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Abstract

We extend the VAR based intertemporal asset allocation approach from Campbell
et al. (2003) to the case where the VAR parameter estimates are adjusted for small-
sample bias. We apply the analytical bias formula from Pope (1990) using both
Campbell et al.�s dataset, and an extended dataset with quarterly data from 1952
to 2006. The results show that correcting the VAR parameters for small-sample
bias has both quantitatively and qualitatively important e¤ects on the strategic
intertemporal part of optimal portfolio choice, especially for bonds: for intermediate
values of risk-aversion, the intertemporal hedging demand for bonds - and thereby
the total demand for bonds - is strongly reduced by the bias-adjustment. We also
investigate the robustness of the results by changing the lag-length and one of the
state variables of the VAR.
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1 Introduction

One of the most fascinating results of recent research in empirical �nance is that asset
returns seem to contain predictable components. Until the �rst half of the 1980s, stock
and bond returns were thought to be completely unpredictable, both at short and long
horizons, and this unpredictability was taken to imply that asset markets were infor-
mationally e¢ cient. However, since the mid 1980s researchers have become increasingly
aware of the fact that stock returns are to some extent predictable from lagged valu-
ation ratio�s like the dividend yield or price-earnings ratio, and that bond returns are
predictable from e.g. lagged yield spreads. The predictability is often found to be in-
signi�cant and hard to measure when returns are calculated over short horizons, but when
the horizon increases the predictable component shows itself clearly. Thus, the small and
insigni�cant predictability at short horizons build up to large and signi�cant predictabil-
ity at long horizons. Interestingly, it has also become clear from asset pricing theory that
return predictability is not necessarily due to irrationality and market-ine¢ ciency (bub-
bles, fads, noise traders, etc.), but could be the result of rationally changing risk-aversion
and risk premia. Thus, predictable returns are in theory consistent with the e¢ cient
markets hypothesis. Cochrane (2005, ch. 20-21) surveys the by now very large literature
on stock and bond return predictability, and he relates predictability to the concept of
mean reversion and to modern consumption-based asset pricing models.1

One area where return predictability has profound implications is asset allocation.
The old static Markowitz Mean-Variance (MV) model continues to dominate analyses of
portfolio choice, especially among practitioners in the �nancial services industry. How-
ever, for long-term investors the static MV model will only be suitable under very strict
assumptions, one of them being that investment opportunities are constant over time,
meaning that returns are unpredictable. If this is not the case, long-term investors can
bene�t from the return predictability, both in the form of market-timing and in the form
of intertemporal hedging of future return risk. Neither of these e¤ects are captured by
the static MV model.

Recent research on dynamic portfolio choice under return predictability has delivered
solutions for optimal asset allocations using numerical methods based on discrete-state
approximations (see e.g. Balduzzi and Lynch (1999), Barberis (2000), Brennan et al.
(1997), and Lynch (2001)), and exact closed-form solutions have been obtained for sim-
ple models in a continuous-time setup (see e.g. Kim and Omberg (1996) and Wachter
(2002)). However, until Campbell et al. (2003) it was not possible to analyze analyt-
ically optimal portfolio choice in a model with more than one risky asset and several
predictor variables. Campbell et al. (2003) develop an approximate (based on Taylor

1The �fact�that returns contain predictable components is not uncontroversial. Some have questioned
the in-sample statistical signi�cance of predictability (e.g. Boudoukh et al., 2006), and others have
questioned whether in-sample predictability also holds out-of-sample (e.g. Goyal and Welch, 2005).
Cochrane (2006) analyzes and discusses these objections and he concludes that predictability is present
in-sample and that it is both statistically and economically signi�cant, and he reconciles this with poor
out-of-sample predictability. Other recent studies in this area are Amihud and Hurvich (2004), Lewellen
(2004), Campbell and Yogo (2006), and Ang and Bekaert (2007).
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expansions) analytical solution to the long-term investors portfolio choice in a setting
where the investor maximizes expected discounted Epstein-Zin utility over an in�nite
horizon, and where the asset returns and predictor variables are modelled by a linear
vector-autoregression.2 Empirical analyses using Campbell et al.�s (2003) approach have
been rather sparse. Campbell et al. themselves apply the methodology on US quarterly
and annual stock and bond returns with the dividend-price ratio, interest rate, and yield
spread as predictor variables. Rapach and Wohar (2007) use the approach on an inter-
national dataset, allowing investors to invest in both domestic and foreign assets. Both
studies �nd evidence of substantial time-variation in optimal asset allocations as well as
substantial intertemporal hedging e¤ects coming from the predictability of asset returns.

A potentially important drawback of the empirical approach of Campbell et al. (2003)
(and also Rapach and Wohar, 2007) is that the computed optimal allocations are based
on standard least squares estimates of the VAR parameters. It is well-known that such
estimates are plagued with �nite-sample bias that may seriously distort inference based on
the VAR model, especially when the model contains variables that are highly persistent,
see e.g. Bekaert et al. (1997). This will indeed be the case in the present context where
included variables such as interest rates, dividend-price ratio�s and yield spreads typically
are highly persistent. Campbell et al. (2003) acknowledge the �nite-sample bias in their
VAR estimates but state that bias corrections are complex in multivariate systems and,
hence, they do not attempt to adjust for the bias. In the present paper we extend the
Campbell et al. (2003) approach to be based on bias-corrected VAR parameters. We
invoke the analytical bias formula from Pope (1990), which holds for general VAR models
under quite mild restrictions, and with properties that are comparable to standard Monte
Carlo or bootstrap bias-adjustment. Pope�s adjustment is straightforward to implement
but, surprisingly, it has been left unnoticed in most of the empirical �nance literature
using VAR models. In an empirical application we compute optimal asset allocations
using both adjusted and unadjusted VAR estimates in order to see whether the bias-
adjustment is qualitatively important in practice. We use both the original quarterly
data from Campbell et al. (2003), which extends from 1952:q1 to 1999:q4, and an
updated dataset that ends in 2006:q4. We also analyze the robustness of the results
in two other directions: �rst, by changing the lag length of the VAR, and secondly by
changing the de�nition of one of the state variables of the VAR: the short-term nominal
interest rate. This variable is extremely persistent, and in VAR models with two lags
the VAR parameter matrix contains unstable roots. We therefore use a stochastically
detrended short-term nominal rate, as de�ned in Campbell (1991), which makes all the
roots stable. In Campbell et al.�s (2003) analysis only one-lag models are estimated, and
only with the short-term interest rate without detrending.

The main result of our analysis is that bias-correcting the VAR parameters has a
quantitatively and qualitatively important e¤ect on optimal asset allocations, in particu-
lar for bonds: for intermediate values of risk-aversion, the intertemporal hedging demand

2Campbell et al. (2003) is a multivariate extension of the approximate analytical solution by Campbell
and Viceira (1999), that allows for only one risky asset whose expected excess return is governed by a
single state variable.
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for bonds - and thereby the total demand for bonds - is strongly reduced by the bias-
adjustment. On the other hand, replacing the nominal interest rate in levels with its
detrended version implies a much higher demand for bonds. The most important e¤ect
of extending the sample period to 2006 is to decrease the demand for stocks and increase
the demand for bonds. Changing the lag-length of the VAR has only minor e¤ects on
the results.

The rest of the paper is organized as follows. Section 2 describes the asset allocation
model and how the optimal allocations can be computed from a VAR model. Section
3 explains the bias-adjustment procedure. Section 4 reports the empirical results and,
�nally, section 5 contains some concluding remarks.

2 The asset allocation model

The investor is assumed to set optimal consumption and portfolio plans so as to maximize
- over an in�nite horizon - an Epstein and Zin (1989, 1991) utility function de�ned
recursively by

Ut(Ct; Et(Ut+1)) = [(1� �)C
1�

�

t + �(Et(U
1�

t+1 ))

1
� ]

�
1�
 ;

where Ct is consumption at time t, � is the time discount factor, 
 is the coe¢ cient of
relative risk aversion, and � � (1� 
)=(1� 1

 
) where  is the elasticity of intertemporal

substitution. When  = 
�1 the utility function reduces to standard time-separable
power utility (CRRA utility), and if in addition 
 = 1 we have log utility. The optimiza-
tion is done subject to the budget constraint Wt+1 = (Wt � Ct)Rp;t+1, where Wt+1 and
Rp;t+1 are wealth and gross portfolio return, respectively. With n assets, the portfolio
return is equal to Rp;t+1 =

Pn
i=2 �i;t(Ri;t+1 � R1;t+1) + R1;t+1, where �i;t is the portfolio

weight on asset i at time t. R1;t denotes the benchmark return (typically a short-term -
but not necessarily riskfree - return).

The above maximization problem leads to an Euler equation for asset i, from which a
second-order Taylor expansion gives an approximate log-linear Euler equation in terms of
log consumption, ct � logCt, and log returns, ri;t � logRi;t, see Campbell et al. (2003).
Using also a log-linear approximation of the budget constraint Wt+1 = (Wt � Ct)Rp;t+1,
and stated in terms of log excess return on asset i, ri;t+1 � r1;t+1, the log-linear Euler
equation becomes

Et(ri;t+1�r1;t+1)+
1

2
V art(ri;t+1�r1;t+1) =

�

 
(�i;c�w;t��1;c�w;t)+
(�i;p;t��1;p;t)�(�i;1;t��1;1;t),

(1)

where �i;c�w;t = Covt(ri;t+1; ct+1 � wt+1), �1;c�w;t = Covt(r1;t+1; ct+1 � wt+1), �i;p;t =
Covt(ri;t+1; rp;t+1), �1;p;t = Covt(r1;t+1; rp;t+1), �i;1;t = Covt(ri;t+1; r1;t+1), and �1;1;t =
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V art(r1;t+1).

The optimal portfolio and consumption rules must satisfy (1). In order to estimate
the conditional moments in (1), we set up a VAR model for the n� 1 log excess returns,
xt+1 = [(r2;t+1�r1;t+1); :::; (rn;t+1�r1;t+1)]0. We also include the benchmark return, r1;t+1,
and a number of additional state variables that - in previous studies - have been found to
contain signi�cant information about future returns. Denote by st+1 the vector of these
additional state variables. Then the vector zt+1 = [xt+1, r1;t+1, st+1]0 contains all the
variables and a �rst-order VAR model for zt+1 becomes3

zt+1 = �0 +�1zt + vt+1, (2)

where�0 and�1 are the vector of intercepts and matrix of slope coe¢ cients, respectively.
vt+1 is the vector of VAR errors that are assumed to be distributed as vt+1 � niid(0,
�v), where the error covariance matrix is

�v =

24 �21 �
0
1x �

0
1s

�1x �xx �
0
xs

�1s �xs �ss

35
Based on this formulation of the dynamics of the state variables, the left-hand side

of (1) can be written as

Et(xt+1) +
1

2
V art(xt+1) = Hx�0 +Hx�1zt +

1

2
�2x, (3)

where Hx is a selection matrix that picks out the excess return vector xt from the state
vector zt, and �2x is the vector of diagonal elements in �xx. Regarding the conditional
covariances on the right-hand side of (1), Campbell et al. (2002, 2003) show, using a
log-linear approximation of the portfolio return, Rp;t+1, that they can all be written as
linear functions of the state variables in the following way

�c�w;t � �1;c�w;t�� [�i;c�w;t � �1;c�w;t]i=2;:::;n = �0 +�1zt,

�p;t � �1;p;t�� [�i;p;t � �1;p;t]i=2;:::;n = �xx�t + �1x,

�1;t � �1;1;t�� [�i;1;t � �1;1;t]i=2;:::;n = �1x,

where � is a vector of ones, and �0 and �1 are matrices that are de�ned below.4 Combin-
ing these results, the model can be solved for the log consumption-wealth ratio, ct � wt,
and the optimal asset allocations, �t. The solution turns out to be

3Higher-order VAR models can be stated in the �rst-order form (2) by using the companion form.
4The log-linear approximations of the Euler equation and the budget constraint are exact when

 = 1. The log-linear approximation of the portfolio return is only exact in continuous time, but is
highly accurate for short time intervals, c.f. Campbell et al. (2003). In the empirical application we
set  = 1 and hence, the only approximation error in the reported results stems from the log-linear
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�t = A0 +A1zt, (4)

ct � wt = b0 +B01zt + z
0
tB2zt. (5)

The parameter b0 and the parameter matrices A0, A1, B1, and B2 are complicated non-
linear functions of the underlying utility and VAR parameters. As seen, the optimal
portfolio rule is linear in the VAR state vector, zt, while the optimal consumption rule
is quadratic in zt. The precise expressions for A0 and A1 in the portfolio rule (4) are

A0 =
1



��1xx

�
Hx�0 +

1

2
�2x + (1� 
)�1x

�
+

�
1� 1




�
��1xx

�
��0
1�  

�
, (6)

A1 =
1



��1xxHx�1 +

�
1� 1




�
��1
xx

�
��1
1�  

�
, (7)

where �0 and �1 are matrices that depend on all the utility and VAR parameters as
well as b0, B1, and B2, and a parameter � � 1� exp(E(ct � wt)) which comes from the
log-linear approximation to the budget constraint.5 The exact expressions for �0 and �1
are given in Campbell et al. (2002).

The economic interpretation of A0 and A1 is that the �rst term in the expressions
(6) and (7) measures the myopic component of asset demand, while the second term
measures the intertemporal hedging demand. The latter component captures the e¤ect
of predictable asset returns which induces a strategic motive to hedge future return risk.
A simple example can illustrate the intuition: consider the case with only one risky
asset whose expected excess return is governed by a single state variable (this is the case
considered by Campbell and Viceira, 1999). In this case the second terms in (6) and
(7) become negatively related to the covariance between innovations in excess returns
and innovations in the state variable. If this covariance is negative, excess returns show
mean reversion (i.e. negative autocorrelation) and the demand for the risky asset will
be higher than if the covariance is zero or positive. The explanation is that if the risky
asset shows mean reversion, then the asset can be used to hedge its own future risk.
The overall hedging motive comes from the desire of the long-term risk-averse investor
to save (invest in �nancial assets) with the purpose of consuming at a later date and at
the same time smooth consumption over time. Assets that exhibit mean reversion serve
this purpose. In general, with multiple risky assets and state variables, the sign and
magnitude of the intertemporal hedging component will depend on the VAR parameters

approximation of the portfolio return. In the univariate setup, Campbell et. al (2001) investigate
the accuracy of the approximate analytical solution by Campbell and Viceria (1999) using a numerical
approach. They �nd that the two solution methods give very similar results.

5Giovannini and Weil (1989) show that with  = 1, the investor optimally chooses a constant
consumption-wealth ratio equal to 1� �: Hence in this case, � = �.
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and the correlations of the VAR innovations, as well as on the relative risk-aversion
parameter 
.6

The standard static portfolio rule from mean-variance analysis occurs as the special
case where there is no predictability in the VAR model, i.e. �1 = 0 whereby �0 =
�1 = A1 = 0, and �t = 1



��1xx

�
Hx�0 +

1
2
�2x + (1� 
)�1x

�
. Asset demand depends on

the excess returns scaled by the inverse of the covariance matrix of excess returns and
the reciprocal of the relative risk aversion parameter. Another special case is 
 = 1
whereby the intertemporal hedging components disappear and asset demand becomes
purely myopic. Note that in this special case �t still depends on zt through A1 =
1


��1
xxHx�1, which is 0 only if �1 = 0. Thus, with predictable returns the myopic part

of asset demand contains a time-varying component.

In general, return predictability induces a tactical (timing) motive - in addition to the
strategic motive - in portfolio allocation: the investor should change allocation over time
depending on the signal that the state vector zt sends about future returns. Predictable
returns thus leads to both a strategic hedging motive that a¤ects the overall level of
asset demand, and a tactical timing motive that changes the optimal allocation over
time. These two motives may work in opposite directions such that, for instance, at a
particular time a positive intertemporal hedging component - that otherwise would lead
to a large demand for a given asset -, is dominated by the state variables signaling poor
future returns for the asset, such that the combined e¤ect is a small demand for the asset.
The values for the utility parameters and the VAR parameter estimates determine the
relative importance of each of these motives. The higher the value of risk-aversion, 
,
the more important becomes the strategic motive relative to the tactical motive, all else
equal.

Before turning to the econometric and empirical part of the paper, it should be
emphasized that the Campbell et al. (2003) approach - like most approaches in this area
- are partial equilibrium in nature. (4) and (5) give the optimal consumption and asset
allocation for an investor with Epstein-Zin utility and speci�c utility parameter values
and who takes the return process, given by the estimated VAR model, as exogenously
given. There is nothing in the model that makes this particular return process consistent
with general equilibrium. As noted by Cochrane (1999), in a general equilibrium model
the average investor will always hold the market portfolio and not be engaged in strategic
or tactical asset allocation. Thus, the Campbell et al. (2003) model gives the optimal
allocation for an investor that somehow deviates from the average investor, for example
because of higher or lower risk-aversion than the average investor or higher or lower
return covariance with consumption than the average investor.

6As seen from (6) and (7), the sign of the intertemporal hedging components shifts between 
 > 1 and

 < 1. This is due to the well-known fact that a change in expected return has both an income e¤ect
and a substitution e¤ect on consumption and asset demands, and these two e¤ects work in opposite
directions. When 
 > 1 the substitution e¤ect dominates the income e¤ect, and vice versa when 
 < 1.
When 
 = 1 the two e¤ects exactly cancel each other leaving consumption and asset demand unchanged.
In the dynamic asset allocation literature it is standard to assume that 
 � 1.
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3 Bias-adjustment of the VAR parameters

It is well-known that standard least-squares estimates of VAR parameters are biased in
�nite samples, and that inference based on estimated VAR models may be severely dis-
torted by such biases, especially when (some of) the variables are highly persistent, see
e.g. Beakert et al. (1997). However, existing studies using the Campbell et al. (2003)
VAR based approach to dynamic asset allocation have not attempted to correct for these
small-sample biases. In the present paper we extend the existing literaure by invoking
the analytical bias formula derived by Pope (1990) for general VAR models. Surprisingly,
Pope�s formula has remained relatively unnoticed in the �nancial econometrics literature
despite its easy implementation and quite appealing properties.7 Usually, in empirical
�nance, bias-adjustment is done using Monte Carlo or bootstrap procedures. In order to
investigate whether bias-adjustment is qualitatively important in practice, in the subse-
quent empirical section we report results based on both adjusted and unadjusted VAR
parameter estimates.

Pope�s (1990) analytical bias formula is derived from a higher-order Taylor expansion,
and based on the VAR model (2) the bias, BT , of the OLS estimate of �1 equals

BT = �
b

T
+O(T�3=2)

where T is the sample size and

b = G[(I��01)�1 +�01(I� (�
0
1)
2)�1 +

X
�(I� ��0

1)
�1]�(0)�1;

G is the conditional covariance matrix of vt, �(j) = E(ztz0t+j), and the sum is over the
eigenvalues � of �1. As seen, the approximation error in the bias formula vanishes at
the rate T�3=2 which is at least as fast as in standard Monte Carlo or bootstrap bias-
adjustment. The underlying assumptions are quite mild (see Pope (1990) for details).
Among the assumptions are that the VAR system is stationary such that �1 does not
contain unit or explosive roots, and that the VAR innovations vt constitute a martingale
di¤erence sequence with constant covariance matrix G. Note that we do not have to
assume that the innovations are Gaussian.

In the VAR model (2) there is a vector of constant terms, �0. Pope�s bias formula is
for a VARmodel with �mean-corrected�variables, i.e. the constant term is zero. However,
he notes that this involves no loss of generality since "the estimators ... are invariant
under translation of the sample by a constant" (Pope, 1990, p.252). We know that the
unconditional sample arithmetic average of a stationary variable is an unbiased estimate

7Nicholls and Pope (1988) derive an expression for the least squares bias in Gaussian VAR models.
Pope (1990) extends these results to a general VARmodel without the restriction of Gaussian innovations.
Amihud and Hurvich (2004) apply the Nicholls and Pope (1988) bias adjustment to develop a bias-
adjusted predictive return regression with multiple predictors. Engsted and Tanggaard (2004, 2007) use
Pope�s (1990) bias-adjustment in VAR based variance decompositions for asset returns.
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of its true mean, and that standard OLS �ts exactly the mean of the variables in the
VAR excluding the �rst observation. Thus, by �tting the VAR under the restriction that
the unconditional means of the variables implied by the VAR coe¢ cient estimates are
equal to their full-sample arithmetic counterparts, and by bias-correcting b�1, we obtain
unbiased estimates of the constant terms in �0. Campbell et al. (2003) also �t their VAR
models under the restriction that the unconditional means of the variables implied by
the VAR estimates equal their full-sample arithmetic counterparts. Hence, they obtain
unbiased estimates of the VAR implied means, but since their �1 estimate is biased, so
is their estimate of �0.

In the empirical analysis we restrict the means in this way to obtain unbiased esti-
mates of both �0 and �1. Hence, �rst we estimate �1 using standard OLS to obtain the
least-squares estimate b�1, and then we bias-adjust this estimate using Pope�s formula
which yields a bias-corrected coe¢ cient matrix, e�1. Next, we �t the VAR to give an
unbiased estimate of �0: e�0 = b��I� e�1

�
, where b� is the full-sample arithmetic mean

of the state vector. We also use this approach in the part of the empirical application
where we do not adjust for bias. This has two implications for the asset allocation. First,
when there is no predictability in the VAR model, i.e. �1 = 0, the optimal asset allo-
cation will be identical whether we use the bias-adjusted or the unadjusted estimates:b�t = e�t = 1



��1xx

h
Hx
e�0 +

1
2
�2x + (1� 
)�1x

i
= 1



��1xx

�
Hxb�+ 1

2
�2x + (1� 
)�1x

�
. Sec-

ond, when 
 = 1, the average demand will be identical in the two cases: b� = e� =

��1xx

h
Hx
e�0 +Hx

e�1b�+ 1
2
�2x

i
= ��1xx

�
Hxb�+ 1

2
�2x
�
.8

4 Empirical results

We begin the empirical analysis by replicating Campbell et al.�s (2003) results using the
same VAR models and a quarterly dataset and sample period similar to theirs, i.e. a
sample that ends in 1999:q4. Subsequently we report results for an extended sample
period that ends in 2006:q4, and for di¤erent VAR models. But �rst we brie�y describe
the data.9

4.1 Data

In the VAR models we use three asset returns (real short-term bond returns, excess stock
returns, and excess long-term bond returns) and three forecasting variables (the dividend-
price ratio, the short-term nominal interest rate, and the yield spread). The data are from

8This explains why there is no di¤erence between the adjusted and unadjusted estimates in the
column "Constant" in Table 3 in section 4, and why there is no di¤erence between the two cases when

 = 1. In general, this approach implies that bias-adjusting the VAR estimates has no e¤ect on the
average myopic demand.

9The program used in the empirical application is based on the MATLAB codes used by Campbell
et al. (2003) and made available on John Y. Campbell�s website.
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the Center for Research in Security Prices (CRSP), begin in 1952:q1 and end in 2006:q4.
For the restricted sample period, 1952:q1 - 1999:q4, the data are essentially identical to
the data used by Campbell et al. (2003), see the description in their section 4.1.10 The
short-term bond return is measured in real terms as the log gross T-bill return minus log
gross in�ation. Stock returns are measured by the return on the NYSE, NASDAQ, and
AMEX markets, and long-term bond returns are measured by the 5-year Treasury bond
return. In the analysis stock and bond returns are measured as excess log returns, i.e. the
log gross return minus the log gross T-bill return. The short-term nominal interest rate
is given as the 90-day T-bill yield, and the log dividend-price ratio is computed as the log
to the sum of dividend payments over the past year minus the log stock price. Finally,
the yield spread is the di¤erence between the 5-year bond yield and the 90-day T-bill
rate. Table 1 gives summary statistics for the data. We will refer to some of the numbers
in this table in subsequent subsections when interpreting the optimal asset allocation
results.

4.2 VAR estimation

Table 2 shows VAR parameter estimates for the Campbell et al. (CCV - Campbell,
Chen & Viceira) period from a one-lag model, VAR(1), - both the standard least squares
estimates (with Newey-West corrected t-statistics in parenthesis) and the bias-adjusted
estimates (in bold) using Pope�s (1990) correction, as described in section 3. The bottom
part of the table reports VAR innovation correlations above the main diagonal, and
standard deviations multiplied by 100 on the main diagonal. The xt+1 vector contains
three asset returns: excess stock returns (xrt+1), excess long-term bond returns (xbt+1),
and the real 90-day T-bill rate (rtbt+1). The vector of additional state variables, st+1,
contains the nominal 90-day T-bill yield (yt+1), the dividend-price ratio (dt+1 � pt+1),
and the long-short yield spread (sprt+1).

Table 2 reveals several interesting points. First, some of the least squares parameter
estimates seem to be severely biased, e.g. the sprt coe¢ cient in the xrt+1 equation where
the bias-adjustment changes the coe¢ cient from 0.474 to -0.160. Second, the least squares
estimates of the �rst-order autocorrelation coe¢ cients are in general downward biased, as
expected, but the multivariate bias-adjustment in many cases leads to quite di¤erent pa-
rameter values compared to the standard univariate bias-correction from Kendall (1954),
which is the most often used approach.11 For example, Pope�s bias for the yt coe¢ cient

10There is a slight di¤erence between our data sample that ends in 1999:q4 and Campbell et al.�s (2003)
sample; their data begin in 1952:q2 because they want to have identical sample periods for the analysis
with nominal bonds (their section 4) and real bonds (their section 5), and they loose one observation at
the beginnning of the sample to compute returns on the real bond. We do not consider such in�ation
protected bonds in our analysis (our sample period corresponds exactly to the sample period used by
Campbell and Viceira (2002, ch.4)). There are some additional minor di¤erences between our data
and Campbell et al.�s data concerning the data on stock returns and the dividend-price ratio. These
di¤erences have only a very small e¤ect on the results, which can be seen by comparing our unadjusted
VAR results in the subsequent tables with the results reported by Campbell et al.
11The Kendall bias for the �rst-order autocorrelation, �1, is

�(1+3�1)
T .
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in the yt+1 equation is -0.036 (=0.955-0.991), while Kendall�s bias for a �rst-order au-
tocorrelation estimate of 0.955 with T=188 (the sample size from 1953:q1 to 1999:q4)12

is only -0.021. For a process so close to a unit root this is a large di¤erence. Another
example that goes in the opposite direction is the �rst-order autocorrelation of the log
dividend-price ratio. Here the least squares estimate of 0.965 is only slightly downward
biased according to Pope�s formula (bias-adjusted estimate = 0.967). Kendall�s formula
gives a bias-corrected estimate of 0.986. Third, the upward bias of the sprt coe¢ cient in
the xbt+1 equation, together with the positive innovation correlation of 0.199, modi�es the
conclusion reached by Campbell et al. (2003, p.59) regarding bond return predictability.
Campbell et al. argue that the least squares estimate of the sprt coe¢ cient in the xbt+1
equation is downward biased due to the positive innovation correlation. The argument
builds on Stambaugh�s (1999) observation that the small-sample bias of such a coe¢ cient
has the opposite sign to the sign of the innovation correlation. However, Stambaugh�s ob-
servation is for a model where there is only one predictor variable and where this variable
follows a univariate AR(1) process. The results in Table 2 show that in a multivariate
context the relation between innovation correlations and the sign of small-sample bias of
VAR parameter estimates is more complex than anticipated by Campbell et al.

4.3 Optimal portfolio weights

Next we investigate the e¤ects of bias-adjusting the VAR parameters on the optimal
portfolio weights. Table 3 shows the average demands for stocks, bonds and T-bills
("Cash") over the period 1952:q1 - 1999:q4, computed from the formulas (4) to (7). We
pick the same preference parameters as in Campbell et al. (2003):  = 1, � = 0:921=4,
and 
 = 1, 2, 5, or 20.13 The �nal column "sprt" in Table 3 gives the mean asset demands
based on the full VAR(1) system from Table 2. The column "Constant" reports mean
demands from a system with only a constant term in each regression, i.e. no predictability
in any of the variables. Thus, in this case there is by construction no intertemporal hedge
e¤ects. The column "ARt" gives mean demands from a system that contains a constant
and the three asset returns, rtb, xr, and xb. Then we add sequentially the additional
state variables, y, d � p, and spr, to the system until we get the full VAR system in
the �nal column. In what follows we will mostly comment on the full VAR results, but
we also brie�y comment on the results from the smaller systems when discussing which
variables are responsible for the intertemporal hedging demands. Numbers in bold are
mean demands based on the bias-adjusted VAR estimates, while the numbers not in bold
are based on the unadjusted least squares estimates. In the table we report total demand
and the intertemporal hedging demand for each asset; the myopic demand component
then follows by subtracting hedging demand from total demand. Figure 1 plots the
hedging components of asset allocations, using the full VAR system, for a continuum of
values of risk-aversion, 
, from 1 to 1.
12The estimation period begins in 1953:q1 since we use four observations to construct dt � pt.
13Campbell et al. (2003) note that using  = 0:5 yields very similar results as when  = 1. However,

Rapach and Wohar (2007) show using monthly data, that changing  can have a sizable e¤ect on the
optimal hedging demand.
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For a logarithmic investor, 
 = 1, there is no intertemporal heging demand. Total
demand is purely myopic. Table 3 shows that in this case there is a large positive demand
for both stocks and long-term bonds - especially stocks - while the investor is short in
cash. When risk-aversion increases total demand for stocks decreases, as expected. The
hedging demand for stocks �rst increase with 
, and then decreases for su¢ ciently high

 values. It reaches its maximum at 
 � 3, see Figure 1. As explained in Campbell et al.
(2003), the positive hedging demand for stocks is mainly the result of predictable stock
returns from the log dividend-price ratio together with the strongly negative correlation
between stock return innovations and innovations in the log dividend-price ratio.14 For
bonds the intertemporal hedging component is negative, and most strongly so for 
 � 4
based on the unadjusted VAR estimates, see Figure 1. This negative hedging demand for
bonds comes mainly from the predictability of bond returns by the yield spread together
with a positive correlation between bond return innovations and yield spread innovations,
leading to �mean-aversion�in bond returns.

As seen from Table 3 and Figure 1, adjusting the VAR parameters for small-sample
bias does not markedly change the magnitudes and patterns of optimal stock demand.
Bias-adjustment induces a smaller intertemporal hedging component, but the e¤ect is
not large and is mainly due to the slightly smaller value of the dt � pt coe¢ cient in the
xrt+1 equation in the bias-adjusted system. For bonds, on the other hand, the e¤ect
of bias-adjustment is more pronounced. For intermediate values of 
 the intertemporal
hedging demand for bonds is negative, and bias-adjusting the VAR parameters magni�es
this strongly. For example, for 
 = 2 and based on the unadjusted estimates, total
demand for bonds is close to 0 (-6.70%) as a result of a negative hedging component
(-87.23%) and a positive myopic component (80.53%) that almost cancels each other.
However, based on the bias-adjusted estimates, the total allocation to bonds is strongly
negative (-117.67%) due to the strongly negative hedging demand of -198.20%. Several
forces contribute to the explanation of this e¤ect: bond return innovations are negatively
correlated with innovations in the nominal interest rate and the dividend-price ratio,
and bias-correction reduces the values of the parameters to yt and dt � pt in the xbt+1
equation. Thus, the �mean-reversion�e¤ect in bond returns, stemming from the interest
rate and dividend-price ratio, is reduced. In fact, with respect to yt we now have a �mean-
aversion�e¤ect on bonds in the bias-adjusted system. Similarly, the �mean-aversion�e¤ect
on bonds, stemming from the real interest rate, is magni�ed from the bias-adjustment:
bond innovations are positively correlated with innovations to the real interest rate, and
the rtbt coe¢ cient in the xbt+1 equation increases by the bias-adjustment. The e¤ect
from the yield spread pulls in the opposite direction: bond return and yield spread
innovations are positively correlated, and the sprt coe¢ cient in the xbt+1 equation is
reduced by the bias-adjustment. This induces a smaller �mean-aversion�e¤ect on bonds.
Similarly, the �mean-reversion�e¤ect on bonds from stocks is slightly magni�ed by the
bias-adjustment. However, apparently these opposite e¤ects are not su¢ ciently strong to
outweight the stronger �mean-aversion�e¤ects from the real interest rate and the smaller

14The intuition is as follows: A negative stock return innovation corresponds to a positive dividend-
price innovation, which - through the positive d�p coe¢ cient in the xr equation - leads to higher future
stock returns. Thus, the e¤ects from d� p induce �mean-reversion�in stock returns.
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�mean-reversion�e¤ects from the nominal interest rate and the dividend-price ratio. The
end result is a markedly stronger negative hedging demand for bonds following the bias-
adjustment.

The results in Table 3 and Figure 1 show that adjusting the VAR parameters for
small-sample bias does change the optimal asset allocation for intermediate values of the
relative risk aversion parameter. In order to asses whether the change has any utility
e¤ects, we have calculated the mean value function for these values of 
, using both
unadjusted and bias-adjusted VAR estimates, see Table 4. We follow Campbell et al.
(2002, 2003) in calculating the mean value function (E(Vt) where Vt � Ut=Wt), with one
di¤erence. Campbell et al. use the same VAR but change the asset menu in their analysis
of the utility e¤ects; we use the same asset menu but two di¤erent VAR systems: one
that is a¤ected with small-sample bias and one that is adjusted for bias. As noted by
Campbell et al., the value function is normalized, meaning in our case that a doubling
in E(Vt) from one VAR system to another implies that an investor who bases his asset
allocation on the VAR system with the lower E(Vt) requires a doubling of wealth to
obtain the same utility as the investor who bases his asset allocation on the system with
the higher E(Vt). Table 4 clearly shows that adjusting for small-sample bias has utility
e¤ects; for 
 = 2 the mean value function is 0.580 when using the unadjusted VAR
estimates and 0.352 when adjusting for bias. This implies that an investor who bases
his asset allocation on the bias-adjusted estimates needs an increase in wealth of 64.8%
to obtain the same utility as the investor who uses the unadjusted estimates.15 Note
that we should not necessarily expect the bias-adjusted system to produce the highest
utility. The point here is that adjusting for small-sample bias leads to quantitatively and
qualitatively important changes in utility for the investor.

4.4 Robustness analysis

We now do some robustness checks on the above �ndings. First, we replace the nominal
interest rate in levels, yt, with its �stochastically detrended�version which is more likely
to be stationary. Second, we increase the lag-length of the VAR to two. Finally, we
extend the sample period to include the most recent data up to 2006.

As seen in Table 2, the least squares autoregressive coe¢ cient in the yt+1 equation is
very close to unity (0.955), and after bias-adjustment the coe¢ cient becomes extremely
close to unity (0.991). This implies near-nonstationarity of the nominal interest rate.
Beginning with Campbell (1991) the standard approach to transforming the interest
rate into stationarity is to stochastically detrend it by subtracting its one-year backward
moving average.16 In Table 5 we report results for mean asset allocations based on a VAR

15Comparing our results based on unadjusted VAR estimates to the results by Campbell et al. (2003),
we obtain fairly similar results. The di¤erence is due to a small di¤erence in the data and the di¤erent
VAR systems; Campbell et al. include a real consol bond in their VAR system.
16Campbell et al. (2003) work with the level of interest rates and do not use the stochastically

detrended interest rate in their analyses. Part of the reason is that by using the level of the nominal
interest rate together with the real interest rate they can compute in�ation to be used in the section of
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model with the detrended interest rate (�Detr. yt�) and we compare with the results using
the interest rate in levels (�Level yt�).17 Table A1 in the appendix reports the underlying
VAR parameter estimates, and here we only report results based on the full 6-equation
VAR models. Again, numbers in bold come from the bias-adjusted VAR estimates.
Replacing the nominal interest rate with its detrended version changes somewhat the
optimal asset allocations for intermediate values of 
. There is no big change for stocks,
but the allocation to bonds increases a lot. For example, for 
 = 2 total demand for bonds
changes from -6.70% to 81.10% in the unadjusted VAR(1) model. This is due to a much
larger yt coe¢ cient in the xbt+1 equation in the system with the detrended interest rate.
Based on the bias-adjusted VAR(1) estimates, the total allocation to bonds changes even
more dramatically from -117.67% to 80.70%. Figure 2 shows these di¤erences clearly.
Interestingly, however, in the system with the detrended interest rate there is not much
di¤erence between optimal asset allocations based on the bias-adjusted and unadjusted
VAR(1) estimates, in contrast to the system with the interest rate in levels where the
bias-adjustment has a large e¤ect on optimal bond demand.

Next we estimate second-order VAR models, i.e. models with two lags - VAR(2) -,
with either �Level yt�or �Detr. yt�included. Campbell et al. (2003) only estimate �rst-
order models, so it will be interesting to investigate the sensitivity of the results with
respect to lag-length. The columns in the right part of Table 5 summarize the asset allo-
cation results based on VAR(2) models. In estimating these models with �Level yt�we run
into the problem that, due to the nonstationarity of yt, the VAR coe¢ cient matrix based
on least squares contains unstable roots which invalidates the bias-adjustment procedure.
Hence, for the VAR(2) model with �Level yt�we do not bias-correct the parameters.18

Tables A2 and A3 in the Appendix contain the VAR(2) parameter estimates. We see
that several of the second-lag coe¢ cients are strongly statistically signi�cant. Despite of
this, however, there does not seem to be large di¤erences between the optimal allocations
from the unadjusted VAR(1) and VAR(2) models, so the results are reasonably robust
to changes in the lag-length. However, in the VAR(2) model with the detrended interest
rate we see an interesting e¤ect on stocks from bias-correcting the VAR parameters: for

 equal to 2 or 5, the optimal hedging demand for stocks is almost cut in half (from
around 100% to a little over 50%), see also Figure 3.

Finally, Table 6 summarizes the results for mean asset allocation when we extend the
sample period to 2006:q4. (Tables A4 and A5 in the Appendix report the underlying
VAR parameter estimates for the one-lag models). Extending the sample period does
not qualitatively change the previous results. The most noticeable change is that in the
extended sample the demand for long-term bonds is higher - and the demand for stocks
is lower - than in the shorter sample. The main reason for this is the lower correlation

their paper that deals with in�ation-indexed bonds. We do not consider such in�ation protected bonds
in our analysis.
17The results with �Level yt�for the VAR(1) model are identical to the results in Table 3.
18The non-stationarity of yt also creates a multicollinearity problem in the VAR(2) system because

the regressors yt and yt�1 are almost perfectly correlated. This problem manifests itself by the wildly
shifting parameters, from very large positive to very large negative (or vice versa) between �rst- and
second-lag regressors, see Table A2 in the Appendix.
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between stock and bond innovations in the extended sample, together with a slightly
lower Sharpe ratio for stocks and a slightly higher Sharpe ratio for bonds (see Table 1).
But besides this, the overall patterns are the same, and the e¤ects of the bias-adjustment
are similar in the two datasets.

5 Concluding remarks

In this paper, we have explored the e¤ects of adjusting the VAR parameter estimates for
small-sample bias in the VAR based intertemporal asset allocation model from Campbell
et al. (2003) on US data over the period 1952-2006.

Using the analytical bias formula from Pope (1990), we �nd that bias-adjusting the
VAR parameters has both quantitatively and qualitatively important e¤ects on the strate-
gic intertemporal part of optimal asset allocation. Thus, neglecting the fact that standard
least squares estimates of the VAR parameters are plagued with �nite-sample bias can
have servere e¤ects on the investor�s optimal asset allocation. Futhermore, we �nd that
the choice of state variables has a large e¤ect on optimal asset allocation: replacing the
nominal interest rate in levels with its �stochastically detrended�version increases the
optimal demand for bonds dramatically. On the other hand, we �nd that the results
are not especially sensitive to the lag length in the VAR model. With respect to return
predictability we �nd that the bias-adjustment in the multivariate system in general is
quite di¤erent from the univariate bias-correction from Kendall (1954), and that the
observation by Stambaugh (1999) that the small-sample bias has the opposite sign to
the sign of the innovation correlation when using one predictor variable that follows a
univariate AR(1) process needs to be modi�ed when using a multivariate system.

Of course, our analysis has only addressed one of the limitations of the VAR based
intertemporal asset allocation model. Campbell et al. (2003) mention a number of in-
teresting extensions that could be undertaken such as the incorporation of labor income,
borrowing and short-sales constraints, and parameter uncertainty and learning e¤ects.
Another interesting extension would be to allow for time-varying risk-aversion, for ex-
ample by modeling utility in the form of habit persistence. We leave that for future
research.
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7 Tables and �gures

Sample moment 1952:q1 - 1999:q4 1952:q1 - 2006:q4
(1) E[r$1;t � �t]+�2(r$1;t � �t)=2 1.515 1.360
(2) �(r$1;t � �t) 1.354 1.433
(3) E[r$e;t � �t]+�2(r$e;t � �t)=2 7.571 6.910
(4) �(r$e;t � �t) 16.220 16.563
(5) SR = (3)=(4) 0.467 0.417
(6) E[r$n;t � �t]+�2(r$n;t � �t)=2 1.051 1.268
(7) �(r$n;t � �t) 5.619 5.530
(8) SR = (6)=(7) 0.187 0.229
(9) E[y$1;t] 5.482 5.160
(10) �(y$1;t) 1.415 1.420
(11) E[dt � pt] -3.419 -3.517
(12) �(dt � pt) 0.307 0.389
(13) E[y$n;t � y$1;t] 0.948 0.978
(14) �(y$n;t � y$1;t) 0.506 0.507

Notes: r$1;t is the log nominal return on T-bills. �t is the log in�ation rate. r
$
e;t is the nominal

log stock (equity) return. r$n;t is the log nominal bond return. y
$
1;t is the short-term nominal

interest rate. dt�pt is the log dividend-price ratio. y$n;t is the nominal bond yield. SR denotes
Sharpe ratio. More information about the data sources is given in section 4.1.

Table 1: Summary statistics
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Dependent rbtt xrt xbt yt dt � pt sprt R2

variable adj. adj. adj. adj. adj. adj.
(t) (t) (t) (t) (t) (t) (p)

rtbt+1 0.444 0.004 -0.012 0.248 -0.001 0.450 0.339
0.478 0.003 -0.015 0.200 -0.001 0.391
(6.559) (0.764) (-0.722) (2.990) (-0.723) (2.281) (0.000)

xrt+1 0.634 0.023 0.441 -1.989 0.044 0.474 0.084
0.913 0.018 0.414 -2.387 0.042 -0.160
(0.683) (0.357) (1.891) (-2.326) (1.936) (0.225) (0.007)

xbt+1 0.051 -0.055 -0.090 0.326 0.003 3.045 0.096
0.066 -0.059 -0.090 -0.043 0.001 2.596
(0.209) (-2.514) (-0.785) (0.879) (0.398) (3.014) (0.003)

yt+1 -0.008 0.004 0.005 0.955 0.000 0.116 0.869
-0.009 0.004 0.005 0.991 0.000 0.128
(-0.247) (1.517) (0.435) (25.79) (-0.220) (1.398) (0.000)

dt+1 � pt+1 -0.984 -0.020 -0.411 1.340 0.965 -1.045 0.934
-1.266 -0.013 -0.384 1.785 0.967 -0.393
(-1.044) -0.302) (-1.636) (1.506) (39.51) (-0.464) (0.000)

sprt+1 0.000 -0.001 0.002 0.025 0.000 0.747 0.539
0.000 -0.001 0.002 0.012 0.000 0.764
(-0.012) (-0.302) (0.331) (1.145) (-0.204) (12.22) (0.000)

Cross-corr.
of residuals

rtb xr xb y d� p spr

rtb 0.549 0.235 0.394 -0.389 -0.235 0.187
xr 7.751 0.225 -0.168 -0.983 0.024
xb 2.670 -0.765 -0.248 0.199
y 0.255 0.200 -0.777
d� p 7.900 -0.053
spr 0.172

Notes: The variables are de�ned at the beginning of section 4.2. The numbers in bold are bias-
adjusted estimates. The numbers not in bold are unadjusted estimates. (t) is the Newey-West
corrected t-statistic on the unadjusted estimate. (p) denotes p-value in tests of joint signi�cance
of the VAR explanatory variables.

Table 2: VAR(1) parameter estimates and innovation correlations. CCV period,
1952:q1 - 1999:q4
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State variables: Constant ARt yt dt � pt sprt


 = 1,  = 1, � = 0:921=4

Stocks: Total demand 268.47 287.87 291.50 297.77 297.20
268.47 287.87 291.50 297.77 297.20

Hedging demand 0 0 0 0 0
0 0 0 0 0

Bonds: Total demand 167.00 158.52 156.41 158.07 168.45
167.00 158.52 156.41 158.07 168.45

Hedging demand 0 0 0 0 0
0 0 0 0 0

Cash: Total demand -335.47 -346.39 -347.91 -355.84 -365.65
-335.47 -346.39 -347.91 -355.84 -365.65

Hedging demand 0 0 0 0 0
0 0 0 0 0


 = 2,  = 1, � = 0:921=4

Stocks: Total demand 133.37 143.72 147.13 241.76 242.44
133.37 143.06 145.86 223.93 223.58

Hedging demand 0 0.18 1.87 93.41 94.39
0 -0.50 0.60 75.58 75.53

Bonds: Total demand 79.16 31.82 -7.64 7.21 -6.70
79.16 31.49 -11.61 -36.80 -117.67

Hedging demand 0 -43.46 -81.93 -67.90 -87.23
0 -43.80 -85.90 -111.91 -198.20

Cash: Total demand -112.53 -75.55 -39.50 -148.98 -135.74
-112.53 -74.54 -34.25 -87.13 -5.91

Hedging demand 0 43.28 80.06 -25.51 -7.16
0 44.29 85.30 36.33 122.67

Continues next page
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Continued from previous page

State variables: Constant ARt yt dt � pt sprt


 = 5,  = 1, � = 0:921=4

Stocks: Total demand 52.32 55.60 56.40 154.60 158.05
52.32 55.17 55.89 125.72 131.67

Hedging demand 0 -1.35 -1.12 95.90 99.48
0 -1.78 -1.93 67.02 73.10

Bonds: Total demand 26.45 -4.54 -15.50 -41.61 -91.28
26.45 -4.67 -16.71 -63.34 -165.23

Hedging demand 0 -29.88 -40.52 -66.94 -119.06
0 -30.01 -41.72 -88.68 -193.01

Cash: Total demand 21.23 48.93 59.10 -12.99 33.23
21.23 49.49 61.12 37.62 133.56

Hedging demand 0 31.23 41.64 -28.95 19.58
0 31.79 43.65 21.66 119.90


 = 20,  = 1, � = 0:921=4

Stocks: Total demand 11.79 11.78 11.24 58.13 59.31
11.79 11.64 10.97 41.81 44.59

Hedging demand 0 -1.87 -2.41 44.25 45.49
0 -2.01 -2.67 27.93 30.76

Bonds: Total demand 0.10 -11.43 3.81 -18.37 -39.86
0.10 -11.53 4.22 -18.58 -53.48

Hedging demand 0 -11.80 3.43 -18.82 -41.26
0 -11.90 3.84 -19.03 -54.88

Cash: Total demand 88.11 99.64 84.95 60.24 80.55
88.11 99.89 84.81 76.77 108.89

Hedging demand 0 13.67 -1.03 -25.44 -4.23
0 13.92 -1.17 -8.90 24.12

Notes: 
,  , and � are the utility parameters described in section 2. The beginning of section
4.3 describes the content of the table in more detail.

Table 3: Mean asset demands from the VAR(1) models. CCV period: 1952:q1 - 1999:q4
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 E (Vt)unadjusted E (Vt)adjusted
E(Vt)unadjusted�E(Vt)adjusted

E(Vt)adjusted

2 0.580 0.352 0.648
3 0.203 0.126 0.611
4 0.114 0.074 0.541
5 0.078 0.053 0.472
6 0.060 0.042 0.429
7 0.049 0.035 0.400
8 0.042 0.031 0.355
9 0.037 0.028 0.321
10 0.033 0.025 0.320

Notes: Vtis the value function de�ned as Ut=Wt, see Equation (9) in Campbell et al (2003).

Table 4: Mean value function from the VAR(1) models with the short-term interest
rate yt in levels. CCV period 1952:q1 - 1999:q4.

22



VAR(1) VAR(2)
Level yt Detr. yt Level yt Detr. yt
Total Hedge Total Hedge Total Hedge Total Hedge


 = 1
Stocks 297.20 0 294.30 0 314.33 0 304.77 0

297.20 0 294.30 0 - - 304.77 0

Bonds 168.45 0 174.47 0 191.82 0 200.25 0
168.45 0 174.47 0 - - 200.25 0

Cash -365.65 0 -368.78 0 -406.15 0 -405.02 0
-365.65 0 -368.78 0 - - -405.02 0


 = 2
Stocks 242.44 94.39 232.57 85.82 260.51 104.03 247.90 96.07

223.58 75.53 232.49 85.74 - - 210.48 58.66

Bonds -6.70 -87.23 81.10 -2.17 23.16 -69.77 93.82 -3.28
-117.67 -198.20 80.70 -2.57 - - 91.02 -6.08

Cash -135.74 -7.16 -213.68 -83.65 -183.67 -34.27 241.72 -92.79
-5.91 122.67 -213.19 -83.17 - - -201.51 -52.58


 = 5
Stocks 158.05 99.48 151.54 93.33 168.08 106.32 163.58 103.51

131.67 73.10 151.19 92.97 - - 116.25 56.18

Bonds -91.28 -119.06 30.31 1.75 -64.02 -97.62 37.64 2.43
-165.23 -193.01 30.32 1.76 - - 40.96 5.75

Cash 33.23 19.58 -81.85 -95.08 -4.06 -8.70 -101.22 -105.95
133.56 119.90 -81.51 -94.73 - - -57.21 -61.94

Continues next page
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Continued from previous page

VAR(1) VAR(2)
Level yt Detr. yt Level yt Detr. yt
Total Hedge Total Hedge Total Hedge Total Hedge


 = 20
Stocks 59.31 45.49 60.96 47.01 58.36 43.96 65.46 51.28

44.59 30.76 60.79 46.83 - - 37.92 23.74

Bonds -39.86 -41.26 3.54 2.34 -14.81 -18.74 14.04 9.78
-53.48 -54.88 3.72 2.52 - - 15.65 11.39

Cash 80.55 -4.23 35.50 -49.35 56.45 -25.22 20.50 -61.06
108.89 24.12 35.49 -49.36 - - 46.43 -35.13

Notes: The numbers in bold are based on the bias-adjusted VAR estimates. The numbers not
in bold are based on the unadjusted VAR estimates. The VAR models include all three asset
returns and all three predictor variables.

Table 5: Mean asset demands from VAR(1) and VAR(2) models, with the short-term
interest rate yt either in levels or detrended. CCV period 1952:q1 - 1999:q4.
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VAR(1) VAR(2)
Level yt Detr. yt Level yt Detr. yt
Total Hedge Total Hedge Total Hedge Total Hedge


 = 1
Stocks 257.58 0 254.81 0 265.20 0 259.44 0

257.58 0 254.81 0 - - 259.44 0

Bonds 367.74 0 375.42 0 393.46 0 402.74 0
367.74 0 375.42 0 - - 402.74 0

Cash -525.32 0 -530.23 0 -558.66 0 -562.18 0
-525.32 0 -530.23 0 - - -562.18 0


 = 2
Stocks 191.21 63.16 193.87 67.01 202.96 71.21 201.84 72.80

170.16 42.12 194.13 67.28 - - 179.98 50.94

Bonds 130.85 -49.40 183.26 -0.45 161.56 -32.02 186.92 -11.22
23.15 -157.1 180.64 -3.07 - - 176.94 -21.21

Cash -222.06 -13.76 -277.12 -66.56 -264.52 -39.19 -288.77 -61.58
-93.32 114.98 -274.77 -64.20 - - -256.91 -29.73


 = 5
Stocks 111.57 61.25 120.87 70.79 118.67 66.99 122.92 72.12

92.91 42.58 120.84 70.75 - - 98.30 47.50

Bonds 0.83 -66.93 72.18 3.50 19.97 -53.68 68.42 -6.97
-60.78 -128.54 70.68 1.99 - - 66.56 -8.83

Cash -12.40 5.68 -93.06 -74.29 -38.64 -13.31 -91.34 -65.15
67.87 85.95 -91.51 -72.75 - - -64.86 -38.67

Continues next page
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Continued from previous page

VAR(1) VAR(2)
Level yt Detr. yt Level yt Detr. yt
Total Hedge Total Hedge Total Hedge Total Hedge


 = 20
Stocks 39.29 27.82 47.59 35.90 38.83 27.18 46.20 34.52

31.80 20.34 47.60 35.91 - - 34.67 22.99

Bonds 3.79 -7.73 13.33 2.16 17.34 3.66 17.45 3.44
-10.17 -21.69 12.93 1.76 - - 17.78 3.77

Cash 56.93 -20.10 39.08 -38.06 43.83 -30.84 36.36 -37.95
78.37 1.34 39.47 -37.67 - - 47.55 -26.76

See the notes to Table 5.

Table 6: Mean asset demands from VAR(1) and VAR(2) models, with the short-term
interest rate yt either in levels or detrended. Extended period 1952:q1 - 2006:q4.
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Figure 1: Mean hedging demand from the bias-adjusted and unadjusted VAR(1) models
with the short-term interest rate in levels. CCV period: 1952:q1 - 1999:q4

.

27



­300

­200

­100

0

100

200

0,00,10,20,30,40,50,60,70,80,91,0

Risk tolerance

Stocks (Detr. y) Bonds (Detr. y) Stocks Bonds

Figure 2: Mean hedging demand from the bias-adjusted VAR(1) models with the short-
term interest rate either in levels or detrended. CCV period: 1952:q1 - 1999:q4
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Figure 3: Mean hedging demand from the bias-adjusted and unadjusted VAR(2) models
with the detrended short-term interest rate. CCV period: 1952:q1 - 1999:q4
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8 Appendix

Dependent rbtt xrt xbt Detr. yt dt � pt sprt R2

variable adj. adj. adj. adj. adj. adj.
(t) (t) (t) (t) (t) (t) (p)

rtbt+1 0.547 0.002 -0.021 0.116 0.001 0.287 0.293
0.574 0.001 -0.022 0.098 0.001 0.272
(7.666) (0.297) (-0.800) (0.420) (0.386) (1.340) (0.000)

xrt+1 -0.315 0.029 0.343 -4.454 0.027 -0.014 0.074
-0.330 0.037 0.346 -4.321 0.027 -0.330
(-0.312) (0.399) (1.193) (-1.419) (1.344) (-0.005) (0.017)

xbt+1 0.207 -0.056 -0.074 0.749 0.005 3.134 0.094
0.194 -0.058 -0.074 0.422 0.005 2.902
(0.803) (-2.805) (-0.785) (0.624) (0.733) (2.788) (0.003)

Detr. yt+1 -0.031 0.005 -0.003 0.557 -0.001 0.133 0.283
-0.030 0.005 -0.003 0.566 -0.001 0.114
(-1.293) (2.306) (-0.286) (4.098) (-0.952) (1.410) (0.000)

dt+1 � pt+1 -0.238 -0.012 -0.206 5.978 0.978 0.795 0.934
-0.220 -0.019 -0.210 5.853 0.979 1.083
(-0.249) (-0.172) (-0.682) (1.799) (45.32) (0.273) (0.000)

sprt+1 0.012 -0.001 0.004 0.070 0.000 0.760 0.538
0.012 -0.001 0.005 0.085 0.000 0.799
(0.664) (-0.370) (0.488) (0.620) (0.340) (12.34) (0.000)

Cross-corr.
of residuals

rtb xr xb Detr. y d� p spr

rtb 0.568 0.192 0.397 -0.394 -0.208 0.200
xr 7.795 0.219 -0.143 -0.982 0.019
xb 2.673 -0.755 -0.249 0.201
Detr. y 0.249 0.185 -0.763
d� p 7.860 -0.055
spr 0.172

Notes: �Detr. y�is the stochastically detrended short-term interest rate, de�ned in the beginning
of section 4.4. Otherwise see the notes to Table 2.

Table A1: VAR(1) parameter estimates and innovation correlations, with detrended
short rate. CCV period: 1952:q1 - 1999:q4
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Dependent rbtt xrt xbt yt dt � pt sprt
variable adj. adj. adj. adj. adj. adj.

(t) (t) (t) (t) (t) (t)

rtbt+1 0.305 -0.023 -0.093 -1.111 -0.031 -0.863
- - - - - -

(4.136) (-0.793) (-1.064) (-0.809) (-1.046) (-0.715)

xrt+1 0.734 -0.324 2.741 35.94 -0.273 34.25
- - - - - -

(0.706) (-0.951) (1.627) (1.317) (-0.821) (1.351)

xbt+1 -0.354 -0.167 -0.326 -3.447 -0.113 -1.790
- - - - - -

(-1.020) (-1.418) (-0.664) (-0.439) (-0.959) (-0.219)

yt+1 0.036 0.027 -0.017 0.578 0.024 -0.083
- - - - - -

(0.807) (2.543) (-0.324) (0.684) (2.290) (-0.093)

dt+1 � pt+1 -1.233 0.740 -2.776 -38.37 1.695 -35.92
- - - - - -

(-1.209) (1.950) (-1.582) (-1.363) (4.480) (-1.378)

sprt+1 -0.022 -0.018 0.037 0.607 -0.018 1.195
- - - - - -

(-0.704) (-2.489) (0.959) (0.935) (-2.524) (1.814)

Table continues next page
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Table continued from previous page

Dependent rbtt�1 xrt�1 xbt�1 yt�1 dt�1 � pt�1 sprt�1 R2

variable adj. adj. adj. adj. adj. adj.
(t) (t) (t) (t) (t) (t) (p)

rtbt+1 0.330 -0.006 -0.043 1.259 0.031 1.310 0.423
- - - - - -

(4.224) (-1.239) (-3.030) (0.904) (1.042) (1.008) (0.000)

xrt+1 0.553 -0.123 0.523 -38.37 0.322 -37.53 0.149
- - - - - -

(0.520) (-1.958) (2.731) (-1.393) (0.956) (-1.397) (0.003)

xbt+1 1.112 -0.059 -0.074 3.390 0.119 5.012 0.176
- - - - - -

(2.992) (-2.801) (-1.073) (0.429) (0.987) (0.603) (0.000)

yt+1 -0.137 0.006 0.012 0.431 -0.024 0.230 0.888
- - - - - -

(-2.346) (2.648) (1.422) (0.515) (-2.349) (0.245) (0.000)

dt+1 � pt+1 -0.331 0.156 -0.611 40.42 -0.739 39.18 0.939
- - - - - -

(-0.307) (2.610) (-3.177) (1.427) (-1.921) (1.414) (0.000)

sprt+1 0.072 -0.002 -0.008 -0.614 0.018 -0.483 0.589
- - - - - -

(1.682) (-1.312) (-0.880) (-0.946) (2.582) (-0.685) (0.000)

Cross-corr.
of residuals

rtb xr xb y d� p spr

rtb 0.514 0.265 0.339 -0.314 -0.263 0.107
xr 7.493 0.216 -0.145 -0.985 -0.011
xb 2.555 -0.743 -0.236 0.126
y 0.237 0.170 -0.752
d� p 7.478 -0.008
spr 0.163

Notes: There are no bias-adjusted estimates because the least squares VAR parameter matrix
contains unstable roots. Otherwise, see the notes to Table 2.

Table A2: VAR(2) parameter estimates and innovation correlations. CCV period:
1952:q1 - 1999:q4.
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Dependent rbtt xrt xbt Detr. yt dt � pt sprt
variable adj. adj. adj. adj. adj. adj.

(t) (t) (t) (t) (t) (t)

rtbt+1 0.351 -0.041 -0.074 -0.792 -0.048 -0.532
0.375 -0.042 -0.077 -0.923 -0.061 -0.701
(5.769) (1.531) (-1.070) (-0.792) (-1.760) (-0.624)

xrt+1 -0.331 -0.036 0.431 -3.325 -0.004 -3.189
-0.041 -0.033 0.353 -5.379 -0.535 -6.332
(-0.305) (-0.097) (0.591) (-0.295) (-0.011) (-0.337)

xbt+1 -0.377 -0.175 -0.323 -3.476 -0.126 -1.721
-0.369 -0.177 -0.324 -4.848 -0.210 -3.525
(-1.058) (-1.607) (-1.265) (-0.714) (-1.146) (-0.461)

Detr. yt+1 0.039 0.025 -0.009 0.449 0.021 0.118
0.039 0.025 -0.008 0.473 0.027 0.124
(0.898) (2.343) (-0.294) (0.832) (1.962) (0.241)

dt+1 � pt+1 -0.284 0.456 -0.396 2.116 1.419 2.608
-0.562 0.454 -0.321 4.212 1.939 5.758
(-0.266) (1.202) (-0.521) (0.183) (3.683) (0.269)

sprt+1 -0.022 -0.016 0.039 0.660 -0.015 1.222
-0.023 -0.016 0.039 0.718 -0.017 1.321
(-0.765) (-2.140) (1.789) (1.790) (-2.001) (3.484)

Table continues next page

33



Table continued from previous page

Dependent rbtt�1 xrt�1 xbt�1 Detr. yt�1 dt�1 � pt�1 sprt�1 R2

variable adj. adj. adj. adj. adj. adj.
(t) (t) (t) (t) (t) (t) (p)

rtbt+1 0.358 -0.007 -0.048 0.626 0.049 0.906 0.412
0.375 0.005 -0.039 0.744 0.062 1.021
(4.439) (-1.402) (-2.839) (0.858) (1.797) (0.991) (0.000)

xrt+1 0.024 -0.096 0.545 0.105 0.031 3.515 0.117
0.004 0.433 0.684 1.649 0.563 5.330
(0.022) (-1.288) (2.084) (0.013) (0.085) (0.322) (0.024)

xbt+1 1.109 -0.053 -0.065 2.831 0.131 5.380 0.180
1.087 0.026 0.046 4.200 0.215 6.682
(2.744) (-2.418) (-0.706) (0.818) (1.176) (1.182) (0.000)

Detr. yt+1 -0.139 0.007 0.005 0.077 -0.021 0.037 0.395
-0.136 0.001 0.003 0.080 -0.027 0.026
(-2.496) (2.950) (0.672) (0.210) (-2.016) (0.067) (0.000)

dt+1 � pt+1 0.166 0.138 -0.564 2.090 -0.442 -1.955 0.937
0.188 -0.378 -0.706 0.515 -0.963 -3.779
(0.151) (2.015) (-2.184) (0.255) (-1.149) (-0.174) (0.000)

sprt+1 0.070 -0.003 -0.007 -0.488 0.016 -0.556 0.604
0.069 -0.001 -0.011 -0.567 0.017 -0.617
(1.789) (-1.730) (-0.843) (-1.908) (2.039) (-1.434) (0.000)

Cross-corr.
of residuals

rtb xr xb Detr. y d� p spr

rtb 0.520 0.227 0.330 -0.301 -0.232 0.118
xr 7.626 0.212 -0.130 -0.986 0.003
xb 2.549 -0.733 -0.234 0.143
Detr. y 0.230 0.156 -0.752
d� p 7.590 -0.018
spr 0.160

Notes: See the notes to Table 2.

Table A3: VAR(2) parameter estimates and innovation correlations, with detrended
short rate. CCV period: 1952:q1 - 1999:q4.
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Dependent rbtt xrt xbt yt dt � pt sprt R2

variable adj. adj. adj. adj. adj. adj.
(t) (t) (t) (t) (t) (t) (p)

rtbt+1 0.286 -0.002 0.008 0.325 -0.001 0.458 0.224
0.311 -0.002 0.005 0.278 -0.001 0.404
(2.923) (-0.266) (0.454) (3.185) (-0.796) (2.081) (0.000)

xrt+1 0.424 0.014 0.435 -2.201 0.044 0.371 0.086
0.576 0.011 0.412 -2.708 0.042 -0.351
(0.513) (0.245) (2.056) (-2.667) (2.553) (0.164) (0.002)

xbt+1 -0.031 -0.058 -0.088 0.427 -0.002 3.185 0.099
-0.034 -0.059 -0.090 0.110 -0.004 2.785
(-0.132) (-2.744) (-0.810) (1.138) (-0.514) (3.383) (0.001)

yt+1 -0.006 0.005 0.003 0.957 0.000 0.104 0.883
-0.006 0.005 0.004 0.988 0.000 0.115
(-0.240) (1.961) (0.313) (26.95) (0.460) (1.368) (0.000)

dt+1 � pt+1 -0.780 -0.004 -0.421 1.306 0.965 -0.463 0.957
-0.940 0.001 -0.396 1.880 0.968 0.325
(-0.919) -0.071) (-1.891) (1.532) (55.60) (-0.208) (0.000)

sprt+1 0.004 -0.001 0.003 0.016 0.000 0.753 0.556
0.003 -0.001 0.003 0.005 0.000 0.768
(0.191) (-0.579) (0.559) (0.761) (-0.210) (13.42) (0.000)

Cross-corr.
of residuals

rtb xr xb y d� p spr

rtb 0.630 0.221 0.322 -0.304 -0.253 0.109
xr 7.909 0.113 -0.117 -0.971 0.047
xb 2.623 -0.738 -0.144 0.124
y 0.242 0.149 -0.756
d� p 8.015 -0.063
spr 0.169

Notes: The variables are de�ned at the beginning of section 4.2. The numbers in bold are
bias-adjusted estimates. The numbers not in bold are unadjusted estimates. (t) is the t-
statistic on the unadjusted estimate. (p) denotes p-value in tests of joint signi�cance of the
VAR explanatory variables.

Table A4: VAR(1) parameter estimates and innovation correlations. Extended period:
1952:q1 - 2006:q4
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Dependent rbtt xrt xbt Detr. yt dt � pt sprt R2

variable adj. adj. adj. adj. adj. adj.
(t) (t) (t) (t) (t) (t) (p)

rtbt+1 0.397 -0.006 -0.012 -0.051 0.001 0.136 0.159
0.418 -0.006 -0.013 -0.071 0.001 0.126
(4.125) (-0.852) (-0.474) (-0.169) (0.588) (0.559) (0.000)

xrt+1 -0.469 0.033 0.416 -3.001 0.031 0.815 0.068
-0.545 0.039 0.418 -3.116 0.030 0.479
(-0.536) (0.539) (1.567) (-1.093) (1.818) (0.292) (0.012)

xbt+1 0.139 -0.061 -0.089 0.487 0.000 3.050 0.093
0.123 -0.063 -0.088 0.182 0.000 2.879
(0.597) (-3.218) (-0.986) (0.460) (0.050) (2.986) (0.001)

Detr. yt+1 -0.023 0.005 0.000 0.640 0.000 0.166 0.337
-0.022 0.006 0.000 0.648 0.000 0.147
(-1.285) (2.724) (0.034) (5.169) (-0.349) (1.964) (0.000)

dt+1 � pt+1 -0.097 -0.006 -0.249 5.248 0.975 1.076 0.958
-0.028 -0.011 -0.251 5.406 0.975 1.421
(-0.114) (-0.103) (-0.918) (1.830) (60.87) (0.393) (0.000)

sprt+1 0.009 -0.001 0.002 -0.003 0.000 0.737 0.554
0.009 -0.001 0.003 0.011 0.000 0.770
(0.598) (-0.738) (0.341) (-0.028) (0.089) (12.65) (0.000)

Cross-corr.
of residuals

rtb xr xb Detr. y d� p spr

rtb 0.656 0.166 0.334 -0.314 -0.216 0.119
xr 7.986 0.099 -0.089 -0.970 0.038
xb 2.632 -0.731 -0.140 0.129
Detr. y 0.237 0.128 -0.740
d� p 7.986 -0.058
spr 0.169

Notes: �Detr. y�is the stochastically detrended short-term interest rate, de�ned in the beginning
of section 4.4. Otherwise see the notes to Table 2.

Table A5: VAR(1) parameter estimates and innovation correlations, with detrended
short rate. Extended period: 1952:q1 - 2006:q4
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