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Abstract

Recent research has focused on modelling asset prices by Itˆo semimartingales. In such

a modelling framework, the quadratic variation consists ofa continuous and a jump com-

ponent. This paper is about inference on the jump part of the quadratic variation, which can

be estimated by the difference of realised variance and realised multipower variation. The

main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit

theory for realised variance and realised multipower variation in the presence of jumps.

Second, this paper presents new, consistent estimators forthe jump part of the asymptotic

variance of the estimation bias. Eventually, this leads to afeasible asymptotic theory which

is applicable in practice. Finally, Monte Carlo studies reveal a good finite sample perfor-

mance of the proposed feasible limit theory.
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1 Introduction

Estimation and inference of the variation of asset prices isone of the key tasks in financial

econometrics. In this paper, we focus on very general modelsfor logarithmic asset prices,

namely on Itô semimartingales. Such processes are specialcases of real–valued semimartin-

gales in the sense that they can be written asY = (Yt)t≥0 with

Yt = Y0 +

∫ t

0

bsds +

∫ t

0

σsdWs + Lt, (1)

on a probability space(Ω,A, (Ft)t≥0, P). Here,(Wt)t≥0 is a one–dimensional Brownian mo-

tion, (bt)t≥0 is a locally bounded predictable process,(σt)t≥0 is a càdlàg adapted process and

(Lt)t≥0 is a fairly general jump process and will be specified more precisely below.

The variation of asset prices is often measured by means of the quadratic variation which is

given by

[Y ]t = [Y ]ct + [Y ]dt , where [Y ]ct =

∫ t

0

σ2
sds, and [Y ]dt =

∑

0≤s≤t

(∆Ls)
2 ,

denote the continuous and discontinuous (or jump) parts of the quadratic variation, respectively.

While inference on the integrated variance has been studiedextensively in the last decade,

see e.g. Barndorff-Nielsen & Shephard (2002), inference onthe quadratic variation in the pres-

ence of jumps and inference on the jump part of the quadratic variation, in particular, has not

been studied yet. So far, it has only been possible to gain information on the jump part of

the quadratic variation indirectly, i.e. by means of tests for jumps as studied by e.g. Barndorff-

Nielsen & Shephard (2006), Aı̈t-Sahalia & Jacod (2006) and Jacod & Todorov (2007). How-

ever, this paper introduces an explicit, non–parametric method, based on so–calledin–fill asymp-

totics, for making inference on the jump part of the quadratic variation.

Our first steps will follow the methodology of Barndorff-Nielsen & Shephard (2006), who

exploited the fact that jumps in the asset price are reflectedin a jump part of the quadratic

variation and vice versa. So their main idea was to compare two measures of variance: one

which is not robust to jumps, a quantity calledrealised variance(see e.g. Comte & Renault

(1998), Barndorff-Nielsen & Shephard (2002), Andersen, Bollerslev, Diebold & Labys (2001),

Jacod (2007a)), that estimates the entire quadratic variation of the price process, and one which

is robust to jumps, calledrealised multipower variation(see e.g. Barndorff-Nielsen & Shephard

(2004), Barndorff-Nielsen, Graversen, Jacod, Podolskij &Shephard (2006), Barndorff-Nielsen,

Shephard & Winkel (2006), Woerner (2006)). Jacod (2006)), and only estimates the continuous

part of the quadratic variation. By using the difference of these two quantities, one obtains a

consistent estimator for the jump part of the quadratic variation. In order to make inference

on the jump part of quadratic variation, one has to derive theasymptotic distribution of the

difference of realised variance and realised multipower variation or, more generally, their joint
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asymptotic distribution in the presence of jumps. This is exactly the task we tackle in this paper.

The remaining part of the paper is structured as follows. Section 2 introduces the notation

and the main model assumptions. Section 3 reviews the most important facts about realised

variance and realised multipower variation. Section 4 contains the main contribution of this

paper. First, we sketch some of the important theoretical work by Jacod (2006, 2007a) on

univariate asymptotic results for realised variance and realised multipower variation. Then, the

main result is presented: the asymptotic distribution of a bivariate process of realised variance

and realised multipower variation in the presence of jumps.From this result we deduce the

asymptotic distributions of the difference, the ratio and the logarithmic difference of realised

variance and realised multipower variation. At first, all these limit theorem areinfeasiblein the

sense that the asymptotic variances of the estimation bias are not observable. So in a next step,

we replace them by consistent estimators, which eventuallyleads tofeasiblelimit theorems. In

order to assess the finite sample performance of the feasibleasymptotic theory, we carry out a

detailed Monte Carlo study in Section 5. Finally, Section 6 concludes the paper and gives some

prospect on future research. The proofs of the theorem and the tables with the results from the

simulation study are given in the Appendices.

2 Setup

This section sets up the notation and introduces the model assumptions, which are essentially

taken from Jacod (2007a). The logarithmic asset price is supposed to be a real–valued Itô

semimartingaleY = (Yt)t≥0, which is defined on a probability space(Ω,A, (Ft)t≥0, P).

Recall that any semimartingale has predictable characteristic (B, C, ν), say, whereν is the

compensator of the jump measureµ of Y , C = 〈Y c〉, whereY c is the continuous martingale part

of Y , and the driftB depends on the choice of a truncation functionκ, say, which is supposed to

be continuous, bounded with compact support andκ(x) = x on a neighbourhood of 0. Further

let κ′(x) = x − κ(x).

An Itô semimartingaleis defined as a semimartingale whose characteristics are absolutely

continuous with respect to the Lebesgue measure, i.e.

Bt =

∫ t

0

budu, Ct =

∫ t

0

cudu, ν(dt, dx) = dtFt(dx). (2)

Clearly, forσt =
√

ct, every Itô semimartingale can be written as

Yt = Y0 +

∫ t

0

bsds +

∫ t

0

σsdWs + κ(δ) ⋆ (µ − ν)t + κ′(δ) ⋆ µ
t
, (3)

whereδ : Ω×R+ ×R → R is predictable and such thatFt(ω, dx) is the image of the Lebesgue

measure onR by the mapx 7→ δ(ω, t, x), andW is a Brownian motion andµ a Poisson random
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measure onR+ × R on the filtered space(Ω,A, (Ft)t≥0, P), and the predictable compensator

of µ is ν(ds, dx) = ds ⊗ dx, where it might be necessary to enlarge the original space to

accommodate(W, µ). In the following we will often use a functionφs, which is defined by

φs(x) =

{
min(1, |x|s), if 0 < s < ∞,

1IR\{0} if s = 0.

Now we can introduce the model assumptions (as given in Jacod(2007a)).

Hypothesis (H) Y is an Itô semimartingale and in (2) the processes(bt)t≥0 and(Ft(φ2))t≥0 are

locally bounded predictable (whereFt(f) =
∫

f(x)Ft(dx)), and the process(ct)t≥0 is

càdlàg adapted.

At first sight, this assumption might look quite technical. However, it is a fairly natural exten-

sion of standard asset price models: A Brownian semimartingale
∫ t

0
σsdWs is one of the main

building blocks for asset price models, since it allows for stochastic volatility and can incorpo-

rate the leverage effect, whenσ andW are not assumed to be independent. In order to allow

for jumps, recent research has then focused on adding a jump component, e.g. a compound

Poisson process or a more general pure jump Lévy process to aBrownian semimartingale. An

Itô semimartingale is a further extension of such a model inthe sense that it drops the possibly

unrealistic assumption of a Lévy process, which has independent and stationary increments.

Another assumption is concerned with the jump part of the semimartingale.

Hypothesis (K) (H) holds and the coefficientδ (see (3)) satisfies|δ(ω, t, x)| ≤ γk(x) for all

t ≤ Tk(ω), whereγk denote some deterministic functions onR which satisfy
∫

φ2 ◦
γk(x)dx < ∞, and(Tk) are stopping times increasing to+∞.

Furthermore, we need an assumption on the volatility process and on the activity of the

jumps ofY .

Hypothesis (L-s) (for s ∈ [0, 2]) Assume that the probability space supports a second Brow-

nian motionW ′ = (W ′
t)t≥0, which is independent ofW . Further, (H) holds and the

volatility processσ has the form

σt = σ0 +

∫ t

0

b̃udu +

∫ t

0

σ̃udWu +

∫ t

0

σ̃′
udW ′

u + κ(δ̃) ⋆ (µ − ν)t + κ′(δ̃) ⋆ µ
t
,

and

• the process(̃bt) is optional and locally bounded;

• the processes(bt), (σ̃t), (σ̃′
t) are adapted left–continuous with right limits int, and

locally bounded;
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• the functionsδ(ω, t, x) andδ̃(ω, t, x) are predictable and left–continuous with right

limits in t. Also, |δ(ω, t, x)| ≤ γk(x) and |δ̃(ω, t, x)| ≤ γ̃k(x) for all t ≤ Tk(ω),

whereγk, γ̃k are deterministic functions onR with
∫

φs ◦ γk(x)dx < ∞ (where

we define00 = 0) — note that this is the condition where thes comes in — and∫
φ2 ◦ γ̃k(x)dx < ∞. Furthermore,(Tk) denotes a sequence of stopping times

increasing to+∞.

So, under the assumption (L-s), s can be regarded as a generalised Blumenthal–Getoor index

of Y , which measures the activity of the jumps of the Itô semimartingaleY , and the volatility

process is given by a semimartingale. Note that we assume in (L-s) thats ∈ [0, 2]. If s ≤ s′ ≤ 2,

then (L-s)⇒ (L-s′)⇒ (K) ⇒(H). Also note that (L-0) implies thatX has locally finitely many

jumps and ifX is continuous, then all hypotheses (L-s) are identical for alls ∈ [0, 2] (see

Jacod (2007a, p.6)). Finally, we formulate a hypothesis which guarantees that the Brownian

semimartingale component is nowhere degenerate.

Hypothesis (H’) Hypothesis (H) holds and(σ2
t ) and(σ2

t−) do not vanish.

For our asymptotic theory, we need some further notation, which follows Jacod (2007a)’s

framework. Let(Ω′,A′, P′) denote an auxiliary space which supports two Brownian motionsW

andW̃ , two sequences ofN (0, 1) random variables, denoted by(Up) and(U ′
p) and, further, a

sequence of random variables(ξp) which are uniformly distributed on[0, 1]. All these processes

are assumed to be mutually independent. Now we extend our original probability space and we

write

Ω̃ = Ω × Ω′, Ã = A⊗A′, P̃ = P ⊗ P
′.

One can now extend, in the obvious way, the variablesYt, bt, . . . defined onΩ andW, W̃ , Up, . . .

defined onΩ′ to the product space (without change of notation). LetẼ denote the expectation

with respect tõP. Further, let(Tp) denote stopping times which are an enumeration of the

jump times ofY . Finally, we write(F̃t) for the smallest right–continuous filtration of̃A which

contains(Ft) and with respect to whichW is adapted and, further, such thatUp, U ′
p andξp are

F̃Tp
–measurable for allp.

Straightforwardly,W andW̃ are(F̃t)t≥0–Brownian motions under̃P, which also holds for

W andW ′. Furtherµ is a Poisson measure with compensatorν for the bigger filtration.

3 Review of realised variance and realised multipower vari-

ation

After having introduced the admittedly quite tedious notation for the continuous–time price

process, we now turn our attention to its discrete–time observations. Let us assume that we
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observe the processY over an interval[0, t] at timesi∆n for ∆n > 0 andi = 0, . . . , [t/∆n].

We will always assume that∆n → 0 asn → ∞. So for the discretely observed increments, we

write

∆n
i Y = Yi∆n

− Y(i−1)∆n
, for i = 1, . . . [t/∆n].

In practice, these increments are used to construct estimators for the variance or integrated

variance. For example, it is well–known that therealised variance, which is the sum of the

squared increments, given by

RV n
t =

[t/∆n]∑

i=1

(∆n
i Y )2 ,

estimates the quadratic variation of the underlying process consistently, i.e.RV n
t

ucp−→ [Y ]t,

asn → ∞, where the convergence is uniformly on compacts in probability (ucp) (see Protter

(2004, p. 57), Andersen, Bollerslev, Diebold & Ebens (2001)and Barndorff-Nielsen & Shep-

hard (2002)).

Besides, one can use therealised bipower variation(as defined by Barndorff-Nielsen &

Shephard (2004, 2006)) for estimating the continuous part of the quadratic variation of Itô

semimartingales (see Jacod (2006)). Letµr = E|U |r, for U ∼ N(0, 1). Then, one obtains

µ−2
1

[t/∆n]−1∑

i=1

|∆n
i Y |

∣∣∆n
i+1Y

∣∣ ucp−→ [Y c]t =

∫ t

0

σ2
sds, asn → ∞.

This concept can be further generalised to realised multipower variation (see e.g. Barndorff-

Nielsen, Graversen, Jacod, Podolskij & Shephard (2006) fora treatment of realised multipower

variation in the absence of jumps and Woerner (2006) and Jacod (2006) for the corresponding

results in the presence of jumps). Letr = (r1, . . . , rI) be a multi–index withri > 0. Further,

we write|r| = r1 + · · ·+ rI andr+ = max1≤i≤I ri andr− = min1≤i≤I ri. Let r+ < 2, then

∆1−|r|/2
n µ−1

r

[t/∆n]−I+1∑

i=1

I∏

j=1

|∆n
i+j−1Y |rj

ucp→
∫ t

0

|σu||r|du, asn → ∞,

whereµ
r

=
∏I

j=1 µrj
. Now we define

RMPV (r)n
t =

[t/∆n]

[t/∆n] − I + 1
∆1−|r|/2

n µ−1
r

[t/∆n]−I+1∑

i=1

I∏

j=1

|∆n
i+j−1Y |rj . (4)

Since we want to study the difference ofRMPV (r)n
t andRV n

t in the following section, we

include the factor[t/∆n]/([t/∆n] − I + 1) in the definition of realised multipower variation

above. This accounts for the fact that there are only([t/∆n]−I+1) terms in the sum on the right

hand side of (4), whereas there are[t/∆n] summands in the realised variance case. Making such

an adjustment avoids the problem of introducing a finite sample bias by comparing to similar
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sums with a different number of summands each. Clearly, ifr+ < 2, then

RMPV (r)n
t

ucp→
∫ t

0

|σu||r|du, asn → ∞.

Note that if|r| = 2, then we simply get∆1−|r|/2
n = 1. In particular, we are interested in realised

multipower variations with equal powerri. So we define fork, I ∈ N:

RMPV (k; I)n
t =

[t/∆n]

[t/∆n] − I + 1
∆1−k/2

n µ−I
k/I

[t/∆n]−I+1∑

i=1

I∏

j=1

|∆n
i+j−1Y |k/I .

Then, fork/I < 2,

RMPV (k; I)n
t

ucp−→
∫ t

0

|σu|kdu, asn → ∞.

Fork = 2, we haveRMPV (2; I)n
t

ucp−→
∫ t

0
σ2

udu, asn → ∞, and, hence,

RV n
t − RMPV (2; I)n

t

ucp−→ [Y ]dt , asn → ∞.

So, the difference of realised variance and realised multipower variation is a consistent estimator

for the jump part of the quadratic variation. In order to makeinference on[Y ]d, we derive an

asymptotic theory for the difference of realised variance and realised multipower variation.

More generally, we study the asymptotic properties of the bivariate vector of realised variance

and realised multipower variation.

4 Central limit theorems in the presence of jumps

Let Y be the real–valued Itô semimartingale as defined above. We are interested in studying the

asymptotic properties of the centered bivariate vector

1√
∆n

(
RV n

t − [Y ]t

RMPV (2; I)n
t − [Y ]ct

)
. (5)

Remark In the limit results below, we will use the concept of stable convergence in law, which

is a stronger convergence than convergence in law. It can be defined in the following way (see

e.g. Jacod & Shiryaev (2003) and Barndorff-Nielsen, Graversen, Jacod & Shephard (2006)).

Let Xn denote a sequence of random variables on the probability space(Ω,A, P) and let(U,U)

denote a Polish space. If there is a probability measureµ defined on the extended space(Ω ×
U,A × U) such that for every random variableZ on (Ω,A, P) and for every bounded and



4 CENTRAL LIMIT THEOREMS IN THE PRESENCE OF JUMPS 8

continuous functiong onU we have

E (Zg(Xn)) →
∫

Z(ω)g(x)µ(dω, dx), asn → ∞,

then we say thatXn convergesstably in law.

4.1 Univariate central limit theorems

Jacod (2006, 2007a) has proven the univariate limit results for both components. So, for the

realised variance, let us assume that (L-2) is satisfied. From Jacod (2007a, Theorem 2.11 (ii)),

we get
1√
∆n

(
RV n

t − [Y ]∆n[t/∆n]

) stably in law−→ Λ
(1)
t + Λ

(2)
t , asn → ∞, (6)

where the convergence is stably in law as a process. The limiting process is given byΛ(1)
t +Λ

(2)
t ,

where

Λ
(1)
t =

√
2

∫ t

0

σ2
udW u, Λ

(2)
t = 2

∑

p: Tp≤t

∆YTp

(√
ξpUpσTp−

+
√

1 − ξp U ′
pσTp

)
, (7)

with W , Tp, ξ, U , U ′ as defined at the end of Section 2. Furthermore, we know from Jacod

(2007a) that stable convergence in law as a process only holds when the discretised process

[Y ]∆n[t/∆n] is used in (6). However, 1√
∆n

(RV n
t − [Y ]t) convergesfinite–dimensionally stably

in law (abbreviated byfin. stably in law) to the limit described above (see Jacod (2007a, Remark

2.14)). But the latter result will be sufficient for us since we are interested in making inference

on the jump part of the quadratic variation at a fixed timet. Conditionally onA, Λ(1) andΛ(2)

are independentandΛ(1) is a martingalewith Gaussian law, and if Y andσ do not jump

together,Λ(2) is also a martingale with Gaussian law. Their variances are given by ((Jacod

2007a, p. 8))

Ẽ

((
Λ

(1)
t

)2
∣∣∣∣A
)

= 2

∫ t

0

σ4
udu, Ẽ

((
Λ

(2)
t

)2
∣∣∣∣A
)

= 2
∑

p: Tp≤t

(
∆YTp

)2 (
σ2

Tp
+ σ2

Tp−

)
.

So, conditionally onA, the asymptotic variance of the bias between realised variance and

quadratic variation is given by

2

∫ t

0

σ4
udu + 2

∑

p: TP≤t

(
∆YTp

)2 (
σ2

Tp
+ σ2

Tp−

)
. (8)

Finally note that in the absence of jumps, the limit is given by Λ
(1)
t , which is a well–known

result, e.g. Jacod (1994), Jacod & Protter (1998) and Barndorff-Nielsen & Shephard (2002).

In the following, we will call a stochastic process on the extended probability space(Ω̃, Ã, P̃)
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mixed normal(abbreviated by the capital lettersMN), if its distribution is, conditional onA,

Gaussian. Hence, in the absence of common jumps ofσ andY , Λ
(1)
t + Λ

(2)
t is mixed normal.

Now we turn our attention to realised multipower variation,whose asymptotic distribution

in the presence of jumps has first been derived by Woerner (2006). A later study by Jacod

(2006, Theorem 6.2) contains the following result. Assume that (L-s) holds for somes < 1 and

that we have (H’). Furthermore letr be a multi–index such thats
2−s

< r− ≤ r+ < 1. Then, as

n → ∞,

1√
∆n

(
RMPV (r)n

t −
∫ t

0

|σu||r|du

)
stably in law−→ µ−1

r

√
A(r)

∫ t

0

|σu||r|dW̃u, (9)

stably in law as a process, for a new, independent Brownian motion W̃ , where

A(r) =

I∏

i=1

µ2ri
− (2I − 1)

I∏

i=1

µ2
ri

+ 2

I−1∑

i=1

i∏

j=1

µrj

I∏

j=I−i+1

µrj

I−i∏

j=1

µrj+rj+i
.

Remark The central limit result (9) does not hold for bipower variation of power 1, i.e. for

RMPV (2, 2). We suppose that it is possible to derive a central limit theorem for this realised

bipower variation in the presence of jumps. However, the central limit theorem for realised

bipower variation will differ from the ones for realised tripower, realised quadpower etc., in

the sense that the limit process will exhibit a jump component in addition to the Brownian

semimartingale, as mentioned in Barndorff-Nielsen, Shephard & Winkel (2006, Section 3.1).

So we expect to obtain a central limit result which is similarto the one for realised variance,

however, the jump part of the limit process for realised bipower variation will probably not be

Gaussian anymore. This aspect will be studied in more detailin future research.

In the next section, we combine these two results and derive abivariate limit result, which is the

main contribution of this paper.

4.2 Main results

Let (Yt)t≥0 denote a one–dimensional Itô semimartingale.

Theorem 4.1 Assume (L-s) for somes < 1, (H’) and letr be a multi–index suchs
2−s

< r− ≤
r+ < 1. Then, asn → ∞,

1√
∆n

(
RV n

t − [Y ]∆n[t/∆n]

RMPV (r)n
t −

∫ t

0
|σu||r|du

)

stably in law−→
( √

2
∫ t

0
σ2

udW u + 2
∑

p: Tp≤t ∆YTp

(√
ξpUpσTp−

+
√

1 − ξp U ′
pσTp

)
√

2
∫ t

0
|σu||r|dW u +

√
θ
r

∫ t

0
|σu||r|dW̃u

)
,

where the convergence is stable in law as a process andθ
r

= (µ−1
r

√
A(r))2 − 2.
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Proof The proof is given in the Appendix. �

If σ andY do not jump together, the limit process is mixed normal. Notethat in that case

σTp−
= σTp

sinceTp are the jump times ofY .

Remark The one–dimensional limit result for the multipower variation holds as soon as (L-s)

for somes < 1, (H’) holds and s
2−s

< r− ≤ r+ < 1. In order to obtain the limit result for

the realised variance, we need the assumption (L-2) which is clearly implied by (L-s) for some

s < 1.

Corollary 4.2 Assume (L-s) for somes < 1, (H’) and thatY andσ have no common jumps.

For I ∈ N with 2 < I < 2
s
(2 − s), we obtain, asn → ∞:

1√
∆n

(
RV n

t − [Y ]t

RMV P (2; I)n
t −

∫ t

0
σ2

udu

)

fin. stably in law−→
( √

2
∫ t

0
σ2

udW u +
√

2
∑

p: Tp≤t ∆YTp
σTp

(√
ξpUp +

√
1 − ξp U ′

p

)
√

2
∫ t

0
σ2

udW u +
√

θI

∫ t

0
σ2

udW̃u

)
, (10)

where (10) has, conditionally onA, Gaussian law with zero mean and variance

Σ
(I)
t =

(
2
∫ t

0
σ4

udu + 4
∑

p: Tp≤t

(
∆YTp

)2
σ2

Tp
2
∫ t

0
σ4

udu

2
∫ t

0
σ4

udu (2 + θI)
∫ t

0
σ4

udu

)
,

whereθI = µ−2I
2/I ω2

I − 2 andω2
I = µI

4/I + (1 − 2I)µ2I
2/I + 2

∑I−1
j=1 µI−j

4/I µ2j
2/I .

Proof This result is a direct consequence of Theorem 4.1 when we setrj = 2/I for j =

1, . . . , I. �

Note that we assume (L-s) for s < 1 and and integerI with 2 < I < 2
s
(2 − s). Clearly,

if s = 0, the assumptions are satisfied for all integersI ≥ 3. In general, higher powers can

only be used if the generalised Blumenthal–Getoor index is fairly close to0 as shown in Table

1. Hence, our assumption on the Blumenthal–Getoor index might look quite restrictive at first

I 3 4 5 10 20 I
s < 4/5 2/3 4/7 1/3 2/11 4/(I + 2)

Table 1: Relationship betweens andI.

sight. However, very recent work by Cont & Mancini (2007) indicates that the assumption

that the Blumenthal–Getoor index is smaller than 1, which implies jumps of possibly infinite
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activity, but finite variation, seems to be in line with recent empirical findings on high frequency

asset price data.

In the remaining part of this section, we derive some centrallimit results for the difference,

the ratio and the logarithmic difference of realised variance and realised multipower variation.

These results follow directly from From Theorem 4.1 and the bivariate delta method for stable

convergence (see Dette et al. (2006)). In order to make inference on the jump part of the

quadratic variation, we have to study the asymptotic distribution of the difference of realised

variance and realised multipower variation. This result isimportant in applications and can,

hence, be regarded as one of the key results of this paper.

Corollary 4.3 Assume (L-s) for somes < 1, (H’) and thatY andσ have no common jumps.

For I ∈ N with 2 < I < 2
s
(2 − s), we obtain, asn → ∞:

1√
∆n

(RV n
t − RMPV (2; I)n

t − [Y ]dt )
fin. stably in law−→ S

(1)
t , (11)

whereS
(1)
t has, conditionally onA, Gaussian law with zero mean and variance given by

θI

∫ t

0

σ4
udu + 4

∑

p: TP ≤t

(
∆YTp

)2
σ2

Tp
. (12)

Remark If σ andY have common jumps, the limit process of the left hand side of (11) can

still be derived from Theorem 4.1. However, its distribution is not Gaussian, which makes it

slightly more difficult to use in practice. Nevertheless itsdistribution can be simulated.

Furthermore, we might be interested in making inference on the ratio of the jump part of the

quadratic variation and the entire quadratic variation. The corresponding asymptotic theory is

given in the following Corollary.

Corollary 4.4 Assume (L-s) for somes < 1, (H’) and thatY andσ have no common jumps.

For I ∈ N with 2 < I < 2
s
(2 − s), we obtain, asn → ∞:

1√
∆n

(
RV n

t − RMPV (2; I)n
t

RV n
t

− [Y ]dt
[Y ]t

)
fin. stably in law−→ S

(2)
t , (13)

whereS
(2)
t has, conditionally onA, Gaussian law with zero mean and variance given by

(
2

(
[Y ]ct
[Y ]2t

)2

− 4
[Y ]ct
[Y ]3t

+
(2 + θI)

[Y ]2t

)∫ t

0

σ4
udu + 4

(
[Y ]ct
[Y ]2t

)2 ∑

p: TP ≤t

(
∆YTp

)2
σ2

Tp
. (14)

Finally, we consider the logarithmic difference of the quadratic variation and the continuous

part of the quadratic variation.
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Corollary 4.5 Assume (L-s) for somes < 1, (H’) and thatY andσ have no common jumps.

For I ∈ N with 2 < I < 2
s
(2 − s), we obtain, asn → ∞:

1√
∆n

(log (RV n
t ) − log (RMPV (2; I)n

t ) − (log ([Y ]t) − log ([Y ]ct)))

fin. stably in law−→ S
(3)
t , (15)

whereS
(3)
t has, conditionally onA, Gaussian law with zero mean and variance given by

(
2

[Y ]2t
− 4

[Y ]t[Y ]ct
+

(2 + θI)

([Y ]ct)
2

)∫ t

0

σ4
udu +

4

[Y ]2t

∑

0≤s≤t

σ2
s(∆Ys)

2. (16)

Note that the difference, ratio or logarithmic difference of realised variance and realised

multipower variation can be used as test statistics for testing for jumps in asset prices. Such

tests have been developed by Barndorff-Nielsen & Shephard (2006). So, in order to test the

null hypothesis that there are no jumps, it it sufficient to know the asymptotic distribution of

the various test statistics under the null hypothesis. However, in order to make inference on the

corresponding jump part of the quadratic variation (or the corresponding ratio or logarithmic

difference), one has to know the asymptotic distribution ofthese test statistics under the alter-

native hypothesis, i.e. in the presence of jumps. So, Corollary 4.3 – 4.5 not only provide the

tools for inference on the jump part of the quadratic variation, but also contain the asymptotic

distributions of the well–known jump test statistics underthe alternative distribution, which has

not been known yet.

4.3 Feasible confidence bounds for the jump part of quadraticvariation

The central limit theorems derived in the previous sectionsare infeasible in the sense that the

asymptotic variances of the estimation bias are unobservable. In order to derive a feasible

central limit theorem, we therefore need estimators for theasymptotic variances (12), (14), (16).

From Barndorff-Nielsen & Shephard (2002) and Jacod (2006),we know that the continuous part

of the asymptotic variance can be consistently estimated inthe presence of jumps by special

cases of the realised multipower variation. For integersĨ ≥ 3, we get

RMPV (4; Ĩ)n
t

ucp−→
∫ t

0

σ4
sds, asn → ∞. (17)

Note thatRMPV (4; Ĩ) for Ĩ ≤ 2 tends to infinity in the presence of jumps, hence we choose

Ĩ ≥ 3.

So, how can we estimate the jump part of the asymptotic variance, which is (up to a constant)

given by ∑

0≤s≤t

(
σ2

s + σ2
s−
)
(∆Ys)

2 ? (18)
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Aı̈t-Sahalia & Jacod (2006) have derived a consistent estimator for D(p) =
∑

s≤t(σ
2
s− +

σ2
s)|∆Ys|p whenp > 3. However, we are interested in the casep = 2, which is not covered by

their work.

It turns out that one can use an estimator which is based on a generalised, weighted ver-

sion of realised multipower variation for estimating (18).This result is stated in the following

theorem.

Theorem 4.6 Let Y = (Yt)t≥0 be an It̂o semimartingale satisfying assumption (L–s) for 0 ≤
s < 2. Let (Kn)n≥0 ⊂ N be any sequence which satisfiesKn → ∞ and Kn∆n → 0 as

n → ∞. Further, we define an index setI(n, i) = I+(n, i) ∪ I−(n, i) whereI−(n, i) =

{j ∈ N ∩ {i − Kn + 1, . . . , i − 2}} andI+(n, i) = {j ∈ N ∩ {i + 2, . . . , i + Kn − 1}} for

i = 1, . . . , [t/∆n]. Let

σ̂2
(i−1)∆n− =

µ−2
1

(Kn − 2)∆n

∑

j∈I−(n,i)

∣∣∆n
j Y
∣∣ ∣∣∆n

j+1Y
∣∣ ,

σ̂2
(i−1)∆n+ =

µ−2
1

(Kn − 2)∆n

∑

j∈I+(n,i)

∣∣∆n
j Y
∣∣ ∣∣∆n

j+1Y
∣∣ .

(19)

Then for eacht ≥ 0

Ĵn
t =

[t/∆n]∑

i=1

(
σ̂2

(i−1)∆n− + σ̂2
(i−1)∆n+

)
(∆n

i Y )2 P→ Jt, asn → ∞, (20)

where

Jt = 2

∫ t

0

σ4
sds +

∑

0≤s≤t

(
σ2

s− + σ2
s

)
(∆Ys)

2 .

Proof The proof is given in Appendix A. �

Remark Here we use locally averaged realised bipower variation as defined in (19) for esti-

mating the spot variance. This estimator has been proposed by Lee & Mykland (2006) whenY

is a jump diffusion. So our result extends their result by showing that their estimator can also

be used in the framework of an Itô semimartingale. Alternatively, one could estimate the spot

variance by locally averaged truncated realised variance as proposed by Aı̈t-Sahalia & Jacod

(2006). However, we have compared the performance of these two spot variance estimators

by means of Monte Carlo studies (whose exact details are not presented here). The simulation

results suggested that the locally averaged realised bipower variation performs slightly better

than truncated realised variance. This result might be due to the fact that it is not easy to choose

a sensible threshold for the truncated realised variance.

From (17) and (20), we can now derive a general estimator for any linear combination of the

jump part (18) and the integrated fourth power of the volatility process.



4 CENTRAL LIMIT THEOREMS IN THE PRESENCE OF JUMPS 14

Corollary 4.7 Assume the assumptions of Theorem 4.6 are satisfied. Letc1, c2 denote constants

with 2c1 ≥ c2 and letĨ ≥ 3 be an integer. Then, we obtain, asn → ∞,

c1

t/∆n∑

i=1

(
σ̂

2(−)
(i−1)∆n

+ σ̂
2(+)
(i−1)∆n

)
(∆n

i Y )2 − c2
1

∆n

RMPV (4; Ĩ)n
t

P−→ (2c1 − c2)

∫ t

0

σ4
sds + c1

∑

0≤s≤t

(
σ2

s− + σ2
s

)
(∆Ys)

2. (21)

However, the left hand side of (21) can become negative in finite samples. Hence, in order to

make sure that the estimator for the variance is always positive, we make the following finite

sample correction.

Corollary 4.8 Under the assumptions of Theorem, 4.6 we define

Ân
t (c1, c2, Ĩ) = max



c1

t/∆n∑

i=1

(
σ̂

2(−)
(i−1)∆n

+ σ̂
2(+)
(i−1)∆n

)
(∆n

i Y )2 − c2
1

∆n
RMPV (4; Ĩ)n

t ,

(2c1 − c2)
1

∆n
RMPV (4; Ĩ)n

t

}
,

for constantsc1, c2 with 2c1 ≥ c2 and for an integer̃I ≥ 3. Clearly,Ân
t (c1, c2) converges to the

right–hand side of (21), asn → ∞ and, hence, we obtain:

Ân
t (2, 4 − θI , Ĩ) → θI

∫ t

0

σ4
sds + 2

∑

0≤s≤t

(
σ2

s− + σ2
s

)
(∆Ys)

2 .

Remark Clearly, in the absence of common jumps ofY andσ, we could also use the slightly

simpler estimator of the asymptotic variance given by

max



2c1

t/∆n∑

i=1

σ̂
2(−)
(i−1)∆n

(∆n
i Y )2 − c2

1

∆n
RMPV (4; Ĩ)n

t , (2c1 − c2)
1

∆n
RMPV (4; Ĩ)n

t



 .

Now we can derive a feasible asymptotic result for the difference of realised variance and

realised multipower and can, eventually, make inference onthe jump part of quadratic variation.

Corollary 4.9 Assume that (L-s) holds fors < 1 and that (H’) is satisfies. Furthermore, assume

thatY andσ have no common jumps and letĨ , Î ≥ 3 and2 < I < 2
s
(2 − s) be integers.

Letα ∈ [0, 1] and letq1−α
2

denote the
(
1 − α

2

)
–quantile of the standard normal distribution.

In the following, we state the asymptotic two–sided confidence bounds for the level(1 − α).

• From Corollary 4.3, we obtain asymptotic confidence bounds for [Y ]dt given by

(RV n
t − RMPV (2; I)n

t ) ± q1−α
2

√
∆nÂn

t (4, 4 − θI , Ĩ).
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• From Corollary 4.4, we obtain asymptotic confidence bounds for [Y ]dt
[Y ]nt

given by

(
1 − RMPV (2; I)n

t

RV n
t

)
± q1−α

2

√
∆nÂn

t (c1, c2, Ĩ),

where

c1 = 2

(
RMPV (2, Î)n

t

(RV n
t )2

)2

,

c2 = 2

(
RMPV (2, Î)n

t

(RV n
t )2

)2

+ 4
RMPV (2, Î)n

t

(RV n
t )3 − (2 + θI)

(RV n
t )2 .

• From Corollary 4.5, we obtain asymptotic confidence bounds for

(log ([Y ]t) − log ([Y ]ct)) ,

given by

(log (RV n
t ) − log (RMPV (2; I)n

t )) ± q1−α
2

√
∆nÂn

t (c1, c2, Ĩ)

RV n
t RMPV (2; Î)n

t

,

where

c1 = 4(RMPV (2; Î)n
t )2,

c2 = 4(RMPV (2; Î)n
t )2 − (2(RMPV (2; Î)n

t )2 − 4RV n
t RMPV (2; Î)n

t

+ (2 + θI)(RV n
t )2).

4.4 Feasible confidence bounds for the entire quadratic variation and for

integrated variance in the presence of jumps

For completeness, we state the result for making inference on continuous part and on the entire

quadratic variation in the presence of jumps.

From Jacod (2007a, 2006) and Theorem 4.6, we obtain the following confidence bounds for

the entire quadratic variation and for the integrated variance in the presence of jumps.

Corollary 4.10 Assume that (L-s) holds for0 ≤ s < 2. Furthermore, assume thatY and σ

have no common jumps and let letĨ ≥ 3 be an integer. Letα ∈ [0, 1] and letq1−α
2

denote the

(1 − α
2
)–quantile of the standard normal distribution.

• The asymptotic(1 − α)–two–sided confidence bounds for[Y ]t are given by

RV n
t ± q1−α

2

√
∆nAn

t (2, 2, Ĩ).
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• Additionally assume that (L-s) holds fors < 1 and2 < I < 2
s
(2 − s) for an integerI.

The asymptotic(1 − α)–two–sided confidence bounds for[Y ]ct are given by

RMPV (2, I)n
t ± q1−α

2

√
∆n(2 + θI)RMPV (4, Ĩ)n

t .

5 Simulation study

In this section, we will study the finite sample performance of the difference, ratio and logarith-

mic difference of realised variance and realised multipower variation. In the following, we will

sometimes refer to theses quantities as linear, ratio and log–linear test statistic, respectively.

5.1 Simulation design

The simulation design for the Monte Carlo study is taken fromHuang & Tauchen (2005) and

the longer (unpublished) version of Barndorff-Nielsen, Shephard & Winkel (2006). We set

t = 1 and simulate repeatedly over the time interval[0, 1] a standard Brownian semimartingale∫ t

0
σsdWs plus three different types of jump processesL, henceYt =

∫ t

0
σsdWs + Lt. For the

stochastic volatility process, we chooseσt = exp(β1vt), wheredvt = −λvtdt + dBt where

B is a standard Brownian motion which is correlated withW and has correlation coefficient

ρ = −0.62. Further, we setλ = 0.1 andβ1 = 0.125. Clearly,
∫

σdW andL are independent

of one another. The jump processL will be chosen such that they have zero mean and unit

unconditional variance, are symmetrical and share identical first four moments. We simulate

from the various models by using the Euler scheme, where we choose an increment of one

second per tick on the Euler clock. (i.e.dt = 1/23400 when we assume that the market is open

from 9.30 am to 16.00 pm, which corresponds to 23400 seconds per day). The specifics of the

jump processes are as follows:

BSM: L ≡ 0, i.e. the model consists only of the Brownian semimartingale part and has no

jumps.

BSMSCP1: L is a stratified normal inverse Gaussian compound Poisson process with a single

jump per unit time (i.e. the jump time is uniformly distributed over[0, 1] and the jump

size follows a normal inverse Gaussian distribution). The jump size is drawn fromǫ
√

S

whereǫ ⊥⊥ S, ǫ ∼ N(0, 1) andS ∼ IG(c, c2/γ). Then,V ar(ǫS) = E(S) = c and

V ar(S) = c3/(c2/γ) = cγ. In the simulation, we setγ = 0.25.

BSMSCP10: L is a stratified normal inverse Gaussian compound Poisson process with ten

jumps per unit time (i.e. the jump times are uniformly distributed over[0, 1] and the jump

size follows a normal inverse Gaussian distribution). Obviously, the jumps will have

smaller variance than in BSMSCP1 in order to account for the fact that there are more
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jumps. Hence, the jump sizes are drawn fromǫi

√
Si whereǫi ⊥⊥ Si, ǫi ∼ N(0, 1) and

Si ∼ IG(c/10, c2/(10γ)), i = 1, . . . , 10. Then,V ar(
∑10

i=1 ǫi

√
Si) =

∑10
i=1 E(Si) = c

andV ar(
∑10

i=1 Si) =
(
∑10

i=1 c/10)3∑10
i=1 c2/(10γ)

= c3/(c2/γ) = cγ. Again, we chooseγ = 0.25.

BSMVG: L
L
= ǫ

√
S is a variance Gamma process withǫ ⊥⊥ S, ǫ ∼ N(0, 1) and S ∼

Γ(c/γ, 1/γ), whereγ = 0.25. Clearly,L
L
=
∑[1/dt]

i=1 ǫiσi, whereǫi ⊥⊥ Si, Si ∼ Γ(cdt/γ, 1/γ)

andǫi ∼ N(0, 1). V ar(ǫS) = E(S) = c andV ar(S) = c/γ/(1/γ)2 = cγ.

So our simulation study deals with jump processes of both finite and infinite activity. Since

the jump processes defined above all have Blumenthal-Getoorindex0, our theory holds for all

RMPV (2, I) with integersI ≥ 3.

Note thatV ar
(∫ 1

0
σsdWs

)
= E

(∫ t

0
σ2

sds
)

. Due to our parameter choice this variance is

close to 1 in all the simulations carried out. Clearly, when we setc = 1, then the jump partJ

has also unit variance. However, empirical studies by Huang& Tauchen (2005) and Barndorff-

Nielsen, Shephard & Winkel (2006) suggests that the jump component only accounts for up to

10 % of the variation of the price process, which correspondsto settingc = 0.1.

In the simulation experiment, we compute the feasible linear, ratio and log–linear statistics,

where[Y ]dt is approximated by
∑1/dt

i=1

(
Lidt − L(i−1)dt

)2
. Furthermore, we choosẽI = Î =

10 and, hence, useRMPV (4, 10) for estimating
∫ 1

0
σ4

sds andRMPV (2, 10) for estimating∫ 1

0
σ2

sds (for the ratio and log–linear statistic). Recall, that we can chooseRMPV (4, Ĩ) for

any integer̃I ≥ 3 for estimating integrated quarticity. However, by choosing a fairly big Ĩ, we

obtain better finite sample results. We simulate data for 5000 days and report the sample mean,

standard deviation and the 95% coverage.

5.2 Efficiency and bias

So far, we have seen that we can use any realised multipower variation RMPV (2; I)n
t with

I ≥ 3 in our central limit theorems above as long ass
2−s

< 2/I < 1 is satisfied. So, which mul-

tipower variation performs best in finite samples? In order to answer this question we compare

the performance of the various test statistics based on fourdifferent power variations: tripower,

quadpower, 10–power and 20–power. We know that in the absence of jumps, realised variance

is the most efficient consistent estimator of integrated variance. Using higher multipower vari-

ation in such a model setting results in an efficiency loss, which can be quantified byθI . Recall

that we haveµr = E|U |r =
√

2rΓ( 1
2
(r+1))√
π

, for U ∼ N(0, 1),

θI =

(
µ−I

2/I

√
ω2

I

)2

− 2 = µ−2I
2/I ω2

I − 2 ω2
I = µI

4/I + (1 − 2I)µ2I
2/I + 2

I−1∑

j=1

µI−j
4/I µ2j

2/I .

It turns out thatθI is an increasing function inI (some of its values are given in Table 2).

Clearly, an increase inθI corresponds to a loss in efficiency when estimating the continuous
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part of the quadratic variation byRMPV (2, I). However, the loss in efficiency is bounded by

a constant since

lim
I→∞

θI =
π2

2
− 2.

I 1 2 3 4 5 6 ∞
θI 0 0.608 1.061 1.377 1.605 1.776 2.934

Table 2: Different values forθI

Given these results, we might want to focus on realised tripower or quadpower variation

for estimating integrated variance in the presence of jumpsrather than using higher powers.

However, our simulation study reveals the fact that realised multipower variation for higher

powers (10 or 20) seems to outperform realised tri- and quadpower variation in the presence

of jumps, since the estimation bias is much smaller comparedto tri- and quadpower and the

coverage is closer to the theoretical value of 95% for biggerI. This might be due to the fact

that by using higher values ofI, it is much easier to smooth out jumps and, hence, get a more

reliable estimate of integrated variance in the presence ofjumps.

5.3 Simulation results

Before we study the various jump processes, we check the performance of the various statistics

when the log–price is just given by a standard Brownian semimartingale (BSM). The results of

this study are given in Table 3. Generally speaking the results are good also for a low number

M = [1/∆n] of intraday observations. But we also observe that 10–powerand 20–power seem

to perform slightly better for smallM . This is somehow surprising, since in the absence of

jumps, usually lower power variation performs better. However, we have to bare in mind that

our test statistics incorporate also estimates of spot variances, which are not that reliable in

small samples and can, hence, lead to deviations from the asymptotic normality as indicated by

the slightly too high coverage for tri- and quadpower in finite samples.

Now we study the model of a Brownian semimartingale plus a stratified compound Poisson

process with one jump per day (BSMSCP1). The results are given in Table 4. In the more rele-

vant case thatc = 0.1, we observe a generally good finite sample results for all three statistics.

However, we also see that there seem to be a finite sample bias which converges to zero fairly

slowly, but this bias seems to be much smaller for higher powers of I. For c = 1, the finite

sample behaviour forM = 39, 78 is not really good, i.e. the finite sample bias is quite big and

the coverage is far to low compared to 95%. However, fromM = 390 (which corresponds to 1

min increments) onwards, the finite sample performance of 10- and 20–power is already really

good, whereas it is still fairly weak for tri- and quadpower.

In the following we will only report the results forc = 0.1, which is the empirically relevant

case. Next we consider a stratified compound Poisson processwith 10 jumps per day (BSM-

SCP10). The corresponding results are given in Table 5. Now it looks like we obtain the best
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finite sample results for realised 10–power. The coverage seems to be slightly closer to 95% for

the linear and ratio statistic than for the log–linear statistic.

Finally we choose variance gamma process as jump component,which is still a process of

Blumenthal–Getoor index 0 and, hence, of finite variation, but has infinite activity. The results

which are given in Table 6 follow a similar pattern as the oneswe obtained before and show in

general a good finite sample performance.

6 Conclusion

In this paper, we have derived the joint distribution of realised variance and realised multipower

in the presence of jumps. From this result, we have deduced the corresponding asymptotic

theory for the difference, the ratio and the logarithmic difference of realised variance and re-

alised multipower variation, which makes it possible to make inference on the jump part of

the quadratic variation. Note that the difference, the ratio and the logarithmic difference are

often used for testing for jumps in asset prices. So far, the asymptotic distribution of these test

statistics has only been known under the null hypothesis that there are no jumps. Hence, this

paper completes the picture by presenting the asymptotic distributions of these statistics under

the alternative hypothesis that there are jumps. At first, the new central limit theorems turned

out to be infeasible since the asymptotic variances of the estimation biases are not observable.

However, we have introduced new, consistent estimators forthese asymptotic variances which,

eventually, leads to a feasible central limit theory. Thesenew estimators can also be used for

deriving a feasible central limit theory for making inference on the entire quadratic variation in

the presence of jumps. Finally we have checked the finite sample performance of our asymp-

totic results by means of Monte Carlo studies. We have obtained particularly good results when

we use high multipower variations (e.g. 10–power variation).

In future work, it will be interesting to study in particulartwo questions in more detail. First,

how do the results change when we allow for market microstructure noise in the model? How

robust are our test statistics and how does the asymptotic distribution change? Second, how

do these results extend to a multivariate framework? Very recent work by Barndorff-Nielsen &

Shephard (2007) and Jacod & Todorov (2007) has already addressed the question of testing for

common and disjoint jumps of multivariate price processes.So it would be very interesting to

see whether it would be possible to extend the results from this paper to a multivariate model

setting.
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A Proofs

A.1 Proof of the bivariate central limit theorem

Proof of Theorem 4.1 The univariate results follow from Jacod (2007a, Theorem 2.11 (ii))

and Jacod (2006, Theorem 6.2). In order to derive the multivariate central limit result, we use a

modified version of Jacod (2007a, Theorem 2.12) which can account for multipower variation

rather than power variation only. For the proof of the theorem, we essentially have to prove

three lemmas (Lemma A.1 – Lemma A.3), which we will do in the following. For our proofs,

we have to introduce some stronger assumptions (see e.g. Jacod (2007a)), which can be later

relaxed to the ones stated in the theorems above.

Hypothesis (SH) The hypothesis (H) holds and the processes(bt), (ct) and(Ft(φ2)) are boun-

ded by a non–random constant and the jumps ofY are also bounded by a constant.

We refer to Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006) and Jacod

(2007a, Section 4 and 5) for more details about how the validity of the corresponding limit

results under stronger hypothesis leads to their validity under (H).

Remark Barndorff-Nielsen, Graversen, Jacod & Shephard (2006, Theorem 2 (in particular,

Example 7)) contains the following bivariate limit theoremfor realised variance and realised

bipower variation for a Brownian semimartingaleY , i.e. in the absence of jumps, asn → ∞,

1√
∆n

(
RV n

t − [Y ]t

RMPV ((1, 1))n
t − [Y ]t

)
stably in law−→

( √
2
∫ t

0
σ2

udW u√
2
∫ t

0
σ2

udW u +
√

θ2

∫ t

0
σ2

udW̃u

)
,

stably in law for independent Brownian motionsW andW̃ .

By using exactly the same reasoning, we can show that in the continuous semimartingale

framework we obtain, asn → ∞,

1√
∆n

(
RV n

t − [Y ]t

RMPV (2; I)n
t − [Y ]t

)
stably in law−→

( √
2
∫ t

0
σ2

udW u√
2
∫ t

0
σ2

udW u +
√

θI

∫ t

0
σ2

udW̃u

)
,

stably in law for independent Brownian motionsW andW̃ .

In order to prove our main theorem, we need some further notation, which we will introduce

in the following. LetYt denote a one–dimensional Itô semimartingale. We considerfunctions

gj : R → Mdj ,dj+1
for j = 1, . . . , I, whereMdj ,dj+1

denotes adj × dj+1–dimensional matrix

with real–valued entries. Note that we are in particular interested in the following choice of

functionsgj for j = 1, . . . , I andI ≥ 3. Let d1 = · · · = dI = 2, dI+1 = 1 and

g1(y) =

(
y2 0

0 µ−1
2/I |y|2/I

)
, gi(y) =

(
1 0

0 µ−1
2/I |y|2/I

)
, gI(y) =

(
1

µ−1
2/I |y|2/I

)
, (22)
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for i = 2, . . . I − 1. Then,

∆n

[t/∆n]−I+1∑

i=1

I∏

i′=1

gi′

(
∆n

i+i′−1Y√
∆n

)
=

(
RV n

t −∑[t/∆n]
i=[t/∆n]−I (∆n

i Y )2

RMPV (2; I)n
t

)
,

where
∑[t/∆n]

i=[t/∆n]−I (∆n
i Y )2 ucp−→ 0 asn → ∞. Further, we defineβi′

i = 1√
∆n

σ(i−1)∆n
∆n

i+i′−1W

for i′ = 1, . . . , I and

ρn
i (gi′) =

∫
gi′(x)fσ(i−1)∆n

(x)dx,

(componentwise for the diagonal matrices and vectors defined above), wherefσ(i−1)∆n
is the

density of aN
(
0, σ2

(i−1)∆n

)
–distributed random variable. So, finally, we define the following

random vector:

U
n

t = U
n
(g1, . . . , gI)t =

√
∆n

[t/∆n]−I+1∑

i=1

{
I∏

i′=1

gi′

(
βi′

i

)
−

I∏

i′=1

ρn
i (gi′)

}
, (23)

which is inMd1,dI+1
.

Lemma A.1 Assume that (SH) holds and letg1, . . . , gI denote continuous even functions of

at most polynomial growth withgi : R
d → Mdi,di+1

for i = 1, . . . I as defined in (22). So, in

particular, we haved1 = 2 anddI+1 = 1. LetU
n

= U
n
(g1, . . . gI) denote the stochastic process

defined in (23) with components

U
n

t (g1, . . . , gI)
(j) =

√
∆n

[t/∆n]−I+1∑

i=1





(
I∏

i′=1

gi′

(
βi′

i

))(j)

−
(

I∏

i′=1

ρn
i (gi′)

)(j)


 ,

for j = 1, 2. Then thed1–dimensional processU
n

converges stably in law to a limit processU

with components

U
(j)

t =
2∑

k=1

∫ t

0

Σj,k
u dW

k

u, j = 1, 2,

where the2 × 2–dimensional processΣ, defined by

Σu =

( √
2σ2

u 0√
2σ2

u

√
θIσ

2
u

)
(24)

is (Ft)–optional.

Proof Since we are only dealing with Brownian semimartingales in this lemma, the result fol-

lows directly along the lines of Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard

(2006, Proposition 5.2) or by extending the proof of Jacod (2007a, Lemma 5.7), which we will

sketch in the following.
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One can easily show by induction onI that

I∏

i′=1

gi′

(
βi′

i

)
−

I∏

i′=1

ρn
i (gi′) =

I∑

j=1

(
j−1∏

i′=1

gi′

(
βi′

i

)) [
gj

(
βj

i

)
− ρn

i (gj)
]
(

I∏

i′=j+1

ρn
i (gi′)

)
,

where an empty product is set to 1. This term is not measurablewith respect toFi∆n
, which

we need in order to be able to apply Jacod & Shiryaev (2003, Theorem IX.7.19 and Theorem

IX.7.28). So we use the same methods which have been applied in the proof of Barndorff-

Nielsen, Graversen, Jacod, Podolskij & Shephard (2006, Proposition 5.2). I.e. we shift the

terms back in time to make them measurable w.r.t.Fi∆n
. We do not shift the first term in the

sum, but we shift the second term by one, the third term by two etc. and, finally, theIth term by

I − 1. By doing that we get a new random variable

ζn
i =

√
∆n

I∑

j=1

(
j−1∏

i′=1

gi′

(
β

i′−(j−1)
i

))[
gj

(
β1

i

)
− ρn

i−(j−1)(gj)
]
(

I∏

i′=j+1

ρn
i−(j−1)(gi′)

)
, (25)

which is clearly measurable with respect toFi∆n
. As in the proof of Barndorff-Nielsen, Gra-

versen, Jacod, Podolskij & Shephard (2006, Proposition 5.2) one can easily show that

U
n

t (g1, . . . , gI) −
[t/∆n]−I+1∑

i=I

ζn
i

ucp−→ 0, asn → ∞.

Let E
n
i−1(·) = E

(
·|F(i−1)∆n

)
. Trivially, we getEn

i−1 (ζn
i ) = 0 andE

n
i−1 (||ζn

i ||4) ≤ K∆2
n (for a

constantK > 0). Analogously to the proof of Barndorff-Nielsen, Graversen, Jacod, Podolskij

& Shephard (2006, Proposition 5.2), we obtain in particularthat

[t/∆n]−I+1∑

i=1

E
n
i−1

(
ζj;n
i ζk;n

i

)
ucp−→

∫ t

0

(ΣuΣ
∗
u)

j,k du, (26)

[t/∆n]−I+1∑

i=1

E
n
i−1

(
ζj;n
i ∆n

i N
) ucp−→ 0, if N = W or N ∈ N , (27)

asn → ∞, whereN is the set of all bounded(Ft)–martingales which are orthogonal toW .

Now the result follows from Jacod & Shiryaev (2003, Theorem IX.7.19 and Theorem IX.7.28).

�

Now we study the more general case where we allow for jumps in the price processY . We

start by introducing some notation (which is the same as in Jacod (2007a)) and some more

assumptions, which can be relaxed later.

Hypothesis (SK) Assumptions (K) and (SH) are satisfied and the functionsγk = γ are bounded
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and do not depend onk.

Let ǫ > 0 fixed. We define a processN by N = 1IE ∗ µ, whereE = {x : γ(x) > ǫ}. HenceN

is a Poisson process with parameter the Lebesgue measure ofE, sayλ.

Remark Note that under (SK) we have
∫

R
(1∧γ2(x))dx < ∞ andsupx γ(x) ≤ K for aK ≥ 0.

Therefore we get
∫

R
γ2(x)1I{γ2(x)≤1}(x)dx < ∞ and

∫
R

1I{γ2(x)>1}(x)dx < ∞. So altogether,

we obtain
∫

R
γ2(x)dx < ∞, since

∫

R

γ2(x)dx =

∫

R

γ2(x)1I{γ2(x)≤1}(x)dx +

∫

R

γ2(x)1I{γ2(x)>1}(x)dx

≤
∫

R

γ2(x)1I{γ2(x)≤1}(x)dx + K

∫

R

1I{γ2(x)>1}(x)dx < ∞.

Therefore, we can deduce thatλ is indeed finite:

λ =

∫

R

1I{x:γ(x)>ǫ}(x)dx ≤
∫

R

γ(x)2

ǫ2
dx < ∞.

Depending onǫ, we define the following quantities:

• S1, S2, . . . are the successive jump times ofN ,

• I(n, p) = i, S−(n, p) = (i − 1)∆n, S+(n, p) = i∆n on{(i − 1)∆n < Sp ≤ i∆n},

• α−(n, p) = 1√
∆n

(
WSp

− WS−(n,p)

)
, α+(n, p) = 1√

∆n

(
WS+(n,p) − WSp

)
,

• Rp = ∆YSp
,

• Y (ǫ)t = Yt −
∑

p:Sp≤t Rp,

• R
′n
p = ∆n

i Y (ǫ) on the set{(i − 1)∆n < Sp ≤ i∆n},

• R
′

p =
√

ξpUpσSp−
+
√

1 − ξpU
′

pσSp
,

• Ωn(T, ǫ) = {ω : each interval[0, T ] ∩ ((i − 1)∆n, i∆n] contains at most oneSp(ω);

|∆n
i Y (ǫ)(ω)| ≤ 2ǫ, ∀i ≤ T/∆n}.

Lemma A.2 Under (SK), the sequences
(
U

n
, (α−(n, p), α+(n, p))p≥1

)
converge stably in law

to(
U,
(√

ξpUp,
√

1 − ξpU
′

p

)
p≥1

)
asn → ∞.

Proof The proof of this lemma is similar to the corresponding proofby Jacod (2007a, p. 30–

31). However, we have to make some adjustments to allow for multipower variation. We have

to prove that for all boundedA–measurable random variablesΨ and all bounded Lipschitz

functionsΦ on the Skorohod space ofd–dimensional functions onR+ endowed with a distance
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for the Skorohod topology, and allq ≥ 1 and all continuous bounded functionsfp on R
2, and

with An =
∏q

p=1 fp(α−(n, p), α+(n, p)) then

E
(
ΨΦ

(
Ūn
)
An

)
→ Ẽ

(
ΨΦ(Ū

)
)

q∏

p=1

Ẽ

(
fp(
√

ξpUp,
√

1 − ξpU
′

p)
)

, asn → ∞. (28)

ReplacingΨ by E (Ψ| G) on both sides, it is sufficient to prove the limit result (28) for a Ψ

which is measurable with respect to the separableσ–field G generated by both the measureµ

and the processesb, σ, W andY .

Let µ′ andµ′′ ( ν ′ andν ′′, respectively) denote the restrictions ofµ (andν, respectively) to

R+ × Ec and toR+ × E. Further, let(F ′) denote the smallest filtration containing(Ft) such

thatµ′′ is F ′

0-measurable. ClearlyW is a Wiener process andµ′ is a Poisson random measure

with compensatorν ′ relative to(Ft), but also relative to(F ′

t).

Now we define a set of intervals surrounding the jump times of the Poisson processN . Let

m ∈ N be any positive integer, then we defineSm−
p = (Sp − 1/m)+, Sm+

p = Sp + 1/m and

Bm = ∪p≥1(S
m−
p , Sm+

p ]. Since the indicator function1IBm
(ω, t) is F ′

0 ⊗ R+–measurable, we

can define the stochastic integralW (m)t =
∫ t

0
1IBm

(u)dWu. Now let(F ′m
t ) denote the smallest

filtration containing(F ′

t) such thatW (m) is (F ′m
0 )–measurable. Further, we define the set

Γn(m, t) = {i ∈ N : i ≤ [t/∆n] − I + 1 andBm ∩ ((i − 1)∆n, i∆n] = ∅}. Similarly to Jacod

(2007a), we define two bivariate processesU
′n

(m), where we just sum over the integers which

are not “close” to the jump times, andU(m), with components:

U
′n

(m)j
t =

√
∆n

∑

i∈Γn(m,t)



(

I∏

i′=1

gi′

(
βi′

i

))j

−
(

I∏

i′=1

ρn
i (gi′)

)j

 ,

U(m)j
t =

2∑

j′=1

∫ t

0

Σj,j′

u 1IBc
m(u)dW

j′

u ,

whereΣ is defined by (24) andj = 1, 2. Once again, note that both integrals are well–defined

sinceW is a Brownian motion w.r.t. the smallest filtration containing (F ′
t) andF ′m

0 at time 0.

Clearly,Bm → ∪p{Sp} for m → ∞ and, hence,U(m)
ucp−→ U asm → ∞.

Note that

Γn(m, t)c = {i : i ≤ [t/∆n] − I + 1, Bm ∩ ((i − 1)∆n, i∆n] 6= ∅}

⊆
{

i : i ≤ [t/∆n] − I + 1, ∃p : |i∆n − Sp| ≤
2

m

}
.

Note that in the following, the constantK can change from line to line, but will not depend on

n, t andm (but will depend onǫ).

Since the conditional expectation ofζj;n
i is zero, if we condition on the past before(i−1)∆n
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and the sequence of stopping timesSp, which are independent of W, i.e.E
(
ζj;n
i

∣∣F ′
(i−1)∆n

)
= 0,

we reach that̄Un(g1, . . . , gI)
j
s − Ū

′n(m)j
s is indeed a martingale with respect to(F ′m

t ). By

applying Doob’s inequality, we obtain the following:

E

(
sup
s≤t

∣∣∣Ūn(g1, . . . , gI)
j
s − Ū

′n(m)j
s

∣∣∣
2
)

≤ 4∆n E




∞∑

p=1

[t/∆n]−I+1∑

i=1

|ζj;n
i |21I{|i∆n−Sp|≤2/m}


 .

Since all functionsgi (for i = 1, . . . I) are of at most polynomial growth, there exist con-

stantsp̃1, . . . , p̃I such that (by induction onI)

E

(
sup
s≤t

∣∣∣Ūn(g1, . . . , gI)
j
s − Ū

′n(m)j
s

∣∣∣
2
)

≤ K∆nE




∞∑

p=1

∑

1≤i≤[t/∆n]−I+1:∃p:|i∆n−Sp|≤2/m

I∏

i′=1

(1 + |βi′,n
i |p̃i′ )


 .

Sinceσ is bounded and for fixedp, we get

#

{
i : i ≤ [t/∆n] − I + 1, |i∆n − Sp| ≤

2

m

}
≤ 4

m∆n
,

we obtain from (SH) that

E

(
sup
s≤t

∣∣∣Ūn(g1, . . . , gI)
j
s − Ū

′n(m)j
s

∣∣∣
2
)

≤ K

m
E

( ∞∑

p=1

1I{Sp≤t+1}

)

=
K

m

∞∑

p=1

P (Sp ≤ t + 1) =
K

m

∞∑

p=1

P (Nt+1 ≥ p)

=
K

m
λ(t + 1).

It is now sufficient to prove that for eachm and for eachG–measurable and boundedΨ for

fixedm, asn → ∞:

E

(
ΨΦ

(
Ū

′n(m)
)

An

)
→ Ẽ

(
ΨΦ(Ū(m)

) q∏

p=1

Ẽ

(
fp(
√

ξpUp,
√

1 − ξpU
′

p)
)

, (29)

sinceΨ is Lipschitz and bounded.

The remaining part of the proof is then identical to Step 3 andStep 4 in Jacod (2007a, p.

31) and is, hence, not given here. �

Finally, we generalise the results from Lemma A.2 and obtainthe final auxiliary limit result

which we need for the proof of our main theorem.
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Lemma A.3 Under the assumptions of Lemma A.2, the sequences
(
U

n
,
(
R

′n
p /

√
∆n

)
p≥1

)
con-

verge stably in law to
(
U,
(
R

′

p

)
p≥1

)
, asn → ∞.

Proof This proof goes along the lines of the proof of Jacod (2007a, Lemma 5.9) and is, hence,

omitted. �

Now we can combine the results from the three Lemmas above to deduce the result of The-

orem 4.1 analogously to the proof of Jacod (2007a, Theorem 2.12). I.e. note that Lemma A.1

is multidimensional. The one–dimensional results have been deduced from the correspond-

ing components of Lemma A.1 by Jacod (2007a, Theorem 2.11 (ii) ) for the realised variance

and for the realised multipower variation by Barndorff-Nielsen, Graversen, Jacod, Podolskij &

Shephard (2006, p. 10–11) in the absence of jumps and Jacod (2006, Theorem 6.2) in the pres-

ence of jumps. So the way how these results are deduced from Lemma A.1 can be carried over

separately for each component in the multidimensional case. So Theorem 4.1 holds. �

A.2 Proof of the consistency of the estimator of the asymptotic variance

In order to prove Theorem 4.6, we prove a couple of lemmas first. In the following, we will

always use the following notation and assumptions. We have (SH) and we use the following

notation:Yt = Y ′
t + Y ′′

t , where

Y ′
t = Y0 +

∫ t

0

bsds +

∫ t

0

σs−dWs, Y ′′
t = κ ⋆ (µ − ν)t + κ′ ⋆ µt.

Further, we need some notation for the increments of the various parts ofY . Let

βn
i =

1√
∆n

σ(i−1)∆n
∆n

i W, δn
i =

√
∆nβ

n
i , ρn

i = ρσ(i−1)∆n
,

χ
′n
i =

1√
∆n

∫ i∆n

(i−1)∆n

(
bsds + (σs− − σ(i−1)∆n

)dWs

)
, χ

′′n
i =

1√
∆n

∆n
i Y ′′, χn

i = χ
′n
i + χ

′′n
i .

So, in particular, we get

∆n
i Y = ∆n

i Y
′ + ∆n

i Y
′′ =

√
∆n

(
βn

i + χ
′n
i + χ

′′n
i

)
=
√

∆n (βn
i + χn

i ) .

For the conditional expectation, we writeEn
i−1 (·) = E

(
·|F(i−1)∆n

)
. Clearly, the following

inequalities hold under (SH) (see e.g. Jacod (2007b)) for q > 0 and for various constants
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Kq, K > 0 :

E
n
i−1 (|βn

i |q) ≤ Kq, E
n
i−1 (|∆n

i Y
c|q) ≤ Kq∆

q/2
n ,

E
n
i−1

(
|χ′n

i |q
)
≤ Kq∆

1∧q/2
n , E (|σt+s − σt|q|Ft) ≤ Kqs

1∧q/2,

E
n
i−1

(
|χ′′n

i |
)
≤ K.

(30)

If we additionally assume (L–s) for s < 2, we get a stronger inequality for the jump part (see

e.g. Todorov & Bollerslev (2007)). I.e. in that case we can find ans < α < 2 such that

E
n
i−1

(
|χ′′n

i |
)
≤
{

K
√

∆n, under (L–s) for 0 ≤ s ≤ 1

K∆
1/α−1/2
n , under (L–s) for 1 < s < α < 2

. (31)

Furthermore, we will use that

E
n
i−1

(
|∆n

i X ′′| ∧ η2
)
≤ K∆n

(
η2 + ∆n

θ2
+ Γ(θ)

)
, (32)

for all η > 0 andθ ∈ (0, 1) with Γ(θ) → 0 asθ → 0 as shown in Aı̈t-Sahalia & Jacod (2006).

Remark In the following, we will always work with a constantK > 0 which can change from

line to line in the various proofs.

Recall that we denote by(Kn)n≥0 ⊂ N a sequence which satisfiesKn → ∞ andKn∆n → 0 as

n → ∞.

Lemma A.4 Assume (SH). Let̂J
′′n
t =

∑[t/∆n]
i=1 (δn

i )2 µ−2
1

(Kn−2)∆n

∑
j∈I(n,i) |δn

j ||δn
j+1|. ThenĴ

′′n
t

P−→
2
∫ t

0
σ4

sds asn → ∞.

Proof of Lemma A.4: First of all note that

µ−2
1

(Kn − 2)∆n

∑

j∈I(n,i)

|δn
j ||δn

j+1| =
µ−2

1

(Kn − 2)

∑

j∈I(n,i)

|βn
j ||βn

j+1|
P−→ σ2

Tq
+ σ2

Tq−.

This result is proved in Lemma A.9, where the notation is alsoexplained.

So from the consistency of the estimators we getσ̂2
(i−1)∆n− = σ2

(i−1)∆n− + oP(1) and

σ̂2
(i−1)∆n+ = σ2

(i−1)∆n
+ oP(1) (uniformly in i) by using methods from Barndorff-Nielsen, Gra-

versen, Jacod, Podolskij & Shephard (2006). So from Protter(2004, Chapter II.6, Theorem 30)

we get

Ĵ
′′n
t =

[t/∆n]∑

i=1

(δn
i )2 µ−2

1

(Kn − 2)∆n

∑

j∈I(n,i)

|δn
j ||δn

j+1| =

[t/∆n]∑

i=1

(δn
i )2 (σ̂2

(i−1)∆n− + σ̂2
(i−1)∆n+

)

=

[t/∆n]∑

i=1

(δn
i )2 (σ2

(i−1)∆n− + σ2
(i−1)∆n+ + oP(1)

)
P−→ 2

∫ t

0

σ4
sds.



A PROOFS 28

�

Lemma A.5 Under (SH), letĴ
′′′n
t =

∑[t/∆n]
i=1 (δn

i )2 µ−2
1

(Kn−2)∆n

∑
j∈I(n,i) |∆n

j Y
′||∆n

j+1Y
′|. Then

Ĵ
′′′n
t − Ĵ

′′n
t

P→ 0, asn → ∞.

Proof of Lemma A.5: Note that

Ĵ
′′′n
t − Ĵ
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Now we can write
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From (30), we get
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By taking successively conditional expectations, we obtain

E
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n

√
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√
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which completes the proof. �

Lemma A.6 Under (SH), letĴ
′′′′n
t =
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Proof of Lemma A.6: We write
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Again we apply the results from (30) and we obtain

E
n
i−1| (∆n

i Y ′)
2 − (δn

i )2 | ≤ K
√

∆n∆n + ∆2
n.

So altogether, we get

E
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√
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which implies the result. �

Lemma A.7 Under (SH), letĴ
′(1)n
t =

∑[t/∆n]
i=1 (∆n

i Y
′)2 µ−2

1

(Kn−2)∆n

∑
j∈I(n,i) |δn

j ||δn
j+1|. Then

Ĵ
′(1)n
t − Ĵ

′′′′n
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P→ 0, asn → ∞.

Proof of Lemma A.7 This result is obvious from the proofs of Lemma A.4,

Lemma A.5 and Lemma A.6. �

In the following, we study the jump part ofY .

Lemma A.8 Under (SH), letĴ
′(2)n
t =

∑[t/∆n]
i=1 (∆n

i Y
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2, asn → ∞.

Proof of Lemma A.8 The proof of this lemma follows essentially from Aı̈t-Sahalia & Jacod

(2006, Proof of Lemma 2) and Jacod (2007b, Proof of Lemma 6.9) and is, therefore, not pre-

sented here.

�

Now we present a lemma which says that locally averaged bipower variation is a consistent

estimator of local variance. This result follows basicallydirectly from Lee & Mykland (2006).

Lemma A.9 Assume (SH). Let(Tq)q≥0 with Tq = Tq(ǫ) denote the jump times of the Poisson

processµ([0, t] × {x : γ(x) > ǫ/2}). Furthermore we definei(n, q) = inf{i : i∆n ≥ Tq} and

I
′(−)(n, q) = I−(n, i(n, q)) andI
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Proof of Lemma A.9 Here we only show (33). The corresponding result (34) for theright

limit can be proven analogously. As in a similar proof in Aı̈t-Sahalia & Jacod (2006), we define

sn
q = inf

u∈[Tq−Kn∆n,Tq)
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Lemma A.10 Under (SH), letĴ
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Proof of Lemma A.10 Note that, sinceX ′ is a continuous process andX ′′ is a pure jump pro-

cess, standard properties of the quadratic covariation process (see e.g. Protter (2004)) imply that
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Lemma A.11 Under (SH) and (L–s) for s < 2, let

Ĵ
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Further ,
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if (L–s) is holds for1 < s < α < 2, which implies the result. �

Lemma A.12 Theorem 4.6 holds under (SH).

Proof of Lemma A.12 This result is a direct consequence of the preceding lemmas. �

Proof of Theorem 4.6 The localisation procedure is a standard tool in proving limit theorems

for stochastic processes which are observed at discrete time. The main idea is that one can

replace local boundedness assumptions as given in (H) by much stronger assumptions (SH),

where we assume global boundedness by a (non–random) constant. The proof that our result,

which we have proven to hold under (SH) also holds under (H) isomitted, since it goes along

the lines of the corresponding proofs in Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shep-

hard (2006), Jacod (2007b, Section 6.3), Aı̈t-Sahalia & Jacod (2006). �
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B Tables

Linear statistic Ratio statistic Log–linear statistic
[1/∆n] I Mean S.D. Coverage Mean S.D. Coverage Mean S.D. Coverage

(K) (95%) (95%) (95%)
39 3 -0.02 0.84 0.985 0.08 0.94 0.964 -0.03 0.87 0.979

(35) 4 -0.01 0.88 0.979 0.1 1 0.955 -0.02 0.91 0.973
10 0.03 1 0.964 0.17 1.16 0.932 0.01 1.06 0.941
20 0.05 1.13 0.926 0.19 1.28 0.893 0.07 1.21 0.889

390 3 -0.01 0.91 0.976 0 0.92 0.975 -0.03 0.92 0.971
(223) 4 0 0.92 0.972 0 0.93 0.969 -0.02 0.93 0.97

10 0.01 0.94 0.966 0.02 0.95 0.962 0 0.95 0.962
20 0.02 0.97 0.96 0.03 0.98 0.955 0 0.97 0.959

1560 3 0 0.94 0.964 0 0.95 0.963 -0.01 0.95 0.96
(315) 4 0 0.95 0.96 0 0.96 0.958 -0.01 0.96 0.96

10 0.01 0.98 0.956 0.01 0.98 0.955 0 0.98 0.954
20 0.02 0.99 0.954 0.02 0.99 0.953 0.01 0.99 0.954

4680 3 0.01 0.95 0.958 0.01 0.95 0.958 0 0.95 0.959
(414) 4 0.01 0.96 0.961 0.01 0.96 0.96 0 0.96 0.96

10 0.01 0.97 0.957 0.01 0.97 0.957 0 0.97 0.956
20 0.01 0.97 0.954 0.01 0.97 0.954 0.01 0.97 0.955

Table 3: Simulation results for BSM: We simulate 5000 replications ofdYt = σtdWt, where
σt = exp(0.125vt), dvt = −0.1vtdt + dBt, Cor(W1, B1) = −0.62 over [0, 1]. The average
value of integrated variance in this simulation study is 1.01. The mean, standard deviation and
the 95% coverage of the linear, ratio and log–linear statistic are reported for various numbers
of intra–day observations[1/∆n] and various powersI. K denotes the window size of the spot
variance estimator.
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Linear statistic Ratio statistic Log–linear statistic
[1/∆n] I Mean S.D. Coverage Mean S.D. Coverage Mean S.D. Coverage

(K) (95%) (95%) (95%)
c = 0.1

39 3 -0.19 0.9 0.965 -0.09 0.98 0.954 -0.2 0.95 0.954
(35) 4 -0.16 0.93 0.965 -0.04 1.03 0.95 -0.18 0.99 0.947

10 -0.11 1.02 0.948 0.02 1.17 0.931 -0.13 1.11 0.917
20 -0.08 1.13 0.916 0.05 1.27 0.887 -0.06 1.23 0.879

390 3 -0.27 0.95 0.951 -0.26 0.96 0.95 -0.3 0.97 0.943
(223) 4 -0.21 0.94 0.96 -0.2 0.95 0.959 -0.23 0.96 0.951

10 -0.12 0.95 0.963 -0.1 0.96 0.959 -0.14 0.97 0.954
20 -0.1 0.97 0.957 -0.08 0.98 0.954 -0.11 0.99 0.95

1560 3 -0.23 0.98 0.947 -0.23 0.99 0.944 -0.25 0.99 0.944
(315) 4 -0.16 0.97 0.952 -0.16 0.97 0.951 -0.18 0.98 0.949

10 -0.08 0.97 0.955 -0.08 0.97 0.956 -0.09 0.97 0.953
20 -0.06 0.98 0.953 -0.05 0.98 0.953 -0.07 0.98 0.951

4680 3 -0.19 0.99 0.947 -0.19 1 0.946 -0.2 1 0.945
(414) 4 -0.12 0.99 0.949 -0.12 0.99 0.948 -0.13 0.99 0.949

10 -0.04 0.98 0.952 -0.04 0.99 0.952 -0.05 0.99 0.953
20 -0.03 0.99 0.954 -0.03 0.99 0.952 -0.04 0.99 0.952

c = 1
39 3 -0.53 1.08 0.901 -0.53 1.18 0.872 -0.68 1.21 0.848

(35) 4 -0.43 1.06 0.912 -0.37 1.16 0.906 -0.54 1.18 0.87
10 -0.29 1.1 0.915 -0.13 1.25 0.904 -0.34 1.24 0.871
20 -0.24 1.17 0.898 -0.08 1.33 0.875 -0.24 1.34 0.852

390 3 -0.43 1.02 0.923 -0.54 1.06 0.901 -0.58 1.07 0.894
(223) 4 -0.31 1 0.934 -0.35 1.02 0.929 -0.4 1.03 0.921

10 -0.17 0.99 0.948 -0.15 1 0.947 -0.2 1.01 0.941
20 -0.13 1 0.948 -0.11 1.01 0.943 -0.15 1.02 0.942

1560 3 -0.38 1 0.928 -0.49 1.05 0.903 -0.51 1.06 0.9
(315) 4 -0.26 0.98 0.945 -0.3 1 0.937 -0.33 1.01 0.933

10 -0.13 0.98 0.952 -0.12 0.99 0.95 -0.14 0.99 0.947
20 -0.1 0.97 0.954 -0.08 0.99 0.953 -0.1 0.99 0.95

4680 3 -0.33 1.02 0.93 -0.43 1.06 0.915 -0.44 1.06 0.911
(414) 4 -0.21 1.01 0.942 -0.24 1.02 0.94 -0.26 1.02 0.939

10 -0.09 1.01 0.946 -0.08 1.01 0.942 -0.09 1.01 0.941
20 -0.07 1.01 0.949 -0.06 1.01 0.944 -0.07 1.01 0.943

Table 4: Simulation results for BSMSCP1: We simulate 5000 replications ofdYt = σtdWt +
dLt, whereσt = exp(0.125vt), dvt = −0.1vtdt + dBt, Cor(W1, B1) = −0.62 over[0, 1]. Lt is
a stratified Poisson process with one jump per day. The jump size is drawn fromǫ

√
S, where

ǫ ⊥⊥ S, ǫ ∼ N(0, 1) andS ∼ IG(c, c2/0.25). The average value of integrated variance in this
simulation study is 1.01. The mean, standard deviation and the 95% coverage of the linear, ratio
and log–linear statistic are reported for various numbers of intra–day observations[1/∆n] and
various powersI. K denotes the window size of the spot variance estimator.
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Linear statistic Ratio statistic Log–linear statistic
[1/∆n] I Mean S.D. Coverage Mean S.D. Coverage Mean S.D. Coverage

(K) (95%) (95%) (95%)
39 3 -0.38 0.89 0.956 -0.27 0.93 0.962 -0.4 0.96 0.933

(35) 4 -0.34 0.91 0.958 -0.22 0.99 0.958 -0.36 0.99 0.929
10 -0.26 1 0.942 -0.12 1.12 0.94 -0.28 1.11 0.905
20 -0.22 1.12 0.907 -0.09 1.23 0.889 -0.21 1.24 0.871

390 3 -0.69 1.02 0.892 -0.68 0.99 0.896 -0.73 1.04 0.875
(223) 4 -0.57 1 0.918 -0.55 0.98 0.921 -0.6 1.02 0.9

10 -0.4 1 0.938 -0.38 0.99 0.937 -0.43 1.03 0.921
20 -0.35 1.02 0.934 -0.33 1.01 0.931 -0.38 1.05 0.921

1560 3 -0.78 1.15 0.865 -0.79 1.06 0.865 -0.81 1.11 0.859
(315) 4 -0.61 1.1 0.901 -0.61 1.03 0.902 -0.64 1.07 0.894

10 -0.4 1.05 0.934 -0.4 1 0.933 -0.42 1.03 0.927
20 -0.34 1.04 0.938 -0.34 1 0.938 -0.36 1.03 0.933

4680 3 -0.77 1.03 0.869 -0.78 1.03 0.868 -0.79 1.04 0.861
(414) 4 -0.58 1.01 0.903 -0.58 1.01 0.903 -0.6 1.02 0.898

10 -0.35 0.99 0.934 -0.35 0.99 0.935 -0.36 1 0.932
20 -0.29 0.99 0.938 -0.29 0.99 0.938 -0.3 1 0.934

7800 3 -0.3 1.01 0.932 -0.31 1.01 0.934 -0.32 1.01 0.932
(470) 4 -0.12 1 0.946 -0.12 1 0.948 -0.13 1 0.948

10 0.05 0.99 0.952 0.06 0.99 0.95 0.05 0.99 0.951
20 0.08 0.99 0.949 0.08 0.99 0.949 0.08 0.99 0.95

Table 5: Simulation results for BSMSCP10: We simulate 5000 replications ofdYt = σtdWt +
dLt, whereσt = exp(0.125vt), dvt = −0.1vtdt + dBt, Cor(W1, B1) = −0.62 over [0, 1]. Lt

is a stratified Poisson process with ten jumps per day. The jump sizes are drawn fromǫi

√
Si

for i = 1, . . . , 10, whereǫ ⊥⊥ S, ǫ ∼ N(0, 1) andS ∼ IG(c/10, c2/(10 ∗ 0.25)). We set
c = 0.1. The average value of integrated variance in this simulation study is 1.01. The mean,
standard deviation and the 95% coverage of the linear, ratioand log–linear statistic are reported
for various numbers of intra–day observations[1/∆n] and various powersI. K denotes the
window size of the spot variance estimator.
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Linear statistic Ratio statistic Log–linear statistic
[1/∆n] I Mean S.D. Coverage Mean S.D. Coverage Mean S.D. Coverage

(K) (95%) (95%) (95%)
39 3 -0.22 0.9 0.964 -0.12 0.98 0.954 -0.24 0.97 0.95

(35) 4 -0.19 0.93 0.965 -0.07 1.03 0.949 -0.21 1 0.945
10 -0.13 1.02 0.948 0 1.16 0.934 -0.15 1.11 0.916
20 -0.1 1.15 0.909 0.02 1.28 0.891 -0.09 1.26 0.87

390 3 -0.28 0.97 0.945 -0.27 0.98 0.942 -0.31 1 0.934
(223) 4 -0.22 0.96 0.949 -0.21 0.97 0.948 -0.25 0.99 0.94

10 -0.13 0.96 0.954 -0.12 0.97 0.954 -0.16 0.98 0.949
20 -0.11 0.98 0.953 -0.1 0.99 0.95 -0.13 1 0.948

1560 3 -0.27 0.99 0.942 -0.28 1 0.941 -0.3 1.01 0.935
(315) 4 -0.21 0.97 0.95 -0.21 0.98 0.95 -0.23 0.98 0.947

10 -0.12 0.96 0.956 -0.12 0.97 0.955 -0.14 0.97 0.953
20 -0.1 0.97 0.955 -0.1 0.98 0.953 -0.11 0.98 0.952

4680 3 -0.26 0.99 0.946 -0.27 1 0.943 -0.28 1 0.94
(414) 4 -0.18 0.97 0.952 -0.18 0.98 0.949 -0.2 0.98 0.949

10 -0.1 0.97 0.96 -0.1 0.97 0.957 -0.11 0.98 0.956
20 -0.08 0.97 0.954 -0.08 0.98 0.953 -0.09 0.98 0.953

Table 6: Simulation results for BSMVG: We simulate 5000 replications ofdYt = σtdWt +dLt,

whereσt = exp(0.125vt), dvt = −0.1vtdt+dBt, Cor(W1, B1) = −0.62 over[0, 1]. Lt
L
= ǫ

√
S

is a Variance Gamma process, withǫ ⊥⊥ S, ǫ ∼ N(0, 1) andS ∼ Γ(c/0.25, 1/0.25). We set
c = 0.1. The average value of integrated variance in this simulation study is 1.01. The mean,
standard deviation and the 95% coverage of the linear, ratioand log–linear statistic are reported
for various numbers of intra–day observations[1/∆n] and various powersI. K denotes the
window size of the spot variance estimator.
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