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1 Introduction

In a seminal paper, Granger (1969) introduced an operational definition of causality

between two variables. In particular, if the variance of the prediction error of the first

variable is reduced by including measurements from the second variable, then the second

variable is said to have a causal influence on the first variable. This definition has since

formed the starting-point for testing the null hypothesis of one variable not causing the

other. Note, however, that prediction in the original definition has in practice come to

mean in-sample, not necessarily out-of-sample, prediction. The testing has most often

been carried out in the linear framework. Lütkepohl (2005) provides a comprehensive

overview and an introduction to the testing procedure. For an example of a genuine

out-of-sample application, see Ashley, Granger, and Schmalensee (1980).

During the last decade there has been growing interest in generalizing the test to

allow for nonlinear relationships between variables. Baek and Brock (1992) suggested

a generalization based on the BDS test described in Brock, Dechert, Scheinkman, and

LeBaron (1996); Hiemstra and Jones (1994) proposed another version of this test,

relaxing the iid assumption. Bell, Kay, and Malley (1996) developed a procedure for

causality testing between two univariate time series using non-parametric regression

(“generalized” additive models). The above-mentioned tests are all nonparametric and

computationally intense. Skalin and Teräsvirta (1999) proposed a parametric test based

on the smooth transition regression model and applied that to a set of long Swedish

macroeconomic series. That test is easy to compute, but it relies on specific assumptions

about the functional form of the causal relationship. Li (2006) suggested a somewhat

similar test allowing for threshold effects and augmenting the autoregressive threshold

(or smooth transition) model with covariates. Chen, Rangarjan, Feng, and Ding (2004)

extended Granger’s idea to nonlinear situations by proposing a procedure based on

a local linear approximation of the nonlinear function. Apparently, no asymptotic

distribution theory is available for inference in this framework, and the results are only

descriptive.

In this paper, we suggest two new tests that require little knowledge of the func-

tional relationship between the two variables. The idea is to globally approximate the

potential causal relationship between the variables by a Taylor series expansion, which

can be seen as a way of linearizing the testing problem. In that sense, noncausality
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tests based on a single linear regression form a special case in which the Taylor series

expansion approximating the actual relationship is of order one. In other words, our

framework nests the linear case. Compared to nonparametric procedures, the tests

introduced in this paper are very easy to compute. They are also available in large

samples where the computational burden of nonparametric techniques becomes pro-

hibitive. Rech, Teräsvirta, and Tschernig (2001) recently applied this idea to nonlinear

variable selection.

The paper is organized as follows. Section 2 contains a description of our noncausal-

ity tests. Section 3 reports results of a simulation study: both the size and the power

of these tests are investigated by Monte Carlo experiments. Section 4 provides a small

study based on long Swedish macroeconomic series and Section 5 concludes.

2 Tests of the Granger Noncausality Hypothesis

2.1 Standard linear Granger noncausality test

We begin by recalling the standard way for testing the linear Granger noncausality

hypothesis. In that framework, a series xt is defined not to (linearly) Granger cause

another series yt (x NGC y) if the null hypothesis

H0 : β1 = . . . = βq = 0 (1)

holds in

yt = θ0 + θ1yt−1 + . . . + θpyt−p + β1xt−1 + . . . + βqxt−q + εt. (2)

We make the following assumptions:

A1. {εt} is a sequence of independent, random normal(0, σ2) errors.

A2. {yt} is stationary and ergodic under (1), that is, the roots of the lag polynomial

1 −
∑q

j=1 θjL
j lie outside the unit circle.

A3. {xt} is a weakly stationary and ergodic sequence.

If {xt} is a linear autoregressive-moving average process, then the process is sta-

tionary if and only if the roots of the autoregressive lag polynomial lie outside the

unit circle. In the nonlinear case, probabilistic properties, such as stationarity and
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ergodicity, do not seem to be available except in a few special cases, see Stensholt and

Tjøstheim (1987), for example.

Assumption A1 is made to allow maximum likelihood-based inference. Robustifying

the inference against non-normal errors is possible, however, but is not considered here.

Assumptions A2 and A3 guarantee the existence of the second moments needed for the

standard distribution theory to be valid.

Under these assumptions one can test the noncausality hypothesis in the single

equation framework (2) using an LM statistic (denoted by the subscript SE). Follow-

ing the recommendation in many earlier papers, we use an F -approximation to the

asymptotically χ2-distributed statistic:

LinearSE =
(SSR0 − SSR1)/q

SSR1/(T − p − q − 1)

approx
∼
H0

Fq, T−p−q−1, (3)

where SSR0 and SSR1 are sums of squared residuals from regressions under the null

and the alternative hypotheses, respectively, and T is the number of observations.

The test for testing the null of yt not Granger causing xt (y NGC x) can be defined

analogously.

Testing the noncausality hypothesis within (2) contains the implicit assumption that

yt does not Granger cause xt. If this assumption is not valid, then, at least in principle,

testing has to be carried out within a bivariate system. Testing the hypothesis of xt

not causing yt amounts to testing

H0 : β11 = . . . = β1qy
= 0 (4)

in the system:

yt = θ10 + θ11yt−1 + . . . + θ1py
yt−py

+ β11xt−1 + . . . + β1qy
xt−qy

+ εyt

xt = θ20 + θ21yt−1 + . . . + θ2px
yt−px

+ β21xt−1 + . . . + β2qx
xt−qx

+ εxt,
(5)

where εit are assumed white noise with a variance-covariance matrix Σ =

(
σ2

yy σ2
yx

σ2
xy σ2

xx

)

under H0.

The F -version of the LM-test, see Bewley (1986), for testing (4) within the equation

system with feedback (5), denoted by the subscript FB, can then be computed as

LinearFB =
T

qy

(
m − tr (Ω̂1Ω̃

−1
0

)
)

approx
∼
H0

Fqy, T , (6)
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where m is the number of equations in the system. Matrices Ω̃0 = Ẽ0
′ Ẽ0 and

Ω̂1 = Ê1
′ Ê1 are the cross-product matrices of the residuals from estimating the

model under the null and under the alternative, respectively. More specifically,

Ẽ0 = (ε̃1, . . . , ε̃T )′ and Ê1 = (ε̂1, . . . , ε̂T )′, where ε̃t and ε̂t, t = 1, . . . , T , are the

(m × 1) residual vectors from the restricted and the unrestricted model, respectively.

Analogously, the hypothesis y NGC x corresponds to H0 : θ21 = . . . = θ2px
= 0 in (5).

2.2 Framework for the general test

Suppose now that we have two weakly stationary and ergodic time series {xt} and {yt}.

The functional form of the relationship between the two is unknown, but it is assumed

that the possible causal relationship between y and x is adequately represented by the

following equation:

yt = fy(yt−1, . . . , yt−p, xt−1, . . . , xt−q; θ) + εyt, (7)

where θ is a parameter vector and εyt ∼ nid(0, σ2
y). In this framework, x does not

Granger cause y if

fy(yt−1, . . . , yt−p, xt−1, . . . , xt−q; θ) = f ∗(yt−1, . . . , yt−p; θ
∗). (8)

This means that the conditional mean of yt given the past values of xt and yt is not a

function of the past values of xt.

If the possibility of causality from y to x cannot be excluded a priori, one has to

assume that there exists a reduced form of the relationship between the two variables.

Its precise form is unknown but we assume that it is represented by the following

bivariate system:

yt = fy(yt−1, . . . , yt−py
, xt−1, . . . , xt−qy

; θy) + εyt

xt = fx(yt−1, . . . , yt−px
, xt−1, . . . , xt−qx

; θx) + εxt,
(9)

where θi, i = y, x, are parameter vectors and εit ∼ nid(0, σ2
i ) and Eεytεxs = 0 for all

t, s. In this framework, x NGC y if

fy(yt−1, . . . , yt−py
, xt−1, . . . , xt−qy

; θy) = f ∗(yt−1, . . . , yt−py
; θ∗

y) (10)

in (9). Analogously, y NGC x if

fx(yt−1, . . . , yt−px
, xt−1, . . . , xt−qx

; θx) = f ∗∗(xt−1, . . . , xt−qx
; θ∗

x) (11)

in (9).
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2.3 Noncausality tests based on a Taylor series approximation

The null hypothesis of no Granger causality can be tested as follows. First, linearize

fy and fx by approximating them with general polynomials. After merging terms and

reparameterizing, the kth-order Taylor approximation of fy has the following form:

yt = β0 +

py∑

j=1

βjyt−j +

qy∑

j=1

γjxt−j +

+

py∑

j1=1

py∑

j2=j1

βj1j2yt−j1yt−j2 +

py∑

j1=1

qy∑

j2=1

δj1j2yt−j1xt−j2 +

+

qy∑

j1=1

qy∑

j2=j1

γj1j2xt−j1xt−j2 + · · · +

+

py∑

j1=1

py∑

j2=j1

· · ·

py∑

jk=jk−1

βj1...jk
yt−j1 · · · yt−jk

+ · · ·+

+

qy∑

j1=1

qy∑

j2=j1

· · ·

qy∑

jk=jk−1

γj1...jk
xt−j1 · · ·xt−jk

+ ǫyt,

= T k
y (y, x) + ǫyt, (12)

where ǫyt = εyt + fy − T k
y (y, x), and qy ≤ k and py ≤ k for notational convenience.

Expansion (12) contains all possible combinations of lagged values of yt and lagged

values of xt up to order k. A similar expression can be defined for xt, and the testing

is carried out within the system
{

yt = T k
y (y, x) + ǫyt

xt = T k
x (x, y) + ǫxt,

(13)

where T k
x (x, y) and ǫxt are defined analogously.

2.3.1 General test

Owing to the approximation (12), the testing problem is straightforward as it has been

returned to the problem of testing a linear hypothesis in a bivariate system that is

linear in parameters. The assumption that xt does not Granger cause yt means that all

terms involving functions of lagged values of xt in (12) must have zero coefficients. In

the most general case1, the null hypothesis of xt not Granger causing yt can be written

1We are only going to consider the bivariate case. Extensions to higher-dimensional systems are
straightforward.

5



as

H02 :





γj = 0, j = 1, . . . , qy

δj1j2 = 0, j1 = 1, . . . , py, j2 = 1, . . . , qy

γj1j2 = 0, j1 = 1, . . . , qy, j2 = j1, . . . , qy

...

γj1...jk
= 0, j1 = 1, . . . , qy, j2 = j1, . . . , qy, . . . , jk = jk−1, . . . , qy.

(14)

We make the following assumptions:

A4. In (9), {(εyt, εxt)
′} ∼ NID(0, Σ).

A5. Sequences {xt} and {yt} are weakly stationary and, in addition, E(yj
tx

k−j
t )2 =

c
(j)
k < ∞, for j = 0, 1, ..., k.

A6. Pr{|(1/T )
∑T

t=1 y2j
t x

2(k−j)
t − c

(j)
k | > δ} < εδ for any δ > 0 and εδ > 0 and for

j = 0, 1, ..., k, as T → ∞.

A7. X = {xt : xt ∈ X}, X ⊂ R, Y = {yt : yt ∈ Y }, Y ⊂ R, are compact sets.

A8. Functions fz(yt−1, ..., yt−pz
, xt−1, ..., xt−qz

), z = x, y, are continuous and real-

valued.

We assume that in the Taylor approximation, the lag lengths pz, z = x, y, are fixed.

Furthermore, k, the order of the general polynomial, is independent of T. Then we have

the following result.

Theorem 1 The LM statistic of H02 has an asymptotic χ2 -distribution with the num-

ber of degrees of freedom equal to the number of coefficients in H02, when the null

hypothesis holds.

Proof. See the Appendix.

Despite the asymptotic result, this testing problem is in practice a finite-sample prob-

lem, which means that determining the lag lengths and the degree of approximation k

requires careful attention. In particular, the size of the null hypothesis increases quite

rapidly with py, qy and k. For this reason, the F -version of the LM test should be used
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as it has better size properties in small and moderate samples than the asymptotically

valid χ2-statistic. Thus we apply

GeneralFB =
T

N1

(
m − tr (Ω̂1Ω̃

−1
0

)
)

approx
∼
H0

FN1, T ,

where the matrix Ω̃0 = Ẽ0
′ Ẽ0 is obtained from regression (13) under the null hypo-

thesis and Ω̂1 = Ê1
′ Ê1 from the full regression (13). Furthermore, T is the number

of observations and N1 the number of parameters in (12) to be tested under the null

hypothesis. The latter quantity is defined as follows:

N1 = N − N2 =

(
1 +

k∑

r=1

(
py + qy + r − 1

r

))
−

(
1 +

k∑

r=1

(
py + r − 1

r

))
, (15)

where N is the total number of parameters and N2 the number of parameters not under

test.

There are two practical difficulties related to equation (13). One is numerical

whereas the other one has to do with the amount of information. Numerical prob-

lems may arise because the regressors in (13) tend to be highly collinear if k, py and

qy (and also px, qx) are large. The other difficulty is, as already mentioned, that the

number of regressors increases rapidly with k, so the dimension of the null hypothesis

may become rather large. For instance, when py = 2 and qy = 3 then N1 = 46 for k = 3,

and N1 = 231 when k = 5. A practical solution to both problems is to replace some

matrices by their largest principal components as follows. First, divide the regressors

in the auxiliary test-equation (12), say, into two groups: those being functions of lags

of yt only and the remaining ones. Replace the second group of regressors by their first

p∗ principal components. The null hypothesis now is that the principal components

have zero coefficients. This yields the following test statistic:

General∗FB =
T

p∗

(
m − tr (Ω̂1Ω̃

−1
0

)
)

approx
∼
H0

Fp∗, T . (16)

The ’remainder’ now also includes the approximation error due to the omitted principal

components related to the smallest eigenvalues.
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2.3.2 Semi-additive test

In some cases it may be reasonable to assume that the general model is “semi-additive”.

That means that the model has the following form:

yt = gy(yt−1, . . . , yt−py
; θyy) + fy(xt−1, . . . , xt−qy

; θyx) + εyt

xt = gx(yt−1, . . . , yt−px
; θxy) + fx(xt−1, . . . , xt−qx

; θxx) + εxt.
(17)

Here we assume that fy, fx, gy and gx satisfy the assumptions similar to the ones for

fy and fx in A8. Assumption A5 can now weakened as follows:

A5 ′. Ey2k
t = cyk < ∞, Ex2k

t = cxk < ∞.

We state again that xt does not cause yt if the past values of xt contain no infor-

mation about yt that is not already contained in the past values of yt. When this is

the case fy(xt−1, . . . , xt−qy
; θyx) ≡ constant. The functions gy, gx, fy and fx are now

separately expanded into kth-order Taylor series. For example, linearizing gy and fy

in (17) by expanding both functions into a kth-order Taylor series around arbitrary

points in the sample space, merging terms and reparameterizing, yields

yt = β0 +

py∑

j=1

βjyt−j +

qy∑

j=1

γjxt−j +

py∑

j1=1

py∑

j2=j1

βj1j2yt−j1yt−j2 +

+

qy∑

j1=1

qy∑

j2=j1

γj1j2xt−j1xt−j2 + ... +

py∑

j1=1

py∑

j2=j1

...

py∑

jk=jk−1

βj1...jk
yt−j1...yt−jk

+

+

qy∑

j1=1

qy∑

j2=j1

...

qy∑

jk=jk−1

γj1...jk
xt−j1 ...xt−jk

+ ǫt, (18)

where qy ≤ k and py ≤ k for notational convenience. Expansion (18) contains all

possible combinations of yt−j and xt−i up to order k, but no cross-terms. Therefore,

the hypothesis x NGC y becomes:

H03 :






γj = 0, j = 1, ..., qy

γj1j2 = 0, j1 = 1, ..., qy, j2 = j1, ..., qy

...
γj1...jk

= 0, j1 = 1, ..., qy, j2 = j1, ..., qy, ..., jk = jk−1, ..., qy.

The number of parameters to be tested under the null hypothesis is

N11 =

k∑

r=1

(
qy + r − 1

r

)
.
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Although the number of parameters for any fixed k is smaller than in the unrestricted

nonadditive case, the problems of collinearity and the large dimension of the null hypo-

thesis may still be present. The previous solution still applies: the regressors are

replaced by p∗ principal components of corresponding observation matrix. Again an

LM-type test can be used, and the resulting test statistic is called Additive∗FB. Under

the null hypothesis, Additive∗FB has approximately an F -distribution with p∗ and T

degrees of freedom. Note that approximating fy through principal components may

only affect the power of the test, not its size.

If equation (17) is valid, then the corresponding test can be expected to be more

powerful than the ones based on equation (9). Conversely, applying Additive∗FB when

the relationship is not semi-additive as in (17) may result in a substantial loss of power

compared to the power of General∗FB.

2.4 Global vs. local approximation of the nonlinear system

As discussed in an earlier section, our approach is based on global approximation of

the unknown nonlinear function. The starting-point for the local linear approximation

of Chen et al. (2004) is the standard delay coordinate embedding reconstruction of

the phase space attractors, see Boccaletti, Valladares, Pecora, Geffert, and Carroll

(2002). A full description of a given attractor requires a nonlinear set of equations, but

it is possible to locally approximate the dynamics linearly by a vector autoregressive

model. Chen et al. then test for Granger causality at each local neighbourhood, average

the resulting statistical quantities over the entire attractor and compute the so-called

Extended Granger Causality Index. A number of decisions have to be made when

using their method: one has to determine the embedding dimension and time delay.

Determining the optimal neighbourhood size is also a nontrivial issue. It appears

that no asymptotic distribution theory is available for inference in this framework,

so the results are obviously bound to be rather descriptive. It may be guessed that

an application of this procedure requires rather long time series unless the nonlinear

relationship is nearly linear.
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3 Monte Carlo Experiments

3.1 Simulation design

In this section we shall investigate the small-sample performance of the proposed non-

causality tests. We compare the tests with the standard linear testing procedure be-

cause that is what practitioners generally use in their work. Moreover, it is often the

case that the researcher chooses to ignore the possible presence of feedback (causality

in the other direction) and conducts the analysis within a single equation. One may

then ask: does it matter whether the presence of feedback is explicitly acknowledged

or not? On the one hand this should matter, and consequently the tests should be

carried out in a system framework using (13) or in an equivalent semi-additive system.

On the other hand, the restrictions implied on the system by the null hypothesis are

not cross-equation restrictions, which suggests that testing could be carried out by only

using one equation of the system.

We report the results for all tests based both on the bivariate equation system

(denoted with subscript FB) and on the single equation only (denoted with subscript

SE), and compare the results. The tests included in our comparison are:

• LinearSE and LinearFB defined in section (2.1), formulas (3), (6)

• General∗SE and General∗FB defined in section (2.3.1), formula (16)

• Additive∗SE and Additive∗FB defined in section (2.3.2).

We present our size and power results for all tests graphically as Davidson and

MacKinnon (1998) have recommended. Their graphs are easier to interpret than the

conventional tables typically used for reporting such results. The basis of these graphs

is the empirical distribution function (EDF) of the p-values of the simulated realizations

τj , j = 1, ..., N , of some test statistic τ . Let pj be the p-value associated to τj , i.e.,

pj ≡ p(τj) = P (τ > τj), the probability of observing a value of τ greater than τj of the

statistic. The EDF of the pj ’s is defined by:

F̂ (ξi) =
1

N

N∑

j=1

I(pj ≤ ξi), (19)

where I is an indicator function given by :

I(pj ≤ ξi) =

{
1 if pj ≤ ξi

0 otherwise
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and ξi is a point in the [0, 1] interval. Following Davidson and MacKinnon (1998), a

parsimonious set of values ξi, i = 1, ..., m, is

ξi = 0.002, 0.004, ..., 0.01, 0.02, ..., 0.99, 0.992, ..., 0.998 (m = 107). (20)

Concerning the size of the tests, we present the simple plot of F̂ (ξi) − ξi against ξi

for each test. We know that if the distribution of τ is the one assumed under the null

hypothesis, the pj’s should be a sample from a uniform [0, 1] distribution. In that case,

the plot of F̂ (ξi) against ξi should be close to the 45◦ line, whereas F̂ (ξi) − ξi should

fluctuate around zero as a function of ξi.

The results of the power comparisons are reported using simple power curves, in-

stead of the size-corrected size-power curves advocated by Davidson and MacKinnon.

The reason for this is that in practice we would not know how to size-correct the results,

and our aim is to study the tests from the practitioners point of view. Therefore, we

graph the locii of points ((ξi), F̂
∗(ξi)) where the values of the ξi’s are given by (20),

and F̂ ∗(ξi) is the EDF generated by a process belonging to the alternative hypothesis.

In other words, we record the p-values for every Monte Carlo replication and just plot

the curves corresponding to rejection rates at given nominal levels.

3.2 Simulation results

For all the experiments, the number of replications NR = 1000 and the number of

observations2 T = 150. The innovations εit ∼ nid(0, 1), i = y, x, t = 1, . . . , T, and

sequences {εyt} and {εxt} are mutually independent in all experiments. We make use

of the second-order Taylor approximation of fy, gy, fx and gx where py = 3; qy = 3;

q2 = 3; px = 3. The number of principal components is determined separately for

each case. Only the largest principal components that together explain at least 90% of

the variation in the matrix of observations are used. The system consists of unrelated

equations and is estimated equation by equation by least squares.

For every DGP we present two graphs: panel (a) contains the results of the test of x

NGC y, and panel (b) the results of the test of y NGC x. In every panel the performance

of the three causality tests Linear, General∗ and Additive∗, is reported, both for the

single equation (SE) and the system (FB) framework. The corresponding lines on

2We let the data-generating process run for a while to eliminate the possible initial effects, i.e., we
discard first 500 observations and use only the last 150.
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graphs are labelled Linear SE, General* SE, Additive* SE, Linear FB, General* FB and

Additive* FB, respectively.

Empirical size of the tests

To illustrate the behaviour of the tests under the null hypothesis, we simulated six

different systems. The data-generating processes are presented together with the p-

values of the linearity test of Harvill and Ray (1999), denoted by HRp. These p-values

are reported in order to give the reader an indication of how nonlinear the systems are.

A very small p-value indicates that the system is strongly nonlinear, whereas larger

values suggest only weak or no nonlinearity.

The first system is a first-order vector autoregressive model (HRp = 0.59):

yt = 1 + 0.3yt−1 + 0.1εyt

xt = 0.4 − 0.63xt−1 + 0.2εxt.
(21)

The second experiment involves a nonlinear system where yt is generated by a logistic

smooth transition autoregressive (STAR) model and xt follows a bilinear model (HRp =

8 × 10−10):

yt = (0.02 − 0.9yt−1 + 0.795yt−2)/(1 + exp(−25(yt−1 − 0.02))) + 0.1εyt

xt = 0.8 − 0.6xt−1 + 0.1εx,t−1xt−1 + 0.3εxt. (22)

In the third system yt is ratio-polynomial and xt is generated by an exponential STAR

model (HRp = 0.054):

yt = −0.8 + 0.9/(1 + y2
t−1 + y2

t−2) + 0.1εyt

xt = (0.2 − 0.6xt−1 + 0.45xt−2)(1 − exp(−10(xt−1)
2)) + 0.1εxt.

(23)

The fourth system consists of two self-exciting threshold autoregressive (SETAR) mod-

els. Note that this model is not covered by Theorem 1, because the SETAR model does

not satisfy Assumption A8. Nevertheless, it is interesting to see how the test behaves

in this situation. The system has the following form (HRp = 2 × 10−30):

yt =

{
0.1yt−1 + εyt yt−1 ≤ 0
−0.5yt−1 + εyt yt−1 > 0

xt =

{
−0.5 + 0.5xt−1 − 0.7xt−2 + εxt xt−1 ≤ 0
0.5 − 0.3xt−1 + 0.2xt−2 + εxt xt−1 > 0 .

(24)
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The fifth system is linear with fifth-order autoregression such that causality is only

running in one direction, from y to x (HRp = 0.55):

yt = 1.41yt−1 − 1.38yt−2 + 1.0813yt−3 − 0.23015yt−4 + 0.0182yt−5 + εyt

xt = 1 − 0.55xt−1 + 0.16xt−2 − 0.4yt−4 − 0.3yt−5 + εxt. (25)

The final system is a bivariate nonlinear MA model (HRp = 2 × 10−12):

yt = εyt − 0.4εy,t−1 + 0.3εy,t−2 + 0.4ε2
y,t−1

xt = εxt + 0.55εx,t−1 − 0.3εx,t−2 − 0.2ε2
x,t−1.

(26)

The results appear in Figures 1 – 6. They show the p-value discrepancy plots, i.e.

the graphs of F̂ (ξi)−ξi against ξi. These figures are reproduced for small nominal sizes

that are of practical interest.

The size distortions seem generally minor at low levels of significance. The single

equation-based tests seem somewhat less size distorted than the system-based ones.

Also the Linear test seems better-sized than the General or Additive tests, unless

there is feedback, as in Equation (25) is which case the Linear test is grossly oversized.

Size distortions seen in Figure 5 occur partly because of the misspecified lag length

under the null hypothesis: only three lags are used in Taylor expansions. But, there is

feedback from y to x through fourth and fifth lag, and when lags of x enter the auxiliary

test-equation, they are found to be helpful in explaining y. The same explanation - too

few lags used in the approximation - is valid when explaining the size distortions for

the nonlinear moving average model. These size distortions can partly be removed by

using more lags when approximating the possibly nonlinear causal relationship. The

size distortions of test statistics General and Additive are much smaller for simple linear

systems when the order of Taylor expansions is low, i.e. the approximation nests the

DGP and there are fewer nuisance auxiliary terms in the test equations. Naturally,

the size distortions diminish when the error variance is reduced and when the true lag

length is used in the Taylor approximation. We recommend first testing the linearity

of the system as in Harvill and Ray (1999), and if linearity is not rejected, using the

Linear test should suffice.

We conducted additional experiments with the six DGPs above by letting the error

covariance matrix differ from the identity matrix. This represents a situation where

the original assumptions are violated and there exists a third common factor that
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simultaneously affects x and y. We let Σ =

(
σ2

yy σ2
yx

σ2
xy σ2

xx

)
where σxy 6= 0. Instead

of specifying the exact covariance structure we set the correlation between respective

variables to be ρ = {−0.9,−0.6,−0.3, 0.3, 0.6, 0.9}. For the first three DGPs (the error

terms in these equations are multiplied by small coefficients) the size distortions remain

about the same or increase slightly for large correlations. For the remaining systems

(the effect of error terms is not reduced by a factor) the increase in the size distortion

is huge, particularly when the correlation between the error terms is positive and large.

Empirical power of the tests

In this subsection we consider a number of cases where (nonlinear) Granger causality

is present between the variables. More precisely, the power-curve figures correspond to

the following systems:

• Figure 7 (x → y bilinear; y → x linear, HRp = 7 × 10−7):

yt = 0.5 + 0.1yt−1 + 0.5εy,t−1xt−1 + εyt

xt = 0.22 − 0.39xt−1 + 0.46yt−2 + εxt

(27)

• Figure 8 (x → y (long)linear3; y → x linear, HRp = 0.847):

yt = 1.1yt−1 − 0.56yt−2 + 0.1591yt−3 − 0.0119yt−4 + 0.55xt−4 + 0.1εyt

xt = 0.5 − 0.1566xt−1 + 0.2083xt−2 − 0.4yt−2 + 0.3εxt (28)

• Figure 9 (y → x (long)linear, HRp = 0.575):

yt = 1.41yt−1 − 1.38yt−2 + 1.08yt−3 − 0.23yt−4 + 0.02yt−5 + 0.5εyt

xt = 1 − 0.55xt−1 + 0.16xt−2 − 0.4yt−4 − 0.3yt−5 + 0.5εxt (29)

• Figure 10 (x → y semi-additive, HRp = 0.243):

yt = 0.1 + 0.4yt−2 + (0.5 − 0.8xt−1)/(1 + exp(−5(xt−3 − 0.2))) + 0.5εyt

xt = 0.22 + 0.39xt−1 − 0.55xt−2 + 0.3εxt (30)

3By “(long)” we denote the situation where the lag length in the actual DGP is longer than the
one used in approximations.
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• Figure 11 (x → y semi-additive; y → x (long)linear, HRp = 6 × 10−30):

yt = 0.5yt−1 − 0.6x2
t−1/(1 + x2

t−2) + εyt

xt = 1 + 0.4xt−1 − 0.3xt−2 + 0.4yt−4 − 0.3yt−5 + 0.2yt−6 + εxt

(31)

• Figure 12 (x → y general, HRp = 8 × 10−23):

yt =

{
−1 + 0.5yt−1 − 0.9yt−2 + εyt xt−1 ≤ −0.2

2 + 0.3yt−1 + 0.2yt−2 + εyt xt−1 > −0.2

xt = 0.2 − 0.56xt−1 + εxt

(32)

• Figure 13 (x → y general, HRp = 0.00883):

yt = 0.1 + 0.4yt−2 + (1 − 0.8yt−2)/(1 + exp(−9x2
t−1)) + 0.15εyt

xt = 0.22 + 0.39xt−1 − 0.55xt−2 + 0.3εxt

(33)

• Figure 14 (x → y general; y → x linear, HRp = 1 × 10−5):

yt = 1 − 0.2yt−1 + (−1 + 0.5yt−2)(1 − exp(−10x2
t−1)) + 0.3εyt

xt = 0.5xt−1 + 0.3yt−1 + 0.5εxt

(34)

• Figure 15 (x → y bilinear; y → x general, HRp = 9 × 10−24):

yt = 0.1yt−1 − 0.5yt−2 + 0.4xt−1εy,t−1 + 0.5xt−2εy,t−2 + 0.3εyt

xt = 1 + 0.3xt−1 − 0.5xt−2 + (2 + 0.4xt−1 − 0.3xt−2 − 0.15xt−3)

(1 − exp(−10y2
t−2)) + 0.1εxt

(35)

• Figure 16 (x → y general; y → x semi-additive, HRp = 8 × 10−5):

yt =

{
0.1yt−1 + 0.9x2

t−1 + 0.4εyt yt−1 ≤ 0
−0.5yt−1 + 0.4εyt yt−1 > 0

(36)

xt = 0.3xt−1 +
0.9

(1 + x2
t−1 + x2

t−2)
−

0.5

(1 + exp(−2yt−1))
+ 0.25εxt

• Figure 17 (x → y general; y → x general, HRp = 8 × 10−8):

yt =

{
0.1yt−1 + 0.3x2

t−1 − 0.5x2
t−2 + 0.2εyt yt−1 ≤ 0

−0.3yt−1 − 0.5x2
t−1 + 0.7x2

t−2 + 0.2εyt yt−1 > 0
(37)

xt = 0.3xt−1 +
0.9

(1 + x2
t−1 + x2

t−2)
+

(−0.5xt−1 + 0.3xt−2)

(1 + exp(−30yt−1))
+ 0.24εxt
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• Figure 18 (x → y general; y → x general, HRp = 3 × 10−28):

yt =





0.1yt−1 +
(2 − 0.45xt−1)

(1 + exp(−5xt−1))
+ 0.4εyt yt−1 ≤ 0

−0.5yt−1 +
(1 − 0.3xt−1 + 0.45xt−2)

(1 + exp(−5xt−1))
+ 0.4εyt yt−1 > 0

(38)

xt = 1 + 0.3xt−1yt−2 − 0.15xt−2yt−3 + εxt.

The results of the Linear causality test do not offer any great surprises. It is clear

that the test works best when the true causal relationship is linear (Figures 7(b), 8(b),

14(b)) but it may only have weak power when this is no longer the case. The Additive

test as well as the General one both suffer somewhat from overparameterization when

applied to linear systems. The Linear test also seems to perform well when it comes to

detecting slowly evolving logistic STAR-type causal relationships, see Figures 10(a),

16(b). It also works surprisingly well for a case when the causing variable is the

threshold variable in a two-regime TAR model, 12(a). Note that in this particular

example there seems to be no size distortion in testing y NGC x, although the TAR

model does not satisfy Assumption A8. Linear test also seems to be able to detect a

(linear) causal relationship when the lags contributing to the explanation of the other

variable are outside the range of the lags included in Taylor expansion (and thus used

in the test), see Figure 11(b), 9(b).

At small nominal sizes, the Additive test is the best performer of these three tests in

Figure 16(a), where the corresponding model actually is semi-additive. It is often more

powerful than the General test even when the true model is no longer semi-additive,

see Figures 13(a), 14(a), for example. Figures 14(a) and 15(b) illustrate the behaviour

of the tests in the case where the causality is represented by an exponential smooth

transition regression function and the causing variable is the transition variable. The

nonlinearity in those models is of General -type, but the semi-additive approximation

seems to capture most of the relationship. Consequently the Additive test is the most

powerful one. From the low power of the Linear test it can be inferred that in this case

excluding the higher order terms from the auxiliary regression is not a good idea.

Figures 7(a) and 15(a) correspond to systems with a bilinear equation and in those

cases the General test strongly dominates the other test procedures. This may be

expected as the relationship is no longer semi-additive, and making that assumption

implies a loss of power. From Figures 17(a) and 18(a), it is seen that the General test
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also seems to perform well in a case where the causing variable enters through a regime

or the regimes of a SETAR model.

When interpreting the results, one should be aware of the fact that the power of the

tests depends on the variance of the error term cεt which controls the signal-to-noise

ratio. Even some of the performance rankings indicated above may be changed by

varying c. Also, for the ESTR-type models, the ability of the tests to detect causality

depends quite heavily on the presence of the intercept in the nonlinear part. When

there is only change in the amplitude of the fluctuations and no clear shift in the mean,

the power of all tests is extremely low.

There seems to be no big difference in performance between the single equation

and system-based tests. This indicates that not much power is lost by ignoring the

possible feedback. This is obviously due to the fact that the restrictions imposed by

the null hypothesis are not cross-equation restrictions, so little is gained by including

the unrestricted equation in the considerations.

4 Application

In this section we analyse the same data as Skalin and Teräsvirta (1999), that is, nine

long annual Swedish macroeconomic time series: Gross Domestic Product (GDP), In-

dustrial Production (IP), Private Consumption (CONS), Investment (INV), Exports

(EXP), Imports (IMP), Employment4 (EMPL), Real Wages (RW) and Productivity5

(PROD). For most series the data span the period from 1861 to 1988, the productivity

and employment series begin in 1870. To guarantee stationarity we work with log-

differenced data. The autoregressive order of each model is selected using the Akaike

information criterion (AIC) and the Godfrey-Breusch (GB) test of no error autocorre-

lation. For both methods the maximum lag length is set to twelve. If AIC selects a

model with less than three lags but GB points to a model with more than twelve lags

(most probably picking up on spurious correlation) we make a compromise and use four

autoregressive lags in our model. The selected AR orders are given under the variable

names in Table 1 - Table 3, that present the results of the Linear, Additive and General

test respectively. The pairwise testing is conducted in the single equation framework.

4Measured in worked hours in manufacturing and mining.
5Industrial production divided by hours worked.
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In the tables the column labelled q gives the lag order for the causing variable. The

entries in the tables denote the strength of the rejection of the null hypothesis of no

Granger causality: a single ∗ denotes a rejection at 5% level, a double ∗∗ denotes a

rejection at 1% level, ∗∗∗ and ∗∗∗∗ denote rejections at 0.1% and 0.01% level, respec-

tively. A rejection of the null hypothesis does not imply a direct causal link between

the pair of variables, though. Changing the information set underlying our bivariate

tests may change the results. Nevertheless, the tests are suggestive about the extent of

interactions between the variables.

Table 1 contains the results from the Linear tests of Granger non-causality. Exports

seems to be more of a causing than caused variable: it helps predicting six other

variables. Each variable in the set is Granger-causing two to three other variables,

except for Investments. Real Wages and Employment are most often influenced by

other variables. Strongest links are running from Imports to Real Wages and from

Real Wages to Employment.

Tables 2 and 3 contain the results for the Additive and General test, respectively.

Here we choose to make use of the second-order Taylor approximation and principal

components to be able to estimate the auxiliary model. The third-order approximation

turns out infeasible, because with p̂ = 9 we would have 220 parameters to estimate

under the null, but we only have less than 130 observations available. Alternatively,

one could use the ”economy version” of the test advocated in Luukkonen et al. (1988),

i.e. use the third-order expansion and discard some intermediate higher order cross-

terms from the auxiliary regression.

The two tests give rather similar results. Largest differences appear for Imports,

where the General test finds Industrial Production, Gross Domestic Product and Pro-

ductivity to be useful predictors at more lags and/or with stronger rejections compared

to the Additive test. Compared to Linear test some rejections appear, some disappear.

It seems that the added flexibility in explaining a variable through its own past in a

nonlinear manner reduces the importance of other variables as predictors. For example,

GDP and Consumption lose their importance when it comes to predicting Employment.

In a simple linear framework GDP and Consumption are found to Granger-cause Em-

ployment, but not (to the same extent) when nonlinear approximation is employed.

The opposite happens for Industrial Production. In the linear framework no other

variable seems to Granger-cause IP, the nonlinear testing framework is able to identify
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links to four variables: Productivity, Real Wages, Investments and Employment.

The main conclusion we can draw from these results is the same as Skalin and

Teräsvirta (1999) did: the functional form of the model (linear, STAR, general nonlin-

ear) strongly affects the outcome of these tests.

5 Conclusions

The noncausality tests introduced in this paper are based on standard statistical distri-

bution theory. The size simulations indicate that the idea of polynomial approximation

of unknown nonlinear functions is applicable in small samples. The right balance be-

tween the number of lags, the order of the Taylor expansion, the degree of nonlinearity

and the number of observations is important, however. The power simulations sug-

gest that the tests are indeed useful in discovering potential Granger causality between

variables. They also demonstrate the obvious fact that the more we know about the

functional form, the more we gain in terms of power. If the true causal relationship

is nonlinear whereas testing is carried out under the assumption of linearity, the en-

suing loss of power may be substantial. It is therefore advisable to test the Granger

noncausality hypothesis both in the linear and the nonlinear framework to ensure that

existing causal relationships between the variables are found. Because our tests are

based on the idea of linearizing the unknown relationship between the variables, they

are not computationally more difficult to carry out than traditional linear tests. How-

ever, the length of the time series may restrict the applicability of our technique. Given

a sufficient amount of data, our tests should be a useful addition to the toolbox of both

applied economists and time series econometricians interested in empirical investiga-

tions of Granger causality.
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Appendix

Theorem 1 The LM statistic of H02 has an asymptotic χ2 -distribution with the num-

ber of degrees of freedom equal to the number of coefficients in H02, when the null

hypothesis holds.

Proof. From Assumption A7 it follows that X(q) = X × ... × X ⊂ R
q, q =

max(qx, qy), and Y (p) = Y × ... × Y ⊂ R
p, p = max(px, py), are compact sets. Then,

by Tychonoff’s theorem, X(q) × Y (p) is a compact set. Since by Assumption A8,

fz(yt−1, ..., yt−pz
, xt−1, ..., xt−qz

), z = x, y, are continuous and real-valued functions, they

are also bounded. The same is true for fy(yt−1, ..., yt−py
).

It then follows from a corollary to the Stone-Weierstrass theorem (see Royden

(1963), p. 151) that

|fy(yt−1, ..., yt−py
) − T k

y (0, y)| < ε

for any (yt−1, ..., yt−py
) ∈ Y (p) and δ > 0 when k is sufficiently large. Function

fy(yt−1, ..., yt−py
) can thus be arbitrarily accurately approximated by the polynomial

T k
y (0, y). A similar result holds for fx(yt−1, ..., yt−px

, xt−1, ..., xt−qx
) and T k

x (x, y). The

null hypothesis H02 in (14) is a linear hypothesis in a linear system. From Assumptions

A4, A5 and A6, and the fact that the approximation errors in (13) are negligible, it

follows that the standard LM statistic for testing H02 is asymptotically χ2-distributed

with N1 degrees of freedom when the null hypothesis holds, where N1 is defined in (15).
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(a) x NGC y (b) y NGC x

Figure 1: Size discrepancy plots, data generated from system (21).

(a) x NGC y (b) y NGC x

Figure 2: Size discrepancy plots, data generated from system (22).
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(a) x NGC y (b) y NGC x

Figure 3: Size discrepancy plots, data generated from system (23).

(a) x NGC y (b) y NGC x

Figure 4: Size discrepancy plots, data generated from system (24).
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(a) x NGC y

Figure 5: Size discrepancy plots, data generated from system (25).

(a) x NGC y (b) y NGC x

Figure 6: Size discrepancy plots, data generated from system (26).
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(a) x NGC y (b) y NGC x

Figure 7: Power-curves, data generated from system (27).

(a) x NGC y (b) y NGC x

Figure 8: Power-curves, data generated from system (28).
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(a) x NGC y (b) y NGC x

Figure 9: Power-curves, data generated from system (29).

(a) x NGC y (b) y NGC x

Figure 10: Power-curves, data generated from system (30).
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(a) x NGC y (b) y NGC x

Figure 11: Power-curves, data generated from system (31).

(a) x NGC y (b) y NGC x

Figure 12: Power-curves, data generated from system (32).
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(a) x NGC y (b) y NGC x

Figure 13: Power-curves, data generated from system (33).

(a) x NGC y (b) y NGC x

Figure 14: Power-curves, data generated from system (34).
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(a) x NGC y (b) y NGC x

Figure 15: Power-curves, data generated from system (35).

(a) x NGC y (b) y NGC x

Figure 16: Power-curves, data generated from system eqrefeq:pow9.
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(a) x NGC y (b) y NGC x

Figure 17: Power-curves, data generated from system (37).

(a) x NGC y (b) y NGC x

Figure 18: Power-curves, data generated from system (38).

31



Caused Causing variable
variable q IP GDP IMP EXP PROD RW INV CONS EMPL

5
6

IP 7
p̂ = 7 8

9
0 *
5 *
6 *

GDP 7 *
p̂ = 4 8 *

9 *
0
5 *** * *
6 ***

IMP 7 **
p̂ = 6 8 **

9 ***
0 ***
5 *
6 * *

EXP 7 * *
p̂ = 9 8 * *

9 * * *
0 * *
5 * * * *
6 * * * *

PROD 7 ** * * *
p̂ = 4 8 ** * *

9 * ** *
0 * ** **
5 **** ** * * ** **
6 * **** *** * ** *

RW 7 * **** ** * ** *
p̂ = 4 8 * **** ** ** *

9 **** ** * *
0 * **** ** * *
5 * * * *
6 *** * **

INV 7 *** * *
p̂ = 4 8 ** * *

9 ** *
0 ** *
5 * * **
6 ***

CONS 7 ***
p̂ = 9 8 *** *

9 ** *
0 ** *
5 ** * **** **
6 ** * **** **

EMPL 7 ** **** **
p̂ = 4 8 ** * **** **

9 ** * **** **
0 * * **** *

Table 1: Results of linear GNC tests.
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Caused Causing variable
variable q IP GDP IMP EXP PROD RW INV CONS EMPL

5 *** ***
6 ** * *

IP 7 ** * * *
p̂ = 7 8 ** * *

9 ** * * *
0 ** * **
5 *
6

GDP 7
p̂ = 4 8

9
0
5 *** * *
6 **** * **

IMP 7 **** * **
p̂ = 6 8 **** * **

9 * ** **** ** **
0 **** ** **
5 * *
6 *

EXP 7 * ** *
p̂ = 9 8 ** *

9 * * *
0 * **
5 * *** * *
6 * * * *** * *

PROD 7 ** * ** * *
p̂ = 4 8 * * * ** *

9 * *** *
0 * ** * ** **
5 *** **
6 *** ***

RW 7 **** **
p̂ = 4 8 *** **

9 ***
0 *** **
5 * * *
6 *** * **

INV 7 ** **
p̂ = 4 8 ** **

9 ** *
0 ** **
5 *
6 *

CONS 7 *
p̂ = 9 8 * *

9
0 * *
5 * * ***
6 ***

EMPL 7 **
p̂ = 4 8 ***

9 **
0 **

Table 2: Results of Additive GNC tests, Taylor expansion order k = 2.
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Caused Causing variable
variable q IP GDP IMP EXP PROD RW INV CONS EMPL

5 *** ***
6 ** * **

IP 7 ** * * **
p̂ = 7 8 ** **

9 ** * * ***
0 ** * * **
5 *
6

GDP 7
p̂ = 4 8

9
0
5 **** **** * * **
6 ** **** * * ***

IMP 7 ** *** **** * ***
p̂ = 6 8 * * **** * * **

9 ** **** * * **
0 ** **** * * **
5 * **
6 ** *

EXP 7 ** *
p̂ = 9 8 ***

9 ** * *
0 * ** *
5 * * ** *** * *
6 * * ** ** * *

PROD 7 ** * ** ** * *
p̂ = 4 8 * ** * ** * *

9 * * ***
0 * * * *** **
5 *** ****
6 ** ****

RW 7 *** *
p̂ = 4 8 *** *

9 *** *
0 *** ****
5 * *
6 *** **

INV 7 ** **
p̂ = 4 8 ** **

9 ** * *
0 ** **
5 *
6 *

CONS 7 *
p̂ = 9 8 * *

9
0
5 * * ***
6 ***

EMPL 7 **
p̂ = 4 8 ***

9 **
0 **

Table 3: Results of General GNC tests, Taylor expansion order k = 2.
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