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Abstract

This paper extends the local polynomial Whittle estimator of Andrews & Sun (2004) to frac-

tionally integrated processes covering both stationary and non-stationary regions. We utilize the

notion of the extended discrete Fourier transform and periodogram to extend the local polynomial

Whittle estimator to the non-stationary region. We further, approximate the short-run component

of the spectrum by a polynomial instead of a constant in a shrinking neighborhood of zero, and

thereby alleviate some of the bias that the local Whittle estimator is prone to. This bias reduction

comes at a cost as the variance is in�ated by a multiplicative constant. We show consistency and

asymptotic normality for d 2 (�1=2;1), and if the spectral density of the short-run component is
in�nitely smooth near frequency zero, we obtain a rate of convergence arbitrarily close to the para-

metric rate. A simulation study illustrates the performance of the proposed estimator compared

to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical

justi�cation of the proposed estimator is shown through an analysis of credit spreads.
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1 Introduction

We are interested in semiparametric frequency-domain estimation based on the local approximation

f(�) � '(�)��2d as �! 0+; (1)

where '(0) 2 (0;1) and the symbol ���means that the ratio of the left and right hand sides tends
to one in the limit. '(�) is an even, positive, continuous function on [��; �) which can be thought
of as the spectral density of the short-memory component of the series of interest. Semiparametric

based estimators have been popular for a long time as it is believed that the loss of e¢ ciency with

respect to the parametric estimators entailed by the local speci�cations may be o¤set by a possible

greater robustness. This robustness stems from avoiding the inconsistency in estimating the long-run

dynamics that may be caused by a misspeci�cation of short-run dynamics.

Under stationarity and modeling '(�) in (1) by a constant G 2 (0;1), a common semiparametric
estimator is the local Whittle (LW) estimator proposed by Künsch (1987). Robinson (1995a) shows

its consistency and asymptotic normality for d 2 (�1=2; 1=2). Velasco (1999a) extended Robinson�s
(1995a) results to show that the estimator is consistent for d 2 (�1=2; 1) and asymptotically normally
distributed for d 2 (�1=2; 3=4) ; given that the fractional process is of Type I, see Marinucci &
Robinson (1999) and Robinson (2005). Phillips & Shimotsu (2004) show that the LW estimator is

consistent for d 2 (1=2; 1] and has a nonnormal limit distribution for d 2 (3=4; 1), and a mixed normal
limit distribution for d = 1. When d > 1 the LW estimator converges to unity in probability and

therefore is inconsistent, given that the fractional process is of Type II, Phillips & Shimotsu (2004).

This convergence in probability to unity when d > 1 also holds for log periodogram estimators as

shown in simulations studies by Hurvich & Ray (1995) and Velasco (1999b), and theoretically by Kim

& Phillips (2006). That is, in general the LW (or log periodogram) estimator is not a good general

purpose estimator when d takes on values in the non-stationary region beyond 3=4: The asymptotic

theory is discontinuous at d 2 f3=4; 1g and the estimator is not consistent for d > 1. Several methods
are available to avoid the problems when entering the non-stationary region. A simple one is to �rst

di¤erence the series before using the semiparametric estimator and then add one to the estimate. This

method runs into problems if the series of interest is trend stationary, Shimotsu & Phillips (2005) and

Shimotsu (2006). Tapering the data is another method often implemented and suggested, see Velasco

(1999a) and Hurvich & Chen (2000).

Shimotsu & Phillips (2005) introduce what they call an exact local Whittle estimator1 which is

consistent and has the same N(0; 1=4) limit distribution for all values of d if the I (d) series is generated

by a linear sequence and the range of the estimator is not wider than 9=2:2 Instead of using fractional

di¤erencing of the data, Abadir, Distaso & Giraitis (2007) use a di¤erent approach �rst noted by

Phillips (1999). They extend the discrete Fourier transform to the non-stationary case and use this in

whitening of the periodogram. Abadir et al. (2007) show that when the I (d) series is generated by a

1Shimotsu (2006) extends this to a feasible exact local Whittle estimator when introducing an unknown mean and

trend.
2The assumption concerning the width of the admissible parameter space is needed to ensure that the di¤erence in

the criteria function is uniformly bounded away from zero, see Shimotsu & Phillips (2005).
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linear sequence the extended discrete Fourier transform and periodogram have the same asymptotic

behavior for d 2 (�3=2;1).
Our main interest in this paper is to analyze a general purpose estimator where the limiting

distribution holds in the non-stationary case and when there is short-run contamination. To achieve

bias reduction when there is contamination by short-run dynamics, we follow Andrews & Sun (2004)

and model the spectral density of the short-memory component '(�) as a �nite and even polynomial

instead of a constant near frequency zero. In extending the local polynomial Whittle (LPW) estimator

of Andrews & Sun (2004) to the non-stationary region, we use the notion of the extended discrete

Fourier transform and periodogram as in Abadir et al. (2007). We call the new estimator the extended

local polynomial Whittle (ExtLPW) estimator. In establishing consistency and asymptotic normality

for the estimator d̂ we follow the method set out by Andrews & Sun (2004). Given that the generating

process is linear, the same central limit theorem argument as in the stationary case jdj < 1
2 derived by

Robinson (1995a) holds; although, not for d0 =
�
1
2 ;
3
2 ; :::

	
. We establish consistency and asymptotic

normality for d0 2 (�1=2;1) : Furthermore, if '(�) is in�nitely smooth near frequency zero, the rate
of convergence can become arbitrary close to the parametric rate. The simulations reveal that our

proposed estimator is superior when considering possible short-run contamination and non-stationary

values of d: We also include an analysis of credit spreads that demonstrates the usefulness of the

estimator.

The remainder of the paper is structured as follows: Section 2 gives a short introduction to the

LPW estimator of Andrews & Sun (2004). Section 3 expands the usual stationary framework to the

non-stationary framework thereby de�ning the ExtLPW estimator. Section 4 states the assumptions

needed for showing consistency and asymptotic normality. Section 5 introduces the theorem for

consistency and asymptotic normality. Section 6 presents the results from a small simulation study.

Section 7 provides an empirical investigation of potential long memory properties of treasury yield

and yields on corporate bonds, spreads over treasury and spreads between corporate yields. Section 8

concludes. Lemmas, and proofs to Theorem 1 and Lemma 1-2 are situated in the Appendix.

2 The local polynomial Whittle approach

De�ne at the jth frequency �j =
2�j
n for 1 � j � m; the discrete Fourier transform (DFT) and

periodogram of Xt as

w (�j) =
1p
(2�n)

nX
t=1

Xt exp (it�j) (2)

I (�j) = j!(�j)j2 : (3)

Following Andrews & Sun (2004) the (negative) local polynomial Whittle log-likelihood is

Un(d;G; �) =
1

m

mX
j=1

"
log(G��2dj exp (�Pr (�j ; �))) +

I (�j)

G��2dj exp (�Pr (�j ; �))

#
; (4)

where Pr (�j ; �) =
Pr
�=1 ���

2�
j and de�nes the closed interval of admissible estimates to be D =

[�1;�2] � [�1=2; 1=2] and m = o(n) is the bandwidth choice, i.e. the number of periodogram
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ordinates to be used in the estimation. Then concentrating Un(d;G; �) with respect to G we can write

the likelihood function as

Ln (d; �) = log Ĝ(d; �)� 1

m

mX
j=1

Pr (d; �)�
2d

m

mX
j=1

log �j + 1; (5)

Ĝ(d; �) =
1

m

mX
j=1

I(�j) exp (Pr (�j ; �))�
2d
j : (6)

Thus, Andrews & Sun (2004) propose to minimize (5) over the admissible set (d; �) 2 D ��

(d̂AS ; �̂AS) = argmin
(d;�)2D��

Ln (d; �) ; (7)

where � is compact and convex set in Rr: As shown by Andrews & Sun (2004) the asymptotic variance
of d̂AS is in�ated by a multiplicative constant.

It should be noted that it is not necessary to correct for an unknown mean of fXtg as we only
compute the DFT at the frequencies �j =

2�j
n for j = 1; :::;m where m = o (n), rendering the log-

likelihood local to frequency zero. This general result only holds for stationary values of d: Assuming

an unknown mean of the generating process when we are in the non-stationary region is the same as

saying that the data generating process is free of linear trends, in the usual setup of e.g. Robinson

(1995a) and Andrews & Sun (2004).

The di¤erence between the objective function de�ned in Robinson (1995a) and Andrews & Sun

(2004) is how we approximate '(�) as �! 0 by logG� Pr(�; �) where the polynomial term Pr(�; �)

vanishes for � = 0:

Given Assumptions 1-4 in Andrews & Sun (2004) and utilizing their Lemma 1 and Lemma 2, the

estimates (d̂AS ; �̂AS) are equal to the solution to the �rst-order conditions with probability that goes

to one as n ! 1. This solution is consistent and asymptotically normal, Andrews & Sun (2004, pp.

572). The asymptotic bias is of order O(�minfs;2+2rg), where s is measure of the smoothness of the

spectral density near frequency zero, for the LPW estimator and O(�2) for the LW estimator. That

the asymptotic bias of the LPW estimator is of order O(�minfs;2+2rg) follows from Assumption 4 and

it is clearly seen that if r = 0 and by Assumption 2 that s > 2r the asymptotic bias reduces to that

of the classical LW estimator, i.e. O(�2): In this paper, we only consider long memory processes with

potential short-run contamination, but if fXtg is a perturbed fractional process, the orders will be
smaller and dependent on d. Nonetheless, the LPW estimator will still be consistent at the expense

of lower convergence rate and higher asymptotic bias, see Arteche (2004) for the LW case. In the

perturbed case, the asymptotic bias of not modeling the spectral density appropriately will be of

order O(�2d), Hurvich & Ray (2003), Arteche (2004) and Hurvich, Moulines & Soulier (2005).

3 The extended local polynomial Whittle estimator

We de�ne a fractional integrated process as one that is stationary or exhibits some weak dependence

after the application of the fractional �lter, (1 � L)d. We often distinguish between two ways of
expressing a fractional process as a function of weakly dependent innovations, i.e. Type I and Type

II processes, see Marinucci & Robinson (1999). As we want to stay in the framework of Abadir et al.
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(2007) and Andrews & Sun (2004), we work in the setting of de�ning the fractional process as a Type

I process. Because we are not only interested in the stationary region, it is not enough just to expand

the �lter (1� L)d and express it as an in�nite order moving average of the innovations which results
in a stationary process when d < 1=2:When we move into the non-stationary region, i.e. d � 1=2; this
procedure breaks down because the in�nite order moving average of the innovations does not converge.

This is circumvented by modeling the process as the partial sum of the component I(d�p) process for
some p 2 Z and expanding (1�L)p�d in terms of the innovations. This results in a stationary integer
di¤erenced series. The disadvantage is that it introduces discontinuities at d = 1=2; 3=2; ::p � 1=2,
where p 2 Z. The Type II process of fractional integration is designed to cover a wider range of d and
thereby circumvent some of the problems concerning the Type I process, see Robinson (1994), Phillips

(1999), Tanaka (1999), Marinucci & Robinson (1999), and Robinson (2005). For the derivation of the

ExtLPW estimator, we de�ne the fractional process as a Type I process. More speci�cally, we de�ne

the I(d) process as in Abadir & Taylor (1999)

De�nition 1 For d = p+du; where p 2 Z and du 2 (�1=2; 1=2) ; we say that fXtg is an I(d) process,
i.e. Xt � I(d); if

(1� L)pXt = ut; t = 1� p; 2� p; :::; (8)

where futg is a second order stationary sequence with spectral density

fu(�) = G0 j�j�2du + o
�
j�j�2du

�
; (9)

as �! 0; where G0 2 (0;1) :

De�ne the extended DFT and the extended periodogram of a time series fXtg evaluated at the
Fourier frequencies �j =

2�j
n ; where j = 1; :::; n; by

w(�j ; d) = wx(�j) + c(�j ; d); (10)

I(�j ; d) = jw(�j ; d)j2 ; (11)

where wx(�j) is the usual DFT de�ned as

wx(�j) =
1p
(2�n)

nX
t=1

Xt exp (it�j) ; (12)

and the correction term c(�j ; d) takes on constant values on the intervals d 2 Dp := [p� 1=2; p+1=2);
p 2 N and is de�ned by

c(�j ; d) =

(
0 if d 2 D0 = [�1=2; 1=2)
exp(i�j)

Pp
`=1(1� exp(i�j))�`Z` if d 2 Dp for p = 1; 2; :::;

(13)

where

Z0 = wx(0) =
1p
(2�n)

nX
t=1

Xt; (14)

Z` =
1p
(2�n)

n
(1� L)`�1Xn � (1� L)`�1X0

o
; ` = 1; 2; :::; p: (15)
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In the computation of the step function c(�j ; d), we have to enumerate the data depending on what

subspace of D = [d1; d2] we are interested in. This is apparent from looking at (15), for example

when p = 2: That is, X�i+1; X�i+2; :::; Xn where i = (0 _ bd2 � 1=2c) : The usual DFT, (12) is always
computed using the enumeration fXtgnt=1 :

This notion of the extended DFT allows us to estimate the usual LPW estimator in the context

of non-stationary values for d by minimizing the criteria function de�ned as (5) over the admissible

parameter space. The extension of the DFT to the non-stationary case is based on the work of Phillips

(1999), Lahiri (2003), Dalla, Giraitis & Hidalgo (2006) and Abadir et al. (2007). De�ne the pseudo

spectral density of the sequence fXtg � I(d0); where d0 = p0 + du and du 2 (�1=2; 1=2) as

f(�) = j1� exp (i�)j�p0 fu (�) ; j�j � �: (16)

From this de�nition it is clear that

f (�) � G0 j�j�2d0 as �! 0+: (17)

Then following Abadir et al. (2007, Lemma 4.4), De�nition 1, and (10), the extended DFT has the

property that

w(�j ; d0) = (1� exp(i�j))�p0 !u(�j); j = 1; :::; n; (18)

where !u (�j) is the DFT of the stationary sequence futg. From Abadir et al. (2007, Lemma 4.4(i)),

it follows that

wx(�j) = (1� exp(i�j))�p0w�p0x(�j)� exp(i�j)
p0X
r=1

(1� exp(i�j))�rw�rx (19)

= (1� exp(i�j))�p0wu(�j)� exp(i�j)
p0X
r=1

(1� exp(i�j))�rw�rx; (20)

where the second equality follows from De�nition 1. Then the de�nition in (10) follows trivially.

Denote the rescaled extended DFT by

vj = v (�j ; d0) =
w (�j ; d0)

' (�j)
1=2 ��d0j

; 1 � j � m: (21)

Given that the generating process is linear, equation (18) and Lemma 2 show that the asymptotic

behavior of the rescaled extended DFT and periodogram is the same for all d0 2 (�1=2;1). Further-
more, given consistency, d̂

p! d0 and the de�nition of the extended DFT, we get

w
�
�j ; d̂

�
p! w (�j ; d0) : (22)

This follows because c(�j ; d) is a step function and therefore constant on the intervals d 2 (p� 1=2; p+ 1=2)
for p 2 N: This considerably eases the estimation as we are left with the same estimation procedure
as in the stationary case.

If the process is stationary the ExtLPW estimator is identical to the LPW estimator of Andrews

& Sun (2004). Similarly to the estimators in Robinson (1995a), Andrews & Sun (2004), and Abadir

et al. (2007) this estimator is based on the whitening principle of the periodogram. That is, similarly
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to the stationary case, Robinson (1995a) and Andrews & Sun (2004), the ExtLPW estimator is based

on the behavior of the random variables

�j = � (�j) =
Iu(�j)

fu(�j)
; 1 � j � m: (23)

Then given the spectral density of the second order stationary sequence futg ;(9), the �rst moment is
given by

E
�
�j
�
= 1 + o(1) +O(j�1 log j) 8 1 � j � m as n!1: (24)

Additionally, under regularity assumptions, see Lahiri (2003) and Abadir et al. (2007), the random

variables also satisfy

var
�
�j
�
� C 8 1 � j � m; (25)

where C is a positive �nite constant and

cov
�
�j ; �s

�
! 0 for j; s!1 and j 6= s: (26)

In the proof to Lemma 4.6 in Abadir et al. (2007), the above equations are proven.

Then given the equations (24), (25) and (26), the random variables �j satisfy a weak law of large

numbers (WLLN), i.e.
1

m

mX
j=1

�j
p! 1; as n!1: (27)

Given additional assumptions, this result is su¢ cient to ensure consistency of the estimator d̂. See

further discussions on this later. The WLLN for the random variables �j is equivalent to a WLLN for

the random variables jvj j2 ; i.e.
1

m

mX
j=1

jvj j2
p! 1; as n!1: (28)

Then given the nature of the spectral density (9) and (18)

jvj j2 = �j (1 + o(1)) 8 1 � j � m as n!1: (29)

Furthermore, given equation (24)

E
h
jvj j2

i
� C 8 1 � j � m: (30)

For a more thorough walkthrough of the extended DFT, see Phillips (1999), Lahiri (2003), Dalla et al.

(2006), and Abadir et al. (2007). We further note that the variables vj and �j are invariant with

respect to the mean of futg :

4 Assumptions

In this section, we introduce the assumptions needed to establish consistency and asymptotic normality

of the proposed estimator.

Assumption 1 D�� is a compact and convex subset of Rr+1 and d0 and �0 lie in the interior of
D = [d1; d2] � [�1=2;1] where d0 6= p0 � 1=2; p0 2 N and �, respectively:
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Assumption 1 is a combination of similar assumptions given in Andrews & Sun (2004) and Abadir

et al. (2007). Yet, our lower bound is more restrictive than in Abadir et al. (2007), because we need

to restrict E [Xt] = 0 to facilitate d1 = �3=2. Therefore, we only consider invertible processes, i.e.
d > �1=2: Furthermore, the assumption restricts the parameters of interest to be in the interior
of a compact and convex set: If d̂ lies on the boundary of the parameter space, we conjecture that

the estimator will be consistent,3 but it may not be asymptotically normal. As noted by Newey &

McFadden (1986, p. 2144), it is su¢ cient that the estimator is in the relative interior of the parameter

space, allowing for equality restrictions to be imposed on the parameters of interest:

Assumption 2 The spectral density of the stationary sequence futg is

fu(�) = '(�) j�j�2du + o
�
j�j�2du

�
as �! 0+; (31)

where '(�) is continuous at � = 0, '(0) 2 (0;1), and du 2 (�1=2; 1=2).

Assumption 2 is a result of using the basic semiparametric setup from De�nition 1.

Assumption 3 Let '(�) be smooth of order s at � = 0; where s > 2r and r 2 Nn f0g ; s � 1: That is,
in a neighborhood of � = 0; '(�) is bsc times continuously di¤erentiable with bsc� derivative,

'(bsc); satisfying a Hölder condition of order s � bsc at zero, i.e.
��'(bsc) (�)� '(bsc) (0)�� �

C j�js�bsc for a constant C <1:

The assumption imposes a regularity condition on the function '(�) that characterizes the semi-

parametric setup, Andrews & Sun (2004), i.e. ' (�) has a Taylor expansion around � = 0

'(�) =

bs=2cX
k=0

�k�
2k +O(�s) (32)

= Pr(�; �) +O(�
s); as �! 0+; (33)

where �0 = '(0) and

�k = � 1

(2k)!

dk

d�k
'(�)

����
�=0

: (34)

In general, Assumption 3 holds for general ARFIMA processes for all �nite s:

As noted by Andrews & Sun (2004), if r = 0 and Assumption 3 holds with s = 2; then Assumption

A1�of Robinson (1995a) holds with � = 2.

Assumption 4 (a) fXtg is generated by the linear sequence futg

ut = A(L)"t =

1X
j=0

aj"t�j ;
1X
j=0

a2j <1; (35)

3See e.g. the proof of Hurvich et al. (2005) Theorem 3.1, and their discussion of bounding d away from zero. It is

not a trivial question, as we in some sense need d to be bounded away from the boundary because the convergence of

the log-likelihood is not uniform on D � Rr:
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where

E ["tj=t�1] = 0; E
�
"2t j=t�1

�
= 1 a.s., (36)

E
�
"3t j=t�1

�
= �3 a.s., (37)

E
�
"4t j=t�1

�
= �4 a.s. 8 t = 0;�1;�2; :::; (38)

and =t�1 is the �� �eld generated by f"s : s < tg : (b) There exists a random variable " with

E"2 <1 such that for all � > 0 and some generic constant K > 0; Pr(j"tj > �) < K Pr(j"j > �):
(c) In some neighborhood (0; �) of the origin �(�) is di¤erentiable

d

d�
�(�) = O (j�(�)j =�) as �! 0+; (39)

where �(�) =
P1
j=0 aj exp(ij�):

Assumption 4 says that futg is a linear sequence with martingale di¤erence innovations. That is,
f"tg is adapted to the �ltration f=tg : Furthermore, Assumption 4 does not rule out non-Gaussian
processes. It should be possible to relax the linearity assumption, see the consideration regarding

non-linearity of futg in Abadir et al. (2007).

Assumption 5 m2r+1=2

n2r
!1 and m�+1=2

n�
! 0 as n!1; where � = min fs; 2 + 2rg :

Assumption 5 is the same as Assumption 4 in Andrews & Sun (2004). The assumptions are needed

to show simultaneous consistency of (d̂; �̂) and asymptotic normality. Note that the �rst condition

imposes a lower bound on the growth of m which ensures simultaneous consistency of d̂ and �̂ by

ensuring that the scaling matrix used to normalize the score and Hessian satis�es a regularity condition

that is necessary for consistency of (d̂; �̂) which will be clari�ed later on. The second condition is to

ensure that the normalized score in distribution converges to a zero mean Gaussian process which is

required to show asymptotic normality of the estimators (d̂; �̂). Andrews & Sun (2004) instead work

with lim
n!1

m�+1=2

n�
= A 2 (0;1) where � = min fs; 2 + 2rg. They set the divergence rate of m such that

they can derive the asymptotic bias and asymptotic mean squared error of d̂: We choose a bandwidth

m that diverges at a slower rate. Note that the two conditions never exclude each other as s > 2r

which follows from Assumption 3.

Assumption 6 For m = o(n) the renormalized periodogram, �0j 8 1 � j � m; satis�es a WLLN

1

m

mX
j=1

�0j
p! 1; as m;n!1; (40)

where �0j =
Iu(�j)

'(�j)�
�2du
j

81 � j � m.

Assumption 6 is equivalent to Assumption B in Abadir et al. (2007) and states that if Assumption

2, 3 and equation (18) hold then

�0j = �j (1 + o(1)) 8 1 � j � m as n!1: (41)

Furthermore, (24) implies that

E
�
�0j
�
� C 8 1 � j � m as n!1: (42)
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5 Consistency and asymptotic normality

Theorem 1 states consistency and asymptotic normality of the proposed ExtLPW estimator.

Theorem 1 Let fXtg be generated by (8) and assume that Assumptions 1 through 6 hold. Then, as
n!1, d̂ and �̂ are both consistent and

Bn

 
d̂� d0
�̂ � �0

!
d! N

�
0;
�1r

�
; (43)

where Bn being the (r + 1)� (r + 1) diagonal matrix with jth diagonal element de�ned as

[Bn]11 = m1=2 (44)

[Bn]jj =

�
2�m

n

�2j�2
m1=2 for j = 2; 3; :::; r + 1: (45)

And 
r is the (r + 1)� (r + 1) covariance matrix de�ned as


r =

 
4 2�0r
2�r �r

!
: (46)

�r is a r � 1 vector with kth element �r;k and �r is an r � r matrix with (i; k)th element [�r]i;k ;

�r;k =
2k

(2k + 1)2
for k = 1; :::; r; (47)

[�r]i;k =
4ik

(2i+ 2k + 1) (2i+ 1) (2k + 1)
for i; k = 1; :::; r: (48)

We could have shown log5m�consistency (irrespective of � 2 �) using Robinson�s (1995a) pp.
1642-1643 proof of the log3m�consistency of d̂ (r = 0) and adjusting it to account for our weaker
Assumption 5 compared to his Assumption 4�. But as this would mainly be a theoretical addition

it is left out. Theorem 1 utilizes the F.O.C. approach (because of the multidimensionality of the

parameter space) as in Andrews & Sun (2004). Therefore, Theorem 1 jointly delivers consistency

and asymptotic normality of (d̂; �̂): More speci�cally, since the ExtLPW likelihood ((5) where the

periodogram is de�ned by its extended DFT, i.e. (18)) is a continuous function on a compact set the

ExtLPW estimator exists. From Lemma 1 (in the Appendix) we know by Lemma 1 of Andrews & Sun

(2004) that there exists a solution to the �rst order conditions with probability tending to one, and

that the solution satis�es the convergence result in Theorem 1, see also Lemmas 1 and 2 of Andrews

& Sun (2004). If the (negative) likelihood function is strictly convex and twice di¤erentiable then the

solution to the �rst order conditions is unique and minimizes the log-likelihood and hence equals the

ExtLPW estimator.

By the formula for a partitioned inverse Theorem 1, in consequence, implies that,


�1r =

 
(4� 2�0r��1r 2�r)�1 �4 � 2�0r

�
�r � 2�r4�12�0r

��1
���1r 2�r

�
4� 2�0r��1r 2�r

��1 �
�r � 2�r4�12�0r

� !
(49)

=

 
cr=4 � cr

2 �
0
r�
�1
r

� cr
2 �

�1
r �r ��1r + cr�

�1
r �r�

0
r�
�1
r

!
; (50)

10



where cr =
�
1� �0r��1r �r

��1 for r > 0 and c0 = 1:
A few remarks are in order. First of all, the asymptotic variance of

p
m
�
d̂� d0

�
is free of nuisance

parameters and equal to cr=4: Secondly, in light of Assumption 5 the estimator given by ExtLPW for

r > 0 allows one to choose a bandwidth m much larger than in the classical LW approach, resulting

in an estimator that has asymptotic normality with a faster rate of convergence, as a function of

the sample size n: The cost of introducing a polynomial is in�ation of the asymptotic variance by a

multiplicative constant, i.e. c0 = 1; c1 = 9=4; c2 = 3:52 ; :::, see Andrews & Sun (2004).

Consistency of d̂ provides no information about �0 as the concentrated log-likelihood becomes �at

as a function of �̂ as n!1: The rate at which it becomes �at furthermore di¤ers for each element of
�̂.

As discussed earlier, our model setup does not consider volatility processes, e.g. in the sense of

long memory signal-plus-noise models as in Hurvich et al. (2005) and Frederiksen, Nielsen & Nielsen

(2008), among others. Introducing a perturbation in our framework would indeed bias our estimator

in the same manner as the classical fractional integration estimators (LW and log-periodogram), i.e.

the leading bias term is of order O
�
�2d
�
implying a slower convergence rate compared to the leading

bias term of the pure long memory process of O
�
�2
�
, Hurvich & Ray (2003), Arteche (2004), Hurvich

et al. (2005), and Frederiksen et al. (2008).

6 Simulation study

6.1 Setup

This sections concerns the �nite sample performance of the proposed estimator. We generate I(d)

processes according to De�nition 1 by using the circulant embedding method as described in Davies &

Harte (1987), i.e. as a stationary Type I fractionally integrated process in the terminology of Marinucci

& Robinson (1999), see also Beran (1994, pp. 215-217). Non-stationary processes are then de�ned

as [d] fold partial sums of stationary I (d� [d]) processes. [d] is de�ned as the integer closest to d:
Furthermore, when d� [d] = 1=2, [d] is equal to d+1=2: futg is contaminated by autoregressive (AR)
and moving average (MA) roots. That is, we consider the following data generating process (DGP)

(1� �L) (1� L)d (Xt) = (1 + �L)ut;

where ut
i:i:d:� N (0; 1) ; � 2 f�0:8;�0:5; 0; 0:5; 0:8g and � 2 f�0:8;�0:5; 0; 0:5; 0:8g. We set the

fractional parameter of interest equal to d = f�0:3; 0; 0:3; 0:7; 1; 1:3; 1:7; 2g: Sample size is set equal
to n 2 f128; 512; 1024g and bandwidth m = bnac where a 2 f0:5; 0:65; 0:8g. The bias and root

mean squared error (RMSE) were computed using 1000 replications. Simulations were done in Matlab

v7.2. The optimization procedure was implemented using the unconstrained minimization procedure

in Matlab where we used the BFGS algorithm. We tried di¤erent procedures to �nd the optimum,

among others evaluating the �rst-order conditions and thereby �nding the corresponding roots. All

the di¤erent approaches yielded similar results and we therefore elected to use the BFGS algorithm

as it is easy to implement and fairly fast computationalwise.

We compare our derived estimators to the local Whittle (LW) estimator of Robinson (1995a), local

polynomial Whittle (LPW) estimator of Andrews & Sun (2004), and extended local Whittle (ExtLW)
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estimator of Abadir et al. (2007). Regarding the parameterization of the polynomial, we set r = f1; 2g.
As initial values we set the memory parameter equal to the log-periodogram estimate of Geweke &

Porter-Hudak (1983) and the polynomial terms were all set equal to 1:

Tables 1-5 present results from the small simulation study. We only display a subset of the results.

Attention is restricted to the cases with no short-run dynamics with n = 512, Table 1, with moving-

average short-run dynamics, � 2 f�0:8;�0:5g with n = 512 , Table 2-3, and �nally with autoregressive
short-run contamination, � 2 f0:5; 0:8g with n = 512 , Table 4-5.

6.2 Simulation results

When the DGP is not contaminated by any short-run dynamics, it is be preferable to use a larger

bandwidth. If there is short-run contamination, the opposite is the case, excluding of course the bias

reducing methods, i.e. LPW estimators. Furthermore, bias decreases as a function of sample size.

In Table 1, results without short-run contamination are presented. For the stationary region all the

estimators are seemingly unbiased, and we clearly see that the extended estimators are in a statistical

sense equal to their non-extended counterparts. The RMSE shows that the fractional parameter is

estimated quite accurately, and we notice that the estimators using a polynomial to reduce potential

bias has a larger RMSE than the estimators using a constant in a shrinking neighborhood of zero.

Moving on to the non-stationary region, i.e. d � 1=2, we see that the bias of LW and LPW increases

quite considerably, especially when d is larger than 1: This is to be expected as the LW estimator

is not consistent for d > 1 and the LW estimator is biased towards unity, thereby con�rming the

results of Phillips & Shimotsu (2004). This result for the LW estimator also seems to hold for the

LPW estimator. Clearly, in the case where d > 1, the extended estimators are the best, and with

the ExtLW estimator being the best in a bias sense, as there is no short-run contamination. For

the extended estimators, regardless of which region we are in, RMSE indicates that the fractional

parameter of interest is estimated accurately. Additionally, the RMSE does not vary much in the

given range of d:

Looking at the case where we introduce short-run contamination, Tables 2-5, we generally �nd

that the estimators are biased and the bias increases as the contamination of the signal increases.

This is expected as the low frequencies (long-run in the time domain) are contaminated by the higher

frequencies (short-run in the time domain) of the spectral density. The bias is highest when introducing

positive AR noise and negative MA noise. When � = 0:8 and � = �0:8 we clearly see the advantage
of using an estimator that approximates this short-run contamination. Furthermore, when looking

at more moderate negative MA noise and positive AR noise, � = �0:5 and � = 0:5; respectively, it

is not preferable to use a lower bandwidth for the LPW (only in the stationary case) and ExtLPW

estimators, as for the other estimators. That is, the LPW and ExtLPW estimators are very robust to

MA and AR contamination because of the way they approximate the spectral density of the short-run

noise by a polynomial. Hence, it is possible to choose a higher bandwidth without increasing the bias

which is an important result especially when looking at shorter time series.

To sum up, it is important to approximate the short-run component of the local approximation by a

polynomial function instead of merely a constant, especially when there is a high degree of persistence,

since the polynomial estimators are clearly less biased than the LW and ExtLW. This is especially

12



important in shorter time series as the bias can be extreme when there is short-run contamination. As

shown by Andrews & Sun (2004) and in this paper, the improved bias comes at a cost of increasing

the variance by a multiplicative constant. When looking at the non-stationary region, it is important

to use the extended versions especially when d � 1 as there is considerable bias gains from using these

extensions.

For the ExtLW estimator where � = f�0:5; 0; 0:5g Abadir et al. (2007) arrive at similar results.
Furthermore, the simulation results for the ExtLW estimator from Abadir et al. (2007) when n = 500

and m =
�
n:65

�
are similar to the results obtained in Shimotsu & Phillips (2005) for their exact local

Whittle estimator (ELW). Shimotsu & Phillips (2005) compare their ELW estimator to two di¤erent

types of tapered estimators (the tapering proposed in Velasco (1999a) and Hurvich & Chen (2000)),

and conclude that their estimator is the best general purpose estimator when compared to the tapered

version of the LW estimator. Therefore, we conclude that our proposed estimator also outperforms

the tapered LW estimators especially in the presence of short-run contamination.

7 Application to credit spreads

In this section, we investigate potential long memory properties of treasury yield and yields on cor-

porate bonds, spreads over treasury and spreads between corporate yields, as previously examined by

Ratta & Urga (2005). Both in structural models (Merton (1974), Black & Cox (1976), Das (1995),

Longsta¤& Schwartz (1995), Hull & White (1995), Leland & Toft (1996), among others) and reduced-

form models (Ramaswamy & Sundaresan (1986), Jarrow & Turnbull (1995), Das & Tufano (1995),

Du¢ e & Huang (1996), Jarrow, Lando & Turnbull (1997), Madan & Unal (1996), Du¢ e & Single-

ton (1999), among others), credit spreads play an integral role in pricing of risky debt and credit

derivatives. Neither approach considers that the process driving the data generating process might

be poorly approximated by considering the classical I(0)=I(1) setup, as discussed in Ratta & Urga

(2005), see references therein. The objective of Ratta & Urga (2005) was to �ll a gap in the credit

spread literature, i.e. to investigate if credit spreads exhibit potential fractional integration and if

there are some long-run relations that can be explained through fractional cointegration. They use

the log-periodogram estimator of Geweke & Porter-Hudak (1983) and the LW estimator analyzed by

Robinson (1995a). As both of these estimators are severely biased in the presence of short-run conta-

mination, see Nielsen & Frederiksen (2005) for a simulation study, and there is no asymptotic theory

for d � 3=4; we suggest using more up-to-date semiparametric estimators that potentially mitigate the
bias introduced by short-run contamination and where the distributional theory holds for d � 3=4 :

The usual way to reduce bias for the log-periodogram and the LW estimator is to select a smaller

bandwidth thereby sacri�cing e¢ ciency in the form of a larger variance.

The data considered here consists of daily observations for the 30 year historical US Treasury

Constant Maturity Yields and Moody�Aaa and Baa.4 For a more thorough description of the data

and our reason for using rating-speci�c indices, see Ratta & Urga (2005). Our data covers the period

4Ratta & Urga (2005) look at two other ratings besides the two that we consider, i.e., Aa and A. The

reason we only look at Aaa and Baa is that these data series are downloadable from the Federal Reserve at

http://www.federalreserve.gov/releases/h15/data.htm
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2nd of January 1986 through 15th of February 2002 for a total of 4,034 observations. The 30-year

Treasury constant maturity series was discontinued on February 18th, 2002, and reintroduced on

February 9th, 2006. We could have used the 20-year Treasury constant maturity series and used a

correction factor delivered by the U.S. Treasury, but we choose to focus on the shorter sample period.

As opposed to Ratta & Urga (2005) we opt to log transform5 the series before considering further

analysis. Therefore, spreads, i.e. spreads over treasury (sAaaTreas, sBaaTreas) and spreads between

corporate yields (sBaaAaa), are de�ned as the di¤erence between the logs of the respective series.

Time series plot of the individual series and the spreads are shown in Figure 1. There are signs of

heteroskedasticity, volatility clustering and potential structural breaks. Granger & Terasvirta (1999)

show that the number of regime switches a¤ects the long memory parameter. Diebold & Inoue (2001),

Granger & Hyung (2004) and Haldrup & Nielsen (2007) discuss that if series display breaks, particular

in their deterministic components, these processes will give the impression of persistence. That is, we

can mistakenly conclude that a process displays long memory, where in fact it is due to a structural

break in the series. Therefore, we split the full sample in four even subperiods. The results from looking

at subperiods were comparable to the whole sample period, and therefore omitted. Additionally, we

implemented a test for spurious long memory where we temporally aggregated the data and compared

the long memory estimates through a Wald type test for identical memory across aggregation, see

Ohanissian, Russell & Tsay (2008) and Frederiksen & Nielsen (2008). We could not reject that

the memory parameters are identical. Hence, we conjecture that the estimated long memory is not

spurious in the sense that it is generated by structural breaks, e.g. a non-stationary level shift in mean

DGP. Looking at �rst di¤erences of the respective series, they seem stationary (when looking at the

autocorrelation diagrams which are omitted). Especially, the spread series look as if they have been

overdi¤erenced, i.e. the introduction of moving average behavior in the autocorrelation diagram.

Insert Figure 1 about here

Figures 2-7 display the semiparametric results for the LW, LPW, ExtLW and ExtLPW estimators,

for di¤erent bandwidth ranges.

Insert Figures 2-7 about here

Generally, results for the fractional integration estimates show that the estimators that do not model

the short-run components by a polynomial have a tendency to decrease as a function of the bandwidth,

at least for su¢ ciently large bandwidth. This is of course reasonable considering the theoretical

properties of these estimators.

The logs of Aaa, Baa and Treasury yields are in the non-stationary area with the long memory

parameter estimated in the proximity of a unit root. As the asymptotic theory does not hold for the

LPW estimator when d � 1=2 and for the LW estimator when d � 3=4, we primarily rely on the

extended estimators. In general, we cannot reject that the log yields contain a unit root.

Looking at the spreads over treasury (sAaaTreas, sBaaTreas) and spreads between corporate yields

(sBaaAaa), the estimated long memory is clearly in the non-stationary region regardless of the chosen

5Log transforming the data is also preferred in the sense that it better captures the non-linear relationship between

yields and ratings, Manzoni (2002).
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bandwidth and estimator. The LW and ExtLW are for larger bandwidth choices signi�cantly di¤erent

from d = 1; whereas we cannot reject the presence of a unit root for the polynomial estimators.

Like Ratta & Urga (2005), we have also applied a parametric ARFIMA-GARCH.6 The results

con�rm the �ndings obtained from the semiparametric analysis, so they are omitted. If indeed the

true generating process is modeled by GARCH innovations this does not a¤ect the asymptotic theory

of the semiparametric estimates as shown in a simulation study by Nielsen & Frederiksen (2005), so,

in that respect, it is not unreasonable that the conclusions are the same.

Overall, it cannot be rejected that the log yields of Aaa, Baa and Treasury bonds contain a unit

root. However, the results are more mixed when looking at spreads, depending on the estimator and

bandwidth choice. Therefore, as in Ratta & Urga (2005), we can reject the reduced-form modeling of

Das & Tufano (1995), Jarrow et al. (1997) and Du¢ e & Singleton (1999). This explicitly implies the

data generating process of the risk-free process, and hence also credit spreads, follows a short-memory

process, i.e. I(0). The relevance of modeling yields in a more �exible fractional cointegration setup

should be considered and is at least a relevant alternative to the classical I(1)=I(0) terminology.

8 Concluding remarks

In this paper, we propose a semiparametric estimator that circumvents the relatively slow convergence

and �nite sample bias of the classical local Whittle estimator when there is short-run contamination

(e.g. autoregressive and/or moving average roots) and non-stationarity. The bias reduction is ob-

tained by approximating the spectrum of the short memory component by a polynomial instead of

a constant in a shrinking neighborhood of frequency zero. In addition, the notion of extended DFT

and periodogram is used to extend the estimator to cover non-stationary values of the fractional inte-

gration parameter d. We show consistency and asymptotic normality of the estimator. A simulation

study con�rms the asymptotic results. The adequacy of the estimator is shown through an empirical

analysis of credit spreads.

As a �nal note, we could also have opted to expand the work of Andrews & Sun (2004) by utilizing

the work of Shimotsu & Phillips (2005). However, we conjecture that such an estimator would in fact

be consistent and asymptotically normal in the same manner as the exact local Whittle estimator of

Shimotsu & Phillips (2005). Robinson (2005) showed that the expected squared deviation between

the DFT of the Type I and the Type II model is of order O
�
n�1

�
: Therefore, we conjecture that the

derived results also hold for Type II fractional processes.

9 Appendix of proofs and lemmas

The proof to Theorem 1 relies heavily on Abadir et al. (2007) and Andrews & Sun (2004).

The Appendix section is structured as follows: In the �rst section the proof to Theorem 1 is given.

Section 2 presents technical lemmas adapted from Andrews & Sun (2004) and Abadir et al. (2007).

6We also estimated other GARCH speci�cations, e.g., IGARCH and FIGARCH. These other speci�cations seem

indeed to be justi�ed in the sense that � + � � 1 in the GARCH(1,1) speci�cation. A further analysis is beyond the

scope of this paper.
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9.1 Proof of Theorem 1

Proof. Set

Dm (�) =
�
d 2 [d1; d2] :

�
log5m

�
jd� d0j < �

	
for � > 0; (51)

gj = ��2dj G exp(�Pr (�j ; �)) (52)

As in Andrews & Sun (2004) denote the score and the Hessian of the scaled objective function as

Sn(d; �) = mrLn(d; �) and Hn(d; �) = mr2Ln(d; �), respectively.

Sn(d; �) = Ĝ�1(d; �)
mX
j=1

 
Ij(d) exp (Pr (�j ; �))�

2d
j �m�1

mX
k=1

Ik(d) exp (Pr (�k; �))�
2d
k

!
(53)

�
�
2 log j; �2j ; :::; �

2r
j

�0
= Ĝ�1(d; �)

mX
j=1

 
GIj(d)

gj(d; �)
�m�1

mX
k=1

GIk(d)

gk(d; �)

!
Xj : (54)

Hn(d; �) = Ĝ�2 (d; �)

0BB@
Ĝ (d; �)

Pm
j=1 Ij(d) exp (Pr (�j ; �))�

2d
j

�
2 log j; �2j ; :::; �

2r
j

�0 �
2 log j; �2j ; :::; �

2r
j

�
�m

�
m�1Pm

j=1 Ij(d) exp (Pr (�j ; �))�
2d
j

�
2 log j; �2j ; :::; �

2r
j

�0�
�
�
m�1Pm

j=1 Ij(d) exp (Pr (�j ; �))�
2d
j

�
2 log j; �2j ; :::; �

2r
j

�0�0
1CCA

= Ĝ�2 (d; �)

0@ Ĝ (d; �)
Pm
j=1

GIj(d)
gj(d;�)

X 0
jXj �m

�
m�1Pm

j=1
GIj(d)
gj(d;�)

Xj

�
�
�
m�1Pm

j=1
GIj(d)
gj(d;�)

Xj

�0
1A ; (55)

whereXj =
�
2 log j; �2j ; :::; �

2r
j

�0
:De�ne the deterministic scaling matrixBn equal to the (r+1)�(r + 1)

diagonal matrix with jth diagonal element de�ned as

[Bn]11 = m1=2 (56)

[Bn]jj =

�
2�m

n

�2j�2
m1=2 for j = 2; 3; :::; r + 1: (57)

Since Ln(d; �) is a continuous function de�ned on a compact set the estimator exists. Strict convexity

of the (negative) log-likelihood, Ln (:), implies that the estimator is unique. Then, by strict convexity

and twice continuous di¤erentiability of Ln(:), implies that if a solution to the F.O.C. exists with

probability tending to one, which essentially follows by Andrews & Sun (2004, Lemma 1), then it is

unique and minimizes the objective function. Now we can use Lemma 1 to verify that the conditions

in Lemma 1 of Andrews & Sun (2004) hold. Andrews & Sun (2004, Lemma 1(i)) holds by Assumption

5. Andrews & Sun (2004, Lemma 1(ii)) holds by Lemma 1(e) and the second condition in Assumption

5. Andrews & Sun (2004, Lemma 1(iii)) holds by Lemma 1(a) and Lemma 1(b) and the positive

de�niteness of 
r: Andrews & Sun (2004, Lemma 1(iv)) holds by Lemma 1(c) and Lemma 1(d) as

it ensures for some sequence �n that goes su¢ ciently slowly to zero, Cn ! 1, holds.7. Thus, what
remains is to show strict convexity. We know that if for all leading principal minors Dl(d; �) > 0,

l = 1; 2; :::; 1 + r + 1 and 8 (d; �) 2 D �� � [d1; d2]� Rr+1 then it follows that (negative) Ln(d; �) is
7Andrews & Sun (2004), give an example of such a sequence, i.e., setting �n = log

�1m:
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strictly convex on D�� � [d1; d2]�Rr+1: Andrews & Sun (2004) prove this by noticing that for any
c 2 Rr+1n f0g

c0Hn(d; �)cĜ
2(d; �)m�1 = Ĝ(d; �)m�1

mX
j=1

GIj(d)

gj(d; �)
(c0Xj)

2 �

0@m�1
mX
j=1

GIj(d)

gj(d; �)
c0Xj

1A2
= a0a � b0b� (a0b)2 > 0; (58)

where a and b are vectors of order m with aj =
�
m�1GIj(d)

gj(d;�)

�1=2
and bj =

�
m�1GIj(d)

gj(d;�)

�1=2
c0Xj(d; �)

for j = 1; :::;m and the inequality holds by the Cauchy-Schwarz inequality.

9.2 Lemmas

Lemma 1 is the same as Lemma 2 in Andrews & Sun (2004). Part (e) is lacking the bias term as

we impose a weaker form of divergence of the bandwidth m in Assumption 5 than Andrews & Sun

(2004) do. Otherwise, the proof follows from Andrews & Sun (2004) with modi�cations to allow for

d � 1=2. These modi�cations follow Abadir et al. (2007) and there notion of the extended DFT

and periodogram. Lemma 2 is adapted from Lemma 4.6 in Abadir et al. (2007) and deals with the

asymptotic properties of the renormalized DFT�s and hence generalizes Theorem 2 of Robinson (1995b,

Theorem 2) as done in Abadir et al. (2007) to suit the non-stationary case. Furthermore, we will use

Lemma 4.2 and Lemma 4.4 of Abadir et al. (2007) extensively. In short, Lemma 4.2 gives relevant

bounds for proving consistency of the estimator d̂. Lemma 4.4 gives the algebraic relation between

the DFT of the series fXtg and the di¤erenced series f�pXtg :

Lemma 1 Under Assumptions 1-6, as n!1; we have

(a) B�1n JnB
�1
n

p! 
r

(b)


B�1n (Hn(d0; �0)� Jn)B�1n



 = op(1)
(c) sup

�2�



B�1n (Hn(d0; �)�Hn(d0; �0))B�1n


 = op(1)

(d)
sup

(d;�)2Dm(�n)��



B�1n (Hn(d; �)�Hn(d0; �))B�1n


 = op(1) for all

sequences of constants f�ngn�1 for which �n = o(1)
(e) B�1n Sn(d0; �0)

d! N(0;
r);

Proof of (a). Follows by approximating sums by integrals, see Andrews & Sun (2004, pp. 597),

where they refer to Andrews & Guggenberger (2003) and Lemma 2(a), (h), and (i).

Proof of (b). As in Andrews & Sun (2004) write with the only di¤erence that our extended

periodogram of a time series fXtg depends not only on the Fourier frequencies, but also on the value
of d, i.e. Ij (d) = I(�j ; d) = j!(�j ; d)j2

Ĝa;b (d; �) = m�1
mX
j=1

Ij(d) exp (Pr (�j ; �))�
2d
j (2 log j)

a

�
j

m

�2b
(59)

Ja;b = G0m
�1

mX
j=1

(2 log j)a
�
j

m

�2b
; (60)
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for a = 0; 1; 2, b = 0; :::; r and where we in de�ning Ja;b have substituted Ij (d) exp (Pr (�j ; �))�2dj
with G0: As in (A.7) in Andrews & Sun (2004), the (1; 1) ; (1; k) and (k; i) element of B�1n HnB

�1
n and

B�1n JnB
�1
n for k; i = 2; :::; r + 1 are then given by

Ĝ�20;0

�
Ĝ0;0Ĝ2;0 � Ĝ21;0

�
; (61)

Ĝ�20;0

�
Ĝ0;0Ĝ1;k�1 � Ĝ1;0Ĝ0;k�1

�
;

Ĝ�20;0

�
Ĝ0;0Ĝ1;k+i�2 � Ĝ0;k�1Ĝ0;i�1

�
;

where for B�1n JnB
�1
n just substitute Ĝa;b (d; �) with Ja;b. To prove Lemma 1(b), it then su¢ ces to

show that

�a;b =

�����Ĝa;b (d0; �0)G0
� Ja;b
G0

����� = op �log�2m� , (62)

8a = 0; 1; 2 and b = 0; 1; :::; r. Write

�a;b =

�������
m�1Pm

j=1 Ij(d0) exp (Pr (�j ; �0))�
2d0
j (2 log j)a

�
j
m

�2b
G0

�
G0m

�1Pm
j=1 (2 log j)

a
�
j
m

�2b
G0

�������
=

�������m�1
mX
j=1

Ij(d0) exp (Pr (�j ; �0))�
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j (2 log j)a
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�2b
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2d0
j
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(2 log j)a
�
j

m

�2b�������
=
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mX
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Ij(d0)
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(2 log j)a

�
j

m

�2b
�m�1

mX
j=1

(2 log j)a
�
j

m

�2b������
=

������m�1
mX
j=1

�
Ij(d0)

gj
� 1
�
(2 log j)a

�
j

m

�2b������
�

������m�1
m�1X
j=1

"
(2 log k)a

�
k

m

�2b
� (2 log (k + 1))a

�
k + 1

m

�2b# kX
j=1

�
Ij(d0)

gj
� 1
�������

+

������(2 logm)am�1
mX
j=1

�
Ij(d0)

gj
� 1
�������

: = �1;a;m + �2;a;m;

where the inequality follows from using summation by parts. Furthermore, under Assumption 1, i.e.

d0 6= p0 � 1=2 for p0 2 Z and the de�nition of the extended DFT, the assumption of linearity of
the generating process (Assumption 4(a)), and together with Abadir et al. (2007, Lemma 4.4) and

Lemma 2, implies that the behavior of the extended DFT and periodogram are the same for all

d 2 (�1=2;1) : Therefore, the results from Andrews & Sun (2004) also hold in our case. That is, the

proof of (62) follows by collecting the terms (A.11)-(A.13) in Andrews & Sun (2004, pp. 598-599) and

using Assumption 5

�1;a;m + �2;a;m = Op

�
(logam)m�1=2 + (logam)m�n��

�
= op

�
log�2m

�
:
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Proof of (c). By (62) and Ja;b = O (logam) ; we get that

Ĝa;b (d0; �0) = Op (log
am) ; (63)

for a = 0; 1; 2 and b = 0; :::; r and

Ĝ0;0 (d0; �0) = G0 + op
�
log�2m

�
; (64)

where G0 > 0. Then given that we can write the elements for B�1n HnB
�1
n as in (61) and the above

results hold, it su¢ ces to show that

sup
�2�

���Ĝa;b (d0; �)� Ĝa;b (d0; �0)��� = op �log�2m� ; (65)

8a = 0; 1; 2 and b = 0; :::; r: Write the left-hand side of (65) as

sup
�2�

�������
m�1Pm

j=1 Ij (d0) exp (Pr (�j ; �))�
2d0
j (2 log j)a

�
j
m

�2b
�m�1Pm

j=1 Ij (d0) exp (Pr (�j ; �0))�
2d0
j (2 log j)a

�
j
m

�2b
�������

= sup
�2�

������m�1
mX
j=1

Ij (d0) [exp (Pr (�j ; �))� exp (Pr (�j ; �0))]�2d0j (2 log j)a
�
j

m

�2b������
� sup

�2�
sup

k=1;:::;m
jexp (Pr (�k; �))� exp (Pr (�k; �0))� 1j

�m�1
mX
j=1

Ij (d0) exp (Pr (�j ; �0))�
2d0
j (2 log j)a

= O
�
�2m
�
Ĝa;0 (d0; �0)

= Op

�
(m=n)2 (logam)

�
= op

�
log�2m

�
: (66)

The second equality holds by a mean-value expansion using the compactness of �, the third equation

holds by (62) and Ja;b = O (logam). The last equality holds by Assumption 5.

Proof of (d). Given the same arguments as in Andrews & Sun (2004), we note that, (i) utilizing

equations (62) and (65) we have that Ĝa;b (d0; �) = Ja;b + op
�
log�2m

�
(ii) Ja;b = O (logam) ; (iii)

J0;0J2;0 � J21;0 = O(1) by replacing sums by integrals and noting that the part of J0;0J2;0 that is

O
�
log2m

�
cancels with an identical term in J21;0, (iv) J0;0J1;k�1 � J1;0J0;k�1 = O(1) by the same

argument as in (iii), and (v) J0;0 = G0 > 0: Then from (i)-(v) and equation (61) it su¢ ces to show

sup
(d;�)2Dm(�n)��

���Ĝa;b (d; �)� Ĝa;b (d0; �)��� = op �log�2m� : (67)

Replacing �2dj with j2d in Ĝa;b (d; �), and thereby de�ning Êa;b (d; �), equation (61) also holds for

Ĝa;b (d; �) replaced by Êa;b (d; �) : Hence, it su¢ ces in proving Lemma 1(d) that

Za;b = sup
(d;�)2Dm(�n)��

���Êa;b (d; �)� Êa;b (d0; �)��� = op �n2d0 log�2m� ; (68)
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8a = 0; 1; 2 and b = 0; :::; r: Then from Andrews & Sun (2004, pp. 600), 9C < 1 and for (d; �) 2
Dm (�n)��

Za;b = sup
(d;�)2Dm(�n)��

������m�1
mX
j=1

Ij (d0) exp (Pr (�j ; �)) (2 log j)
a

�
j

m

�2b
j2d0
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���j2(d�d0) � 1���+ op (1)
� 2C exp

�
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�4m
�
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d2Dm(�n)
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a+1 j2d0 jd� d0j

� �n
�
log�2m

�
2C exp

�
2�n log

�4m
�
m�1

mX
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Ij (d0)�
2d0
j

�
2�

n

��2d0
:

The �rst inequality follows from using sup
0���2�;�2�

sup
j=1;:::;m

exp (Pr (�j ; �)) < 1 because � is compact.

The second inequality stems from noting��j2(d�d0) � 1��
jd� d0j

� 2m2jd�d0j log j � 2m2�n log
�5m log j = 2 exp

�
2�n log

�4m
�
log j

for d 2 Dm (�n) by a mean-value expansion where we use that mlog�1m = e: The third inequality

uses d 2 Dm (�n) : Then from equations (62) and (65) we have m�1Pm
j=1 Ij (d0)�

2d0
j = Ĝ0;0(d0; 0) =

G0 + op
�
log�2m

�
: Hence, (68) follows.

Proof of (e). By using (62), and setting a = b = 0 we get Ĝ (d0; �0) = G0
�
1 + op

�
log�2m

��
;

and therefore the normalized score can be written as

B�1n Sn (d0; �0) = Ĝ�1 (d0; �0)m
�1=2

mX
j=1

 
Ij (d0)

gj (d0; �0)
�m�1
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Ik (d0)
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= (1 + op (1))m
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gj (d0; �0)
� 1
� 

~Xj �m�1
mX
k=1

~Xk

!
; (69)

where
~Xj =

�
log j; (j=m)2 ; :::; (j=m)2r

�0
: (70)
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Therefore, omitting the small order terms write the RHS of (69) as Andrews & Sun (2004, pp. 601),

T1;n + T2;n + T3;n + T4;n; where

T1;n = m�1=2
mX
j=1

�
Ij (d0)

gj (d0; �0)
� 2�I" (�j)� E

�
Ij (d0)
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� 2�I" (�j)

��
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!
;
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� 1
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mX
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~Xk

!
; (74)

using that E (2�I" (�j)) = 1: Next, we need to show that T1;n and T4;n are op(1), T2;n = o (1), and

T3;n
d! N (0;
r) : To show, T1;n = op(1); use summation by parts

T1;n = m�1=2
m�1X
k=1

�
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� kX
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m�1=6 log2=3m+ (m=n)� + n�1=4
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= op(1); (75)

which follows from noting that ~Xk� ~Xk+1 = O
�
k�1

�
uniformly over k = 1; :::;m and ~Xm�m�1Pm

k=1
~Xk =

O(1) which follows from approximating sums by integrals, see Andrews & Sun (2004, pp. 602). A

remark is in order. Remember that under the assumption of linearity of the generating process, As-

sumption 4(a), together with Abadir et al. (2007, Lemma 4.4) and Lemma 2(ii), says that the behavior

is the same for all d 2 (�1=2;1) : Therefore, the results from Andrews & Sun (2004) also hold in

our case. Since d0 belongs to the interior of the admissible parameter space, T1;n = op(1): To prove

that T2;n = o(1), we again utilize Assumption 4(a) together with Abadir et al. (2007, Lemma 4.4) and

Lemma 2(ii) that enables us to use the result that

E

�
Ij (d0)

fj (d0)

�
= 1 +O

�
j�1 log j

�
; (76)
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where o(1)! 0 uniformly over 1 � j � m as n!1: Then using (76), T2;n is bounded by

T2;n = m�1=2
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O (1)
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;

where we have used that ~Xj �m�1Pm
k=1

~Xk = O (logm) uniformly in 1 � j � m: Therefore, T2;n =
o(1). Next, we need to show that 8� 6= 0 �0T3;n

d! N(0; �0
r�): That is, we need to verify that for

n!1
m�1

mX
j=1

&2j ! �0
r�; (78)

where &j = �0j
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~Xk

�
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r =

 
4 2�0r
2�r �r

!
which follows from Lemma 1(a), Lemma

1(d) and �nally noting that j&j � &j+1j � k�k



 ~Xj � ~Xj+1




 � Cj�1 for some constant C > 0 inde-

pendent of j: Finally, we need to show that T4;n = op(1): This follows from summation by parts and
fj(d0)
gj(d0;�0)

� 1 = O
�
(j=n)�

�
uniformly on 1 � j � m; Frederiksen et al. (2008). This implies
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where the last equality holds by Assumption 5.

Lemma 2 Assume that the sequence fvjg is given as in (21). The following holds uniformly in

1 � k < j � m = o(n); as n!1: (i) If fu satis�es Assumption 2, then

E
h
jwu (�j)j2 =fu (�j)

i
= 1 + o(1) +O

�
j�1 log j

�
; (80)

where o(1)! 0 uniformly in 1 � j � m; as n!1; and
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�
log j
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�
+O

�
log j

kjdjj1�jdj

�
; (81)
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�
log j

j

�
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(ii) If fu satis�es Assumption 2 and 4(c), then

E
h
jwu (�j)j2 =fu (�j)

i
= 1 +O

�
j�1 log j

�
; (83)

and

jE [vjvj ]j+ jE [vjvk]j = O

�
log j

kjdjj1�jdj

�
; (84)

jE [vjvj ]j = O

�
log j

j

�
: (85)

Proof. Follows from Abadir et al. (2007) and their proof to Lemma 4.6, given Assumption 3 and

by interchanging b0 by G0 exp (�Pr (�j ; �)). Let d0 = p0 + du: Then for d0 = du equations (80)-(82)
and (83)-(85) follow from Robinson (1995b) and his proof of Theorem 2 pp. 1060. For p0 2 Nn f0g
and the property of the extended DFT and the rescaled extended DFT, (18) and (21), respectively, it

follows

vj =

�
1� exp (i�j)

�j

��p0 wu (�j)

' (�)1=2 ��duj

: (86)

As
���1�exp(i�j)�j

����p0 � C uniformly in 1 � j � m (81)-(82) and (84)-(85) also hold for p0 2 Nn f0g :
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Table 1: Simulation results for ARFIMA(0,d,0) with n = 512.
LW LPW (r=1) LPW (r=2) ExtLW ExtLPW (r=1) ExtLPW (r=2)

d Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: m =
�
n0:5

�
-0.3 -0.0087 0.1450 -0.0490 0.2708 -0.0546 0.3984 -0.0059 0.1385 -0.0309 0.2459 -0.0219 0.3769
0 -0.0123 0.1385 -0.0548 0.2659 -0.0616 0.3958 -0.0119 0.1387 -0.0500 0.2549 -0.0287 0.3724

0.3 -0.0162 0.1413 -0.0476 0.2631 -0.0670 0.3972 -0.0161 0.1423 -0.0510 0.2595 -0.0634 0.3893
0.7 0.0117 0.1480 -0.0432 0.2729 -0.0359 0.3975 -0.0020 0.1462 -0.0539 0.2667 -0.0464 0.4003
1 -0.0208 0.1273 -0.0542 0.2370 -0.0570 0.3352 -0.0221 0.1427 -0.0642 0.2609 -0.0663 0.3750

1.3 -0.1937 0.2314 -0.1935 0.2769 -0.1902 0.3459 -0.0138 0.1395 -0.0415 0.2568 -0.0423 0.3483
1.7 -0.5869 0.6103 -0.5540 0.5927 -0.5408 0.5979 -0.0053 0.1393 -0.0184 0.2256 -0.0153 0.3272
2 -0.9094 0.9256 -0.8703 0.8969 -0.8478 0.8851 -0.0146 0.1383 -0.0492 0.2547 -0.0352 0.3298

Panel B: m =
�
n0:65

�
-0.3 0.0008 0.0771 -0.0151 0.1283 -0.0176 0.1807 0.0007 0.0777 -0.0125 0.1223 -0.0091 0.1706
0 -0.0017 0.0763 -0.0168 0.1279 -0.0203 0.1740 -0.0017 0.0763 -0.0167 0.1275 -0.0198 0.1723

0.3 -0.0075 0.0783 -0.0230 0.1309 -0.0232 0.1783 -0.0071 0.0793 -0.0226 0.1319 -0.0192 0.1862
0.7 0.0100 0.0806 0.0031 0.1359 0.0019 0.1849 -0.0037 0.0781 -0.0097 0.1329 -0.0133 0.1821
1 -0.0140 0.0691 -0.0205 0.1165 -0.0287 0.1598 -0.0160 0.0772 -0.0278 0.1309 -0.0315 0.1759

1.3 -0.2141 0.2344 -0.1961 0.2293 -0.1904 0.2405 -0.0128 0.0797 -0.0169 0.1266 -0.0136 0.1810
1.7 -0.6229 0.6382 -0.5882 0.6103 -0.5709 0.5986 -0.0158 0.0770 -0.0100 0.1224 -0.0043 0.1625
2 -0.9506 0.9581 -0.9177 0.9311 -0.8990 0.9165 -0.0186 0.0785 -0.0210 0.1282 -0.0206 0.1789

Panel C: m =
�
n0:8

�
-0.3 0.0115 0.0448 -0.0021 0.0713 0.0004 0.0949 0.0115 0.0448 -0.0018 0.0705 0.0017 0.0907
0 -0.0040 0.0435 -0.0093 0.0709 -0.0107 0.0941 -0.0040 0.0435 -0.0093 0.0709 -0.0107 0.0941

0.3 -0.0093 0.0446 -0.0067 0.0711 -0.0067 0.0952 -0.0093 0.0446 -0.0067 0.0711 -0.0068 0.0950
0.7 -0.0147 0.0510 0.0079 0.0738 0.0083 0.0977 -0.0280 0.0537 -0.0075 0.0708 -0.0077 0.0917
1 -0.0363 0.0531 -0.0065 0.0603 -0.0082 0.0817 -0.0378 0.0574 -0.0090 0.0699 -0.0115 0.0933

1.3 -0.2528 0.2662 -0.2052 0.2261 -0.2001 0.2257 -0.0472 0.0644 -0.0085 0.0703 -0.0111 0.0944
1.7 -0.6847 0.6918 -0.6315 0.6431 -0.6187 0.6327 -0.0595 0.0734 -0.0007 0.0690 -0.0014 0.0912
2 -0.9950 1.0001 -0.9439 0.9523 -0.9308 0.9417 -0.0746 0.0876 -0.0129 0.0703 -0.0146 0.0954

Notes: LW, LPW, ExtLW, and ExtLPW denotes the local Whittle estimator of Robinson (1995a),

local polynomial Whittle estimator of Andrews & Sun (2004), extended local Whittle estimator of

Abadir et al. (2007), and our proposed estimator the extended local polynomial Whittle estimator,

respectively. r denotes the degree of parameterization of the polynomial, i.e. Pr =
Pr
�=1 ���
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Table 2: Simulation results for ARFIMA(0,d,1) with � = �0:8 and n = 512.
LW LPW (r=1) LPW (r=2) ExtLW ExtLPW (r=1) ExtLPW (r=2)

d Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: m =
�
n0:5

�
-0.3 -0.1159 0.1940 -0.0132 0.2611 0.0077 0.3638 -0.1184 0.1950 -0.0054 0.2493 0.0192 0.3509
0 -0.1669 0.2168 -0.0859 0.2771 -0.0816 0.3852 -0.1666 0.2167 -0.0801 0.2630 -0.0694 0.3417
0.3 -0.1606 0.2151 -0.0842 0.2659 -0.0609 0.3838 -0.1604 0.2156 -0.0944 0.2531 -0.0842 0.3558
0.7 -0.1444 0.2101 -0.0565 0.2659 -0.0412 0.3699 -0.0826 0.1932 0.0003 0.2822 0.0053 0.3946
1 -0.1275 0.1866 -0.0739 0.2553 -0.0611 0.3594 -0.1654 0.2164 -0.0879 0.2674 -0.0636 0.3742
1.3 -0.2494 0.2746 -0.2099 0.2973 -0.2036 0.3608 -0.1727 0.2248 -0.1027 0.2585 -0.0998 0.3398
1.7 -0.6037 0.6207 -0.5666 0.6007 -0.5428 0.6014 -0.0851 0.1889 -0.0074 0.2669 0.0142 0.3400
2 -0.9138 0.9276 -0.8721 0.8978 -0.8456 0.8858 -0.1677 0.2188 -0.0775 0.2573 -0.0470 0.3369
Panel B: m =

�
n0:65

�
-0.3 -0.3216 0.3365 -0.1284 0.1915 -0.0467 0.1859 -0.3378 0.3505 -0.1342 0.1972 -0.0463 0.1846
0 -0.3603 0.3699 -0.1773 0.2215 -0.1025 0.2091 -0.3580 0.3682 -0.1769 0.2210 -0.0999 0.2039
0.3 -0.3697 0.3794 -0.1875 0.2274 -0.1039 0.2030 -0.3697 0.3794 -0.1875 0.2274 -0.1041 0.2033
0.7 -0.3467 0.3586 -0.1609 0.2115 -0.0774 0.1976 -0.3388 0.3541 -0.1262 0.2098 -0.0325 0.2156
1 -0.3056 0.3225 -0.1326 0.1854 -0.0645 0.1754 -0.3653 0.3741 -0.1816 0.2215 -0.0984 0.1991
1.3 -0.3311 0.3372 -0.2439 0.2644 -0.2084 0.2545 -0.3748 0.3844 -0.1850 0.2271 -0.1040 0.2032
1.7 -0.6457 0.6523 -0.6045 0.6209 -0.5822 0.6075 -0.3493 0.3623 -0.1951 0.2299 -0.1501 0.2253
2 -0.9516 0.9581 -0.9168 0.9301 -0.8965 0.9153 -0.3674 0.3756 -0.1834 0.2245 -0.1026 0.2009
Panel C: m =

�
n0:8

�
-0.3 -0.4946 0.4996 -0.3523 0.3650 -0.2386 0.2636 -0.5094 0.5133 -0.3693 0.3797 -0.2290 0.2549
0 -0.5333 0.5362 -0.3930 0.4006 -0.2866 0.3028 -0.4455 0.4739 -0.3889 0.3958 -0.2859 0.3015
0.3 -0.5469 0.5500 -0.3992 0.4073 -0.2960 0.3128 -0.5469 0.5500 -0.3992 0.4073 -0.2960 0.3128
0.7 -0.5359 0.5397 -0.3712 0.3805 -0.2614 0.2808 -0.5359 0.5397 -0.3696 0.3798 -0.2183 0.2556
1 -0.4980 0.5046 -0.3223 0.3371 -0.2216 0.2462 -0.5145 0.5167 -0.3855 0.3920 -0.2836 0.2974
1.3 -0.4657 0.4730 -0.3425 0.3493 -0.2900 0.2988 -0.5739 0.5768 -0.3986 0.4065 -0.2928 0.3081
1.7 -0.7071 0.7086 -0.6516 0.6563 -0.6341 0.6427 -0.5625 0.5665 -0.3740 0.3834 -0.2601 0.2825
2 -1.0010 1.0035 -0.9502 0.9555 -0.9364 0.9444 -0.5301 0.5336 -0.3890 0.3962 -0.3080 0.3309

Notes: LW, LPW, ExtLW, and ExtLPW denotes the local Whittle estimator of Robinson (1995a),

local polynomial Whittle estimator of Andrews & Sun (2004), extended local Whittle estimator of

Abadir et al. (2007), and our proposed estimator the extended local polynomial Whittle estimator,

respectively. r denotes the degree of parameterization of the polynomial, i.e. Pr =
Pr
�=1 ���
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Table 3: Simulation results for ARFIMA(0,d,1) with � = �0:5 and n = 512.
LW LPW (r=1) LPW (r=2) ExtLW ExtLPW (r=1) ExtLPW (r=2)

d Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: m =
�
n0:5

�
-0.3 -0.0293 0.1431 -0.0478 0.2630 -0.0522 0.3787 -0.0291 0.1429 -0.0364 0.2503 -0.0240 0.3537
0 -0.0365 0.1509 -0.0553 0.2649 -0.0646 0.3864 -0.0364 0.1505 -0.0496 0.2591 -0.0437 0.3666

0.3 -0.0384 0.1527 -0.0485 0.2676 -0.0506 0.3782 -0.0402 0.1505 -0.0578 0.2564 -0.0580 0.3645
0.7 -0.0154 0.1448 -0.0278 0.2758 -0.0470 0.3862 -0.0191 0.1450 -0.0355 0.2747 -0.0500 0.3926
1 -0.0329 0.1306 -0.0441 0.2481 -0.0453 0.3532 -0.0406 0.1476 -0.0509 0.2647 -0.0428 0.3865

1.3 -0.2058 0.2402 -0.2073 0.2842 -0.2119 0.3359 -0.0422 0.1496 -0.0615 0.2542 -0.0711 0.3341
1.7 -0.5915 0.6136 -0.5554 0.5931 -0.5365 0.5968 -0.0186 0.1394 -0.0027 0.2247 0.0105 0.3361
2 -0.9134 0.9269 -0.8732 0.8968 -0.8480 0.8828 -0.0383 0.1435 -0.0383 0.2535 -0.0236 0.3273

Panel B: m =
�
n0:65

�
-0.3 -0.0956 0.1225 -0.0233 0.1318 -0.0114 0.1763 -0.0962 0.1237 -0.0223 0.1291 -0.0074 0.1695
0 -0.1028 0.1288 -0.0365 0.1352 -0.0320 0.1733 -0.1028 0.1288 -0.0365 0.1349 -0.0313 0.1710

0.3 -0.1014 0.1269 -0.0334 0.1326 -0.0249 0.1802 -0.1014 0.1269 -0.0335 0.1329 -0.0248 0.1818
0.7 -0.0901 0.1241 -0.0170 0.1363 -0.0087 0.1782 -0.0956 0.1294 -0.0215 0.1383 -0.0135 0.1802
1 -0.0827 0.1112 -0.0247 0.1236 -0.0207 0.1654 -0.1082 0.1317 -0.0294 0.1280 -0.0216 0.1737

1.3 -0.2358 0.2479 -0.2047 0.2371 -0.1989 0.2462 -0.1135 0.1372 -0.0371 0.1390 -0.0351 0.1815
1.7 -0.6342 0.6452 -0.5990 0.6177 -0.5806 0.6057 -0.0969 0.1270 -0.0147 0.1290 -0.0031 0.1680
2 -0.9528 0.9590 -0.9192 0.9315 -0.8992 0.9165 -0.1168 0.1402 -0.0360 0.1377 -0.0272 0.1751

Panel C: m =
�
n0:8

�
-0.3 -0.2392 0.2441 -0.1047 0.1262 -0.0386 0.0975 -0.2278 0.2328 -0.1029 0.1232 -0.0374 0.0947
0 -0.2582 0.2629 -0.1142 0.1348 -0.0565 0.1099 -0.2582 0.2629 -0.1142 0.1348 -0.0565 0.1099

0.3 -0.2655 0.2696 -0.1117 0.1318 -0.0493 0.1037 -0.2655 0.2696 -0.1117 0.1318 -0.0493 0.1037
0.7 -0.2621 0.2679 -0.0966 0.1223 -0.0314 0.1042 -0.2583 0.2644 -0.1023 0.1254 -0.0356 0.1029
1 -0.2287 0.2390 -0.0781 0.1084 -0.0312 0.0916 -0.2852 0.2895 -0.1118 0.1324 -0.0486 0.1037

1.3 -0.3183 0.3200 -0.2354 0.2468 -0.2146 0.2359 -0.2966 0.3006 -0.1146 0.1369 -0.0530 0.1101
1.7 -0.6865 0.6913 -0.6289 0.6394 -0.6128 0.6278 -0.2818 0.2884 -0.1125 0.1388 -0.0490 0.1148
2 -0.9998 1.0036 -0.9493 0.9567 -0.9370 0.9468 -0.3191 0.3229 -0.1169 0.1359 -0.0543 0.1058

Notes: LW, LPW, ExtLW, and ExtLPW denotes the local Whittle estimator of Robinson (1995a),

local polynomial Whittle estimator of Andrews & Sun (2004), extended local Whittle estimator of

Abadir et al. (2007), and our proposed estimator the extended local polynomial Whittle estimator,

respectively. r denotes the degree of parameterization of the polynomial, i.e. Pr =
Pr
�=1 ���
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Table 4: Simulation results for ARFIMA(1,d,0) with � = 0:8 and n = 512.
LW LPW (r=1) LPW (r=2) ExtLW ExtLPW (r=1) ExtLPW (r=2)

d Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: m =
�
n0:5

�
-0.3 0.1530 0.2114 -0.0133 0.2535 -0.0323 0.3805 0.1530 0.2114 -0.0012 0.2475 0.0080 0.3891
0 0.1404 0.2015 -0.0290 0.2553 -0.0572 0.3771 0.1413 0.2034 -0.0248 0.2552 -0.0260 0.3647

0.3 0.1436 0.2030 -0.0266 0.2505 -0.0578 0.3806 0.1477 0.2088 -0.0237 0.2511 -0.0479 0.3733
0.7 0.1518 0.2117 0.0021 0.2495 -0.0041 0.3575 0.1421 0.2039 -0.0129 0.2413 -0.0126 0.3671
1 0.0751 0.1567 -0.0265 0.2323 -0.0582 0.3499 0.1385 0.2036 -0.0201 0.2608 -0.0431 0.3671

1.3 -0.1604 0.2210 -0.1813 0.2621 -0.1960 0.3381 0.1511 0.2108 0.0029 0.2683 -0.0195 0.3720
1.7 -0.5879 0.6133 -0.5554 0.5946 -0.5425 0.6058 0.1383 0.1978 0.0115 0.2225 0.0040 0.3320
2 -0.9022 0.9199 -0.8565 0.8878 -0.8322 0.8761 0.1407 0.2023 0.0088 0.2670 0.0192 0.3579

Panel B: m =
�
n0:65

�
-0.3 0.4058 0.4144 0.1595 0.2037 0.0584 0.1855 0.4074 0.4171 0.1597 0.2036 0.0624 0.1791
0 0.4053 0.4138 0.1634 0.2103 0.0602 0.1916 0.4163 0.4276 0.1637 0.2112 0.0609 0.1937

0.3 0.4026 0.4106 0.1597 0.2078 0.0658 0.1873 0.4114 0.4195 0.1692 0.2216 0.0722 0.1983
0.7 0.3729 0.3816 0.1671 0.2121 0.0766 0.1898 0.3962 0.4049 0.1565 0.2064 0.0609 0.1853
1 0.1873 0.2329 0.0985 0.1590 0.0338 0.1653 0.4045 0.4154 0.1732 0.2295 0.0707 0.2103

1.3 -0.1653 0.2412 -0.1598 0.2219 -0.1681 0.2314 0.4058 0.4139 0.1935 0.2335 0.1281 0.2201
1.7 -0.6165 0.6385 -0.5792 0.6080 -0.5606 0.5938 0.3895 0.3988 0.1600 0.2082 0.0842 0.2217
2 -0.9361 0.9489 -0.8980 0.9193 -0.8765 0.9034 0.3864 0.3940 0.2500 0.3172 0.2115 0.3369

Panel C: m =
�
n0:8

�
-0.3 0.6635 0.6655 0.4595 0.4665 0.3122 0.3279 0.6687 0.6713 0.4595 0.4665 0.3122 0.3279
0 0.6490 0.6510 0.4583 0.4648 0.3058 0.3202 0.6603 0.6623 0.4641 0.4721 0.3061 0.3209

0.3 0.6367 0.6386 0.4640 0.4701 0.3132 0.3278 0.6406 0.6425 0.4731 0.4791 0.3226 0.3384
0.7 0.5339 0.5415 0.4318 0.4393 0.3026 0.3175 0.6209 0.6232 0.4649 0.4713 0.3088 0.3244
1 0.1922 0.2685 0.2135 0.2625 0.1693 0.2101 0.6120 0.6143 0.4876 0.4958 0.3438 0.3641

1.3 -0.2298 0.2829 -0.1696 0.2415 -0.1630 0.2294 0.5840 0.5863 0.4694 0.4757 0.3290 0.3434
1.7 -0.6783 0.6883 -0.6187 0.6384 -0.6017 0.6267 0.5514 0.5547 0.4572 0.4637 0.3158 0.3378
2 -1.0016 1.0052 -0.9513 0.9584 -0.9386 0.9486 0.4845 0.4854 0.4534 0.4568 0.4315 0.4466

Notes: LW, LPW, ExtLW, and ExtLPW denotes the local Whittle estimator of Robinson (1995a),

local polynomial Whittle estimator of Andrews & Sun (2004), extended local Whittle estimator of

Abadir et al. (2007), and our proposed estimator the extended local polynomial Whittle estimator,

respectively. r denotes the degree of parameterization of the polynomial, i.e. Pr =
Pr
�=1 ���
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Table 5: Simulation results for ARFIMA(1,d,0) with � = 0:5 and n = 512.
LW LPW (r=1) LPW (r=2) ExtLW ExtLPW (r=1) ExtLPW (r=2)

d Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: m =
�
n0:5

�
-0.3 0.0108 0.1404 -0.0426 0.2469 -0.0382 0.3678 0.0123 0.1369 -0.0305 0.2400 -0.0107 0.3774
0 0.0088 0.1441 -0.0598 0.2682 -0.0818 0.3961 0.0086 0.1448 -0.0534 0.2642 -0.0529 0.3668

0.3 0.0167 0.1470 -0.0621 0.2660 -0.0754 0.4006 0.0174 0.1501 -0.0616 0.2690 -0.0690 0.3854
.7 0.0295 0.1451 -0.0210 0.2485 -0.0165 0.3702 0.0131 0.1389 -0.0350 0.2460 -0.0219 0.3864
1 0.0104 0.1251 -0.0399 0.2309 -0.0464 0.3604 0.0159 0.1391 -0.0450 0.2528 -0.0415 0.4000

1.3 -0.1915 0.2349 -0.2109 0.2887 -0.2113 0.3579 0.0043 0.1407 -0.0547 0.2594 -0.0395 0.3600
1.7 -0.5861 0.6113 -0.5580 0.5953 -0.5428 0.6002 0.0121 0.1422 -0.0217 0.2276 -0.0136 0.3212
2 -0.9062 0.9227 -0.8612 0.8891 -0.8321 0.8728 0.0094 0.1363 -0.0286 0.2457 -0.0047 0.3275

Panel B: m =
�
n0:65

�
-0.3 0.0950 0.1221 -0.0070 0.1296 -0.0261 0.1750 0.0950 0.1221 -0.0052 0.1263 -0.0185 0.1624
0 0.0916 0.1194 -0.0064 0.1260 -0.0234 0.1734 0.0916 0.1194 -0.0064 0.1259 -0.0226 0.1707

0.3 0.0921 0.1191 -0.0060 0.1256 -0.0191 0.1741 0.0946 0.1240 -0.0049 0.1285 -0.0174 0.1776
0.7 0.1027 0.1300 0.0168 0.1320 0.0027 0.1756 0.0913 0.1208 -0.0014 0.1262 -0.0146 0.1712
1 0.0476 0.0872 -0.0110 0.1205 -0.0237 0.1710 0.0827 0.1130 -0.0104 0.1317 -0.0216 0.1833

1.3 -0.1954 0.2285 -0.1931 0.2309 -0.1906 0.2428 0.0859 0.1181 0.0065 0.1407 -0.0026 0.1892
1.7 -0.6226 0.6379 -0.5876 0.6102 -0.5697 0.5974 0.0808 0.1137 -0.0012 0.1286 -0.0093 0.1665
2 -0.9521 0.9602 -0.9200 0.9340 -0.9012 0.9197 0.0823 0.1135 -0.0068 0.1350 -0.0134 0.1877

Panel C: m =
�
n0:8

�
-0.3 0.3043 0.3081 0.1112 0.1331 0.0402 0.1017 0.3043 0.3081 0.1112 0.1331 0.0404 0.1012
0 0.2897 0.2937 0.1054 0.1274 0.0330 0.1019 0.2897 0.2937 0.1054 0.1274 0.0330 0.1019

0.3 0.2804 0.2844 0.1064 0.1273 0.0364 0.0988 0.2892 0.2935 0.1072 0.1293 0.0364 0.0989
0.7 0.2588 0.2632 0.1173 0.1385 0.0484 0.1105 0.2631 0.2673 0.1081 0.1292 0.0360 0.1002
1 0.1107 0.1465 0.0676 0.0966 0.0255 0.0864 0.2497 0.2542 0.1088 0.1323 0.0366 0.1014

1.3 -0.2351 0.2676 -0.1952 0.2263 -0.1958 0.2240 0.2460 0.2512 0.1322 0.1574 0.0644 0.1258
1.7 -0.6751 0.6867 -0.6195 0.6366 -0.6049 0.6256 0.2178 0.2232 0.1103 0.1317 0.0378 0.1010
2 -0.9966 1.0010 -0.9449 0.9528 -0.9317 0.9419 0.1978 0.2041 0.1068 0.1293 0.0332 0.1030

Notes: LW, LPW, ExtLW, and ExtLPW denotes the local Whittle estimator of Robinson (1995a),

local polynomial Whittle estimator of Andrews & Sun (2004), extended local Whittle estimator of

Abadir et al. (2007), and our proposed estimator the extended local polynomial Whittle estimator,

respectively. r denotes the degree of parameterization of the polynomial, i.e. Pr =
Pr
�=1 ���
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Figure 1: Time series plot of log yields (Panel A) and their respective spreads (Panel B).
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Figure 2: Estimated long memory of log Aaa yield for bandwidth equal to 50 through 2000.
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Figure 3: Estimated long memory of log Baa yield for bandwidth equal to 50 through 2000.
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Figure 4: Estimated long memory of log Treasury yield for bandwidth equal to 50 through 2000.
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Figure 5: Estimated long memory of Aaa spread over Treasury yield for bandwidth equal to 50 through

2000.
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Figure 6: Estimated long memory of Baa spread over Treasury yield for bandwidth equal to 50 through

2000.
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Figure 7: Estimated long memory of Baa spread over Aaa yield for bandwidth equal to 50 through

2000.
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