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Abstract

This paper extends two optimization routines to deal with objective functions for DSGE
models. The optimization routines are i) a version of Simulated Annealing developed by
Corana, Marchesi & Ridella (1987), and ii) the evolutionary algorithm CMA-ES developed by
Hansen, Müller & Koumoutsakos (2003). Following these extensions, we examine the ability
of the two routines to maximize the likelihood function for a sequence of test economies.
Our results show that the CMA-ES routine clearly outperforms Simulated Annealing in its
ability to �nd the global optimum and in e¢ ciency. With 10 unknown structural parameters
in the likelihood function, the CMA-ES routine �nds the global optimum in 95% of our
test economies compared to 89% for Simulated Annealing. When the number of unknown
structural parameters in the likelihood function increases to 20 and 35, then the CMA-ES
routine �nds the global optimum in 85% and 71% of our test economies, respectively. The
corresponding numbers for Simulated Annealing are 70% and 0%.
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1 Introduction

During the last 20 years, DSGE models have become one of the leading frameworks for developing
micro founded macroeconomic models. From the simple neoclassical growth model, large DSGE
models have been developed. Recent examples are the models by Smets & Wouters (2003),
Christiano, Eichenbaum & Evans (2005), Altig, Christiano, Eichenbaum & Linde (2005), and
Justiniano & Primiceri (2008). The construction and evaluation of these large models have
fuelled a desire among researchers to estimate a subset or all of the structural parameters in
these models. However, DSGE models are very complex due to the use of rational expectations
and the many restrictions imposed on the structural parameters. For instance, a unique and
stable solution does not exist for all combinations of the structural parameters in many DSGE
models. Thus, restricting the focus to unique and stable solutions may imply that the parameter
space for these DSGE models is a non-convex set. A non-convex and high dimensional parameter
space severely complicates any attempt to optimize an objective. Moreover, objective functions
of DSGE models often have many local optima, and this fact further complicates the optimization
problem. Hence, estimating DSGE models by classical inference, i.e. by Maximum Likelihood,
GMM, SMM, or Indirect Inference, is a very challenging task. The renewed focus on Bayesian
estimation methods have so far been a way to get around this task because Bayesian estimation
methods simply update the prior distributions to get the posterior distributions, and this does
not involve optimization.

This paper examines the ability of two optimization routines to �nd the global optimum of the
likelihood function for a representative DSGE model at many di¤erent parameter con�gurations.
We restrict our focus to global optimization routines that rely on simulation. Two reasons
motivate this choice. First, these routines are able to deal with the high dimensional and non-
convex parameter space in an easy and intuitive way. Second, these routines do not rely on the
presence of �rst-order or even second-order derivatives of the likelihood function. This feature
is convenient if the likelihood function is evaluated by a particle �lter, where the resampling
step generates discontinuities in the likelihood function (Fernández-Villaverde & Rubio-Ramírez
(2007), Rossi (2004)). Thus, a gradient based optimization routine is likely to perform poorly
in this case.

We study a version of Simulated Annealing developed by Corana et al. (1987) and the evolu-
tionary algorithm CMA-ES developed by Hansen et al. (2003). The choice of these optimization
routines is motivated by the fact that they represent two di¤erent principles which are both
widely used within the optimization literature. We choose to focus on the version of Simulated
Annealing developed by Corana et al. (1987) because Go¤e, Ferrier & Rogers (1994) show that
it performs well on a model with rational expectations. However, this version of Simulated
Annealing is in principle not able to handle a non-convex parameter space so we extend the
routine to meet this requirement. This is done by adding a resampling step to the algorithm
if an unde�ned point is located. The CMA-ES routine is chosen because: i) it should be able
to handle a non-convex parameter space, ii) it does well on non-separable multimodal objec-
tive functions (Hansen & Kern (2004)), and iii) it is better than other evolutionary algorithms
on multimodal objective functions (Kern, Muller, Hansen, Buche, Ocenasek & Koumoutsakos
(2004)). However, our test study shows that the CMA-ES routine breaks down due to the highly
non-convex search space when there are 20 or more unknown structural parameters in the likeli-
hood function. Hence, we extend the CMA-ES algorithm so it can optimize likelihood functions
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even for large DSGE models. This is done by modifying the updating rule for the covariance
matrix in the evolutionary search distribution.1

Our test study reveals a number of interesting results for the extended versions of Simulated
Annealing and the extended CMA-ES routine. First, the CMA-ES routine clearly outperforms
Simulated Annealing in all tests. That is, the CMA-ES routine �nds the global optimum more
often than Simulated Annealing does, and in addition the CMA-ES routine uses notably fewer
function evaluations than Simulated Annealing. Hence, the CMA-ES routine is the most e¢ cient
optimization routine of the two. Second, with 10 unknown structural parameters in the likelihood
function, the CMA-ES routine �nds the global optimum in 95% our test economies compared
to 89% for Simulated Annealing. When the number of unknown structural parameters in the
likelihood function increases to 20 and 35, then the CMA-ES routine �nds the global optimum
in 85% and 71% of the test economies, respectively. The corresponding numbers for Simulated
Annealing are 70% and 0%.

We emphasize that this paper does not take a stand in the discussion of whether researchers
should use classical or Bayesian estimation methods in relation to DSGE models. The use of
optimization algorithms is unavoidable for the classical researcher but also useful for the Bayesian
researcher. For instance, the Bayesian estimation procedures described by An & Schorfheide
(2007) require a maximization of the likelihood function multiplied by the prior distributions to
get good starting values for the MCMC analysis. Hence, the routines presented in this paper
should be of interest to both a classical and a Bayesian researcher.

The rest of this paper is organized as follows. Section 2 describes the optimization problem
in relation to DSGE models. Section 3 presents the Simulated Annealing algorithm and our
extension of this optimization routine. The CMA-ES routine and our modi�cation of this routine
are described in section 4. We set up a DSGE model in section 5 and construct a sequence of
"test economies". The ability of the optimization routines to maximize the likelihood functions
for these test economies is reported in section 6. Section 7 concludes.

2 The optimization problem

We start by describing the problem which must be solved by the two optimization routines. This
is done by considering a minimization problem which is without loss of generality. Let Q (x)
denote a non-linear objective function mapping from the search space S � Rn into R. Then the
problem is

Min
x2S

Q (x) : (1)

In our case, Q (x) = �L (x), where L (x) is the likelihood function, and the n-dimensional vector
x contains the structural parameters of the DSGE model. The search space (S) is constructed
based on constraints related to the model. In addition to the constraints ensuring unique and
stable solutions, many of the structural parameters are also subject to sign restrictions. More-
over, the non-negativity restrictions on quantities such as consumption, production, etc. may

1Fortran and Matlab versions of the two extended optimization routines are available from the author�s home-
page.
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also impose restrictions on the structural parameters. Furthermore, conditions for ensuring �-
nite objective functions for �rms and households also reduce the parameter space. Finally, we
have to take into account that in general an explicit expression for the search space cannot be
derived because DSGE models are solved numerically. We take note of this fact and henceforth
only require that we are able to evaluate numerically whether a particular value of x is in S.

Before we describe the two optimization routines, a small technical comment is in order.
One attempt to deal with points outside S might be to simply assign the objective function an
arbitrary large value when x =2 S. This ensures that the minimization routine never searches
for optimal points outside S and furthermore generates a convex search space. The latter
implies that standard optimization routines can be used. However, these optimization routines
should not be gradient based routines because the coding generates strong kinks in the objective
function. Furthermore, this procedure also has the drawback that it may generate arti�cial local
minima in the objective function and thus make the objective function even harder to optimize.
We return to this point in the next sections, and we show that assigning unde�ned points an
arbitrary large value is suboptimal and may reduce the performance of the two optimization
routines considered.

3 Simulated Annealing

3.1 The basic algorithm

The idea behind the Simulated Annealing algorithm is to mimic the behavior of a physical system
in thermodynamic equilibrium which when cooled su¢ ciently slowly (annealing) converges to
the state with the lowest energy level, i.e. the lowest value of the objective function. More
speci�cally, Simulated Annealing works by letting "a random walker" move around in the n
dimensional search space according to the Metropolis criterion. This criterion always accepts
moves which decrease the value of the objective function (M Q < 0), and uphill moves (M Q > 0)
are accepted with the probability exp f� M Q=Tg. Here, T is a parameter which denotes the
temperature of the system. Thus, a low temperature value and/or a large increase in the
objective function increase the probability of rejecting an uphill move. Because some uphill
moves are accepted for T > 0, the algorithm is able to escape from local optima. By letting the
temperature gradually tend to zero, more and more uphill moves are rejected and the algorithm
gradually zooms in on the global minimum at successful termination (Salamon, Sibani & Frost
(2002)).

The de�ning feature for the version of Simulated Annealing developed by Corana et al. (1987)
is the sampling from n uniform and independent probability distributions in order to explore
the search space. The objective function is required to be bounded and well-de�ned in the entire
search space, but it does not need to be smooth or even continuous. The search space is de�ned
by letting a (h) � x (h) � b (h) for all h, where a (h) and b (h) are the lower and upper bounds,
respectively. In addition to these bounds, a starting value x =

�
x (1) ::: x (n)

�
2 S and

initial step sizes v =
�
v (1) ::: v (n)

�
must be provided. The algorithm has �ve parameters

(NT ; NS ; rT ; T;N�), and we discuss proper values for each of them after the presentation of the
algorithm.
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In order to explain how the algorithm works, a pseudo-code for one iteration is presented in
�gure 1.

< Figure 1 about here >

Let m = 1 and j = 1 and look at the loop indexed by h which runs through all the
n parameters in the objective function. For the �rst parameter (h = 1), we draw from the
uniform distribution u(h) 2 [�1; 1] scaled by the step size v(h). The values for all the remaining
parameters of the objective function are unchanged. The change in the parameters from x to
x0 is referred to as a "move" for the random walker. If x0 (h) =2 [a (h) ; b (h)], a new value for
x0 (h) is generated by drawing uniformly from [a (h) ; b (h)]. Based on the Metropolis criterion,
the suggested move to x0 is either accepted or rejected. The procedure is then repeated for
the second parameter (h = 2), the third parameter (h = 3) ; and so forth. Thus, when the loop
indexed by h is completed, attempts have been made to move along each of the n directions in the
search space. We repeat this procedure NS times, meaning that we let the random walker travel
NS times through every direction of the search space. After this "walk" for the �rst random
walker, the variances for each of the n search distributions are adjusted such that approximately
50% of the suggested moves are accepted. This is done by decreasing the variance for the j�th
distribution if too many suggested moves are rejected along the j�th dimension of the search
space, and vice versa. Corana et al. (1987) implement this criterion by the rule

p (h) =
Number of accepted moves in direction h

Number of accepted and rejected moves in direction h
(2)

~v (h)new =

8>>><>>>:
v (h)

�
1 + 2p(h)�0:60:4

�
if p (h) > 0:6

v (h)

�
1

1+2
0:4�p(h)

0:6

�
if p (h) < 0:4

v (h) otherwise

for all h (3)

v (h)new =

�
~v (h)new ~v (h)new � b (h)� a (h)

b (h)� a (h) otherwise
for all h (4)

After having adjusted the n search distributions, the second random walker (m = 2) takes a
similar walk in the search space. The �rst iteration is complete when all NT random walkers
have completed their walks in the search space. We denote the value of the objective function
after all NT random walkers by Q� and the optimal value of the objective function so far by
Q�opt.

Before the start of the next iteration, the parameter controlling the temperature is reduced
to Tnew = rTT where rT 2 (0; 1). With this new temperature, the procedure above is repeated
and started at x = x�opt where Q

�
opt = Q

�
x�opt

�
. The lower temperature makes uphill move less

likely and thereby increases the number of rejected moves, leading to smaller step sizes. The
algorithm is terminated when Q� � Q�opt � � and jQ� �Q�uj � �Q for u = 1; :::; N� where �
is a small number, and Q�u denotes the value of the objective function from the u�th previous
iteration.2

2We refer to Corana et al. (1987) for a full description of the algorithm for Simulated Annealing in pseudo-codes.
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Thus, the basic idea behind Simulated Annealing is �rst to explore the entire search space.
This is done with large step sizes and a high temperature, which implies that many uphill
moves are accepted. As the temperature and the step sizes are gradually decreased, the routine
zooms in on the most promising area of the search space. The two parameters NS and NT
determine how well the objective function is explored for a given temperature and how often
the variances in the search distributions are adjusted. Corana et al. (1987) recommend NS = 20
and NT = max (100; 5n). The value for NT is rather large and motivated by the fact that the
theoretical foundation for Simulated Annealing requires simulating the frequency distribution
for the objective function (the so-called Boltzmann distribution) for each temperature of the
system. A too low value of NT may give a bad approximation of this distribution and hence
reduce the performance of the algorithm.

The parameter rT determines how slowly the temperature is reduced. Therefore, this para-
meter is also of great importance because the theoretical foundation for Simulated Annealing
requires that the system is cooled su¢ ciently slowly in order to ensure that the routine termi-
nates in the global minimum. If the system is cooled too quickly, Simulated Annealing might
terminate in a local minimum. Corana et al. (1987) recommend rT = 0:85.

The initial temperature (T ) must be set such that the objective function is well searched
in the beginning. Go¤e et al. (1994) suggest setting the initial temperature such that the step
sizes have the desired length after the �rst 2-4 iterations. If the step sizes after these iterations
are too small, then the initial temperature should be increased and vice versa. Finally, Corana
et al. (1987) recommend letting N� = 4 and �Q = 10�4 in the stopping criteria.

3.2 Simulated Annealing for DSGE models

The present version of Simulated Annealing is, strictly speaking, not able to handle points in the
search space where the objective function is unde�ned. This could be points in the search space
where the DSGE model does not have a stable and unique solution, or where other constraints
are violated. We extend the routine to apply to non-convex search spaces simply by resampling
unde�ned points. That is, if a point is not in the search space, then we discharge the point and
draw a new point. In this way, we say that the random walker is replaced by the "informed"
random walker because the latter is informed about the domain of the DSGE model. To control
the time spent on resampling, an upper bound (Nr) is imposed on the number of times we are
willing to resample along a given dimension. If this upper bound is reached, then we do not
move along the h�th dimension. Instead, we try to �nd a move along dimension h + 1, or if
h = n, a new "walk" is started.

The alternative to resampling unde�ned points is to give the objective function an arbitrary
large value at such points and use the version of Simulated Annealing with the "uninformed"
random walker. Actually, this is the way the rational expectation model in Go¤e et al. (1994)
is optimized. However, this procedure is clearly inferior to resampling unde�ned moves because
without resampling, unde�ned moves are incorrectly recorded as rejected moves even though
the moves are unde�ned. This leads to positive biases in the number of rejected moves which
through (3) induces negative biases in the variances for the search distributions. That is, the
step sizes may rapidly become too small if the number of unde�ned moves is large. This may
reduce the performance of the routine because too small step sizes result in an improper search
of the parameter space, hence increasing the probability of ending up in a local minimum. Note

6



also that we cannot solve this problem by starting with a very high temperature because of the
arbitrary large function value assigned to unde�ned points in the search space.

4 The CMA-ES optimization routine

4.1 The basic routine

This section presents the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) op-
timization routine. The basic idea behind the routine is to approximate the inverse of the
objective function�s Hessian matrix. This is not done based on the use of gradients or second
order derivatives but by simulation. Hence, the routine can handle very complicated objective
functions which have: i) discontinuities, ii) complex constraints, iii) noise, iv) local optima, and
v) a non-convex search space.

The algorithm works in the following way. For each iteration, a set of � points in the search
space is found by sampling from an n-dimensional multivariate normal distribution. These �
points constitute a generation. Thus, generation g + 1 is created by

x
(g+1)
i s N

�
hxi(g)w ; �(g)

2

C(g)
�

i = 1; :::; �; (5)

where hxi(g)w 2 Rn and �(g)2C(g) 2 Rn�n are the mean vector and the covariance matrix, re-
spectively, in generation g. The lower and upper bounds for the search space are denoted by
a (h) � x (h) � b (h) for all h. If x(g+1)i violates these bounds or any of the other constraints,

then the routine resamples this point until a value of x(g+1)i is found where the objective function
is de�ned. Based on the � points in generation g+1, the mean vector and the covariance matrix
are updated to improve the search in the next iteration where generation g + 2 is created in a
similar manner.

The mean is updated based on the best � � � points from generation g + 1 according to

hxi(g+1)w =
P�
i=1wix

(g+1)
i:� ; (6)

where the weights fwig�i=1 are strictly positive and sum to one. The notation x(g+1)i:� refers to
the point which yields the i�th lowest value of the objective function among the � points in
generation g + 1.

The objective when updating the covariance matrix is to �t the search distribution to the
contour lines of the objective function. However, it is a di¢ cult task to estimate the (n+ 1)n=2
parameters in the covariance matrix in a fast and reliable way. The procedure adopted in the
CMA-ES routine is to split the problem into two parts and update the unscaled covariance matrix�
C(g)

�
and the global step size

�
�(g)

�
separately. Convenient starting values for each of these

parameters is to let �(0) = 1 and let C(0) be a diagonal matrix with the appropriate variances.
That is, the search is started by sampling from n independent normal distributions where the
variances are determined such that we get a proper search along each of the n dimensions.
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The update of C(g) is given by

C(g+1) = (1� ccov)C(g)| {z }+ ccov�cov

�
p(g+1)c

�
p(g+1)c

�0
+
�
1�H(g+1)

�

�
cc (2� cc)

�
| {z } (7)

term 1 term 2

+ccov

�
1� 1

�cov

�P�
i=1

wi

�(g)
2

�
x
(g+1)
i:� � hxi(g)w

��
x
(g+1)
i:� � hxi(g)w

�0
| {z }

term 3
where

p(g+1)c = (1� cc)p(g)c +H(g+1)
�

q
cc (2� cc)�eff

 
hxi(g+1)w � hxi(g)w

�(g)

!
and p(0)c = 0 2 Rn (8)

H(g+1)
� =

8<: 1 if

p(g+1)�

p
1�(1�c�)2(g+1)

<
�
1:5 + 1

n�0:5

�
E (kN (0; I)k)

0 otherwise
(9)

The point of departure for C(g+1) is the unscaled covariance matrix in the previous generation,
C(g). This is term 1 in (7). Term 2 in (7) exploits the information from the correlation between
generations. This is done by setting up the evolutionary path (p(g+1)c ), which is a sum of

successive steps. The term p
(g+1)
c

�
p
(g+1)
c

�0
is of dimension n� n and has rank 1, and this part

of the update is therefore based on rank 1 information. The third term in (7) helps to improve
the update of the covariance matrix if the number of points in a generation is large. The third
term has rank min(n; �), and this part of the update is thus based on information of higher rank
than 1. For further details and interpretations, we refer to Hansen et al. (2003), Muller, Hansen
& Koumoutsakos (2002), and Hansen (2005).

The update of the global step size is done based on another evolutionary path, denoted
p
(g)
� . If the length of this path is short, then consecutive steps of p

(g)
� for g = f1; 2; :::g tend

to cancel each other out. That is, consecutive steps of p(g)� are negatively correlated, and the
step size should be decreased in this case. On the other hand, a long evolutionary path means
that consecutive steps of p(g)� for g = f1; 2; :::g tend to point in the same direction, producing
positively correlated steps. The step size should be increased in this case. The optimal situation
is to have consecutive steps of p(g)� which are approximately uncorrelated. The length of p(g)�
is measured in relation to the length of an evolutionary path under a random selection of
points.3 This benchmark is useful because under random selection, consecutive steps of p(g)� are
uncorrelated as desired. The speci�c expression for p(g+1)� used in the CMA-ES routine is given
by

p(g+1)� = (1� c�)p(g)� +
p
c� (2� c�)B(g)D(g)�1

�
B(g)

�0 p�eff
�(g)

�
hxi(g+1)w � hxi(g)w

�
(10)

3A random selection of points means that we simply include points of x(g)i without paying attention to the
function value these points generate. That is, x(g)i:� = x

(g)
i .
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where p(0)� = 0 2 Rn. The orthogonal matrix B(g) and the diagonal matrix D(g) are derived
from a principal component analysis of C(g), i.e. C(g) = B(g)D(g)2

�
B(g)

�0
. For any realized

sequence of
�
C(g)

	1
g=1
, it holds that p(g+1)� � N (0; I) under random selection, given p(0)� �

N (0; I). Hence, for the update of �(g), the length of p(g+1)� is compared to its expected length
E (kN (0; I)k) by the relation

ln
�
�(g+1)

�
= ln

�
�(g)

�
+

c�
d�E (kN (0; I)k)

�p(g+1)�

� E (kN (0; I)k)
�

(11)

Thus, if the selection of points in the CMA-ES routine based on their function values induces a
too long or too short evolutionary path, then the value of �(g+1) is either increased or decreased,
respectively.

The CMA-ES routine terminates successfully if the change in the function value is less than
�Q. The change in the function value is measured by the di¤erence between the largest and the
smallest value of the objective function in a sample consisting of the previous generation and
the smallest values from the previous 10+d30n=�e generations. The routine may also terminate
successfully if the changes in all of the objective function�s parameters are less than �x. This

change is measured by �max
�
jpc (h)j ;

p
C (h; h)

�
for h = f1; :::; ng.

Default parameter values for the CMA-ES routine are4

� = 4 + b3 ln (n)c � = b�=2c wi=1;:::;� =
ln (�+ 1)� ln (i)Pn
j=1 ln (�+ 1)� ln (j)

(12)

�eff =
1Pn
i=1w

2
i

�cov = �eff c� =
�eff + 2

n+ �eff + 3
(13)

d� = 1 + 2max

 
0;

r
�eff � 1
n+ 1

� 1
!
max

0@0:3; 1� n

min
�
gmax;

Qmaxeval
�

�
1A+ c� (14)

cc =
4

4 + n
ccov =

1

�cov

2�
n+

p
2
�2 + �1� 1

�cov

�
min

 
1;

2�eff � 1
(n+ 2)2 + �eff

!
(15)

Here, gmax denotes the maximum number of generations, and Qmaxeval denotes the maximum
number of function evaluations. Only the parameter � should be controlled by the researcher.
Hansen & Kern (2004) show that increasing the value of � improves the global search properties
and the robustness of the routine.

No convergence for the routine occurs if: i) the principal component analysis C(g) = B(g)

D(g)2
�
B(g)

�0
fails, ii) any eigenvalue in D(g) is negative or extremely large, iii) the maximal

number of function evaluations or iterations has been reached, iv) changes in the parameters are
larger than a prespeci�ed upper bound, or v) the variances in the search distribution get too
small along a given dimension.

4These values are taken from version 2.34 of the CMA-ES routine as implemented by Nikolaus Hansen in
Matlab.
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Finally, we return to the procedure where unde�ned points are not resampled but assigned
an arbitrary large value. Adopting this procedure in the CMA-ES routine corresponds to reduc-
ing the e¤ective value of � because we get fewer real function evaluations in each generation.
The lower e¤ective value of � reduces the global search capabilities of the routine and thereby
increases the probability of ending up in a local minimum. The situation is even worse if some of
the unde�ned points enter into the � best points in a generation which may easily occur at the
beginning of a search. The problem is then that the unde�ned points a¤ect the updated values
for the mean and the covariance in the search distribution even though the objective function
is not de�ned for these points. Thus, unde�ned points may distort the search distribution in
an unpredictable way. Hence, it is clearly optimal to resample unde�ned points in the CMA-ES
routine.

4.2 The CMA-ES routine for DSGE models

The updating scheme for the covariance matrix in (7) - (11) performs poorly when optimizing
the likelihood function for a DSGE model with 20 or more unknown parameters. This is due to
the fact that � increases very rapidly during the �rst 5-10 iterations of an optimization process,
in particular if � has a medium or large value. This results in very large values for � at the
beginning of the search. Although a large global step size improves the global search capabilities
of the routine, too large step sizes cause problems in our context because they make it extremely
time consuming, if at all possible, to avoid unde�ned points for the objective function. During
preliminary tests, it often happened that the optimization routine simply got stuck and never
proceeded to the next generation because a high value of � made it impossible for the routine
to avoid unde�ned points.

Based on these results, we extend the updating scheme for � in (10) and (11) as follows. Let
�1 denote the number of times we observe points where x

(g)
i =2 [a;b] in generation g, and let

�2 denote the number of times where other restrictions are violated in generation g. Then we
introduce the following adjustment for the value of the global step size (�):5

if �1 > �� 500 then � = 0:9� and set �1 = 0 (16)

if �2 > �� 500 then � = 0:9� and set �2 = 0 (17)

In other words, each time we observe more than ��500 points outside [a;b] or more than ��500
points where other constraints are violated, then the global step size � is reduced with 10%.
The reason we choose to consider points outside [a;b] on their own is that these constraints
can be examined in a very fast manner without calculating the value of the objective function.
The e¤ect of this modi�cation is typically only present in the �rst 5-10 iterations where the
covariance matrix C(g) is estimated poorly. As an additional precaution against too large values
for � we also impose an upper bound of 10 on �.6

5The limit of � � 500 could be increased to � � 5000 or an even higher number at the cost of more function
evaluations.

6Limiting the upper bound of � to be 0:1 or an even smaller number may also be useful if a truly local search
is needed, for instance in the neighborhood of a potential global optimum.
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To evaluate the impact of this change in the updating scheme for �, a small test is carried
out.7 Here, we use the fact that the original CMA-ES routine works without any problems when
there are only 10 unknown parameters in the likelihood function. First, we test the ability of
the original version of the CMA-ES algorithm to optimize a set of likelihood functions. Then
a similar test is done for the modi�ed version of the CMA-ES routine. Comparing the results,
we conclude that the performance of the two versions of CMA-ES routine are almost identical.
Hence, the modi�cation of � in (16) and (17) serves as a convenient adjustment to the update
of � in (10) and (11).

5 A DSGE model

In order to test the optimization routines, a sequence of "test economies" is needed. We construct
these economies by considering a DSGE model at many di¤erent combinations of the structural
parameters. The idea is then to simulate data series from these economies and, based on these
data, to optimize the likelihood function. For each of the likelihood functions, we know by
construction the true optimum since we know which set of structural parameters generated
the simulated data. Thus, the ability of the optimization routines to maximize the likelihood
function is then easy to examine. The construction of these test economies is the topic of the
next two subsections.

5.1 The model

The DSGE model we use has the same basic structure as the models developed by Smets &
Wouters (2003), Christiano et al. (2005), Altig et al. (2005), and Schmitt-Grohé & Uribe (2006).
We refer to these papers for additional details. When presenting our model, we use the notation
from the macroeconomic literature. Hence, the notation in this section is unrelated to the
notation used for the optimization routines in the previous sections.

The households: We assume the existence of a representative family with a continuum of
members. The family�s preferences are speci�ed by a utility function de�ned over per capita
consumption (ct) and per capita labor e¤ort (ht)

Ut = Et

1X
l=0

�l"h;t+l

h
(ct+l � bct�1+l)1��4 (1� ht+l)�4

i1��3 � 1
1��3

; (18)

where � 2 [0; 1[ is the subjective discount factor, �3 2 ]0; 1[[ ]1;1[, and �4 2 ]0; 1[. The process
for "h;t is speci�ed as an AR(1)-process for the gross growth rate �"h;t+1 � "h;t+1="h;t, i.e.

ln
�
�"h;t+1

�
= �"h ln

�
�"h;t

�
+ �"h;t+1; (19)

where �"h 2 ]�1; 1[. The error term �"ht+1 is assumed to be independently and identically dis-
tributed according to the normal distribution, denoted �"h;t+1 s NID (0; V ar (�"h;t+1)). The
parameter b 2 [0; 1] in (18) speci�es the level of the internal habit e¤ect for the consumption

7This test is done along the same lines as the tests described in section 6.
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good. This good is constructed from a continuum of di¤erentiated goods (ci;t; i 2 [0; 1]) and the
aggregation function

ct =

�Z 1

0
c
��1
�

i;t di

� �
��1

: (20)

The �rst constraint on the households is given by the labor supply
�
hjt

�
to market j 2 [0; 1]

hjt =

�
wj;t
wt

��~�
hdt ; (21)

where i) wj;t is the real wage in the j�th labor market, ii) wt is the real wage index, and iii) hdt
is a measure of the aggregated labor demand.

The second constraint says that wages are not set optimally in a fraction ~� 2 [0; 1[ of
randomly chosen labor markets. In these labor markets, wages are set according to the rule
Wj;t = Wj;t�1 (�z��t�1)

~�. The parameter ~� 2 [0; 1] measures the degree of indexation to the
steady state gross growth rate in real wages (�z�) and the gross in�ation rate in the previous
period (�t�1 � Pt�1=Pt�2).

The third constraint is the law of motion for the physical capital stock (kt)

kt+1 = (1� �) kt + it
�
1� S

�
it
it�1

��
: (22)

The parameter � 2 [0; 1] is the depreciation rate for the capital stock, and it is gross investments.
The function S

�
it
it�1

�
= �

2 (
it
it�1

� �i)
2 with � � 0 adds investment adjustment costs to the

economy based on changes in the growth rate of investments. The value of �i is determined in
such a way that there are no adjustment costs along the economy�s balanced growth path.

The fourth constraint is the households�real period by period budget constraint

Etrt;t+1x
h
t+1 + ct (1 + l (vt)) + �

�1
t (it + a (ut) kt) +m

h
t + nt

=
xht +m

h
t�1

�t
+ rkt utkt +

R 1
0wj;thj;tdj + �t: (23)

The function l (vt) determines the transactional costs imposed on the households based on the
velocity vt � ct=m

h
t , where m

h
t denotes the amount of real money held by the households.

Equation (23) also introduces capital adjustment costs through the function a (ut), where ut is
the capacity utilization rate of the capital stock. We let

l (vt) = �1vt + �2=vt � 2 (�1�2)0:5 (24)

a (ut) = 1 (ut � 1) +
2
2
(ut � 1)2 ; (25)

where �1 � 0 and �2 are subject to the constraint that l (vt) � 0, and ut is normalized to 1 in
the steady state. Furthermore, we require that 1 � 0 and 2 � 0. The left hand side of (23)
is the households�total expenditures in period t which are spent on: i) state-contingent claims�
Etrt;t+1x

h
t+1

�
, ii) consumption including transaction costs (ct [1 + l (vt)]), iii) investments and

costs of providing capital services to the �rms
�
��1t (it + a (ut) kt)

�
, iv) real money holdings
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�
mh
t

�
; and transfers (nt) to the government. The right hand side of (23) is the households�total

wealth in period t which consists of: i) pay-o¤ from state-contingent assets purchased in period
t � 1

�
xht =�t

�
, ii) real money holdings from the previous period

�
mh
t�1=�t

�
, iii) income from

selling capital services to the �rms
�
rkt utkt

�
, iv) labor income

�R 1
0wj;thj;tdj

�
, and v) dividends

received from the �rms (�t).

The �rms: The production in the economy is undertaken by a continuum of �rms, indexed
by i 2 [0; 1]. All �rms have access to the same technology given by

ysi;t =

�
k�i;t (zthi;t)

1�� �  z�t if k�i;t (zthi;t)
1�� �  z�t > 0

0 else
(26)

where � 2 ]0; 1[. Here, ki;t and hi;t denotes physical capital and labor service used by the i�th
�rm, respectively. We assume that the �rms earn zero pro�t in the steady state. The demand

at �rm i from the j�th labor market
�
hji;t

�
is the solution to the problem

Min
hji;t�0

Cost =

Z 1

0
Wj;th

j
i;tdj St:

�Z 1

0

�
hji;t

� ~��1
~�
dj

� ~�
~��1

� hi;t: (27)

Here, Wj;t is the nominal wage paid to labor services in labor market j.
The variable zt in (26) denotes an aggregate neutral technology shock, and z�t is a shock to

the �rms �xed costs,  > 0. The relation between these shocks is assumed to be z�t � �
�=(1��)
t zt.

Letting �z;t � zt=zt�1 and ��;t � �t=�t�1, we assume that

ln

�
�z;t+1
�z

�
= �z ln

�
�z;t
�z

�
+ �z;t+1 (28)

ln

�
��;t+1
��

�
= �� ln

�
��;t
��

�
+ ��;t+1; (29)

where �z;t+1 s NID (0; V ar (�z;t+1)) and ��;t+1 s NID (0; V ar (��;t+1)). We also require that
�z 2 ]�1; 1[ and �� 2 ]�1; 1[.

The �rms maximize the present discounted value of their dividend payments over ki;t, hi;t;
and Pi;t. When doing so, they face the following four constraints. The �rst is the restriction on
aggregate demand

ydt = ct (1 + l (vt)) + �gt +�
�1
t (it + a (ut) kt) ; (30)

where �gt is public spending. The second restriction is a cash-in-advance constraint on a fraction
� of the �rms�payments to the workers. Thus, the money demanded by the i�th �rm is mf

i;t =
�wthi;t. The third constraint is the budget restriction giving rise to the expression for real
dividends from �rm i in period t, denoted �i;t

�i;t = (Pi;t=Pt) y
d
i;t � rkt ki;t � wthi;t �m

f
i;t

�
1�R�1t;1

�
(31)

�Etrt;t+1xfi;t+1 +m
f
i;t � �

�1
t

�
xfi;t +m

f
i;t�1

�
:
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The �rst term in (31) denotes the real revenue from the sale of the i�th good. The �rm�s
expenditures are allocated to: i) purchase of capital services

�
rkt ki;t

�
, ii) payments to the workers

(wthi;t), and iii) opportunity costs of holding money due to the cash-in-advance constraint�
mf
i;t

�
1�R�1t;1

��
. The �nal term in (31) is the change in the �rm�s real �nancial wealth.

The fourth constraint introduces staggered price adjustments. We assume that in each
period, a fraction � 2 [0; 1[ of randomly picked �rms are not allowed to set the optimal nominal
price of the good they produce. Instead, these �rms update their prices according to the rule
Pi;t = Pi;t�1�

�
t�1 where � 2 [0; 1].

The government: We assume the following process for public spending, denoted �gt

�gt = wtgt (32)

ln

�
gt+1
g

�
= �g ln

�
gt
g

�
+ �g;t+1; (33)

where �g;t+1 s NID (0; V ar (�g;t+1)) and �g 2 ]�1; 1[. Part of public spending is �nanced by
seigniorage and the remaining part by lump-sum taxes.

The central bank: We follow Andreasen (2008b) and specify monetary policy by letting

lnRt;1 = lnRss;1 + �R ln

�
Rt�1;1
Rss;1

�
(34)

+
1P
j=0

djr

 
��Et ln

 
�t+1+j
��t+1+j

!
+ �yEt ln

 
ydt+1+j=y

d
t+j

�y

!!
;

where �R 2 [�1; 1], �� � 0, �y � 0 and dr 2 [0; 1[. Here, ��t is a variable in�ation rate target,
and �y is the growth rate for output in steady state. We assume that

��t = (1� !�)
1P
j=0

(!�)j
�
�t�1�j +

���;t�j
1� !�

�
; (35)

where !� 2 [0; 1[ and ���;t s NID (0; V ar (���;t)).

5.2 Determining the structural parameters

The �nal step in constructing the test economies is to determine the values for the structural
parameters. To make our test economies as representative as possible for the DSGE models in
the literature, we adopt the following strategy: i) select appropriate sample intervals for each
of the structural parameters based on estimation and calibration results in the literature, and
ii) draw uniformly from these intervals to generate a total of 100 test economies. The sample
intervals are determined based on the results in Christiano et al. (2005), Altig et al. (2005), and
Schmitt-Grohé & Uribe (2006) where possible and shown in the table 1.

< Table 1 about here >
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As pointed out by Andreasen (2008a), certain requirements need to be ful�lled in DSGE
models with stochastic and deterministic trends in order to ensure that the households� and
the �rms�objective functions are �nite. Our DSGE model has the same key properties as the
model in Andreasen (2008a), and hence the results in Andreasen (2008a) also apply to our
DSGE model. With normally distributed shocks and �3 not tending to 1, proposition 1(a) in
Andreasen (2008a) implies the following conditions

exp

(
V ar (�"h;t)

2
�
1� �"h

�2
)
� < 1 (36)

exp

(
V ar (�"h;t)

2
�
1� �"h

�2
)
exp

�
F 2�V ar (��;t)

2 (1� ��)2

�
exp

�
F 2z V ar (�z;t)

2 (1� �z)2

�
��F��;ss�

Fz
z;ss < 1 (37)

F� � (1� �4) (1� �3)
�

1� � (38)

Fz � (1� �4) (1� �3) (39)

besides a boundedness condition. Andreasen (2008a) shows that this boundedness condition is
satis�ed if we assume that all variables in the economy are never too far away from the economy�s
growth path. Given this assumption, all our 100 test economies have �nite objective functions
provided that (36) and (37) hold. We therefore impose (36) and (37) when generating our test
economies.

6 The Results

This section studies the performance of the optimization routines. We start by describing the
study design which are common for the tests of both optimization routines. Then results are
reported for the extended version of Simulated Annealing and the extended CMA-ES routine.

6.1 Study design

All the tests of the optimization routines are carried out based on a �rst order approximation
of the DSGE model. Using a more accurate approximation method would make it impossible
to conduct the test of the optimization routines within a reasonable time horizon. However, the
�rst-order approximation is su¢ cient to determine whether the DSGE model has a unique and
stable solution for a particular set of structural parameters and is therefore able to describe the
shape of the non-convex parameter space.

Data series for each of the test economies are generated from simulating series of normally
distributed shocks and the parameters of the test economies. The length of these series is 200
which corresponds to the typical length of macro series available at a quarterly time frequency.
We use the following seven series for our test study: i) the interest rate, ii) the in�ation rate,
and the real growth rates in iii) GDP, iv) consumption, v) investments, vi) public spending, and
vii) labor income. These seven series are referred to as the vector of macro series.
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We do not estimate the unobserved states in the DSGE model when evaluating the likelihood
function. The argument is that estimation of the states introduces a small error in the likeli-
hood function, and the true values of the structural parameters may not exactly maximize the
likelihood function. Thus, if we were to estimate the states it would be impossible to determine
whether deviations in the structural parameters from their true values would be due to: i) errors
in the estimation of the unobserved states (�ltering error) or ii) the failure of the optimization
routines to �nd the global optimum. Therefore, we assume that the initial states and all shocks
to the economy are known when evaluating the likelihood function.

Furthermore, we do not include measurement errors in the test data series because simulated
measurement errors in samples of 200 observations will never have exactly the same means and
variances as the distributions they are generated from. Again, if these measurements were
included, the true structural parameters would not exactly maximize the likelihood function.

Given these conditions, maximizing the likelihood function for the test data series corre-
sponds to carrying out Non-linear Least Squares, or equivalently, GMM with the weighting
matrix equal to the identity matrix. Hence, the tests of the optimization routines below may
also be considered as testing the two routines�ability to minimize the objective function for a
moment based estimator.

In order to test the optimization routines on objective functions with increasing dimension-
ality, we partition the 35 structural parameters in our DSGE model into three groups. The �rst
group consists of the 10 parameters where an A is reported in the second column of table 1.
All the remaining parameters are assumed to be known. The second group consists of all the
parameters in the �rst group and the additional 10 parameters where a B is reported in the
second column of table 1. All the remaining 15 parameters are assumed to be known. Finally,
the third group consists of all 35 parameters. Constructing the three groups of parameters in
this way induces a natural progression of increasing di¢ culty for the optimization routines when
testing the routines on the three groups.

6.2 Results for Simulated Annealing

The test of Simulated Annealing is carried out as follows. For each of the 100 test economies,
starting values for all unknown parameters are generated by sampling uniformly from the sample
intervals in table 1. That is, for each test economy, we generate only one vector of starting values
for the optimization routine. We motivate this test procedure by tractability since studying the
e¤ect of di¤erent starting values would make it impossible to conduct the test within a reasonable
amount of time due to the many functions evaluations used by Simulated Annealing.

We let the initial temperature (T ) be equal to the squared distance between the true seven
macro series and the seven macro series at the starting value for the parameter vector. The
sample intervals in table 1 are used as the initial step sizes (v). Preliminary tests showed that
these values for T and v give desirable step sizes at the beginning of the search. For the value
of rT , which controls the reduction rate in the temperature, we consider the performance of
Simulated Annealing for rT = 0:85 and for rT = 0:90. The former value is the recommended
value in Corana et al. (1987). For the number of random walkers, we test the routine for
NT = f10; 20; 30g in the three cases with 10, 20 and 35 unknown parameters in the likelihood
function. Thus, our values of NT are in all cases lower than the values recommended by Corana
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et al. (1987) which are NT = max (100; 5n) where n is the number of unknown parameters in
the likelihood function. We motivate our choices of NT by tractability of the present study and
in future applications because higher values of NT imply that Simulated Annealing will need
too many function evaluations to make the routine of any practical use. For the remaining
parameters, we let Nr = 10, NS = 20, N� = 4, �Q = 10�6, and we impose no upper bound on
the number of function evaluations. The search intervals for each of the structural parameters
are listed in the �nal column of table 1

<Table 2 about here >

The results of the tests are reported in table 2. We �rst notice that the routine does well
with 10 unknown structural parameters in the likelihood function (n = 10). Here, Simulated
Annealing is able to �nd the global optimum for 85% to 89% of the test economies, depending
on the values of rT and NT . In all the remaining cases, the algorithm also reports successful
termination even though it only �nds local optima. Thus, for 11% to 15% of the test economies,
Simulated Annealing is trapped in local optima.

With 20 unknown parameters in the likelihood function (n = 20), the ability of the routine
to �nd the global optimum is further reduced, in particular for low values of NT . For n = 20,
we also �nd that increasing NT and/or rT signi�cantly improves the performance of the routine.
However, when all of the structural parameters (n = 35 ) in the DSGE model are considered
unknown, the routine is simply unable to �nd the global optimum for any of the 100 test
economies. This breakdown of Simulated Annealing is surprising, and it shows that a larger
value of NT and/or rT is needed with 35 unknown structural parameters in the likelihood
functions.

Finally, we note from table 3 that Simulated Annealing requires a lot of function evaluations
and that this number increases rapidly with the number of unknown parameters in the likelihood
function.

6.3 Results for CMA-ES routine

The test of the CMA-ES routine is carried out as follows. For each of the 100 test economies, we
generate starting values for the unknown structural parameters by sampling uniformly from the
sample intervals in table 1. For each test economy, 10 di¤erent starting values are generated.
Thus, the test of the CMA-ES routine is carried out in a slightly di¤erent way than the test
of Simulated Annealing. The reason being that the CMA-ES algorithm uses notably fewer
function evaluations than Simulated Annealing, and this fact makes it possible to do an extended
test of the CMA-ES routine. Hence, in testing the CMA-ES routine, we perform a total of
10 � 100 = 1000 optimizations. In scheme A, we report the results of all 1000 optimizations.
However, our setup also allows for the construction of a scheme B where only the best value
for a given test economy is reported. That is, we use the CMA-ES routine 10 times with 10
di¤erent starting values on the same test economy, and based on these 10 attempts to optimize
the likelihood function, we only report the best value. Thus, scheme B is very similar to the
test done by Auger & Hansen (2005) which introduces a restarting procedure in relation to
the CMA-ES routine. However, the procedure in Auger & Hansen (2005) deviates from our
procedure because they gradually increase the population size in each restart and make the
number of restarts endogenous.
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We test the performance of the CMA-ES routine for di¤erent sizes of the population para-
meter (�). The values for the function tolerance and the tolerance in the unknown parameters
for the objective function are set equal to 10�6. All the other parameters in the routine are
at their default values, and we allow for an unlimited number of function evaluations and an
unlimited number of iterations.

< Table 3 about here >

Table 3 reports the results for the CMA-ES routine with 10 unknown structural parameters
in the likelihood function. In scheme A, we see that the routine is able to optimize between 78%
and 88% of the likelihood functions. Hence, the performance of the CMA-ES routine corresponds
to the performance of Simulated Annealing for n = 10. But, the CMA-ES routine achieves the
same success rate with notably fewer function evaluations, only about 20; 000 per optimization.
This di¤erence in the number of function evaluations among the two routines is approximately
a factor of 30, meaning that the CMA-ES routine can optimize 30 likelihood functions for every
likelihood function Simulated Annealing optimizes. We also note that increasing the population
size (�) increases the probability of �nding the global optimum and reduces the probability of
ending up in local optima. Both results are in line with the theory for the CMA-ES algorithm
as described above.

In scheme B, we �rst notice that the probability of �nding the global optimum is even
higher than in scheme A. Now, the routine is able to optimize between 91% and 95% of
the test economies. Moreover, the probability of ending up in local optima is very low, and
with a population size of 250, the risk of local optima is completely eliminated. However, this
improved performance of the CMA-ES routine comes at the cost of using 10 times more function
evaluations than in scheme A. Still, the number of function evaluations used in scheme B is
considerably lower than the number of function evaluations used in Simulated Annealing.

< Table 4 about here >

The results with 20 unknown parameters in the likelihood function are reported in table 4. In
scheme A, we �nd that the CMA-ES routine can optimize between 66% and 75% of the likelihood
functions, and the probability of only �nding a local optima is higher than with 10 unknown
parameters. Again, increasing the size of the population (�) improves the performance of the
routine at the cost of more function evaluations. Table 5 also shows that the CMA-ES routine
clearly outperforms Simulated Annealing in its ability to optimize the likelihood functions and in
e¢ ciency. The CMA-ES algorithm uses only about 70; 000 function evaluations per optimization.
Again, the di¤erence in the number of function evaluations is approximately a factor of 30.

In scheme B with 20 unknown parameters in the likelihood function, we �nd that the CMA-
ES routine is able to optimize between 77% and 85% of the test economies. Moreover, the
probability of ending up in local optima may be reduced to between 4% and 6% of the test
economies by setting � � 100.

< Table 5 about here >

In scheme A with 35 unknown parameters, we see that the CMA-ES routine has more trouble
optimizing the likelihood functions, particularly for population sizes less than 50. Increasing the
population size to between 150 and 250 improves the performance of the algorithm considerably,

18



and the routine is then able to optimize between 47% and 58% of the likelihood functions,
respectively. However, this improved performance comes at the cost of using on average between
200; 000 and 250; 000 function evaluations. Still, the CMA-ES routine is much more e¢ cient than
Simulated Annealing and clearly outperforms Simulated Annealing in its ability to optimize the
likelihood functions.

Going from scheme A to scheme B, we observe a large improvement in the performance of
the CMA-ES routine. With a population size of 100, the routine is now able to optimize 71% of
the test economies, and only in 5% of the test economies does the CMA-ES routine report local
optima.

A �nal remark should be made about the CMA-ES routine. In all three test cases, i.e. for
n = f10; 20; 35g, the same pattern appears: increasing the population size from 250 to 500
reduces the routine�s ability to optimize the likelihood functions. To our knowledge, this is a
new result in relation to the CMA-ES routine. However, it is beyond the scope of this paper
to derive optimal values for the population size. But, as a rule of thump we recommend that
the population size in schemes A and B should be at least three times larger than the number
of unknown parameters in the likelihood function (� � 3n). Using this rule, the researcher has
a good chance of �nding the global optimum and only faces a low risk of ending up in local
optima.

6.4 An overall evaluation of the two optimization routines

This section conducts an overall evaluation of the two optimization routines. The �rst interesting
question in relation to Simulated Annealing and the CMA-ES routine is whether they outperform
a standard optimization routine. We examine this question by testing the performance of the
well-known simplex algorithm by Nelder and Mead on the 100 test economies. Points where
the likelihood function is not de�ned are assigned a very large value. This generates a convex
search space but also strong kinks in the objective function. However, the Nelder-Mead simplex
algorithm only relies on function evaluations and is thus able to handle these kinks in the
objective function. This fact is our motivation for choosing the Nelder-Mead simplex algorithm
in advance of derivative based optimization routines. We adopt the same testing strategy for
the Nelder-Mead simplex routine as for the CMA-ES routine because the Nelder-Mead routine
uses relatively few function evaluations.8

<Table 6 about here>

The results for the Nelder-Mead simplex routine are reported in table 6. With 10 unknown
parameters in the likelihood function, the Nelder-Mead routine is able to �nd the global optimum
for 27:7% of the likelihood functions in scheme A. The corresponding number is 66% in scheme
B. However, the routine is not able to �nd any of the global optima with 20 or 35 unknown
parameters in the likelihood function. Moreover, the number of times the routine reports a
local minima is very high. In scheme A, this number is 85% and 95% for 20 and 35 unknown
parameters in the likelihood function, respectively. The corresponding numbers in scheme B are
98% and 99%.

8We use the version of the Nelder-Mead routine implemented in Matlab by the routine fminsearch. We refer
to Lagarias, Reeds, Wright & Wright (1998) for a description of the Nelder-Mead algorithm.
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The number of function evaluations reported in table 6 must be interpreted with great
care. The reason being that we impose an upper bound of 300; 000 function evaluations and
an upper bound of 90; 000 iterations when using the Nelder-Mead routine. If we do not impose
these restrictions, the routine will in some cases continue the search for a very long time without
generating any signi�cant improvement in the value of the likelihood function. Hence, we impose
these upper bounds to keep the test study tractable and not generate a more or less arbitrarily
large number of function evaluations for the routine. We emphasize that the objective functions
are very far from the global optimum in all cases where the routine terminates due to reaching
one of these upper bounds.

Summarizing, Simulated Annealing and, in particular, the CMA-ES routine clearly outper-
form the Nelder-Mead routine in terms of being able to �nd the global optimum for our test
economies.

A second interesting question is whether the researcher can learn anything besides the true
optimum from using Simulated Annealing or the CMA-ES routine? This is indeed the case
because both routines report the variances in the search distributions for each of the unknown
parameters during the optimization process. This helps the researcher to determine whether
one or more structural parameters in the DSGE model are weakly or entirely unidenti�ed even
before the global optimum is found. That is, if the likelihood function is almost �at along a
given dimension, then the variance in the search distribution along this dimension will be very
large. Hence, a researcher does not have to go through a potentially very troubling process of
optimizing a likelihood function which has almost �at segments because such features are easily
revealed during the optimization process. In this case, the researcher may choose to: i) respecify
the model, ii) include more data in the estimation, and/or iii) determine the values of some
parameters by calibration arguments.

Having established that Simulated Annealing and the CMA-ES routine clearly outperform a
standard optimization routine and both provide the researcher with valuable information during
the optimization, we ask the question: which of the two optimization routines do we prefer? At
least four arguments are in favor of the CMA-ES routine. First, it clearly outperforms Simu-
lated Annealing in its ability to �nd the global optimum. Second, the CMA-ES routine is much
more e¢ cient than Simulated Annealing. Third, Simulated Annealing has at least three tuning
parameters (NT ; rT ; T; ), whereas the CMA-ES routine has only one, the population size (�).
Fourth, the CMA-ES routine is very easy to implement in a multiprocessing framework, i.e.
in a setting where two or more cpu�s work on the same problem. The latter is an important
property because the use of multiprocessing can reduce the physical time of an optimization.
Multiprocessing in the CMA-ES routine is normally implemented by letting up to � cpu�s eval-
uate one or more of the required function evaluations needed in each iteration. Besides being
an easy way to implement multiprocessing, it is also a very e¢ cient way because the amount
of communication between the cpu�s is very low. Hansen et al. (2003) use this procedure, and
they show that the speed-up in the CMA-ES routine scales almost linearly with the number of
cpu�s. On the other hand, the Simulated Annealing algorithm is intrinsic sequential and can not
directly be implemented in a multiprocessing framework.
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7 Conclusion

The contribution of this paper is twofold. It extends two well-known optimization routines to
deal with objective functions for DSGE models and it tests their ability to optimize likelihood
functions for a DSGE model. Our test results show that the extended CMA-ES routine clearly
outperforms the extended version of Simulated Annealing. That is, the CMA-ES routine �nds
the global optimum more often than Simulated Annealing does, and the CMA-ES routine uses
notably fewer function evaluations than Simulated Annealing. Hence, the CMA-ES routine is the
most e¢ cient optimization routine of the two. Second, with 10 unknown structural parameters
in the likelihood function, the CMA-ES routine �nds the global optimum in 95% of our test
economies compared to 89% for Simulated Annealing. When the number of unknown structural
parameters in the likelihood function increases to 20 and 35, then the CMA-ES routine �nds
the global optimum in 85% and 71% of the test economies, respectively. The corresponding
numbers for Simulated Annealing are 70% and 0%.

We conjecture that the good performance of the CMA-ES routine is primarily due to the
inclusion of co-variance terms in the search distribution. Hence, future research could focus
on how to introduce covariances in the search distribution for the random walker in Simulated
Annealing. One way of doing this could be to sample from a multivariate normal distribution
when generating moves for the random walker, and then update the covariance matrix C in a
similar manner as done in the CMA-ES routine. However, a correction for autocorrelation in
the random walker�s sample path must be included in the update of the covariance matrix. Still,
the Metropolis criterion should be applied in this new version of Simulated Annealing to decide
whether a suggested move should be accepted or rejected. Finally, the global step size could be
reduced gradually like the temperature in the version of Simulated Annealing presented above.

Future research could also focus on deriving the optimal population size (�) in the CMA-ES
routine or examine whether the e¢ ciency of the routine can be improved by using the restart
strategy suggested in Auger & Hansen (2005).
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Figure 1: Pseudo-codes for one iteration in Simulated Annealing

FOR m = 1:NT
FOR j = 1:NS

FOR h = 1:n
“Draw from the uniform distribution for dimension h“
x(h)’ = x(h) + v(h)u(h) and x(i)’ = x(i) for i ≠  h

IF ( x(h)’ ∉  [a(h),b(h)] ) THEN
draw x(h)’ from Uni(a(h),b(h))

END IF

“Accept or reject the move according to the Metropolis Criterion”
IF ( min{exp{- Q/T},1}> Uni(0,1) )  THEN

accept the move
ELSE

reject the move
END

END
END
“Adjust the variances for all n search distributions”

END
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Table 1: Parameters for the test economies
The fourth column named "Sample" denotes the intervals we sample from when generating the test
economies. The �fth column named "Search" denotes the intervals we search in during the
optimizations.

Interval
Label Group The households Sample Search
Discount factor B � [0:98; 1[ [0; 1[
Habit degree A b [0:2; 0:8] [0; 1]
Transaction cost B �1 [0:05; 0:1] [0; 100]
Transaction cost �2 [0:1; 0:2] [0; 100]
Preference A �3 [1; 3] [0; 100]
Preference �4 [0:3; 0:7] ]0; 1[
Adj costs for invest A � [2; 4] [0; 100]
Cost of utilization 2 [0:05; 0:1] [0; 100]
Wage elastic ity ~� [15; 35] ]1; 100]
Degree of wage stick iness A ~� [0:3; 0:7] [0; 1[
Wage Indexation B ~� [0; 1] [0; 1]
lab or supply hss [0:2; 0:8] [0; 1]

The �rms
Depreciation rate B � [0:02; 0:04] [0; 1]
Cobb-Douglas param eter A � [0:28; 0:38] ]0; 1[
CIA � [0; 1] [0; 1]
Price elastic ity B � [4; 12] ]1; 100]
Degree of price stick iness B � [0:5; 0:9] [0; 1[
Price Indexation � [0; 1] ]0; 1[

The central bank
Process for in�ation target A !� [0:5; 0:9] [0; 1[
Reaction to lagged interest rate B �R [�1; 1] [�1; 1]
Reaction to in�ation �� [0; 2] [0; 100]
Reaction to output A �y [1; 5] [0; 100]
Forward lo oking-ness dr [0; 1] [0; 1[
In�ation rate in steady state �ss [0:0098; 0:0102] [0; 100]
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Table 1: Parameters for the test economies (continued)
Interval

Label Group Ex. processes Sample Search
Persistency in neutra l tech A �z [0; 0:8] ]�1; 1[
Persistency in embodied tech B �� [0; 0:3] ]�1; 1[
Persistency in preference sho cks �eh [0; 0:3] ]�1; 1[
Persistency in governm ent sho cks �g [0:6; 1) ]�1; 1[
Std for sho cks to neutra l tech

p
V ar (�z;t+1) [0:0005; 0:001] [0; 100]

Std for sho cks to embodied tech B
p
V ar (��;t+1) [0:003; 0:005] [0; 100]

Std for sho cks to preferences A

r
V ar

�
��"h ;t+1

�
[0:001; 0:005] [0; 100]

Std for sho cks to government sp endings

p
V ar (�g;t+1) [0:005; 0:01] [0; 100]

Std for sho cks to in�ation rate target

p
V ar (���;t+1) [0:05; 0:1] [0; 100]

Growth rate for neutra l tech A �z [1; 1:005] [1; 100]
Growth rate for embodied tech B �� [1; 1:005] [1; 100]

24



Table 2: Results for the Simulated Annealing
This table shows the percentage of times the routine �nds the global optimum or ends up in a local
optimum based on 100 test economies. The table also shows the average number of function evaluations
used during an optimization. The criterion for �nding the true optimum is that the function value
returned from the routine is less than 10�6 from the true optimum. The initial value for the
temperature (T) is equal to the squared distance between the true macro series and the macro series at
the starting point for the optimization routine. The other parameters for the routine are given the
values: NS = 20 , N� = 4, �Q = 10�6 and Nr = 10.

rT= 0:85 rT= 0:90
found opt lo cal opt Avg number of found opt lo cal opt Avg number of

NT fct evaluations fct evaluations

n = 10 10 85% 15% 344; 891 85% 15% 510; 551
20 85% 15% 645; 042 87% 13% 959; 629
30 88% 12% 939; 806 89% 11% 1432; 099

n = 20 10 34% 66% 880; 306 43% 57% 1; 168; 524
20 58% 42% 1; 470; 252 66% 34% 2; 178; 387
30 67% 33% 2; 087; 413 70% 30% 3; 118; 636

n = 35 10 0% 100% 2; 045; 942 0% 100% 2; 532; 779
20 0% 100% 3; 105; 162 0% 100% 4; 645; 399
30 0% 100% 4; 641; 859 0% 100% 6; 570; 895

n = the number of unknown param eters in the likelihood function

NT= the number of random walkers

rT= the reduction rate in temperature
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Table 3: Results for the CMA-ES routine, n = 10
The criterion for �nding the true optimum is that the function value returned from the CMA-ES is less
than 10�6 from the true optimum. A value of 10 for the population size in the CMA-ES routine is the
lowest recommended value. All other parameters in the CMA-ES routine are at their default values as
speci�ed in section 4.1.

Scheme A Scheme B
Population Pct. o f a ll the 1000 runs where: Pct.o f econom ies based on 10 attempts where: Avg. number of function

size (�) found opt no convergence lo cal opt found opt. no convergence lo cal opt evaluations for 1 opt.

10 77:6 4:6 17:8 92 2 6 8; 678
20 81:3 5:8 12:9 93 2 5 11; 179
30 83:6 5:6 10:8 94 3 3 11; 427
40 83:9 7:0 9:1 94 5 1 12; 123
50 84:5 7:9 7:6 94 4 2 16; 961
80 86:7 7:5 5:8 94 4 2 18; 625
100 86:0 8:3 5:7 95 4 1 24; 579
150 87:3 9:1 3:6 93 5 2 21; 898
200 87:7 9:4 2:9 93 3 4 23; 271
250 88:5 9:5 2:0 93 7 0 28; 426
500 88:1 10:8 1:1 91 8 1 41; 236
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Table 4: Results for the CMA-ES routine, n = 20
The criterion for �nding the true optimum is that the function value returned from the CMA-ES is less
than 10�6 from the true optimum. A value of 12 for the Population size in the CMA-ES routine is the
lowest recommended value. All other parameters in the CMA-ES routine are at their default values as
speci�ed in section 4.1.

Scheme A Scheme B
Population Pct. of a ll the 1000 runs where: Pct.o f econom ies based on 10 attempts where: Avg. number of function

size (�) found opt no convergence lo cal opt: found opt. no convergence lo cal opt evaluations for 1 opt.

12 66:2 12:2 21:6 85 1 14 126; 213
20 69:7 14:0 16:3 85 4 11 128; 178
30 70:1 13:7 16:2 84 5 11 69; 365
40 70:0 14:5 15:5 85 9 6 63; 246
50 71:7 16:3 13:0 84 7 9 69; 032
80 71:0 18:7 10:3 82 10 8 64; 187
100 72:2 18:3 9:5 83 11 6 70; 304
150 72:5 17:8 9:7 80 14 6 73; 823
200 75:1 16:8 8:1 81 13 6 77; 567
250 74:1 17:3 8:6 80 14 6 89; 282
500 71:8 23:4 4:8 77 19 4 134; 238

Table 5: Results for the CMA-ES routine, n = 35
The criterion for �nding the true optimum is that the function value returned from the CMA-ES is less
than 10�6 from the true optimum. A value of 14 for the Population size in the CMA-ES routine is the
lowest recommended value. All other parameters in the CMA-ES routine are at their default values as
speci�ed in section 4.1.

Scheme A Scheme B
Population Pct. o f a ll the 1000 runs where: Pct.o f econom ies based on 10 attempts where: Avg. number of function

size (�) found opt no convergence lo cal opt: found opt. no convergence lo cal opt evaluations for 1 opt.

14 7:9 22:9 69:2 33 3 64 161; 420
20 11:6 23:7 64:7 44 4 52 159; 915
30 13:8 26:1 60:1 46 12 42 161; 585
40 14:7 27:1 58:2 47 17 36 163; 215
50 20:6 29:6 49:8 56 22 22 165; 006
80 30:4 31:0 38:6 66 25 9 179; 137
100 38:1 31:8 30:1 71 24 5 192; 819
150 47:2 33:1 19:7 70 27 3 215; 882
200 55:8 35:5 8:7 69 28 3 241; 897
250 57:9 36:6 5:5 70 29 1 260; 827
500 45:1 42:1 12:8 57 34 9 358; 247
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Table 6: Results for the Nelder-Mead Simplex Algorithm
The criterion for �nding the true optimum is that the function value returned from the Nelder-Mead
Simplex Algorithm is less than 10�6 from the true optimum. An upper bound of 300,000 function
evaluations and an upper bound of 90,000 iterations are imposed.

Scheme A Scheme B
Pct. of a ll the 1000 runs where: Pct.o f econom ies based on 10 attempts where: Avg. number of function

n found opt no convergence lo cal opt found opt. no convergence lo cal opt evaluations for 1 opt.

10 27:7 5 67:3 66 1 33 18; 262
20 0 5:4 94:6 0 1 99 30; 682
35 0 15:3 84:7 0 2 98 80; 699
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