (wtht), and iv) dividends

received from the �rms (�t). Note that �t is the gross in�ation rate. The dividend payments
are restricted to be zero in steady state.

The �rms: The production in the economy is assumed to be undertaken by a continuum of
�rms, indexed by i 2 [0; 1]. Here, we adopt the standard assumption that each �rm supplies a

di¤erentiable good
�
ysi;t

�
to the goods market which is characterized by monopolistic competition

with no exit or entry. Furthermore, all �rms have access to the same technology given as follows

ysi;t =

�
atF (ki;t; zthi;t)�  tz�t if F (ki;t; zthi;t)�  tz�t > 0

0 else
(71)

where F (�) � k�i;t (zthi;t)
1�� with � 2 ]0; 1[. Here, ki;t and hi;t denote physical capital and labor

services used by the i�th �rm, respectively. The variable at denotes stationary technology shocks,
and we let

ln at+1 = �a ln at + �a;t+1; (72)

where �a;t+1 s GID (0; V ar (�a;t+1) ; �a) and �a 2 ]�1; 1[. The variable zt in (71) denotes a
non-stationary technology shock. For these shocks, we let �z;t � zt=zt�1 and assume

ln

�
�z;t+1
�z;ss

�
= �z ln

�
�z;t
�z;ss

�
+ �z;t+1; (73)
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where �z;t+1 s GID (0; V ar (�z;t) ; �z) and �z 2 ]�1; 1[. We emphasize that at and �z;t are
mutually independent shocks, and so are all the other exogenous shocks in our DSGE model.
Following Altig et al. (2005), we de�ne z�t by the relation z

�
t � �

�=(1��)
t zt which implies that we

may interpret z�t as an overall measure of technological progress in the economy.
Smets & Wouters (2003) introduce real supply shocks in this framework by letting �rms�

markup rates be subject to random shocks. With Calvo price contracts such markup shocks
prevent an exact recursive representation of our economy, which is needed for a non-linear
approximation of the economy. Instead, we introduce real supply shocks by letting the �rms�
�xed costs be time-varying beyond the variation in z�t . The inclusion of these real supply shocks
can be motivated by variation in �rms��xed costs due to changes in: i) oil prices, ii) maintenance
costs, iii) �rms�subsidies, etc. We let

ln

�
 t+1
 ss

�
= � ln

�
 t
 ss

�
+ � ;t+1; (74)

where � ;t+1 s GID
�
0; V ar (� ;t+1) ; � 

�
and � 2 ]�1; 1[.

All �rms are assumed to maximize the present value of their nominal dividend payments,
denoted di;t. That is, each �rm maximizes

di;t � Et

1X
l=0

rt;t+lPt+l�i;t+l; (75)

where rt;t+l is the stochastic discount factor and the expression for real dividend payments
from the i�th �rm

�
�i;t
�
is given below in (77). The �rms�face a number of constraints when

maximizing di;t. The �rst is related to the good produced by the i�th �rm. The total amount of
good i is allocated to consumption including transaction costs and investments. We make the
standard assumption that the aggregation function for the latter component coincide with the
aggregation function for consumption in (66). Hence, the restriction on the aggregate demand
can be written as

ydt = ct (1 + l (vt)) + (et�t)
�1 it: (76)

In addition, we assume that the �rms satisfy demand, i.e. ysi;t � ydi;t for all i 2 [0; 1].
The second restriction is a cash-in-advance constraint on a fraction � of the �rms�payments

to workers. Thus, the money demanded by the i�th �rm is mf
i;t = �wthi;t.

The third constraint is the budget restriction which gives rise to the expression for real
dividends from �rm i in period t

�i;t = (Pi;t=Pt) y
d
i;t � rkt ki;t � wthi;t �m

f
i;t

�
1�R�1t;1

�
(77)

�Etrt;t+1xfi;t+1 +m
f
i;t � �

�1
t

�
xfi;t +m

f
i;t�1

�
:

The �rst term in (77) denotes the real revenue from sales of the i�th good. The next terms in
(77) are the �rm�s expenditures which are allocated to: i) purchase of capital services

�
rkt ki;t

�
,

ii) payments to the workers (wthi;t), and iii) opportunity costs of holding money due to the

cash-in-advance constraint
�
mf
i;t

�
1�R�1t;1

��
. The �nal terms in (77) denote the change in the
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�rm�s real �nancial wealth.
The fourth constraint introduces staggered price adjustments. We make the standard as-

sumption that in each period a fraction � 2 [0; 1[ of randomly picked �rms are not allowed to
set the optimal nominal price of the good they produce. Instead, these �rms set the current
prices equal to the prices in the previous period, i.e. Pi;t = Pi;t�1 for all i 2 [0; 1]

The central bank: We assume that the central bank determines the nominal interest rate
according to a forward looking Taylor rule of the form

ln

�
Rt;1
Rss;1

�
= �R ln

�
Rt�1;1
Rss;1

�
+ �� lnEt

�
�t+1
��t+1

�
+ �y lnEt

 
ydt+1=y

d
t

�y

!
; (78)

where ��t is a time-varying in�ation rate target. The parameters in this rule are subject to the
constraints: i) �R 2 [0; 1], ii) �� � 0, and iii) �y � 0. We use a standard speci�cation of the
in�ation rate target by letting ��t be a weighted sum of all previous in�ation rates and a noise
component (see Bekaert, Cho & Moreno (2005))

��t+1 = (1� !�)
1P
j=0

(!�)j
�
�t�j +

���;t+1�j
1� !�

�
: (79)

The restriction !� 2 [0; 1) is imposed to get smooth changes in the target, and we let ���;t s
GID (0; V ar (���;t) ; ���).

5.2 Solving the DSGE model

It is straightforward to show that market clearing conditions and the �rst order conditions for
the household and the �rms can be written in the following way

Et [f (yt+1;yt;xt+1;xt)] = 0; (80)

where i) f (�; �; �; �) is a real-valued function, ii) yt is a 7 dimensional control vector, and iii) xt is
a 11 dimensional state vector.8 Following Schmitt-Grohé & Uribe (2004), we introduce � as a
perturbation parameter scaling the matrix � containing standard deviations for the structural
shocks. Given this assumption, the solution to this class of economies is then given by

yt = g (xt; �) (81)

xt+1 = h (xt; �) + ��wt+1: (82)

The important thing to notice is that the structural shocks (wt+1) enter linearly in the state
equations regardless of the chosen approximation order. The functions g (�) and h (�) are un-
known, and we therefore approximate them up to second order and apply the pruning scheme to
this approximation (Schmitt-Grohé & Uribe (2004), Kim, Kim, Schaumburg & Sims (2003)).9

8We refer to the paper�s technical appendix for the proof of this statement and the elements of yt and xt. The

technical appendix is avaliable on request.
9We refer to the papers technical appendix for additional details.
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Five macro variables are chosen for the subsequent Monte Carlo study: i) the annual nominal
interest rate, ii) the quarterly in�ation rate, and the quarterly real growth rates in iii) consump-
tion, iv) investments, and v) GDP. These series are placed in the vector yobst . We allow for
measurement errors in the corresponding series for yobst and assume that these errors (vt) are of
the form vt s NID (0;Rv), where Rv is a diagonal matrix. Thus, our state space system reads

yobst =M1g (xt;�)�M2g (xt�1;�) + vt (83)

xt+1 = h (xt; �) + ��wt+1 (84)

where M1 and M2 are selection matrices with appropriate dimensions.

5.3 Determining the structural parameters

The �nal step in constructing the test economies is to determine the values for the structural
parameters. To make our test economies as representative as possible for the DSGE models in
the literature, we adopt the following strategy: i) select appropriate sample intervals for the
structural parameters based on estimation and calibration results in the literature, and ii) draw
uniformly from these intervals to generate 100 test economies. Where possible, the mean values
for these sampling intervals are determined based on the results in Altig et al. (2005), Schmitt-
Grohé & Uribe (2006), and Fernández-Villaverde & Rubio-Ramirez (2007b). The size of the
sampling intervals is determined to capture much of the uncertainty about the true value of the
parameters. Alternatively, these sampling intervals can also be considered as the area where we
would search for the most likely structural parameters if we were to estimate our DSGE model.
During such a search, we still need to be able to estimate the state variables accurately, even
though we may be far away from the most likely parameter values. The intervals are shown in
table 1.

< Table 1 about here >

In setting up the sampling intervals in table 1, we deviate slightly in the following cases
from the calibrated or estimated values in the papers by Altig et al. (2005), Schmitt-Grohé &
Uribe (2006), and Fernández-Villaverde & Rubio-Ramirez (2007b). First, the mean value for
the interval of the household�s discount parameter (�) is set equal to 0:9992, which gives an
annual interest rate of 5:4% in the steady state. This level corresponds to the average three
month interest rate in the postwar US economy. Schmitt-Grohé & Uribe (2006) let � = 1:03�1=4

and Fernández-Villaverde & Rubio-Ramirez (2007b) estimate � to 0:9999. Given the other
parameters of our model, these alternative values of � lead to a too high (Rss = 8:2%) or too
low (Rss = 5:1% ) value of the annual interest rate in the steady state, respectively. Second,
we let the interval for the degree of internal habit formation (b) have a mean value of 0:1 to
get a satisfying degree of persistency in the simulated series for the interest rate in our model.
Values of b around 0:69 or higher as in Altig et al. (2005), Schmitt-Grohé & Uribe (2006),
and Fernández-Villaverde & Rubio-Ramirez (2007b) imply too volatile interest rates given the
other parameters in our model. Third, the mean value in the interval for �� (the central banks
reaction to deviations from the in�ation target) is set equal to 12 to ensure a unique and stable
solution in our model. Given this value of ��, we let the mean value of the interval for �y be
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8. The mean values of the sampling intervals for the parameters in the �ve exogenous processes
are determined such that the simulated series look similar (to the best of our ability) to the
corresponding series for the post-war US economy.

Finally, determining the intervals for the �ve measurement errors based on empirical evidence
is truly very di¢ cult. We conjecture that the annual three month interest rate is measured
quite accurately and the interval for the standard error is therefore chosen to [0:0005; 0:0009].
The quarterly in�ation rate is taken to be measured less precisely, so we let the corresponding
interval be [0:0010; 0:0020]. For the three real growth rates we choose quite wide intervals for
the standard errors, ranging between 0:0015 to 0:0035.

As pointed out by Andreasen (2008a), certain requirements need to be ful�lled in DSGE
models with stochastic and deterministic trends in order to ensure that the objective functions
of the household and the �rms are �nite. Our DSGE model has the same key properties as
the model in Andreasen (2008a), and hence the results in Andreasen (2008a) also apply to our
DSGE model. Using proposition 1(a) in Andreasen (2008a), we get the following condition

E

�
Fz�z;t
(1� �z)

�
��Fzz;ss�

�
1��Fz
�;ss < 1 (85)

Fz � (1� �4) (1� �3) (86)

besides a boundedness condition. Andreasen (2008a) shows that this boundedness condition
is satis�ed if we assume that all variables in the economy are never too far away from the
economy�s growth path. Given this assumption, all our test economies have �nite objective
functions provided that (85) hold. We therefore impose (85) when generating our 100 test
economies.

6 A Monte Carlo study

This section conducts an extensive Monte Carlo study of the following �lters: i) the CDKF, ii)
the standard PF, and iii) the MSPF. Following some details for the implementation of the Monte
Carlo study, we start by testing the ability of the three �lters to estimate the state variables
in our sequence of test economies. The ability of the CDKF �lter to estimate the structural
parameters (�) by QML is examined afterwards.10

6.1 Study design

For each of the 100 test economies, 50 data sets are simulated each with a sample length of
T = 200. Hence, we conduct a total of 5000 repetitions of each �lter. In all �lters using
multivariate Stirling interpolations, the value of the step size h is set equal to the optimal value
for the normal distribution

�
h =

p
3
�
even though the distribution may be non-normal.

10All calculatings are made in Fortran 90 on Dell SC1435 compute-nodes, each with 2 dualcore Opteron 2.6
GHz, 8 GB memory, and 250 GB disk. User-friendly Matlab versions of the �lters tested in this Monte Carlo
study are available from the author�s homepage.
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We deal with the problem of having values of xt�1 in the set of measurement equation (83)
in the following way. In the CDKF, the state vector is de�ned to be ~xt �

�
x0t x0t�1

�0
with

the following expanded set of transition equations�
xt+1
xt

�
=

�
h (xt; �)
xt

�
+

�
��wt+1

0

�
: (87)

In the standard PF and the MSPF, we simply store the values of
n
g
�
x
(i)
t ;�

�oN
i=1

and resamplen
x
(i)
t ;g

�
x
(i)
t ;�

�oN
i=1

with probabilities
n
~w
(i)
t

oN
i=1
. This procedure is computationally equivalent

to de�ning ~xt �
�
x0t x0t�1

�0
with (87) and computing

n
g
�
x
(i)
t ;�

�
;g
�
x
(i)
t�1;�

�oN
i=1

each time

period as done in Fernández-Villaverde & Rubio-Ramírez (2007a). The computational advantage

of resampling
n
x
(i)
t ;g

�
x
(i)
t ;�

�oN
i=1

is that we do not need to evaluate
n
g
�
x
(i)
t�1;�

�oN
i=1

in each

time period.
The estimated state values reported in the Monte Carlo study are for xt at time point t.

The precision of these estimates are measured by the total root mean squared errors (RMSE)
given by

RMSEi =
Pnx

j=1

sPT
t=1 (xj;t � x̂j;t)

2

T
; (88)

for the i0th run of a given �lter. Note that we consider the initial state (x0) to be known in all
experiments.11 In the interest of space, we only report the average RMSE across the 5000 runs,
i.e.

RMSE =

P5000
i=1 RMSEi
5000

: (89)

Both particle �lters are implemented with residual resampling as proposed by Liu & Chen
(1998). This resampling procedure is computationally very fast to implement and it has a lower
sampling variance than simple random resampling.12

6.2 State estimation

We begin by considering the case where all �ve shocks to the 100 test economies are normally
distributed. That is �i = 2 for i = f��; a; e;  ; zg.

< Figure 1 about here >

The graph in the upper left panel of �gure 1 reports the RMSE for the three �lters. We
�rst note that the CDKF (denoted by a line with a cicle) has a very low RMSE of 0.0720, and
more surprisingly, the CDKF clearly outperforms the standard PF (denoted by an unmarked
line) even with a large number of particles. For instance, with 60,000 particles the RMSE is
equal to 0.0810 for the standard PF. This �nding indicates that a linear updating rule and

11We initialize the CDKF by letting Pxx (t = 0) = 10�6:
12According to Merwe (2004), the speci�c choice of the resampling scheme does not signi�cantly a¤ect the

performance of particle �lters.
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the multivariate Stirling interpolations used in the CDKF are reasonable approximations for
our class of test economies. Of course, greater accuracy can be achieved in the standard PF if
an even higher number of particles is used. For instance, with 120,000 particles the RMSE is
reduced to 0.0776, but this is still higher than the RMSE for the CDKF.

Another surprising result is the impressive performance of the MSPF (denoted by a line with
a star), and even with a very low number of particles. For instance, with 5,000 particles the
MSPF has a RMSE of 0.0752. Thus, the MSPF with 5,000 particles performs better than the
standard PF with 60,000 particles. However, the CDKF also marginally outperforms the MSPF
which is surprising.

The upper right panel in �gure 1 displays the average number of seconds it takes to evaluate
each of the three �lters. Here we note that the CDKF is extremely fast to compute (0.14
seconds). This makes the CDKF approximately 120 times faster to compute than the standard
PF with 60,000 particles (17.09 seconds), and at the same time the CDKF delivers more precise
state estimates. For the two particles �lter, we see that the MSPF is only marginally slower to
compute than the standard PF for the same number of particles. Thus, the MSPF with 5,000
particles (taking 1.78 seconds) is approximately 9.6 times faster to compute than the standard
PF with 60,000 particles, and in addition the MSPF delivers more precise state estimates.

The quality of a proposal distribution in a particle �lter can be measured by calculating the
e¤ective sample size

Neff;i;t =
1PN

j=1

�
w
(j)
t

�2 (90)

for the i�th run of a given particle �lter at time point t. If only one particle gets a positive weight
Neff;i;t = 1, and in the optimal case of perfect adaptation, where w

(i)
t = 1=N for all i, it holds

that Neff;i;t = N . Hence, large values of Neff;i;t indicate that a given proposal distribution is
good, and vice versa for low values of Neff;i;t. In the interest of space, �gure 1 only reports
the average e¤ective sample size across the sample length and across all runs of a given particle
�lter, i.e.

Neff =
1

T5000

P5000
i=1

�PT
t=1Neff;i;t

�
: (91)

The graphs in the lower left panel of �gure 1 clearly show that the e¤ective sample size for the
MSPF is orders of magnitudes higher than the e¤ective sample size for the standard PF. Hence,
the new proposal distribution we suggest in (63) has a much better overlap with the posterior
state distribution than the transition distribution used in the standard PF.

The lower right panel in �gure 1 reports the number of times, where the �lters completely
lose track of the underlying state vector and hence diverge during the 5,000 runs. The CDKF
never diverges, and this shows that the �lter is indeed very robust as claimed in the introduction
of this paper. In line with common intuition, increasing the number of particles in the standard
PF signi�cantly reduces the number of cases with divergence, from 419 cases with 5,000 particles
to only 18 cases with 60,000 particles. Surprisingly, a similar sharp reduction in the number of
�lter divergences is not present for the MSPF, although the initial level of �lter divergences is
very low. The number of �lter divergence for the MSPF only decreases from 66 cases with 5,000
particles to 48 cases with 60,000 particles.

This somewhat unsatisfying performance of the MSPF is probably not due to imprecise
estimates of �t because the CDKF estimates the state vector quite accurately as shown above.
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However, momentarily too large values of ŜCDKFx (t) could easily generate a too diverge sample
of particles and result in low values of the log-likelihood function (Lt) or even divergence of the
�lter. We test this hypothesis by introducing a so-called backup proposal distribution in the
MSPF when the �lter experiences very low values of the log-likelihood function. The speci�c
backup distribution we use is given by (63), where the Cholesky factor of the co-variance matrix
for the structural shocks hitting the economy (Sw) is used instead of ŜCDKFx . That is, our
backup proposal distribution is

x
(i)
t+1 = x̂

(i)
t + �t+1 + Sw (t+ 1) �

(i)
t+1 for i = 1; :::; N: (92)

We refer to the MSPF with this backup distribution as MSPFb. An overview of the MSPFb is
given in appendix E. The lower right panel in �gure 1 clearly shows that this minor adjustment
signi�cantly reduces the number of cases with �lter divergence to around 2 for MSPFb (denoted
by a line with a diamond) regardlessly of the number of particles. Thus, these results con�rm
our hypothesis from above. The RMSE, the number of seconds, and e¤ective sample size for
the MSPFb are almost identical to the corresponding statistics for the MSPF. Hence, we do not
report these statistics for the MSPFb in �gure 1. Based on these �ndings, we prefer the MSPFb
to the MSPF, and we therefore focus on the performance of the MSPFb in the remaining part
of this Monte Carlo study.

Another metric for comparing the performance of di¤erent particle �lters is to examine the
size of the Monte Carlo variation in the reported values for the log-likelihood function. We
can measure this variation by solely increasing the number of particles, and then calculate the
change in the reported log-likelihoods values. Denoting the log-likelihood value at time point T ,
based on N particles, and for the i0th run of a �lter by LiT (N), the standard deviation of the
Monte Carlo error in the log-likelihood can be measured by

stdMC (j) =

r
1

5000

P5000
i=1

�
LiT (5000� j)� LiT (5000� (j � 1))

�2 (93)

for j = 2; 3; :::; 12: Figure 2 shows the degree of Monte Carlo variation in the standard PF and
the MSPFb, and as expected, this variation decreases with an increasing number of particles in
both �lters. More striking is the low Monte Carlo variation in the MSPFb, which is orders of
magnitude lower than the Monte Carlo variation in the standard PF. Therefore, also along this
metric does the MSPFb outperform the standard PF.

< Figure 2 about here >

To summarize the results from our �rst experiment, we �nd that a linear updating rule and
the multivariate Stirling interpolations used in the CDKF is a more accurate approximation than
using particles combined with importance sampling and resampling. The next two experiments
examine the robustness of this result.

The setup for the �rst robostness analysis is motivated by the following observation: if the
observables (yt), the state vector (xt) ; and all shocks to the state space system are normally
distributed, then a linear updating rule for the posterior state vector is optimal (Merwe &
Wan (2003)). Hence, it might be the case that the good performance of the CDKF compared
to the two particle �lters is related to the fact that normally distributed shocks are used in
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the previous experiment. We examine this possibility in our next experiment, where we let
�i = 1 for i = fe; a; z;  ; ��g such that the generalized error distribution reduces to the Laplace
distribution. Recall that the Laplace distribution has thicker tails than the normal distribution,
meaning that large shocks occur more often when the Laplace distribution is used instead of the
normal distribution. Therefore, our second experiment also examines whether the CDKF and
the MSPFb are more robust to state outliers than the standard PF.

< Figure 3 about here >

The results from our second experiment are shown in �gure 3. Again, the CDKF is seen to
clearly outperform the standard PF, and the CDKF still performs marginally better than the
MSPFb. The number of seconds for each of the �lters and the e¤ective sample sizes are very
similar to the results from the �rst experiment. The lower right panel in �gure 3 shows the
number of cases where each of the �lters diverge during the 5,000 runs. Again, this number is
zero for the CDKF. The number of cases with �lter divergence for the standard PF is 150 with
60,000 particles, which is much higher than the 18 cases when shocks are normally distributed.
Hence, we con�rm that the standard PF is sensitive to state outliers. Again, we see the bene�t of
introducing the backup distribution in our new particle �lter. For instance, with 5,000 particles
the number of �lter divergences is reduced from 384 cases in the MSPF to 156 cases in the
MSPFb. The degree of Monte Carlo variation in the standard PF and the MSPFb is similar to
the level with normal shocks driving the economy, and therefore we do not report these statistics
in the case with Laplace distributed shocks.

Thus, the presence of normally distributed shocks does not explain the good performance
of the CDKF compared to the two particle �lters, because the CDKF performs equally well
with non-normal shocks driving the economy. The second robustness analysis we perform is
motivated by the following observation. Fernández-Villaverde & Rubio-Ramírez (2005b) and
Fernández-Villaverde & Rubio-Ramírez (2005a) use the standard PF to illustrate the e¤ect of
non-linear terms when estimating DSGE models by likelihood inference. Their �ndings indicate
that the standard PF is su¢ ciently precise in the context of DSGE models. On the other hand,
our results in �gure 1 and �gure 3 show that the approximation of the posterior state distribution
in the standard PF may be quite inaccurate, because the simple CDKF clearly outperforms the
standard PF. One explanation for these seemingly opposite �ndings could be that Fernández-
Villaverde and Rubio-Ramínez (2005a, 2005b) use the standard PF on a relatively small DSGE
model (the neoclassical growth model), which only has one shock and one endogenous state
variable. On the other hand, the DSGE model used in this paper is much bigger and has
�ve shocks and six endogenous state variables, and this di¤erence might explain the opposite
�ndings. We test this hypothesis in our third experiment where we gradually increase the
number of shocks hitting the economy. That is, we once again use our 100 test economies and
use normally distributed shocks to the economy, but now we impose the additional constraints
that

p
V ar (�i;t) = 0; �rst for i = fa; e;  ; zg, then for i = fe;  ; zg, i = f ; zg, i = fzg, and

�nally for i = ?. Thus, this experiment allow us to examine the e¤ect of gradually increasing
the number of shocks while keeping the number of endogenous state variables constant.

< Figure 4 about here >
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The results in �gure 4 con�rm our hypothesis. The standard PF clearly outperforms the
CDKF with one and two shocks. That is, with few shocks to the economy we recover the
standard result that the particle approximation of the state distribution is more accurate than
using a linear updating rule and multivariate Stirling interpolations. However, adding the third
shock makes the CDKF perform better than the standard PF for the considered interval of
particles. With four and �ve shocks, the gain in performance by using the CDKF compared to
the standard PF increases even further. We also see that the MSPFb constantly outperforms
the standard PF, and when the CDKF is better than the standard PF, the performance of the
MSPFb is very similar to the CDKF. In other words, the MSPFb is either the best �lter or very
close to the best �lter.

Based on these �ndings we conclude that the standard PF su¤ers from a curse of dimen-
sionality with respect to the number of shocks hitting the economy. That is, the performance
of the standard PF deteriorates rappidly with more than two shocks for the considered interval
of particles. On the other hand, the MSPFb inherits the good performance of the CDKF and
the precision of the MSPFb deteriorates more slowly than the standard PF when the number of
shocks is increased.

< Figure 5 about here >

Figure 5 displays the degree of Monte Carlo variation in the log-likelihood function as mea-
sured by (93), when we gradually increase the number of shocks. Except for the case with
one shock, the MSPFb is seen to have a much lower amount of Monte Carlo variation in the
log-likelihood function than the log-likelihood function based on the standard PF. A further
inspection of the graphs for the MSPFb in �gure 5 reveals that the Monte Carlo variation with
two shocks surprisingly is lower than the Monte Carlo variation with only one shock. Recall
that the case with one shock is the scenario where only shocks to the in�ation rate target are
present and these shocks have a small variance. Hence, one explanation for the relatively high
Monte Carlo variation in the MSPFb with one shock could be due to small values of ŜCDKFx ,
implying smaller tails in the proposal distribution than in the posterior state distribution. If
this is the explanation, then increasing ŜCDKFx by a given scalar should reduce the Monte Carlo
variation. Further simulation studies verify this explanation. For instance, scaling ŜCDKFx by
1.5 reduces the Monte Carlo variation in the log-likelihood function from the MSPFb, although
this variation is still higher than the Monte Carlo variation in the log-likelihood function from
the standard PF.

To summarize, we highlight the three main results from the simulation study. First, with
one or two shocks in the non-linear DSGE model, both particles �lters outperform the CDKF
in terms of RMSE for the state vector. Second, with three or more shocks, the CDKF clearly
outperforms the standard PF and marginally the MSPFb. Moreover, the CDKF is at the same
time much faster to compute than both particle �lters. Third, the MSPFb outperforms the
standard PF by delivering more precise state estimates, and in general the MSPFb has lower
Monte Carlo variation in the reported log-likelihood function. This is the case even if a low
number of particles is used in the MSPFb and a large number of particles is used in the standard
PF. As a result, the MSPFb is faster to compute than the standard PF.
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6.3 Parameter estimation

This section examines the �nite sample properties of the QML estimator for the structural
parameters in our DSGE model. To make this study feasible, we only consider �ve of the
34 parameters in our DSGE model as unknowns. The �ve unknown parameters are: i) the
preference parameter (�4) ; ii) the degree of price stickiness (�), iii) the central banks reaction
to deviations from the in�ation rate target (��), iv) the degree of persistency in stationary
technology shocks (�a), and v) the standard deviation for non-stationary technology shocks�p

V ar ("z;t)
�
. All the parameters are given their benchmark value as stated in table 1 for the

Monte Carlo study, implying that �ve shocks are hitting the economy.
The objective function is optimized by the CMA-ES routine adapted to DSGE models by

Andreasen (2008b). Andreasen (2008b) shows that the CMA-ES routine is able to optimize
likelihood functions for DSGE models.

We begin by examining the properties of the QML estimator in the case where �ve normally
distributed shocks drive the economy.

< Figure 6 about here >

< Table 2 about here >

Figure 6 reports the estimated �nite sample distributions for the �ve parameters based on
990 repetitions in the Monte Carlo study.13 All �ve distributions are clearly well approximated
by a normal distribution. Table 2 shows that the biases in all �ve parameters are very small. The
A and B matrices in the expression for the standard errors to the QML estimator are estimated
based on numerical derivatives and the corresponding sample moments. We then note that
standard errors in table 2 calculated from Â�1B̂Â

�1
have small positive biases, and the actual

Type I errors at a 5% signi�cance level are therefore often higher than 5%. Out of curiosity, we
also report in table 2 standard errors calculated from B̂�1, i.e. in the case where the information
equality is assumed to hold. Surprisingly, this gives more precise estimates of the standard errors
and marginally better Type I errors at a 5% signi�cance level. Hence, with normal shocks to the
economy, the quasi log-likelihood function approximates the true log-likelihood function well,
and the induce errors from imposing the information equality is seen to be smaller than the
estimation errors in the Hessian matrix.

To examine whether the QML estimator is robust to non-normal shocks driving the economy,
we repeat the Monte Carlo study from above but with �ve Laplace distributed shocks.

< Figure 7 about here >

< Table 3 about here >

Again, the biases in all �ve parameter estimates are negligible and the �nite sample distri-
butions for the �ve parameters are well approximated by a normal distribution (see �gure 7).
The true standard errors for each of the �ve parameters with Laplace distributed shocks are

13We have deleted 10 Monte Carlo repetitions because we were unable to obtain reliable estimates of the
standard errors.
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seen to be slightly larger than when normal shocks drive the economy, in particular for �� andp
V ar (�z;t). Estimating these standard errors based on Â�1B̂Â

�1
implies in general positive

biases, which are rather large for �4 and �. As expected, all standard errors calculated from
B̂�1 have negative biases. A further inspection of the biases in these standard errors reveal
that the estimates from B̂�1 once again are more precise than the standard errors Â�1B̂Â

�1

as measured by the RMSE for all �ve estimates.

To summarize, this simulation study shows that the �nite sample distributions for the QML
estimator are well approximated by the asymptotic normal distributions. Standard errors for
the QML estimator can be estimated by well-known techniques due to the smooth nature of the
quasi log-likelihood function. The latter result should be seen in contrast to ML estimation by
a particle �lter, where the missing smoothness of the likelihood function makes it di¢ cult to
calculate standard errors (see for instance Fernández-Villaverde & Rubio-Ramírez (2007a) and
Fernández-Villaverde & Rubio-Ramirez (2007b)).

7 Conclusion

The contribution of this paper is twofold. First, we show how structural parameters in non-linear
DSGE models can be estimated by QML based on the CDKF. The advantage of this estimator
is mainly that the quasi log-likelhood function can be evaluated in a fraction of a second, and
standard errors can be estimated by well-known techniques due to the smooth nature of the
quasi log-likelihood function.

Our second contribution is to introduce the MSPFb, where the CDKF is used in an e¢ cient
way to get a good proposal distribution in the importance sampling step of particle �lters. We
show that the MSPFb outperforms the standard PF by delivering more precise state estimates,
and in general the MSPFb has lower Monte Carlo variation in the reported log-likelihood func-
tion. This is the case even if a low number of particles is used in the MSPFb and a large number
of particles is used in the standard PF. As a result, the MSPFb is faster to compute than the
standard PF.

Our new mean shifted proposal distribution based on the CDKF can also be used in vari-
ous extensions of the general framework for particle �lters. Obvious applications are in i) the
Marginal Particle Filter by Klaas, Freitas & Doucet (2005), ii) the Adaptive Particles Filters
by Fox (2001) and Soto (2005), which estimate the number of particles to be used each time
period, and iii) in particle �lters which include a MCMC step (Gilks & Berzuini (2001)) or a
kernel smoothing procedure (Musso, Oudjane & LeGland (2001)) to generate more variation in
the estimated samples from the posterior state distribution. See the book by Doucet, de Freitas
& Gordon (2001b) for other interesting extensions of the general framework for particle �lters.
Testing the performance of our new proposal distribution in these cases is left for future research.
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A The algorithm for the Central Di¤erence Kalman Filter

� Initialization: t = 0
Set x̂t and Ŝx (t).

� For t > 1
Prediction step:

� �xt+1 = h2�nx�nw
h2

h (x̂t; �wt+1;�)

+ 1
2h2
Pnx

p=1 (h (x̂t + hŝx;p; �wt+1;�) + h (x̂t � hŝx;p; �wt+1;�))

+ 1
2h2
Pnw

p=1 (h (x̂t; �wt+1 + hsw;p;�) + h (x̂t; �wt+1 � hsw;p;�))

� �Sx (t+ 1) = �
�h

S
(1)
xx (t) S

(1)
xw (t) S

(2)
xx (t) S

(2)
xw (t)

i�
Updating step:

� �yt+1 = h2�nx�nv
h2

g (�xt+1; �vt+1;�)

+ 1
2h2
Pnx

p=1 (g (�xt+1 + h�sx;p; �vt+1;�) + g (�xt+1 � h�sx;p; �vt+1;�))
+ 1
2h2
Pnv

p=1 (g (�xt+1; �vt+1 + hsv;p;�) + g (�xt+1; �vt+1 � hsv;p;�))

� �Sy (t+ 1) = �
�h

S
(1)
yx (t+ 1) S

(1)
yv (t+ 1) S

(2)
yx (t+ 1) S

(2)
yv (t+ 1)

i�
�Kt+1 = �Sx (t+ 1)S

(1)
yx (t+ 1)

0 ��Sy (t+ 1) �Sy (t+ 1)0��1
� Ŝx (t+ 1) = �([ �Sx (t+ 1)�Kt+1S

(1)
yx (t+ 1) Kt+1S

(1)
yv (t+ 1)

Kt+1S
(2)
yx (t+ 1) Kt+1S

(2)
yv (t+ 1) ])

Quasi log-likelihood function

� �Lt+1 = Lt � ny
2 log (2�)�

1
2 log

����Pyy (t+ 1)���
�1
2 (yt+1 � �yt+1)

0 �P�1yy (t+ 1) (yt+1 � �yt+1)

B The smoother for the CDKF

The smoothed estimate of xt is denoted xst . The covariance matrix of this estimate is denoted
Psxx (t) � ET

�
(xt � xst ) (xt � xst )

0�. It holds that
xst = x̂t +Kt+1

�
xst+1 � �xt+1

�
Psxx (t) = P̂xx (t) +Kt+1

�
Psxx (t+ 1)� �Pxx (t+ 1)

�
K0
t+1

where
Ct+1 = Et

�
(xt � x̂t) (xt+1 � �xt+1)0

�
;

and the smoothing gain is given by

Kt+1 = Ct+1
�Pxx (t+ 1)

�1 :
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Based on the results in Norgaard et al. (2000), we have

Ct+1 = Ŝx (t)S
(1)
xx (t+ 1)

0 :

The square root of the covariance matrix for the smoothed state estimate is given by

Ssx (t) = �([ Ŝx (t)�Kt+1S
(1)
xx (t) Kt+1S

s
x (t+ 1) Kt+1S

(1)
xw (t)

Kt+1S
(2)
xx (t) Kt+1S

(2)
xw (t) ]):

This smoothing recursion is started at the last time step, because it holds that xsT = x̂T and
Psxx (T ) = P̂xx (T ). Thus, the proceedure is �rst to calculate the posterior estimates x̂t and
Ŝx (t) for t = 1; 2; :::; T by running the CDKF. Then, the smoothing recursion is started in time
period T and iterated back in time.

C A transformed state space system

This section considers the case where some of the structural shocks are used to identify the
model. That is, some structural shocks are used in a similar manner as vt during the �ltering.
We follow Fernández-Villaverde & Rubio-Ramírez (2007a) and partition the exogenous state
variables (x2;t) as

x2;t �
�
x21;t
x22;t

�
=

�
h21 (x2;t�1;w1;t;�)
h22 (x2;t�1;w2;t;�)

�
:

The shocks w2;t are used to identify the model. Recall that xt �

24 x1;t
x21;t
x22;t

35. Substituting x22;t
into the measurement equations we get

yt = g

0@24 x1;t
x21;t

h22 (x2;t�1;w2;t;�)

35 ;vt;�
1A

Thus, the transformed state space system reads

yt = ~g

�
x2;t�1;

�
x1;t
x21;t

�
;

�
vt
w2;t

�
;�

�
x1;t = h1 (xt�1;�)

x21;t = h21 (x2;t�1;w1;t;�)

where ~g (�) is a new function. The CDKF can then be used on this new non-linear system to
get the state variables.
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D The algorithm for the standard Particle Filter

� Initialization: t = 0
For i = 1; :::; N draw particles x̂(i)0 from p (x0) and let wi0 =

1
N for all i.

� For t > 1

1. Importance sampling step

�For i = 1; :::; N draw particles x(i)t from p
�
xt

���x̂(i)t�1 ;��
�For i = 1; :::; N evaluate the importance weights: w(i)t = w

(i)
t�1p

�
yt

���x(i)t ;�
�

�The contribution to the log-likelihood function: Lt = Lt�1 + log(
PN

i=1w
(i)
t )

�For i = 1; :::; N normalize the importance weights ~w(i)t = w
(i)
t =

PN
i=1w

(i)
t

2. Resampling step:

�Resample with replacement from
n
x
(i)
0:t

oN
i=1

with probabilities
n
~w
(i)
t

oN
i=1

to obtain

a samples of size N approximately distributed according to p (x0:t jy1:t ;�). This
new sample is denoted by

n
x̂
(i)
0:t

oN
i=1

� In
n
x̂
(i)
t

oN
i=1

we have w(i)t = 1
N for all i = 1; :::; N

3. State estimates

�The posterior state estimate: x̂t = 1
N

PN
i=1 x̂

(i)
t
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E The algorithm for the Mean Shifted Particle Filter

We use the notation
n
x̂
(i)
0:t

oN
i=1

= PF

�n
x̂
(i)
0:t�1

oN
i=1

;yt

�
to denote one iteration in the standard

PF from time point t � 1 to time point t based on
n
x̂
(i)
0:t�1

oN
i=1

and yt. Similarly, we use the

notation
h
xCDKFt ; Ŝx (t)

i
= CDKF

�
Ŝx (t� 1) ; x̂t�1;yt

�
to denote one iteration in the CDKF

from time point t� 1 to time point t based on Ŝx (t� 1), x̂t�1, and yt.

The Mean Shifted Particle Filter (MSPF)

� Initialization: t = 0
For i = 1; :::; N draw particles x̂(i)0 from p (x0) and let w

(i)
0 = 1

N for all i. The posterior

state estimate: x̂t = 1
N

PN
i=1 x̂

(i)
t

� For t = 1n
x̂
(i)
0:t

oN
i=1

= PF

�n
x̂
(i)
0:t�1

oN
i=1

;yt

�
The posterior state estimate: x̂t = 1

N

PN
i=1 x̂

(i)
t

The posterior estimate of Sx (t) is: Ŝx (t) = �
�
1
N

PN
i=1

�
x̂
(i)
t � x̂t

��
x̂
(i)
t � x̂t

�0�
� For t > 1

1. Importance sampling step

�
h
xCDKFt ; Ŝx (t)

i
= CDKF

�
Ŝx (t� 1) ; x̂t�1;yt

�
� Let �t = x̂CDKFt � x̂t�1 be a mean correction term
�For i = 1; :::; N draw particles x(i)t from N

�
x
(i)
t

���x(i)t�1;�t; Ŝx (t)�
�For i = 1; :::; N evaluate the importance weights:

w
(i)
t = w

(i)
t�1

p
�
yt

���x(i)t ;�
�
p
�
x
(i)
t

���x̂(i)t�1 ;��
N
�
x
(i)
t

���x(i)t�1;�t;Ŝx(t)�
�The contribution to the log-likelihood function: Lt = Lt�1 + log(

PN
i=1w

(i)
t )

�For i = 1; :::; N normalize the importance weights ~w(i)t = w
(i)
t =

PN
i=1w

(i)
t

2. Resampling step:

�Resample with replacement from
n
x
(i)
0:t

oN
i=1

with probabilities
n
~w
(i)
t

oN
i=1

to obtain

a samples of size N approximately distributed according to p (x0:t jy1:t ;�). This
new sample is denoted by

n
x̂
(i)
0:t

oN
i=1

� In
n
x̂
(i)
t

oN
i=1

we have w(i)t = 1
N for all i = 1; :::; N

3. State estimates

�The posterior state estimate: x̂t = 1
N

PN
i=1 x̂

(i)
t
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The Mean Shifted Particle Filter with backup distribution (MSPFb)

� Initialization: t = 0
For i = 1; :::; N draw particles x̂(i)0 from p (x0) and let w

(i)
0 = 1

N for all i. The posterior

state estimate: x̂t = 1
N

PN
i=1 x̂

(i)
t

� For t = 1n
x̂
(i)
0:t

oN
i=1

= PF

�n
x̂
(i)
0:t�1

oN
i=1

;yt

�
The posterior state estimate: x̂t = 1

N

PN
i=1 x̂

(i)
t

The posterior estimate of Sx (t) is: Ŝx (t) = �
�
1
N

PN
i=1

�
x̂
(i)
t � x̂t

��
x̂
(i)
t � x̂t

�0�
� For t > 1

1. Importance sampling step

� xCDKFt = CDKF (Sx;t�1x̂t�1;yt)

� Let �t = x̂CDKFt � x̂t�1 be a mean correction term
�For i = 1; :::; N draw particles x(i)t from N

�
x
(i)
t

���x(i)t�1;�t; Ŝx (t)�
�For i = 1; :::; N evaluate the importance weights:

w
(i)
t = w

(i)
t�1

p
�
yt

���x(i)t �
p
�
x
(i)
t

���x̂(i)t�1 ;��
N
�
x
(i)
t

���x(i)t�1;�t;Ŝx(t)�
�The contribution to the log-likelihood function: Lt = Lt�1 + log(

PN
i=1w

(i)
t )

�The backup proposal distribution:
if log(

PN
i=1w

(i)
t ) < 0:2

Lt
t

For i = 1; :::; N draw particles x(i)t from N
�
x
(i)
t

���x(i)t�1;�t;Sw (t)�
For i = 1; :::; N evaluate the importance weights:

w
(i)
t = w

(i)
t�1

p
�
yt

���x(i)t �
p
�
x
(i)
t

���x̂(i)t�1 ;��
N
�
x
(i)
t

���x(i)t�1;�t;Sw(t)�
end if

�For i = 1; :::; N normalize the importance weights ~w(i)t = w
(i)
t =

PN
i=1w

(i)
t

2. Resampling step:

�Resample with replacement from
n
x
(i)
t

oN
i=1

with probabilities
n
~w
(i)
t

oN
i=1

to obtain

a samples of size N approximately distributed according to p (x0:t jy1:t ;�). This
new sample is denoted by

n
x̂
(i)
0:t

oN
i=1

� In
n
x̂
(i)
0:t

oN
i=1

we have w(i)t = 1
N for all i = 1; :::; N

3. State estimates

�The posterior state estimate: x̂t = 1
N

PN
i=1 x̂

(i)
t
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Table 1: Parameters for the test economies
The fourth column named "interval" denotes the intervals we sample uniformly from when generating
the test economies.

Label Parameters Benchmark Interval
Discount factor � 0:9992 [0:9986; 0:9998]
Habit degree b 0 [0; 0:2]
Transaction cost �1 0:05 [0:01; 0:09]
Transaction cost �2 0:13 [0:03; 0:23]
Preference �3 limi!1 i [0:8; 1:2]
Preference �4 0:5 [0:25; 0:75]
Adj costs for investm ents � 2:8 [0:8; 4:8]
Depreciation rate � 0:025 [0:01; 0:04]
Cobb-Douglas param eter � 0:36 [0:30; 0:42]
CIA � 0:6 [0:4; 0:8]
Price elastic ity � 6 [4; 8]
Degree of price stick iness � 0:7 [0:5; 0:9]
Process for in�ation target !� 0:4 [0:1; 0:7]
Reaction to lagged interest rate �R 0:8 [0:7; 0:9]
Reaction to in�ation �� 12 [8; 16]
Reaction to output �y 8 [6; 10]
In�ation rate in steady state �ss 1:008 [1:005; 1:010]
Growth rate in technology sho cks �z 1:0021 [1:0016; 1:0026]
Growth rate in investm ent sho cks �� 1:0042 [1:0037; 1:0047]
Persistency in stationary technology sho cks �a 0:7 [0:5; 0:9]
Persistency in investm ent sho cks �e 0:8 [0:6; 1:0[
Persistency in sho cks to �rm s� �xed costs � 0:9 [0:8; 1:0[

Persistency in nonstationary technology sho cks �z 0:2 [0:0; 0:4]

std . of sho cks to in�ation target

p
V ar (���;t) 0:5 [0:25; 0:75]

std . of stationary technology sho cks

p
V ar (�a;t) 2 [1:5; 2:5]

std . of stationary investm ent sho cks

p
V ar (�e;t) 4 [3; 5]

std . of sho cks to �rm s� �xed costs

p
V ar (� ;t) 4 [3; 5]

std . of nonstationary technology sho cks

p
V ar (�z;t) 0:5 [0:25; 0:75]

Perturbation param eter � 0:003 [0:002; 0:004]

std . of errors in the interest rate

p
V ar (vR;t) 0:0007 [0:0005; 0:0009]

std . of errors in in�ation

p
V ar (v�;t) 0:0015 [0:0010; 0:0020]

std . of errors in the grow th rate for consumption

p
V ar (vc;t) 0:0025 [0:0015; 0:0035]

std . of errors in the grow th rate for investm ents

p
V ar (vi;t) 0:0025 [0:0015; 0:0035]

std . of errors in grow th rate for GDP

p
V ar (vy;t) 0:0025 [0:0015; 0:0035]
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Table 2: The QML estimator and 5 normally distributed shocks
The results are based on 990 repetitions in the Monte Carlo study. We have deleted 10 Monte Carlo
repetitions because we were unable to obtain reliable estimates of the standard errors. The type I error
is calculated at a 5 percentage signi�cance level. Derivatives are approximated based on
@f
@x =

f(x+h)�f(x�h)
2h . For A we let h = 0.001 and for B we let h = 0.00001.

True values using Â�1B̂Â
�1

using B̂�1

Level SE Bias in level Bias in SE Type I Bias in SE Type I
�4 0.5 0.104 0.000 0.051 0.095 -0.006 0.092
� 0.7 0.035 -0.002 0.014 0.119 -0.001 0.117
�� 12 0.601 0.057 0.078 0.049 0.014 0.048
�a 0.7 0.051 -0.012 0.004 0.076 -0.001 0.068p
V ar (�z;t) 0.7 0.069 -0.011 0.000 0.033 0.003 0.031

Table 3: The QML estimator and �ve Laplace distributed shocks
The results are based on 989 repetitions in the Monte Carlo study. We have deleted 11 Monte Carlo
repetitions because we were unable to obtain reliable estimates of the standard errors. The type I error
is calculated at a 5 percentage signi�cance level. Derivatives are approximated based on
@f
@x =

f(x+h)�f(x�h)
2h . For A we let h = 0.001 and for B we let h = 0.00001.

True values using Â�1B̂Â
�1

using B̂�1

Level SE Bias in level Bias in SE Type I Bias in SE Type I
�4 0.5 0.107 -0.003 0.128 0.097 -0.011 0.125
� 0.7 0.039 -0.002 0.029 0.130 -0.006 0.164
�� 12 0.721 0.037 0.052 0.071 -0.150 0.122
�a 0.7 0.053 -0.014 0.006 0.081 -0.004 0.081p
V ar (�z;t) 0.7 0.077 -0.013 -0.003 0.051 -0.009 0.081
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Figure 1: For 5 normally distributed shocks
Notation: i) the unmarked line denotes the standard PF, ii) the line with a circle denotes the CDKF,
iii) the line with a star denotes the MSPF, and iv) the line with a diamond denotes the MSPFb. The
x-axis shows the number of particles in thousands.
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Figure 2: Monte Carlo variation in the reported log-likelihood functions
Notation: i) the unmarked line denotes the standard PF, and ii) the line with a star denotes the
MSPFb. Five normally distributed shocks are hitting the test economies in this case. The x-axis shows
the number of particles in thousands.
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Figure 3: For 5 Laplace distributed shocks
Notation: i) the unmarked line denotes the standard PF, ii) the line with a circle denotes the CDKF,
iii) the line with a star denotes the MSPF, and iv) the line with a diamond denotes the MSPFb. The
x-axis shows the number of particles in thousands.
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Figure 4: The total RMSE with 1 to 5 normally distributed shocks
Notation: i) the unmarked line denotes the standard PF, ii) the line with a circle denotes the CDKF,
and iii) the line with a diamond denotes the MSPFb. The x-axis denotes the number of particles in
thousands. The MSPFb is marginally better than the standard PF with only one shock, but this
di¤erence is not visable in our graph.
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Figure 5: The Monte Carlo variation in the log-likelihood function with 1 to 5
normally distributed shocks
Notation: i) the unmarked line denotes the standard PF, and ii) the line with a diamond denotes the
MSPFb. The variation is measured by the standard deviation of the error in the log-likelihood function.
The x-axis denotes the number of particles in thousands.
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Figure 6: Distributions for the QML estimator with �ve normally distributed shocks
The results are based on 990 repetitions in the Monte Carlo study. The black line denotes the �nite
sample distribution for the QML estimator (estimated by kernel methods) and the red (gray) line is the
normal distribution.
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Figure 7: Distributions for the QML estimator with �ve Laplace distributed shocks
The results are based on 989 repetitions in the Monte Carlo study. The black line denotes the �nite
sample distribution for the QML estimator (estimated by kernel methods) and the red (gray) line is the
normal distribution.
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