
  
 
 
 
 

CREATES Research Paper 2008-21 
 
 
 
 

Bipower variation for Gaussian processes with  
stationary increments 

 
Ole E. Barndorff-Nielsen, José Manuel Corcuera, Mark Podolskij and 

Jeannette H.C. Woerner 
 
 
 

 
 

School of Economics and Management 
University of Aarhus 

Building 1322, DK-8000 Aarhus C 
Denmark 

 
 
 

 

 

 



Bipower variation for Gaussian processes

with stationary increments ∗

Ole E. Barndorff-Nielsen

University of Aarhus and CREATES †
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1 Introduction

The theory of bipower, and more generally multipower, variation has developed out of problems

in mathematical finance; for motivation and some first results and applications see [5], [6], [7],

[8], [9], [10], [26], [27], [28], [29]. It is natural, therefore, that initially the focus was on Brownian

semimartingales, for which a rather complete and comprehensive theory is now available, cf.

[3] (also [4] and [18]). Extensions of the theory to Lévy processes and Itô semimartingales have

been obtained, particularly by Jacod in [15] (cf. also [8]), and applications to finance of such

extensions are discussed in [17] and [25].

A further avenue of generalisation is to stochastic integrals with respect to Gaussian pro-

cesses having stationary increments. This was begun in [2], [12] which treated the power

variation case, providing in particular a feasible central limit theorem for inference on the

integrands in question1. The techniques used there, as well as in the present paper which

considers the bipower case, come from very powerful recent results developed in the context of

Wiener/Itô/Malliavin calculus, especially by Nualart, Peccati and coauthors, see [21], [22] and

[23] (cf. also [19]). (In fact, we believe that there are no other tools available that would allow

derivation of the conclusions in the present paper.)

The structure of the paper is as follows. Section 2 lists a number of background results

needed for the proofs, given in the Appendix, of the main results, which are presented in Sections

3 and 4. Those Sections discuss limit laws of bipower variation for Gaussian processes with

stationary increments and for integrals with respect to such processes, respectively. Section 5

concludes.

2 Background

In this section we review the basic concepts of the Wiener chaos expansion. In particular, we

present a multiplication formula (Proposition 1) and a multivariate central limit theorem for a

sequence of random variables which admit a chaos representation (Theorem 2). The latter is

based on the theory for multiple stochastic integrals developed in [21], [23] and [14].

Consider a complete probability space (Ω,F , P ) and a Gaussian subspaceH1 of L2(Ω,F , P )

whose elements are zero-mean Gaussian random variables. Let IH be a separable Hilbert space

with scalar product denoted by 〈·, ·〉IH and norm ||·||IH . We will assume that there is an isometry

W : IH → H1

h 7→ W (h)

in the sense that

E[W (h1)W (h2)] = 〈h1, h2〉IH .
1As discussed in [2], an important early forerunner of that paper is a paper by Guyon and Leon [13] which

derived quadratic variation limit results for stationary Gaussian processes.
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It is easy to see that this map has to be linear.

For any m ≥ 2, we denote by Hm the m-th Wiener chaos, that is, the closed subspace of

L2(Ω,F , P ) generated by the random variables Hm(X), where X ∈ H1, E[X2] = 1, and Hm is

the m-th Hermite polynomial, i.e. H0(x) = 1 and Hm(x) = (−1)me
x2

2
dm

dxm (e−
x2

2 ).

Suppose that IH is infinite-dimensional and let {ei, i ≥ 1} be an orthonormal basis of IH.

Denote by Λ the set of all sequences a = (a1, a2, ...), ai ∈ N, such that all the terms, except

a finite number of them, vanish. For a ∈ Λ we set a! = Π∞i=1ai! and |a| =
∑∞

i=1 ai. For any

multindex a ∈ Λ we define

Φa =
1√
a!

Π∞i=1Hai(W (ei)).

The family of random variables {Φa, a ∈ Λ} is an orthonormal system. In fact

E [Π∞i=1Hai(W (ei))Π∞i=1Hbi(W (ei))] = δaba! ,

where δab denotes the Kronecker symbol. Moreover, {Φa| a ∈ Λ, |a| = m} is a complete

orthonormal system in Hm .

Let a ∈ Λ with |a| = m. The mapping

Im : IH�m → Hm

⊗̃∞i=1e
⊗ai
i 7→ Π∞i=1Hai(W (ei)),

between the symmetric tensor product IH�m, equipped with the norm
√
m! ‖·‖IH⊗m , and the

m-th chaos Hm is a linear isometry. Here ⊗̃ denotes the symmetrization of the tensor product

⊗ and I0 is the identity in R.
For any h = h1 ⊗ · · · ⊗ hm and g = g1 ⊗ · · · ⊗ gm ∈IH⊗m, we define the p-th contraction of

h and g, denoted by h⊗p g, as the element of IH⊗2(m−p) given by

h⊗p g = 〈h1, g1〉IH · · · 〈hp, gp〉IHhp+1 ⊗ · · · ⊗ hm ⊗ gp+1 ⊗ · · · ⊗ gm.

This definition can be extended by linearity to any element of IH⊗m. h⊗pg does not necessarily

belong to IH�(2m−p), even if h and g belong to IH�m. We denote by h⊗̃pg the symmetrization

of h⊗p g.

Proposition 1 For any h ∈ IH⊗p and g ∈ IH⊗q, we have

Ip(h)Iq(g) =
p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(h⊗̃rg). (2.1)

Proof: First, note that

I1(ei) = W (ei).

Let a ∈ Λ with |a| = p and q = 1. Due to linearity of Ip it suffices to consider the case

h = ⊗̃∞i=1e
⊗ai
i , g = ej . It holds that

Ip(⊗̃
∞
i=1e

⊗ai
i )I1(ej) = Π∞i=1Hai(W (ei))W (ej).
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Assume that j is an index such that aj = 0. Then

⊗̃∞i=1e
⊗ai
i ⊗̃1ej = 0

and

Π∞i=1Hai(W (ei))W (ej) = Ip+1(⊗̃∞i=1e
⊗ai
i ⊗̃ej),

so we have that

Ip(⊗̃
∞
i=1e

⊗ai
i )I1(ej) = Ip+1(⊗̃∞i=1e

⊗ai
i ⊗̃ej) + pIp−1(⊗̃∞i=1e

⊗ai
i ⊗̃1ej).

Assume now that aj 6= 0. Then we obtain the identity

⊗̃∞i=1e
⊗ai
i ⊗̃1ej =

aj
p
⊗̃∞i=1e

⊗a′i
i

with a′i = ai if i 6= j and a′j = aj − 1. Furthermore,

Π∞i=1Hai(W (ei))W (ej) = Π∞i=1,i 6=jHai(W (ei)(Haj+1(W (ej) + ajHaj−1(W (ej)))

= Ip+1(⊗̃∞i=1e
⊗ai
i ⊗̃ej) + pIp−1(⊗̃∞i=1e

⊗ai
i ⊗̃1ej),

since the Hermite polynomials verify

Hn+1(x) = xHn(x)− nHn−1(x).

Hence, the relationship (2.1) is true for q = 1. The general formula follows by induction through

the lines of the proof of Proposition 1.1.3 in [20]. �

Remark 1 Note that if we take h = ei
⊗p, g = ei

⊗q we obtain the well-known identity

Hp(W (ei))Hq(W (ei)) =
p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Hp+q−2r(W (ei)).

Now, let G be the σ-field generated by the random variables {W (h)| h ∈ IH}. Any square

integrable random variable F ∈ L2(Ω,G, P ) has a unique chaos decomposition

F =
∞∑
m=0

Im(hm) ,

where hm ∈ IH�m (see [20] for more details).

Finally, we present a multivariate central limit theorem for sequences of functionals Fn ∈
L2(Ω,G, P ).

Theorem 2 Consider a sequence of d-dimensional random vectors Fn = (F 1
n , F

2
n , ..., F

d
n), such

that F kn ∈ L2(Ω,G, P ) and

F kn =
∞∑
m=0

Im(hkm,n) ,

where hkm,n ∈ IH�m. Assume that the following conditions hold:
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(i) For any k = 1, . . . , d we have

lim
N→∞

lim sup
n→∞

∞∑
m=N+1

m!||hkm,n||2IH⊗m = 0.

(ii) For k, l = 1, . . . , d we have

m! lim
n→∞

||hkm,n||2IH⊗m = Σm
kk.

m! lim
n→∞

〈hkm,n, hlm,n〉IH⊗m = Σm
kl, k 6= l ,

and
∑∞

m=1 Σm = Σ ∈ IRd×d.

(iii) For any m ≥ 1, k = 1, . . . , d and r = 1, . . . ,m− 1

lim
n→∞

||hkm,n ⊗r hkm,n||2IH⊗2(m−r) = 0.

Then we have

Fn − h0,n
D−→ Nd(0,Σ) , (2.2)

as n tends to infinity, and for any natural number N and k = 1, . . . , d

lim
n→∞

E

(
N∑
m=1

Im(hkm,n)

)4

= 3

(
N∑
m=1

Σm
kk

)2

. (2.3)

Proof: Under the conditions (ii) and (iii) the weak convergence (2.2) of the vector(
Im1(h1

m1,n), Im2(h2
m2,n), ..., Imd

(hdmd,n
)
)
,

is shown in [23] (moreover, these authors prove that (2.2) implies (2.3)). Under the additional

condition (i) this result can be extended to general multivariate sequences Fn with squared

integrable components (see [2]). �

Example 3 Consider a sequence of stationary, normalized, centered Gaussian random vari-

ables (Xi)i≥1. We want to study the asymptotic behavior of the sequence

Yn =
1√
n

n∑
i=1

H(Xi) ,

where H is a real-valued function of Hermite index R ≥ 1, i.e.

H(x) =
∞∑

m=R

cmHm(x)

with cR 6= 0 (in particular, this implies that E[H(Xi)] = 0). Assume that E[H2(Xi)] =∑∞
m=Rm! c2

m < ∞. We can take H1 =span{Xi, i ≥ 1}, and IH ≡ H1. The inner product on

4
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IH is then induced by the covariance function ρ(k) = cov(X1, X1+k) of the sequence (Xi)i≥1

(note that ρ(0) = 1). We obtain the following representation

Yn =
∞∑

m=R

1√
n

n∑
i=1

cmHm(Xi)

=
∞∑

m=R

1√
n

n∑
i=1

cmIm(X⊗mi )

=
∞∑

m=R

Im

(
1√
n

n∑
i=1

cmX
⊗m
i

)
.

Set

hm,n =
1√
n

n∑
i=1

cmX
⊗m
i .

Assume that
∞∑
j=1

|ρ(j)|R <∞. (2.4)

It holds that
∞∑

m=R

m!||hm,n||2IH⊗m =
∞∑

m=R

m!c2
m

n

n∑
i,j=1

ρm(i− j)

=
∞∑

m=R

m!c2
m

1 + 2
n−1∑
j=1

ρm(j)
(

1− j

n

)→ ∞∑
m=R

m!c2
m

1 + 2
∞∑
j=1

ρm(j)

 =: σ2.

Note the identity

hm,n ⊗r hm,n =
c2
m

n

n∑
i,j=1

ρr(i− j)X⊗(m−r)
i ⊗X⊗(m−r)

j .

This implies

‖hm,n ⊗r hm,n‖2IH⊗2(m−r) =
c4
m

n2

n∑
i,j,k,l=1

ρr(i− j)ρr(k − l)ρm−r(i− k)ρm−r(j − l)

=
c4
m

n

n−1∑
i,j,k=0

ρr(i)ρr(j − k)ρm−r(j)ρm−r(i− k)(1− i ∨ j ∨ k
n

) ,

where the last term converges to 0 under assumption (2.4) (see [12] for a detailed proof). Thus,

under assumption (2.4), conditions (i)-(iii) of Theorem 2 are fulfilled, and we deduce that

Yn
D−→ N(0, σ2).
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3 Asymptotic theory for bipower variation of Gaussian pro-

cesses with stationary increments

We consider a Gaussian process (Gt)t≥0, defined on a filtered complete probability space

(Ω,F , (Ft)t≥0, P ), with centered and stationary increments. The variance function R of the

increments of G is defined as

R(t) = E[|Gs+t −Gs|2] , t ≥ 0. (3.1)

In this section we study the asymptotic behaviour of the bipower variation processes

V (G; p, q)nt =
1

nτp+qn

[nt]∑
i=1

|∆n
i G|p|∆n

i+1G|q , p, q ≥ 0 , (3.2)

where ∆n
i G = G i

n
−G i−1

n
and τ2

n = R( 1
n) = E[|∆n

i G|2], using the multiplication formula (2.1)

and the central limit theorem discussed in the previous section. For this purpose we introduce

the representation

|x|p =
∞∑
m=0

ap,mHm(x) , (3.3)

where the Hm are Hermite polynomials as defined in Section 2.

In order to give a statement about the asymptotic behaviour of the bipower variation pro-

cess V (G; p, q)nt we require the following assumptions on the variance function R defined in

(3.1), which were introduced by Guyon and Leon in [13]:

(A1) R(t) = tβL0(t) for some β ∈ (0, 2) and some positive slowly varying (at 0) function

L0, which is continuous on (0,∞).

(A2) R′′(t) = tβ−2L2(t) for some slowly varying function L2, which is continuous on (0,∞).

(A3) There exists b ∈ (0, 1) with

K = lim sup
x→0

sup
y∈[x,xb]

∣∣∣L2(y)
L0(x)

∣∣∣ <∞.

Recall that a function L : (0,∞)→ IR is called slowly varying at 0 when the identity

lim
x↘0

L(tx)
L(x)

= 1 (3.4)

holds for any fixed t > 0. Provided L is continuous on (0,∞), we have

|L(x)| ≤ Cx−α , x ∈ (0, T ] (3.5)

6



O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij and J.H.C. Woerner: Bipower Variation

for any α > 0 and any T > 0 (where the constant C > 0 depends on α and T ).

Finally, we introduce the correlation function of the increments of G, i.e.

rn(j) = Cov
(∆n

1G

τn
,
∆n

1+jG

τn

)
, j ≥ 0. (3.6)

By the triangular identity, and due to the stationarity of the increments of G, we know that

rn(0) = 1 and

rn(j) =
R( j+1

n ) +R( j−1
n )− 2R( jn)

2R( 1
n)

, j ≥ 1. (3.7)

We start with the weak law of large numbers for the sequence V (G; p, q)nt . Throughout this

paper we write Y n ucp−→ Y when supt∈[0,T ] |Y n
t − Yt|

P−→ 0 for any T > 0.

Theorem 4 Assume that conditions (A1)-(A3) are satisfied. Then we have

V (G; p, q)nt
ρ

(n)
p,q

ucp−→ t , (3.8)

where the quantity ρ(n)
p,q is given by

ρ(n)
p,q =

∞∑
m=0

ap,maq,mm! rmn (1). (3.9)

Proof: see Appendix.

Remark 2 Notice that by orthogonality of Hermite polynomials the identity

ρ(n)
p,q = E

[∣∣∣∆n
i G

τn

∣∣∣p∣∣∣∆n
i+1G

τn

∣∣∣q]
holds. Moreover, since the function L0 is slowly varying at 0, assumption (A1), (3.9) and (3.7)

(and the dominated convergence theorem) imply that

ρp,q = lim
n→∞

ρ(n)
p,q =

∞∑
m=0

ap,maq,mm! (2β−1 − 1)m = E[|Bβ/2
i −Bβ/2

i−1 |
p|Bβ/2

i+1 −B
β/2
i |

q] , (3.10)

where Bβ/2 is the fractional Brownian motion with Hurst parameter β/2. Consequently, The-

orem 4 yields the uniform convergence

V (G; p, q)nt
ucp−→ ρp,qt.

Next, we present the weak limit of the properly normalized sequence V (G; p, q)nt . Notice

that the central limit theorem for bipower variation is valid under the same assumptions that

are required to show the corresponding result for the power variation case (see [2]).

7
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Theorem 5 Assume that conditions (A1)-(A3) hold and 0 < β < 3
2 . Then we obtain the

weak convergence (in the space D([0, T ])2 equipped with the Skorohod topology)(
Gt,
√
n
(V (G; p, q)nt

ρ
(n)
p,q

− t
))

=⇒
(
Gt,

σp,q
ρp,q

Wt

)
, (3.11)

where W is a Brownian motion that is defined on an extension of the filtered probability space

(Ω,F , (Ft)t≥0, P ) and is independent of F , and σ2
p,q is given by

σ2
p,q = lim

n→∞
nVar

(
V (Bβ/2; p, q)n1

)
, (3.12)

where Bβ/2 is the fractional Brownian motion with Hurst parameter β/2.

Proof: see Appendix.

Remark 3 In Theorem 5 the constant ρ(n)
p,q can not be replaced by its limit ρp,q defined in

(3.10). This is due to the fact that the bias
√
n(ρ(n)

p,q −ρp,q) can, in general, converge to infinity.

Remark 4 The finiteness of σ2
p,q (for 0 < β < 3

2) and its exact representation is shown in

(6.11) in the Appendix. Note that due to the assumption (A1) the behaviour of the function

R near 0 is similar to that of the fractional Brownian motion with Hurst parameter β/2. This

is reflected in the formula (3.12).

The proof of Theorem 5 relies on the methods developed in the previous section. In the first step

we apply the multiplication formula (2.1) to obtain the chaos decomposition of the sequence
√
n
(
V (G;p,q)n

t

ρ
(n)
p,q

− t
)

. Then we show the convergence of finite dimensional distributions of the

sequence given in (3.11). Finally, we prove the tightness condition.

Notice that the weak convergence in (3.11) is equivalent to the stable convergence (in

D([0, T ])2)
√
n
(V (G; p, q)nt

ρ
(n)
p,q

− t
)
FG−st−→ σp,q

ρp,q
Wt , (3.13)

where FG denotes the σ-algebra generated by the process G (see [1], [16] or [24] for more

details on stable convergence). The latter result is crucial for proving a functional central limit

theorem for the bipower variation of integral processes which is presented in the next section.

4 Extensions to integral processes

In this section we extend the limit theorems of the previous section to integral processes

Zt =
∫ t

0
usdGs (4.1)

defined on the same probability space as G, where the stochastic integral is the pathswise

Riemann-Stieltjes integral. Assumption (A1) implies that G has finite r-variation for any

8
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r > 2/β and hence by [30] the integral in (4.1) is well-defined for any stochastic process u of

finite q-variation with q < 1/(1− (β/2)).

First we state the law of large numbers for the integral process which is valid under the

same assumptions as in the power variation case.

Theorem 6 Assume the conditions (A1)-(A3). Suppose that u = {ut, t ∈ [0, T ]} is a stochas-

tic process with finite r-variation, where r < 1
1−(β/2) . Set

Zt =
∫ t

0
usdGs.

Then for p, q > 0 we obtain

V (Z; p, q)nt
ucp−→ ρp,q

∫ t

0
|us|p+qds,

as n→∞.

Proof: see Appendix.

Remark 5 Note that integrals with respect to fractional Brownian motion Zt =
∫ t

0 usdB
β/2
s

are a special case of this setting leading to the same limit.

Next we provide the weak limit theorem of the properly normalized bipower variation.

Theorem 7 Assume the conditions (A1)-(A3) and suppose that u = {ut, t ∈ [0, T ]} is a

stochastic process with finite r-variation, where r < 1
1−(β/2) , and which is Hölder continuous of

the order a with a > max(1/(2(p ∧ 1)), 1/(2(q ∧ 1))). Then we obtain for Zt =
∫ t

0 usdGs and

p, q > 0 (
Gt,
√
n

(
V (Z; p, q)nt

ρ
(n)
p,q

−
∫ t

0
|us|p+qds

))
=⇒

(
Gt,

σp,q
ρp,q

∫ t

0
|us|p+qdWs

)
as n→∞, where the convergence is in D([0, T ])2 and W is a Brownian motion defined on an

extension of the filtered probability space (Ω,F , (Ft)t≥0, P ) and is independent of F .

Proof: see Appendix.

Combining Theorem 7 and 6 we can derive a feasible central limit theorem for the bipower

variation.

Corollary 1 Under the assumption of Theorem 7 it holds that

√
n

(
V (Z;p,q)n

t

ρ
(n)
p,q

−
∫ t

0 |us|
p+qds

)
√

V (Z;2p,2q)n
t

ρ2p,2q

σ2
p,q

ρ2p,q

D−→ N(0, 1).

9
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5 Conclusion

In this paper we derived convergence in probability and stable central limit theorems for bipower

variation of Gaussian processes with stationary increments and for associated integral processes.

The corresponding asymptotic theory for multipower variation can be obtained similarly in a

straightforward manner. Extensions of the results presented here to spatial and tempo-spatial

settings would be of interest, as would simulation and empirical studies of how well the limit

laws work in applications.

6 Appendix

In the following we denote all constants which do not depend on n by C.

Let H1 be the first Wiener chaos associated with the triangular array (∆n
jG/τn)n≥1,1≤j≤[nt],

i.e the closed subspace of L2(Ω,F , P ) generated by the random variables (∆n
jG/τn)n≥1,1≤j≤[nt].

Notice that H1 can be seen as a separable Hilbert space with a scalar product induced by the

covariance function of the process (∆n
jG/τn)n≥1,1≤j≤[nt]. This means we can apply the theory

of Section 2 with the canonical Hilbert space IH = H1. Denote by Hm the mth Wiener chaos

associated with the triangular array (∆n
jG/τn)n≥1,1≤j≤[nt] and by Im the corresponding linear

isometry between the symmetric tensor product H�m1 (equipped with the norm
√
m! ‖·‖H⊗m

1
)

and the mth Wiener chaos.

First, we present the chaos decomposition for the sequence V (G; p, q)nt − ρ
(n)
p,q t.

Lemma 1 For any t > 0, we obtain the decomposition

V (G; p, q)nt − ρ(n)
p,q t =

∞∑
m=2

Im

( 1
n

[nt]∑
i=1

fmi

)
+O(n−1) , (6.1)

where the kernels fmi ∈ H
�m
1 are given by

fmi =
m∑
h=0

s
(n)
h,m

(∆n
i G

τn

)⊗h
⊗̃
(∆n

i+1G

τn

)⊗m−h
. (6.2)

(for simplicity we suppress the dependency of fmi on n) with

s
(n)
h,m =

∞∑
l=0

ap,l+haq,l+m−hl!

(
l + h

l

)(
l +m− h

l

)
rln(1). (6.3)

Proof of Lemma 1: Using the multiplication formula (2.1) and the linearity of the mapping Im

10
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we obtain the representation

V (G; p, q)nt =
1
n

[nt]∑
i=1

∞∑
m1,m2=0

ap,m1aq,m2

(m1∧m2∑
l=0

l!

(
m1

l

)(
m2

l

)

×Im1+m2−2l

((∆n
i G

τn

)⊗m1

⊗l
(∆n

i+1G

τn

)⊗m2
))

=
1
n

[nt]∑
i=1

∞∑
m1,m2=0

ap,m1aq,m2

(m1∧m2∑
l=0

l!

(
m1

l

)(
m2

l

)
rln(1)

×Im1+m2−2l

((∆n
i G

τn

)⊗m1−l
⊗
(∆n

i+1G

τn

)⊗m2−l))

=
∞∑
m=0

Im

( 1
n

[nt]∑
i=1

fmi

)
.

Notice that ap,2m+1 = 0 for all m ≥ 0 and p ≥ 0, because the H2m+1 are odd functions. This

implies the identity

V (G; p, q)nt − ρ(n)
p,q t =

∞∑
m=2

Im

( 1
n

[nt]∑
i=1

fmi

)
+O(n−1) ,

which completes the proof of Lemma 1. �

Next, we present a lemma which has been shown in [2].

Lemma 2 Suppose that conditions (A1)-(A3) hold. Let ε > 0 with ε < 2 − β. Define the

sequence r(j) by

r(j) = (j − 1)β+ε−2, j ≥ 2 , (6.4)

and r(0) = r(1) = 1. Then we obtain the following assertions:

(i) It holds that
1
n

n∑
j=1

r2(j)→ 0.

If, moreover, β + ε− 2 < −1
2 it holds that

∞∑
j=1

r2(j) <∞.

(ii) For any 0 < ε < 2− β from (6.4) there exists a natural number n0(ε) such that

|rn(j)| ≤ Cr(j) , j ≥ 0

for all n ≥ n0(ε).

11
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(iii) Set ρ(0) = 1 and ρ(j) = 1
2

(
(j − 1)β − 2jβ + (j + 1)β

)
for j ≥ 1. Then it holds that

rn(j)→ ρ(j)

for any j ≥ 0.

Finally, we show the following result.

Lemma 3 It holds that

|s(n)
h,m| ≤

∞∑
l=0

|ap,l+h||aq,l+m−h|l!

(
l + h

l

)(
l +m− h

l

)
|rln(1)| (6.5)

≤ C

(
m

h

)
m!

( 1
|rn(1)|(1− |rn(1)|)

)m
, (6.6)

where the constant C does not depend on n, m and h.

Proof of Lemma 3: First, notice the identity

Var
(∣∣∣∆n

i G

τn

∣∣∣p) =
∞∑
l=2

a2
p,ll! <∞.

From this we deduce that a2
p,l ≤

C
l! (for any fixed p ≥ 0). Now, recall that |rn(1)| < 1 since rn

is a correlation function of a process with stationary increments. Consequently, we obtain the

inequality
∞∑
l=0

|ap,l+h||aq,l+m−h|l!

(
l + h

l

)(
l +m− h

l

)
|rln(1)| ≤ C

h!(m− h)!

∞∑
l=0

(l + 1) · · · (l +m)|rn(1)|l

= C

(
m

h

)
m!

( 1
|rn(1)|(1− |rn(1)|)

)m
.

Hence, we deduce the assertion of Lemma 3. �

Proof of Theorem 4: We first show the pointwise convergence V (G; p, q)nt − ρ
(n)
p,q t

P−→ 0. Using

the expansion (6.1) and the stationarity of the increments of G we obtain the identity.

Var
(
V (G; p, q)nt − ρ(n)

p,q t
)

=
∞∑
m=2

m!
( [nt]
n2
||fm1 ||2H⊗m

1
+

2
n2

[nt]−1∑
k=1

([nt]− k)〈fm1 , fm1+k〉H⊗m
1

)
. (6.7)

Now, by (6.2), Lemma 2 (ii) and Lemma 3 we have the inequalities

||fm1 ||2H⊗m
1
≤
( m∑
h=0

|s(n)
h,m|

)2
≤ C 4m

(m!)2(|rn(1)|(1− |rn(1)|))2m
, (6.8)

|〈fm1 , fm1+k〉H⊗m
1
| ≤ Cm

( m∑
h=0

|s(n)
h,m|

)2
rm(k − 1) ≤ Cm 4mrm(k − 1)

(m!)2(|rn(1)|(1− |rn(1)|))2m
. (6.9)

12
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for some C > 0. Consequently, we deduce that

Var
(
V (G; p, q)nt − ρ(n)

p,q t
)
≤ C

( [nt]
n2

exp
( 4

(|rn(1)|(1− |rn(1)|))2

)

+
2t exp

(
4C

(|rn(1)|(1−|rn(1)|))2

)
n

[nt]−1∑
k=1

r2(k − 1)
)
,

since rm(k) is decreasing in m. This implies Var
(
V (G; p, q)nt − ρ

(n)
p,q t
)
→ 0 (because rn(1) →

2β−1 − 1) by Lemma 2 (i), and we obtain the pointwise convergence

V (G; p, q)nt
ρ

(n)
p,q

P−→ t.

The ucp convergence follows immediately, because V (G;p,q)n
t

ρ
(n)
p,q

is increasing in t and the limit

process g(t) = t is continuous. �

Before we proceed with the proof of Theorem 5 let us show the following lemma.

Lemma 4 Under the assumptions (A1)-(A3) and 0 < β < 3
2 we have

lim
n→∞

nVar
(
V (G; p, q)nt − ρ(n)

p,q t
)

= σ2
p,qt , (6.10)

where σ2
p,q is defined in (3.12). Moreover, we obtain the identity

σ2
p,q =

∞∑
m=2

m!

 m∑
l=0

cl(m)ρl(1) + 2
∑

(l1,l2,l3)∈Jm

cl1,l2,l3(m)
∞∑
k=1

ρl1(k − 1)ρl2(k + 1)ρl3(k)

 ,

(6.11)

where Jm = {(l1, l2, l3) ∈ IN3| li ≥ 0, l1 + l2 + l3 = m}, ρ(j) is the correlation function of the

increments of the fractional Brownian motion Bβ/2 defined in Lemma 2 (iii),

cl(m) =
l∑

j=0

m−l+j∑
h=j

smh s
m
h−2j+l

(
m

h− 2j + l

)−1(
h

j

)(
m− h
l − j

)
,

cl1,l2,l3(m) =
l2+l3∑
h=l2

smh s
m
h−l2+l1

(
m

h− l2 + l1

)−1(
h

l2

)(
m− h
l1

)
,

and the quantity smh is given by

smh = lim
n−→∞

s
(n)
h,m =

∞∑
l=0

ap,l+haq,l+m−hl!

(
l + h

l

)(
l +m− h

l

)
ρl(1).

Proof of Lemma 4: We assume w.l.o.g. that t = 1. First, we prove the identities

||fm1 ||2H⊗m
1

=
m∑
l=0

c
(n)
l (m)rln(1) , (6.12)

〈fm1 , fm1+k〉H⊗m
1

=
∑

(l1,l2,l3)∈Jm

c
(n)
l1,l2,l3

(m)rl1n (k − 1)rl2n (k + 1)rl3n (k) , (6.13)

13
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where c(n)
l (m) (resp. c

(n)
l1,l2,l3

(m)) are defined exactly as cl(m) (resp. cl1,l2,l3(m)), but smh is

replaced by s(n)
h,m.

Notice that

fmi =
m∑
h=0

s
(n)
h,m

(
m

h

)−1 ∑
tj∈{i,i+1},]{tj=i}=h

∆n
t1G

τn
⊗ · · · ⊗

∆n
tmG

τn
.

Next, we obtain

||fm1 ||2H⊗m
1

=
m∑

h,h′=0

s
(n)
h,ms

(n)
h′,m

(
m

h

)−1(
m

h′

)−1∑
〈
∆n
t1G

τn
,
∆n
t′1
G

τn
〉H1 · · · 〈

∆n
tmG

τn
,
∆n
t′m
G

τn
〉H1 ,

where the second sum is running over all indexes tj , t′j with tj , t
′
j ∈ {1, 2}, ]{tj = 1} = h and

]{t′j = 1} = h′. Since 〈
∆n

t1
G

τn
,

∆n
t′1
G

τn
〉H1 = rn(1) or rn(0) = 1, we get the representation

||fm1 ||2H⊗m
1

=
m∑
l=0

c
(n)
l (m)rln(1) ,

where we have to compute c(n)
l (m). For this purpose we need to count all possible h, h′ and all

td, t
′
d with td, t

′
d ∈ {1, 2}, ]{td = 1} = h, ]{t′d = 1} = h′ such that

]{td = 1, t′d = 2} = j, ]{td = 1, t′d = 1} = h− j,

]{td = 2, t′d = 1} = l − j, ]{td = 2, t′d = 2} = m− h+ j − l,

where 0 ≤ j ≤ l. For this condition to be satisfied we require that j ≤ h ≤ m − l + j and

h′ = h− 2j + l. Moreover, for fixed j and h there are(
m

h

)(
h

j

)(
m− h
l − j

)

of the above-mentioned combinations. By summing over all possible j and h we obtain the

identity (6.12).

The second identity can be deduced in a similar way. To compute c(n)
l1,l2,l3

(m) (for (l1, l2, l3) ∈
Jm) we need to look at all possible h, h′ and all td, t′d with td ∈ {1, 2}, t′d ∈ {k + 1, k + 2},
]{td = 1} = h, ]{t′d = k + 1} = h′ such that

]{td = 2, t′d = k + 1} = l1, ]{td = 1, t′d = k + 2} = l2,

]{td = 1, t′d = k + 1} = h− l2, ]{td = 2, t′d = k + 2} = m− h− l1.

These conditions imply that l2 ≤ h ≤ m− l1 = l2 + l3 and h′ = h− l2 + l1. Moreover, for fixed

h there are (
m

h

)(
h

l2

)(
m− h
l1

)

14
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of the above-mentioned combinations. Hence, we obtain (6.13).

Now, recall the identity (6.7) (for t = 1):

nVar
(
V (G; p, q)n1 − ρ(n)

p,q

)
=
∞∑
m=2

m!
(
||fm1 ||2H⊗m

1
+

2
n

n−1∑
k=1

(n− k)〈fm1 , fm1+k〉H⊗m
1

)
.

As in the proof of Theorem 4 we obtain the approximation

nVar
(
V (G; p, q)n1 − ρ(n)

p,q

)
≤ C

(
1 + 2

n−1∑
k=1

r2(k − 1)
)
,

where the function r is defined in Lemma 2 (i). When 0 < β < 3
2 the constant ε > 0 (in the

definition of the function r) can be chosen such that β + ε− 2 < −1
2 . In this case we have

∞∑
k=1

r2(k − 1) <∞.

Finally, recall the convergence

rn(j)→ ρ(j)

for any j ≥ 0 (see Lemma 2 (iii)). By the dominated convergence theorem we deduce that

nVar
(
V (G; p, q)n1 − ρ(n)

p,q

)
→

∞∑
m=2

m!
( m∑
l=0

cl(m)ρl(1)

+ 2
∑

(l1,l2,l3)∈Jm

cl1,l2,l3(m)
∞∑
k=1

ρl1(k − 1)ρl2(k + 1)ρl3(k)
)
.

On the other hand the right-hand side of the above convergence equals

σ2
p,q = limn→∞ nVar

(
V (Bβ/2; p, q)n1

)
, because ρ is the correlation function of the increments

of the fractional Brownian motion Bβ/2. This proves (6.11). �

Proof of Theorem 5: We divide the proof of Theorem 5 into two steps. In the first step we

prove the convergence of finite dimensional distribution of the sequence
(
Gt,
√
n
(
V (G;p,q)n

t

ρ
(n)
p,q

−t
))

.

Then we prove the tightness of this sequence.

Step 1: Define the vector Yn = (Y 1
n , . . . , Y

d
n )T by

Y k
n =

1√
n

[nbk]∑
i=[nak]+1

(∣∣∣∆n
i G

τn

∣∣∣p∣∣∣∆n
i+1G

τn

∣∣∣q − ρ(n)
p,q

)
, (6.14)

where (ak, bk], k = 1, . . . , d, are disjoint intervals contained in [0, T ]. Clearly, it suffices to prove

that (
Gbk −Gak

, Y k
n

)
1≤k≤d

D−→
(
Gbk −Gak

, σp,q(Wbk −Wak
)
)

1≤k≤d
,

where σp,q is given by (3.12) (because ρ(n)
p,q → ρp,q, where ρp,q is given in (3.10)).
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By Lemma 1 we obtain the representation

Y k
n =

∞∑
m=2

Im

( 1√
n

[nbk]∑
i=[nak]+1

fmi

)
+O(n−1/2).

Since

E[(Gbk −Gak
)Y l
n] = 0

for any 1 ≤ k, l ≤ d, it is sufficient to check the following conditions.

(i) For any m ≥ 1 and k = 1, . . . , d, the limit

lim
n→∞

m!
∣∣∣∣∣∣ 1√

n

[nbk]∑
i=[nak]+1

fmi

∣∣∣∣∣∣2
H⊗m

1

= σ2
p,q(m, k)

exists and
∞∑
m=2

m! sup
n

∣∣∣∣∣∣ 1√
n

[nbk]∑
i=[nak]+1

fmi

∣∣∣∣∣∣2
H⊗m

1

<∞ ,

(ii) For any m ≥ 1 and k 6= h,

lim
n→∞

〈 1√
n

[nbk]∑
i=[nak]+1

fmi ,
1√
n

[nbh]∑
i=[nah]+1

fmi

〉
H⊗m

1

= 0 ,

(iii) For any m ≥ 1, k = 1, . . . , d and 1 ≤ p ≤ m− 1, we have that

lim
n→∞

∣∣∣∣∣∣( 1√
n

[nbk]∑
i=[nak]+1

fmi

)
⊗p
( 1√

n

[nbk]∑
i=[nak]+1

fmi

)∣∣∣∣∣∣
H⊗2(m−p)

1

= 0.

Under conditions (i)-(iii) we then obtain (by Theorem 2) the central limit theorem

Yn
D−→ Nd

(
0, σ2

p,q diag(b1 − a1, . . . , bd − ad)
)
, (6.15)

where σ2
p,q is given by (3.12). Since the increments of the process G are stationary we will prove

part (i) and (iii) only for k = 1, a1 = 0 and b1 = 1.

(i) By the same methods as presented in Lemma 4 we obtain

σ2
p,q(m, 1) = m!

 m∑
l=0

cl(m)ρl(1) + 2
∑

(l1,l2,l3)∈Jm

cl1,l2,l3(m)
∞∑
k=1

ρl1(k − 1)ρl2(k + 1)ρl3(k)

 ,

∞∑
m=2

m! sup
n

∣∣∣∣∣∣ 1√
n

n∑
i=1

fmi

∣∣∣∣∣∣2
H⊗m

1

<∞

16
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and
∑∞

m=2 σ
2
p,q(m, 1)=σ2

p,q.

(ii) For any 1 ≤ k, h ≤ d with bk ≤ ah we have

〈 1√
n

[nbk]∑
i=[nak]+1

fmi ,
1√
n

[nbh]∑
i=[nah]+1

fmi

〉
H⊗m

1

=
m!
n

[nbk]∑
j=[nak]+1

[nbh]∑
i=[nah]+1

〈fm1 , fm1+i−j〉H⊗m
1
.

Assume w.l.o.g. that ak = 0, bk = ah = 1 and bh = 2 (the case bk < ah is much easier).

By part (ii) of Lemma 2 with 0 < ε < 3
2 − β in the definition of r (see (6.4)) we obtain the

approximation (by (6.9))

∣∣∣〈 1√
n

[nbk]∑
i=[nak]+1

fmi ,
1√
n

[nbh]∑
i=[nah]+1

fmi

〉
H⊗m

1

∣∣∣ ≤ Cm( 1
n

n∑
j=1

jrm(j) +
n−1∑
j=1

rm(n+ j)
)

for some constant Cm > 0. It follows that rm(j) ≤ (j − 1)−1−δ for some δ > 0 and for all

m, j ≥ 2. Hence, we obtain

〈 1√
n

[nbk]∑
i=[nak]+1

fmi ,
1√
n

[nbh]∑
i=[nah]+1

fmi

〉
H⊗m

1

→ 0

as n→∞.

(iii) Fix 1 ≤ p ≤ m− 1. We obtain the identity

fmi ⊗p fmj =
m∑

h,h′=0

s
(n)
h,ms

(n)
h′,m

(
m

h

)−1(
m

h′

)−1∑
〈
∆n
t1G

τn
,
∆n
t′1
G

τn
〉H1 · · · 〈

∆n
tpG

τn
,
∆n
t′p
G

τn
〉H1

×
∆n
tp+1

G

τn
⊗ · · · ⊗

∆n
tmG

τn
⊗

∆n
t′p+1

G

τn
⊗ · · · ⊗

∆n
t′m
G

τn
,

where the second sum is running over all indexes tk, t′k with tk ∈ {i, i + 1} , t′k ∈ {j, j + 1},
]{tk = i} = h and ]{t′k = j} = h′. Now, by Lemma 2 (ii) (with 0 < ε < 3

2 − β in the definition

of r) and Lemma 3 we deduce the inequality∣∣∣∣∣∣( 1√
n

n∑
i=1

fmi

)
⊗̃p
( 1√

n

n∑
i=1

fmi

)∣∣∣∣∣∣
H⊗2(m−p)

1

≤ Cm
n2

∑
1≤j,l,h,k≤n

rp(|j − l| − 1)rp(|h− k| − 1)

×

∣∣∣∣∣
〈(∆n

jG

τn

)⊗(m−p)
⊗̃
(∆n

l G

τn

)⊗(m−p)
,
(∆n

hG

τn

)⊗(m−p)
⊗̃
(∆n

kG

τn

)⊗(m−p)
〉
H⊗2(m−p)

1

∣∣∣∣∣
where ”∼” denotes the symmetrization and r(−1) := 1. Applying again Lemma 2 (ii) and

Lemma 3 we see that it suffices to prove

n−2
∑

1≤j,l,h,k≤n
rp(|j − l| − 1)rp(|h− k| − 1)

×rα(|j − h| − 1)rm−p−α(|l − h| − 1)rm−p−α(|j − k| − 1)rα(|l − k| − 1)→ 0,
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where 0 ≤ α ≤ m− p. The latter term is smaller than

n−1
∑

−1≤j,l,k≤n−2

rp(|j − l|)rp(k)rα(j)rm−p−α(l)rm−p−α(|j − k|)rα(|l − k|).

Without any loss of generality we can assume that p = m − p = 1 and α = 0 or α = 1. For

α = 0 and any 0 < ε < 1 we get

n−1
∑

−1≤j≤n−2

 ∑
−1≤l≤n−2

r(|j − l|)r(l)

2

≤ n−1
∑

−1≤j≤[nε]

 ∑
−1≤l≤n−2

r(|j − l|)r(l)

2

+2n−1
∑

[nε]<j≤n−2

 ∑
−1≤l≤[nε/2]

r(|j − l|)r(l)

2

+ 2n−1
∑

[nε]<j≤n−2

 ∑
[nε/2]<l≤n−1

r(|j − l|)r(l)

2

≤ 2ε

 ∑
−1≤l<n−2

r2(l)

2

+ 6
∑

−1≤l<n−2

r2(l)
∑

[nε/2]<l<∞

r2(l)

which converges to 2ε
(∑

−1≤l<∞ r
2(l)
)2

as n→∞ by Lemma 2 (i). The desired result follows

by letting ε tend to zero. �

Step 2: Clearly, it suffices to show the tightness of the sequence
√
n
(
V (G; p, q)nt − ρ

(n)
p,q t
)

.

Set

Znt =
√
n
(
V (G; p, q)nt − ρ(n)

p,q t
)

=
∞∑
m=2

Im

( 1√
n

[nt]∑
i=1

fmi

)
and

Zn,Nt =
N∑
m=2

Im

( 1√
n

[nt]∑
i=1

fmi

)
.

In Step 1 we have proved that conditions (i)-(iii) of Theorem 2 are satisfied. Then by (2.3) and

the Cauchy-Schwarz inequality we obtain the approximation

P
(
|Zn,Nt − Zn,Nt1 | ≥ λ, |Z

n,N
t2
− Zn,Nt | ≥ λ

)
≤
E1/2[|Zn,Nt − Zn,Nt1 |

4]E1/2[|Zn,Nt2 − Zn,Nt |4]
λ4

≤ C
σ4
p,q([nt]− [nt1])([nt2]− [nt])

λ4
≤ C

σ4
p,q(t2 − t1)2

λ4

for any t1 ≤ t ≤ t2 and λ > 0. On the other hand condition (i) of Theorem 2 also implies that

lim
N→∞

lim sup
n→∞

E[|Znt − Z
n,N
t |2] = 0.

Using this we conclude that

P
(
|Znt − Znt1 | ≥ λ, |Z

n
t2 − Z

n
t | ≥ λ

)
≤ C

σ4
p,q(t2 − t1)2

λ4

18
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for any t1 ≤ t ≤ t2 and λ > 0, from which we deduce the tightness of the sequence Znt by

Theorem 15.6 in [11]. This completes the proof of Theorem 5. �

Proof of Theorem 6: We will show that

n−1τ−(p+q)
n

[nt]−1∑
i=1

|∆n
i Z|p|∆n

i+1Z|q
P−→ ρp,q

∫ t

0
|us|p+qds,

where we can follow similar ideas as in [12] and [2].

First we look at the case p, q ≤ 1, then we obtain, for any m ≥ n

m−1τ−(p+q)
m

[mt]∑
j=1

|∆m
i Z|p|∆m

i+1Z|q − ρp,q
∫ t

0
|us|p+qds

= m−1τ−(p+q)
m

[mt]∑
j=1

|∆m
j Z|p

(
|∆m

j+1Z|q − |u j
m

∆m
j+1G|q

)

+m−1τ−(p+q)
m

[mt]∑
j=1

|u j
m

∆m
j+1G|q

(
|∆m

j Z|p − |u j−1
m

∆m
j G|p

)

+m−1τ−(p+q)
m

[mt]∑
j=1

|u j
m

∆m
j+1G|q|u j−1

m
∆m
j G|p

−
[nt]∑
i=1

∑
j∈In(i)

|u i
n

∆m
j+1G|q|u i−1

n
∆m
j G|p


+

m−1τ−(p+q)
m

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q
∑

j∈In(i)

|∆m
j+1G|q|∆m

j G|p

−ρp,q
n

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q


+ρp,q

n−1

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q −

∫ t

0
|us|p+qds


= A(m)

t + B(m)
t + C(n,m)

t + D(n,m)
t + E(n)

t ,

where In(i) = {j : j
m ∈ ( i−1

n , in ]}, 1 ≤ i ≤ [nt].

A(m)
t converges in probability to zero, uniformly in t, as m tends to infinity. We denote by
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||.||∞ the supremum norm on [0, T ]. Using the Hölder inequality we obtain∥∥∥A(m)
∥∥∥
∞

≤ m−1τ−(p+q)
m

[mT ]∑
j=1

∣∣∆m
j Z
∣∣p ∣∣∣|∆m

j+1Z|q − |u j
m

∆m
j+1G|q

∣∣∣
≤

m−1τ−2p
m

[mT ]∑
j=1

∣∣∆m
j Z
∣∣2p1/2

×

m−1τ−2q
m

[mT ]∑
j=1

(
|∆m

j+1Z|q − |u j
m

∆m
j+1Z|q

)2

1/2

≤

m−1τ−2p
m

[mT ]∑
j=1

∣∣∆m
j Z
∣∣2p1/2

×

m−1τ−2q
m

[mT ]∑
j=1

|∆m
j+1Z − u j

m
∆m
j+1G|2q

1/2

.

The first term tends to µ2p

∫ T
0 |us|

2pds in probability as follows by Theorem 2 of [2], and the

second term can be shown to tend to zero as in the proof of that theorem.

The convergence of B(m)
t to zero as m→∞ can be verified analogously.

For any fixed n, D(n,m)
t converges in probability to zero, uniformly in t, as m tends to

infinity. In fact,

∥∥∥D(n,m)
∥∥∥
∞
≤

[nT ]∑
i=1

∣∣∣u i−1
n

∣∣∣p ∣∣∣u i
n

∣∣∣q
×

∣∣∣∣∣∣m−1τ−(p+q)
m

∑
j∈In(i)

|∆m
j G|p|∆m

j+1G|q −
ρp,q
n

∣∣∣∣∣∣ P−→ 0

since we know by Theorem 4 that

m−1τ−(p+q)
m

[mt]∑
j=1

|∆m
j G|p|∆m

j+1G|q
ucp→ ρp,qt.
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For the term C(n,m)
t we obtain∥∥∥C(n,m)

∥∥∥
∞

≤ m−1τ−(p+q)
m

[nT ]∑
i=1

∑
j∈In(i)

∣∣∣|u i−1
n
|p|u i

n
|q − |u j−1

m
|p|u j

m
|q
∣∣∣ ∣∣∆m

j G
∣∣p ∣∣∆m

j+1G
∣∣q

+
∥∥|u|p+q∥∥∞ sup

0≤t≤T
m−1τ−(p+q)

m

∑
m
n

([nt]−1)≤j≤m
n

[nt]

∣∣∆m
j G
∣∣p ∣∣∆m

j+1G
∣∣q

≤ m−1τ−(p+q)
m

[nT ]∑
i=1

‖|u|p‖∞ sup
s∈In(i)∪In(i−1)

(∣∣∣u i
n

∣∣∣q − |us|q)
×
∑

j∈In(i)

∣∣∆m
j G
∣∣p ∣∣∆m

j+1G
∣∣q

+m−1τ−(p+q)
m

[nT ]∑
i=1

‖|u|q‖∞ sup
s∈In(i+1)∪In(i)

(∣∣∣u i−1
n

∣∣∣p − |us|p)
×
∑

j∈In(i)

∣∣∆m
j G
∣∣p ∣∣∆m

j+1G
∣∣q

+
∥∥|u|p+q∥∥∞ sup

0≤t≤T
m−1τ−(p+q)

m

∑
m
n

([nt]−1)≤j≤m
n

[nt]

∣∣∆m
j G
∣∣p ∣∣∆m

j+1G
∣∣q ,

where we denote In(i) := ( i−1
n , in ], 1 ≤ i ≤ [nt]. As m tends to infinity, we find as above by

Theorem 4, that this converges in probability to

Fn =
ρp,q
n

‖|u|p‖∞ [nT ]∑
i=1

sup
s∈In(i)∪In(i−1)

∣∣∣|u i
n
|q − |us|q

∣∣∣
+ ‖|u|q‖∞

[nT ]∑
i=1

sup
s∈In(i+1)∪In(i)

∣∣∣|u i−1
n
|p − |us|p

∣∣∣+
∥∥|u|p+q∥∥∞

 .

By the same argument as in [12], Fn tends to zero almost surely as n tends to infinity.

Finally we have to show that limn→∞
∥∥E(n)

∥∥
∞ = 0.∥∥∥E(n)

∥∥∥
∞

≤ ρp,q
n

[nT ]∑
i=1

sup
s∈In(i)

∣∣∣|u i−1
n
|p|u i

n
|q − |us|p+q

∣∣∣+ ρp,q
‖|u|p+q‖∞

n

≤ ρp,q

‖|u|p‖∞ n−1

[nT ]∑
i=1

sup
s∈In(i)

||u i
n
|q − |us|q|

+ ‖|u|q‖∞ n
−1

[nT ]∑
i=1

sup
s∈In(i)

||u i−1
n
|p − |us|p|

+n−1

[nT ]∑
i=1

sup
s∈In(i)

||u i−1
n
|p − |us|p| × ||u i

n
|q − |us|q|+

‖u‖∞
n

 ,
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where the terms tend to zero by the same arguments as for Fn.

Next we look at the other cases of p and q. Without loss of generality we may assume p ≤ q
and q > 1.

In the following we will use

(
∑
i

|ai|q|bi + ci|p)1/q ≤ (
∑
i

|ai|q|bi|p)1/q + (
∑
i

|ai|q|ci|p)1/q,

which follows by some straight forward application of Minkowski’s inequality together with the

triangular inequality.

Hence we can show thatm−1τ−(p+q)
m

[mt]∑
j=1

|∆m
j Z|p|∆m

j+1Z|q
1/q

≤ I + II + III + IV + V + V I + V II

with

I =

m−1τ−(p+q)
m

[mt]∑
j=1

|∆m
j Z|p

∣∣∣∆m
j+1Z − u j

m
∆m
j+1G

∣∣∣q
1/q

II =

m−1τ−(p+q)
m

[mt]∑
j=1

|u j
m

∆m
j+1Z|q

∣∣∣∆m
j Z − u j−1

m
∆m
j G
∣∣∣p
1/q

III =

m−1τ−(p+q)
m

∑
m
n

([nt])≤j≤m
n

[nt]

|u j
m

∆m
j+1G|q|u j−1

m
∆m
j G|p

1/q

IV =

m−1τ−(p+q)
m

[nt]∑
i=1

∑
j∈In(i)

|u j
m

∆m
j+1G|q|(u j−1

m
− u i−1

n
)∆m

j G|p
1/q

V =

m−1τ−(p+q)
m

[nt]∑
i=1

∑
j∈In(i)

|(u j
m
− u i

n
)∆m

j+1G|q|u i−1
n

∆m
j G|p

1/q

V I =

m−1τ−(p+q)
m

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q
∑

j∈In(i)

|∆m
j+1G|q|∆m

j G|p

−ρp,q
n

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q
1/q

V III =

ρp,q
n

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q
1/q
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On account of this we obtain∣∣∣∣∣∣∣
m−1τ−(p+q)

m

[mt]∑
j=1

|∆m
j Z|p|∆m

j+1Z|q
1/q

−
(
ρp,q

∫ t

0
|us|p+qds

)1/q

∣∣∣∣∣∣∣
≤ |I|+ |II|+ |III|+ |IV |+ |V |+ |V I|+ |V II −

(
ρp,q

∫ t

0
|us|p+qds

)1/q

|

P−→ 0

by the same arguments as for the case p, q ≤ 1. This completes the proof. �

Proof of Theorem 7: We obtain, for any m ≥ n

(
ρ(m)
p,q

)−1
m−1/2τ−(p+q)

m

[mt]∑
j=1

|∆m
j Z|p|∆m

j+1Z|q −m1/2

∫ t

0
|us|p+qds

=
(
ρ(m)
p,q

)−1
m−1/2τ−(p+q)

m

[mt]∑
j=1

|∆m
j Z|p

(
|∆m

j+1Z|q − |u j
m

∆m
j+1G|q

)

+
(
ρ(m)
p,q

)−1
m−1/2τ−(p+q)

m

[mt]∑
j=1

|u j
m

∆m
j+1G|q

(
|∆m

j Z|p − |u j−1
m

∆m
j G|p

)

+
(
ρ(m)
p,q

)−1
m−1/2τ−(p+q)

m

[mt]∑
j=1

|u j
m

∆m
j+1G|q|u j−1

m
∆m
j G|p −m−1/2

[mt]∑
j=1

|u j
m
|q|u j−1

m
|p

−
(
ρ(m)
p,q

)−1
m−1/2τ−(p+q)

m

[nt]∑
i=1

∑
j∈In(i)

|u i
n

∆m
j+1G|q|u i−1

n
∆m
j G|p +

m1/2

n

[nt]∑
i=1

|u i
n
|q|u i−1

n
|p

+
(
ρ(m)
p,q

)−1
m−1/2τ−(p+q)

m

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q
∑

j∈In(i)

|∆m
j+1G|q|∆m

j G|p −
m1/2

n

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q

+m−1/2

[nt]∑
i=1

|u i−1
n
|p|u i

n
|q −m1/2

∫ t

0
|us|p+qds

= A(m)
t + B(m)

t + C(n,m)
t + D(n,m)

t + E(n)
t .

By a combination of the arguments of Theorem 6 and Theorem 7 in [2] together with the

result of Theorem 5 it can be shown that ||A(m)||∞, ||B(m)||∞, ||C(m,n)||∞, ||E(n)||∞ → 0 and

D
(m,n)
t

FG−st−→ σp,q

ρp,q

∫ t
0 |us|

p+qdWs as n,m→∞.

�
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[29] J. H. C. Woerner, Inference in Lévy type stochastic volatility models, Advances in Applied

Probability 2007(39) 531-549.

25



O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij and J.H.C. Woerner: Bipower Variation
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