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Abstract

This paper introduces a new estimator to measure the ex-post covariation between

high-frequency financial time series under market microstructure noise. We provide an

asymptotic limit theory (including feasible central limit theorems) for standard methods

such as regression, correlation analysis and covariance, for which we obtain the optimal rate

of convergence. We demonstrate some positive semidefinite estimators of the covariation

and construct a positive semidefinite estimator of the conditional covariance matrix in

the central limit theorem. Furthermore, we indicate how the assumptions on the noise

process can be relaxed and how our method can be applied to non-synchronous observations.

We also present an empirical study of how high-frequency correlations, regressions and

covariances change through time.
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1 Introduction

In recent years the availability of high frequency data changed the possibilities to accurately es-

timate financial volatility and correlation dramatically. The underlying idea is to use quadratic

covariation as the ex-post covariation of asset prices whose increments can be estimated using a

variety of instruments. A prominent estimator in the univariate case is realised variance which

has been extensively discussed in Andersen et al. (2001) and Barndorff-Nielsen and Shep-

hard (2002). But researchers faced the problem that frequent sampling would not allow them

to ignore the contamination of financial data by market frictions which is known as market

microstructure noise. This goes back to Zhou (1998).

The presence of market microstructure noise in high frequency financial data is well-known

and complicates the estimation of both the volatility of and the covariance between asset prices.

The problem is that observed asset price processes do not exhibit the efficient prices, but are

contaminated by some noise. Estimators for financial volatility or covariance which work well

in the absence of noise, are severely affected by the contamination of the data while sampling

at high frequencies and are thus unreliable. However, the effects this has on realised volatility

and realised covariance are opposite. Hansen and Lunde (2006) show that realised variance

exhibits a large positive bias and a variance which diverges with the sampling frequency when

using trade data. Epps (1979) documented that when estimating from empirical data, realised

covariance converges to zero as the sampling frequency increases. When sampling at a very

high frequency, there are more and more zero-returns, when there is non-synchronous trading,

this effect dominates realised covariance and all related statistics (e.g. realised correlation).

A key to understanding the nature of market microstructure noise and a possible tool how

to deal with it is that market microstructure noise induces autocorrelation in the intraday

returns and this autocorrelation is the reason for the bias problem. Currently there are three

main univariate approaches towards estimating the integrated variance in the presence of mi-

crostructure noise: the two-scale estimator proposed by Zhang et al. (2005) (see also the

multiscale approach by Zhang (2006) which is the generalisation of the two-scale estimator),

the realised kernel introduced in Barndorff-Nielsen et al. (2007) and the concept of modulated

bipower variation proposed by Podolskij and Vetter (2007) which was extended in Jacod et al.

(2007). The latter method is based on pre-averaging (or pre-filtering) procedure which delivers
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a consistent estimator of the integrated variance.

In this paper we tackle the multivariate version of this problem. The problem of estimating

correlation under non-synchronous high frequency data has been studied by Lundin et al. (1999)

and Brandt and Diebold (2003). They independently proposed an estimation procedure to cope

with non-synchronicity in a various model assumption. Most existing approaches, however, rely

on synchronization of the original data. Furthermore, Hayashi and Yoshida (2003) introduced

an estimator which is capable of dealing with non-synchronous data, but not with market

microstructure noise.

The scope of this paper is to extend the theory stated in Podolskij and Vetter (2007) and

Jacod et al. (2007) to the multivariate case and also address problems which occur additionally

in the multivariate setting. We will call this multivariate extension Modulated Realised Co-

variation (MRC) in the following. We show that MRC is a simple consistent estimator of the

covariation and prove the corresponding central limit theorem under weak assumptions on the

involved processes. Our estimator converges at the rate n−1/4, which is known to be optimal

(see Jacod and Glotter (2001)). Furthermore, we construct a positive semidefinite estimator

of the conditional covariance matrix in the central limit theorem to obtain feasible asymptotic

results. Finally, we explain how a positive semidefinite estimator of the covariation can be

obtained and how the assumptions on the noise process can be relaxed.

The MRC estimator as it is introduced in this paper, is not directly capable of dealing with

non-synchronous data. However, we will use a method to clean data in a way so that empirical

results are still rather good. This method has been inspired by the concept of refresh time

which goes back to Barndorff-Nielsen, Hansen, Lunde and Shephard (2008).

The remainder of the paper is organised as follows. After a section on notation we present

the multivariate asymptotic theory and apply it to deduce a central limit theorem for estimator

for regression and correlation. Then we test our results with an extensive simulation study and

finally present an empirical illustration.

2 Basic notations and definitions

No-arbitrage based characterisations of securities prices (as in Delbaen and Schachermeyer

(1994)) suggest they must follow Brownian semimartingales. They satisfy the fundamental law
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of asset pricing and have been used extensively in order to model the evolution of asset prices

in time. A Brownian semimartingale is characterised by the equation

Zt = Z0 +
∫ t

0
audu+

∫ t

0
σudWu, t ∈ [0, 1] , (2.1)

where a is a d-dimensional predictable locally bounded drift vector, σ a càdlàg d×d covolatility

matrix and W is d-dimensional Brownian motion. All processes are defined on the filtered

probability space (Ω0,F0, (F0
t )t∈[0,1], P

0). For all continuous time stochastic processes the

quadratic covariation process is defined as

[Z]t = P − lim
n→∞

n∑
j=1

(
Ztj − Ztj−1

) (
Ztj − Ztj−1

)′ (2.2)

for any sequence of deterministic partitions 0 = t0 < t1 < ... < tn = t with sup
j
{tj − tj−1} → 0

for n→∞. For Brownian semimartingales the quadratic covariation is given as

[Z]t =
∫ t

0
σuσ

′
udu (2.3)

(2.3) is the object of interest as the quadratic covariation matrix gives us a good way to measure

both the volatility of an asset price process as well as the covolatility of different processes.

However, we do not observe the efficient price (2.1) in the market, but a process Z∗ which

is contaminated by market microstructure noise. More precisely, we consider the process Z∗,

observed at time points i/n, i = 0, 1, . . . , n, which is given as

Z∗t = Zt + εt , (2.4)

where (εt) is an i.i.d. process that is independent of Z. Such a process can be constructed as

follows. We define a second probability space (Ω1,F1, (F1
t )t∈[0,1], P

1), where Ω1 denotes R[0,1]

and F1 the product Borel-σ-field on Ω1. Next, let Q be a probability measure on R. For

any t ∈ [0, 1], P 1
t = Q and P 1 denotes the product ⊗t∈[0,1]P

1
t . The filtered probability space
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(Ω,F , (Ft)t∈[0,1], P ), on which we define the process Z∗, is given as

Ω = Ω0 × Ω1, F = F0 ×F1, Ft =
⋂
s>tF0

s ×F1
s ,

P = P 0 ⊗ P 1.

 (2.5)

The multivariate noise process ε is assumed to satisfy the following assumption:

Eεt = 0 , Eεtε
′
t = Ψ , (2.6)

where Ψ is a positive definite d× d-matrix.

Remark 1 Hansen and Lunde (2006) pointed out that the i.i.d. assumption on the noise

process (εt) and the independence between Z and ε is quite unrealistic for ultra high frequencies.

Jacod et al. (2007) consider a more general type of (1-dimensional) noise processes. Roughly

speaking, they allow for noise processes of the form

εt = αtνt , (2.7)

where (αt) is F0-measurable and càdlàg, E[νt|F0] = 0, E[ν2
t |F0] = 1 for any t ∈ [0, 1], and,

conditionally on F0, νt is independent of νs for t 6= s. An interesting example of a 1-dimensional

process Z∗, for which the above conditions on the noise are fulfilled, is given by (γ > 0)

Z∗t = γ

⌊
Zt + Ut

γ

⌋
,

where Ut is an i.i.d. process with U([0, γ]) distribution, which is independent of Z (see Li and

Mykland (2007) or Jacod et al. (2007)). In this case we have Z∗t = Zt + εt with εt = αtνt and

α2
t = γ2

({
Zt
γ

}
−
{
Zt
γ

}2
)
,

where {x} denotes the rational part of x. Obviously, (αt) is a càdlàg process.

The asymptotic theory developed in this paper remains true for the multivariate noise

processes of the type (2.7). However, we restrict ourselves to the models of the form (2.4) for

the ease of exposition.
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Next, we choose a sequence kn of integers and a number θ ∈ (0,∞) satisfying

kn√
n

= θ + o
(
n−1/4

)
(2.8)

(for example kn = bθ
√
nc). We also choose a function g on [0, 1], which is continuous, piecewise

continuously differentiable with a piecewise Lipschitz derivative g′ with g(0) = g(1) = 0 and

which satisfies
∫ 1
0 g

2 (s) ds > 0. Furthermore, we introduce the following functions and numbers

which are associated with g:

φ1 (s) =
∫ 1

s
g′ (u) g′ (u− s) du, φ2 (s) =

∫ 1

s
g (u) g (u− s) du, ψ1 = φ1 (0) , ψ2 = φ2 (0) ,

Φ11 =
∫ 1

0
φ2

1 (s) ds, Φ12 =
∫ 1

0
φ1 (s)φ2 (s) ds, Φ22 =

∫ 1

0
φ2

2 (s) ds.

The functions φ1 and φ2 are assumed to be 0 outside the interval [0, 1].

Next with any V = (Vt)t≥0 we associate the following random variables

∆n
i V = V i

n
− V i−1

n
, V̄ n

i =
kn∑
j=1

g

(
j

kn

)
∆n
i+jV .

The core statistic of this paper is the multivariate extension of the estimator which was intro-

duced in Jacod et al. (2007). We call it the Modulated Realised Covariation (MRC) estimator

and it is defined as

MRC (Z∗)n =
1

θψ2
√
n

n−kn+1∑
i=0

Z̄∗ni
(
Z̄∗ni

)′ − ψ1

2θ2ψ2n

n∑
i=1

∆n
i Z

∗ (∆n
i Z

∗)′. (2.9)

The last term in (2.9) is introduced to remove the bias due to the noise, but it does not play

any role in the central limit theorem given below. In fact, it holds that

Ψ̂ =
1
2n

n∑
i=1

∆n
i Z

∗ (∆n
i Z

∗)′
P→Ψ.

Remark 2 The intuition behind the quantity Z̄∗ni can be explained as follows. Assume for a
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moment that the integer kn is an even number and define

Ẑ∗ni =
2
kn

kn
2
−1∑

j=0

Z∗i+j
n

.

Due to this pre-averaging procedure the quantity Z̃∗ni is closer to the efficient price Z i
n
. Next,

we compute the realised covariation estimator based on the filtered increments

2(Ẑ∗n
i+ kn

2

− Ẑ∗ni ).

(However, the latter induces a bias which is corrected by means of Ψ̂). This method was

originally proposed by Podolskij and Vetter (2006) and Z̄∗ni := 2(Ẑ∗n
i+ kn

2

− Ẑ∗ni ) corresponds to

the function

g (x) = min (x, 1− x) ,

which is the most intuitive example. In this case the constants are given as

ψ1 = 1, ψ2 =
1
12
, Φ11 =

1
6
, Φ12 =

1
96
, Φ22 =

151
80640

.

3 Asymptotic theory

In this section we study the asymptotic behaviour of MRC(Z)n.

3.1 Consistency

Theorem 1 Assume that E | εj |4< ∞ for all j = 1, ..., d. If kn and θ satisfy (2.8), then the

convergence in probability

MRC (Z∗)n
P→
∫ 1

0
σsσ

′
sds (3.1)

holds.

3.2 The central limit theorem

In this section we present the central limit theorem for MRC(Z∗)n. As in Jacod et al. (2007)

we only require a moment condition on the noise process ε to prove the next theorem. We use
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the concept of stable convergence. Let us briefly recall the definition. A sequence of random

variables Zn converges stably in law with limit Z (throughout this paper we write Zn Dst−→ Z),

defined on an appropriate extension (Ω′,F ′, P ′) of the probability space (Ω,F , P ), if and only

if for any F-measurable and bounded random variable Z and any bounded and continuous

function f the convergence

lim
n→∞

E[Zf(Y n)] = E[Zf(Y )]

holds. This is obviously a slightly stronger mode of convergence than weak convergence (see

Renyi (1963), Aldous & Eagleson (1978) or Jacod & Shiryaev (2003) for more details on stable

convergence).

Theorem 2 Assume that E | εj |8< ∞ for all j = 1, ..., d and kn and θ satisfy (2.8). Then

the sequence

n1/4

(
MRC (Z∗)n −

∫ 1

0
σsσ

′
sds

)
(3.2)

converges stably in law towards a limiting variable defined on an extension of the original space

which is of the form

U =
d∑

j′,k′=1

∫ 1

0
γjk,j

′k′
s dBj′k′

s ,

where B is a standard d2-dimensional Wiener process, independent of F , and

d∑
j,m=1

γkl,jms γk
′l′,jm
s =

2
ψ2

2

(
Φ22θΛkl,k

′l′
s +

Φ12

θ
Θkl,k′l′
s +

Φ11

θ3
Υkl,k′l′

)
.

Here Λ, Θ and Υ are d× d× d× d arrays with elements

Λs =
{

Σkk′
s Σll′

s + Σkl′
s Σlk′

s

}
k,k′,l,l′=1,...,d

,

Θs =
{

Σkk′
s Ψll′ + Σkl′

s Ψk′l + Σk′l
s Ψkl′ + Σll′

s Ψkk′
}
k,k′,l,l′=1,...,d

,

Υ =
{

Ψkk′Ψll′ + Ψkl′Ψlk′
}
k,k′,l,l′=1,...,d

.

(3.3)
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An equivalent way of writing the convergence statement in Theorem 2 is the following.

n1/4

(
MRC (Z∗)n −

∫ 1

0
σsσ

′
sds

)
Dst−→MN (0, L)

where

L =
1
ψ2

2

(
Φ22θ

∫ 1

0
Λsds+

Φ12

θ

∫ 1

0
Θsds+

Φ11

θ3
Υ
)

(3.4)

is a conditional covariance matrix.

3.3 Positive semidefinite estimators

Here we present the asymptotic theory for a non-optimal choice of kn, i.e.

kn

n1/2+δ
= θ + o(n−

1
4
+ δ

2 ) (3.5)

for some 0 < δ < 1/2. We will see that for a non-optimal rate we obtain a positive semidefinite

estimator of covariation, which consistency holds under much weaker assumptions on the noise

process.

We define the estimator

MRC (Z∗)δn =
1

θψ2n1/2+δ

n−kn+1∑
i=0

Z̄∗ni
(
Z̄∗ni

)′
. (3.6)

Our first result is a consequence of the univariate asymptotic theory developed in Vetter (2008).

Theorem 3 Assume that E | εj |4< ∞ for all j = 1, ..., d. If kn and θ satisfy (3.5), then the

convergence in probability

MRC (Z∗)δn
P→
∫ 1

0
σsσ

′
sds (3.7)

holds.

Notice that the characteristics of the noise process do not appear in the limit, because the

influence of the noise is negligible for the choice of kn made in (3.5). This procedure has two

advantages: (i) MRC (Z∗)δn is obviously positive semidefinite and (ii) the convergence in (3.7)

holds under much weaker assumptions on the noise process. More precisely, we do not require

the i.i.d. assumption on the process (εt) (as long as ε̄ni admits asymptotic normality at the
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usual rate k−1/2
n ) and we can allow for any dependence structure between Z and ε.

To prove the associated central limit theorem we require a further restriction on the param-

eter δ. This is due to the bias caused by the noise process, which is negligible in Theorem 3,

but can be large when multiplying with the convergence rate. The next result follows through

the lines of the proof of Theorem 2 (see again Vetter (2008) for more details).

Theorem 4 Assume that E | εj |8<∞ for all j = 1, ..., d and kn and θ satisfy (3.5). Then we

obtain the following results.

(i) If δ > 1
10 we have

n1/4−δ/2
(
MRC (Z∗)δn −

∫ 1

0
σsσ

′
sds

)
Dst−→MN

(
0,

Φ22θ

ψ2
2

∫ 1

0
Λsds

)
, (3.8)

where (Λs) is defined in (3.3).

(ii) If δ = 1
10 we have

n1/5

(
MRC (Z∗)δn −

∫ 1

0
σsσ

′
sds

)
Dst−→MN

(
ψ1

θ2ψ2
Ψ,

Φ22θ

ψ2
2

∫ 1

0
Λsds

)
. (3.9)

Note that the asymptotic conditional covariance matrix of Theorem 4 is just the first summand

of the quantity L given in (3.4). The drift which appears in (3.9) is the limit of the bias caused

by the noise process multiplied with the convergence rate n−1/5. Clearly, the drift can be

estimated by ψ1

θ2ψ2
Ψ̂. Consistent estimates of the conditional covariance matrix of Theorem 4

can be obtained as described in Section 4.

Remark 3 Having a positive semidefinite estimator MRC (Z∗)δn of
∫ 1
0 σsσ

′
sds is certainly an

important issue. However, the rate optimal estimator MRC (Z∗)n (which is not necessarily

positive semidefinite for finite n) appears to be positive semidefinite for moderate sampling

frequencies both in simulations and empirical applications.

3.4 The bivariate case

The general results are quite compact so that it helps to examine the bivariate case in order to

get some further understanding. We will look at two assets 1 and 2 and with bivariate log-price
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process Z = (X,Y ). We consider εt an i.i.d. noise process with expectation 0 and covariance

matrix Ψ which is of the form

Ψ =

 ω2
1 ω1ω2c

ω1ω2c ω2
2

 , (3.10)

where c stands for the correlation between ε1 and ε2. In that case Theorem 2 gives us the

following central limit theorem.

Corollary 5 Under the assumptions of Theorem 2, the following limit theorem holds

n1/4


MRC (Z∗)1,1n −

∫ 1
0 Σ11

u du

MRC (Z∗)1,2n −
∫ 1
0 Σ12

u du

MRC (Z∗)2,2n −
∫ 1
0 Σ22

u du


Dst−→MN

[
0,

2
ψ2

2

(
Φ22θ

∫ 1

0
Λ̃udu+

Φ12

θ

∫ 1

0
Θ̃udu+

Φ11

θ3
Υ̃
)]

(3.11)

and

Λ̃u =


2(Σ11

u )2 2Σ11
u Σ12

u 2(Σ12
u )2

2Σ11
u Σ12

u Σ11
u Σ22

u + (Σ12
u )2 2Σ22

u Σ12
u

2(Σ12
u )2 2Σ22

u Σ12
u 2(Σ22

u )2

,

Θ̃u =


4ω2

1Σ
11
u • •

2ω1ω2c12Σ11
u + 2ω2

1Σ
12
u Σ11

u ω
2
2 + Σ22

u ω
2
1 + 2Σ12

u ω1ω2c12 •

4Σ12
u ω1ω2c12 2ω1ω2c12Σ22

u + 2ω2
2Σ

12
u 4ω2

2Σ
22
u

,

Υ̃ =


2ω4

1 2ω3
1ωlc12 2ω2

1ω
2
2c

2
12

2ω3
1ω2c12 ω2

1ω
2
2 + ω2

1ω
2
2c

2
12 2ω3

2ω1c12

2ω2
1ω

2
2c

2
12 2ω3

2ω1c12 2ω4
2

 .

In particular, we obtain the following result.

n1/4
(
MRC (Z∗)1,2 −

∫ 1
0 Σ12(u)du

)
√
L22

Dst−→ N (0, 1) , (3.12)
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where

L22 = 2
Φ22θ

ψ2
2

∫ 1

0

(
Σ11
u Σ22

u +
(
Σ12
u

)2)
du+ 2

Φ12

θψ2
2

(
ω2

2

∫ 1

0
Σ11
u du (3.13)

+ω2
1

∫ 1

0
Σ22
u du+ 2ω1ω2c12

∫ 1

0
Σ12
u du

)
+ 2

Φ11

θ3ψ2
2

(
ω2

1ω
2
2 + ω2

1ω
2
2c

2
12

)
.

3.5 The optimal choice of θ

The efficiency of our estimates presented in previous sections depends on the parameter θ. Here

we fix the function g and demonstrate a particular choice of θ which minimizes a certain norm

of the conditional covariance matrix in the central limit theorem. For the sake of simplicity we

only consider the bivariate case. Recall the expression for the conditional covariance matrix

given in (3.11):

A(θ) :=
2
ψ2

2

(
Φ22θ

∫ 1

0
Λ̃udu+

Φ12

θ

∫ 1

0
Θ̃udu+

Φ11

θ3
Υ̃
)
.

For any matrix A we set |A|2tr = trace(AA′). We choose θ̂ as a solution of the following

minimization problem

θ̂ = argminθ>0|A(θ)|2tr.

The latter results in solving a polynomial equation of degree 4. In the next section we will

present consistent estimates of the random quantities
∫ 1
0 Λ̃udu,

∫ 1
0 Θ̃udu and Υ̃, so θ̂ can be

estimated from the data.

In a 1-dimensional case the afore-mentioned minimization problem has a much simpler

solution (since we only have to solve a quadratic equation). Consider the function g(x) =

min(x, 1− x) and assume that Z = σW for some σ > 0. In this case we have that

θ̂ = 4.777
√

Ψ
σ

, A(θ̂) = 8.545 σ3
√

Ψ.

Recall that the variance of the maximum likelihood estimator for this problem is given by

8σ3
√

Ψ (see Gloter and Jacod (2001)).
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4 Estimating the asymptotic covariance matrix

Now we demonstrate how Theorem 2 can be applied in order to compute confidence intervals

for the covariation. Note that in order to make Theorem 2 feasible, we need to estimate the

asymptotic covariance matrix L, as it is given by (3.4), and we give an explicit estimator for L

next.

Proposition 6 Assume that E | εj |8<∞ for all j = 1, ..., d and kn and θ satisfy (2.8). Then

we define

Xn
i = vec

(
Z
∗n
i

(
Z
∗n
i

)′)
, (4.1)

where the vec notation stacks the columns of a matrix into a vector, and

Hn = 1√
nθ2ψ2

2

n−2kn+1∑
i=0

Xn
i

(
Xn
i −Xn

i+kn

)′

+
kn−1∑
j=1

Xn
i

(
Xn
i+j −Xn

i+kn

)′
+
(
Xn
i

(
Xn
i+j −Xn

i+kn

)′)′
.

(4.2)

Then the convergence

Hn
P→L.

holds.

(4.1) enables us to obtain a standard central limit theorem for the integrated covariance

n1/4
(
MRC (Z∗n)

12 −
∫ 1
0 Σ12

u du
)

αn

D→N (0, 1) , (4.3)

where

α2
n = 1√

nθ2ψ2
2

n−kn+1∑
i=0

(
X̄∗n
i

)2 (
Ȳ ∗ni

)2 + 2
kn−1∑
j=1

X̄∗n
i Ȳ ∗ni

(
X̄∗n
i+j Ȳ

∗n
i+j − X̄∗n

i+kn
Ȳ ∗ni+kn

)
. (4.4)

Unfortunately (4.1) is not necessarily positive semidefinite (it is not even necessarily positive

in the univariate case). In the following we construct an estimator which is both positive

semidefinite and symmetric. For simplicity let us consider the 2-dimensional process Z∗ =

13
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(X∗, Y ∗). Next, set

χni =
(
|X̄∗n

i |2, X̄∗n
i Ȳ ∗ni , |Ȳ ∗ni |2

)′
and define the statistic

Vn(g) =
n−kn+1∑
i=0

χni (χ
n
i )
′ − 1

2

n−2kn+1∑
i=0

(
χni (χ

n
i+kn

)′ + χni+kn
(χni )

′
)

(Notice that the above estimator depends on the parameter θ and the function g). Clearly,

Vn(g) is positive semidefinite. Moreover, we have

Vn(g)
P−→ aB(g, θ)

∫ 1

0
Λudu+ aM (g, θ)

∫ 1

0
Θudu+ aN (g, θ)Υ ,

where aB(g, θ) = θ2ψ2
2, aM (g, θ) = ψ1ψ2 and aN (g, θ) = ψ2

1
θ2

(this convergence is obtained by

similar arguments as presented in the proof of Proposition 6). We need to estimate the quantity

2
ψ2

2

(
Φ22θ

∫ 1

0
Λudu+

Φ12

θ

∫ 1

0
Θudu+

Φ11

θ3
Υ
)
,

where all the constants refer to some given function g0. Suppose that g0 = min(x, 1− x). Now

let us consider three different functions g1, g2 and g3 such that the matrix

A(g1, g2, g3) =


aB(g1, θ) aM (g1, θ) aN (g1, θ)

aB(g2, θ) aM (g2, θ) aN (g2, θ)

aB(g3, θ) aM (g3, θ) aN (g3, θ)


is invertible and all components of the vector

C(g1, g2, g3) =
(2Φ22θ

ψ2
2

,
2Φ12

ψ2
2θ
,
2Φ11

ψ2
2θ

3

)
A−1(g1, g2, g3)

are positive. Finally, consider the estimators Vn(gk) associated with the functions gk (k =

1, 2, 3). Then we obtain

H̃n = C(1)(g1, g2, g3)Vn(g1) + C(2)(g1, g2, g3)Vn(g2) + C(3)(g1, g2, g3)Vn(g3) (4.5)

14
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P−→ 2
ψ2

2

(
Φ22θ

∫ 1

0
Λudu+

Φ12

θ

∫ 1

0
Θudu+

Φ11

θ3
Υ
)
.

Moreover, the estimator is positive semidefinite, because Vn(gk) are positive semidefinite and

all C(k)(g1, g2, g3) (k = 1, 2, 3) are positive.

It is important to choose g1, g2 and g3 such that C(1)(g1, g2, g3), C(2)(g1, g2, g3) and C(3)(g1, g2, g3)

are positive. There are various examples of functions that fulfill this requirement. Throughout

this paper we are going to work with

g1 (x) =
√

56x4 (1− x) , g2 (x) =
√

611x4 (1− x) , g3 (x) =
√

209x2 (1− x)

and obtain the constants

ψg11 = 3.56, ψg12 = 0.113, ψg21 = 38.79, ψg22 = 1.234, ψg31 = 27.867, ψg32 = 1.99.

Finally we obtain the following result.

n1/4
(
MRC (Z∗)1,2 −

∫ 1
0 Σ12(u)du

)
α̃n

D→N (0, 1) , (4.6)

where

α̃2
n = C(1)(g1, g2, g3)V 22

n (g1) + C(2)(g1, g2, g3)V 22
n (g2) + C(3)(g1, g2, g3)V 22

n (g3) (4.7)

and

V 22
n (g) =

n−kn+1∑
i=0

(
X̄n
i

)2 (
Ȳ n
i

)2 − n−2kn+1∑
i=0

X̄n
i Ȳ

n
i Ȳ

n
i+kn

X̄n
i+kn

.

5 Asymptotic theory for regression and correlation

In this section we study the asymptotic behaviour of some statistics that are transformations

of modulated realised covariation. The focus will be on modulated realised regression and

correlation. We start with the regression case.
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5.1 Modulated realised regression

Regression plays a central role both in theoretical and empirical financial economics. In this

section we use our distribution theory for modulated realised covariation to derive a theory

for univariate regression. We consider a bivariate log-price process Z∗ = (X∗, Y ∗). We regress

asset 2 with log-price process Y on asset 1 with log-price process X to obtain the modulated

realised regression

β̂(21)
n =

MRC (Z∗)1,2n
MRC (Z∗)1,1n

. (5.1)

Modulated realised regression involves just elements of the matrix MRC(Z∗) and so we can

use the asymptotic theory of the previous chapter to derive its asymptotic distribution. The

probability limit for the regression case follows from Theorem 1. In particular, if Z ∈ BSM ,

then

β̂(21)
n

P→ [X,Y ]
[X]

= β(21), (5.2)

where [X,Y ] is the (1, 2)-th element of [Z]. As Z is a Brownian semimartingale, (5.2) can be

reduced to the much simpler form

β(21) =

∫ 1
0 Σ12

u du∫ 1
0 Σ11

u du
. (5.3)

The asymptotic distribution of β̂ − β is derived using the ∆-method.

Theorem 7 Under the conditions of Theorem 2, as n→∞

n1/4
(
β̂

(21)
n − β(21)

)
√(∫ 1

0 Σ11
u du

)−2
g21

D→N (0, 1) (5.4)

where g21 = d(21)′Γ(21)d(21). Here d(21) = (1,−β(21))′ and

Γ̂(21) =

Φ22θ
ψ2

2

∫ 1
0

 Σ11
u Σ22

u + (Σ12
u )2 •

2Σ11
u Σ12

u 2(Σ11
u )2

 du

+Φ12

θψ2
2

∫ 1
0

 Σ11
u ω

2
2 + Σ22

u ω
2
1 + Σ12

u ω1ω2c12 •

2ω1ω2c12Σ11
u + 2ω2

1Σ
12
u 4ω2

1Σ
11
u

 du + Φ11

θ3ψ2
2

 ω2
1ω

2
2 + ω2

1ω
2
2c

2
12 •

2ω3
1ω2c12 2ω4

1


 .
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In practice it is obviously essential to replace d(21) and Γ(21) by consistent estimators in order to

make the regression theory above feasible. In the previous section we suggested two estimators

for the asymptotic covariance matrix.

Proposition 8 Under the conditions given in Theorem 2, as n→∞

n1/4(β̂(21)
n − β(21))√(

MRC (Z∗)1,1n
)−2

ĝ21

D→N (0, 1) (5.5)

and
n1/4(β̂(21)

n − β(21))√(
MRC (Z∗)1,1n

)−2
g̃21
n

D→N (0, 1) . (5.6)

Here ĝ21
n = d̂

(21)′
n Γ̂(21)

n d̂
(21)
n , g̃21

n = d̂
(21)′
n Γ̃(21)

n d̂
(21)
n ,

Γ̂21
n =

1√
nθ2ψ2

2

n−kn+1∑
i=0

 (
X̄∗n
i

)2 (
Ȳ ∗ni

)2 •(
X̄∗n
i

)3
Ȳ ∗ni

(
X̄∗n
i

)4
 (5.7)

+
kn−1∑
j=1

 X̄∗n
i Ȳ ∗ni

(
X̄∗n
i+j Ȳ

∗n
i+j − X̄∗n

i+kn
Ȳ ∗ni+kn

)
•(

X̄∗n
i

)2 (
X̄∗n
i+j Ȳ

∗n
i+j − X̄∗n

i+kn
Ȳ ∗ni+kn

) (
X̄∗n
i

)2((
X̄∗n
i+j

)2
−
(
X̄∗n
i+kn

)2)


+
kn−1∑
j=1

 X̄∗n
i Ȳ ∗ni

(
X̄∗n
i+j Ȳ

∗n
i+j − X̄∗n

i+kn
Ȳ ∗ni+kn

)
•

X̄∗n
i Ȳ ∗ni

((
X̄∗n
i+j

)2
−
(
X̄∗n
i+kn

)2) (
X̄∗n
i

)2((
X̄∗n
i+j

)2
−
(
X̄∗n
i+kn

)2)
,

Γ̃21
n =

 H̃22
n •

H̃12
n H̃11

n

 (5.8)

and Hn and H̃n have been introduced in (4.1) and (4.5).

Obviously, all the required terms are straightforward to compute, so it is rather easy to imple-

ment the estimators.

5.2 Modulated realised correlation

We can apply the same strategy in order to derive the asymptotic distribution of the modulated

realised correlation coefficient. Generally, the correlation between two stochastic processes X
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and Y is defined as

ρ(21) =
[X,Y ]√
[X] [Y ]

.

In the case of Z = (X,Y ) being a Brownian semimartingale this reduces to the much simpler

form

ρ(21) =

∫ 1
0 Σ12

u du√∫ 1
0 Σ11

u du ·
∫ 1
0 Σ22

u du
. (5.9)

The modulated realised correlation coefficient is defined as

ρ̂(21)
n =

MRC (Z∗)1,2n√
MRC (Z∗)1,1n MRC (Z∗)2,2n

.

From Theorem 1 it naturally follows that it converges to (5.9). Again its asymptotic distribution

is derived from Theorem 2 using the ∆-method.

Theorem 9 Under the conditions in Theorem 2 , as n→∞

n1/4
(
ρ̂
(21)
n − ρ(21)

)
√(∫ 1

0 Σ11
u du

∫ 1
0 Σ22

u du
)−1

g21

D→N (0, 1) (5.10)

Here g21 = d(21)′Γ(21)d(21), where Γ(21) = L and d(21) = (−1
2β

(21), 1,−1
2β

(12)). Furthermore,

β(21) is given by (5.3).

The infeasible results can be used in practice by applying the following result.

Proposition 10 Under conditions given in Theorem 2, as n→∞

n1/4(ρ̂(21)
n − ρ(21))√(

MRC (Z∗)1,1n MRC (Z∗)2,2n
)−1

ĝ
(21)
n

D→N (0, 1) (5.11)

and
n1/4(ρ̂(21)

n − ρ(21))√(
MRC (Z∗)1,1n MRC (Z∗)2,2n

)−1
g̃(21)

D→N (0, 1) . (5.12)

Here ĝ21
n = d̂

(21)′
n Γ̂(21)

n d̂
(21)
n and g̃21

n = d̂
(21)′
n Γ̃(21)

n d̂
(21)
n , where d̂(21)

n =
(
−1

2 β̂
(21)
n , 1,−1

2 β̂
(12)
n

)
,

and Γ̂(21)
n and Γ̃(21)

n are defined as in (5.7) and (5.8).
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6 Simulation Study

In this section we study the finite sampling behaviour of the modulated realised covariation

estimator by carrying out some Monte Carlo experiments. We will focus on the following

questions.

• How good is modulated realised volatility, covariance, regression and correlation as an

estimator of integrated volatility, covariance, actual regression and correlation?

• How close to standard normality is the finite sample performance of both the unfeasible

test statistics (3.12), (5.4) and (5.10) and the feasible test statistics ((4.3), resp. (4.6),

(5.5), resp. (5.6) and (5.11), resp. (5.12) for different values of n?

6.1 Simulation Design

Throughout this section we work with a bivariate stochastic volatility model which is very

similar to the model that Barndorff-Nielsen & Shephard (2004) use. Their theory holds under

the assumption that the volatility process and the Brownian motion which drives the diffusion

process are uncorrelated. However, empirical studies have revealed that asset returns and

volatility tend to be negatively correlated (which is called leverage effect). The results of this

paper have been proved allowing for leverage. In order to reflect this in the simulation study,

we use the following slightly modified model:

dZt = σtdWt, Σt = σtσ
′
t,

where

Σt =

 Σ11
t Σ12

t

Σ12
t Σ22

t

 =

 (
σXt
)2

σXt σ
Y
t ρt

σXt σ
Y
t ρt

(
σYt
)2

 .

This model goes back to Barndorff-Nielsen and Shephard (2002) who used realised variances

to fit the variance of the DM/Dollar rate from 1986 to 1996 by the sum of two uncorrelated

processes (
σXt
)2

=
(
σ
X(1)
t

)2
+
(
σ
X(2)
t

)2
.
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In particular, the processes
(
σ
X(1)
t

)2
and

(
σ
X(2)
t

)2
satisfy the following SDE.

(
σ
X(s)
t

)2
= −λs

{(
σ
X(s)
t

)2
− ξs

}
dt+ ωs

(
σ
X(s)
t

)2
dBs

λst, ξs ≥ ω2
s/2, (6.1)

where B is a bivariate vector of standard Brownian motion. In order to incorporate leverage

into the model, we use the following construction:

corr (Bs
t ,W

s
t ) = −0.7, s = 1, 2.

The process (6.1) has a gamma marginal distribution

d
(
σ
X(s)
t

)2
∼ Ga

(
2ω−2

s ξs, 2ω−2
s

)
= Ga (υs, as) , υs ≥ 1,

with a mean of υs/as and a variance of υs/a2
s. The parameters ω2, λs and ξs were calibrated

by Barndorff-Nielsen and Shephard (2002b) as follows. They estimated

E

[(
σ
X(s)
t

)2
]

= ps · 0.509, V ar

[(
σ
X(s)
t

)2
]

= ps · 0.461, s = 1, 2,

p1 = 0.218, p2 = 0.782, λ1 = 0.0429, λ2 = 3.74.

The model for
(
σYt
)2 takes the form

d
(
σYt
)2

= −0.35
{(
σYt
)2 − 0.636

}
dt+ 0.236

(
σYt
)2
dB3

t .

Finally, the model for ρt is specified as ρt = exp(2xt)−1
exp(2xt)+1 , where xt follows the GARCH

diffusion

dxt = −0.03 {xt − 0.64} dt+ 0.118xtdB4
t .

Again, we assume the observed price process Z∗ to be a decomposition of the efficient price

process Z and a noise process ε. We assume the noise process to be i.i.d. normally distributed

with mean 0 and covariance matrix

Ψ =

 0.0005 0.0001

0.0001 0.0005

 .
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To produce an impression we have drawn Figures 1(a) and 1(b). They report results based on

1024 observations per day which on an average trading day from 9.30 am to 4.00 pm corresponds

to one observation every 22.8 seconds. We are simulating up to 200 trading days. Figure 1(a)

shows the first 10 days of the sample, plotting the bivariate 30 minute return data. The x-axis

represents days in this picture. Figure 1(b) shows the daily returns drawn against the trading

days.

Figure 1: Simulated bivariate stochastic volatility model using n = 1024: (a) 30 minute returns

∆n
i X, ∆n

i Y for 10 trading days; (b) daily returns
n∑
i=1

∆n
i X and

n∑
i=1

∆n
i Y for 200 trading days;

(c) realised volatility and actual volatility for asset 1; (d)
√
MRC (Z∗)1,1n and actual volatility

for asset 1; (e) realised volatility and actual volatility for asset 1; (f)
√
MRC (Z∗)2,2n and actual

volatility for asset 2;

6.2 Simulation Results

Jacod et al. (2007) report that the univariate estimator is fairly robust to the choice of kn and

as θ comes from asymptotic statistics, it does not give any precise instruction about the choice

of kn for small values of n. They suggest to choose θ = 1/3 for simulations.
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Jacod et al. (2007) show the importance of a correction of the univariate version of modu-

lated realised covariation, when dealing with small sampling sizes. Therefore they suggest the

replacement of the parameters ψi and Φij by their finite sample analogues. Set gni = g(i/kn).

ψkn
1 = kn

kn∑
i=1

(
gni+1 − gni

)2
, ψkn

2 = k−1
n

kn−1∑
i=1

(gni )2,

φkn
1 (j) =

kn−1∑
i=j+1

(
gni−1 − gni

) (
gni−j−1 − gni−j

)
, φkn

2 (j) =
kn−1∑
i=j+1

gni g
n
i−j ,

Φkn
11 = kn

kn−1∑
j=0

(
φkn

1 (j)
)2
− 1

2

(
φkn

1 (0)
)2

 , Φkn
12 =

1
kn

kn−1∑
j=0

φkn
1 (j)φkn

2 (j)− 1
2
φkn

1 (0)φkn
2 (0)



Φkn
22 =

1
k3
n

kn−1∑
j=0

(
φkn

2 (j)
)2
− 1

2

(
φkn

2 (0)
)2


The parameters stated above are the ones which are used in the proof, but each of them

converges at a smaller order than n−1/4. We will use these finite sample expressions when

applying Hn as an estimator of the asymptotic covariance matrix. Unfortunately, computations

have shown that it is not possible to do so, when applying H̃n as otherwise C(1)(g1, g2, g3),

C(2)(g1, g2, g3) or C(3)(g1, g2, g3) in (4.5) can get negative which is not feasible. So we will use

the original constants for H̃n.

Figure 1(c) shows the realised volatility for asset 1

√
n∑
i=1

(∆n
i X)2 together with its corre-

sponding actual volatility
√∫ 1

0 (σXs )2 ds. The corresponding results for asset 2 are given in

Figure 1(e). This time series looks very jagged, reflecting the fast mean-reverting component

in this process. We can see the substantial positive bias that realised variance exhibits due

to market microstructure noise effects. Figure 1(d) shows
√
MRC (Z∗)1,1n plotted against the

integrated volatility and Figure 1(f) the same for asset 2. Under the realistic assumption of

sampling every 22.8 seconds modulated realised covariation performs significantly better than

realised variance. It does not exhibit any bias, it also captures the time series of actual volatility

rather well, but it is obviously still noisy. However, assuming n = 4096, which corresponds to

trading every 4.8 seconds on an 8.5 hour trading day, (see Figures 12 (c) -(f) in the Appendix)

we obtain very good results. We see that for this sampling frequency modulated realised vari-

ation captures the original time series very well and there hardly any large differences between
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the actual and the estimated volatilty.

Figure 2: Simulation of measures of dependence, using n = 1024: (a) realised covariance and
actual covariance; (b) MRC (Z∗)1,2n and actual covariance; (c) realised and actual correlation;
(d) MRC based and actual correlation.

Table 1: Pearson correlation coefficients for regressions of realised volatility and modulated
realised volatility on integrated volatility

n RV vs IV MRV vs IV
256 0.109794 0.63512
4096 0.000111 0.895634
65536 2.05486 exp(-6) 0.998934

In order to gain a better understanding of how an increasing sampling frequency improves

the estimator, we look at the Pearson coefficient regression of modulated realised volatility

against integrated volatility. For n = 256 it is 0.63 and thus substantially above the Pearson

coefficient for the relationship between realised volatility and integrated volatility which is

0.11. For a sampling frequency corresponding to n = 4096, realised volatility is not very

useful anymore, whereas regressing modulated realised volatility on integrated volatility yields

a Pearson coefficient of 0.9. Finally under the rather unrealistic assumption of n = 65536, the
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Pearson coefficient is almost 1.

Figure 2(a) gives the corresponding results for covariance and correlation between the two

sets of asset returns. Figure 2(a) depicts
n∑
i=1

∆n
i X ·∆n

i Y and
∫ 1
0 σ

X
s σ

Y
s ρsds the realised and

actual covariances for each trading day. Figure 3(b) shows MRC (Z∗)1,2n and
∫ 1
0 σ

X
s σ

Y
s ρsds for

each trading day. Just like realised variance, realised covariance exhibits a substantial positive

bias which increases with the sampling frequency. However, compared to realised volatility the

bias is significantly smaller which is due to the fact that the bias is of order 2ω2n for realised

volatility and ω1ω2c12n for realised covariance. So the bias of realised covariance depends on

the assumption on the correlation of the noise. In this work we assume it to be equal to 0.2,

but there has been strong indication in the literature that it might be equal to 0. In Figure

2(b) (n = 1024) modulated realised covariation is still a very noisy estimator. However, with

n = 4096 we obtain a rather good result in Figure 13 in the Appendix. In both Figures 2(c)

Figure 3: Simulations of measures of dependence, using n = 1024; (a) realised and actual
regressions of returns on asset 2 on asset 1; (b) MRC based and actual regressions of returns
on asset 2 on asset 1; (c) same as (a) but asset 1 on 2; (d) same as (b) but asset 1 on 2;
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and 13(c), resp. 2(d) and 13(d) we depict the realised correlation

n∑
i=1

∆n
i X∆n

i Y√
n∑
i=1

(∆n
i X)2 ·

n∑
i=1

(∆n
i Y )2

,
MRC (Z∗)1,2n√

MRC (Z∗)1,1n ·MRC (Z∗)2,2n

and the actual correlation ∫ 1
0 σ

X
s σ

Y
s ρsds√∫ 1

0 (σXs )2 ds ·
∫ 1
0 (σYs )2 ds

amongst two time series. The bias induced by market microstructure noise effects is negative

in that case which reflects the fact that realised variance exhibits a larger positive bias than

realised covariance. Again modulated realised correlation plotted in Figures 2(d) and 13(d)

manages to overcome this issue, however, it is still rather noisy for n = 1024.

Table 2: Pearson correlation coefficients for regressions of realised covariance and modulated
realised covariance on integrated covariance

n RC vs IC MRC vs IC
256 0.409953 0.611243
4096 0.858672 0.676787
65536 0.489819 0.99425

A similar picture appears in Figures 3 and 13 where realised, modulated realised and actual

regression coefficient are plotted for n = 1024 and 4096 for 200 trading days, i.e. we look at

the statistics
n∑
i=1

∆n
i X∆n

i Y

n∑
i=1

(∆n
i X)2

,
MRC (Z∗)1,2n
MRC (Z∗)1,1n

,

∫ 1
0 σ

X
s σ

Y
s ρsds∫ t

0 (σXs )2 ds
.

and the corresponding regressions for asset 1 on asset 2. Again, the realised statistics turn out

to be negatively biased and rather noisy. However, also modulated realised regression exhibits

a rather noisy behaviour at a sampling frequency corresponding to n = 1024.

6.3 Assessing the Performance of the Feasible Asymptotic Theory

In this section we will examine how close to standard normality the finite sample performance of

the standardised test statistics of modulated realised covariance, regression and correlation is.

We will consider both the unfeasible and the feasible theory and compare the two estimators

25



S. Kinnebrock and M. Podolskij: An Econometric Analysis of Modulated Realised Covariance,
Regression and Correlation in Noisy Diffusion Models

for the asymptotic covariance matrix, Hn and H̃n, that we introduced in section 4. As Hn

is not positive semidefinite, some realisations of the simulation happen to result in a negative

variance. This obviously does not happen when using H̃n as it is positive definite. On the other

hand, H̃n tends to underestimate the asymptotic variance for small values of n, e.g. n = 256.

Figure 4: Modulated realised covariance. The modulated realised covariance errors and their
95% confidence intervals w.r.t. αn resp. α̃n; (a) n = 256, αn. (b) n = 256, α̃n. (c) n = 4096,
αn. (d) n = 4096, α̃n.

The asymptotic theory for modulated realised covariance tells us that the normalized esti-

mation error
n1/4

(
MRC (Z∗n)−

∫ 1
0 Σ12

u du
)

αn

D→N (0, 1) , (6.2)

and
n1/4

(
MRC (Z∗n)−

∫ 1
0 Σ12

u du
)

α̃n

D→N (0, 1) , (6.3)

where αn and α̃n are given by (4.4) and (4.7). We want to find out how close to normality this

ratio is for small and moderate values of n. Figure 4 plots the modulated realised covariance

errors, MRC (Z∗)1,2n −
∫ 1
0 Σ12

u du, for each trading day. Hereby we use the Monte Carlo design
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discussed in the previous section. The figure also gives the 95% confidence intervals for the

errors generated using the feasible limit theory (6.2) and (6.3). We can observe a slightly

negative bias for n = 256. With an increasing value of n we can see a decrease in the spread

of the error and in the confidence intervals for both αn and α̃n. Furthermore, we observe that

the analysis based on α̃n produces significantly smaller confidence intervals than using αn, but

is rather unreliable for small values of n. For example, for n = 256 the standard error exceeds

the lower 95% quantile rather often.

We back up the coverage of the limit theory by giving the t-statistics in Table 15 in the

Appendix. We repeat the above analysis, but using 20, 000 days and focus on the distribution

of (6.2) and (6.3) and (3.12).

We observe that the confidence intervals are captured very well already for small values

of n, particularly in the unfeasible case. In the feasible case even for n = 65536 the mean

of the standard error is −0.11 when using H̃n as an estimator for the asymptotic covariance

matrix. A similar effect has been observed in Jacod, Li, Mykland, Podolskij and Vetter (2007).

They observe a non-vanishing standardised asymptotic mean when using the various constants

instead of their Taylor expansions. On the other hand, we see an effect of Hn, the other

estimator for the asymptotic covariance matrix, not being positive semidefinite. As the variance

can get negative, we do not obtain a value of either mean or standard deviation of the standard

error for n = 256.

The limit theory for the normalized estimation error for modulated realised regression of

the returns of asset 2 on asset 1 is

n1/4(β̂(lk) − β(lk))√
(MRC (Z∗))−2 ĝlk

D→N (0, 1) (6.4)

n1/4(β̂(lk) − β(lk))√
(MRC (Z∗))−2 g̃lk

D→N (0, 1) . (6.5)

Figure 5 shows the modulated realised regression errors, β̂(21) − β(21), plotted for each trading

day, together with 95% asymptotic confidence intervals based on the asymptotic limit theory

(6.4), resp. (6.5). Again we observe that the confidence intervals relying on (6.5) are smaller

than the ones based on (6.4). Furthermore, they are more reliable for small values of n than
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Figure 5: Modulated realised regression. The modulated realised regression errors and their
95% confidence intervals based on (6.4) resp. (6.5). (a) n = 256, (6.4). (b) n = 256, (6.5). (c)
n = 4096, (6.4), (d) n = 4096, (6.5)

in the case of modulated realised covariance.

Again we show the results of the asymptotic analysis of the t-statistics in the Appendix for

both (5.6) and the unfeasible theory given by (5.4).

For modulated realised regression, the confidence intervals converge even faster than in the

covariance case, just like mean and variance of the standard error. However, for small values

of n we can obtain negative variance when using Hn to make the theory feasible. The feasible

limit theory for correlation of the returns of asset 1 and asset 2 is

n1/4ρ̂(21) − ρ(21)√(
MRC (Z∗)1,1n MRC (Z∗)2,2n

)−1
ĝ(21)

D→N (0, 1) (6.6)

and
n1/4ρ̂(21) − ρ(21)√(

MRC (Z∗)1,1n MRC (Z∗)2,2n
)−1

g̃(21)

D→N (0, 1) . (6.7)
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Figure 6: Modulated realised correlation. The modulated realised correlation errors and their
95% confidence intervals based on (6.6) resp. (6.7). (a) n = 256, (6.6). (b) n = 256, (6.7). (c)
n = 4096, (6.6), (d) n = 4096, (6.7)

The graphs in Figure 6 show the correlation errors ρ̂(21) − ρ(21).

The scaling
(
MRC (Z∗)1,1n MRC (Z∗)2,2n

)−1
adjusts the denominator in (6.6) and (6.7) to

make it invariant as we scale either of the asset returns within each time period. This suggests

it should be less sensitive to changes in the level of volatility in either of the assets.

7 Empirical Illustration

Let us finally apply the theory to some real data. To illustrate some of the empirical features

of modulated realised volatility, covariance, regression and correlation and in particular their

precision as estimators of the actual quantities, we perform an empirical study which focuses

on high frequency equity quote data. For comparison reasons we consider two bivariate data

series of Lehman Brothers and Merril Lynch intraday TAQ data resp. IBM and UTX intraday

TAQ data, available at WRDS. The time series starts on 1st March 2005 and covers the next

50 trading days. Before analysing the data we have cleaned the data. Following the methods
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Figure 7: Lehman Brothers (first column) and Merrill Lynch (second column) equity data. Data
are 1st March 2005 onwards for 50 active trading days. (a) Realised volatility for Lehman based
on 20 intra-day observations. This is marked with a cross while the bars denote 95% confidence
intervals. (b) Modulated realised volatility for Lehman based on 256 intra-day observations. (c)
Modulated realised for Lehman volatility based on 1024 intra-day observations. (d) Realised
volatility for Merrill Lynch based on 20 intra-day observations. This is marked with a cross while
the bars denote 95% confidence intervals. (e) Modulated realised volatility for Merrill Lynch
based on 256 intra-day observations. (f) Modulated realised volatility for Merrill Lynch based
on 1024 intra-day observations. All the confidence intervals of modulated realised covariation
are based on H̃n.

used by Hansen and Lunde (2006) we concentrate on quote data from one stock exchange only.

Here we have chosen NYSE. We only consider quotes, where both the bidsize and the asksize

are greater than 0 and which are quoted in a normal trading environment (quote condition

= 12 in the TAQ database). We concentrate on data from 9.30 pm to 4pm and only consider

offer prices. In order to construct a time series of the required sampling frequency, we use a

”bivariate previous-tick method” which is inspired by work by Barndorff-Nielsen et al. (2008).

In the following we will describe this method in some detail.

In order to avoid zero-returns which becomes a problem when it comes to the estimation of

covariation, in a first step we extract a time series where the only requirement is that consecutive

prices differ in absolute values. In a second step we extract time series sampled under a certain

sampling frequency. This works as follows: We compare the two univariate non-zero-return time

series w.r.t. their length and declare the smaller time series to be the leading time series. We
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Figure 8: IBM (first column) and UTX (second column) equity data. Data are 1st March
2005 onwards for 50 active trading days. (a) Realised volatility for IBM based on 20 intra-day
observations. This is marked with a cross while the bars denote 95% confidence intervals.
(b) Modulated realised volatility for IBM based on 256 intra-day observations. (c) Modulated
realised for IBM volatility based on 1024 intra-day observations. (d) Realised volatility for
UTX based on 20 intra-day observations. This is marked with a cross while the bars denote
95% confidence intervals. (e) Modulated realised volatility for UTX based on 256 intra-day
observations. (f) Modulated realised volatility for UTX based on 1024 intra-day observations.
All the confidence intervals of modulated realised covariation are based on H̃n.

take the first data point of the leading time series and the closest next data point of the second

time series and record them as the first datapoint of the synchronised bivariate time series.

Next we pick the next data point of the leading time series under consideration of the desired

sampling frequency and repeat the procedure. Obviously, this works the better, the more data

points remain after the first step of extraction. After having cleaned the data, we obtain 6

bivariate time series consisting of 50 business days with 20 observations of data sampled every

20 minutes, 256 observations of data sampled every 1.7 minutes and 1024 observations for data

sampled every 26 seconds.

We have computed the realised volatility for a sampling frequency of 20 minutes and the

modulated realised volatility for higher sampling frequencies and the respective 95% confidence

intervals for the Lehman and Merrill Lynch (Figure 7) and IBM and UTX (Figure 8) equity

data. The confidence intervals are based on the asymptotic covariance estimator H̃n which

was introduced in (4.5). We see in the summary statistics in Tables 3 and 4 that modulated
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realised volatility is very close to the 6-month-open-to-close realised volatility. Note that the

tables obtain information about the standard error being estimated both by Hn and H̃n.

estimator average standard deviation bias

(Hn for MRV) (H̃n for MRV) empirical

MRV (256, LEH) 0.972 0.164 0.188 0.222 -0.022
MRV (1024, LEH) 0.956 0.112 0.140 0.212 -0.038
RV (20min, LEH) 0.925 0.505 0.632 -0.069
RV (OtoC, LEH) 0.994

MRV (256, MER) 0.544 0.09 0.06 0.123 -0.024
MRV (1024, MER) 0.543 0.06 0.041 0.09 -0.025
RV (20min, MER) 0.553 0.273 0.348 -0.015
RV (OtoC, MER) 0.568

Table 3: LEH and MER equity data January to June 2005. Summary statistics for modulated realised volatility
for n = 256 and n = 1024. The same statistics are computed for the corresponding realised volatility (n = 20)
and the open-to-close realised volatility.

estimator average standard deviation bias

(Hn for MRV) (H̃n for MRV) empirical

MRV (256, IBM) 0.624 0.175 0.188 0.235 -0.027
MRV (1024, IBM) 0.653 0.149 0.151 0.219 0.002
RV (20min, IBM) 0.724 0.200 0.285 0.073
RV (OtoC, IBM) 0.651

MRV (256, UTX) 0.882 0.162 0.179 0.143 -0.081
MRV (1024, UTX) 0.998 0.099 0.141 0.153 0.036
RV (20min, UTX) 1.069 0.302 0.313 0.107
RV (OtoC, UTX) 0.962

Table 4: IBM and UTX equity data January to June 2005. Summary statistics for modulated realised volatility
for n = 256 and n = 1024. The same statistics are computed for the corresponding realised volatility (n = 20)
and the open-to-close realised volatility.)

Figure 9 displays the equivalent results for realised and modulated realised covariance and

correlation for Lehman Brothers and Merrill Lynch (Figure 9), resp. IBM and UTX (Figure 10).

Modulated realised covariance does not behave as nicely as modulated realised volatility which

is due to the Epps effect. Our estimator relies on synchronous trading which is obviously rather

unrealistic in practice. Epps (1979) documented that when estimating from empirical data,

realised covariance converges to 0 as the sampling frequency increases. When sampling at a very

high frequency, there are more and more zero-returns, when there is non-synchronous trading,

this effect dominates both realised covariance and - to a smaller extent though - modulated

realised covariance. Average results over the duration of 6 months can be seen in Tables 5 and

6. All high-frequency estimators exhibit a negative bias compared to open-to-close realised

covariance. However, we observe that the IBM/UTX dataset exhibits a better performance
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Figure 9: Dependence measures between Merrill Lynch and Lehman equity data. Data are 1st
March 2005 onwards for 50 active trading days. (a) Realised covariance based on 20 intra-day
observations. This is marked with a cross while the bars denote 95% confidence intervals. (b)
Modulated realised covariance based on 256 intra-day observations. (c) Modulated realised
covariance based on 1024 intra-day observations. (d) Modulated realised correlation based on
4096 intra-day observations. (d) Realised correlation based on 20 intra-day observations. (e)
Modulated realised correlation based on 256 intra-day observations. (f) Modulated realised
correlation based on 1024 intra-day observations. All the confidence intervals of modulated
realised covariation are based on H̃n.

when it comes to non-synchronous trading effects than the LEH/MER dataset. The average

6-month realised covariance of LEH/MER is 0.422, whereas modulated realised covariance

estimates 0.399 (n = 256), resp. 0.304 (n = 1024). However, the estimates for the integrated

covariance of the 6-month IBM/UTX time series appears rather stable (Table 6). Note that the

estimator which was proposed by Hayashi and Yoshida (2005) exhibits a pronounced negative

bias. This is probably due to the fact that it is by construction only capable of dealing with

non-synchronicity, but not necessarily with market microstructure noise. Barndorff-Nielsen et

al. (2008) have shown similar results. Note that the estimator for the standard deviation which

is based on Hn generally estimates the standard error slightly bigger than H̃n. Furthermore,

the empirical standard error is always bigger than the estimated one.

Modulated realised correlation, as displayed in Figures 9 and 10 and Tables 7 and 8, ob-

viously inherits the behaviour of the covariance to converge to 0 as the sampling frequency

increases and both datasets show a pronounced negative bias of both realised and modulated
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Figure 10: Dependence measures between IBM and UTX equity data. Data are 1st March 2005
onwards for 50 active trading days. (a) Realised covariance based on 20 intra-day observations.
This is marked with a cross while the bars denote 95% confidence intervals. (b) Modulated re-
alised covariance based on 256 intra-day observations. (c) Modulated realised covariance based
on 1024 intra-day observations. (d) Realised correlation based on 20 intra-day observations.
(e) Modulated realised correlation based on 256 intra-day observations. (f) Modulated realised
correlation based on 1024 intra-day observations. All the confidence intervals of modulated
realised covariation are based on H̃n.

realised correlation as compared to open-to-close correlation. In the LEH/MER dataset and

for n = 256 the effect of non-synchronous trading becomes particularly obvious with a neg-

ative bias of 0.219. But also for the IBM/UTX dataset modulated realised correlation has a

surprisingly pronounced bias even though the results for both realised volatility and realised

covariance in this dataset are rather good. The reason for that is that modulated realised

volatility has a small positive bias whereas modulated realised covariance has a small negative

bias which - as combined in modulated realised correlation - results in a rather big bias.

In Figure 11 we display modulated realised regression of MER on LEH equity data, resp.

UTX on IBM equity data. For the LEH/MER dataset realised regression provides very similar

results to modulated realised regression (n = 256), but exhibits a significant downwards bias

for n = 1024. The results for IBM/UTX data are more stable. Throughout the analysis the

confidence intervals for modulated realised covariation based estimators are smaller than the

related confidence intervals for the realised statistics.
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estimator average standard deviation bias

(Hn for MRC) (H̃n for MRC) empirical

MRC (256, LEH/MER) 0.399 0.099 0.054 0.185 -0.054
MRC (1024, LEH/MER) 0.304 0.055 0.054 0.121 -0.149
RC (20min, LEH/MER) 0.422 0.472 0.701 -0.031
RC (OtoC, LEH/MER) 0.453

Hayashi/Yoshida 0.108 0.064 -0.349

Table 5: LEH and MER equity data January to June 2005. Summary statistics for modulated realised
covariance for n = 256 and n = 1024, realised covariance (n = 20), open-to-close realised covariance and Hayashi-
Yoshida estimator. The first column identifies the estimator, and the second gives the average value, followed
by the estimated standard deviation. For modulated realised statistics the standard deviation is estimated using
either Hn or H̃n. The fourth column presents the empirical standard deviation. The last column presents the
bias.

estimator average standard deviation bias

(Hn for MRC) (H̃n for MRC) empirical

MRC (256, IBM/UTX) 0.212 0.091 0.082 0.125 -0.065
MRC (1024, IBM/UTX) 0.229 0.062 0.059 0.089 -0.048
RC (20min, IBM/UTX) 0.252 0.222 0.228 -0.018
RC (OtoC, IBM/UTX) 0.277

Hayashi/Yoshida 0.149 0.107 -0.121

Table 6: IBM and UTX equity data January to June 2005. Summary statistics for modulated realised covari-
ance for n = 256 and n = 1024, realised covariance (n = 20), open-to-close realised covariance and Hayashi-
Yoshida estimator. The first column identifies the estimator, and the second gives the average value, followed
by the estimated standard deviation. For modulated realised statistics the standard deviation is estimated using
either Hn or H̃n. The fourth column presents the empirical standard deviation. The last column presents the
bias.

Let us finally understand why the results for the IBM/UTX dataset are substantially better

than for the LEH/MER time series. Table 11 gives us the 6-month average of the number of

data points of a daily time series. The first line exhibits the number of quotes available when

considering all stock exchanges, the second line concentrates on NYSE only and the third

line shows the number of data points we obtain if we clean the data in the way described at

the beginning of the section. We see that the IBM/UTX dataset is significantly larger than

the LEH/MER dataset. Thus the chance of constructing a truely synchronous bivariate time

series of non-zero returns is much higher for the larger dataset which leads to better estimation

results.

8 Conclusions

In this paper we have introduced the modulated realised covariation estimator as an estimator

of ex-post covariation of high-frequency asset prices under market microstructure noise. The

novelty of this paper is as follows: we suggest a very simple way of estimating the covariation of
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estimator average standard deviation bias

(Hn for MRC) (H̃n for MRC) empirical

MRCorr (256, LEH/MER) 0.755 0.081 0.096 0.138 -0.029
MRCorr (1024, LEH/MER) 0.585 0.057 0.053 0.101 -0.140
RCorr (20min, LEH/MER) 0.824 0.252 0.448 0.098
RCorr (OtoC, LEH/MER) 0.726

Table 7: IBM and UTX equity data January to June 2005. Summary statistics for modulated realised cor-
relation for n = 256 and n = 1024, realised correlation (n = 20) and open-to-close realised correlation. The
first column identifies the estimator, and the second gives the average value, followed by the estimated standard
deviation. For modulated realised statistics the standard deviation is estimated using either Hn or H̃n. The
fourth column presents the empirical standard deviation. The last column presents the bias.

estimator average standard deviation bias

(Hn for MRC) (H̃n for MRC) empirical

MRCorr (256, IBM/UTX) 0.362 0.125 0.117 0.183 -0.08
MRCorr (1024, IBM/UTX) 0.329 0.08 0.07 0.143 -0.113
RCorr (20min, IBM/UTX) 0.339 0.284 0.435 -0.103
RCorr (OtoC, IBM/UTX) 0.442

Table 8: LEH and MER equity data January to June 2005. Summary statistics for modulated realised
correlation for n = 256 and n = 1024, realised correlation (n = 20) and open-to-close realised correlation. The
first column identifies the estimator, and the second gives the average value, followed by the estimated standard
deviation. For modulated realised statistics the standard deviation is estimated using either Hn or H̃n. The
fourth column presents the empirical standard deviation. The last column presents the bias.

price processes and provide a feasible asymptotic limit theory for modulated realised covariance,

correlation and regression. Moreover, we construct a positive semidefinite estimator of the

conditional covariance matrix of the limiting variable, some positive semidefinite estimators of

the covolatility and indicate how the assumptions on the noise process can be relaxed. Finally,

we present a way of arranging the data such that the estimator is capable of dealing with non-

synchronous trading and we obtain very accurate empirical results for dependence measures

between assets. Thus we have tackled the most important issues of the multivariate problem.

It remains an open problem to extend the theory to a setting where non-synchronous trading

cannot only be dealt with by a reasonable way of cleaning the data, but where the estimator

itself is capable of dealing with it. One approach would be to combine the ideas of modulated

realised covariation with the estimator of Hayashi and Yoshida (2003).

9 Appendix: Proof

In the following we assume without loss of generality that the processes a and σ are bounded.

This can be justified by a standard localization procedure (see e.g. Barndorff-Nielsen et al.
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estimator average standard deviation bias

(Hn for MRC) (H̃n for MRC) empirical

MRRegr (256, LEH/MER) 1.350 0.212 0.184 0.281 0.08
MRRegr (1024, LEH/MER) 1.032 0.136 0.131 0.243 -0.238
RRegr (20min, LEH/MER) 1.379 0.561 1.22 0.109
RRegr (OtoC, LEH/MER) 1.270

Table 9: LEH and MER equity data January to June 2005. Summary statistics for modulated realised
regression for n = 256 and n = 1024, realised regression (n = 20) and open-to-close realised regression. The
first column identifies the estimator, and the second gives the average value, followed by the estimated standard
deviation. For modulated realised statistics the standard deviation is estimated using either Hn or H̃n. The
fourth column presents the empirical standard deviation. The last column presents the bias.

estimator average standard deviation bias

(Hn for MRC) (H̃n for MRC) empirical

MRRegr (256, IBM/UTX) 0.249 0.125 0.095 0.272 -0.038
MRRegr (1024, IBM/UTX) 0.210 0.077 0.053 0.221 -0.078
RRegr (20min, IBM/UTX) 0.2469 0.153 0.378 -0.041
RRegr (OtoC, IBM/UTX) 0.288

Table 10: IBM and UTX equity data January to June 2005. Summary statistics for modulated realised
regression for n = 256 and n = 1024, realised regression (n = 20) and open-to-close realised regression. The
first column identifies the estimator, and the second gives the average value, followed by the estimated standard
deviation. For modulated realised statistics the standard deviation is estimated using either Hn or H̃n. The
fourth column presents the empirical standard deviation. The last column presents the bias.

(2006)). Moreover, we denote all constants by C or Cp if they depend on an additional param-

eter p. The main parts of the proofs are based upon the methods presented in Podolskij and

Vetter (2006) and Jacod et al. (2007).

Proof of Theorem 1: Due to the triangular equality [X,Y ] = 1
4([X+Y,X+Y ]− [X−Y,X−Y ])

it suffices to consider the case d = 1 (i.e. all processes are 1-dimensional). Next, we use the

decomposition

MRC (Z∗)n =
1
kn

kn−1∑
l=0

MRC (Z∗)ln −
ψ1

2θ2ψ2n

n∑
i=1

|∆n
i Z

∗|2 , (9.1)

with

MRC (Z∗)ln =
1

θψ2
√
n

[n/kn]−1∑
j=0

|Z̄∗nl+jkn
|2.

Notice that, for any l = 0, . . . , kn − 1, the summands in the definition of MRC (Z∗)ln are

asymptotically uncorrelated. This type of estimators have been discussed in Podolskij and

Vetter (2006) and we can deduce by the methods presented therein (see the proof of Theorem
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Figure 11: Regression of Merrill Lynch on Lehman equity data, resp. UTX on IBM equity data.
Data are 1st March 2005 onwards for 50 active trading days. (a) Realised regression based on
20 intra-day observations (MER LEH). This is marked with a cross while the bars denote 95%
confidence intervals. (b) Modulated realised regression based on 256 intra-day observations
(MER LEH). (c) Modulated realised regression based on 1024 intra-day observations (MER
LEH). (d) Realised regression based on 20 intra-day observations (UTX IBM). (e) Modulated
realised regression based on 256 intra-day observations (UTX IBM). (f) Modulated realised
regression based on 1024 intra-day observations (UTX IBM). All the confidence intervals of
modulated realised covariation are based on H̃n.

1) that

MRC (Z∗)ln
P→
∫ 1

0
σ2
sds+

ψ1

ψ2θ2
Ψ ,

where the convergence holds uniformly in l (due to the boundedness of the processes a and σ).

On the other hand we have that

Ψ̂ =
1
2n

n∑
i=1

|∆n
i Z

∗|2 P→Ψ.

This implies the convergence

MRC (Z∗)n
P→
∫ 1

0
σ2
sds ,

which completes the proof. �

Proof of Theorem 2: Here we apply the ”big blocks & small blocks”-technique used in Ja-
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Firm LEH MER IBM UTX

all data 36322 45461 51533 39781
NYSE data 12497 14983 17036 17036
cleaned data 2625 2623 3376 3187

Table 11: Average number of data points in daily time series over a 6-month period (January 1, 2005 to June
30, 2005) for various firms. First line: all data available from WRDS; second line: NYSE data available from
WRDS; third line: data is cleaned in such a way that if two consecutive prices have the same value, the second
price is not included in the cleaned dataset.

cod et al. (2007). The role of the small blocks (which will be asymptotically negligible) is to

ensure the asymptotic independence of the big blocks. More precisely, we choose an integer p,

set

ai(p) = i(p+ 1)kn and bi(p) = i(p+ 1)kn + pkn ,

and let Ai(p) denote the set of integers l satisfying ai(p) ≤ l < bi(p) and Bi(p) the integers

satisfying bi(p) ≤ l < ai+1(p). We further define jn(p) to be the largest integer j such that

bj(p) ≤ n holds, which gives the identity

jn(p) =
⌊ n

kn(p+ 1)

⌋
− 1. (9.2)

Moreover, we use the notation in(p) = (jn(p) + 1)(p+ 1)kn.

Next, we introduce the random variable

Z
∗n
i,m =

kn−1∑
j=1

g
( j
kn

)
(σm

n
∆n
i+jW + ∆n

i+jε) , (9.3)

which can be interpreted as an approximation of some Z̄∗nj . Moreover, we set

Υn
j,m = Z

∗n
j,m(Z∗nj,m)′ − E[Z∗nj,m(Z∗nj,m)′|Fm

n
] , (9.4)

and define

Z̃∗nj =


Υn
j,ai(p)

, j ∈ Ai(p)

Υn
j,bi(p)

, j ∈ Bi(p)

Υn
j,in(p), j ≥ in(p)
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as well as

ζ(p, 1)nj =
bj(p)−1∑
l=aj(p)

Z̃∗nl , ζ(p, 2)nj =
aj+1(p)−1∑
l=bj(p)

Z̃∗nl .

Notice that ζ(p, 1)nj contains pkn summands (”big block”) whereas ζ(p, 2)nj contains kn sum-

mands (”small block”). Finally, we set

M(p)n = n−
1
2
∑jn(p)

j=0 ζ(p, 1)nj , N(p)n = n−
1
2
∑jn(p)

j=0 ζ(p, 2)nj , C(p)n = n−
1
2
∑n

j=in(p) Z̃
∗n
j

and note that

E[ζ(p, 1)nj |Faj(p)

n

] = 0 = E[ζ(p, 2)nj |F bj(p)

n

] (9.5)

by construction.

Now, by the same approximations as presented in Jacod et al. (2007) (see the identity

(5.14), Lemma 5.5 and Lemma 5.6 therein) we obtain that

n1/4

(
MRC (Z∗)n −

∫ 1

0
σsσ

′
sds

)
=

n
1
4

θψ2
(M(p)n +N(p)n + C(p)n) +R(p)n (9.6)

where the last three summands satisfy the convergence

lim
p→∞

lim sup
n→∞

P (||n
1
4N(p)n||+ ||n

1
4C(p)n||+ ||R(p)n|| > δ) = 0 (9.7)

for any δ > 0. Notice that the term R(p)n stands for the error made in the approximation

(9.3).

In the next lemma we show the stable convergence n
1
4

θψ2
M(p)n Dst−→ U(p) (for any fixed p). On

the other hand, we will see that, as p→∞, U(p)
P→U , where U is the limiting variable defined

in Theorem 2. By combining this with (9.6) and (9.7) we obtain the assertion of Theorem 2.

Lemma 1 If the assumptions of Theorem 2 are satisied we obtain (for any fixed p)

n
1
4

θψ2
M(p)n Dst−→ U(p) =

d∑
j′,k′=1

∫ 1

0
γjk,j

′k′
s (p)dBj′k′

s ,
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and

d∑
j,m=1

γkl,jms (p)γk
′l′,jm
s (p) = Akl,k

′l′
s =

2
ψ2

2

(
θp

p+ 1
Λkl,k

′l′
s

∫ 1

0

(
1− u

p

)
φ2

2(u)du

+
p

θ(p+ 1)
Θkl,k′l′
s

∫ 1

0

(
1− u

p

)
φ1(u)φ2(u)du+

p

θ3(p+ 1)
Υkl,k′l′

∫ 1

0

(
1− u

p

)
φ2

1(u)du
)
,

where the processes Λs, Θs and Υ are given in Theorem 2.

Notice that
∑d

j,m=1 γ
kl,jm
s (p)γk

′l′,jm
s (p)

P→
∑d

j,m=1 γ
kl,jm
s γk

′l′,jm
s (1 ≤ k, k′, l, l′ ≤ d), where γs is

defined in Theorem 2. From this we deduce the convergence U(p)
P→U .

Proof of Lemma 1: Due to Theorem IX 7.28 in Jacod and Shiryaev (2003) the following

conditions have to be shown (for all 1 ≤ k, k′, l, l′ ≤ d)

n−
1
2

θ2ψ2
2

jn(p)∑
j=0

E[ζ(p, 1)n,klj ζ(p, 1)n,k
′l′

j |Faj(p)

n

]
P→
∫ 1

0
Akl,k

′l′
u du (9.8)

n−1

jn(p)∑
j=0

E[||ζ(p, 1)nj ||4|Faj(p)

n

]
P→ 0 (9.9)

n−
1
4

jn(p)∑
j=0

E[ζ(p, 1)n,klj ∆W (p)n,k
′

j |Faj(p)

n

]
P→ 0 (9.10)

n−
1
4

jn(p)∑
j=0

E[ζ(p, 1)n,klj ∆N(p)nj |Faj(p)

n

]
P→ 0 (9.11)

where ∆V (p)nj = Vn/bj(p)−Vn/aj(p) for any process V and (9.11) holding for any 1-dimensional

bounded martingale N being orthogonal to W . For proving (9.9) and (9.11) it is no restriction

to assume that d = 1. Then these conditions are already shown in Jacod et al. (2007) (Lemma

5.7). On the other hand, the functional ζ(p, 1)nj is even in W . Since W and ε are independent,

we readily deduce that

E[ζ(p, 1)n,klj ∆W (p)n,k
′

j |Faj(p)

n

] = 0 ,

which implies condition (9.10). Hence, we are left to proving (9.8).

41



S. Kinnebrock and M. Podolskij: An Econometric Analysis of Modulated Realised Covariance,
Regression and Correlation in Noisy Diffusion Models

First, notice the identity

V̄ n
i =

kn∑
j=1

g

(
j

kn

)
∆n
i+jV = −

kn−1∑
j=0

(
g

(
j + 1
kn

)
− g

(
j

kn

))
V i+j

n
.

The second equality is useful for the computation of the moments of ε̄ni . By the smoothness

assumption on the function g and the above identity we obtain the approximations (1 ≤ k, l ≤ d)

E[Wn,k
j W

n,l
j′ ] = δkl

kn
n
ψ2

( |j − j′|
kn

)
+O(n−1) , E[εn,kj εn,lj′ ] =

Ψkl

kn
ψ1

( |j − j′|
kn

)
+O(n−1) (9.12)

for |j − j′| < kn, whereas the above expectations vanish when |j − j′| ≥ kn (here δkl denotes

the Kronecker symbol). Next, we introduce the decomposition

ζ(p, 1)nj = v(p, 1)nj + v(p, 2)nj + v(p, 3)nj ,

where the terms v(p, 1)nj , v(p, 2)nj and v(p, 3)nj are given by

v(p, 1)nj =
bj(p)−1∑
l=aj(p)

σaj(p)

n

W
n
l

(
σaj(p)

n

W
n
l

)′
− E

[
σaj(p)

n

W
n
l

(
σaj(p)

n

W
n
l

)′
|Faj(p)

n

]
,

v(p, 2)nj =
bj(p)−1∑
l=aj(p)

εnl

(
εnl

)′
− E

[
εnl

(
εnl

)′]
,

v(p, 3)nj =
bj(p)−1∑
l=aj(p)

σaj(p)

n

W
n
l

(
εnl

)′
+ εnl

(
σaj(p)

n

W
n
l

)′
.

By a straightforward calculation (and (9.12)) we obtain for all 1 ≤ k, l, k′l′ ≤ d

E[v(p, 1)n,klj v(p, 1)n,k
′l′

j |Faj(p)

n

] =
2pk4

n

n2
Λkl,k

′l′

aj(p)

n

∫ 1

0

(
1− u

p

)
φ2

2(u)du+ op(1) ,

E[v(p, 2)n,klj v(p, 2)n,k
′l′

j |Faj(p)

n

] = 2pΥkl,k′l′
∫ 1

0

(
1− u

p

)
φ2

1(u)du+ op(1) ,

E[v(p, 3)n,klj v(p, 3)n,k
′l′

j |Faj(p)

n

] =
2pk2

n

n
Θkl,k′l′

aj(p)

n

∫ 1

0

(
1− u

p

)
φ1(u)φ2(u)du+ op(1) ,

where the approximation holds uniformly in j. Now recall that jn(p) =
⌊

n
kn(p+1)

⌋
− 1. Conse-
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quently, by Riemann integrability we deduce that

n−
1
2

θ2ψ2
2

jn(p)∑
j=0

E[ζ(p, 1)n,klj ζ(p, 1)n,k
′l′

j |Faj(p)

n

]
P→
∫ 1

0
Akl,k

′l′
u du ,

which completes the proof of Lemma 1. �

Proof of Proposition 6: Due to the triangular equality [X,Y ] = 1
4([X+Y,X+Y ]−[X−Y,X−Y ])

it suffices to consider the case d = 1 (i.e. Xn
i = |Z∗ni |2). Now we replace the quantity Z∗ni in

the definition of the estimator Hn by its approximation Z∗ni,i given in (9.3). As in Podolskij and

Vetter (2006) we deduce that

Hn = 1√
nθ2ψ2

2

n−2kn+1∑
i=0

|Z∗ni,i |2
(
|Z∗ni,i |2 − |Z∗ni+kn,i|

2
)

+ 2
kn−1∑
j=1

|Z∗ni,i |2
(
|Z∗ni+j,i|2 − |Z∗ni+kn,i|

2
)

+ op(1)

=
n−2kn+1∑

i=0
ξni + op(1).

A straightforward calculation using (9.12) shows that

n−2kn+1∑
i=0

E[ξni | F i
n
] P−→ 1

ψ2
2

(
2Φ22θ

∫ 1

0
σ4
sds+

4Φ12Ψ
θ

∫ 1

0
σ2
sds+

2Φ11

θ3
Ψ2

)
.

On the other hand we have that

E[ξni ξ
n
j ] ≤ Cn−1 , |i− j| ≤ 2kn ,

whereas the above expression is 0 for |i− j| > 2kn. This implies the convergence

n−2kn+1∑
i=0

ξni
P−→ 1

ψ2
2

(
2Φ22θ

∫ 1

0
σ4
sds+

4Φ12Ψ
θ

∫ 1

0
σ2
sds+

2Φ11

θ3
Ψ2

)
,

which completes the proof of Proposition 6. �
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Figure 12: Simulated bivariate stochastic volatility model using n = 4096: (a) 30 minute

returns ∆n
i X, ∆n

i Y for 10 trading days; (b) daily returns
n∑
i=1

∆n
i X and

n∑
i=1

∆n
i Y for 200 trading

days; (c) realized volatility and actual volatility for asset 1; (d)
√
MRC (Z∗)1,1n and actual

volatility for asset 1; (e) realized volatility and actual volatility for asset 1; (f)
√
MRC (Z∗)2,2n

and actual volatility for asset 2;

Figure 13: Simulation of measures of dependence, using n = 4096: (a) realized covariance and
actual covariance; (b) MRC (Z∗)1,2n and actual covariance; (c) realized and actual correlation;
(d) MRC based and actual correlation.
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Figure 14: Simulations of measures of dependence, using n = 4096; (a) realized and actual
regressions of returns on asset 2 on asset 1; (b) MRC based and actual regressions of returns
on asset 2 on asset 1; (c) same as (a) but asset 1 on 2; (d) same as (b) but asset 1 on 2;
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test statistic n coverage

0.5% 2.5%) 5% 95% 97.5%) 99.5% mean variance

(3.7) 256 0.58 5.09 11.82 99.76 99.93 99.99 -0.33 0.6
1024 0.39 3.14 6.91 98.15 99.13 99.88 -0.17 0.83
4096 0.40 2.70 5.90 96.60 98.25 99.80 -0.08 0.92
16384 0.57 2.63 5.34 95.77 97.50 99.53 -0.03 0.98
65536 0.55 2.59 5.24 95.51 97.51 99.50 -0.01 1.02

(4.3) 256 9.68 19.75 27.13 99.90 99.98 99.99 NV NV
1024 3.48 8.89 13.47 98.75 99.50 99.96 -0.47 1.15
4096 1.70 5.50 9.55 97.40 99.20 99.90 -0.19 1.06
16384 1.27 3.63 7.34 96.63 98.40 99.83 -0.10 1.03
65536 1.03 3.28 6.88 96.48 97.99 99.80 -0.07 1.02

(4.6) 256 16.21 32.12 42.10 99.95 99.98 100.00 -1.48 1.25
1024 3.19 9.27 14.74 99.05 99.61 99.97 -0.57 1.05
4096 1.94 5.85 9.91 97.64 98.98 99.98 -0.29 1.08
16384 1.01 4.10 7.32 96.50 98.52 99.79 -0.14 1.03
65536 0.93 3.85 6.83 96.39 98.32 99.74 -0.13 1.01

(5.4) 256 0.51 2.19 4.20 95.90 97.82 99.47 0.02 0.84
1024 0.45 2.16 4.59 97.30 98.76 99.78 0.03 0.84
4096 0.40 2.45 3.95 96.05 98.35 99.70 -0.01 0.89
16384 0.40 2.33 4.70 96.67 98.53 99.87 -0.06 0.88
65536 0.49 2.53 4.78 96.01 98.14 99.60 -0.02 0.95

(5.5) 256 1.09 3.35 5.99 95.31 97.25 99.11 NV NV
1024 0.65 3.07 6.08 94.95 97.05 99.03 NV NV
4096 0.80 3.40 5.25 94.45 97.10 99.50 -0.01 1.07
16384 0.77 3.20 6.17 95.73 98.07 99.63 -0.07 1.03
65536 0.67 32.75 6.04 95.47 97.84 99.65 -0.04 1.02

(5.6) 256 0.28 1.56 3.37 95.65 98.95 100 0.08 0.93
1024 0.36 1.84 3.86 99.1 98.63 99.78 0.03 0.84
4096 0.41 2.25 4.45 96.4 97.93 99.64 0.03 0.94
16384 0.44 2.31 4.45 95.52 97.92 99.61 -0.003 0.92
65536 0.47 2.44 4.62 95.37 97.65 99.58 -0.001 0.96

(5.10) 256 1.30 3.71 6.01 97.62 99.00 99.66 -0.19 1.22
1024 0.95 3.45 6.10 98.08 99.13 99.71 -0.11 1.08
4096 0.80 2.60 4.60 96.70 98.70 99.60 -0.09 1.10
16384 0.80 3.20 5.67 96.90 98.57 99.57 -0.06 1.04
65536 0.57 2.59 5.29 95.44 98.00 99.54 -0.01 1.01

(5.11) 256 0.62 2.17 4.23 93.47 95.91 98.31 -0.19 1.22
1024 0.65 3.07 6.08 94.95 97.05 99.03 -0.11 1.08
4096 0.35 1.95 4.25 94.10 96.50 99.25 0.03 1.05
16384 0.50 2.90 5.77 94.80 97.13 99.37 -0.07 1.02
65536 0.49 2.86 5.78 95.12 98.3 99.59 -0.02 1.01

(5.12) 256 0.04 0.60 1.67 92.27 95.38 99.71 0.23 0.93
1024 0.10 0.92 2.54 95.13 97.56 99.34 0.07 0.84
4096 0.17 1.29 3.18 94.17 96.99 99.38 0.09 0.94
16384 0.24 1.66 3.67 95.08 98.53 99.72 0.03 0.92
65536 0.32 1.97 3.94 95.02 98.01 99.56 0.02 0.97

Table 12: We simulate 20000 replications from the stochastic volatility model described in section 5. We
compute the coverage properties, mean and standard deviation of 6 test statistics.
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