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Abstract

We propose a semiparametric local polynomial Whittle with noise (LPWN) estimator of the

memory parameter in long memory time series perturbed by a noise term which may be serially

correlated. The estimator approximates the spectrum of the perturbation as well as that of the

short-memory component of the signal by two separate polynomials. Including these polynomials

we obtain a reduction in the order of magnitude of the bias, but also in�ate the asymptotic

variance of the long memory estimate by a multiplicative constant. We show that the estimator

is consistent for d 2 (0; 1), asymptotically normal for d 2 (0; 3=4), and if the spectral density is
in�nitely smooth near frequency zero, the rate of convergence can become arbitrarily close to the

parametric rate,
p
n. A Monte Carlo study reveals that the LPWN estimator performs well in

the presence of a serially correlated perturbation term. Furthermore, an empirical investigation

of the 30 DJIA stocks shows that this estimator indicates stronger persistence in volatility than

the standard local Whittle estimator.
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1 Introduction

We are interested in estimation of the memory parameter in a so-called perturbed fractional process,

zt = yt + wt; (1)

i.e. a signal-plus-noise model where the signal process yt is a long memory process with memory

parameter d which is perturbed by the additive noise term wt. These processes have found extensive

use in modeling the long memory characteristics of many observed time series. In particular, they

are a version of the random walk plus noise or local level unobserved components model, e.g. Harvey

(1989), except the signal is a long memory process rather than a random walk.

Another motivation for the perturbed fractional process is the version of the long memory

stochastic volatility (LMSV) model for �nancial returns proposed by Bollerslev & Jubinski (1999),

rt = �
p
eyt+xtut; (2)

where rt denotes the return, yt is the (long memory component of) log-volatility of the returns,

xt is a short-memory process, and yt, xt, and ut are independent to satisfy the requirement that

E (rt) = 0. This generalizes the usual LMSV model introduced by Breidt, Crato & de Lima (1998)

and Harvey (1998),

rt = �
p
eytut; (3)

by arguing that allowing for di¤erent short-lived news impacts, while imposing a common long

memory component, may provide a better characterization of the joint volume-volatility relationship

in the context of the Mixture of Distributions Hypothesis, which asserts that stock returns and

trading volumes are jointly dependent on the same underlying latent information arrival process.

The formulation in (2) allows the volatility to be a¤ected by both long and short-lived news impacts,

which is also consistent with the �ndings of Liesenfeld (2001). It therefore seems natural that an

estimator of the memory in log r2t should be able to incorporate both (2) and (3).

The LMSV models (2) and (3) imply that a logarithmic transformation of the squared returns

series log r2t becomes a long memory signal-plus-noise process (1) where the signal yt corresponds

to (the long memory component of) the log-volatility of the original returns series and wt is an

additive noise term. In the context of the LMSV model (3), wt is usually assumed to be i:i:d:, but

to allow for short-memory persistence in wt as implied by (2) we will not make that restriction

here. In general, when wt is not assumed to be i:i:d:, zt is referred to as a perturbed fractional

process.1 For reviews of fractionally integrated processes and some applications, see Baillie (1996),

Henry & Za¤aroni (2003), or Robinson (2003). In particular, long memory in volatility has received

1 In the following we use the terms �long memory process�and �fractionally integrated process�or just �fractional

process� synonymously, although strictly speaking a fractional process is just a particular form of a long memory

process.
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considerable interest recently.2

If we assume that the log-volatility process fytg and the noise process fwtg are independent,
the spectral density of zt can be written as

fz (�) = �
�2d�y (�) + �w(�) = �

�2dG

�
�y(�)

�y(0)
+ �2d

�w(�)

�y(0)

�
; (4)

where fy(�) = ��2d�y (�) is the spectrum of the signal yt, �w(�) is the spectrum of the noise term

wt, and d is the degree of long memory in yt (or equivalently in zt).

The assumption of independence between the processes fytg and fwtg rules out the so-called
leverage e¤ect. This assumption is common in the so-called random walk plus noise unobserved

components models, and has also been imposed by Breidt et al. (1998), Deo & Hurvich (2001),

and Arteche (2004), among others, in the LMSV model. To accommodate the leverage e¤ect, we

could allow contemporaneous correlation, while the return process remains a martingale di¤erence

sequence by replacing yt with yt�1 in (2). An additional assumption of distributional symme-

try around (0; 0) would imply that the spectral density decomposition in (4) holds, see Hurvich,

Moulines & Soulier (2005). Alternatively, the model could be modi�ed along the lines of model

(P2) of Hurvich et al. (2005).

In semiparametric spectral estimation of long memory models, the spectrum (4) is typically

approximated using the periodogram of the data near the zero frequency, i.e. for frequencies up

to �m = 2�m=n only, where n is the sample size and m is a user-chosen bandwidth number,

see sections 2 and 3 below, which tends to in�nity slower than n such that �m ! 0. Although

the popular log-periodogram regression (LPR) estimator of Geweke & Porter-Hudak (1983) and

Robinson (1995b) and the local Whittle (LW) estimator of Künsch (1987) and Robinson (1995a)

both preserve consistency and asymptotic normality when applied to perturbed fractional processes,

as shown recently by Deo & Hurvich (2001) and Arteche (2004), these estimators can be severely

biased since they do not take the perturbation into account. Indeed, for non-perturbed processes

(where �w(�) = 0) the bias of the standard semiparametric frequency domain estimators is of order

O(�2m), whereas the leading bias term when �w(�) 6= 0 is of order O(�2dm ). As shown in Deo &

Hurvich (2001) and Arteche (2004), this bias is typically negative and can be very large (note that

d < 1). Therefore, estimating long memory in perturbed time series can be a challenging task, and

calls for an estimator which explicitly accounts for the perturbation.

Sun & Phillips (2003), Hurvich & Ray (2003), and Hurvich et al. (2005) have proposed such

estimators with �y(�) and �w(�) approximated by constants as �! 0, see section 2 below. On the

other hand, we propose an estimator where we allow both the spectrum of the perturbation and the

spectrum of the short-memory component of the signal, i.e. �w(�) and �y(�), to be approximated

by polynomials hw(�w; �) and hy(�y; �) of (�nite and even) orders 2Rw and 2Ry near the zero

2See, e.g., Ding, Granger & Engle (1993), Baillie, Bollerslev & Mikkelsen (1996), Comte & Renault (1998), Ray

& Tsay (2000), Andersen, Bollerslev, Diebold & Ebens (2001), Andersen, Bollerslev, Diebold & Labys (2001, 2003),

Wright (2002), Hurvich & Ray (2003), and Arteche (2004) among others.

3



frequency, instead of constants, thereby obtaining a bias reduction depending on the smoothness of

�w(�) and �y(�) near the origin. The approach taken here in modeling the short-run dynamics by

a polynomial was introduced by Andrews & Sun (2004) for non-perturbed processes, but is novel

in the context of perturbed fractional processes. To maintain generality, �w(�) and �y(�) are only

characterized by regularity conditions near frequency zero instead of imposing speci�c functional

forms.

The LMSVmodel (3) often assumes that the noise term is i:i:d: in which case �w(�) = �
2
w=(2�) is

a constant. This case is of independent interest and is considered in simulations and in an empirical

study in Frederiksen & Nielsen (2007). In that paper �y(�) is approximated by a polynomial and

�w(�) by a constant as �! 0 thus focusing on exactly the LMSV model (3). However, the theory

for their estimator is developed in the present paper.

Thus, to allow serial dependence in the noise as in (2) above we include both polynomials,

hy(�y; �) and hw(�w; �). Furthermore, empirical studies have typically found that the noise term

has much higher (long-run) variance than the short-memory component of the signal. Indeed,

Breidt et al. (1998) and Hurvich & Ray (2003) �nd that the noise term may be as much as 10

or 20 times as variable as the short-memory component of the signal. Thus, careful modeling of

the noise term is important and this consideration has lead us to approximate the spectrum of the

noise term by a polynomial instead of a constant as �! 0.

Our results show that introducing hy(�y; �) and hw(�w; �) in�ates the asymptotic variance of

the long memory estimator, d̂, by a multiplicative constant which depends on the true long memory

parameter, d. However, the in�ation decreases when d increases, and we obtain a reduction in the

order of magnitude of the bias if �(�) is su¢ ciently smooth near frequency zero. We show that the

estimator is consistent for d 2 (0; 1), asymptotically normal for d 2 (0; 3=4), and if �(�) is in�nitely
smooth near frequency zero, the rate of convergence can become arbitrary close to the parametric

rate, n1=2. This constitutes a rate of convergence improvement relative to Sun & Phillips (2003),

Hurvich & Ray (2003), and Hurvich et al. (2005) who are only able to obtain a semiparametric rate

of convergencem1=2, which is much slower than the parametric rate due to the minimal requirement

that m=n! 0.

We present the results of a Monte Carlo study which shows the usefulness of the proposed

LPWN estimator. Compared to standard estimators, such as Hurvich & Ray�s (2003) local Whittle

with noise (LWN) estimator, the LPWN estimator is able to achieve considerable bias reductions in

practice, especially in cases with short-run dynamics in both the signal and noise components. We

also include an empirical application to the 30 DJIA stocks where the LPWN estimator indicates

stronger persistence in volatility than the standard estimators, and for most of the stocks produce

estimates of d in the nonstationary region.

The remainder of the paper is organized as follows. In the next section we discuss semiparametric

spectral estimation of long memory for perturbed processes and formally de�ne the proposed local

Whittle estimator. In section 3 we establish consistency and asymptotic normality of the estimator.
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Section 4 investigates the �nite sample performance in simulations, and section 5 presents an

empirical study of daily log-squared returns series of the 30 DJIA stocks. Section 6 concludes. The

proofs of our theorems are gathered in the appendix.

2 Local Whittle estimation of perturbed fractional processes

Semiparametric frequency-domain estimators are essentially based on the local approximation

fz (�) � G��2d as �! 0; (5)

where G is a constant and the symbol ���means that the ratio of the left and right hand sides
tends to one in the limit. Thus, the estimators enjoy robustness to short-run dynamics, since they

use only information from periodogram ordinates in the vicinity of the origin.

The local Whittle (LW) estimation method by Künsch (1987) and Robinson (1995a) has become

popular because of its likelihood interpretation, nice asymptotic properties, and mild assumptions.

It is de�ned as the minimizer of the (negative) local Whittle likelihood function

Q (G; d) =
1

m

mX
j=1

"
log
�
G��2dj

�
+
Iz (�j)

G��2dj

#
; (6)

where m = m(n) is a bandwidth number which tends to in�nity as n!1 but at a slower rate than

n, �j = 2�j=n are the Fourier frequencies, and Iz(�) = (2�n)�1j
Pn
t=1 zte

it�j2 is the periodogram
of zt. Note that the estimator is invariant to a non-zero mean since j = 0 is left out of the

minimization. Concentrating (6) with respect to G, the estimator of d is

d̂LW = argmin
d

24log Ĝ(d)� 2d 1
m

mX
j=1

log �j

35 ; Ĝ(d) =
1

m

mX
j=1

�2dj Iz (�j) :

It was shown by Robinson (1995a) that

p
m(d̂LW � d) d! N(0; 1=4); (7)

and later by Velasco (1999) that the range of consistency is d 2 (�1=2; 1] and the range of asymptotic
normality is d 2 (�1=2; 3=4).

To reduce the asymptotic bias of the standard LW estimator, Andrews & Sun (2004) have

suggested to replace the constant, logG, in (6) by the polynomial �0 �
PR
r=1 �r�

2r
j . That is, by

modeling the logarithm of the spectral density of the short-run component by a polynomial instead

of a constant in the vicinity of the origin. This leads to the following (negative) likelihood function,

Q (G; d;�) =
1

m

mX
j=1

24log ��2dj G exp

 
�

RX
r=1

�r�
2r
j

!!
+

Iz (�j)

��2dj G exp
�
�
PR
r=1 �r�

2r
j

�
35 ;
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such that

(d̂LPW ; �̂) = argmin
d2(�1=2;1=2);�2�

24log Ĝ(d;�)� 2d 1
m

mX
j=1

log �j �
1

m

mX
j=1

RX
r=1

�r�
2r
j

35 ;
Ĝ(d;�) =

1

m

mX
j=1

�2dj exp

 
RX
r=1

�r�
2r
j

!
Iz (�j) ;

where � is a compact and convex set in RR. As shown by Andrews & Sun (2004), this method

does, however, increase the asymptotic variance of d̂ in (7) by a multiplicative constant.

For non-perturbed fractional processes, the asymptotic bias of d̂LW and d̂LPW is of order O(�2m)

and O(�minfs;2+2Rgm ), respectively, where s is a measure of the smoothness of the spectral density

near frequency zero, see below. However, for perturbed fractional processes the bias is of order

O(�2dm ) and, as shown by e.g. Hurvich & Ray (2003) and Arteche (2004), this bias is typically

negative and can be very severe.

For perturbed fractional processes we have the spectral representation (4) rather than (5). There

are two main consequences: �rst, the extra additive term in (4) needs to be taken into account

to avoid serious asymptotic bias as mentioned above, and second the rate of convergence of the

estimators is reduced if the extra term is not modeled. The latter follows because the choice of band-

width parameter is severely constrained for perturbed fractional processes when the perturbation

term in (4) is not modeled. Thus, for non-perturbed processes the bandwidth requirement is typi-

cally m = o(n4=5), whereas for perturbed processes it is m = o(n2d=(1+2d)) (apart from logarithmic

terms). Since d � 1 and the estimator is
p
m�consistent this is a serious constraint.

To allow for (moderate) nonstationarity in volatility we generalize (1) as

zt =

(
yt + wtPt
s=1 xs + wt

if d 2 (0; 1=2) ;
if d 2 [1=2; 1) ;

(8)

where, if d 2 [1=2; 1), xt has spectrum of the form fx(�) = ��2dx�x (�) with memory parameter

dx = d � 1. De�ning yt =
Pt
s=1 xs if d 2 [1=2; 1), this approach allows zt = yt + wt to possibly

be nonstationary with memory parameter d 2 (0; 1). Velasco (1999), Hurvich & Ray (2003), and

Hurvich et al. (2005) also assume this type of process. Since f
Pt
s=1 xsg is nonstationary3 zt does

not have a spectral density if d 2 [1=2; 1) but it has a pseudo spectral density, see e.g. Hurvich &
Ray (1995) and Velasco (1999). Thus, we may de�ne

fz (�) =

(
fy (�) + fw (�)��1� ei����2 fx (�) + fw (�) if d 2 (0; 1=2) ;

if d 2 [1=2; 1) ;

= ��2dG

�
�y(�)

�y(0)
+ �2d

�w(�)

�y(0)

�
; (9)

3 In the nonstationary case, f
Pt

s=1 xsg is a type I fractional process in the terminology of Marinucci & Robinson

(1999).
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where we maintain the assumption of independence between fytg and fwtg.
Taking (9) into account we propose to approximate (4) locally near the zero frequency by4

g (�) = ��2dG
�
1 + hy(�y; �) + �

2dhw(�w; �)
�
; (10)

where hy(�y; �) =
PRy
r=1 �y;r�

2r, hw(�w; �) =
PRw
r=0 �w;r�

2r. If Ry = 0 we set hy(�y; �) = 0.

De�ning also the polynomial h(d;�; �) =hy(�y; �)+�2dhw(�w; �) with � = (�0y;�
0
w)
0 this yields the

(concentrated) likelihood

Q (d;�) = log Ĝ (d;�) +
1

m

mX
j=1

log
�
��2dj (1 + h(d;�; �j))

�
; (11)

Ĝ (d;�) =
1

m

mX
j=1

�2dj Iz (�j)

1 + h(d;�; �j)
: (12)

Thus, we propose to minimize (11) over the admissible set D ��,

(d̂; �̂) = argmin
(d;�)2D��

Q (d;�) ;

where � is a compact and convex set in RR+1, R = Ry+Rw, and D = [d1; d2] with 0 < d1 < d2 < 1.

We call this estimator the local polynomial Whittle with noise (LPWN) estimator.

Note that h(�; �) = 0 is the standard local Whittle speci�cation in (6), which does not explicitly

account for the perturbation. For Ry = Rw = 0 we get h (�; �) = �, where �y(�) and �w(�) in

(4) are both modeled locally by constants. This is the local Whittle with noise (LWN) estimator

of Hurvich & Ray (2003) and Hurvich et al. (2005) (parameterization (P1)). Thus, our model

parameterization includes the standard LW estimator and the LWN estimator as special cases.

Furthermore, the model with Rw = 0, where the noise is modeled by a constant near the zero

frequency, is analyzed empirically and in simulations by Frederiksen & Nielsen (2007), using the

asymptotic theory provided in this paper.

3 Asymptotic properties

In this section we �rst introduce the assumptions needed to establish consistency and asymptotic

normality of the proposed estimator for the perturbed fractional process, and consequently we

present the main results in two theorems. In the following, true values of the parameters are

denoted by subscript zero and bxc denotes the integer part of a real number x. We also de�ne a
function �(�) to be smooth of order s at � = 0 if, in a neighborhood of � = 0, � (�) is bsc times
continuously di¤erentiable with bsc�derivative, �(bsc), satisfying j�(bsc) (�)��(bsc) (0) j � C j�js�bsc

for some constant C < 1. To simplify the presentation, we list only one set of assumptions even
though these could be relaxed somewhat for the consistency proof, see e.g. Hurvich et al. (2005).

4Note that �y(�) and �w(�) are symmetric around � = 0 and are therefore approximated by even polynomials.
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A1 The noise process fwtg is independent of the signal process fytg.

A2 The spectral density of zt is fz (�) = ��2d0G0
�y(�)

�y(0)
+ �w(�), where �y (�) and �w(�) are real,

even, positive, continuous functions on [��; �) and d0 2 D = [d1; d2] with 0 < d1 < d2 < 1.

A3 The functions �y (�) and �w(�) are smooth of orders sy and sw at � = 0, where sy > 2Ry,

sw > 2Rw, and sy; sw � 1.

Assumption A1 is the independence assumption used above to write the spectral density of zt as

the sum of the (pseudo) spectral densities of yt and wt. Assumption A3 is a smoothness condition

on the functions �y (�) and �w(�) similar to that applied by Andrews & Sun (2004). Note that

Assumption A3 holds for all sy < 1 when, e.g., yt is a �nite order ARFIMA process, and for

all sw < 1 when, e.g., wt is a �nite order ARMA process. Under Assumption A3 we establish

the following Taylor series expansions of �y (�) and �w(�) around � = 0 (recall that odd order

derivatives of even functions are zero at frequency zero),

�y (�)

�y(0)
= 1 +

bsy=2cX
r=1

�y;r�
2r +O (�sy) = 1 + hy(�y; �) +O(�

minfsy ;2+2Ryg) as �! 0;

and

�w (�)

�y(0)
=
�w (0)

�y(0)
+

bsw=2cX
r=1

�w;r�
2r +O (�sw) = hw(�w; �) +O(�

minfsw;2+2Rwg) as �! 0;

where �y;r = 1
(2r)!�y(0)

@2r

@�2r
�y (�)

��
�=0

and �w;r+1 = 1
(2r)!�y(0)

@2r

@�2r
�w (�)j�=0. Hence, the approxi-

mation (10) to (9) is

log (fz (�) =g (�)) = log

�
�y(�)

�y(0)
+ �2d

�w(�)

�y(0)

�
� log (1 + h(d;�,�))

= log

 
1 +

O(�minfsy ;2+2Ryg) + �2dO(�minfsw;2+2Rwg)

1 + h(d;�; �)

!
as �! 0;

fz (�)

g (�)
= 1 +O(�minfsy ;2+2Ryg) + �2dO(�minfsw;2+2Rwg) as �! 0; (13)

and the true values of G and � are G0 = �y (0) and �0 = (�0;1; :::; �0;R+1)
0, where

�0;r =
1

(2r)!�y(0)

@2r

@�2r
�y (�)

��
�=0

; r = 1; : : : ; Ry;

�0;Ry+r+1 =
1

(2r)!�y(0)

@2r

@�2r
�w (�)j�=0 ; r = 0; : : : ; Rw:

A4 (a) The signal yt has zero mean and admits an in�nite order moving average representation
yt =

P1
j=0 �j"t�j (stationary case) or �yt = xt =

P1
j=0 �j"t�j (nonstationary case), whereP1

j=0 �
2
j < 1 and "t satis�es, for all t, E ("tj Ft�1) = 0, E

�
"2t
��Ft�1� = 1, E

�
"3t
��Ft�1� =

�3 < 1, and E
�
"4t
��Ft�1� = �4 < 1 almost surely, where Ft�1 is the �-�eld generated by

f"s; s < tg.
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(b) There exists a random variable " with E("2) < 1 such that for all � > 0 and some K > 0,

P (j"tj > �) < KP (j"j > �).

(c) In a neighborhood of the origin, @
@�� (�) = O (j� (�) j=�) as �! 0, where � (�) =

P1
k=0 �ke

ik�.

A5 (a) The noise wt has zero mean and admits an in�nite order moving average representation wt =P1
j=0 �j�t�j , where

P1
j=0 �

2
j <1 and �t satis�es, for all t, E (�tj Ft�1) = 0, E

�
�2t
��Ft�1� =

1, E
�
�3t
��Ft�1� = �3 < 1, and E

�
�4t
��Ft�1� = �4 < 1 almost surely, where Ft�1 is the

�-�eld generated by f�s; s < tg.

(b) There exists a random variable " with E("2) < 1 such that for all � > 0 and some K > 0,

P (j�tj > �) < KP (j"j > �).

(c) In a neighborhood of the origin, @
@�� (�) = O (j� (�) j=�) as �! 0, where � (�) =

P1
k=0 �ke

ik�.

Since our estimator is a function of the periodogram at nonzero frequencies only, we assume

without loss of generality5 that the signal process yt has zero mean. Importantly, Assumptions A4

and A5 allow for non-Gaussian processes. Note that Assumptions A1-A4 plus the assumption that

wt is white noise with �nite fourth moment imply the assumptions needed on yt and wt to prove

consistency and asymptotic normality (if, in addition, d2 < 3=4) of the LWN estimator of Hurvich

& Ray (2003). It follows from Theorems 1 and 2 below that their results for the LWN estimator

are also valid for our more general assumptions on wt in Assumption A5.

A6 � is a compact and convex subset of RR+1 and �0 lies in the interior of �.

We are now ready to prove consistency of our estimator. As mentioned above, some of our

assumptions could be relaxed somewhat to prove this theorem, but we have preferred to list only

one set of assumptions which will be used also for the proof of asymptotic normality below. The

proofs of both theorems are given in the appendix.

Theorem 1 If Assumptions A1-A6 hold and the bandwidth m = m (n) is such that

1

m
+
m

n
! 0; (14)

then d̂� d0 = oP ((log n)�5).

Note that the theorem proves consistency only for the estimator of the memory parameter (at

logarithmic rate). There is no proof of consistency for the estimators of the polynomial parameters

in �. The strategy of proof in Hurvich et al. (2005) would require next a separate proof of consistency

of the polynomial parameters, however, we follow instead the method of proof in Andrews & Sun

(2004) which does not require an intermediate result on the consistency of �̂. Thus, we give next

the joint asymptotic normality of d̂ and �̂.
5 In the nonstationary case the zero mean assumption implies that zt is free of linear trends which does entail a

loss of generality in that case.
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Theorem 2 Let Assumptions A1-A6 hold with d0 in the interior of D = [d1; d2], 0 < d1 < d2 <

3=4, and suppose the bandwidth m = m (n) is such that

m1+4Ry

n4Ry
+
m1+4(d0+Rw)

n4(d0+Rw)
!1 and

m2'y+1

n2'y
+
m2'w+4d0+1

n2'w+4d0
! 0; (15)

where 'a = min fsa; 2 + 2Rag ; a = y; w. Then d̂ and �̂ are both consistent and

Bn

 
d̂� d0
�̂ � �0

!
d! N(0;
�1Ry ;Rw); 
Ry ;Rw =

0B@ 4 �0Ry � 0Rw
�Ry �Ry  0Ry ;Rw
�Rw  Rw;Ry 	Rw

1CA ;
where Bn = Bn (d0) is the (R+ 2)� (R+ 2) deterministic diagonal matrix with diagonal elements

(Bn)11 =
p
m, (Bn)k+1;k+1 =

p
m�2km for k = 1; : : : ; Ry;

and (Bn)k+Ry+2;k+Ry+2 =
p
m�2d0+2km for k = 0; : : : ; Rw;

�Ry and �Rw = �Rw(d0) are the vectors

(�Ry)k =
�4k

(1 + 2k)2
for k = 1; : : : ; Ry and (�Rw)k+1 =

�4(d0 + k)
(1 + 2d0 + 2k)

2 for k = 0; : : : ; Rw;

�Ry and 	Rw = 	Rw(d0) are the Ry �Ry and (Rw + 1)� (Rw + 1) matrices�
�Ry

�
ik

=
4ik

(1 + 2i+ 2k) (1 + 2i) (1 + 2k)
for i; k = 1; : : : ; Ry;

(	Rw)i+1;k+1 =
4(d0 + i)(d0 + k)

(1 + 2i+ 2k + 4d0) (1 + 2i+ 2d0) (1 + 2k + 2d0)
for i; k = 0; : : : ; Rw;

and  Rw;Ry =  Rw;Ry(d0) is the (Rw + 1)�Ry matrix

( Rw;Ry)i+1;k =
4k(d0 + i)

(1 + 2d0 + 2k + 2i) (1 + 2d0 + 2i) (1 + 2k)
for i = 0; : : : Rw; k = 1; : : : ; Ry:

If Ry = Rw = 0 de�ne 
0;0 =

 
4 � 00
�0 	0

!
.

First of all, we note that by setting Ry = Rw = 0 we obtain as a special case the results for the

LWN estimator of Hurvich & Ray (2003). Secondly, the leading (Ry + 1)� (Ry + 1) submatrix of

Ry ;Rw is the same as that obtained by Andrews & Sun (2004). Third, we note that the asymptotic

variance of
p
m(d̂ � d0) is free of the polynomial parameters �0, but it depends on d0. Moreover,

the use of the polynomials hy(�y; �) and hw(�w; �) increases the asymptotic variance of d̂ by a

multiplicative constant compared to LWN estimator of Hurvich & Ray (2003) (easily seen by use of

the formula for the inverse of a partitioned matrix). Andrews & Sun (2004) obtain a similar result

for their local polynomial Whittle (LPW) estimator in a non-volatility model.
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The �rst condition in (15) guarantees that all the elements of the scaling matrix Bn diverge as

n!1, which is a minimal condition for consistency. The second condition restricts the expansion
rate of the bandwidth to control bias and ensure that the estimator uses only relevant information

from periodogram ordinates su¢ ciently near the zero frequency. Alternatively, we can view the

bandwidth conditions in (15) separately for the signal process and the noise process. In this way

we would write the conditions as

m1+4Ry

n4Ry
!1; m

2'y+1

n2'y
! 0 and

m1+4(d0+Rw)

n4(d0+Rw)
!1; m

2'w+4d0+1

n2'w+4d0
! 0:

It is now easy to see that the bandwidth conditions for both the signal process and the noise process

are always compatible because sy > 2Ry and sw > 2Rw, respectively, by Assumption A3.

Note that the second condition in (15) implies that if �y (�) and �w (�) are in�nitely smooth

near frequency zero then any (Ry; Rw) can be chosen and the estimator is n1=2�� consistent for

all � > 0. Hence, in that case, the rate of convergence is arbitrarily close to the parametric

rate. Thus, the condition (15) allows the bandwidth m to be much larger than for the LWN

estimator and the standard LW estimator, which require that (assuming sy � 2; sw � 2)m5n�4 ! 0

and m4d0+1n�4d0 ! 0, respectively, see Hurvich & Ray (2003) and Arteche (2004). Therefore,

Theorem 2 provides an improvement in the rate of convergence relative to existing estimators of

the memory parameter for perturbed fractional processes. This comes at the cost of an increase

in the asymptotic variance by a multiplicative constant, but this is clearly more than o¤-set by

the faster rate of convergence, at least asymptotically. For example, in the empirically relevant

case of d0 = 0:4, which is a typical value of d0 for �nancial volatility series, the LW estimator is

at most n0:31-consistent and the LWN estimator is at most n0:4-consistent, whereas our estimator

can be arbitrarily close to n0:5-consistent if the spectral density is su¢ ciently smooth near the zero

frequency.

Finally, as in Andrews & Sun (2004) we could calculate the asymptotic bias which is of order

O((m=n)'y + (m=n)2d0+'w), where 'a = min fsa; 2 + 2Rag ; a = y; w, see the proof of Lemma 3(e)
in the appendix. This is in contrast to the orders O((m=n)2) and O((m=n)2d0) for the LWN and

LW estimators in Hurvich & Ray (2003) and Arteche (2004). Thus, as in Andrews & Sun (2004)

for the pure long memory case, the order of magnitude of the asymptotic bias is smaller when

modeling the (smooth) spectral density of the short-memory component locally by a polynomial

instead of a constant.

4 Finite sample comparison

In this section we present simulation results to examine the �nite sample bias and root mean

squared error (RMSE) performance of our LPWN estimator. In particular, we want to examine

the accuracy with realistic sample sizes and short-run contamination in both signal and noise.

Our LPWN estimator is implemented with (Ry; Rw) equal to (1; 0), (0; 1), and (1; 1), denoted

LPWN(Ry;Rw), and is compared with the LW, LPW, and LWN estimators. From Hurvich & Ray

11



(2003) we know that the LWN estimator is superior to the LW estimator in terms of bias and RMSE

in the context of the standard LMSV model. Furthermore, Hurvich et al. (2005) show that the

polynomial log-periodogram regression estimator of Andrews & Guggenberger (2003) su¤ers from

severe bias in the case of perturbed fractional processes and the LPW estimator is expected to

perform similarly. Therefore, to conserve space we only compare the LWN and LPWN estimators

in the Monte Carlo setup. The results for the LW and LPW estimators are avaible from the authors

upon request.

4.1 Monte Carlo setup

We simulate model (2), i.e.

zt = yt + xt + wt; (16)

where fytg is the signal process and fxt + wtg is the perturbation process. We model fxtg as an
ARMA process and fwtg as

wt = log u
2
t ; ut � NID(0; 1): (17)

Note that the variance of wt is �2w = �2=2 regardless of the variance of ut. The signal process

fytg and the ARMA part fxtg of the perturbation process follow di¤erent DGPs. For brevity, we
consider �ve di¤erent DGPs for the signal and ARMA perturbation processes. The general setup

for fytg and fxtg is

(1� �yL) (1� L)d yt =
�
1 + �yL

�
�t; �t � NID(0; �2�); (18)

(1� �xL)xt = (1 + �xL) "t; "t � NID(0; 1); (19)

with parameter con�gurations

Model I : �y = �y = �x = �x = 0;

Model II : �y = �y = �x = 0; �x 2 f�0:8; 0:5g ;
Model III : �y = �y = �x = 0; �x 2 f�0:8; 0:8g ;
Model IV : �y = �x = 0; (�y; �x) 2 f(�0:8; 0:5); (�0:8; 0:8)g ;
Model V : �y = �x = 0; (�y; �x) 2 f(�0:8;�0:8); (�0:8; 0:8)g :

We remark that in all the models the noise-to-signal ratio is given as

nsr =
fx(0) + fw(0)

f(1�L)dyt(0)
=

(1+�x)
2

(1��x)2
+ �2

2

�2�
(1+�y)

2

(1��y)2

: (20)

For each Monte Carlo DGP we generated 1000 arti�cial time series with a sample size of

1024; 2048, 4096, and 8192.6 For all estimators we set the bandwidth as m = bnac, where
6The number of observations is chosen as a power of two in order to use the fast Fourier transform in calculating

the periodogram. This speeds up the estimations considerably compared to using the discrete Fourier transform.
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a 2 f0:6; 0:7; 0:8g. The parameter of interest, d, is set equal to either 0:4 or 0:6. For the noise-to-
signal ratio, we choose nsr 2 f5; 10; 20g ; and the variance �2� is set as a function of �y; �x; �y; and
�x such that the nsr has the desired value. The values of d, nsr, (�y; �y), (�x; �x), and the sample

sizes are chosen to re�ect empirical �ndings on long memory in volatility (see the references in the

introduction for some examples). The chosen parameter values for the short-run contamination in

the signal and the noise are also inspired by the results from the empirical (parametric) analysis of

the DJIA stocks in section 5 below.

The signal fytg is generated by the circulant embedding method as described in Davies & Harte
(1987), i.e. the stationary type I fractionally integrated process in the terminology of Marinucci &

Robinson (1999), see also Beran (1994, pp. 215-217). To generate nonstationary series with d � 1=2,
we simulate the ARFIMA process with integration order d � 1 and cumulate the resulting series.
Numerical optimization was carried out in Matlab v7.2 using the BFGS and DFP optimization

routines and selecting the one with the best log-likelihood value. The initial values were set as

follows. For the LWN estimator we used the LW estimate, d̂LW ; if it was in the interior of the

admissible space of d; i.e. [0:01; 0:99], c.f. Assumption A2. Otherwise, d was set equal to 0:1.

As starting value for the LPWN estimators we used the LWN estimate if it was in the admissible

interval, otherwise d was set equal to 0:1.7 As initial values for the polynomial parameters we used

1 for all estimators.

To conserve space we present only a subset of the results. The left-out results (d = 0:6, n = 1024,

andm =
�
n0:6

�
) are qualitatively very similar to the ones presented, and are available upon request.

4.2 Monte Carlo results

Tables 1-9 display the results of the simulation study and show how the two di¤erent sources of

bias, i.e. the additive noise term and the contamination from the short-memory dynamics in both

the signal and the noise, a¤ect the estimators.

[Table 1 about here]

In the case where there is no contamination by short-run dynamics in the signal or noise, i.e.

Model I with results displayed in Table 1, the bias is small for all estimators. The theoretical

in�ation of the variances from h (�; d;�) is also noticeable in the RMSEs. Additionally, the RMSE

decreases as either the sample size or bandwidth increase. The only case with any noticeable bias

is for the LPWN(1,1) estimator with nsr = 20, smallest sample size, and highest bandwidth.

[Tables 2 and 3 about here]

In Tables 2 and 3 we consider model II, i.e the signal is an ARFIMA(0; d; 0) process and the

noise is an ARMA process with coe¢ cients (�x; �x) = (0:5; 0) and (�x; �x) = (�0:8; 0), respectively.
7We tried di¤erent starting values for d in these cases and the results were indistinguishable.
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Here we would presume that the LPWN(0,1) estimator is the better choice. We clearly see that we

are able to obtain considerable reduction in bias relative to the LWN estimator, especially for the

positive AR root case in Table 2. In that case we �nd that all three LPWN estimators outperform

the LWN estimator in terms of bias, and for the highest bandwidth choice, the LPWN(0,1) estimator

is often also superior in terms of RMSE. In the model with a negative AR root in Table 3 the results

are very similar to those in Table 1.

[Tables 4 and 5 about here]

We consider next Model III, i.e. where there is MA contamination in the noise, with results

presented in Tables 4 and 5. The results for this model are similar to those in Tables 1 and 3.

That is, for this model there is only little bias in the LWN estimator and no bias in the LPWN

estimators. For the highest bandwidth choice, LWN and LPWN have similar RMSE.

[Tables 6 and 7 about here]

Tables 6 and 7 contain results for Model IV, where
�
�y; �y

�
= (�0:8; 0) ; (�x; �x) = (0:5; 0) and�

�y; �y
�
= (�0:8; 0) ; (�x; �x) = (�0:8; 0), respectively. In the case of Table 6 the LWN estimator

su¤ers from very high bias and the LPWN estimators are able to reduce this bias considerably. In

particular, the LPWN(1,1) estimator is nearly unbiased in most cases. For the high bandwidth the

RMSEs are similar for all estimators. In Table 7, where the contamination is by a negative root,

the performance of the LWN estimator is similar to that of the LPWN estimators.

[Tables 8 and 9 about here]

Results for Model V where
�
�y; �y

�
= (0;�0:8) ; (�x; �x) = (0; 0:8) and

�
�y; �y

�
= (0;�0:8) ; (�x; �x) =

(0;�0:8) are shown in Tables 8 and 9, respectively.8 The LWN estimator su¤ers from very severe

bias in Model V, and consequently its RMSE is also higher than for the previous models. On the

other hand, the LPWN estimators have relatively low biases, and in particular the LPWN(1,1)

estimator appears essentially unbiased. When compared in terms of RMSE the LPWN estimators

are superior in both tables as well. Thus, we have a considerable reduction in bias for all LPWN

estimators compared to the LWN estimator, and we also have quite a remarkable reduction in

RMSE.

To sum up, the Monte Carlo study shows the usefulness of estimators that explicitly take the

short-run dynamics in the perturbation into account, i.e. the LPWN estimators where (Ry; Rw) =

(0; 1) and (Ry; Rw) = (1; 1), although the LPWN estimator with (Ry; Rw) = (1; 0) also performs

well. All three estimators generally have much smaller biases than the LWN estimator and are fairly

insensitive to the persistence in the perturbation and to the contamination from short-memory

dynamics in the signal.
8 In a few cases for the LWN estimator (marked with asterisks) we had convergence problems due to boundary

issues resulting in a markedly bimodal �nite-sample distribution. In these cases we set the initial value for the

polynomial parameter to 10, which resolved the issue.
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5 Long memory in DJIA stock volatility

This section analyzes the long memory in daily log-squared returns series of the 30 DJIA stocks

corrected for the e¤ects of stock splits and dividends from January 1 1990 to March 31 2008, for

a sample of n = 4753. To avoid the problem of taking logarithm of zero we based the analysis on

adjusted log-squared returns using the method of Fuller (1996, pp. 495-496), i.e. we analyze

log ~r2t = log
�
r2t + �

�
� �

r2t + �
;

where � = 0:02
n

Pn
t=1 r

2
t . We estimate the long memory in log ~r

2
t using the proposed LPWN es-

timator. We implement the estimator with (Ry; Rw) equal to (1; 0), (0; 1), and (1; 1), and with

starting values etc. as in the Monte Carlo study above. For comparison we also report the stan-

dard LW, LPW, and LWN estimates. For all estimators we set the bandwidth as m = bnac, where
a 2 f0:6; 0:7; 0:8g.

[Table 10 about here]

Table 10 presents the results for the LW, LPW, and LWN estimators. As expected from theory,

the LW and LPW estimators appear downward biased and are decreasing in the bandwidth. For

the LWN estimator the memory estimates of some of the stocks are in the stationary region, but

for the most part they are in the nonstationary region.

[Table 11 about here]

In Table 11 we present the results for the three variants of the LPWN estimator, i.e. for (Ry; Rw)

equal to (1; 0), (0; 1), and (1; 1). First of all, as expected from theory and the simulations above,

it is clear that this estimator does not su¤er from the downward bias present in the LW and LPW

estimators. Second, we note that the three di¤erent implementations of the estimator agree with

each other for most of the stocks and bandwidth choices. Thirdly, the LPWN estimates are of the

same order of magnitude as the LWN estimates, although a little higher on average.

To emphasize the importance of the polynomial approximation of the signal process fytg and
the pertubation process fxt + wtg, we also �tted an extended parametric LMSV-ARFIMA(1; d; 1)
model, where the extension is that the noise is modeled by an ARMA process. That is, we model

the periodogram of log ~r2t using the Whittle likelihood framework of Fox & Taqqu (1986) and Breidt

et al. (1998), where the �tted model has spectral density

fz (�) =
�2�
2�

�
2 sin

�

2

��2d �1 + 2�y cos�+ �2y��
1� 2�y cos�+ �2y

� + �2"
2�

�
1 + 2�x cos�+ �

2
x

�
(1� 2�x cos�+ �2x)

: (21)

In Table 12 the resulting estimates are reported, where we have removed insigni�cant ARMA terms

from both the signal and the noise.

[Insert Table 12 about here]
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The estimated values of d from the parametric results are in line with those from the LWN and

LPWN estimators in Tables 10 and 11. Furthermore, there is signi�cant (at 10% level) short-run

dynamics in the signal (19 out of 30 cases), in the noise (16 out of 30 cases), and in both the

signal and noise (13 out of 30 cases). The estimated (long-run) nsr�s can be calculated from the

parameter estimates as in (20), and are for most of the stocks in the vicinity of 10� 30, although
there are cases where the nsr is very high because �2� is very small and insigni�cant. Taking the

high nsr�s and signi�cant short-run dynamics in both the signal and the noise into consideration

stresses the importance of the LPWN estimators.

6 Concluding remarks

In this paper we have proposed a semiparametric local polynomial Whittle with noise estimator

of the degree of long memory, d, in �nancial volatility time series perturbed by dynamic short-

run noise. The estimator allows the spectrum of the perturbation and that of the short-memory

component of the signal to be modeled as �nite even polynomials, instead of constants near the

zero frequency. This is shown to yield a bias reduction depending on the smoothness of the spec-

tra. However, including the polynomials in�ates the asymptotic variance of d̂ by a multiplicative

constant which depends on the true long memory parameter, d.

We have shown that the estimator is consistent for d 2 (0; 1), asymptotically normal for d 2
(0; 3=4), and if the spectral density is su¢ ciently smooth near frequency zero the rate of convergence

becomes arbitrary close to the parametric rate,
p
n.

A Monte Carlo study revealed that the proposed local polynomial Whittle with noise estimator

is able to achieve considerable bias reductions in practice compared to standard (e.g., local Whittle

with noise) estimators, especially in cases with short-run dynamics in both the signal and noise

components. In an empirical investigation of the 30 DJIA stocks the local polynomial Whittle with

noise estimator indicated stronger persistence in volatility than standard estimators, and for most

of the stocks produced estimates of d in the nonstationary region.

Appendix A: Proof of Theorem 1

This proof follows the proofs of Theorem 3.1 and Lemma C.2 of Hurvich et al. (2005). As in

the proofs of Theorem 1 of Robinson (1995a) and Theorem 3.1 of Hurvich et al. (2005), to show

consistency of d̂ we need to separately prove that limn!1 P (d̂ 2 D1) = 0 and that (d̂ � d0)1(d̂ 2
D2)

P! 0, where 1(A) is the indicator function of the set A, D1 = (�1; d0 � 1=2 + �) \ D,
D2 = [d0 � 1=2 + �;+1) \D, and � < 1=4 is a positive real number to be set later.

Let �k (d;�) =
1+hk(d0;�0)
1+hk(d;�)

. Then the proof that (d̂ � d0)1(d̂ 2 D2)
P! 0 follows as in Hurvich
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et al. (2005, pp. 1303-1305) by showing that

Zm =

mX
k=1

k2(d�d0)�k(d;�)Pm
j=1 j

2(d�d0)�j(d;�)

�
Iz (�k)

fz (�k)
� 1
�
= oP (1) (22)

uniformly on (d;�) 2 D2 �� and that

Rm(d;�) = log

 
1 +

Pm
k=1 k

2(d�d0) (�k (d;�)� 1)Pm
j=1 j

2(d�d0)

!
� 1

m

mX
k=1

log (1 + (�k (d;�)� 1)) = o (1) (23)

uniformly on (d;�) 2 D ��.
Note that there exists a constant C > 0 such that

sup
(d;�)2D��

sup
k=1;:::;m

j�k (d;�)� 1j = sup
(d;�)2D��

sup
k=1;:::;m

����hk(d0;�0)� hk(d;�)1 + hk(d;�)

���� � C (m=n)2d1 ;
since � is compact and d � d1 > 0, see Lemma 4. Now we use that log (1 + x) = x + O(x2) as

x! 0 to obtain

sup
(d;�)2D��

jRm(d;�)j � C sup
(d;�)2D��

sup
k=1;:::;m

j�k (d;�)� 1j � C (m=n)2d1 = o (1) :

To show (22) we apply Proposition A.1 of Hurvich et al. (2005), which holds here since our

Assumptions A1-A6 imply their Assumptions (H1)-(H3) with the exception that we allow serially

correlated peturbation terms. It is, however, easily shown that replacing their Assumption (H2)

with our Assumption A5, their Proposition A.1 still holds. The only other change is that the term

(k=n)min(�;d0) in their eq. (F.15) should be replaced by (k=n)'y+(k=n)'w due to the more accurate

approximation of fz (�) o¤ered by our function g(�) in (10) due to the included polynomials, see

also Lemma 5 below. Thus, according to their Proposition A.1, letting

ck =
k2(d�d0)�k(d;�)Pm
j=1 j

2(d�d0)�j(d;�)
;

then for � 2 (0; 1), K 2 (0;1), and all k 2 f1; : : : ;m� 1g, we need to show that

jck � ck+1j � Km��k��2; jcmj � Km�1

uniformly on (d;�) 2 D2 ��, which implies (22).
Note that, uniformly on (d;�) 2 D2 � �, we have that

Pm
j=1 j

2(d�d0)�j(d;�) � Cm2(d�d0)+1

and

jk2(d�d0)�k(d;�)� (k + 1)2(d�d0)�k+1(d;�)j
� jk2(d�d0) � (k + 1)2(d�d0)j�k(d;�) + (k + 1)2(d�d0)j�k(d;�)� �k+1(d;�)j
� (k + a)2(d�d0)�1C + (k + 1)2(d�d0)C(�k+1 � �k)�2d�1k+a ; a 2 [0; 1]
� Ck2(d�d0)�1;
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where the �rst inequality is the triangle inequality and the second follows from the mean value

theorem and Lemma 4. It follows that

sup
(d;�)2D2��

�����k2(d�d0)�k(d;�)� (k + 1)2(d�d0)�k+1(d;�)Pm
j=1 j

2(d�d0)�j(d;�)

����� � sup
(d;�)2D2��

C

����� k2(d�d0)�1m2(d�d0)+1

����� � Ck2��2m�2�;

sup
(d;�)2D2��

����� m2(d�d0)�m(d;�)Pm
j=1 j

2(d�d0)�j(d;�)

����� � Cm�1;

which proves (22).

The proof that limn!1 P (d̂ 2 D1) = 0 follows exactly as in Hurvich et al. (2005, pp. 1305-

1306) since their Proposition A.1 holds in our case as well. Thus we have shown that d̂ P! d0. To

strengthen this result to d̂ � d0 = oP ((log n)�5) we use the proof of Lemma C.2 of Hurvich et al.
(2005) without change.

Appendix B: Proof of Theorem 2

For the proof of Theorem 2 we need the score and Hessian (both multiplied by m) of (11):

Sn (d;�) = Ĝ (d;�)�1
mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
Xj ;

Hn (d;�) = H1n (d;�) +H2n (d;�) ;

H1n (d;�) = Ĝ (d;�)�2

0@Ĝ (d;�) mX
j=1

GIz (�j)

gj (d;�)
XjX

0
j �m

0@ 1

m

mX
j=1

GIz (�j)

gj (d;�)
Xj

1A0@ 1

m

mX
j=1

GIz (�j)

gj (d;�)
Xj

1A01A ;
H2n(d;�) = Ĝ (d;�)�1

mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
@Xj
@(d;�0)

;

where

Xj = (X1j ;X
0
2j ;X

0
3j)

0;

X1j = 2 log j �
2hw(�w; �j)�

2d
j log �j

(1 + hj (d;�))
;

X2j =

 
��2j

(1 + hj (d;�))
; : : : ;

��2Ryj

(1 + hj (d;�))

!0
;

X3j =

 
��2dj

(1 + hj (d;�))
; : : : ;

��2d+2Rwj

(1 + hj (d;�))

!0
;

hj (d;�) = h(d;�; �j), gj (d;�) = ��2dj G (1 + hj(d;�)), and Dm (�) = fd 2 D : (logm)5 jd�d0j < �g
for � > 0. Note that Xj is the vector of partial derivatives of � log gj(d;�). The matrix H2n(d;�)
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is symmetric and has (i; l)�th and (l; i)�th elements

Ĝ (d;�)�1
mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(Xj)i (Xj)l ; i; l = 2; : : : ; R+ 2;

�Ĝ (d;�)�1
mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(Xj)i

2hw(�w; �j)�
2d
j log �j

(1 + hj(d;�))
; i = 2; : : : ; Ry + 1; l = 1;

Ĝ (d;�)�1
mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(Xj)i 2 log �j

 
1�

hw(�w; �j)�
2d
j

(1 + hj(d;�))

!
; i = Ry + 2; : : : ; R+ 2; l = 1;

Ĝ (d;�)�1
mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(Xj)Ry+2 4hw(�w; �j) (log �j)

2

 
1�

hw(�w; �j)�
2d
j

(1 + hj(d;�))

!
; i = l = 1:

We also de�ne the matrix

Jn =
mX
j=1

 
Xj �

1

m

mX
k=1

Xk

! 
Xj �

1

m

mX
k=1

Xk

!0
:

We next state a lemma adapted from Andrews & Sun (2004), henceforth abbreviated AS. The

proof is given in the next section.

Lemma 3 Under the assumptions of Theorem 2 we have, as n!1,
(a) B�1n JnB

�1
n ! 
Ry ;Rw ;

(b)


B�1n (H1n (d0;�0)� Jn)B�1n



 = oP (1) and 

B�1n H2n (d0;�0)B
�1
n



 = oP (1) ;
(c) sup�2�



B�1n (Hkn (d0;�)�Hkn (d0;�0))B
�1
n



 = oP (1) ; k = 1; 2;
(d) supd2Dm(�n);�2�



B�1n (Hkn (d;�)�Hkn (d0;�))B
�1
n



 = oP (1) ; k = 1; 2; for all sequences
of constants f�ngn�1 for which �n = o (1) ;

(e) B�1n Sn (d0;�0)
d! N

�
0;
Ry ;Rw

�
:

Since the LPWN likelihood (11) is a continuous function on a compact set the LPWN estimator

exists. From Lemma 3 we know by Lemma 1 of AS that there exists a solution to the �rst order

conditions with probability tending to one, and that the solution satis�es the convergence result in

Theorem 2, see also Lemmas 1 and 2 of AS. If the (negative) likelihood function is strictly convex

and twice di¤erentiable then the solution to the �rst order conditions is unique and minimizes (11)

and hence equals the LPWN estimator.

Thus, all that remains is to show that the Hessian is positive de�nite which proves convexity.

The positive de�niteness ofH1n follows as in eq. (5.1) of AS. Compared to AS we have the additional

term H2n. For H2n we know that


B�1n H2n(d;�)B

�1
n



 = oP (1) uniformly on (d;�) 2 Dm (�n)��
by Lemma 3(b)-(d) and the triangle inequality. Since d̂ 2 Dm (�n) with probability tending to
one by Theorem 1, this shows that Hn is positive de�nite with probability tending to one, which

concludes the proof.
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Appendix C: Proof of Lemma 3

We now turn to the proof of Lemma 3, which follows the method of proof for Lemma 2 of AS, with

modi�cations to allow d � 1=2 (following Velasco (1999)) and to accommodate the additive noise
term in the spectral density (see Lemma 5), and with an additional proof for each of (b), (c), and

(d) of negligibility of the term H2n(d;�).

C.1 Proof of (a)

Part (a) of the lemma follows by approximating sums by integrals, see, e.g., Lemma 2 of Andrews

& Guggenberger (2003).

C.2 Proof of (b), �rst statement

The proof roughly follows that of Lemma 2(b) in AS, except now b can be non-integer (equal to d

or 2d) in their eq. (A.6), which we write a little di¤erently as

~Ga;b;c(d;�) = m�1
mX
j=1

�2dj Iz(�j)

(1 + hj(d;�))c+1

 
2 log j �

2hw(�w; �j)�
2d
j log �j

(1 + hj(d;�))

!a�
j

m

�2b
;

Ĝa;b(d;�) = m�1
mX
j=1

�2dj Iz(�j) (2 log j)
a

�
j

m

�2b
;

Ja;b = Gm�1
mX
j=1

(2 log j)a
�
j

m

�2b
;

for a; c = 0; 1; 2 and b = 0; 1; : : : ; 2Ry; d; d + 1; : : : ; d + Rw + Ry; 2d; 2d + 1; : : : ; 2d + 2Rw. The

elements of B�1n H1n (d;�)B
�1
n are (omitting the argument for brevity)

(1; 1) : ~G�20;0;0

�
~G0;0;0 ~G2;0;0 � ~G21;0;0

�
;

(1; 1 + k) : ~G�20;0;0

�
~G0;0;0 ~G1;k;1 � ~G1;0;0 ~G0;k;1

�
for k = 1; : : : ; Ry;

(1; 2 +Ry + k) : ~G�20;0;0

�
~G0;0;0 ~G1;k+d;1 � ~G1;0;0 ~G0;k+d;1

�
for k = 0; : : : ; Rw;

(1 + i; 1 + k) : ~G�20;0;0

�
~G0;0;0 ~G0;i+k;2 � ~G0;i;1 ~G0;k;1

�
for i; k = 1; : : : ; Ry;

(1 + i; 2 +Ry + k) : ~G�20;0;0

�
~G0;0;0 ~G0;k+i+d;2 � ~G0;i;1 ~G0;k+d;1

�
for i = 1; : : : ; Ry; k = 0; : : : ; Rw;

(2 +Ry + i; 2 +Ry + k) : ~G�20;0;0

�
~G0;0;0 ~G0;k+i+2d;2 � ~G0;i+d;1 ~G0;k+d;1

�
for i; k = 0; : : : ; Rw;

and the corresponding elements of B�1n Jn (d;�)B
�1
n are given by the same expressions with ~Ga;b;c

replaced by Ja;b. To prove the �rst statement of Lemma 3(b) it su¢ ces to show that (since b can

take values including d, we distinguish between b and b0)

�a;b0 =
���Ĝa;b0(d0;�0)� Ja;b0��� = oP ((logm)�2); (24)

~�a;b0;c =
��� ~Ga;b0;c(d0;�0)� Ĝa;b0(d0;�0)��� = oP ((logm)�2): (25)
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In view of Lemma 5 below, the proof of (A.9) in AS pp. 598-599 works also for our eq. (24)

where we �nd that (�k;n(d) is de�ned in Lemma 5)

�a;b0 = OP

�
(logm)am�1�m;n(d0) + (logm)

am'yn�'y + (logm)amd0+'wn�d0�'w

+ (logm)am2d0n�2d0 + (logm)a+1m2d0�1n�d0 + (logm)am�1=2
�
;

which is

OP

�
(logm)a+2=3m�2=3 + (logm)am�1=2n�1=4 + (logm)a(m=n)min('y ;d0+'w;2d0)

+(logm)a+1m2d0�1n�d0 + (logm)am�1=2
�

in the stationary case and

OP

�
(logm)a+2=(5�4d0)m1=(5�4d0)�1 + (logm)a+1m2d0�2 + (logm)am(d0�1)=2n�1=2(log n)5=4

+(logm)a+1=2n�1=4md0�1 + (logm)a(m=n)min('y ;d0+'w;2d0) + (logm)a+1m2d0�1n�d0 + (logm)am�1=2
�

in the nonstationary case. Since d0 < d2 < 3=4 and by (15), clearly �a;b0 = oP ((logm)
�2) in both

cases.

To prove (25) we write ~Ga;b0;c(d0;�0)� Ĝa;b0(d0;�0) as

m�1
mX
j=1

�2d0j Iz(�j)

"
1

(1 + hj(d0;�0))c+1

 
2 log j �

2hw(�w;0; �j)�
2d0
j log �j

(1 + hj(d0;�0))

!a
� (2 log j)a

#�
j

m

�2b0
= m�1

mX
j=1

�2d0j Iz(�j)

�
1

1 +O((j=n)2d0)

�
2 log j � O((j=n)

2d0 log n)

1 +O((j=n)2d0)

�a
� (2 log j)a

��
j

m

�2b0
by Lemma 4(i). This proves (25) for a = 0 since

~G0;b0;c(d0;�0)� Ĝ0;b0(d0;�0) = m�1
mX
j=1

�2d0j Iz(�j)

�
1

1 +O((j=n)2d0)
� 1
��

j

m

�2b0
= OP

�
(m=n)2d0Ĝ0;b0(d0;�0)

�
= OP

�
(m=n)2d0

�
= oP ((logm)

�2)

because d0 belongs to the interior of the parameter space and is therefore bounded away from zero.

When a � 1 we apply the mean value theorem, i.e. xa = ya + (y � x)a�xa�1 for x � �x � y, such

that 
2 log j �

2hw(�w;0; �j)�
2d0
j log �j

(1 + hj(d0;�0))

!a
� (2 log j)a = a

2hw(�w;0; �j)�
2d0
j log �j

(1 + hj(d0;�0))
O((log j)a�1)
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uniformly in j = 1; : : : ;m. This impiles that (25) is

m�1
mX
j=1

�2d0j Iz(�j)
h
aO((j=n)2d0 log n)O((log j)a�1)

i� j
m

�2b0
= OP ((m=n)

2d0(log n)(logm)a�1Ĝ0;b0(d0;�0))

= OP

�
(m=n)2d0(log n)a

�
= oP ((logm)

�2):

C.3 Proof of (e)

We now prove part (e) since it will be useful in the proof of the remaining statements. By (24)

and (25) with a = b = c = 0 we get that Ĝ (d0;�0) = G0(1 + oP ((logm)�2)), so that, apart from

smaller order terms,

B�1n Sn (d0;�0) = m�1=2
mX
j=1

 
Iz (�j)

gj (d0;�0)
� 1

m

mX
k=1

Iz (�k)

gk (d0;�0)

!
~X0;j

= m�1=2
mX
j=1

�
Iz (�j)

gj (d0;�0)
� 1
� 

~X0;j �
1

m

mX
k=1

~X0;k

!
; (26)

where

~Xj = (X1;j ; ~X
0
2;j ; ~X

0
3;j)

0;

~X2;j =

�
�(j=m)2

(1 + hj(d;�))
; : : : ;

�(j=m)2Ry
(1 + hj(d;�))

�0
;

~X3;j =

�
�(j=m)2d

(1 + hj(d;�))
; : : : ;

�(j=m)2d+2Rw
(1 + hj(d;�))

�0
;

and ~X0;j is ~Xj evaluated at (d0;�0).

As in AS p. 601 we write the right-hand side of (26) as T1;n + T2;n + T3;n + T4;n, where

T1;n = m�1=2
mX
j=1

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)� E

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)

�� 
~X0;j �

1

m

mX
k=1

~X0;k

!
;

T2;n = m�1=2
mX
j=1

�
EIz (�j)

fz (�j)
� 1
�

fz (�j)

gj (d0;�0)

 
~X0;j �

1

m

mX
k=1

~X0;k

!
;

T3;n = m�1=2
mX
j=1

(2�I" (�j)� 1)
 
~X0;j �

1

m

mX
k=1

~X0;k

!
;

T4;n = m�1=2
mX
j=1

�
fz (�j)

gj (d0;�0)
� 1
� 

~X0;j �
1

m

mX
k=1

~X0;k

!
:

Then we show that T3;n
d! N (0;
r) while Ti;n = oP (1) for i = 1; 2; 4.
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Clearly the proof for T3;n of AS works here as well. We just have to verify that

1

m

mX
j=1

�2j ! �0
Ry ;Rw�;

where

�j = �
0(~X0;j �

1

m

mX
k=1

~X0;k) and 
Ry ;Rw =

0B@ 4 �0Ry � 0Rw
�Ry �Ry  0Ry ;Rw
�Rw  Rw;Ry 	Rw

1CA ;
which follows from part (a) of the lemma.

To show the result for T1;n we use summation by parts:

T1;n = m�1=2
m�1X
k=1

�
~X0;k � ~X0;k+1

� kX
j=1

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)� E

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)

��

+

 
~X0;m �

1

m

mX
k=1

~X0;k

!
m�1=2

mX
j=1

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)� E

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)

��

= m�1=2
m�1X
k=1

O(k�1)OP (�k;n(d0) + k
'y+1=2n�'y + k1=2+2d0n�2d0)

+O(1)m�1=2OP (�m;n(d0) +m
'y+1=2n�'y +m1=2+2d0n�2d0)

= OP (m
�1=2(logm)�m;n(d0) + (m=n)

min('y ;2d0));

where �k;n(d) is de�ned in Lemma 5. The second equality above applies Lemma 5 and that ~X0;k �
~X0;k+1 = O(k

�1) uniformly in k = 1; : : : ;m and ~X0;m� 1
m

Pm
k=1

~X0;k = O(1) (follows from approx-

imating sums by integrals, see also AS p. 602). Thus T1;n = OP ((logm)5=3m�1=6 + (logm)n�1=4 +

(m=n)min('y ;2d0)) in the stationary case and T1;n = OP ((logm)1+2=(5�4d0)m�(3�4d0)=(10�8d0)+(logm)2m2d0�3=2+

(logm)(log n)5=4n�1=2md0=2+(logm)3=2n�1=4md0�1=2+(m=n)min('y ;2d0)) in the nonstationary case.

Since d0 belongs to the interior of the parameter space it follows that T1;n = oP (1).

To prove the result for T2;n we use Robinson�s (1995b) Theorem 2, i.e., that EIy (�j) =fy (�j) =

1 + O(j�1(log j)) uniformly in j = 1; : : : ;m in the stationary case, as well as Velasco�s (1999)

Theorem 1, EIy (�j) =fy (�j) = 1+O(j2d0�2(log j)) uniformly in j = 1; : : : ;m in the nonstationary

case. Note that, as in AS, the remainder terms are di¤erent from those of Robinson (1995b) and

Velasco (1999) because of the normalization by fy (�j) rather than by G0�
�2d0
j . Thus, as in the

proof of Lemma 5 we can write

EIz (�j)

fz (�j)
� 1 =

fy (�j)� fz (�j)
fz (�j)

�
EIy (�j)

fy (�j)
� 1
�
+

�
EIy (�j)

fy (�j)
� 1
�

+
2
p
fy (�j)

fz (�j)

E Re (Iyw(�j))p
fy (�j)

+
EIw(�j) + fy (�j)� fz (�j)

fz (�j)
:

Because EIw (�j) = fw(�j) + O(j�1(log j)) and fz (�j) � fy (�j) = fw (�j), the last term is

O(j�1(log j)�2d0j ). By the same reasoning and by independence of fytg and fwtg, the second
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to last term is OP (�
d0
j j

�1(log j)) in the stationary case and OP (�
d0
j j

2d0�2(log j)) in the nonsta-

tionary case (see also the proof of Lemma 5 below and the second to last equation on p. 108 of

Velasco (1999)). We thus obtain the bounds EIz (�j) =fz (�j)�1 = O(j�1(log j)) for the stationary
case and EIz (�j) =fz (�j) � 1 = O(j2d0�2(log j)) for the nonstationary case, for all j = 1; : : : ;m.

We also have that fz (�j) =gj (d0;�0)� 1 = O((j=n)'y + (j=n)2d0+'w) for all j = 1; : : : ;m by (13).

Therefore, in the stationary case, T2;n can be bounded similarly to (A.24) of AS,

T2;n = m�1=2
mX
j=1

O(j�1(log j))O(1)O(logm)

= O

0@m�1=2(logm)
mX
j=1

j�1(log j)

1A
= O((logm)3m�1=2);

using also that j~X0;j � 1
m

Pm
k=1

~X0;kj = O(logm) uniformly in j = 1; : : : ;m. In the nonstationary
case we �nd in the same way that

T2;n = m�1=2
mX
j=1

O(j2d0�2(log j))O(1)O(logm)

= O

0@m�1=2(logm)
mX
j=1

j2d0�2(log j)

1A
= O((logm)3m2d0�3=2):

In both the stationary and nonstationary cases, T2;n is o(1) since d0 < d2 < 3=4.

The proof for T4;n follows from summation by parts and the approximation fz (�j) =gj (d0;�0)�
1 = O((j=n)'y + (j=n)2d0+'w) for all j = 1; : : : ;m, which implies that

T4;n = m�1=2
m�1X
k=1

�
~X0;k � ~X0;k+1

� kX
j=1

�
fz (�j)

gj (d0;�0)
� 1
�

+

 
~X0;m �

1

m

mX
k=1

~X0;k

!
m�1=2

mX
j=1

�
fz (�j)

gj (d0;�0)
� 1
�

= m�1=2
m�1X
k=1

O(k�1)
kX
j=1

O((j=n)'y + (j=n)2d0+'w)

+O(1)m�1=2
mX
j=1

O((j=n)'y + (j=n)2d0+'w)

= O(m1=2+'yn�'y +m1=2+2d0+'wn�2d0�'w):

Condition (15) shows that this is oP (1).
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C.4 Proof of (b), second statement

To prove the second statement of Lemma 3(b) we have to show that

1

m
Ĝ (d;�)�1

mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(~Xj)i(~Xj)l; i; l = 2; : : : ; R+ 2;

� 1
m
Ĝ (d;�)�1

mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(~Xj)i

2hw(�w; �j)�
2d
j (log �j)

(1 + hj(d;�))
; i = 2; : : : ; Ry + 1;

1

m
Ĝ (d;�)�1

mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(~Xj)i2(log �j)

 
1�

hw(�w; �j)�
2d
j

(1 + hj(d;�))

!
; i = Ry + 2; : : : ; R+ 2;

1

m
Ĝ (d;�)�1

mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(~Xj)Ry+24hw(�w; �j) (log �j)

2

 
1�

hw(�w; �j)�
2d
j

(1 + hj(d;�))

!
;

are all negligible when evaluated at (d0;�0). Note that it su¢ ces to prove the result for the generic

term

Vn (d;�) =
1

m
Ĝ (d;�)�1

mX
j=1

 
GIz (�j)

gj (d;�)
� 1

m

mX
k=1

GIz (�k)

gk (d;�)

!
(~Xj)Ry+2qj(d;�); (27)

where qj(d0;�0) depends on j but is at most of order O (log n) and satis�es qj+1(d0;�0)�qj(d0;�0) =
O(j�1) uniformly in j = 1; : : : ;m. Summation by parts on Vn(d0;�0) yields

Vn (d0;�0) =
1

m
Ĝ (d0;�0)

�1 qm(d0;�0)
mX
j=1

 
GIz (�j)
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gk (d0;�0)

!
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(qk(d0;�0)� qk+1(d0;�0))OP (k1=2)
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�
m�1=2(log n) +m�1=2

�
;

where the second equality follows from part (e) of the lemma.

C.5 Proof of (c)

First we prove the result for H1n, where we need to show that

sup
�2�

��� ~Ga;b0;c(d0;�)� ~Ga;b0;c(d0;�0)
��� = oP ((logm)�2)

for a; c = 0; 1; 2 and b = 0; 1; : : : ; 2Ry; d; d + 1; : : : ; d + Rw + Ry; 2d; 2d + 1; : : : ; 2d + 2Rw. By the

triangle inequality it su¢ ces to show that

sup
�2�

��� ~Ga;b0;c(d0;�)� Ĝa;b0(d0;�)���+sup
�2�

���Ĝa;b0(d0;�)� Ĝa;b0(d0;�0)���+ ~�a;b0;c = oP ((logm)�2): (28)
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We showed in (25) that ~�a;b0;c = oP ((logm)
�2).

Following the proof of (25), the �rst term on the left-hand side of (28) is
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������m�1
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� (2 log j)a
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by Lemma 4(i), which proves the result for the �rst term of (28) by the same arguments as those

applied to (25).

For n su¢ ciently large, gj (d0;�0) > 0 for all j = 1; : : : ;m, and then the second term on the

left-hand side of (28) is
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noting that all the terms inside the summation on the right-hand side of the second equality are

positive. From Lemma 4(ii) and the fact that Ĝa;b0(d0;�0) = OP ((logm)
a) by (24), it thus follows

that the second term on the left-hand side of (28) is OP ((logm)a(1 + o(1))�1�2d0m ), which proves

(28).

Next we prove the result for H2n. Again, it su¢ ces to show the result for the generic term

Vn (d;�) de�ned in (27), i.e. we must show that sup�2� jVn(d0;�)� Vn(d0;�0)j = oP (1). By (24)
and (28) we have that

sup
�2�

Ĝ(d0;�) = G(1 + oP ((logm)
�2)); (29)

and sup�2� jVn(d0;�)� Vn(d0;�0)j is, apart from a term that is negligible uniformly in �,
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By the triangle inequality, (30) is bounded by
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Note that, by inspection of the de�nition of qj(d;�) in (27) we have two prototypical expressions

for the di¤erence appearing in (32),

qj(d0;�)

(1 + hj(d0;�))
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=
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O
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4 (hw(�w; �j)� hw(�w;0; �j)) (m=n)2d0 (log �j)2

�
:

(34)

Inserting the �rst term of (34) into (32) we obtain, since for n su¢ ciently large gj (d0;�0) > 0 for

all j = 1; : : : ;m,
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and by Lemma 4(ii) it follows that (32) is OP (�2d0m ) in this case. Inserting the second term of (34)

into (32) we obtain
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by compactness of �. It follows that (32) is oP (1). Applying summation by parts to (33) we get

the bound

sup
�2�

������ qm(d0;�)

(1 + hm(d0;�))

1

m

mX
j=1

�
j

m

�2d0 � Iz (�j)

gj (d0;�)
� Iz (�j)

gj (d0;�0)

�������
+ sup
�2�

������ 1m
m�1X
k=1

�
qk(d0;�)

(1 + hk(d0;�))
� qk+1(d0;�)

(1 + hk+1(d0;�))

� kX
j=1

�
j

m

�2d0 � Iz (�j)

gj (d0;�)
� Iz (�j)

gj (d0;�0)

������� ;
where the �rst term is
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by (24), (28), and sup�2� qm(d0;�) = O(log n), and the second term is
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which, using qk(d0;�)� qk+1(d0;�) = O(k�1) and qk+1(d0;�) = O(log n) for any �, is
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:

Thus both terms of (33) are oP (1) under (15).

Along the same lines we rewrite (31) as
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and, using the de�nition of Ĝa;b(d;�), this is equal to
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where the second term is easily seen to be oP ((logm)�2(log n)) = oP (1). By (34), the �rst term is
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using compactness of � and Lemma 4. This is oP (1) which proves part (c).

C.6 Proof of (d)

Again, we �rst prove the result for H1n which follows if

sup
d2Dm(�n);�2�

��� ~Ga;b;c(d;�)� ~Ga;b0;c(d0;�)
��� = oP ((logm)�2) (35)

for a; c = 0; 1; 2 and b = 0; 1; : : : ; 2Ry; d; d+ 1; : : : ; d+Rw +Ry; 2d; 2d+ 1; : : : ; 2d+ 2Rw. De�ning
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we need to show that, for all a; c = 0; 1; 2 and b = 0; 1; : : : ; 2Ry; d; d+ 1; : : : ; d+Rw +Ry; 2d; 2d+

1; : : : ; 2d+ 2Rw,

Za;b;c (�n) := sup
d2Dm(�n);�2�

��� ~Ea;b;c(d;�)� ~Ea;b0;c(d0;�)
��� = oP (n2d0(logm)�2);

see also AS p. 600. Note that since b can take values including d, we distinguish between b and b0
which are obviously the same in case b = 0; 1; : : : ; 2Ry. By the triangle inequality it is su¢ cient to
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show that
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The result for Z3;a;b0;c(�n) follows from part (c) of the lemma since it does not depend on d.
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Since � is compact and 0 < d1 � d � d2 <1, for n su¢ ciently large it holds that
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which is oP (n2d0(logm)�2) as in (A.18) of AS.

The second term of Z2;a;b;c(�n) is bounded by
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and using (36) and Lemma 4(iii) we �nd that (37) is
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Noting thatm�1Pm
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Thus, applying also (36) and Lemma 4(iii), (38) is
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If a = 0 the result follows by (36), Lemma 4(iv), supd2Dm(�n);j=1;:::;m j
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uniformly in � 2 �. We then bound Z1;a;b;c(�n) as
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where the �rst term is Ĝ0;0(d0;0)(2�=n)�2d0OP ((logm)a�1�2d1m (log n)) = oP (n

2d0(logm)�2) by

(36) and (39) and the second term is Ĝ0;0(d0;0)(2�=n)�2d0oP (�2d1m (logm)a) = oP (n
2d0(logm)�2)

by (36), (39), and Lemma 4(iv).

We proceed to show that supd2Dm(�n);�2�B
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n kH2n(d;�)�H2n(d0;�)kB�1n = oP (1) or equiv-

alently that supd2Dm(�n);�2� jVn(d;�)� Vn(d0;�)j = oP (1). Since we have shown (35) we have that
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Ĝ(d;�)
P! G uniformly in � 2 �; d 2 Dm(�n), so we need to show that the following is oP (1) :

sup
d2Dm(�n);�2�

������ 1m
mX
j=1

 
Iz (�j)

gj (d;�)
� 1

m

mX
k=1

Iz (�k)

gk (d;�)

!
(j=m)2d

(1 + hj(d;�))
qj(d;�)

� 1
m

mX
j=1

 
Iz (�j)

gj (d0;�)
� 1

m

mX
k=1

Iz (�k)

gk (d0;�)

!
(j=m)2d0

(1 + hj(d0;�))
qj(d0;�)

������
� sup

d2Dm(�n);�2�

������ 1m
mX
j=1

 
Iz (�j)

gj (d;�)

qj(d;�)

(1 + hj(d;�))

�
j

m

�2d
� Iz (�j)

gj (d0;�)

qj(d0;�)

(1 + hj(d0;�))

�
j

m

�2d0!������ (40)

+ sup
d2Dm(�n);�2�

������ 1m
mX
j=1

1

m

mX
k=1

 
Iz (�k)

gk (d0;�)

qj(d0;�)

(1 + hj(d0;�))

�
j

m

�2d0
� Iz (�k)

gk (d;�)

qj(d;�)

(1 + hj(d;�))

�
j

m

�2d!������ :(41)

By the triangle inequality we get the bounds

(40) � sup
d2Dm(�n);�2�

������ 1m
mX
j=1

Iz (�j)

gj (d0;�)

 �
j

m

�2d
�
�
j

m

�2d0! qj(d0;�)

(1 + hj(d0;�))

������ (42)

+ sup
d2Dm(�n);�2�

������ 1m
mX
j=1

Iz (�j)

gj (d0;�)

�
j

m

�2d�gj (d0;�)
gj (d;�)

� 1
�

qj(d0;�)

(1 + hj(d0;�))

������ (43)

+ sup
d2Dm(�n);�2�

������ 1m
mX
j=1

Iz (�j)

gj (d;�)

�
j

m

�2d� qj(d;�)

(1 + hj(d;�))
� qj(d0;�)

(1 + hj(d0;�))

������� (44)

and

(41) � sup
d2Dm(�n);�2�

������ 1m
mX
j=1

 �
j

m

�2d0
�
�
j

m

�2d! qj(d0;�)

(1 + hj(d0;�))

1

m

mX
k=1

Iz (�k)

gk (d0;�)

������ (45)

+ sup
d2Dm(�n);�2�

������ 1m
mX
j=1

�
j

m

�2d qj(d0;�)

(1 + hj(d0;�))

1

m

mX
k=1

Iz (�k)

gk (d0;�)

�
1� gk (d0;�)

gk (d;�)

������� (46)

+ sup
d2Dm(�n);�2�

������ 1m
mX
j=1

�
j

m

�2d� qj(d0;�)

(1 + hj(d0;�))
� qj(d;�)

(1 + hj(d;�))

�
1

m

mX
k=1

Iz (�j)

gk (d;�)

������ :(47)
The required results for (42) and (45) follow using the mean value theorem as in (38), whereas the

results for (43) and (46) follow as in (37). For (44) and (47) we note that, by inspection of the
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de�nition of qj(d;�) in (27), c.f. (34), it is su¢ cient to show the result for

qj(d;�)

(1 + hj(d;�))
� qj(d0;�)

(1 + hj(d0;�))
=

(j=m)2d

(1 + hj(d;�))
� (j=m)2d0

(1 + hj(d0;�))

=

�
j

m

�2d� 1

(1 + hj(d;�))
� 1

(1 + hj(d0;�))

�
+

1

(1 + hj(d0;�))

 �
j

m

�2d
�
�
j

m

�2d0!
:

Inserting this into (44) ((47) follows the same way) we get the bound

(44) � sup
d2Dm(�n);�2�

������ 1m
mX
j=1

Iz (�j)

gj (d;�)

�
j

m

�4d� 1

(1 + hj(d;�))
� 1

(1 + hj(d0;�))

�������
+ sup
d2Dm(�n);�2�

������ 1m
mX
j=1

Iz (�j)

gj (d;�)

�
j

m

�2d 1

(1 + hj(d0;�))

 �
j

m

�2d
�
�
j

m

�2d0!������ ;
which we can handle similarly to (37) respectively (38).

Appendix D: Auxiliary lemmas

We now state two useful lemmas, which are used in the proofs of the main theorems. The �rst

is stated without proof and gathers some properties of the function hj(d;�), which all follow by

compactness of �.

Lemma 4 Let hj(d;�) = h(d;�;�j) =
PRy
r=1 �y;r�

2r + �2dj
PRw
r=0 �w;r�

2r, 0 < d1 < d2 < 1, and let

� be compact. Then, as n!1 and for c = 0; 1; 2,

(i) sup�2� j(1 + hj(d0;�))c+1 � 1j = O(sup�2� hj(d0;�)) = O((j=n)2d0);
(ii) inf

d2[d1;d2];�2�
j=1;:::;m

j1 + hj (d;�)j = 1 + o(1) and sup�2�;j=1;:::;m jhj (d0;�0)� hj (d0;�)j = O(�2d0m );

(iii) supd2[d1;d2];�2�
j=1;:::;m

��� 1+hj(d;�)1+hj(d0;�)
� 1
��� = O supd2[d1;d2];�2�

j=1;:::;m

���� �r+1(�2dj ��2d0j )

1+hj(d0;�)

����
!
= O(�2d1m );

(iv) supd2[d1;d2];�2�
j=1;:::;m

j(1 + hj(d;�))c � 1j = O(supd2[d1;d2];�2�
j=1;:::;m

hj(d;�)) = O(�
2d1
m ):

The next lemma provides approximations of the periodogram of zt by that of "t, following well

known results from, e.g., Robinson (1995a), Velasco (1999), AS, and Hurvich et al. (2005).

Lemma 5 Let Assumptions A1-A6 hold. Then, as n!1 and for all k = 1; : : : ;m,

kX
j=1

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)

�
= OP

�
�k;n(d0) + k

'y+1n�'y + kd0+'w+1n�d0�'w + k1+2d0n�2d0 + k2d0n�d0(log k)
�
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and

kX
j=1

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)� E

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)

��
= OP

�
�k;n(d0) + k

'y+1=2n�'y + k1=2+2d0n�2d0
�
;

where

�k;n(d) = k
1=3(log k)2=3 + k1=2n�1=4

in the stationary case and

�k;n(d) = k
1=(5�4d)(log k)2=(5�4d) + k2d�1(log k) + n�1=2k(1+d)=2(log n)5=4 + n�1=4kd(log k)1=2

in the nonstationary case.

Proof. Note that, in the nonstationary case, Hurvich et al. (2005) examine the di¤erence

between the normalized periodograms of zt and �yt (in our notation), whereas we examine the

di¤erence between the normalized periodograms of zt and yt itself in both the stationary and

nonstationary cases.

De�ne ~gj(d;�) = ��2dj G0 (1 + hy(�y; �j)) and write

kX
j=1

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)

�
=

kX
j=1

�
Iz (�j)

gj (d0;�0)
� Iy (�j)

~gj(d0;�0)

�
(48)

+
kX
j=1

�
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

�
: (49)

In the stationary case (49) is OP (k1=3(log k)2=3 + k'y+1n�'y + k1=2n�1=4) by (A.13)(i) of AS,

and in the nonstationary case (49) is OP (k1=(5�4d0)(log k)2=(5�4d0) + k'y+1n�'y + k2d0�1(log k) +

n�1=2k(1+d0)=2(log n)5=4 + n�1=4kd0(log k)1=2) by slight modi�cation of Lemma 1 of Velasco (1999)

to account for the better approximation of fy(�j) by ~gj(d0;�0) due to our polynomial appearing in

~gj(d0;�0) (the required modi�cation is the same as that used by AS to modify (4.8) of Robinson

(1995a) to obtain their (A.13)(i)). The term (48) is

Iz (�j)

gj (d0;�0)
� Iy (�j)

~gj(d0;�0)
=

~gj(d0;�0)� gj (d0;�0)
gj (d0;�0)

�
Iy (�j)

~gj(d0;�0)
� 1
�

(50)

+
2
p
hw(�w; �j)

p
~gj(d0;�0)

gj (d0;�0)

Re (Iyw(�j))p
~gj(d0;�0)

p
hw(�w; �j)

(51)

+
Iw(�j) + ~gj(d0;�0)� gj (d0;�0)

gj (d0;�0)
; (52)
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where Iab(�) = 1
2�n

Pn
t=1

Pn
s=1 atbse

i(s�t)� denotes the cross-periodogram between the two series

at and bt. Using summation by parts on (50) we �nd that

kX
j=1

~gj(d0;�0)� gj (d0;�0)
gj (d0;�0)

�
Iy (�j)

~gj(d0;�0)
� 1
�

=
k�1X
j=1

�
~gj(d0;�0)� gj (d0;�0)

gj (d0;�0)
� ~gj+1(d0;�0)� gj+1 (d0;�0)

gj+1 (d0;�0)

� jX
l=1

�
Iy (�l)

~gl(d0;�0)
� 1
�

+
~gk(d0;�0)� gk (d0;�0)

gk (d0;�0)

kX
j=1

�
Iy (�j)

~gj(d0;�0)
� 1
�
;

which is OP ((k=n)2d0(k1=3(log k)2=3+k'y+1n�'y+k1=2n�1=4+k1=2)) in the stationary case whereas

it is OP ((k=n)2d0(k1=(5�4d0)(log k)2=(5�4d0)+ k'y+1n�'y + k2d0�1(log k)+n�1=2k(1+d0)=2(log n)5=4+

n�1=4kd0(log k)1=2 + k1=2)) in the nonstationary case, by the same methods as applied previously

and using also (4.9) of Robinson (1995a) and that j~gj(d0;�0)=gj (d0;�0) � 1j � C(j=n)2d0 . Next,

(52) is easily seen to be OP ((j=n)2d0) because EjIw(�j)j = OP (1) uniformly in j = 1; : : : ;m. Since
fytg and fwtg are independent (51) is OP ((j=n)d0(j�1(log j) + (j=n)min('y ;'w))) in the stationary
case by Theorem 2 of Robinson (1995b), yielding a contribution to (48) of OP ((k=n)d0((log k) +

k1+min('y ;'w)n�min('y ;'w))). In the nonstationary case we use Theorem 1 of Velasco (1999) which

shows that Re(Iyw(�j))j~gj (d0;�0) j�1=2jhw(�w; �j)j�1=2 = OP ((j
2d0�2(log j) + (j=n)min('y ;'w))),

yielding a contribution to (48) of OP ((k=n)d0(kd0(log k) + k1+min('y ;'w)n�min('y ;'w)) (Velasco�s

result has to be modi�ed to accommodate multivariate time series, but the modi�cation is simple

by comparing e.g. his equation (A.1) with equation (4.3) of Robinson (1995b), see also the second

to last equation on p. 108 of Velasco (1999)). The di¤erence in the remainder terms relative to

Robinson (1995b) and Velasco (1999) is due to the di¤erent remainder term in the approximation

of fy(�j) by ~gj (d0;�0) due to our polynomial appearing in ~gj (d0;�0).

To prove the second result we write

kX
j=1

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)� E

�
Iz (�j)

gj (d0;�0)
� 2�I" (�j)

��

=

kX
j=1

�
Iz (�j)

gj (d0;�0)
� Iy (�j)

~gj(d0;�0)
� E

�
Iz (�j)

gj (d0;�0)
� Iy (�j)

~gj(d0;�0)

��
(53)

+

kX
j=1

�
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)� E

�
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

��
: (54)

By (A.21) of AS, (54) is OP (k1=3(log k)2=3 + k'y+1=2n�'y + k1=2n�1=4) in the stationary case,

and by (slight modi�cation of) Lemma 1 of Velasco (1999), (54) is OP (k1=(5�4d0)(log k)2=(5�4d0) +

k'y+1=2n�'y + k2d0�1(log k) + n�1=2k(1+d0)=2(log n)5=4 + n�1=4kd0(log k)1=2) in the nonstationary
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case. For eq. (53) we write

Iz (�j)

gj (d0;�0)
� Iy (�j)

~gj(d0;�0)
� E

�
Iz (�j)

gj (d0;�0)
� Iy (�j)

~gj(d0;�0)

�
=

~gj(d0;�0)� gj (d0;�0)
gj (d0;�0)

��
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

�
� E

�
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

��
(55)

+
~gj(d0;�0)� gj (d0;�0)

gj (d0;�0)
(2�I" (�j)� 1) (56)

+
2
p
~gj(d0;�0)

gj (d0;�0)

Re (Iyw(�j)� EIyw(�j))p
~gj(d0;�0)

(57)

+
hw(�w;0; �j)

gj (d0;�0)

��
Iw (�j)

hw(�w;0; �j)
� 2�I�(�j)

�
� E

�
Iw (�j)

hw(�w;0; �j)
� 2�I�(�j)

��
(58)

+
hw(�w;0; �j)

gj (d0;�0)
(2�I�(�j)� 1) ; (59)

using also that hw(�w;0; �j) = gj (d0;�0)� ~gj(d0;�0).
Using summation by parts we �nd that (59) is

kX
j=1

hw(�w;0; �j)

gj (d0;�0)
(2�I�(�j)� 1) =

k�1X
j=1

�
hw(�w;0; �j)

gj (d0;�0)
� hw(�w;0; �j+1)

gj+1 (d0;�0)

� jX
l=1

(2�I�(�l)� 1)

+
hw(�w;0; �k)

gk (d0;�0)

kX
j=1

(2�I�(�j)� 1)

=
k�1X
j=1

����hw(�w;0; �j)gj+1 (d0;�0)� hw(�w;0; �j+1)gj (d0;�0)gj (d0;�0) gj+1 (d0;�0)

����OP (j1=2)
+
hw(�w;0; �k)

gk (d0;�0)
OP (k

1=2)

= OP

0@k�1X
j=1

j2d0�1=2n�2d0

1A+OP (k1=2+2d0n�2d0)
= OP (k

1=2+2d0n�2d0);

using (4.9) of Robinson (1995a) for the second equality. The term (56) is handled in exactly the

same way yielding the same contribution. For the term (57) we can split it up in the same way as

(58) and (59), and the contribution is the same.
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Using summation by parts on (55) we �nd that, in the stationary case,

kX
j=1

~gj(d0;�0)� gj (d0;�0)
gj (d0;�0)

��
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

�
� E

�
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

��

=

k�1X
j=1

�
~gj(d0;�0)� gj (d0;�0)

gj (d0;�0)
� ~gj+1(d0;�0)� gj+1 (d0;�0)

gj+1 (d0;�0)

�

�
jX
l=1

��
Iy (�l)

~gl(d0;�0)
� 2�I" (�l)

�
� E

�
Iy (�l)

~gl(d0;�0)
� 2�I" (�l)

��

+
~gk(d0;�0)� gk (d0;�0)

gk (d0;�0)

kX
j=1

��
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

�
� E

�
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

��
= OP

�
(k=n)2d0(k1=3(log k)2=3 + k'y+1=2n�'y + k1=2n�1=4)

�
using (A.21) of AS. In the nonstationary case we use Lemma 1 of Velasco (1999) and get

kX
j=1

~gj(d0;�0)� gj (d0;�0)
gj (d0;�0)

��
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

�
� E

�
Iy (�j)

~gj(d0;�0)
� 2�I" (�j)

��
= OP ((k=n)

2d0(k1=(5�4d0)(log k)2=(5�4d0) + k'y+1=2n�'y

+k2d0�1(log k) + n�1=2k(1+d0)=2(log n)5=4 + n�1=4kd0(log k)1=2)):

Finally the term (58) is handled in exactly the same way as the stationary case of (55) yielding the

contribution OP
�
(k=n)2d0(k1=3(log k)2=3 + k'w+1=2n�'w + k1=2n�1=4)

�
.
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Table 1: Simulation results for Model I
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 0.0109 0.2037 0.0184 0.2707 0.0124 0.2606 0.0135 0.2917

4096 -0.0040 0.1280 0.0135 0.2093 -0.0029 0.1791 0.0085 0.2204
8192 0.0061 0.0911 0.0128 0.1479 0.0026 0.1205 0.0103 0.1553

10 2048 0.0140 0.2639 0.0166 0.3106 0.0264 0.3123 0.0207 0.3271
4096 0.0035 0.1793 0.0146 0.2462 0.0020 0.2268 0.0212 0.2606
8192 0.0019 0.1194 0.0032 0.1570 0.0191 0.1901 0.0161 0.1947

20 2048 0.0004 0.3373 -0.0348 0.3391 -0.0097 0.3567 -0.0253 0.3524
4096 -0.0005 0.2474 0.0003 0.2922 -0.0001 0.2840 0.0026 0.3023
8192 -0.0047 0.2175 -0.0009 0.2392 0.0003 0.2380 -0.0001 0.2419

Panel B: m =
�
n0:8

�
5 2048 -0.0002 0.1567 0.0002 0.2154 -0.0081 0.1953 -0.0139 0.2279

4096 0.0015 0.0966 0.0076 0.1506 -0.0020 0.1233 0.0054 0.1759
8192 0.0054 0.0706 0.0075 0.1025 0.0044 0.0907 0.0082 0.1244

10 2048 0.0057 0.2276 0.0056 0.2777 0.0094 0.2738 -0.0224 0.2735
4096 0.0078 0.1399 0.0155 0.1930 0.0089 0.1774 -0.0095 0.1992
8192 0.0047 0.0917 0.0125 0.1410 0.0034 0.1177 0.0002 0.1385

20 2048 -0.0152 0.3011 -0.0549 0.3058 -0.0294 0.3212 -0.1062 0.2997
4096 0.0002 0.2201 -0.0055 0.2531 -0.0020 0.2518 -0.0445 0.2366
8192 0.0073 0.1361 0.0146 0.1768 0.0073 0.1629 -0.0230 0.1629

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).

Table 2: Simulation results for Model II with (�y; �y) = (0; 0) and (�x; �x) = (0:5; 0)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 -0.0620 0.1977 0.0136 0.2678 -0.0045 0.2510 0.0042 0.2885

4096 -0.0528 0.1346 0.0134 0.2116 -0.0131 0.1738 0.0080 0.2182
8192 -0.0228 0.0931 0.0174 0.1523 0.0005 0.1250 0.0126 0.1595

10 2048 -0.0937 0.2484 0.0041 0.2968 0.0044 0.3052 0.0167 0.3263
4096 -0.0661 0.1818 0.0170 0.2449 -0.0040 0.2235 0.0235 0.2653
8192 -0.0416 0.1191 0.0144 0.1873 -0.0048 0.1600 0.0093 0.1906

20 2048 -0.1102 0.3165 -0.0479 0.3250 -0.0186 0.3525 -0.0271 0.3566
4096 -0.1043 0.2482 -0.0071 0.2815 -0.0126 0.2819 0.0056 0.3004
8192 -0.0613 0.1686 0.0102 0.2222 -0.0120 0.1966 0.0108 0.2248

Panel B: m =
�
n0:8

�
5 2048 -0.1486 0.1869 -0.0524 0.2245 -0.0896 0.1881 -0.0381 0.2089

4096 -0.1275 0.1519 -0.0116 0.1787 -0.0612 0.1319 -0.0023 0.1715
8192 -0.1027 0.1206 -0.0049 0.1175 -0.0371 0.0944 0.0174 0.1309

10 2048 -0.2208 0.2570 -0.0709 0.2732 -0.1102 0.2537 -0.0693 0.2575
4096 -0.1870 0.2138 -0.0149 0.2220 -0.0848 0.1736 -0.0260 0.1983
8192 -0.1610 0.1806 -0.0100 0.1617 -0.0649 0.1284 0.0005 0.1525

20 2048 -0.2748 0.3104 -0.1417 0.2999 -0.1656 0.3127 -0.1423 0.2913
4096 -0.2640 0.2919 -0.0583 0.2633 -0.1195 0.2556 -0.0728 0.2427
8192 -0.2349 0.2554 -0.0155 0.2028 -0.0894 0.1800 -0.0252 0.1826

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).
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Table 3: Simulation results for Model II with (�y; �y) = (0; 0) and (�x; �x) = (�0:8; 0)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 0.0133 0.2036 0.0205 0.2735 0.0138 0.2645 0.0126 0.2916

4096 -0.0012 0.1285 0.0155 0.2072 0.0018 0.1825 0.0076 0.2189
8192 0.0066 0.0904 0.0131 0.1501 0.0024 0.1214 0.0088 0.1564

10 2048 0.0149 0.2689 0.0156 0.3092 0.0241 0.3120 0.0179 0.3313
4096 0.0046 0.1797 0.0144 0.2445 0.0012 0.2234 0.0227 0.2597
8192 0.0037 0.1141 0.0076 0.1837 -0.0029 0.1575 0.0047 0.1899

20 2048 -0.0001 0.3340 -0.0329 0.3351 -0.0157 0.3509 -0.0213 0.3520
4096 0.0032 0.2510 -0.0049 0.2858 -0.0025 0.2759 0.0048 0.2998
8192 0.0067 0.1619 0.0095 0.2223 -0.0086 0.1973 0.0062 0.2258

Panel B: m =
�
n0:8

�
5 2048 0.0139 0.1595 -0.0034 0.2189 -0.0082 0.1978 -0.0137 0.2357

4096 0.0114 0.0972 0.0055 0.1509 -0.0019 0.1256 0.0070 0.1782
8192 0.0116 0.0716 0.0074 0.1028 0.0053 0.0903 0.0086 0.1257

10 2048 0.0291 0.2328 0.0065 0.2787 0.0092 0.2746 -0.0285 0.2753
4096 0.0210 0.1404 0.0116 0.1936 0.0092 0.1799 -0.0048 0.2012
8192 0.0046 0.0939 -0.0093 0.1324 -0.0053 0.1152 -0.0083 0.1398

20 2048 0.0060 0.3059 -0.0564 0.3084 -0.0331 0.3239 -0.1075 0.2998
4096 0.0168 0.2232 -0.0132 0.2476 -0.0049 0.2478 -0.0493 0.2358
8192 0.0119 0.1428 0.0045 0.1805 0.0005 0.1688 -0.0222 0.1704

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).

Table 4: Simulation results for Model III with (�y; �y) = (0; 0) and (�x; �x) = (0; 0:8)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 -0.0035 0.1535 0.0247 0.2290 0.0059 0.2064 0.0103 0.2503

4096 -0.0083 0.0989 0.0095 0.1718 -0.0056 0.1410 0.0012 0.1858
8192 0.0025 0.0719 0.0106 0.1180 0.0036 0.0990 0.0068 0.1340

10 2048 -0.0078 0.1848 0.0257 0.2653 0.0103 0.2462 0.0196 0.2828
4096 -0.0064 0.1248 0.0114 0.1958 0.0008 0.1727 0.0097 0.2123
8192 -0.0027 0.0867 0.0111 0.1453 0.0010 0.1200 0.0082 0.1564

20 2048 0.0006 0.2585 0.0118 0.3011 0.0196 0.3071 0.0194 0.3277
4096 -0.0164 0.1666 0.0132 0.2412 -0.0000 0.2184 0.0123 0.2552
8192 -0.0094 0.1141 0.0108 0.1776 -0.0034 0.1480 0.0093 0.1835

Panel B: m =
�
n0:8

�
5 2048 -0.0396 0.1124 0.0051 0.1665 -0.0115 0.1366 -0.0084 0.1765

4096 -0.0266 0.0758 0.0110 0.1151 -0.0017 0.0936 0.0056 0.1435
8192 -0.0141 0.0547 0.0101 0.0808 0.0035 0.0701 0.0081 0.1042

10 2048 -0.0670 0.1585 0.0146 0.2235 -0.0071 0.1932 -0.0064 0.2174
4096 -0.0371 0.0967 0.0226 0.1489 0.0004 0.1118 0.0020 0.1641
8192 -0.0246 0.0695 0.0127 0.0998 0.0016 0.0830 0.0069 0.1217

20 2048 -0.0890 0.2183 -0.0099 0.2542 -0.0136 0.2503 -0.0406 0.2533
4096 -0.0597 0.1479 0.0233 0.1955 0.0018 0.1701 -0.0029 0.2008
8192 -0.0434 0.0935 0.0174 0.1341 -0.0022 0.1077 0.0032 0.1431

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).
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Table 5: Simulation results for Model III with(�y; �y) = (0; 0) and (�x; �x) = (0;�0:8)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 0.0144 0.1427 0.0188 0.2184 0.0045 0.1921 0.0095 0.2345

4096 0.0043 0.0917 0.0083 0.1621 -0.0036 0.1329 0.0034 0.1820
8192 0.0079 0.0673 0.0085 0.1068 0.0035 0.0913 0.0074 0.1306

10 2048 0.0125 0.1713 0.0257 0.2513 0.0120 0.2291 0.0135 0.2626
4096 0.0083 0.1159 0.0075 0.1831 -0.0031 0.1584 0.0056 0.1944
8192 0.0065 0.0821 0.0085 0.1329 0.0010 0.1118 0.0046 0.1467

20 2048 0.0333 0.2349 0.0220 0.2936 0.0204 0.2831 0.0199 0.3066
4096 0.0057 0.1470 0.0128 0.2208 0.0002 0.1940 0.0116 0.2380
8192 0.0045 0.1041 0.0018 0.1508 -0.0044 0.1293 -0.0029 0.1585

Panel B: m =
�
n0:8

�
5 2048 0.0536 0.1144 -0.0099 0.1469 -0.0062 0.1293 0.0045 0.1891

4096 0.0409 0.0785 -0.0031 0.0971 0.0028 0.0891 0.0067 0.1415
8192 0.0319 0.0591 0.0029 0.0719 0.0074 0.0656 0.0074 0.0982

10 2048 0.0780 0.1555 -0.0036 0.1958 0.0005 0.1727 0.0042 0.2222
4096 0.0602 0.1003 -0.0024 0.1208 0.0048 0.1044 0.0099 0.1582
8192 0.0415 0.0715 -0.0044 0.0838 0.0024 0.0765 0.0064 0.1124

20 2048 0.1203 0.2265 -0.0163 0.2287 0.0076 0.2305 -0.0094 0.2436
4096 0.0839 0.1455 -0.0021 0.1643 0.0092 0.1522 0.0088 0.1853
8192 0.0529 0.0913 -0.0078 0.1031 0.0013 0.0952 -0.0003 0.1331

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).

Table 6: Simulation results for Model IV with (�y; �y) = (�0:8; 0) and (�x; �x) = (0:5; 0)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 -0.0579 0.1987 0.0167 0.2710 -0.0015 0.2515 0.0077 0.2867

4096 -0.0498 0.1344 0.0150 0.2139 -0.0117 0.1766 0.0086 0.2186
8192 -0.0207 0.0929 0.0177 0.1535 0.0007 0.1250 0.0067 0.1928

10 2048 -0.0900 0.2488 0.0029 0.2985 0.0051 0.3061 0.0175 0.3282
4096 -0.0635 0.1812 0.0191 0.2492 -0.0021 0.2281 0.0242 0.2647
8192 -0.0400 0.1186 0.0144 0.1859 -0.0047 0.1605 0.0106 0.1893

20 2048 -0.1076 0.3173 -0.0469 0.3274 -0.0186 0.3515 -0.0240 0.3569
4096 -0.1017 0.2469 -0.0080 0.2827 -0.0108 0.2814 0.0038 0.3040
8192 -0.0600 0.1685 0.0117 0.2239 -0.0121 0.1966 -0.0090 0.2250

Panel B: m =
�
n0:8

�
5 2048 -0.1302 0.1759 -0.0543 0.2222 -0.0871 0.1894 -0.0439 0.2122

4096 -0.1135 0.1414 -0.0153 0.1745 -0.0592 0.1324 -0.0006 0.1724
8192 -0.0927 0.1125 -0.0062 0.1171 -0.0353 0.0942 0.0182 0.1316

10 2048 -0.2081 0.2491 -0.0619 0.2745 -0.1078 0.2542 -0.0682 0.2559
4096 -0.1767 0.2052 -0.0157 0.2236 -0.0820 0.1731 -0.0259 0.1974
8192 -0.1540 0.1747 -0.0110 0.1623 -0.0638 0.1275 -0.0001 0.1538

20 2048 -0.2699 0.3086 -0.1392 0.3017 -0.1656 0.3142 -0.1452 0.2919
4096 -0.2587 0.2882 -0.0602 0.2637 -0.1175 0.2540 -0.0716 0.2416
8192 -0.2297 0.2507 -0.0188 0.2041 -0.0873 0.1820 -0.0225 0.1838

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).
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Table 7: Simulation results for Model IV with (�y; �y) = (�0:8; 0) and (�x; �x) = (�0:8; 0)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 0.0175 0.2051 0.0226 0.2725 0.0156 0.2640 0.0122 0.2922

4096 0.0019 0.1289 0.0158 0.2095 0.0006 0.1838 0.0073 0.2222
8192 0.0086 0.0911 0.0112 0.1455 0.0033 0.1206 0.0112 0.1568

10 2048 0.0184 0.2689 0.0156 0.3090 0.0243 0.3121 0.0188 0.3292
4096 0.0068 0.1803 0.0149 0.2459 0.0025 0.2209 0.0232 0.2617
8192 0.0052 0.1444 0.0090 0.1866 -0.0024 0.1582 0.0068 0.1874

20 2048 0.0021 0.3350 -0.0341 0.3342 -0.0170 0.3487 -0.0242 0.3523
4096 0.0052 0.2520 -0.0047 0.2861 0.0016 0.2797 0.0051 0.3011
8192 0.0077 0.1622 0.0046 0.2261 -0.0093 0.1947 0.0095 0.2292

Panel B: m =
�
n0:8

�
5 2048 0.0329 0.1646 -0.0054 0.2180 -0.0058 0.2001 -0.0116 0.2314

4096 0.0248 0.1004 0.0032 0.1486 -0.0006 0.1259 0.0090 0.1805
8192 0.0205 0.0740 0.0069 0.1028 0.0063 0.0904 0.0091 0.1262

10 2048 0.0439 0.2369 0.0062 0.2805 0.0105 0.2754 -0.0237 0.2722
4096 0.0308 0.1431 0.0098 0.1916 0.0093 0.1790 -0.0036 0.1974
8192 0.0133 0.0946 -0.0012 0.1327 -0.0043 0.1168 -0.0063 0.1415

20 2048 0.0116 0.3081 -0.0567 0.3087 -0.0321 0.3241 -0.1091 0.2989
4096 0.0218 0.2246 -0.0142 0.2478 -0.0053 0.2485 -0.0472 0.2377
8192 0.0170 0.1435 0.0031 0.1710 0.0029 0.1714 -0.0221 0.1710

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).

Table 8: Simulation results for Model V with (�y; �y) = (0;�0:8) and (�x; �x) = (0; 0:8)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 0.3067 0.3790 0.0179 0.2211 0.0883 0.2694 0.0270 0.2585

4096 0.2261 0.2608 0.0037 0.1550 0.0492 0.1735 0.0133 0.1955
8192 0.1655 0.1864 0.0130 0.1087 0.0561 0.1255 0.0117 0.1382

10 2048 0.2710 0.3675 0.0130 0.2572 0.0701 0.2928 0.0250 0.2833
4096 0.2040 0.2525 0.0119 0.1846 0.0470 0.1894 0.0183 0.2168
8192 0.1357 0.1681 0.0113 0.1307 0.0406 0.1319 0.0110 0.1542

20 2048 0.1837 0.3620 0.0203 0.3127 0.0539 0.3298 0.0355 0.3263
4096 0.1635 0.2571 0.0219 0.2473 0.0408 0.2378 0.0286 0.2658
8192 0.1057 0.1636 0.0074 0.1640 0.0222 0.1541 0.0151 0.1790

Panel B: m =
�
n0:8

�
5 2048 -0.2596 0.4143 -0.0444 0.1989 0.1301 0.3058 0.0208 0.2102

4096 0.2995� 0.4583� 0.0112 0.1083 0.1513 0.2153 0.0200 0.1476
8192 0.3611 0.4097 0.0151 0.0686 0.1221 0.1514 0.0124 0.1089

10 2048 -0.2123 0.4204 -0.0190 0.1988 0.1460 0.3243 0.0265 0.2330
4096 0.2645� 0.4359� 0.0167 0.1044 0.1464 0.2112 0.0208 0.1529
8192 0.3123 0.3751 0.0136 0.0784 0.1095 0.1473 0.0156 0.1140

20 2048 -0.1827 0.4107 -0.0063 0.2145 0.1267 0.3235 -0.0173 0.2569
4096 0.1994� 0.4026� 0.0168 0.1477 0.1245 0.2348 0.0164 0.1942
8192 0.2554 0.3329 0.0175 0.1033 0.0990 0.1659 0.0215 0.1405

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).
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Table 9: Simulation results for Model V with (�y; �y) = (0;�0:8) and (�x; �x) = (0;�0:8)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

�
n0:7

�
5 2048 0.3311 0.3899 0.0103 0.2054 0.0860 0.2616 0.0248 0.2486

4096 0.2452 0.2754 0.0074 0.1487 0.0597 0.1721 0.0108 0.1887
8192 0.1687 0.1876 0.0086 0.1016 0.0574 0.1213 0.0059 0.1305

10 2048 0.2993 0.3815 0.0073 0.2410 0.0736 0.2789 0.0266 0.2744
4096 0.2229 0.2628 0.0036 0.1714 0.0440 0.1835 0.0209 0.2062
8192 0.1579 0.1822 0.0144 0.1186 0.0504 0.1278 0.0167 0.1410

20 2048 0.2224 0.3741 0.0138 0.2809 0.0684 0.3174 0.0321 0.3066
4096 0.1989 0.2618 0.0214 0.2085 0.0532 0.2115 0.0298 0.2339
8192 0.1388 0.1764 0.0142 0.1524 0.0380 0.1461 0.0186 0.1655

Panel B: m =
�
n0:8

�
5 2048 -0.2917 0.4077 -0.0846 0.2273 0.0918 0.3189 0.0174 0.2027

4096 0.2863� 0.4677� -0.0021 0.1165 0.1491 0.2215 0.0212 0.1431
8192 0.3540 0.4284 0.0080 0.0645 0.1234 0.1510 0.0081 0.1032

10 2048 -0.2717 0.4115 -0.0677 0.2208 0.1099 0.3330 0.0313 0.2311
4096 0.2509� 0.4533� -0.0015 0.1216 0.1394 0.2185 0.0174 0.1553
8192 0.3026 0.4056 0.0066 0.0696 0.1139 0.1471 0.0098 0.1123

20 2048 -0.2992 0.4025 -0.0528 0.2180 0.1012 0.3235 0.0004 0.2427
4096 0.1423� 0.4261� -0.0104 0.1397 0.1020 0.2170 -0.0166 0.1587
8192 0.2319 0.3805 0.0014 0.0813 0.1010 0.1509 0.0136 0.1201

Note: The polynomial approximation used under the heading �LPWN(Ry; Rw)�is (Ry; Rw).
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Table 10: Local Whittle estimation of long memory in volatility of DJIA stocks
m =

�
n0:6

�
m =

�
n0:7

�
m =

�
n0:8

�
Ticker Symbol LW LPW LWN LW LPW LWN LW LPW LWN

AA 0:3002
(0:0395)

0:3718
(0:0592)

0:5292
(0:0768)

0:2019
(0:0258)

0:2956
(0:0387)

0:5916
(0:0476)

0:1379
(0:0169)

0:1977
(0:0253)

0:6063
(0:0308)

AIG 0:3696
(0:0395)

0:5017
(0:0592)

0:6793
(0:0686)

0:2938
(0:0258)

0:3941
(0:0387)

0:6202
(0:0466)

0:2042
(0:0169)

0:2990
(0:0253)

0:6471
(0:0299)

AXP 0:3691
(0:0395)

0:4860
(0:0592)

0:8225
(0:0635)

0:3260
(0:0258)

0:3928
(0:0387)

0:5552
(0:0490)

0:2115
(0:0169)

0:3088
(0:0253)

0:6514
(0:0298)

BA 0:2593
(0:0395)

0:4087
(0:0592)

0:6809
(0:0685)

0:2094
(0:0258)

0:2484
(0:0387)

0:5870
(0:0478)

0:1509
(0:0169)

0:2065
(0:0253)

0:5336
(0:0327)

C 0:3853
(0:0395)

0:4789
(0:0592)

0:7273
(0:0666)

0:2908
(0:0258)

0:3855
(0:0387)

0:6677
(0:0451)

0:2141
(0:0169)

0:2992
(0:0253)

0:6309
(0:0302)

CAT 0:2477
(0:0395)

0:3364
(0:0592)

0:6247
(0:0711)

0:1915
(0:0258)

0:3053
(0:0387)

0:5522
(0:0491)

0:1280
(0:0169)

0:2022
(0:0253)

0:5788
(0:0315)

DD 0:1425
(0:0395)

0:1738
(0:0592)

0:4238
(0:0861)

0:1008
(0:0258)

0:1292
(0:0387)

0:4195
(0:0565)

0:0810
(0:0169)

0:0956
(0:0253)

0:3366
(0:0420)

DIS 0:3033
(0:0395)

0:4448
(0:0592)

0:9074
(0:0613)

0:2361
(0:0258)

0:3155
(0:0387)

0:7582
(0:0428)

0:1744
(0:0169)

0:2134
(0:0253)

0:6824
(0:0292)

GE 0:3615
(0:0395)

0:5044
(0:0592)

0:7528
(0:0657)

0:2497
(0:0258)

0:3659
(0:0387)

0:7796
(0:0423)

0:1807
(0:0169)

0:2580
(0:0253)

0:7546
(0:0281)

GM 0:2567
(0:0483)

0:3489
(0:0592)

0:4949
(0:0794)

0:1987
(0:0258)

0:2606
(0:0387)

0:4890
(0:0522)

0:1603
(0:0169)

0:2027
(0:0253)

0:4091
(0:0375)

HD 0:3703
(0:0395)

0:4581
(0:0592)

0:6782
(0:0686)

0:2489
(0:0258)

0:3670
(0:0387)

0:7321
(0:0434)

0:1723
(0:0169)

0:2432
(0:0253)

0:7401
(0:0283)

HON 0:2614
(0:0395)

0:3354
(0:0592)

0:9898
(0:0594)

0:2323
(0:0258)

0:2447
(0:0387)

0:5859
(0:0478)

0:1787
(0:0169)

0:2253
(0:0253)

0:4242
(0:0368)

HPQ 0:3503
(0:0395)

0:4688
(0:0592)

0:8591
(0:0625)

0:2366
(0:0258)

0:3049
(0:0387)

0:9061
(0:0400)

0:1845
(0:0169)

0:2290
(0:0253)

0:7583
(0:0280)

IBM 0:3417
(0:0395)

0:4778
(0:0592)

0:7626
(0:0654)

0:2653
(0:0258)

0:3295
(0:0387)

0:6922
(0:0444)

0:1931
(0:0169)

0:2638
(0:0253)

0:6359
(0:0301)

INTC 0:3467
(0:0395)

0:4755
(0:0592)

0:7436
(0:0661)

0:2396
(0:0258)

0:3325
(0:0387)

0:7685
(0:0426)

0:1807
(0:0169)

0:2532
(0:0253)

0:6894
(0:0291)

JNJ 0:3734
(0:0395)

0:4400
(0:0592)

0:6639
(0:0692)

0:2601
(0:0258)

0:3750
(0:0387)

0:6850
(0:0446)

0:1940
(0:0169)

0:2641
(0:0253)

0:6394
(0:0301)

JPM 0:3603
(0:0395)

0:5424
(0:0592)

0:7173
(0:0670)

0:3032
(0:0258)

0:3741
(0:0387)

0:6029
(0:0472)

0:2174
(0:0169)

0:2865
(0:0253)

0:6058
(0:0308)

KO 0:3677
(0:0395)

0:5028
(0:0592)

0:8104
(0:0639)

0:2584
(0:0258)

0:3653
(0:0387)

0:8065
(0:0418)

0:1833
(0:0169)

0:2506
(0:0253)

0:7923
(0:0275)

MCD 0:2640
(0:0395)

0:4591
(0:0592)

0:6632
(0:0693)

0:1798
(0:0258)

0:2513
(0:0387)

0:6936
(0:0444)

0:1170
(0:0169)

0:1701
(0:0253)

0:7116
(0:0287)

MMM 0:2635
(0:0395)

0:3792
(0:0592)

0:9891
(0:0595)

0:2016
(0:0258)

0:2744
(0:0387)

0:9899
(0:0388)

0:1430
(0:0169)

0:1944
(0:0253)

0:8712
(0:0266)

MO 0:3041
(0:0395)

0:4106
(0:0592)

0:7409
(0:0662)

0:2531
(0:0258)

0:3152
(0:0387)

0:5484
(0:0493)

0:1879
(0:0169)

0:2505
(0:0253)

0:5163
(0:0332)

MRK 0:2612
(0:0395)

0:3504
(0:0592)

0:5687
(0:0742)

0:2063
(0:0258)

0:2535
(0:0387)

0:5034
(0:0514)

0:1540
(0:0169)

0:1930
(0:0253)

0:4599
(0:0352)

MSFT 0:3421
(0:0395)

0:4756
(0:0592)

0:8192
(0:0636)

0:2908
(0:0258)

0:3507
(0:0387)

0:6156
(0:0467)

0:2023
(0:0169)

0:2883
(0:0253)

0:6223
(0:0304)

PFE 0:3354
(0:0395)

0:3740
(0:0592)

0:6473
(0:0700)

0:2407
(0:0258)

0:3168
(0:0387)

0:6237
(0:0465)

0:1644
(0:0169)

0:2407
(0:0253)

0:6324
(0:0302)

PG 0:3262
(0:0395)

0:4378
(0:0592)

0:7656
(0:0653)

0:2274
(0:0258)

0:3433
(0:0387)

0:7514
(0:0429)

0:1944
(0:0169)

0:2435
(0:0253)

0:5525
(0:0321)

SBC 0:3411
(0:0395)

0:4017
(0:0592)

0:7310
(0:0665)

0:2692
(0:0258)

0:3410
(0:0387)

0:5545
(0:0491)

0:1866
(0:0169)

0:2581
(0:0253)

0:5784
(0:0315)

UTX 0:3435
(0:0395)

0:4700
(0:0592)

0:6515
(0:0698)

0:2413
(0:0258)

0:3426
(0:0387)

0:6751
(0:0449)

0:1650
(0:0169)

0:2417
(0:0253)

0:6892
(0:0291)

VZ 0:3317
(0:0395)

0:4262
(0:0592)

0:8357
(0:0631)

0:2578
(0:0258)

0:3458
(0:0387)

0:6661
(0:0452)

0:1866
(0:0169)

0:2642
(0:0253)

0:6138
(0:0306)

WMT 0:3728
(0:0395)

0:4847
(0:0592)

0:7582
(0:0655)

0:2570
(0:0258)

0:3477
(0:0387)

0:7860
(0:0422)

0:1668
(0:0169)

0:2573
(0:0253)

0:8247
(0:0271)

XOM 0:2498
(0:0395)

0:3889
(0:0592)

0:6534
(0:0697)

0:2271
(0:0258)

0:2390
(0:0387)

0:4419
(0:0550)

0:1507
(0:0169)

0:2254
(0:0253)

0:5013
(0:0337)

Note: Asymptotic standard errors in parentheses.
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Table 11: LPWN estimation of long memory in volatility of DJIA stocks
m =

�
n0:6

�
m =

�
n0:7

�
m =

�
n0:8

�
Ticker Symbol (1; 0) (0; 1) (1; 1) (1; 0) (0; 1) (1; 1) (1; 0) (0; 1) (1; 1)

AA 0:5427
(0:1139)

0:5525
(0:1538)

0:5448
(0:2315)

0:5196
(0:0759)

0:5394
(0:1012)

0:5247
(0:1528)

0:5869
(0:0469)

0:6027
(0:0649)

0:5115
(0:1007)

AIG 0:5872
(0:1097)

0:6785
(0:1487)

0:5887
(0:2279)

0:6156
(0:0701)

0:6068
(0:0990)

0:6107
(0:1483)

0:5833
(0:0470)

0:6006
(0:0650)

0:6209
(0:0969)

AXP 0:9538
(0:0903)

0:8216
(0:1465)

0:9612
(0:2198)

0:9719
(0:0586)

0:6755
(0:0975)

0:8239
(0:1441)

0:5877
(0:0469)

0:6057
(0:0649)

0:7991
(0:0946)

BA 0:5071
(0:1177)

0:5606
(0:1534)

0:5096
(0:2351)

0:7064
(0:0661)

0:6994
(0:0971)

0:7474
(0:1448)

0:6396
(0:0451)

0:5770
(0:0654)

0:7329
(0:0951)

C 0:8962
(0:0923)

0:8305
(0:1465)

0:8982
(0:2195)

0:7761
(0:0636)

0:7036
(0:0970)

0:7396
(0:1449)

0:6577
(0:0446)

0:6307
(0:0645)

0:8016
(0:0946)

CAT 0:6275
(0:1065)

0:6235
(0:1504)

0:6073
(0:2266)

0:3601
(0:0924)

0:3838
(0:1118)

0:6125
(0:1482)

0:4861
(0:0514)

0:5134
(0:0671)

0:4698
(0:1030)

DD 0:4049
(0:1325)

0:4667
(0:1604)

0:4548
(0:2424)

0:4507
(0:0816)

0:4513
(0:1060)

0:4495
(0:1592)

0:4479
(0:0536)

0:4397
(0:0700)

0:3991
(0:1084)

DIS 0:8803
(0:0929)

0:9059
(0:1463)

0:8788
(0:2195)

0:9092
(0:0600)

0:9898
(0:0963)

0:9131
(0:1441)

0:7966
(0:0412)

0:8451
(0:0630)

0:7870
(0:0947)

GE 0:7370
(0:0995)

0:7521
(0:1472)

0:6984
(0:2223)

0:7141
(0:0658)

0:7467
(0:0965)

0:7184
(0:1453)

0:9888
(0:0381)

0:7671
(0:0632)

0:7187
(0:0952)

GM 0:3761
(0:1381)

0:4049
(0:1677)

0:3799
(0:2574)

0:4737
(0:0796)

0:4881
(0:1037)

0:4790
(0:1564)

0:4820
(0:0516)

0:4459
(0:0697)

0:5354
(0:0997)

HD 0:7040
(0:1013)

0:6777
(0:1487)

0:7078
(0:2220)

0:6591
(0:0681)

0:6800
(0:0974)

0:6633
(0:1465)

0:9888
(0:0381)

0:7769
(0:0631)

0:7015
(0:0954)

HON 0:9893
(0:0892)

0:9898
(0:1467)

0:9890
(0:2201)

0:7424
(0:0648)

0:9854
(0:0963)

0:9841
(0:1445)

0:9418
(0:0388)

0:5515
(0:0660)

0:7446
(0:0950)

HPQ 0:8452
(0:0943)

0:8583
(0:1464)

0:9214
(0:2196)

0:9882
(0:0583)

0:8807
(0:0960)

0:9890
(0:1445)

0:8530
(0:0402)

0:9114
(0:0630)

0:9206
(0:0945)

IBM 0:7089
(0:1011)

0:7619
(0:1471)

0:7099
(0:2219)

0:7851
(0:0633)

0:7875
(0:0962)

0:8044
(0:1442)

0:7361
(0:0425)

0:6765
(0:0639)

0:7777
(0:0947)

INTC 0:7274
(0:1000)

0:7428
(0:1473)

0:7266
(0:2215)

0:7571
(0:0643)

0:7736
(0:0963)

0:7606
(0:1447)

0:9879
(0:0381)

0:7136
(0:0635)

0:7686
(0:0948)

JNJ 0:8592
(0:0937)

0:8002
(0:1467)

0:8639
(0:2195)

0:6528
(0:0683)

0:6438
(0:0981)

0:7825
(0:1444)

0:6879
(0:0437)

0:6691
(0:0639)

0:6793
(0:0958)

JPM 0:4847
(0:1204)

0:5400
(0:1546)

0:4904
(0:2374)

0:7293
(0:0652)

0:6681
(0:0976)

0:7001
(0:1456)

0:6627
(0:0444)

0:6469
(0:0642)

0:6157
(0:0971)

KO 0:9505
(0:0904)

0:8090
(0:1466)

0:9498
(0:2198)

0:8450
(0:0616)

0:8158
(0:0961)

0:8256
(0:1441)

0:9896
(0:0381)

0:8388
(0:0630)

0:7714
(0:0948)

MCD 0:3414
(0:1461)

0:4715
(0:1599)

0:3472
(0:2665)

0:6579
(0:0681)

0:6890
(0:0972)

0:6678
(0:1464)

0:9896
(0:0381)

0:7150
(0:0635)

0:6721
(0:0959)

MMM 0:9874
(0:0893)

0:9893
(0:1467)

0:9879
(0:2201)

0:9880
(0:0583)

0:9008
(0:0960)

0:9894
(0:1445)

0:9845
(0:0382)

0:9869
(0:0632)

0:9647
(0:0947)

MO 0:9526
(0:0904)

0:7394
(0:1474)

0:9335
(0:2197)

0:9565
(0:0589)

0:6506
(0:0979)

0:7847
(0:1444)

0:5946
(0:0466)

0:5469
(0:0661)

0:7824
(0:0947)

MRK 0:5558
(0:1126)

0:5643
(0:1532)

0:5546
(0:2306)

0:6002
(0:0709)

0:5832
(0:0997)

0:5917
(0:1491)

0:5732
(0:0474)

0:5396
(0:0663)

0:5713
(0:0983)

MSFT 0:8010
(0:0963)

0:8184
(0:1465)

0:8003
(0:2200)

0:9278
(0:0596)

0:7643
(0:0964)

0:8381
(0:1441)

0:6497
(0:0448)

0:6093
(0:0648)

0:7937
(0:0946)

PFE 0:8072
(0:0960)

0:9896
(0:1467)

0:8145
(0:2199)

0:7372
(0:0649)

0:6778
(0:0974)

0:7131
(0:1454)

0:6184
(0:0458)

0:6149
(0:0647)

0:7040
(0:0954)

PG 0:9260
(0:0913)

0:7646
(0:1470)

0:9320
(0:2196)

0:6881
(0:0668)

0:7028
(0:0970)

0:6932
(0:1458)

0:9086
(0:0393)

0:6644
(0:0640)

0:7960
(0:0946)

SBC 0:9711
(0:0898)

0:8535
(0:1464)

0:9734
(0:2200)

0:9480
(0:0591)

0:6398
(0:0982)

0:8381
(0:1441)

0:6196
(0:0458)

0:5861
(0:0652)

0:7954
(0:0946)

UTX 0:5862
(0:1098)

0:5983
(0:1515)

0:5865
(0:2281)

0:6373
(0:0691)

0:6438
(0:0981)

0:6395
(0:1473)

0:6574
(0:0446)

0:6684
(0:0640)

0:6621
(0:0961)

VZ 0:9228
(0:0914)

0:8350
(0:1464)

0:8787
(0:2195)

0:8688
(0:0610)

0:7483
(0:0965)

0:8166
(0:1442)

0:7044
(0:0433)

0:6157
(0:0647)

0:7801
(0:0947)

WMT 0:8249
(0:0952)

0:7575
(0:1471)

0:8242
(0:2198)

0:8152
(0:0624)

0:8149
(0:0961)

0:8149
(0:1442)

0:8994
(0:0394)

0:7736
(0:0631)

0:9865
(0:0948)

XOM 0:4872
(0:1201)

0:6519
(0:1494)

0:4900
(0:2374)

0:8676
(0:0610)

0:6669
(0:0976)

0:7009
(0:1456)

0:4411
(0:0540)

0:4415
(0:0699)

0:6900
(0:0956)

Note: The heading �(Ry; Rw)�indicates the LPWN(Ry; Rw) estimator. Asymptotic standard errors
in parentheses.
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Table 12: Parametric Whittle estimation of long memory in volatility of DJIA stocks
Ticker Symbol d̂ �̂y �̂y �̂2� �̂x �̂x �̂2"

AA 0:5777
(0:0943)

�0:5431
(0:1864)

� 0:1634
(0:1122)

0:0362
(0:0206)

� 3:3266
(0:1360)

AIG 0:6377
(0:0748)

�0:7946
(0:1447)

� 0:2771
(0:1629)

�0:8357
(0:0925)

0:9185
(0:3044)

2:8112
(0:7084)

AXP 0:5915
(0:0695)

� �0:7416
(0:0863)

1:9245
(0:2775)

0:2959
(0:1167)

� 1:2799
(0:3486)

BA 0:5532
(0:1019)

�0:9275
(0:2558)

0:6585
(0:2779)

0:1152
(0:0844)

� 0:0584
(0:0215)

3:2629
(0:1125)

C 0:6201
(0:0671)

� � 0:0913
(0:0482)

� � 3:1170
(0:0866)

CAT 0:4444
(0:1982)

� � 0:2211
(0:4432)

0:6814
(0:1389)

�0:7236
(0:1823)

3:2299
(0:5543)

DD 0:2478
(0:0978)

�0:7859
(0:3492)

0:8867
(0:3360)

0:7682
(0:8560)

� � 4:1923
(0:7411)

DIS 0:7555
(0:1331)

� � 0:0125
(0:0161)

� 0:0604
(0:0160)

3:3340
(0:0758)

GE 0:7509
(0:1177)

0:6409
(0:2936)

�0:8718
(0:0901)

0:1393
(0:1774)

� � 3:1386
(0:1740)

GM 0:5040
(0:1438)

�0:9730
(0:0440)

0:9371
(0:1043)

0:1624
(0:2038)

0:6010
(0:2992)

�0:5739
(0:2931)

3:2918
(0:2419)

HD 0:6211
(0:1200)

0:4356
(0:0676)

�0:8670
(0:0453)

1:5042
(0:5819)

� � 1:8557
(0:5603)

HON 0:4166
(0:0672)

�0:3490
(0:3161)

� 0:6309
(0:4581)

�0:6202
(0:3682)

0:6475
(0:3093)

2:7333
(0:4812)

HPQ 0:9298
(0:1684)

�0:9010
(0:1339)

� 0:0085
(0:0133)

0:6844
(0:1604)

�0:6567
(0:1633)

3:3724
(0:0762)

IBM 0:6775
(0:0978)

�0:6652
(0:1972)

� 0:1063
(0:0743)

0:0325
(0:0196)

� 3:1645
(0:1037)

INTC 0:7168
(0:0865)

�0:8816
(0:1020)

� 0:0712
(0:0557)

�0:9341
(0:0319)

0:9686
(0:0836)

3:0632
(0:3243)

JNJ 0:5824
(0:1038)

0:3924
(0:0799)

�0:7923
(0:0630)

0:9809
(0:7210)

� � 2:4001
(0:6923)

JPM 0:5798
(0:0624)

� � 0:1461
(0:0688)

� � 3:1921
(0:1005)

KO 0:8234
(0:1214)

�0:7461
(0:2712)

� 0:0249
(0:0267)

� 0:0423
(0:0166)

3:2834
(0:0802)

MCD 0:6211
(0:1290)

0:5379
(0:1005)

�0:8949
(0:0414)

0:8105
(0:4203)

� � 2:6296
(0:4025)

MMM 0:7032
(0:1748)

� � 0:0128
(0:0236)

� � 3:5654
(0:0871)

MO 0:5410
(0:0760)

0:6217
(0:3652)

� 0:0185
(0:0339)

� 0:0349
(0:0194)

3:2044
(0:0876)

MRK 0:4903
(0:0764)

� � 0:1430
(0:0873)

� � 3:2380
(0:1142)

MSFT 0:5987
(0:0725)

�0:7656
(0:1451)

� 0:2990
(0:1846)

�0:8105
(0:0887)

0:8940
(0:2491)

2:8675
(0:6008)

PFE 0:6093
(0:0850)

� � 0:0777
(0:0428)

� � 3:3014
(0:0872)

PG 0:5724
(0:0741)

� � 0:0901
(0:0565)

� � 3:1889
(0:0942)

SBC 0:5518
(0:0657)

� � 0:1294
(0:0681)

� � 3:2578
(0:1018)

UTX 0:6159
(0:1041)

0:5142
(0:0943)

�0:8598
(0:0475)

0:8469
(0:4559)

� � 2:5056
(0:4314)

VZ 0:6778
(0:1022)

�0:5928
(0:3156)

� 0:1039
(0:0747)

� 0:0714
(0:0240)

3:2410
(0:1074)

WMT 0:8328
(0:1229)

� � 0:0078
(0:0087)

� 0:0363
(0:0154)

3:4027
(0:0733)

XOM 0:4962
(0:0698)

� � 0:1532
(0:0839)

� � 3:2217
(0:1109)

Note: Asymptotic standard errors (evaluated as the inverse of the negative Hessian) in parentheses.
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