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Abstract

A review is given of parametric estimation methods for discretely sampled mul-
tivariate diffusion processes. The main focus is on estimating functions and asymp-
totic results. Maximum likelihood estimation is briefly considered, but the emphasis
is on computationally less demanding martingale estimating functions. Particular
attention is given to explicit estimating functions. Results on both fixed frequency
and high frequency asymptotics are given. When choosing among the many estima-
tors available, guidance is provided by simple criteria for high frequency efficiency
and rate optimality that are presented in the framework of approximate martingale
estimating functions.
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1 Introduction

In this chapter we consider parametric inference based on observations X0, X∆, . . . , Xn∆

from a d-dimensional diffusion process given by

dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt, (1.1)

where σ is a d × d-matrix and W a d-dimensional standard Wiener process. The drift b
and the diffusion matrix σ depend on a parameter θ which varies in a subset Θ of IRp.
The main focus is on estimating functions and asymptotic results.

The true (data-generating) model is supposed to be the stochastic differential equa-
tion (1.1) with the parameter value θ0, and the coefficients b and σ are assumed to be
sufficiently smooth functions of the state to ensure the existence of a unique weak solution

∗Michael Sørensen acknowledges support from Center for Research in Econometric Analysis of Time
Series, CREATES, www.creates.au.dk, funded by the Danish National Research Foundation and from
the Danish Center for Accounting and Finance funded by the Danish Social Science Research Council.
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2 M. Sørensen

for all θ in Θ. The state space of X is denoted by D. When d = 1, the state space is
an interval (ℓ, r), where ℓ could possibly be −∞, and r might be ∞. We suppose that
the transition distribution has a density y 7→ p(∆, x, y; θ) with respect to the Lebesgue
measure on D, and that p(∆, x, y; θ) > 0 for all y ∈ D. The transition density is the
conditional density of Xt+∆ given that Xt = x. Since the data are equidistant, we will
often suppress the argument ∆ in the transition density and write p(x, y; θ).

It is assumed that the diffusion is ergodic, and that its invariant probability measure
has density function µθ for all θ ∈ Θ. The initial value of the diffusion is assumed to be
either known, X0 = x0, or X0 ∼ µθ. In the latter case the diffusion is stationary.

2 Asymptotics: fixed frequency

We consider the asymptotic properties of an estimator θ̂n obtained by solving the esti-
mating equation

Gn(θ̂n) = 0, (2.1)

where Gn is an estimating function of the form

Gn(θ) =
n
∑

i=1

g(∆, X∆i, X∆(i−1); θ) (2.2)

for some suitable function g(∆, y, x; θ) with values in IRp. All estimators discussed below
can be represented in this way. An estimator, θ̂n, which solves (2.1) with probability
approaching one as n→ ∞, is called a Gn–estimator. A priori there is no guarantee that
a unique solution to (2.1) exists. In this section, we consider the standard asymptotic
scenario, where the time between observations ∆ is fixed and the number of observations
goes to infinity. In most cases we suppress ∆ in the notation and write for example
g(y, x; θ).

We have assumed that the diffusion is ergodic and denote the density function of
the invariant probability measure by µθ. Let Qθ denote the probability measure on D2

with density function µθ(x)p(∆, x, y; θ). This is the density function of two consecutive
observations (X∆(i−1), X∆i) when the diffusion is stationary, i.e. when X0 ∼ µθ. We
impose the following condition on the function g

Qθ(gj(θ)
2) =

∫

D2

gj(y, x; θ)
2µθ(x)p(x, y; θ)dydx <∞, j = 1, . . . , p, (2.3)

for all θ ∈ Θ, where gj denotes the jth coordinate of g. The quantity Qθ(gj(θ)) is defined
similarly. Under the assumption of ergodicity and (2.3), it follows that

1

n

n
∑

i=1

g(X∆i, X∆(i−1); θ)
Pθ−→ Qθ(g(θ))

1. (2.4)

When the diffusion, X, is one-dimensional, the following simple conditions ensure
ergodicity, and an explicit expression exists for the density of the invariant probability

1Qθ(g(θ)) denotes the vector (Qθ(gj(θ)))j=1,...,p
.



Parametric inference for stochastic differential equations 3

measure. The scale measure of X has Lebesgue density

s(x; θ) = exp

(

−2

∫ x

x#

b(y; θ)

σ2(y; θ)
dy

)

, x ∈ (ℓ, r), (2.5)

where x# ∈ (ℓ, r) is arbitrary.

Condition 2.1 The following holds for all θ ∈ Θ:

∫ r

x#

s(x; θ)dx =

∫ x#

ℓ

s(x; θ)dx = ∞

and
∫ r

ℓ

[s(x; θ)σ2(x; θ)]−1dx = A(θ) <∞.

Under Condition 2.1 the process X is ergodic with an invariant probability measure with
Lebesgue density

µθ(x) = [A(θ)s(x; θ)σ2(x; θ)]−1, x ∈ (ℓ, r). (2.6)

For details see e.g. Skorokhod (1989).
For the following asymptotic results to hold, we also need to assume that under Pθ

the estimating function (2.2) satisfies a central limit theorem

1√
n

n
∑

i=1

g(X∆i, X∆(i−1); θ)
D−→ N(0, V (θ)) (2.7)

for some p×p-matrix V (θ). For (2.7) to hold, it is obviously necessary that Qθ(g(θ)) = 0.

Theorem 2.2 Assume that θ0 ∈ int Θ and that a neighbourhood N of θ0 in Θ exists, such
that:
(1) The function g(θ) : (x, y) 7→ g(x, y; θ) is integrable with respect to the probability
measure Qθ0

for all θ ∈ N , and

Qθ0
(g(θ0)) = 0. (2.8)

(2) The function θ 7→ g(x, y; θ) is continuously differentiable on N for all (x, y) ∈ D2.
(3) The functions2 (x, y) 7→ ∂θj

gi(x, y; θ), i, j = 1, . . . , p, are dominated for all θ ∈ N
by a function which is integrable with respect to Qθ0

.
(4) The p× p matrix3

W = Qθ0
(∂θT g(θ0)) (2.9)

is invertible.
Then a consistent Gn–estimator θ̂n exists, and

√
n(θ̂n − θ0)

D−→ Np

(

0,W−1VW T−1
)

(2.10)

2∂θj
gi denotes the partial derivative ∂gi

∂θj
.

3In this chapter T denotes transposition, vectors are column vectors, and Qθ0
(∂θT g(θ0)) denotes the

matrix {Qθ0
(∂θj

gi(θ0))}, where i is the row number and j the column number.
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under Pθ0
, where V = V (θ0). If, moreover, the function g(x, y; θ) is locally dominated

integrable4 with respect to Qθ0
and

Qθ0
(g(θ)) 6= 0 for all θ 6= θ0,

then the estimator θ̂n is unique on any bounded subset of Θ containing θ0 with probability
approaching one as n→ ∞.

A proof of this theorem can be found in Jacod & Sørensen (2008). Related asymptotic
results formulated in the language of the generalized method of moments were given by
Hansen (1982).

If an estimating function does not satisfy (2.8), the obtained estimator is not consis-
tent, but will converge to the solution θ̄ to the equation

Qθ0
(g(θ̄)) = 0. (2.11)

If the estimating function Gn(θ) is a martingale under Pθ, the asymptotic normality
in (2.7) follows without further conditions from the central limit theorem for martingales,
see Hall & Heyde (1980). This result goes back to Billingsley (1961). In the martingale
case the matrix V (θ) is given by

V (θ) = Qθ0

(

g(θ)g(θ)T
)

, (2.12)

and the asymptotic covariance matrix of the estimator θ̂n can be consistently estimated
by means of the matrices Wn and Vn given in the following theorem; see Jacod & Sørensen
(2008).

Theorem 2.3 Under the conditions (2) – (4) of Theorem 2.2,

Wn =
1

n

n
∑

i=1

∂θg(X(i−1)∆, Xi∆; θ̂n)
Pθ0−→W, (2.13)

and the probability that Wn is invertible approaches one as n → ∞. If, moreover, the
functions (x, y) 7→ gi(x, y; θ), i = 1, . . . , p, are dominated for all θ ∈ N by a function
which is square integrable with respect to Qθ0

, then in the martingale case

Vn =
1

n

n
∑

i=1

g(X(i−1)∆, Xi∆; θ̂n)g(X(i−1)∆, Xi∆; θ̂n)T
Pθ0−→ V. (2.14)

When the estimating function Gn(θ) is not a martingale under Pθ, further conditions
on the diffusion process must be imposed to ensure the asymptotic normality in (2.7). If
the diffusion is stationary and geometrically α-mixing5, (2.7) holds with

V (θ) = Qθ0

(

g(θ)g(θ)T
)

+

∞
∑

k=1

[

Eθ0

(

g(X∆, X0)g(X(k+1)∆, Xk∆)T
)

(2.15)

+ Eθ0

(

g(X(k+1)∆, Xk∆)g(X∆, X0)
T
)]

,

4A function g : D2 × Θ 7→ IR is called locally dominated integrable with respect to Qθ0
if for each

θ′ ∈ Θ there exists a neighbourhood Uθ′ of θ′ and a non-negative Qθ0
-integrable function hθ′ : D2 7→ IR

such that | g(x, y; θ) | ≤ hθ′(x, y) for all (x, y, θ) ∈ D2 × Uθ′ .
5α-mixing with mixing coefficients that tend to zero geometrically fast.
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provided that V (θ) is strictly positive definite, and that Qθ(gi(θ)
2+ǫ) <∞ for some ǫ > 0,

see e.g. Doukhan (1994). Genon-Catalot, Jeantheau & Larédo (2000) gave the following
simple sufficient condition for a one-dimensional diffusion to be geometrically α-mixing.

Condition 2.4

(i) The function b is continuously differentiable with respect to x and σ is twice contin-
uously differentiable with respect to x, σ(x; θ) > 0 for all x ∈ (ℓ, r), and there exists
a constant Kθ > 0 such that |b(x; θ)| ≤ Kθ(1 + |x|) and σ2(x; θ) ≤ Kθ(1 + x2) for all
x ∈ (ℓ, r).

(ii) σ(x; θ)µθ(x) → 0 as x ↓ ℓ and x ↑ r.

(iii) 1/γ(x; θ) has a finite limit as x ↓ ℓ and x ↑ r, where γ(x; θ) = ∂xσ(x; θ)−2b(x; θ)/σ(x; θ).

Other conditions for geometric α-mixing were given by Veretennikov (1987), Hansen
& Scheinkman (1995), and Kusuoka & Yoshida (2000).

3 Likelihood inference

The diffusion process X is a Markov process, so the likelihood function based on the
observations Xt0 , Xt1 , · · · , Xtn (t0 = 0), conditional on X0, is

Ln(θ) =

n
∏

i=1

p(ti − ti−1, Xti−1
, Xti ; θ), (3.1)

where y 7→ p(s, x, y; θ) is the transition density. Under weak regularity conditions the max-
imum likelihood estimator is efficient, i.e. it has the smallest asymptotic variance among
all estimators. The transition density is only rarely explicitly known, but several numer-
ical approaches make likelihood inference feasible for diffusion models. Pedersen (1995)
proposed a method for obtaining an approximation to the likelihood function by rather
extensive simulation. Pedersen’s method was very considerably improved by Durham &
Gallant (2002), whose method is computationally much more efficient. Poulsen (1999)
obtained an approximation to the transition density by numerically solving a partial differ-
ential equation, whereas Äıt-Sahalia (2002), Äıt-Sahalia (2003) proposed to approximate
the transition density by means of expansions. A Gaussian approximation to the likeli-
hood function obtained by local linearization of (1.1) was proposed by Ozaki (1985), while
Forman & Sørensen (2008) proposed to use an approximation in terms of eigenfunctions
of the generator of the diffusion. Bayesian estimators with the same asymptotic proper-
ties as the maximum likelihood estimator can be obtained by Markov chain Monte Carlo
methods, see Elerian, Chib & Shephard (2001), Eraker (2001), and Roberts & Stramer
(2001). Finally, exact and computationally efficient likelihood-based estimation methods
were presented by Beskos et al. (2006). These various approaches to maximum likelihood
estimation will not be considered further in this chapter. Some of them are treated in
Phillips & Yu (2008). Asymptotic results for the maximum likelihood estimator were es-
tablished by Dacunha-Castelle & Florens-Zmirou (1986), while asymptotic results when
the observations are made at random time points were obtained by Äıt-Sahalia & Mykland
(2003).
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The vector of partial derivatives of the log-likelihood function with respect to the
coordinates of θ,

Un(θ) = ∂θ logLn(θ) =
n
∑

i=1

∂θ log p(∆i, Xti−1
, Xti; θ), (3.2)

where ∆i = ti − ti−1, is called the score function (or score vector). The maximum like-
lihood estimator usually solves the estimating equation Un(θ) = 0. The score function
is a martingale under Pθ, which is easily seen provided that the following interchange of
differentiation and integration is allowed:

Eθ

(

∂θ log p(∆i, Xti−1
, Xti ; θ)

∣

∣Xt1 , . . . , Xti−1

)

=

∫

D

∂θp(∆i, Xti−1
, y; θ)

p(∆i, Xti−1
, y; θ)

p(∆i, Xti−1
, y, θ)dy = ∂θ

∫

D

p(∆i, Xti−1
, y; θ)dy = 0.

A simple approximation to the likelihood function is obtained by approximating the
transition density by a Gaussian density with the correct first and second conditional
moments. For a one-dimensional diffusion we get

p(∆, x, y; θ) ≈ q(∆, x, y; θ) =
1

√

2πφ(∆, x; θ)
exp

[

−(y − F (∆, x; θ))2

2φ(∆, x; θ)

]

where

F (∆, x; θ) = Eθ(X∆|X0 = x) =

∫ r

ℓ

yp(∆, x, y; θ)dy. (3.3)

and

φ(∆, x; θ) = Varθ(X∆|X0 = x) =

∫ r

ℓ

[y − F (∆, x; θ)]2p(∆, x, y; θ)dy. (3.4)

In this way we obtain the quasi-likelihood

Ln(θ) ≈ QLn(θ) =
n
∏

i=1

q(∆i, Xti−1
, Xti ; θ),

and by differentiation with respect to the parameter vector, we obtain the quasi-score
function

∂θ logQLn(θ) =
n
∑

i=1

{

∂θF (∆i, Xti−1
; θ)

φ(∆i, Xti−1
; θ)

[Xti − F (∆i, Xti−1
; θ)] (3.5)

+
∂θφ(∆i, Xti−1

; θ)

2φ(∆i, Xti−1
; θ)2

[

(Xti − F (∆i, Xti−1
; θ))2 − φ(∆i, Xti−1

; θ)
]

}

,

which is clearly a martingale under Pθ. It is a particular case of the quadratic martingale
estimating functions considered by Bibby & Sørensen (1995) and Bibby & Sørensen (1996).
Maximum quasi-likelihood estimation was considered by Bollerslev & Wooldridge (1992).
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4 Martingale estimating functions

In this section we present a rather general way of obtaining approximations to the score
function by means of martingales of a similar form. Suppose we have a collection of real
valued functions hj(x, y, ; θ), j = 1, . . . , N satisfying

∫

D

hj(x, y; θ)p(x, y; θ)dy = 0 (4.1)

for all x ∈ D and θ ∈ Θ. Each of the functions hj could be used separately to define an
estimating function of the form (2.2), but a better approximation to the score function,
and hence a more efficient estimator, is obtained by combining them in an optimal way.
Therefore we consider estimating functions of the form

Gn (θ) =

n
∑

i=1

a(X(i−1)∆, θ)h(X(i−1)∆, Xi∆; θ), (4.2)

where h = (h1, . . . , hN)T , and the p × N weight matrix a(x, θ) is a function of x such
that (4.2) is Pθ-integrable. It follows from (4.1) that Gn (θ) is a martingale under Pθ for
all θ ∈ Θ. An estimating function with this property is called a martingale estimating
function.

The matrix a determines how much weight is given to each of the hjs in the estimation
procedure. This weight matrix can be chosen in an optimal way rather straightforwardly
using the theory of optimal estimating functions, see Godambe (1960), Durbin (1960),
Godambe & Heyde (1987) and Heyde (1997). The optimal weight matrix a∗ gives the
estimating function of the form (4.2) that provides the best possible approximation to
the score function (3.2) in a mean square sense. Moreover, the optimal g∗(x, y; θ) =
a∗(x; θ)h(x, y; θ) is obtained from ∂θ log p(x, y; θ) by projection in a certain space of square
integrable functions, see Kessler (1996) and Sørensen (1997).

The choice of the functions hj , on the other hand, is an art rather than a science. The
ability to tailor these functions to a given model or to particular parameters of interest
is a considerable strength of the estimating functions methodology. It is, however, also a
source of weakness, since it is not always clear how best to choose the hjs. In this and
the next section, we shall present ways of choosing these functions that usually work well
in practice.

Example 4.1 The martingale estimating function (3.5) is of the type (4.2) with N = 2
and

h1(x, y; θ) = y − F (∆, x; θ),

h2(x, y; θ) = (y − F (∆, x; θ))2 − φ(∆, x, θ),

where F and φ are given by (3.3) and (3.4). The weight matrix is

(

∂θF (∆, x; θ)

φ(∆, x; θ)
,

∂θφ(∆, x; θ)

2φ2(∆, x; θ)∆

)

, (4.3)

which we shall see is approximately optimal. 2
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In the econometrics literature, a popular way of using functions like hj(x, y, ; θ), j =
1, . . . , N , to estimate the parameter θ is the generalized method of moments (GMM) of
Hansen (1982). The method is usually implemented as follows, see e.g. Campbell, Lo &
MacKinlay (1997). Consider

Fn(θ) =
1

n

n
∑

i=1

h(X(i−1)∆, Xi∆; θ).

Under weak conditions, cf. Theorem 2.3, a consistent estimator of the asymptotic covari-
ance matrix M of

√
nFn(θ) is

Mn =
1

n

n
∑

i=1

h(X(i−1)∆, Xi∆; θ̃n)h(X(i−1)∆, Xi∆; θ̃n)T ,

where θ̃n is a consistent estimator of θ (for instance obtained by minimizing Fn(θ)TFn(θ)).
The GMM-estimator is obtained by minimizing the function

Hn(θ) = Fn(θ)TM−1
n Fn(θ).

The corresponding estimating function is obtained by differentiation with respect to θ

∂θHn(θ) = Dn(θ)M−1
n Fn(θ),

where by (2.4)

Dn(θ) =
1

n

n
∑

i=1

∂θh(X(i−1)∆, Xi∆; θ)T
Pθ0−→ Qθ0

(

∂θh(θ)
T
)

.

Hence the estimating function ∂θHn(θ) is asymptotically equivalent to an estimating func-
tion of the form (4.2) with a constant weight matrix

a(x, θ) = Qθ0

(

∂θh(θ)
T
)

M−1,

and we see that GMM-estimators are covered by the theory for martingale estimating
functions presented in this chapter.

We now return to the problem of finding the optimal estimating function G∗

n(θ) , i.e.
of the form (4.2) with the optimal weight matrix. To do so we assume that the functions
hj satisfy the following condition.

Condition 4.2

(1) The functions hj, j = 1, . . . N , are linearly independent.
(2) The functions y 7→ hj(x, y; θ), j = 1, . . .N , are square integrable with respect to
p(x, y; θ) for all x ∈ D and θ ∈ Θ.
(3) hj(x, y; θ), j = 1, . . .N , are differentiable with respect to θ.
(4) The functions y 7→ ∂θhj(x, y; θ) are integrable with respect to p(x, y; θ) for all x ∈ D
and θ ∈ Θ.
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According to the theory of optimal estimating functions, the optimal choice of the
weight matrix a is given by

a∗(x; θ) = Bh(x; θ)Vh(x; θ)
−1, (4.4)

where

Bh(x; θ) =

∫

D

∂θh(x, y; θ)
Tp(x, y; θ)dy (4.5)

and

Vh(x; θ) =

∫

D

h(x, y; θ)h(x, y; θ)Tp(x, y; θ)dy. (4.6)

The asymptotic variance of an optimal estimator, i.e. a G∗

n–estimator, is simpler than
the general expression in (2.10) because in this case the matrices W and V given by (2.9)
and (2.12) are equal and given by (4.8), as can easily be verified. Thus we have the
following corollary to Theorem 2.2:

Corollary 4.3 Assume that g∗(x, y, θ) = a∗(x; θ)h(x, y; θ) satisfies the conditions of The-
orem 2.2. Then a sequence θ̂n of G∗

n–estimators has the asymptotic distribution

√
n(θ̂n − θ0)

D−→ Np

(

0, V −1
)

, (4.7)

where

V = µθ0

(

Bh(θ0)Vh(θ0)
−1Bh(θ0)

T
)

(4.8)

with Bh and Vh given by (4.5) and (4.6).

Example 4.4 Consider the martingale estimating function of form (4.2) with N = 2 and
with h1 and h2 as in Example 4.1, where the diffusion is one-dimensional. The optimal
weight matrix has columns given by

a∗1(x; θ) =
∂θφ(x; θ)η(x; θ) − ∂θF (x; θ)ψ(x; θ)

φ(x; θ)ψ(x; θ) − η(x; θ)2

a∗2(x; θ) =
∂θF (x; θ)η(x; θ) − ∂θφ(x; θ)φ(x; θ)

φ(x; θ)ψ(x; θ) − η(x; θ)2
,

where

η(x; θ) = Eθ([X∆ − F (x; θ)]3|X0 = x)

and

ψ(x; θ) = Eθ([X∆ − F (x; θ)]4|X0 = x) − φ(x; θ)2.

We can simplify these expressions by making the Gaussian approximations

η(t, x; θ) ≈ 0 and ψ(t, x; θ) ≈ 2φ(t, x; θ)2. (4.9)

If we insert these approximations into the expressions for a∗1 and a∗2, we obtain the weight
functions in (3.5). When ∆ is not large this can be justified, because the transition
distribution is not far from Gaussian. 2
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In the next subsection we shall present a class of martingale estimating functions for
which the matrices Bh(x; θ) and Vh(x; θ) can be found explicitly, but for most models
these matrices must be found by simulation. If a∗ is determined by a relatively time
consuming numerical method, it might be preferable to use the estimating function

G•

n(θ) =
n
∑

i=1

a∗(X(i−1)∆; θ̃n)h(X(i−1)∆, Xi∆; θ), (4.10)

where θ̃n is a weakly
√
n-consistent estimator of θ, for instance obtained by some simple

choice of the weight matrix a. In this way a∗ needs to be calculated only once per
observation point. Under weak regularity conditions, the estimator obtained from G•

n(θ)
has the same efficiency as the optimal estimator; see e.g. Jacod & Sørensen (2008).

Most martingale estimating functions proposed in the literature are of the form

Gn (θ) =

n
∑

i=1

a(X(i−1)∆, θ)
[

f(Xi∆; θ) − πθ
∆(f(θ))(X(i−1)∆)

]

, (4.11)

where f = (f1, . . . , fN)T , and πθ
∆ denotes the transition operator

πθ
s(f)(x) =

∫

D

f(y)p(s, x, y; θ)dy = Eθ(f(Xs) |X0 = x). (4.12)

The polynomial estimating functions given by fj(y) = yj, j = 1, . . . , N , are an example.
For martingale estimating functions of the special form (4.11), the expression for the
optimal weight matrix simplifies to some extent to

Bh(x; θ)ij = πθ
∆(∂θi

fj(θ))(x) − ∂θi
πθ

∆(fj(θ))(x), (4.13)

i = 1, . . . p, j = 1, . . . , N , and

Vh(x; θ)ij = πθ
∆(fi(θ)fj(θ))(x) − πθ

∆(fi(θ))(x)π
θ
∆(fj(θ))(x), (4.14)

i, j = 1, . . . , N . Often the functions fj can be chosen such that they do not depend on θ,
in which case

Bh(x; θ)ij = −∂θi
πθ

∆(fj)(x). (4.15)

A useful approximations to the optimal weight matrix can be obtained by applying
the formula

πθ
s(f)(x) =

k
∑

i=0

si

i!
Ai

θf(x) +O(sk+1), (4.16)

where Aθ denotes the generator of the diffusion

Aθf(x) =

d
∑

k=1

bk(x; θ)∂xk
f(x) +

1

2

d
∑

k,ℓ=1

Ckℓ(x; θ)∂
2
xkxℓ

f(x), (4.17)

where C = σσT . The formula (4.16) holds for 2(k + 1) times continuously differentiable
functions under weak conditions which ensure that the remainder term has the correct
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order, see Kessler (1997). It is often enough to use the approximation πθ
∆(fj)(x) ≈

fj(x) + ∆Aθfj(x). When f does not depend on θ this implies that

Bh(x; θ) ≈ ∆
[

∂θb(x; θ)f
′(x) + 1

2∂θσ
2(x; θ)f ′′(x)

]

(4.18)

and (for N = 1)

Vh(x; θ) ≈ ∆
[

Aθ(f
2)(x) − 2f(x)Aθf(x)

]

= ∆ σ2(x; θ)f ′(x)2. (4.19)

Example 4.5 If we simplify the optimal weight matrix found in Example 4.4 by (4.16)
and the Gaussian approximation (4.9), we obtain the approximately optimal quadratic
martingale estimating function

G◦

n(θ) =
n
∑

i=1

{

∂θb(X(i−1)∆; θ)

σ2(X(i−1)∆; θ)
[Xi∆ − F (X(i−1)∆; θ)] (4.20)

+
∂θσ

2(X(i−1)∆; θ)

2σ4(X(i−1)∆; θ)∆

[

(Xi∆ − F (X(i−1)∆; θ))2 − φ(X(i−1)∆; θ)
]

}

.

For the CIR-model
dXt = −β(Xt − α)dt+ τ

√

XtdWt, (4.21)

where β, τ > 0, the approximately optimal quadratic martingale estimating function is































n
∑

i=1

1

X(i−1)∆

[

Xi∆ −X(i−1)∆e
−β∆ − α(1 − e−β∆)

]

n
∑

i=1

[

Xi∆ −X(i−1)∆e
−β∆ − α(1 − e−β∆)

]

n
∑

i=1

1

X(i−1)∆

[

(

Xi∆ −X(i−1)∆e
−β∆ − α(1 − e−β∆)

)2

−τ
2

β

{(

α/2 −X(i−1)∆

)

e−2β∆ − (α−X(i−1)∆)e−β∆ + α/2
}

]































. (4.22)

This is obtained from (4.20) after multiplication by an invertible non-random matrix to
obtain a simpler expression. This does not change the estimator. From this estimating
function explicit estimators can easily be obtained. A simulation study and an investiga-
tion of the asymptotic variance of the estimators for α and β in Bibby & Sørensen (1995)
show that they are not much less efficient than the estimators from the optimal estimating
function; see also the simulation study in Overbeck & Rydén (1997). 2

When the optimal weight matrix is approximated by means of (4.16), there is a certain
loss of efficiency, which as in the previous example is often quite small; see Bibby &
Sørensen (1995) and the section on high frequency asymptotics below. Therefore the
relatively simple estimating function (4.20) is often a good choice in practice.

It is tempting to go on to approximate πθ
∆(fj(θ))(x) in (4.11) by (4.16) in order to

obtain an explicit estimating function, but as we shall see in the next section this is often
a dangerous procedure. In general the conditional expectation in πθ

∆ should therefore
be approximated by simulations. Fortunately, Kessler & Paredes (2002) have established
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that, provided the simulation is done with sufficient accuracy, this does not cause any
bias, only a minor loss of efficiency that can be made arbitrarily small. Moreover, as we
shall also see in the next section, πθ

∆(fj(θ))(x) can be found explicitly for a quite flexible
class of diffusions.

5 Explicit inference

In this section we consider one-dimensional diffusion models for which estimation is par-
ticularly easy because an explicit martingale estimating function exists.

Kessler & Sørensen (1999) proposed estimating functions of the form (4.11) where the
functions fj , i = 1, . . . , N are eigenfunctions for the generator (4.17), i.e.

Aθfj(x; θ) = −λj(θ)fj(x; θ),

where the real number λj(θ) ≥ 0 is called the eigenvalue corresponding to fj(x; θ). Under
weak regularity conditions, fj is also an eigenfunction for the transition operator πθ

t , i.e.

πθ
t (fj(θ))(x) = e−λj(θ)tfj(x; θ). (5.1)

for all t > 0. Thus explicit martingales are obtained. Each of the following three condi-
tions imply (5.1):

(i) σ(x; θ) and ∂xfj(x; θ) are bounded functions of x ∈ (ℓ, r).

(ii)
∫ r

ℓ
[∂xfj(x; θ)σ(x; θ)]2µθ(dx) <∞.

(iii) b and σ are of linear growth, and ∂xfj is of polynomial growth in x ∈ (ℓ, r).

Example 5.1 The model

dXt = −β[Xt − (m+ γz)]dt+ σ
√

z2 − (Xt −m)2dWt (5.2)

where β > 0 and γ ∈ (−1, 1) has been proposed as a model for the random variation
of the logarithm of an exchange rate in a target zone between realignments by De Jong,
Drost & Werker (2001) (γ = 0) and Larsen & Sørensen (2007). This is a diffusion on the
interval (m− z,m+ z) with mean reversion around m+ γz. The parameter γ quantifies
the asymmetry of the model. When β(1 − γ) ≥ σ2 and β(1 + γ) ≥ σ2, X is an ergodic
diffusion, for which the stationary distribution is a beta-distribution on (m − z,m + z)
with parameters κ1 = β(1 − γ)σ−2 and κ2 = β(1 + γ)σ−2.

The eigenfunctions for the generator of the diffusion (5.2) are

fi(x; β, γ, σ,m, z) = P
(κ1−1, κ2−1)
i ((x−m)/z), i = 1, 2, . . .

where P
(a,b)
i (x) denotes the Jacobi polynomial of order i given by

P
(a,b)
i (x) =

i
∑

j=0

2−j

(

n+ a

n− j

)(

a+ b+ n+ j

j

)

(x− 1)j, −1 < x < 1,
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as can easily be seem by direct calculation. For this reason, the process (5.2) is called a
Jacobi-diffusion. The eigenvalue of fi is i

(

β + 1
2σ

2(i− 1)
)

. Since condition (i) above is
obviously satisfied because the state space is bounded, (5.1) holds. 2

When the eigenfunctions are of the form

fi(y; θ) =
i
∑

j=0

ai,j(θ) κ(y)
j (5.3)

where κ is a real function defined on the state space and is independent of θ, the optimal
weight matrix (4.4) can be found explicitly too, provided that 2N eigenfunctions are
available. Specifically,

Bh(x, θ)ij =

j
∑

k=0

(

∂θi
aj,k(θ)νk(x; θ) − ∂θi

[e−λj(θ)∆φj(x; θ)]
)

and

Vh(x, θ)i,j =
i
∑

r=0

j
∑

s=0

(

ai,r(θ)aj,s(θ)νr+s(x; θ) − e−[λi(θ)+λj(θ)]∆ φi(x; θ)φj(x; θ)
)

,

where νi(x; θ) = πθ
∆(κi)(x), i = 1, . . . , 2N , solve the following triangular system of linear

equations

e−λi(θ)∆fi(x; θ) =
i
∑

j=0

ai,j(θ)νj(x; θ) i = 1, . . . , 2N, (5.4)

with ν0(x; θ) = 1. The expressions for Bh and Vh follow from (4.13) and (4.14), while
(5.4) follows by applying πθ

∆ to both sides of (5.3).

Example 5.2 A widely applicable class of diffusion models for which explicit polynomial
eigenfunctions are available is the class of Pearson diffusions, see Wong (1964) and Forman
& Sørensen (2008). A Pearson diffusion is a stationary solution to a stochastic differential
equation of the form

dXt = −β(Xt − µ)dt+
√

(aX2
t + bXt + c)dWt, (5.5)

where β > 0, and a, b and c are such that the square root is well defined when Xt is
in the state space. The class of stationary distributions equals the full Pearson system
of distributions, so a very wide spectrum of marginal distributions is available ranging
from distributions with compact support to very heavy-tailed distributions. For instance
Pearson’s type IV distributions, a skew t-type distribution, which seems very useful in
finance, see e.g. Nagahara (1996), is the stationary distribution of the diffusion

dZt = −βZtdt+

√

2β(ν − 1)−1{Z2
t + 2ρν

1
2Zt + (1 + ρ2)ν}dWt,
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with ν > 1. The parameter ρ is a skewness parameter. For ρ = 0 a t-distribution with ν
degrees of freedom is obtained. Well-known instances of (5.5) are the Ornstein-Uhlenbeck
process, the square root (CIR) process, and the Jacobi diffusions.

For a diffusion T (X) obtained from a solution X to (5.5) by a twice differentiable and
invertible transformation T , the eigenfunctions of the generator are pn{T−1(x)}, where pn

is an eigenfunction of the generator of X. The eigenvalues are the same as for the original
eigenfunctions. Since the original eigenfunctions are polynomials, the eigenfunctions of
T (X) are of the form (5.3) with κ = T−1. Hence explicit optimal martingale estimating
functions are available for transformed Pearson diffusions too.

As an example let X be the Jacobi-diffusion (5.2) with m = 0 and z = 1, and consider
Yt = sin−1(Xt). Then

dYt = −ρsin(Yt) − ϕ

cos(Yt)
dt+ σdWt,

where ρ = β − 1
2
σ2 and ϕ = βγ/ρ. The state space is (−π/2, π/2). Note that Y has

dynamics that are very different from those of (5.2): the drift is non-linear and the
diffusion coefficient is constant. The process Y was proposed and studied in Kessler &
Sørensen (1999) for ϕ = 0, where the drift is −ρ tan(x). The general asymmetric version
was proposed in Larsen & Sørensen (2007) as a model for exchange rates in a target zone.
2

Explicit martingale estimating functions are only available for the relatively small, but
versatile, class of diffusions for which explicit eigenfunctions for the generator are available.
Explicit non-martingale estimating functions can be found for all diffusions, but cannot be
expected to approximate the score functions as well as martingale estimating functions,
and will therefore usually give less efficient estimators.

Hansen & Scheinkman (1995) proposed non-martingale estimating functions given by

gj(∆, x, y; θ) = hj(y)Aθfj(x) − fj(x)Âθhj(y), (5.6)

where Aθ is the generator (4.17), and the functions fj and hj satisfy weak regularity
conditions ensuring that (2.8) holds. The differential operator

Âθf(x) =
d
∑

k=1

b̂k(x; θ)∂xk
f(x) +

1

2

d
∑

k,ℓ=1

Ckℓ(x; θ)∂
2
xkxℓ

f(x),

where C = σσT and

b̂k(x; θ) = −bk(x; θ) +
1

µθ(x)

d
∑

ℓ=1

∂xℓ
(µθCkl) (x; θ),

is the generator of the time reversal of the observed diffusion X. A simpler type of ex-
plicit non-martingale estimating functions is of the form g(∆, x, y; θ) = h(x; θ). Hansen &
Scheinkman (1995) and Kessler (2000) studied hj(x; θ) = Aθfj(x), which is a particular
case of (5.6). Kessler (2000) also proposed h(x; θ) = ∂θ log µθ(x), which corresponds to
considering the observations as an i.i.d. sample from the stationary distribution. Finally,
Sørensen (2001) derived the estimating function with h(x; θ) = Aθ∂θ log µθ(Xti) as an ap-
proximation to the continuous-time score function. In all cases weak regularity conditions
are needed to ensure that (2.8) holds, i.e. that

∫

h(x; θ0)µθ0
(x)dx = 0.
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Quite generally, an explicit approximate martingale estimating function can be ob-
tained from a martingale estimating function of the form (4.11) by approximating πθ

∆(fj(θ))(x)
and the weight matrix by (4.16). The simplest version of this approach gives the same
estimator as the Gaussian quasi-likelihood based on the Euler-approximation to (1.1).
Estimators of this type have been considered by Dorogovcev (1976), Prakasa Rao (1988),
Florens-Zmirou (1989), Yoshida (1992), Chan et al. (1992), Kessler (1997), and Kelly,
Platen & Sørensen (2004). It is, however, important to note that there is a dangerous
pitfall when using these simple approximate martingale estimating functions. They do
not satisfy (2.8), and hence the estimators are inconsistent and converge to the solution
to (2.11). The problem is illustrated by the following example.

Example 5.3 Consider again the CIR-model (4.21). If we insert the approximation
F (x;α, β) = −β(x− α)∆ into (4.22) we obtain the following estimator for β

β̂n =

1
n
(X∆n −X0)

∑n

i=1X
−1
∆(i−1) −

∑n

i=1X
−1
∆(i−1)(X∆i −X∆(i−1))

∆[n− (
∑n

i=1X∆(i−1))(
∑n

i=1X
−1
∆(i−1))/n]

.

It follows from (2.4) that

β̂n
Pθ−→ (1 − e−β0∆)/∆ ≤ ∆−1.

Thus the estimator of the reversion parameter β is reasonable only when β0∆ is consider-
ably smaller than one. Note that the estimator will always converge to a limit smaller than
the sampling frequency. When β0∆ is large, the behaviour of the estimator is bizarre,
see Bibby & Sørensen (1995). Without prior knowledge of the value of β0 it is thus a
dangerous estimator. 2

The asymptotic bias given by (2.11) is small when ∆ is sufficiently small, and the
results in the following section on high frequency asymptotics show that in this case the
approximate martingale estimating functions work well. However, how small ∆ has to be
depends on the parameter values, and without prior knowledge about the parameters, it
is safer to use an exact martingale estimating function, which gives consistent estimators
at all sampling frequencies.

6 High frequency asymptotics and efficient estima-

tion

A large number of estimating functions have been proposed for diffusion models, and a
large number of simulation studies have been performed to compare their relative merits,
but the general picture has been rather confusing. By considering the high frequency
scenario,

n→ ∞, ∆n → 0, n∆n → ∞, (6.1)

Sørensen (2007) obtained simple conditions for rate optimality and efficiency for ergodic
diffusions, which allow identification of estimators that work well when the time between
observations, ∆n, is not too large. For financial data the speed of reversion is usually slow
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enough that this type of asymptotics works for daily, sometimes even weekly observations.
A main result of this theory is that under weak conditions optimal martingale estimating
functions give rate optimal and efficient estimators.

To simplify the exposition, we restrict attention to a one-dimensional diffusion given
by

dXt = b(Xt;α)dt+ σ(Xt; β)dWt, (6.2)

where θ = (α, β) ∈ Θ ⊆ IR2. The results below can be generalized to multivariate
diffusions and parameters of higher dimension. We consider estimating functions of the
general form (2.2), where the two-dimensional function g = (g1, g2) for some κ ≥ 2 and
for all θ ∈ Θ satisfies

Eθ(g(∆n, X∆ni, X∆n(i−1); θ) |X∆n(i−1)) = ∆κ
nR(∆n, X∆n(i−1); θ). (6.3)

Here and later R(∆, y, x; θ) denotes a function such that |R(∆, y, x; θ)| ≤ F (y, x; θ), where
F is of polynomial growth in y and x uniformly for θ in a compact set6. We assume that
the diffusion and the estimating functions satisfy the technical regularity Condition 6.3
given below.

Martingale estimating functions obviously satisfy (6.3) with R = 0, but for instance
the approximate martingale estimating functions discussed at the end of the previous
section satisfy (6.3) too.

Theorem 6.1 Suppose that

∂yg2(0, x, x; θ) = 0, (6.4)

∂yg1(0, x, x; θ) = ∂αb(x;α)/σ2(x; β), (6.5)

∂2
yg2(0, x, x; θ) = ∂βσ

2(x; β)/σ2(x; β)2, (6.6)

for all x ∈ (ℓ, r) and θ ∈ Θ. Assume, moreover, that the following identifiability condition
is satisfied

∫ r

ℓ

[b(x, α0) − b(x, α)]∂yg1(0, x, x; θ)µθ0
(x)dx 6= 0 when α 6= α0,

∫ r

ℓ

[σ2(x, β0) − σ2(x, β)]∂2
yg2(0, x, x; θ)µθ0

(x)dx 6= 0 when β 6= β0,

and that

W1 =

∫ r

ℓ

(∂αb(x;α0))
2

σ2(x; β0)
µθ0

(x)dx 6= 0,

W2 =

∫ r

ℓ

[

∂βσ
2(x; β0)

σ2(x; β0)

]2

µθ0
(x)dx 6= 0.

Then a consistent Gn–estimator θ̂n = (α̂n, β̂n) exists and is unique in any compact sub-
set of Θ containing θ0 with probability approaching one as n → ∞. For a martingale
estimating function, or more generally if n∆2(κ−1) → 0,

(
√
n∆n(α̂n − α0)√
n(β̂n − β0)

)

D−→ N2

((

0
0

)

,

(

W−1
1 0

0 W−1
2

))

. (6.7)

6For any compact subset K ⊆ Θ, there exist constants C1, C2, C3 > 0 such that supθ∈K |F (y, x; θ)| ≤
C1(1 + |x|C

2
+ |y|C

3
) for all x and y in the state space of the diffusion.
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An estimator satisfying (6.7) is rate optimal and efficient, cf. Gobet (2002), who showed
that the model considered here is locally asymptotically normal. Note that the estimator
of the diffusion coefficient parameter, β, converges faster than the estimator of the drift
parameter, α. Condition (6.4) implies rate optimality. If this condition is not satisfied,
the estimator of the diffusion coefficient parameter converges at the slower rate

√
n∆n.

This condition is called the Jacobsen condition, because it appears in the theory of small
∆-optimal estimation developed in Jacobsen (2001) and Jacobsen (2002). In this theory
the asymptotic covariance matrix in (2.10) is expanded in powers of ∆, the time between
observations. The leading term is minimal when (6.5) and (6.6) are satisfied. The same
expansion of (2.10) was used by Äıt-Sahalia & Mykland (2004).

The assumption n∆n → ∞ in (6.1) is needed to ensure that the drift parameter, α,
can be consistently estimated. If the drift is known and only the diffusion coefficient
parameter, β, needs to be estimated, this condition can be omitted, see Genon-Catalot
& Jacod (1993). Another situation where the infinite observation horizon, n∆n → ∞, is
not needed for consistent estimation of α is when the high frequency asymptotic scenario
is combined with the small diffusion scenario, where σ(x; β) = ǫnζ(x; β) and ǫn → 0, see
Genon-Catalot (1990), Sørensen & Uchida (2003) and Gloter & Sørensen (2008).

The reader is reminded of the trivial fact that for any non-singular 2 × 2 matrix,
Mn, the estimating functions MnGn(θ) and Gn(θ) give exactly the same estimator. We
call them versions of the same estimating function. The matrix Mn may depend on ∆n.
Therefore a given version of an estimating function needs not satisfy (6.4) – (6.6). The
point is that a version must exist which satisfies these conditions.

Example 6.2 Consider a quadratic martingale estimating function of the form

g(∆, y, x; θ) =

(

a1(x,∆; θ)[y − F (∆, x; θ)]

a2(x,∆; θ) [(y − F (∆, x; θ))2 − φ(∆, x; θ)]

)

, (6.8)

where F and φ are given by (3.3) and (3.4). By (4.16), F (∆, x; θ) = x + O(∆) and
φ(∆, x; θ) = O(∆), so

g(0, y, x; θ) =

(

a1(x, 0; θ)(y − x)

a2(x, 0; θ)(y − x)2

)

. (6.9)

Since ∂yg2(0, y, x; θ) = 2a2(x,∆; θ)(y − x), the Jacobsen condition (6.4) is satisfied, so
estimators obtained from (6.8) are rate optimal. Using again (4.16), it is not difficult to
see that efficient estimators are obtained in three particular cases: the optimal estimating
function given in Example 4.4 and the approximations (3.5) and (4.20). 2

It follows from results in Jacobsen (2002) that to obtain a rate optimal and efficient
estimator from an estimating function of the form (4.11), we need that N ≥ 2 and that
the matrix

D(x) =

(

∂xf1(x; θ) ∂2
xf1(x; θ)

∂xf2(x; θ) ∂2
xf2(x; θ)

)

is invertible for µθ-almost all x. Under these conditions, Sørensen (2007) showed that
Godambe-Heyde optimal martingale estimating functions give rate optimal and efficient
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estimators. For a d-dimensional diffusion, Jacobsen (2002) gave the conditions N ≥
d(d+ 3)/2, and that the N × (d + d2)-matrix D(x) = (∂xf(x; θ) ∂2

xf(x; θ)) has full rank
d(d+ 3)/2.

We conclude this section by stating technical conditions under which the results in this
section hold. The assumptions about polynomial growth are far too strong, but simplify
the proofs. These conditions can most likely be weakened very considerably in a way
similar to the proofs in Gloter & Sørensen (2008).

Condition 6.3 The diffusion is ergodic and the following conditions hold for all θ ∈ Θ:

(1)
∫ r

ℓ
xkµθ(x)dx <∞ for all k ∈ IN.

(2) supt Eθ(|Xt|k) <∞ for all k ∈ IN.

(3) b, σ ∈ Cp,4,1((ℓ, r) × Θ).

(4) g(∆, y, x; θ) ∈ Cp,2,6,2(IR+ × (ℓ, r)2 × Θ) and has an expansion in powers of ∆:

g(∆, y, x; θ) =

g(0, y, x; θ) + ∆g(1)(y, x; θ) + 1
2∆

2g(2)(y, x; θ) + ∆3R(∆, y, x; θ),

where

g(0, y, x; θ) ∈ Cp,6,2((ℓ, r)
2 × Θ),

g(1)(y, x; θ) ∈ Cp,4,2((ℓ, r)
2 × Θ),

g(2)(y, x; θ) ∈ Cp,2,2((ℓ, r)
2 × Θ).

We define Cp,k1,k2,k3
(IR+×(ℓ, r)2×Θ) as the class of real functions f(t, y, x; θ) satisfying

that

(i) f(t, y, x; θ) is k1 times continuously differentiable with respect t, k2 times contin-
uously differentiable with respect y, and k3 times continuously differentiable with
respect α and with respect to β

(ii) f and all partial derivatives ∂i1
t ∂i2

y ∂i3
α ∂i4

β f , ij = 1, . . . kj, j = 1, 2, i3 + i4 ≤ k3, are
of polynomial growth in x and y uniformly for θ in a compact set (for fixed t).

The classes Cp,k1,k2
((ℓ, r) × Θ) and Cp,k1,k2

((ℓ, r)2 × Θ) are defined similarly for functions
f(y; θ) and f(y, x; θ), respectively.
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