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Abstract

Recent research has focused on modelling asset prices bgrtiimartingales. In such
a modelling framework, the quadratic variation consista gbntinuous and a jump com-
ponent. This paper is about inference on the jump part of tlagl@tic variation, which can
be estimated by the difference of realised variance angsegbimultipower variation. The
main contribution of this paper is twofold. First, it proeisl a bivariate asymptotic limit
theory for realised variance and realised multipower viamain the presence of jumps.
Second, this paper presents new, consistent estimatotisefgump part of the asymptotic
variance of the estimation bias. Eventually, this leadsfeaaible asymptotic theory which

is applicable in practice. Finally, Monte Carlo studiese@va good finite sample perfor-
mance of the proposed feasible limit theory.
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1 INTRODUCTION 2

1 Introduction

Estimation and inference of the variation of asset pricesnis of the key tasks in financial

econometrics. In this paper, we focus on very general mddelkgarithmic asset prices,

namely on Itd semimartingales. Such processes are spasas of real-valued semimartin-
gales in the sense that they can be writteias (Y;):>( with

t t
Y, =Y, + / bsds + / osdWy + Ly, (1)
0 0

on a probability spac&?, A, ()0, P). Here,(11});> is @ one—dimensional Brownian mo-
tion, (b;):>o is a locally bounded predictable proce&s,):>o is a cadlag adapted process and
(L¢)¢>0 Is a fairly general jump process and will be specified moreipety below.

The variation of asset prices is often measured by meang afuhdratic variation which is
given by

Y], = [Y]E+[Y]Y,  where [Y]fzftaids, and [Y]{= ) (AL,

0<s<t

denote the continuous and discontinuous (or jump) partssofiiadratic variation, respectively.

While inference on the integrated variance has been studieshsively in the last decade,
see e.g. Barndorff-Nielsen & Shephard (2002), inferenctherguadratic variation in the pres-
ence of jumps and inference on the jump part of the quadratiaton, in particular, has not
been studied yet. So far, it has only been possible to gaornmdtion on the jump part of
the quadratic variation indirectly, i.e. by means of testgd@imps as studied by e.g. Barndorff-
Nielsen & Shephard (2006), Ait-Sahalia & Jacod (2006) awbd & Todorov (2007). How-
ever, this paper introduces an explicit, non—parametrithote based on so—call@d-fill asymp-
totics for making inference on the jump part of the quadratic \teoma

Ouir first steps will follow the methodology of Barndorff-Nsen & Shephard (2006), who
exploited the fact that jumps in the asset price are refleictead jump part of the quadratic
variation and vice versa. So their main idea was to compaoent@asures of variance: one
which is not robust to jumps, a quantity callezhlised variancgsee e.g. Comte & Renault
(1998), Barndorff-Nielsen & Shephard (2002), Andersen|dsslev, Diebold & Labys (2001),
Jacod (200a)), that estimates the entire quadratic variation of thegoprocess, and one which
is robust to jumps, callegkalised multipower variatiofsee e.g. Barndorff-Nielsen & Shephard
(2004), Barndorff-Nielsen, Graversen, Jacod, Podolsigté&phard (2006), Barndorff-Nielsen,
Shephard & Winkel (2006), Woerner (2006)). Jacod (2006}, @anly estimates the continuous
part of the quadratic variation. By using the differenceldde two quantities, one obtains a
consistent estimator for the jump part of the quadraticatemn. In order to make inference
on the jump part of quadratic variation, one has to deriveasgnptotic distribution of the
difference of realised variance and realised multipoweiatian or, more generally, their joint
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asymptotic distribution in the presence of jumps. This &atly the task we tackle in this paper.

The remaining part of the paper is structured as followsti®@e® introduces the notation
and the main model assumptions. Section 3 reviews the mgsirtant facts about realised
variance and realised multipower variation. Section 4 @imistthe main contribution of this
paper. First, we sketch some of the important theoreticakvey Jacod (2006, 20@J on
univariate asymptotic results for realised variance aatised multipower variation. Then, the
main result is presented: the asymptotic distribution oivarate process of realised variance
and realised multipower variation in the presence of jumipom this result we deduce the
asymptotic distributions of the difference, the ratio ahd togarithmic difference of realised
variance and realised multipower variation. At first, a#dk limit theorem armfeasiblein the
sense that the asymptotic variances of the estimation beascd observable. So in a next step,
we replace them by consistent estimators, which eventiealys tofeasiblelimit theorems. In
order to assess the finite sample performance of the feaslaptotic theory, we carry out a
detailed Monte Carlo study in Section 5. Finally, Sectiorofciudes the paper and gives some
prospect on future research. The proofs of the theorem antalites with the results from the
simulation study are given in the Appendices.

2 Setup

This section sets up the notation and introduces the modahgstions, which are essentially
taken from Jacod (20@J. The logarithmic asset price is supposed to be a real-ddtde
semimartingal@” = (Y;);>0, Which is defined on a probability spat@, A, (F;);>o, P).

Recall that any semimartingale has predictable charatief3, C, v), say, where- is the
compensator of the jump measuref Y, C' = (Y©), whereY “ is the continuous martingale part
of Y, and the driftB depends on the choice of a truncation functigpsay, which is supposed to
be continuous, bounded with compact support afg) = x on a neighbourhood of 0. Further
letx'(z) = x — K(x).

An Itd semimartingales defined as a semimartingale whose characteristics acdusdly
continuous with respect to the Lebesgue measure, i.e.

t t
B, = / bydu, Cy = / cudu, v(dt,dx) = dtF,(dz). (2)
0 0
Clearly, foro, = /c;, every I1td semimartingale can be written as
t t
Y, =Y, + / beds + / osdWs + K(0) x (1 — 1) + k' () *H, (3)
0 0

whered : Q@ x R, x R — R is predictable and such thaf(w, dx) is the image of the Lebesgue
measure ofR by the mapr — d(w, ¢, r), andW is a Brownian motion angd a Poisson random
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measure ofiR, x R on the filtered spacg&?, A, (F;):>0, P), and the predictable compensator
of uis v(ds,dx) = ds ® dx, where it might be necessary to enlarge the original space to
accommodatelV, u). In the following we will often use a functiog,, which is defined by

min(1, |z]*), if 0 < s < oo,
¢s(x) - .
]IR\{O} if s =0.

Now we can introduce the model assumptions (as given in J&aiya)).

Hypothesis (H) Y is an 1td semimartingale and in (2) the procegggs-, and(F;(¢2)):>o are
locally bounded predictable (whet€(f) = [ f(z)Fi(dz)), and the proces§:);>o is
cadlag adapted.

At first sight, this assumption might look quite technicabwver, it is a fairly natural exten-
sion of standard asset price models: A Brownian semimaitdnﬁ o,dW, is one of the main
building blocks for asset price models, since it allows tockastic volatility and can incorpo-
rate the leverage effect, whenand1V are not assumed to be independent. In order to allow
for jumps, recent research has then focused on adding a jompanent, e.g. a compound
Poisson process or a more general pure jump Lévy procesBromsanian semimartingale. An
Itd semimartingale is a further extension of such a mod#ténsense that it drops the possibly
unrealistic assumption of a Lévy process, which has indeéget and stationary increments.
Another assumption is concerned with the jump part of thersamingale.

Hypothesis (K) (H) holds and the coefficient (see (3)) satisfie®(w, ¢, x)| < v (z) for all
t < Ty(w), wherey, denote some deterministic functions Bnwhich satisfy [ ¢, o
Y(x)dx < oo, and(T}) are stopping times increasing-tax.

Furthermore, we need an assumption on the volatility poegsl on the activity of the
jumps ofY".

Hypothesis (Ls) (for s € [0, 2]) Assume that the probability space supports a second Brow-
nian motionW’ = (W}/);>o, Which is independent ofl’. Further, (H) holds and the
volatility processs has the form

t t t . .
o, = 0o + / budu + / o, dW, + / G, AW, + K(0) * (= 1) + K'() x 1,
0 0 0
and

e the proces@t) is optional and locally bounded;

e the processegy), (0:), (o,) are adapted left—continuous with right limitsépand
locally bounded;
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e the functionsi(w, t, 2) andd(w, t, ) are predictable and left-continuous with right
limits in t. Also, |6(w,t,z)| < vu(z) and|d(w, t,z)| < Fi(z) for all t < Ti(w),
where~,, 7, are deterministic functions oR with [ ¢, o yx(z)dz < oo (where
we define0® = 0) — note that this is the condition where tee@omes in — and
[ ¢2 0 Ax(x)dz < oo. Furthermore (T}) denotes a sequence of stopping times
increasing tot+oo.

So, under the assumption @); s can be regarded as a generalised Blumenthal-Getoor index
of Y, which measures the activity of the jumps of the Itd semtmgaleY’, and the volatility
process is given by a semimartingale. Note that we assurhedpthats € [0,2]. If s < &' < 2,

then (Ls)= (L-s")= (K) =(H). Also note that (L8) implies thatX has locally finitely many
jumps and ifX is continuous, then all hypotheses §) are identical for alls € [0, 2] (see
Jacod (200&, p.6)). Finally, we formulate a hypothesis which guarastiémt the Brownian
semimartingale component is nowhere degenerate.

Hypothesis (H’) Hypothesis (H) holds angr?) and(¢? ) do not vanish.

For our asymptotic theory, we need some further notationghvfollows Jacod (2008)'s
framework. Let((Y', A’, P") denote an auxiliary space which supports two Brownian mefig
and W, two sequences of/(0, 1) random variables, denoted 0%/,) and (U,) and, further, a
sequence of random variablgs) which are uniformly distributed off), 1]. All these processes
are assumed to be mutually independent. Now we extend ayinaliprobability space and we
write

Q=Qx, A=A A, P=PxP.

One can now extend, in the obvious way, the variable$,, . . . defined orf2 andIV/, W, Up,...
defined on?’ to the product space (without change of notation). Eetenote the expectation
with respect toP. Further, let(7,,) denote stopping times which are an enumeration of the
jump times ofY". Finally, we write(ft) for the smallest right—continuous filtration dfwhich
contains(F;) and with respect to which is adapted and, further, such tfiat, U, and¢, are
Fr,—measurable for aj.

StraightforwardlyJ¥ and W are (F,),=,—Brownian motions unde¥, which also holds for
W andW’. Furthery is a Poisson measure with compensatéor the bigger filtration.

3 Review of realised variance and realised multipower vari-
ation

After having introduced the admittedly quite tedious niotatfor the continuous—time price
process, we now turn our attention to its discrete—time iMasiens. Let us assume that we
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observe the process over an interval0, ¢] at timesiA,, for A, > 0 andi = 0,...,[t/A,].
We will always assume thak,, — 0 asn — oo. So for the discretely observed increments, we
write

AYY =Yin, = Yi-na,, fori=1,...[t/A,]

In practice, these increments are used to construct estismédr the variance or integrated
variance. For example, it is well-known that trealised variancewhich is the sum of the

squared increments, given by
[t/An]

RV = > (ATY)?,

i=1

ucp

estimates the quadratic variation of the underlying precemsistently, i.eRV," — [V,
asn — oo, Where the convergence is uniformly on compacts in proliglgilcp) (see Protter
(2004, p. 57), Andersen, Bollerslev, Diebold & Ebens (20&xig Barndorff-Nielsen & Shep-
hard (2002)).

Besides, one can use thealised bipower variatior{as defined by Barndorff-Nielsen &
Shephard (2004, 2006)) for estimating the continuous plathe quadratic variation of 1td
semimartingales (see Jacod (2006)). Let= E|U|", for U ~ N(0,1). Then, one obtains

t/An]—1 ¢
prt > |ATY|AL, Y| S Y"]tz/ o%ds, asn — oo.
0

i=1
This concept can be further generalised to realised mwigpoariation (see e.g. Barndorff-
Nielsen, Graversen, Jacod, Podolskij & Shephard (2006 fozatment of realised multipower
variation in the absence of jumps and Woerner (2006) anddJ&aD6) for the corresponding
results in the presence of jumps). et (r4,...,7;) be a multi-index with-; > 0. Further,
we write|r| = 7 + - - - + ry andr, = max;<;<;r; andr_ = min;<;<; ;. Letr, < 2, then

[t/An]—I+1 T

ATt 30 Tl / o, asn — oo,

wherey, = [];_, 11, Now we define

[t/An]—I+1 [

tAn 1—|r|/2,,—1
RMPV (r)" = [t/A[]/ }+1An"/ur Z H|A2H1 : (4)

Since we want to study the difference Bf\/ PV (r)} and RV;" in the following section, we
include the factoiit/A,]/([t/A,] — I + 1) in the definition of realised multipower variation
above. This accounts for the fact that there are @mj\A,,] —+1) terms in the sum on the right
hand side of (4), whereas there &\, | summands in the realised variance case. Making such
an adjustment avoids the problem of introducing a finite darbas by comparing to similar
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sums with a different number of summands each. Clearly, i 2, then

t
RMPV (r)} “—’f/ o |Mldu, asn — oco.
0
Note that if|r| = 2, then we simply geﬁ%f"“'/2 = 1. In particular, we are interested in realised
multipower variations with equal powey. So we define fok, I € N:

[t/A ] t/An —T+1 T

Then, fork/I < 2,
t
RMPV (k; I)? M/ lou|*du, asn — oo,

Fork = 2, we haveRM PV (2; 1)} ~% | 02du, asn — oo, and, hence,

RV — RMPV (2, 1)} 22 [Y])?, asn — .

So, the difference of realised variance and realised nmovitgp variation is a consistent estimator
for the jump part of the quadratic variation. In order to makerence or{Y]¢, we derive an
asymptotic theory for the difference of realised variannd eealised multipower variation.
More generally, we study the asymptotic properties of tvairate vector of realised variance
and realised multipower variation.

4 Central limit theorems in the presence of jumps

LetY be the real-valued I1td semimartingale as defined above.rMat@rested in studying the
asymptotic properties of the centered bivariate vector

1 RV = [V, )
VB, \ BMPV (2 I)p—[V]e )

Remark In the limit results below, we will use the concept of stalevergence in law, which
is a stronger convergence than convergence in law. It cartged in the following way (see
e.g. Jacod & Shiryaev (2003) and Barndorff-Nielsen, Greser Jacod & Shephard (2006)).
Let X, denote a sequence of random variables on the probabilibesfa.A, P) and let(U, i)
denote a Polish space. If there is a probability meagutefined on the extended spaée x
U, A x U) such that for every random variabke on (€2, 4, P) and for every bounded and
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continuous functiory on U we have
—>/ p(dw,dz), asn — oo,

then we say thak,, convergestably in law

4.1 Univariate central limit theorems

Jacod (2006, 20@j has proven the univariate limit results for both composer8o, for the
realised variance, let us assume thaejlis satisfied. From Jacod (208 7Theorem 2.11 (ii)),

we get
1

VA,

where the convergence is stably in law as a process. Therggtocess is given b&f) +A§2),
where

AW = \f/ o2dW,, A =2 Y Ay (\@UUTP +/1 5pU’an) (7)

p: Tp<t

n stably in law
(RV" = [V]aan) "5 ALY + A Jasn — oo, (6)

with W, T,, &, U, U’ as defined at the end of Section 2. Furthermore, we know framadla
(2007a) that stable convergence in law as a process only holds wieediscretised process
YA, /4, is used in (6). However - (RV;" — [Y];) convergedinite—dimensionally stably
in law (abbreviated byin. stably in Iaw to the limit described above (see Jacod (2)Remark
2.14)). But the latter result will be sufficient for us since are interested in making inference
on the jump part of the quadratic variation at a fixed tim€onditionally on4, A andA®)
areindependenand AV is a martingalewith Gaussian lawand if Y ando do not jump
together,A® is also a martingale with Gaussian law. Their variances arengoy ((Jacod
2007, p. 8))

E <<A§1))2‘ A) = 2/t oldu, E (<A§2)>2
0

So, conditionally onA4, the asymptotic variance of the bias between realised negiand
guadratic variation is given by

A)=2 Y (avy)’ (o403, ).

p: Tp<t

2 / t oldu+2 Y (AYy)? (a%p + o—%k) . (8)
0

p: Tp<t

Finally note that in the absence of jumps, the limit is givqn/\tﬁl), which is a well-known
result, e.g. Jacod (1994), Jacod & Protter (1998) and BaffiaNelsen & Shephard (2002).
In the following, we will call a stochastic process on thesexted probability spacé?, A, P)
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mixed normalabbreviated by the capital lettetg V), if its distribution is, conditional o4,
Gaussian. Hence, in the absence of common jumpsasidY’, Agl) + A§2> is mixed normal.
Now we turn our attention to realised multipower variatisimose asymptotic distribution
in the presence of jumps has first been derived by Woerner6{208 later study by Jacod
(2006, Theorem 6.2) contains the following result. Assuna (L-s) holds for some < 1 and
that we have (H’). Furthermore letbe a multi-index such thgt— <r_ <r, < 1. Then, as

n — 00,

1 ¢ stably in law t =
RMPV (r)" — / 0w rdu) LR T A(r / ou|"dw,, (9)
o (myepver - 1o VAw [ o

stably in law as a process, for a new, independent Browniaiomt/, where

-1 1

I—1
HNZT 2]_1 H,ur +QZHUTJ H Hor; H/’l’rj+7"j+i‘

i=1 j=1 Jj=I—i+1 j=1

Remark The central limit result (9) does not hold for bipower vaoatof power 1, i.e. for
RM PV (2,2). We suppose that it is possible to derive a central limit teeofor this realised
bipower variation in the presence of jumps. However, theraetétimit theorem for realised
bipower variation will differ from the ones for realisedpawer, realised quadpower etc., in
the sense that the limit process will exhibit a jump compadneraddition to the Brownian
semimartingale, as mentioned in Barndorff-Nielsen, Shepi& Winkel (2006, Section 3.1).
So we expect to obtain a central limit result which is simtathe one for realised variance,
however, the jump part of the limit process for realised hipovariation will probably not be
Gaussian anymore. This aspect will be studied in more dathiture research.

In the next section, we combine these two results and detweaaiate limit result, which is the
main contribution of this paper.

4.2 Main results
Let (Y;):>o denote a one—dimensional [td semimartingale.

Theorem 4.1 Assume (Ls) for somes < 1, (H’) and letr be a multi-index such*; <r— <
r+ < 1. Then, asy — oo,

1 RV — [Y] Anlt/An]
VA, \ RMPV(r fo \au“ ldu
stably_in) law \/7f0 O'Zqu +2 Zp: T,<t AYTP (\/?pUpUTp— + \ 1 - fp U;O’Tp>
V2 [3 |ouMdW, + VB, [ |ou|d, ’

where the convergence is stable in law as a procesgand (1 11/ A(r))? — 2.
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Proof The proofis given in the Appendix. O

If 0 andY do not jump together, the limit process is mixed normal. Nobt# in that case

or,_ = or, SinceT), are the jump times of".

p—

Remark The one—dimensional limit result for the multipower vapatholds as soon as (k)
for somes < 1, (H’) holds and;*; < r— < r+ < 1. In order to obtain the limit result for
the realised variance, we need the assumptio) (vhich is clearly implied by (Ls) for some
s < 1.

Corollary 4.2 Assume (Ls) for somes < 1, (H’) and thatY and o have no common jumps.
For 7 € Nwith2 < I < 2(2 — s), we obtain, as1 — oo:

1 RV = [Y];
VA, \ RMVP(2; 1)} — [} o2du
fin. stably in taw \ffot OadWu + V2 X, 1 AYp 0, (VEU, + /1= 6 ;) (10)
\/ifot o2dW, + \/971f5 o2dW, 7

where (10) has, conditionally ad, Gaussian law with zero mean and variance

2
s _ 2 fot oudu+4 3y T,<t (AY7,) o7, 2 fot oldu
! 2 fot oldu (2+6)) fot oldu
whereb; = i/ w} —2andwy = uj; + (1= 20)p3); +2 32571 1y s
Proof This result is a direct consequence of Theorem 4.1 when we;set 2/] for j =
1,...,1. O

Note that we assume (k) for s < 1 and and integef with 2 < I < %(2 — s). Clearly,

if s = 0, the assumptions are satisfied for all integers 3. In general, higher powers can
only be used if the generalised Blumenthal-Getoor indeairyfclose to0 as shown in Table
1. Hence, our assumption on the Blumenthal-Getoor indexinhdgk quite restrictive at first

I [ 3 4 5 10 20 i
s< |45 213 47 13 2111 4/(1+2)

Table 1: Relationship betweerand!.

sight. However, very recent work by Cont & Mancini (2007) icates that the assumption
that the Blumenthal-Getoor index is smaller than 1, whichlies jumps of possibly infinite
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activity, but finite variation, seems to be in line with retempirical findings on high frequency
asset price data.

In the remaining part of this section, we derive some cetitral results for the difference,
the ratio and the logarithmic difference of realised vaceand realised multipower variation.
These results follow directly from From Theorem 4.1 and tivarate delta method for stable
convergence (see Dette et al. (2006)). In order to makeenéer on the jump part of the
guadratic variation, we have to study the asymptotic distron of the difference of realised
variance and realised multipower variation. This resultriportant in applications and can,
hence, be regarded as one of the key results of this paper.

Corollary 4.3 Assume (Ls) for somes < 1, (H’) and thatY and o have no common jumps.
For I € Nwith2 < I < 2(2 — s), we obtain, as — oo:

s

1 in. sta in law
o (R = RMPV (27 = [YJ) e sy, (12)
whereSt(l) has, conditionally on4, Gaussian law with zero mean and variance given by
t
Or / gldu+4 > (AYy) o3, (12)
0 p: Tp<t

Remark If ¢ andY have common jumps, the limit process of the left hand sideldf ¢an
still be derived from Theorem 4.1. However, its distribatis not Gaussian, which makes it
slightly more difficult to use in practice. Neverthelesdgdistribution can be simulated.

Furthermore, we might be interested in making inferencehenratio of the jump part of the
guadratic variation and the entire quadratic variatione €arresponding asymptotic theory is
given in the following Corollary.

Corollary 4.4 Assume (Ls) for somes < 1, (H’) and thatY and o have no common jumps.
For I € Nwith2 < I < 2(2 — s), we obtain, ag. — co:

1 R‘/;n B RMPV<27 I)? [Y]f fin. stably in law (2)
n - St ) (13)
VA, RV, Y]

whereSt(Q) has, conditionally on4, Gaussian law with zero mean and variance given by

(2 GQ% )2 - 4%% + (2[;]?)) /O ot 4 G;}% )2 S o(avg)iel.  (14)

p: Tp<t

Finally, we consider the logarithmic difference of the quait variation and the continuous
part of the quadratic variation.
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Corollary 4.5 Assume (Ls) for somes < 1, (H’) and thatY and o have no common jumps.
For 7 € Nwith2 < I < 2(2 — s), we obtain, as1 — oo:

(log (RV/") —log (RM PV (2;1)}') — (log ([Y]s) —log ([Y]})))

5
3

fin. st%in law St(g)’ (15)

WhereSt(?’) has, conditionally on4, Gaussian law with zero mean and variance given by

2 . 4 (2—|—9[) 10
([Y]? VI <[YJ§>2)/O oMt 57 Z (16)

t 0<s<t

Note that the difference, ratio or logarithmic differenderealised variance and realised
multipower variation can be used as test statistics fornggor jumps in asset prices. Such
tests have been developed by Barndorff-Nielsen & Shept#0@6). So, in order to test the
null hypothesis that there are no jumps, it it sufficient t@krthe asymptotic distribution of
the various test statistics under the null hypothesis. KWewen order to make inference on the
corresponding jump part of the quadratic variation (or tbeesponding ratio or logarithmic
difference), one has to know the asymptotic distributiothefse test statistics under the alter-
native hypothesis, i.e. in the presence of jumps. So, GosoHl.3 — 4.5 not only provide the
tools for inference on the jump part of the quadratic vaoiatibut also contain the asymptotic
distributions of the well-known jump test statistics unther alternative distribution, which has
not been known yet.

4.3 Feasible confidence bounds for the jump part of quadrativariation

The central limit theorems derived in the previous sectamsinfeasible in the sense that the
asymptotic variances of the estimation bias are unobskxvan order to derive a feasible

central limit theorem, we therefore need estimators foegyanptotic variances (12), (14), (16).
From Barndorff-Nielsen & Shephard (2002) and Jacod (2006 xnow that the continuous part

of the asymptotic variance can be consistently estimatedarpresence of jumps by special
cases of the realised multipower variation. For integers3, we get

t
RMPV (4; 1)} X% / otds, asn — oo. (17)
0

Note thatRM PV (4; f) for I < 2 tends to infinity in the presence of jumps, hence we choose
I>3.
So, how can we estimate the jump part of the asymptotic vegiamhich is (up to a constant)
given by
3 (0 +02) (AY,)?? (18)

0<s<t
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Ait-Sahalia & Jacod (2006) have derived a consistent egtimfor D(p) = > . ,(c2 +
02)|AY,[? whenp > 3. However, we are interested in the case 2, which is not covered by
their work.

It turns out that one can use an estimator which is based omergesed, weighted ver-
sion of realised multipower variation for estimating (18his result is stated in the following
theorem.

Theorem 4.6 LetY = (Y;):>o be an 16 semimartingale satisfying assumption §)-for 0 <
s < 2. Let(K,),>0 C N be any sequence which satisfi§s — oo and K,,A,, — 0 as
n — oo. Further, we define an index sétn,i) = I*(n,i) U I (n,i) wherel~(n,i) =
{jeNN{i—K,+1,....,i—2}}andI"(n,i) ={j e Nn{i+2,...,i+ K, — 1}} for
i=1,...,[t/A,]. Let

2
a@_lmn_z(“ﬁ > [AY][ar,Y

JjEI~(n,i)

e (29)
~ 1 n
Tl )ans = K, 9D, > olayl|ar.y|.
" " JEIT (nyu)

Then for eacht > 0

R [t/An]

Tr=3" (G ya, T ay) (ATY)? 5y, asn — oo, (20)

=1
where
Jt:2/ oids+ Y (o ) (AY,)?.
0<s<t

Proof The proofis given in Appendix A. O

Remark Here we use locally averaged realised bipower variationefigetd in (19) for esti-
mating the spot variance. This estimator has been propgskdd& Mykland (2006) whery”

is a jump diffusion. So our result extends their result byvgihg that their estimator can also
be used in the framework of an Itd semimartingale. Altauady, one could estimate the spot
variance by locally averaged truncated realised variasgereposed by Ait-Sahalia & Jacod
(2006). However, we have compared the performance of tvasespot variance estimators
by means of Monte Carlo studies (whose exact details arerasepted here). The simulation
results suggested that the locally averaged realised leipeariation performs slightly better

than truncated realised variance. This result might be altieetfact that it is not easy to choose
a sensible threshold for the truncated realised variance.

From (17) and (20), we can now derive a general estimatorrfgiiaear combination of the
jump part (18) and the integrated fourth power of the vatgitprocess.
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Corollary 4.7 Assume the assumptions of Theorem 4.6 are satisfied, lketdlenote constants
with 2¢; > ¢, and let] > 3 be an integer. Then, we obtain, as— oo,

t/An
— ny 1 .
clz< Go A, H A )(A Y) = cai RMPV (4 1);

n

— (2¢1 — 02)/0 olds + ¢ Z (o2 +02) (AY,)%. (21)

0<s<t

However, the left hand side of (21) can become negative itefsamples. Hence, in order to
make sure that the estimator for the variance is alwaysipesive make the following finite
sample correction.

Corollary 4.8 Under the assumptions of Theorem, 4.6 we define

t/An
. 1 .
AM(ey, ¢, 1) = max { ¢ Z (O’ A(2(+ ) (ATY)? — czA—RMPV(Zl; Ny,
1 ~
(2¢1 — cz)A—RMPV(Zl; I)?} :

for constants:;, ¢, with 2¢; > ¢, and for an integed > 3. Clearly, A?(cl, co) converges to the
right—hand side of (21), a8 — oo and, hence, we obtain:

t
AMN2,4—0;,1) — 91/ otds+2 ) (02 +02) (AY,)*.
0 0<s<t
Remark Clearly, in the absence of common jumpsYoindo, we could also use the slightly
simpler estimator of the asymptotic variance given by

t/An

1 ~
max { 2¢; Z 520 DA, (ATY)? — ¢;—RMPV (4, )7, (2¢1 — ¢,

1 \n
. —~ RMPV(4; 1),

A

Now we can derive a feasible asymptotic result for the diffiee of realised variance and
realised multipower and can, eventually, make inferenddejump part of quadratic variation.

Corollary 4.9 Assume that (Ls) holds fors < 1 and that (H’) is satisfies. Furthermore, assume
thatY ando have no common jumps and Ilet[ >3and2 <[ < (2 — s) be integers.

Leta € [0,1] and letg, s denote thg1 — §)—quantile of the standard normal distribution.
In the following, we state the asymptotic two—sided conéidérounds for the levél — o).

e From Corollary 4.3, we obtain asymptotic confidence bounds$if|¢ given by

(RVy" — RMPV(2 1)?) £ qi_s\/ A Ap(4,4— 0,,T).
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e From Corollary 4.4, we obtain asymptotic confidence bouod%f% given by

| _ RMPV(21);
RV

) =+ QI—% \/An/i?(cla C2, T)a

where

~ 2
RMPV(2,1)?
Cc1 = 2 3 s
(RV/")

(RV;")? -

~ N\ 2 ~
RMPV (2,1)} RMPV(2,1)} (24 06))
co =2 4 N3 2
(RVY") (RVY")

e From Corollary 4.5, we obtain asymptotic confidence bounds f

(log ([Y]:) — log ([Y]f))

given by

\/AnA?(Cla Co, T)
2 RVPRMPV (2, 1)}

(log (RV;") — log (RMPV (2 1)})) £ g1

where

¢ = 4(RMPV(2: T)1)?,
¢y = 4(RMPV(2:1)1)? — (2(RMPV(2: 1)")? — ARV RM PV (2; 1)}
+(2+0;)(RV™)?

n
t
n
t
).

4.4 Feasible confidence bounds for the entire quadratic vaation and for
integrated variance in the presence of jumps

For completeness, we state the result for making inferenamnotinuous part and on the entire

guadratic variation in the presence of jumps.

From Jacod (200%, 2006) and Theorem 4.6, we obtain the following confidenaenbs for
the entire quadratic variation and for the integrated vengain the presence of jumps.

Corollary 4.10 Assume that (ls) holds for0 < s < 2. Furthermore, assume that and o
have no common jumps and let let> 3 be an integer. Let € 0,1] and letq; o denote the
(1 — §)—quantile of the standard normal distribution.

e The asymptoti¢l — «o)-two—sided confidence bounds foij; are given by

RV £ qi_s\/ A, AF(2,2,1).
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e Additionally assume that (k} holds fors < 1 and2 < I < %(2 — s) for an integer!.
The asymptoti¢l — a)-two—sided confidence bounds foij$ are given by

RMPV(2,1)] + qi_s \/ Ap(240,)RMPV (4,1)

5 Simulation study

In this section, we will study the finite sample performantthe difference, ratio and logarith-
mic difference of realised variance and realised multipovaeiation. In the following, we will
sometimes refer to theses quantities as linear, ratio apdifeear test statistic, respectively.

5.1 Simulation design

The simulation design for the Monte Carlo study is taken ftdoang & Tauchen (2005) and
the longer (unpublished) version of Barndorff-Nielsengfimard & Winkel (2006). We set

t = 1 and simulate repeatedly over the time inteff@all| a standard Brownian semimartingale
[ o,dW, plus three different types of jump procesdeshenceY; = [ o, dW, + L,. For the
stochastic volatility process, we choose= exp(fv;), wheredv, = —Av,dt + dB, where

B is a standard Brownian motion which is correlated withand has correlation coefficient
p = —0.62. Further, we seh = 0.1 and3; = 0.125. Clearly, [ cdW andL are independent
of one another. The jump procegswill be chosen such that they have zero mean and unit
unconditional variance, are symmetrical and share idainfiist four moments. We simulate
from the various models by using the Euler scheme, where wesehan increment of one
second per tick on the Euler clock. (i&.= 1/23400 when we assume that the market is open
from 9.30 am to 16.00 pm, which corresponds to 23400 secoerddgy). The specifics of the
jump processes are as follows:

BSM: L = 0, i.e. the model consists only of the Brownian semimartiagart and has no
jumps.

BSMSCP1: L is a stratified normal inverse Gaussian compound Poissaegsavith a single
jump per unit time (i.e. the jump time is uniformly distrileat over|0, 1] and the jump
size follows a normal inverse Gaussian distribution). Tumap size is drawn fromay/.S
wheree 1 S, e ~ N(0,1) andS ~ IG(c,c*/v). Then,Var(eS) = E(S) = ¢ and
Var(S) = c3/(c?/v) = c¢y. In the simulation, we set = 0.25.

BSMSCP10: L is a stratified normal inverse Gaussian compound Poissartegsowith ten
jumps per unit time (i.e. the jump times are uniformly distiied ovef0, 1] and the jump
size follows a normal inverse Gaussian distribution). ©hsly, the jumps will have
smaller variance than in BSMSCP1 in order to account for #ut that there are more
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jumps. Hence, the jump sizes are drawn freRi'S; wheree; 1L S;, ¢; ~ N(0,1) and
S; ~ 1G(c/10, 02/(107)) i =1,...,10. Then,Var(312, e/S;) = S22 E(S) = ¢

andVar(312, S;) = Ezloi% = c3/( 2/~) = ¢vy. Again, we choose = 0.25.

BSMVG: L £ ¢/S is a variance Gamma process withll S, e ~ N(0,1) andS ~
T(c/~,1/7), wherey = 0.25. Clearly,L £ SV ¢.5, wheree; 1 S;, S; ~ T'(cdt/~,1/7)
ande; ~ N(0,1). Var(eS) =E(S) = ¢ anchw*( )=c/v/(1/7)* = cy.

So our simulation study deals with jump processes of botlefind infinite activity. Since
the jump processes defined above all have Blumenthal-Getdex0, our theory holds for all
RM PV (2, 1) with integersl > 3.

Note thatV ar <f01 adeS> =E (f(f ofds). Due to our parameter choice this variance is
close to 1 in all the simulations carried out. Clearly, whensetc = 1, then the jump pary
has also unit variance. However, empirical studies by Héaiguchen (2005) and Barndorff-
Nielsen, Shephard & Winkel (2006) suggests that the jumppmrant only accounts for up to
10 % of the variation of the price process, which correspdodgttingec = 0.1.

In the simulation experiment, we compute the feasible limaéio and log—linear statistics,
where Y4 is approximated byy % (L,y — Li;_1)a)°. Furthermore, we choose = I =
10 and, hence, us&M PV (4, 10) for estlmatingfo1 olds and RM PV (2,10) for estimating
fol o2ds (for the ratio and log-linear statistic). Recall, that we chooseRM PV (4, I ) for
any integerf > 3 for estimating integrated quarticity. However, by chogsanfairly big I, we
obtain better finite sample results. We simulate data foD%5#ys and report the sample mean,
standard deviation and the 95% coverage.

5.2 Efficiency and bias

So far, we have seen that we can use any realised multipowietiva RM PV (2; 1)} with

I > 3inour central limit theorems above as longsas < 2/1 < 1is satisfied. So, which mul-
tipower variation performs best in finite samples? In ordeariswer this question we compare
the performance of the various test statistics based ordifferent power variations: tripower,
guadpower, 10—power and 20—power. We know that in the absgrjamps, realised variance
is the most efficient consistent estimator of integratetavae. Using higher multipower vari-
ation in such a model setting results in an efficiency losscivban be quantified b§;. Recall

= 2TGE) oy ~ N(0,1),

that we have., = E|U|" = v

2
0r = <M2_/II\/ W%) —2= Ng_/zfl wi =2 Wi =g+ (1= 20, + 22#4/1 :u2/l

It turns out thatd; is an increasing function i (some of its values are given in Table 2).
Clearly, an increase ifi; corresponds to a loss in efficiency when estimating the oaaotis
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part of the quadratic variation b\ PV (2, I'). However, the loss in efficiency is bounded by
a constant since

. =

lim 0; = CEE 2.

I—o00

I 2 3 4 5 6 00
f; | 0] 0.608| 1.061| 1.377| 1.605| 1.776| 2.934

=

Table 2: Different values fof;

Given these results, we might want to focus on realisedwgvor quadpower variation
for estimating integrated variance in the presence of jurafiser than using higher powers.
However, our simulation study reveals the fact that redliseiltipower variation for higher
powers (10 or 20) seems to outperform realised tri- and quadpvariation in the presence
of jJumps, since the estimation bias is much smaller comptred- and quadpower and the
coverage is closer to the theoretical value of 95% for biggerhis might be due to the fact
that by using higher values df it is much easier to smooth out jumps and, hence, get a more
reliable estimate of integrated variance in the presengenaps.

5.3 Simulation results

Before we study the various jump processes, we check therpaafice of the various statistics
when the log—price is just given by a standard Brownian sartingale (BSM). The results of
this study are given in Table 3. Generally speaking the tesue good also for a low number
M = [1/A,] of intraday observations. But we also observe that 10—pawe20—power seem
to perform slightly better for small/. This is somehow surprising, since in the absence of
jumps, usually lower power variation performs better. Hegrewe have to bare in mind that
our test statistics incorporate also estimates of spoaneaes, which are not that reliable in
small samples and can, hence, lead to deviations from tmegsyic normality as indicated by
the slightly too high coverage for tri- and quadpower in @rsamples.

Now we study the model of a Brownian semimartingale plusatifigd compound Poisson
process with one jump per day (BSMSCP1). The results ara@iv&able 4. In the more rele-
vant case that = 0.1, we observe a generally good finite sample results for adetlstatistics.
However, we also see that there seem to be a finite sample hiak wonverges to zero fairly
slowly, but this bias seems to be much smaller for higher pswé/. Forc = 1, the finite
sample behaviour fok/ = 39, 78 is not really good, i.e. the finite sample bias is quite big and
the coverage is far to low compared to 95%. However, fidm= 390 (which corresponds to 1
min increments) onwards, the finite sample performance oaf@ 20—power is already really
good, whereas it is still fairly weak for tri- and quadpower.

In the following we will only report the results fer= 0.1, which is the empirically relevant
case. Next we consider a stratified compound Poisson pregdgs40 jumps per day (BSM-
SCP10). The corresponding results are given in Table 5. Névoks like we obtain the best
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finite sample results for realised 10—power. The coveragmseo be slightly closer to 95% for
the linear and ratio statistic than for the log—linear stati

Finally we choose variance gamma process as jump compamieict) is still a process of
Blumenthal-Getoor index 0 and, hence, of finite variatiast,Has infinite activity. The results
which are given in Table 6 follow a similar pattern as the omesbtained before and show in
general a good finite sample performance.

6 Conclusion

In this paper, we have derived the joint distribution of ised variance and realised multipower
in the presence of jumps. From this result, we have deduea@dhesponding asymptotic
theory for the difference, the ratio and the logarithmidetiénce of realised variance and re-
alised multipower variation, which makes it possible to makference on the jump part of
the quadratic variation. Note that the difference, theoratid the logarithmic difference are
often used for testing for jumps in asset prices. So far, syengtotic distribution of these test
statistics has only been known under the null hypothesisttiese are no jumps. Hence, this
paper completes the picture by presenting the asymptatidlalitions of these statistics under
the alternative hypothesis that there are jumps. At firgt,néw central limit theorems turned
out to be infeasible since the asymptotic variances of tlimaton biases are not observable.
However, we have introduced new, consistent estimatorthése asymptotic variances which,
eventually, leads to a feasible central limit theory. Thesee estimators can also be used for
deriving a feasible central limit theory for making infecenon the entire quadratic variation in
the presence of jumps. Finally we have checked the finite Eapgformance of our asymp-
totic results by means of Monte Carlo studies. We have obtgarticularly good results when
we use high multipower variations (e.g. 10—power varigtion

In future work, it will be interesting to study in particulawo questions in more detail. First,
how do the results change when we allow for market microsiremoise in the model? How
robust are our test statistics and how does the asymptdatichdition change? Second, how
do these results extend to a multivariate framework? Vergnmework by Barndorff-Nielsen &
Shephard (2007) and Jacod & Todorov (2007) has already sslti¢he question of testing for
common and disjoint jumps of multivariate price proces$sit would be very interesting to
see whether it would be possible to extend the results frasnpidgper to a multivariate model
setting.
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A Proofs

A.1 Proof of the bivariate central limit theorem

Proof of Theorem 4.1 The univariate results follow from Jacod (2@)7Theorem 2.11 (ii))
and Jacod (2006, Theorem 6.2). In order to derive the mulditeacentral limit result, we use a
modified version of Jacod (208,/Theorem 2.12) which can account for multipower variation
rather than power variation only. For the proof of the thegreve essentially have to prove
three lemmas (Lemma A.1 — Lemma A.3), which we will do in thibolwing. For our proofs,
we have to introduce some stronger assumptions (see eayl (2@04&)), which can be later
relaxed to the ones stated in the theorems above.

Hypothesis (SH) The hypothesis (H) holds and the proceses (¢;) and(F;(¢2)) are boun-
ded by a non—random constant and the jumps afe also bounded by a constant.

We refer to Barndorff-Nielsen, Graversen, Jacod, Podo&kShephard (2006) and Jacod
(20074, Section 4 and 5) for more details about how the validity & torresponding limit
results under stronger hypothesis leads to their validiggeu (H).

Remark Barndorff-Nielsen, Graversen, Jacod & Shephard (2006pfme 2 (in particular,
Example 7)) contains the following bivariate limit theordan realised variance and realised
bipower variation for a Brownian semimartingalei.e. in the absence of jumps, as— oo,

1 R‘/tn — [Y]t stably_in) law \/ifot O-iqu
VA, \ RMPV((1,1))r —[Y], V2 [y o2dW, + /By [} o2dW, )’

stably in law for independent Brownian motiors andV.
By using exactly the same reasoning, we can show that in thencmus semimartingale
framework we obtain, as — oo,

1 R‘/;n - [Y]t stably_in) law \/§f0t Udeu
VA, \ RMPV(2;1)» — [V, V2 [y o2dW, + 0 [} o2dW, |’

stably in law for independent Brownian motioiis and V.

In order to prove our main theorem, we need some furtherinatathich we will introduce
in the following. LetY; denote a one—dimensional I1td semimartingale. We con$ioietions
gj R — Mgy, q,,, forj=1,...,1, whereMy, 4,,, denotes al; x d;,,—dimensional matrix
with real-valued entries. Note that we are in particulaer@sted in the following choice of
functionsg; for j =1,...,Iand/ > 3. Letd, = --- =d; = 2, d;4, = 1 and

2
Y 0 1 0 1
91(y) = ~ , gily) = ( ~ ) 91(y) = ( _ ) (22)
( 0 u2/11\y\2”> 0 gy ly* pa iyl
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fori=2,...1 — 1. Then,

t/AR]—14+1 T

m/ Y RV = WL (ARY )
An D> ] = :
RMPV(2;1)"

i=1 =1

Wherez[t/f/”i L (A7Y)? X2 0 asn — oo. Further, we defing) = W

fori/ =1,...,1and

1 n
VA, 0 i-1)An Al

o gr) = / G(@) fos 1, (2,

(componentwise for the diagonal matrices and vectors defbeve), wheref, . . is the

density of av <O, aé_l)An)—distributed random variable. So, finally, we define theotelhg
random vector:

[t/An]—1+1 I I
U:L :Un(gl’,..,g[)t = \/Kn Z {ng’ (ﬁzll> - Hp? (gl’)} ) (23)
i=1 =1

/=1

which is in/\/ldl,dm.

Lemma A.1 Assume that (SH) holds and lgt, . .., g; denote continuous even functions of
at most polynomial growth with; : R* — M,, 4., fori = 1,...1 as defined in (22). So, in
particular, we havel; = 2andd; ., = 1. LetU" =T (g1, ... g;) denote the stochastic process
defined in (23) with components

[t/An]—I1+1 T () I (4)
i'=1 i'=1

for j = 1,2. Then thel,—dimensional process converges stably in law to a limit procegs
with components

UY):Z/O SR =1,2,
k=1

where the x 2—dimensional process, defined by

B V202 0
S ( ﬂaz m&) )

is (F:)—optional.

Proof Since we are only dealing with Brownian semimartingale$is lemma, the result fol-
lows directly along the lines of Barndorff-Nielsen, Grasem, Jacod, Podolskij & Shephard
(2006, Proposition 5.2) or by extending the proof of Jac@d@a, Lemma 5.7), which we will
sketch in the following.
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One can easily show by induction drthat

1 I

19 (ﬁ) — ] e (o) —Z (ng ( | )) 9; (87) = pi'(g;) ( 1T 7 ) ,

i'=1 i'=1 j=1 \i’'=1 i'=j+1
where an empty product is set to 1. This term is not measuwaitierespect taF;», , which
we need in order to be able to apply Jacod & Shiryaev (2003prEme IX.7.19 and Theorem
IX.7.28). So we use the same methods which have been appli#e iproof of Barndorff-
Nielsen, Graversen, Jacod, Podolskij & Shephard (2006pd3iton 5.2). l.e. we shift the
terms back in time to make them measurable WAt . We do not shift the first term in the
sum, but we shift the second term by one, the third term by twcasd, finally, the'th term by
I — 1. By doing that we get a new random variable

! il ., i1 !
VI (Hgy G >)) [9; (81) = Py 97)] ( 11 p?_u_nw) (25)
j=1 \i'=1 i'=j+1

which is clearly measurable with respect/g. . As in the proof of Barndorff-Nielsen, Gra-
versen, Jacod, Podolskij & Shephard (2006, Propositiondn@ can easily show that

[t/ An]—T+1
U, (g1, 91) — Z 20, asn — oco.

LetE? () = E (:|Fu-1)a, ). Trivially, we getE? , (¢") = 0 andE?"_, (||¢"]|*) < KA?2 (fora
constantk’ > 0). Analogously to the proof of Barndorff-Nielsen, Graversdacod, Podolskij
& Shephard (2006, Proposition 5.2), we obtain in particthat

[t/ An]—I+1

t
SooE (gne) 2 [ st (26)
i=1 0
[t/An]—T+1
> Er, (¢TAIN) “B0, fEN=WorN €N, (27)

asn — oo, where/ is the set of all bounde@F,)—martingales which are orthogonal ¥o.
Now the result follows from Jacod & Shiryaev (2003, Theore©Y119 and Theorem 1X.7.28).
O

Now we study the more general case where we allow for jumpkerptice proces¥”. We
start by introducing some notation (which is the same as tod#§2003)) and some more
assumptions, which can be relaxed later.

Hypothesis (SK) Assumptions (K) and (SH) are satisfied and the functigns ~ are bounded
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and do not depend an

Lete > 0 fixed. We define a proces$ by N = 1 * u, whereE = {x : y(z) > €}. HenceN
is a Poisson process with parameter the Lebesgue measkresay\.

Remark Note that under (SK) we havg (1A~*(z))dz < co andsup, y(z) < K foraK > 0.
Therefore we gelf, v*(2)I,2() <1y (@)dz < oo and [ T 2,513 (x)dz < oo. So altogether,
we obtain [, v*(z)dz < oo, since

[ e = [ @)t @ds + [ @) @)z
R R R
S/72(1‘)]1{72(x)<1}(l‘)dl'—|—K/]I{.y2(x)>1}(l')dl'< Q.
R R

Therefore, we can deduce thais indeed finite:

2
A= / ]I{x:'y(x)>e}(x)dx < / V(x) dr < 00.
R R

62
Depending orz, we define the following quantities:
e 51,5,,... are the successive jump times/gf

o I(n,p) =1, S_(n,p) = (i —1)A,, Si(n,p) =iA,on{(i—1)A, <S5, <iA,},

o a(n.p) =5 (Ws, = Ws_up), as(n.p) = 75 (Ws mp) — Ws,),

L] Rp = AYSP,

b Y(E)t = }/t - szspgt RP’

o R"=A"Y(e)onthe se{(i — 1)A, < 5, <iA,},

® RJID = \/?pUpUSp— +v1- ngz;USp’

o (,(T,¢) = {w:eachinterval0,7] N ((: — 1)A,, iA,] contains at most ong,(w);
ALY (e)(w)] < 26,Vi < T/A,}.

Lemma A.2 Under (SK), the sequencéE™, (a_(n,p), oy (n,p)),>1) converge stably in law
to

(T, (V& VT=5U;),.., ) asn — .

Proof The proof of this lemma is similar to the corresponding propflacod (200&, p. 30—

31). However, we have to make some adjustments to allow fdtipower variation. We have
to prove that for all boundedi—measurable random variabl&sand all bounded Lipschitz
functions® on the Skorohod space @fdimensional functions oR ; endowed with a distance
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for the Skorohod topology, and ajl> 1 and all continuous bounded functiofison R?, and
with A, = [T"_, f,(a_(n,p), a1 (n,p)) then

E (00 (07) A,) — B (W0(0) [TE (£(V6U, VI-§U;)), asn—oco.  (28)

p=1

ReplacingV by E (¥|G) on both sides, it is sufficient to prove the limit result (28) & ¥
which is measurable with respect to the separabiiield G generated by both the measuyre
and the processeéso, W andY'.

Let " andy” (v andv”, respectively) denote the restrictions,ofandy, respectively) to
R, x E°and toR, x E. Further, let(#’) denote the smallest filtration containifg;) such
that " is F,-measurable. Clearly’ is a Wiener process and is a Poisson random measure
with compensator’ relative to(F;), but also relative t4.f;).

Now we define a set of intervals surrounding the jump timefiefRoisson process. Let
m € N be any positive integer, then we defifg~ = (S, — 1/m)*, S;"* = 5, +1/m and
B, = Up>1(S)"~, 8], Since the indicator functiofip,, (w, ) is F, ® R,—measurable, we
can define the stochastic integhél(m); = fo I, (u)dW,. Now let(F,™) denote the smallest
filtration containing(F,) such thatiV (m) is (F,™)-measurable. Further, we define the set
Lo(m,t) ={ieN:i<[t/A,]—T+1andB,, N ((i —1)A,,iA,] = 0}. Similarly to Jacod
(2007a), we define two bivariate process@ls"(m), where we just sum over the integers which
are not “close” to the jump times, add(m), with components:

I J I J
=AY ((Hgy (ﬁf’)) - (Hp? <gz-f>> )
i€l (m,t) i'=1 i’'=1

2 t ,
= / S g,y AWV,
ji=1"0

wherel: is defined by (24) ang = 1, 2. Once again, note that both integrals are well-defined
sincelV is a Brownian motion w.r.t. the smallest filtration contaigi #/) and F,” at time 0.
Clearly, B,, — U,{S,} for m — oo and, hencelJ (m) — U asm — oo.

Note that

" ( i < [t/A] =T+ 1, B, N ((i —1)A,,iA,] # 0}

m, 1) = {
C {i:iﬁ [t/A,] —1+1,3p:|iA, =S, < 3}
m
Note that in the following, the constaht can change from line to line, but will not depend on

n, t andm (but will depend or¥).
Since the conditional expectationgf" is zero, if we condition on the past befdrie-1)A,,
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and the sequence of stopping tintgswhich are independent of W, i E. ((j"\ F(/i—l)An> =0,

we reach that/"(gy,...,g;)? — U™(m)! is indeed a martingale with respect (&,). By
applying Doob’s inequality, we obtain the following:

[t/An]—T+1

) <4A,E (Z Z CZ;"Z]I{mnswz/m}) :

1=

U (g1, 90)s = U™ (m)}

E <sup
s<t

Since all functiongy; (for i = 1,...I) are of at most polynomial growth, there exist con-
stantspy, . . ., py such that (by induction on)

E (sgp (_]"(gl, o ,gf)g - U "(m)i,
s<t

< KAE (f: > [Ta+18" ”Z’)) :

p=1 1<i<[t/Ap]—T+1:3p:|iA,—Sp|<2/m i’ =1

Sinceo is bounded and for fixegd, we get

man

#{z’:ig[t/An]—]+1,|z'An—Sp|gz}g 1
m

we obtain from (SH) that

_ S, 2 K
E (Sup U (g1, -, 91)) — U™ (m)] ) < — (Z ]I{Sp<t+1}>
s<t m
:—ZIP’S<t+1 ZIP’ (Net1 > p)
p=1 p 1

K

= 1

mA(t+ )

It is now sufficient to prove that for each and for eaclj—measurable and boundédfor
fixedm, asn — oo:

q
E(wo (07(m) A) = E(ve@m) [TE (H(Val, vVI=&0,)) . (@29)
p=1
sinceV is Lipschitz and bounded.
The remaining part of the proof is then identical to Step 3 &tep 4 in Jacod (20@y7 p.
31) and is, hence, not given here. O

Finally, we generalise the results from Lemma A.2 and obtiaenfinal auxiliary limit result
which we need for the proof of our main theorem.
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Lemma A.3 Under the assumptions of Lemma A.2, the seque@@s(R;"/\/An)pN) con-
verge stably in law tc(U, (R;)p>1>, asn — oo.

Proof This proof goes along the lines of the proof of Jacod (200émma 5.9) and is, hence,
omitted. O

Now we can combine the results from the three Lemmas abovedios the result of The-
orem 4.1 analogously to the proof of Jacod (280heorem 2.12). l.e. note that Lemma A.1
is multidimensional. The one—dimensional results havenlseluced from the correspond-
ing components of Lemma A.1 by Jacod (2@0Theorem 2.11 (ii) ) for the realised variance
and for the realised multipower variation by Barndorff-Nen, Graversen, Jacod, Podolskij &
Shephard (2006, p. 10-11) in the absence of jumps and Ja@06,(Eheorem 6.2) in the pres-
ence of jumps. So the way how these results are deduced fratmbeA.1 can be carried over
separately for each component in the multidimensional.casé&’ heorem 4.1 holds. O

A.2 Proof of the consistency of the estimator of the asymptat variance

In order to prove Theorem 4.6, we prove a couple of lemmas firsthe following, we will
always use the following notation and assumptions. We h&# @nd we use the following
notation:Y; = Y,/ + Y/, where

t t
Y;’:Y(H-/ bsds+/ oe_dWs, Y/ =k*(p— 1)+ & * .
0 0

Further, we need some notation for the increments of thewamparts ol". Let

n 1 n n n n
ﬂi = \/T—na(i_l)AnAi I/Vv 5@' =V Anﬁi ’ Pi = Poii_iyan
, 1 ZAn 77 1 / 1"
" (bsds + (05— — 0-1)a, )AWs) , x;" = AIYT X =G

Xi =
VAL Ji—1)a,

So, in particular, we get

VA,

ATY =AY + APY" = /A, (6? +x" + x;'”) = VAL (BT +x7) -

For the conditional expectation, we wWrig' , (-) = E (-|F_1)a,). Clearly, the following
inequalities hold under (SH) (see e.g. Jacod (2)0%or ¢ > 0 and for various constants
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K, K>0:
7y (18717) < Ky B (JATY9]7) < KA
Ezﬂ—l (|X;n|q> S KqA;lL/\q/2> E (|Ut+s - Ut|q|Ft) S qul/\q/Z’ (30)

E <‘X;/n|) < K.

If we additionally assume (Ls} for s < 2, we get a stronger inequality for the jump part (see
e.g. Todorov & Bollerslev (2007)). l.e. in that case we cad fins < « < 2 such that

" " KVA,, under (L-s) for0 < s <1
i, <|Xz |) < 1/a—1/2 : (31)
KAy , under (L) forl <s<a<?2
Furthermore, we will use that
2
n n / /’7 + An
B, (|AiX/| /\772) < KA, < 02 + F(Q)) ; (32)

foralln > 0andd € (0,1) with I'(§) — 0 asé — 0 as shown in Ait-Sahalia & Jacod (2006).

Remark In the following, we will always work with a constaif > 0 which can change from
line to line in the various proofs.

Recall that we denote by<,,),,~0 C N a sequence which satisfiés, — oo andK,,A,, — 0 as

n — oQ.

Lemma A.4 Assume (SH). Let™ = S"[/3] (5m)? T et 107110744 ]- ThenJ;”

(2
t
2 [, o4ds asn — oo.

Proof of Lemma A.4: First of all note that

—2
K. —9)A, > 17le +1"W STo1Br8rL| — oF, + 3,

jel(n,i) j€l(n,i)

This result is proved in Lemma A.9, where the notation is algalained.

So from the consistency of the estimators we @gglmn_ = U(Zi—l)An— + op(1) and
Gl 1yant = OG1ya, T oe(1) (uniformly in4) by using methods from Barndorff-Nielsen, Gra-
versen, Jacod, Podolskij & Shephard (2006). So from Pr(@@04, Chapter 11.6, Theorem 30)
we get

N [t/An] [t/An]
’n n 2 n n o~
"= (6;) |5 19 +1‘ = ( z) (‘7(22 DA, — +U(2i—1)An+)
2 (K, —2)A, 2 >
i=1 j€l(n,i) =1
[t/An]

= Z (5?)2 (U(Zi—l)An— + U(2i—1)An+ + OJP’(l)) — 2/ Uﬁ,‘ds.

i=1 0
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Lemma A.5 Under (SH), let], ™ = S21/8n] (gn)? ﬁzyelm |ATY'||A7,,Y'|. Then

7

= >
J;m Jt/" — 0, asn — oo.

Proof of Lemma A.5: Note that

[t/An]

-2
/\///n /\//n M n n "
B0 = A O 2 O IATY ALY | - 1671167}
" "=t jel(n,i)
Now we can write
|ATY[|AT Y] = (07107, = JATY[(JATL Y| =07 ]) + (07 (JATY'] = 67]) -
From (30), we get
BT LAY < KA, E' |07 < K\/A,,

B [[A7Y] - |87 < B ATY — 67 = B}, VAN < KA,
Bl (0) < KA,

By taking successively conditional expectations, we abtai

=T = ,u1_2 t 2(Kn - 2) 2
EJ " —J S(Kn_2)An A KA\ A, = Kt\yA, — 0, asn — oo,
which completes the proof. O
= . n
Lemma A.6 Under(SH) let/]"” = ST (Any)? (Kn_m > et |AY|| AT, Y| Then
jzm — :TZ” — 0, asn — oo.

Proof of Lemma A.6: We write

[t/ An)]

T = e 2 o (A = 0)7) 1AV ALY

=1 jel(n,i)

Note that

|(APY")? — (67)?] = '2\/ WX A, ‘ R AW

<2vE g (0 ( )

()]
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Again we apply the results from (30) and we obtain
B (ATY') = (07)"] < KV/AA, + A7

So altogether, we get

04 =7 K t
ElJ, " —J "< ———2K,—2) (VAA, +A2) A,
C S wm A, R, )( +47)
= Kt(v/A,+ A,) — 0, asn — oo,
which implies the result. 0J

~ -2
Lemma A.7 Under (SH), let],")" = STM T (Ary)? ot 57 (071107, ). Then

Jt(l)n — Jtm" — 0, asn — oo.

Proof of Lemma A.7 This result is obvious from the proofs of Lemma A.4,
Lemma A.5 and Lemma A.6. O

In the following, we study the jump part of.

—~ —2
Lemma A.8 Under (SH), let],®" = STI/& (Any)? T Y jerma 071075, ]- Then

T 5 S sy (02 + 0%) (AY,)?, asn — o

Proof of Lemma A.8 The proof of this lemma follows essentially from Ait-Saha& Jacod
(2006, Proof of Lemma 2) and Jacod (200Proof of Lemma 6.9) and is, therefore, not pre-
sented here.

0]

Now we present a lemma which says that locally averaged l@pwariation is a consistent
estimator of local variance. This result follows basicalisectly from Lee & Mykland (2006).

Lemma A.9 Assume (SH). L&tl},),>o with T, = T} (¢) denote the jump times of the Poisson
processu([0,t] x {z : v(x) > €/2}). Furthermore we defin€n, ¢) = inf{: : iA,, > T, } and
I'N(n,q) = I~ (n,i(n,q)) andI' ) (n,q) = I*(n,i(n,q)). Then we obtain fon — ooc:

—2
ILL n n P

m > 18] = o7, (33)
" " jer ()
p P

a2 |55l =, (34)

" jel' ®)(ng)
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Proof of Lemma A.9 Here we only show (33). The corresponding result (34) forrigbt
limit can be proven analogously. As in a similar proof in-Séhalia & Jacod (2006), we define

s — inf o2, S = sup o2,
b e[ Ty—KnAn,Ty) T el —KnAn,T,)
and )
Hy
gr— AW || AT W]
IS a2 AWIAL I
JEI( )(nvq)

From Lee & Mykland (2006), we immediately get that L lasn — oo. Since, furthermore,

saUs < Kn—z T 2as 2jer O 107 110741] < 57U, almost surely, we obtain (33). O
Lemma A.10 Under (SH), let],”" = YW/ (ArY/Ary”) o S (07107 .

Then,"" L 0, asn — oo,

Proof of Lemma A.10 Note that, sinceX’ is a continuous process ad’ is a pure jump pro-
cess, standard properties of the quadratic covariatiacegsy(see e.g. Protter (2004)) imply that

Z”A (APY'ATY™) = Y'Y"] = 0, asn — oo. Now we can use a similar proof
2

as for Lemma A.8 where we replac(ekaé(E» by <AY¢;q(E)AYf;(€)). Using the fact that

AYr o =0, we get the result. O

Lemma A.11 Under (SH) and (Ls) for s < 2, let
T = Al (Any a7 Soclearly,/;” = J,"" —27,%" 4 7,2
t Z ( ) Kn_2A Zjelnz ‘ || +1| oceary t t t + t '
Theth” - Jt" 50, asn — oo.
Proof of Lemma A.11 We get
N N [t/An]
Ji =" = A Z Z AnY A"Y||AJ+1 | |5n|| +1|)

=1 jel(n,)

From (30) and (31), we deduce that

BT, (APY)? = AL (87 +x0)* < 28,0, (617 + ()°)

< KA E?1<(6") ( )2+<X;n)z)

- ALK+ KA,), under (L-s) for0 < s <1
| Au(K + KA, + KAY*™), under (Ls)forl <s<a <2
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Further ,

[ATYIAT Y] = 10711074 | = [ATY ] (AT Y] = 107:4]) +1675] (1A7Y] = 167]) -

j+1
So clearly,

Ef_ | ATY] < VA8 + [+ ™)
- VALK + KvVA,), under (L-s)for0 < s <1
| VALK + KA, + KAY®Y), under (Ls)forl <s<a<?2

andE}_,[07| < K+v/A, and

B ALY ] — [571] < By AT — 7] = VEAEL | < VAL (B + B ™)
- KA, under (L-s) for0 < s <1
~ | K(A,+AY*) under(Ls)forl<s<a<?2

So we deduce that

K t

E Th _ Tn < -
= = (K, — 2)A, A,

2(K, — 2)A%\/A, = Kt\/A, — 0, asn — oo,

if (L—s) is holds for0 < s < 1 and

~ ~ K t
n_Jn|« > 7 . 1/
E|J} — J" < (K.~ 2)A, An2<K” )ALV AL(A, + AY)
= Kt(v/A, + Ai/o‘_lﬂ) — 0, asn — oo,
if (L—s) is holds forl < s < a < 2, which implies the result. OJ

Lemma A.12 Theorem 4.6 holds under (SH).

Proof of Lemma A.12 This result is a direct consequence of the preceding lemmas. [

Proof of Theorem 4.6 The localisation procedure is a standard tool in provingtltheorems
for stochastic processes which are observed at discrete tirthe main idea is that one can
replace local boundedness assumptions as given in (H) by stwenger assumptions (SH),
where we assume global boundedness by a (hon—-random) ibriBkee proof that our result,
which we have proven to hold under (SH) also holds under (ld)ngted, since it goes along
the lines of the corresponding proofs in Barndorff-NielgBraversen, Jacod, Podolskij & Shep-
hard (2006), Jacod (20B67Section 6.3), Ait-Sahalia & Jacod (2006). O
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A%

B TABLES
B Tables
Linear statistic Ratio statistic Log-linear statistic
[1/A,] | I || Mean S.D. Coveragé Mean S.D. Coveragg Mean S.D. Coverags
(K) (95%) (95%) (95%)
39| 3 -0.02 0.84 0.985 0.08 0.94 0.964 -0.03 0.87 0.979
(35| 4 | -0.01 o0.88 0.979 0.1 1 0.955 -0.02 0.91 0.973
10| 0.03 1 0.964 0.17 1.16 0.932 0.01 1.06 0.941
20| 0.05 1.3 0.926 0.19 1.28 0.893 0.07 121 0.889
390 | 3 -0.01 0.91 0.976 0 0.92 0.975 -0.03 0.92 0.971
(223)| 4 0 0.92 0.972 0 0.93 0.969 -0.02 0.93 0.97
10| 0.01 0.94 0.966 0.02 0.95 0.962 0 0.95 0.962
20| 0.02 0.97 0.96 0.03 0.98 0.955 0 0.97 0.959
1560 | 3 0 0.94 0.964 0 0.95 0.963 -0.01 0.95 0.96
(315)| 4 0 0.95 0.96 0 0.96 0.958 -0.01 0.96 0.96
10| 0.01 0.98 0.956 0.01 0.98 0.955 0 0.98 0.954
20| 0.02 0.99 0.954 0.02 0.99 0.953 0.01 0.99 0.954
4680 | 3 0.01 0.95 0.958 0.01 0.95 0.958 0 0.95 0.959
(414) | 4 0.01 0.96 0.961 0.01 0.96 0.96 0 0.96 0.96
10| 0.01 0.97 0.957 0.01 0.97 0.957 0 0.97 0.956
20| 0.010 0.97 0.954 0.01 0.97 0.954 0.01 0.97 0.955

Table 3: Simulation results for BSM: We simulate 5000 regdiens ofdY; = o,dW,, where
op = exp(0.125v;), dvy = —0.1vdt + dBy, Cor(Wy, B;) = —0.62 over |0, 1]. The average
value of integrated variance in this simulation study isl1.Dhe mean, standard deviation and
the 95% coverage of the linear, ratio and log—linear statése reported for various numbers
of intra—day observations /A, | and various powers. K denotes the window size of the spot
variance estimator.
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Linear statistic Ratio statistic Log-linear statistic
[1/A,] | I || Mean S.D. Coveragé Mean S.D. Coveragg¢ Mean S.D. Coverage
(K) (95%) (95%) (95%)
c=0.1

39| 3 -0.19 0.9 0.965 -0.09 0.98 0.954 -0.2 0.95 0.954
(35| 4 -0.16 0.93 0.965 -0.04 1.03 0.95 -0.18 0.99 0.947
10| -0.11 1.02 0.948 0.02 1.17 0.931 -0.13  1.11 0.917
20| -0.08 1.13 0.916 0.05 1.27 0.887 -0.06 1.23 0.879
390 | 3 -0.27 0.95 0.951 -0.26 0.96 0.95 -0.3 0.97 0.943
(223)| 4 -0.21  0.94 0.96 -0.2 0.95 0.959 -0.23 0.96 0.951
10 || -0.12 0.95 0.963 -0.1 0.96 0.959 -0.14 0.97 0.954
20 -0.1 0.97 0.957 -0.08 0.98 0.954 -0.11  0.99 0.95
1560 | 3 -0.23 0.98 0.947 -0.23  0.99 0.944 -0.25 0.99 0.944
(315) | 4 -0.16  0.97 0.952 -0.16 0.97 0.951 -0.18 0.98 0.949
10 || -0.08 0.97 0.955 -0.08 0.97 0.956 -0.09 0.97 0.953
20| -0.06 0.98 0.953 -0.05 0.98 0.953 -0.07 0.98 0.951
4680 | 3 -0.19 0.99 0.947 -0.19 1 0.946 -0.2 1 0.945
(414)| 4 -0.12 0.99 0.949 -0.12 0.99 0.948 -0.13 0.99 0.949
10 || -0.04 0.98 0.952 -0.04 0.99 0.952 -0.05 0.99 0.953
20 || -0.03 0.99 0.954 -0.03 0.99 0.952 -0.04 0.99 0.952
c=1
39| 3 -0.53 1.08 0.901 -0.53 1.18 0.872 -0.68 1.21 0.848
(35| 4 -0.43 1.06 0.912 -0.37 1.16 0.906 -0.54 1.18 0.87
10 || -0.29 1.1 0.915 -0.13 1.25 0.904 -0.34 1.24 0.871
20| -0.24 1.17 0.898 -0.08 1.33 0.875 -0.24 1.34 0.852
390 | 3 -0.43 1.02 0.923 -0.54 1.06 0.901 -0.58 1.07 0.894

(223)| 4 || -0.31 1 0.934 -0.35 1.02 0.929 -0.4 1.038 0.921
10| -0.17 0.99 0.948 -0.15 1 0.947 -0.2 1.01 0.941
20 || -0.13 1 0.948 -0.11 1.01 0.943 -0.15 1.02 0.942

1560 | 3 -0.38 1 0.928 -0.49 1.05 0.903 -0.51 1.06 0.9

(315)| 4 || -0.26 0.98 0.945 -0.3 1 0.937 -0.33 1.01 0.933

10| -0.13 0.98 0.952 -0.12  0.99 0.95 -0.14 0.99 0.947
20| -0.1 0.97 0.954 -0.08 0.99 0.953 -0.1  0.99 0.95
4680 3 || -0.33 1.02 0.93 -0.43 1.06 0.915 -0.44 1.06 0.911
(414)| 4 || -0.21 1.01 0.942 -0.24 1.02 0.94 -0.26  1.02 0.939
10} -0.09 1.01 0.946 -0.08 1.01 0.942 -0.09 1.01 0.941
20| -0.07 1.01 0.949 -0.06 1.01 0.944 -0.07 1.01 0.943

Table 4: Simulation results for BSMSCP1: We simulate 50@0ications ofdY; = o,dW,; +
dL;, whereo, = exp(0.125v;), dv; = —0.1vdt + dBy, Cor(Wh, By) = —0.62 over|0, 1]. L; is

a stratified Poisson process with one jump per day. The jumgisidrawn fromey/S, where

e I S, e~ N(0,1) andS ~ IG(c,*/0.25). The average value of integrated variance in this
simulation study is 1.01. The mean, standard deviationla@m@%% coverage of the linear, ratio
and log-linear statistic are reported for various numbéristma—day observationd /A,,| and
various powerd. K denotes the window size of the spot variance estimator.
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Linear statistic

Ratio statistic

Log-linear statistic

%4

[1/A,] | I || Mean S.D. Coverag¢ Mean S.D. Coveragé Mean S.D. Coverage

(K) (95%) (95%) (95%)

39| 3 || -0.38 0.89 0.956 -0.27  0.93 0.962 -04 0.96 0.933

(35)| 4 -0.34 0.91 0.958 -0.22 0.99 0.958 -0.36  0.99 0.929

10 || -0.26 1 0.942 -0.12  1.12 0.94 -0.28 111 0.905

20 || -0.22 1.12 0.907 -0.09 1.23 0.889 -0.21 1.24 0.871

390| 3 -0.69 1.02 0.892 -0.68 0.99 0.896 -0.73  1.04 0.875
(223) | 4 -0.57 1 0.918 -0.55 0.98 0.921 -0.6  1.02 0.9

10| -0.4 1 0.938 -0.38 0.99 0.937 -0.43 1.03 0.921

20 || -0.35 1.02 0.934 -0.33 1.01 0.931 -0.38 1.05 0.921

1560 | 3 -0.78 1.15 0.865 -0.79 1.06 0.865 -0.81 111 0.859

(315) | 4 -0.61 11 0.901 -0.61 1.03 0.902 -0.64 1.07 0.894

10| -0.4 1.05 0.934 -0.4 1 0.933 -0.42 1.03 0.927

20 || -0.34 1.04 0.938 -0.34 1 0.938 -0.36 1.03 0.933

4680 | 3 -0.77 1.03 0.869 -0.78 1.03 0.868 -0.79 1.04 0.861

(414) | 4 -0.58 1.01 0.903 -0.58 1.01 0.903 -0.6  1.02 0.898
10| -0.35 0.99 0.934 -0.35 0.99 0.935 -0.36 1 0.932

20 || -0.29 0.99 0.938 -0.29 0.99 0.938 -0.3 1 0.934

7800 | 3 -0.3  1.01 0.932 -0.31 1.01 0.934 -0.32 1.01 0.932
(470) | 4 -0.12 1 0.946 -0.12 1 0.948 -0.13 1 0.948

10|l 0.05 0.99 0.952 0.06 0.99 0.95 0.05 0.99 0.951

20 || 0.08 0.99 0.949 0.08 0.99 0.949 0.08 0.99 0.95

Table 5: Simulation results for BSMSCP10: We simulate 5@lications oflY; = o,dW, +
dL;, whereo, = exp(0.125v;), dv; = —0.1v,dt + dBy, Cor(Wh, By) = —0.62 over|[0,1]. L,
is a stratified Poisson process with ten jumps per day. The jsizes are drawn from+/S;

fori = 1,...,10, wheree 1. S, ¢ ~ N(0,1) andS ~ IG(c/10,c*/(10 % 0.25)). We set

¢ = 0.1. The average value of integrated variance in this simuiagtady is 1.01. The mean,
standard deviation and the 95% coverage of the linear, aatidog—linear statistic are reported
for various numbers of intra—day observatidhgA,] and various powerg. K denotes the

window size of the spot variance estimator.
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Linear statistic Ratio statistic Log-linear statistic

[1/A,] | I || Mean S.D. Coveragé Mean S.D. Coveraggé Mean S.D. Coverage
(K) (95%) (95%) (95%)
39| 3 -0.22 0.9 0.964 -0.12 0.98 0.954 -0.24 0.97 0.95
(35| 4 | -0.19 0.93 0.965 -0.07 1.03 0.949 -0.21 1 0.945
10| -0.13 1.02 0.948 0 1.16 0.934 -0.15 111 0.916
20| -0.1 1.15 0.909 0.02 1.28 0.891 -0.09 1.26 0.87
390 | 3 -0.28 0.97 0.945 -0.27 0.98 0.942 -0.31 1 0.934
(223)| 4 || -0.22 0.96 0.949 -0.21  0.97 0.948 -0.25 0.99 0.94
10 || -0.13 0.96 0.954 -0.12  0.97 0.954 -0.16 0.98 0.949
20| -0.11 0.98 0.953 -0.1  0.99 0.95 -0.13 1 0.948
1560 | 3 -0.27  0.99 0.942 -0.28 1 0.941 -0.3 1.01 0.935
(315)| 4 || -0.21 0.97 0.95 -0.21  0.98 0.95 -0.23 0.98 0.947
10 || -0.12 0.96 0.956 -0.12  0.97 0.955 -0.14 0.97 0.953
20| -0.1 0.97 0.955 -0.1  0.98 0.953 -0.11  0.98 0.952
4680 | 3 -0.26  0.99 0.946 -0.27 1 0.943 -0.28 1 0.94
(414)| 4 | -0.18 0.97 0.952 -0.18 0.98 0.949 -0.2  0.98 0.949
10| -0.1 0.97 0.96 -0.1  0.97 0.957 -0.11  0.98 0.956
20 || -0.08 0.97 0.954 -0.08 0.98 0.953 -0.09 0.98 0.953

Table 6: Simulation results for BSMVG: We simulate 5000 iegdions ofdY; = o,dW;+dL;,
whereo, = exp(0.125v,), dv, = —0.1v,dt +d B, Cor(Wy, By) = —0.62 over|0, 1]. L, NG

is a Variance Gamma process, withll. S, ¢ ~ N(0,1) andS ~ I'(¢/0.25,1/0.25). We set

¢ = 0.1. The average value of integrated variance in this simuiatady is 1.01. The mean,
standard deviation and the 95% coverage of the linear, aatidog—linear statistic are reported
for various numbers of intra—day observatidhgA,] and various powerg. K denotes the

window size of the spot variance estimator.
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