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Abstract

In this paper a two-component volatility model based on the component�s �rst

moment is introduced to describe the dynamic of speculative return volatility. The two

components capture the volatile and persistent part of volatility respectively. Then the

model is applied to 10 Asia-Paci�c stock markets. Their in-mean e¤ects on return are

also tested. The empirical results show that the persistent component accounts much

more for volatility dynamic process than the volatile component. However the volatile

component is found to be a signi�cant pricing factor of asset returns for most markets,

a positive or risk-premium e¤ect exists between return and the volatile component,

yet the persistent component is not signi�cantly priced for return dynamic process.
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1 Introduction

Understanding the relation between speculative return of an asset and its volatility1 (as a

proxy for risk) has long been an important topic in �nancial literature.2 On the one hand,

a rational risk-averse investor will require a higher expected return for holding a more

risky asset. If volatility is a suitable proxy for risk, there should exist a positive relation

between volatility and expected return, as illustrated in the asset pricing literature (see,

e.g. Sharpe (1964), Linter (1965) and Mossin (1966)). This positive relation between

risk and return should always hold from an ex ante point of view. On the other hand,

however, it is also well addressed that stock return distribution exhibits skewness. A

reasonable explanation is that negative return innovation induces higher volatility than

positive innovation of the same magnitude, which in turn generates skewness in return.

This feature is consistent to an empirically observed regularity which may be described

as a �nancial leverage e¤ect, see e.g. Black (1976), Engle & Ng (1993) and Yu (2005).

The standard argument from Black (1976) is that bad news decreases the stock price, i.e.

the equity, and hence increases the debt-to-equity ratio (i.e. �nancial leverage), making

the stock more risky and increasing future expected volatility. Alternatively, a volatility

feedback e¤ect may be present, i.e. if volatility is increased, then so is the risk premium in

case of a positive risk-return relation, and hence the discount rate, which lowers the current

stock price. Both leverage e¤ect and volatility feedback e¤ect indicate a negative relation

between return and volatility, although the causality is reversed. The volatility feedback

e¤ect should be strongest at the market level, whereas the leverage e¤ect should apply

to individual stocks. Thus, from the ex post point of view, a negative relation between

return and volatility is also possible, although this negative relation will not refute the ex

ante understanding of the positive relation.

The empirical result is mixed. Most earlier researches are in line with the positive

relation. For example, French, Schwert & Stambaugh (1987) �nd a positive relation be-

tween expected market risk premium and predictable volatility of stock return in U.S.

market. However more recent studies are in favor of the other side. Baillie & DeGennaro

(1990) report a controversial result against French et al. (1987). They argue that in U.S.

stock market, a positive relation between stock return and volatility is weak and almost

1 In this paper, the word Volatility refers to either conditional standard deviation or conditional
variance, depending on context.

2Note that the risk we talk about here is systematic or undiversi�ed risk since unsystematic risk of a
stock can be diversi�ed away by putting it into a portfolio.
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nonexistent. Bollerslev & Zhou (2005) agree with this conclusion.

In literature it is also suggested that the empirical results depend on model speci�ca-

tion of volatility dynamics. For example, Li, Yang, Hsiao & Chang (2005) report that a

misspeci�cation in parametric model of volatility dynamics may cause a distorted relation.

They implement both parametric and semiparametric approaches to model volatility dy-

namics and estimate coe¢ cient of volatility in return generating process for twelve stock

markets. Although failing to �nd a signi�cant relation by applying parametric approach,

they do �nd a signi�cantly negative relation in six markets by applying semiparametric

approach. They argue the failure to �nd such a relation in �rst approach may be caused by

model misspeci�cation. However, Shin (2005) applies the same parametric and semipara-

metric approaches to estimate the relation between stock return and volatility in fourteen

emerging markets. She fails to �nd a signi�cant relation between return and volatility

for all markets. And semiparametric approach leads to similar results as in parametric

approach.

In addition to one-factor models, recent studies focus on applying multi-factor models

to describe volatility dynamics. One advantage of multi-factor models is that they allow

volatility process to be driven by shocks with di¤erent persistence levels. In empirical work,

Ding & Granger (1996), Engle & Lee (1999), Bollerslev & Zhou (2002), Chernov, Gallant,

Ghysels & Tauchen (2003), Chacko & Viceira (2003) and Adrian & Rosenberg (2005)

�nd that two-factor volatility speci�cations signi�cantly outperform one-factor models.

For example, Ding & Granger (1996) decompose variance into a IGARCH and GARCH

factor, for which the two factors are assigned di¤erent weights to volatility. They �nd that

such decomposition performs much better than the one-factor GARCH models. However,

although these models successfully capture volatility dynamics in some aspects, they have

their own de�ciencies. In the case of Ding & Granger�s (1996) model, conditional variance

is the sum of two weighted factors. However it may �nd a corner solution for the weights in

some cases. Thus it degenerates to one-factor model, which is not interesting for applying

this two-factor model. Furthermore, if we include these two components in mean equation

and test their impacts on return, the estimates are not signi�cant in most cases. This

unsatis�ed result is quite similar to the case in one-factor GARCH-M model. Engle &

Lee (1999) extend the one-factor GARCH model in another way, yet their setup is similar

to Ding & Granger�s (1996) and thus su¤ers from the same problem. Bollerslev & Zhou

(2002) apply realized volatility based on high-frequency data, which is a luxury input

requirement for some emerging markets. Chacko & Viceira (2003) and Chernov et al.
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(2003) include jump process and apply spectral density function to estimate their models,

making the estimation procedure complicated. Adrian & Rosenberg (2005) build a two-

factor model based on EGARCH-M setup, which is able to capture asymmetry in return.

However a signi�cant disadvantage of EGARCH model is that the proper aggregation for

long-horizon forecasting is rather inconvenient. It is di¢ cult to compute unbiased forecasts

of volatility in multiperiod intervals, as pointed out in Brandt & Jones (2006).

Motivated by Ding & Granger (1996), a new two-component volatility model is intro-

duced in this paper. However, instead of decomposing conditional variance into di¤erent

components directly, I try to interpret dynamic process of conditional variance by com-

ponents based on its �rst moment, and let volatility be a sum of these two components.

Then both components are added to the return generating process so as to test whether a

signi�cant relation exists between return and volatility. As discussed previously, positive

relation implies a risk premium e¤ect and negative relation implies either as a �nancial

leverage e¤ect or as a volatility feedback e¤ect. One component is considered to be a

volatile part of volatility and the another one is a persistent part of volatility. This idea

is supported by the assumption that investors not only regard volatility level as a price

factor, they also care about volatility innovations, see Ang, Hodrick, Xing & Zhang (2006).

Another interesting feature for volatility is its long memory property. As pointed out

in Ding & Granger (1996) and Baillie, Bollerslev & Mikkelsen (1996), the autocorrelation

for stock absolute return decreases fast at the beginning and then decreases very slowly

and remains signi�cantly positive, which is di¤erent from an exponentially decreasing

function, as implied by GARCH models. This �nding motivates the new approaches such

as multi-factor model in Ding & Granger (1996) and FIGARCH model in Baillie et al.

(1996) respectively. It is shown that the suggested two-component model in this paper is

also consistent with the long memory property of return volatility.

The model is then applied to 10 Asia-Paci�c stock markets, including both volatility

components to return process. It is found that the volatile component is a signi�cant

pricing factor for return. There exists a positive relation between the volatile component

and return, which implies a risk premium e¤ect. On the contrary, the persistent component

doesn�t have a signi�cant impact on return. However, the persistent component accounts

more for volatility process than the volatile component, indicating a persistent or long

memory property. Thus, this paper contributes to the literature by providing some new

evidence on empirical analysis of volatility dynamic and its impact on return.

The remainder of the paper is organized as follows. In Section 2, I introduce the model
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and testing methodology. Then the model is applied to daily returns of 10 Asia-Paci�c

stock markets in Section 3, along with empirical results and some Monte Carlo simulations.

Section 4 concludes the paper. Technical details are given in Appendices.

2 A Two-factor volatility model

Many studies have been done on relation between asset return and volatility. According

to classical asset pricing literature, i.e. Sharpe (1964), Linter (1965) and Mossin (1966),

along with others, higher asset risk should be compensated by higher returns. Since

volatility is widely regarded as a proxy for risk, so in ex ante setup, expected return is

positively related to volatility. However, as pointed out by Abel (1988) and Gennotte &

Marsh (1993) in one-factor stochastic volatility process, in the equilibrium setting, market

return is not necessarily positively related to market volatility. This is due to dynamic

optimization of rational investors who hedge changes in the investment opportunities. If

volatility provides information about expected return so that changes in volatility change

the investment opportunity set, then volatility should be priced. In addition, Black (1976)

and others point out that return will also a¤ect volatility in an asymmetric way: negative

innovations to stock return tend to increase volatility more than positive innovations of

the same magnitude. This asymmetry is partly explained as a result of "leverage e¤ect"

due to Black (1976). So from a ex post point of view, it seems that a negative correlation

between stock return and volatility is possible, which is supported by empirical studies as

mentioned previously.

Some empirical evidence also shows the presence of long memory property in realized

asset return volatility. This property is well addressed in the literature, see Andersen,

Bollerslev, Diebold & Labys (2003) and references therein. Such �ndings motivate multi-

factor stochastic volatility models. A popular approach is to decompose volatility into two

components. One re�ects short-run e¤ect and the other re�ects long-run e¤ect. Relative

empirical studies provided by Engle & Lee (1999), Bollerslev & Zhou (2002), Chacko

& Viceira (2003) and Chernov et al. (2003) �nd that two-factor volatility speci�cations

signi�cantly outperform one-factor models. More recently, Adrian & Rosenberg (2005)

decompose volatility dynamic as a sum of two components with di¤erent rates of mean

reversion. Then they add these two components to the return-generating-process and �nd

that the estimated coe¢ cients of both components are negative, but only the short-run

component is signi�cant. Their model is based on EGARCH setup. Thus it can capture
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the asymmetry in return, yet also su¤ers from the disadvantage of EGARCH model: it is

di¢ cult to compute unbiased forecasts of volatility in long-run period.

The objective of this paper is to introduce a new two-component model which is

motivated by Ding & Granger (1996). The two volatility components are then included

in return process to test their in-mean e¤ects. The model is applied to 10 Asia-Paci�c

stock markets. In Ding & Granger (1996), they decompose conditional variance as a

weighted sum of two components and the components follow a GARCH and IGARCH

process respectively. The di¤erence of the model presented in this paper and in theirs is

that I apply generalized autoregressive process to describe the �rst moment dynamic of

these two components, and then construct volatility as the sum of these two components

based on their second moments. Thus the model allows more �exibility while in meantime

keeps volatility positive, as it is required by de�nition. More speci�cally, the model allows

the volatile component has zero mean and �uctuates more frequently, yet the persistent

component has a non zero mean and moves more smoothly than the volatile component,

and thus capturing the persistence in volatility.

The setup of the model is as follows. Some technical details are provided in Appendices.

Assume that dynamic of a stock�s log price can be represented by the following di¤usion

process:

dpt = �tdt+ �tdW1t (1)

Volatility �2t is the sum of two components:

�2t = s
2
t + q

2
t (2)

and the dynamics of st and qt are given as follows:

dst = ��sstdt+ �s�tdW2t (3)

dqt = �
q(q � qt)dt+ �q�tdW3t (4)

Where W2t and W3t are Wiener processes that may be correlated with each other and

also correlated with the return innovationW1t. This speci�cation is similar to the discrete-

time model presented in Ding & Granger (1996), except for describing the dynamics of st
and qt instead of s2t and q

2
t as in their paper. This lets the model to be more �exible and
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still ensures the positivity of volatility.

Both st and qt follow Ornstein-Uhlenbeck process and thus are conditionally normal.

By setting up, st is the quick mean-reverting component and its persistence of mean-

reverting is captured by the parameter �s > 0. qt is the slow mean-reverting component

and it reverts to a constant q at rate �q. The two components of volatility s2t and q
2
t may

have potentially di¤erent rates of mean reversion. Applying Ito�s lemma, we can show

that

ds2t = 2�
s(
�s2

2�s
�2t � s2t )dt+ 2�s�tstdW2t (5)

and

dq2t = 2�
q(
�q2

2�q
�2t + �qqt � q2t )dt+ 2�q�tqtdW3t (6)

From (5) and (6), we can consider that both s2t and q
2
t follow a general mean-reverting

process with time-varying mean. Besides the symmetric factors in (5) and (6), an addi-

tional factor �qqt appears in time-varying mean for q2t . Since �
2
t = s

2
t + q

2
t ; it is also straight

forward to show that

d�2t = �
�(q�t � �2t )dt+ �s

�
t dW2t + �

q�

t dW3t (7)

where �� = �(�s2+�q2� 2�s), q�t =
2(�q��s)

�s2+�q2�2�s q
2
t � 2�q �q

�s2+�q2�2�s qt, �
s�
t = 2st�t�

s and

�q
�

t = 2qt�t�
q.

The dynamic of volatility �2t is complicated, since it is a nonlinear combination of

dynamics of st and qt: Nevertheless, intuitively we can interpret (7) as a generalized

mean-reverting process with a stochastic mean q�t and stochastic di¤usions �
s�
t and �q

�

t .

Interestingly since the stochastic mean q�t doesn�t include any st term, it implies that

conditional variance �2t �uctuates around a variable which is a quadratic function of qt.

Thus the mean level of �2t depends only on qt but not on st. In this sense, we can think s
2
t

as the volatile component of volatility and q2t as the persistence component of volatility.

In order to complete the model, we also need to determine the drift term �t in the

return dynamic (1). Here I adopt a linear setup, that is, let �t be a linear function of

volatility �2t . Since �
2
t can further be decomposed into s

2
t and q

2
t , it is natural to include

these two components separately in the drift term in addition to other factors. Thus
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�t = �0 + xt� + �1s
2
t + �2q

2
t (8)

xt represents other factors that contribute to the return generating process.

To estimate the parameters in (1), as well as in the volatility component dynamics (3)

and (4), we can specify the following model:

rt = �0 +

kX
i=1

�t�irt�i + �1s
2
t + �2q

2
t + "t (9)

"t = �tzt; zt � N(0; 1); �2t = s
2
t + q

2
t (10)

st = �1"t�1 + �1st�1 (11)

qt = ! + �2"t�1 + �2qt�1 (12)

where rt denotes the daily log price di¤erence, rt = logPt � logPt�1 = pt � pt�1.
The lags of return rt�i are added to the model to re�ect possible serial correlation in

return. In this paper the lag order i is set to be 1,3 so the empirical model to be estimated

is as follows:

rt = �0 + �1rt�1 + �1s
2
t + �2q

2
t + "t (13)

In Ding & Granger (1996), they decompose time-varying volatility in the following

way:

�2t = w�21t+(1�w)�22t (14)

�21t = �1"
2
t�1 + (1� �1)�21t�1 (15)

�22t = �2(1� �2 � �2) + �2"2t�1 + �2�22t�1 (16)

We can see that the di¤erence between the model in this paper and in Ding & Granger

(1996) is that here st and qt can be considered as the �rst moment components of volatility,

3 It is well documented that there is little serial correlation in return series. In fact the estimated
parameters to lag orders higher than 1 are not signi�cant.
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yet �21t and �
2
2t in (15) and (16) are the components of conditional variance. Thus by model

speci�cation, st is allowed to have zero-mean and achieves more �exibility.

In Appendix A.1, I apply a result from Nelson (1990) to show that the discrete-time

model of (9) � (12) converges to the continuous-time model of (1) � (4). In the continuous-
time model, there are three correlated shocks: W1;W2 and W3. However, using the result

of Nelson (1990), we can approximate the discrete-time model by using only a single shock.

One reason to regard st and qt as a volatile and a persistent component of volatility

can be seen from their moments:

In Appendix A.2, it is shown that the unconditional �rst moments of st and qt are as

follows:

E[st] = �s = 0 (17)

and

E[qt] = �q =
!

1� �2
(18)

From (17) and (18), it is obvious that st is converged to zero, thus it decays out

in the long run. That�s why it is indicated as a volatile or non-persistent component of

volatility. On the other hand, qt converges to its unconditional mean !
1��2

, which is a non-

zero constant provided that ! 6= 0. For that reason we can consider it as the persistent

component of volatility.

It is also shown in Appendix A.2 that under the stationary condition, the unconditional

second moments of st and qt, E[s2t ] = �
2
s and E[q

2
t ] = �

2
q have the following forms:

�2s =
�21

1� �21 � �21
�2q (19)

and

�2q =
1

1� �22(1��
2
1)

(1��22)(1��21��
2
1)

�2q (20)

Since �2t = s2t + q
2
t , then the unconditional variance of "t, E[�

2
t ] = �2 is obtained as

follows:
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�2 =
�2q

1� �21
1��21

� �22
1��22

(21)

Note that in order to make (19), (20) and (21) be valid, we need the following conditions

be satis�ed:

(1� �22)(1� �21 � �21) > �22(1� �21) (22)

and

1� �21 � �21 > 0 (23)

(This two conditions also imply that 1� �21 > 0 and 1� �22 > 0.)
The covariance between st and qt is as follows, the calculation is shown in Appendix

A.2:

cov(st; qt) =
�1�2

1� �1�2
�2 =

�1�2
1� �1�2

�2q

1� �21
1��21

� �22
1��22

(24)

It can be seen from (24) that the sign of cov(st; qt) depends on the sign of �1�2, if

both �1 and �2 are positive or negative, then the covariance between st and qt is positive,

otherwise it will be negative.

It is also possible to obtain the analytical solution for cov(s2t ; q
2
t ), if the �rst four

moments exist and are �nite for both st and qt, yet the calculation is tedious. Instead of

presenting the explicit form, we guess that cov(s2t ; q
2
t ) is likely to be positive since �

2
s is

proportional to �2q , as shown in (19).

As a standard approach, the discrete-time model of (9), (11) and (12) can be estimated

by Quasi-Maximum Likelihood Method. Some details of this estimation method are given

in Appendix A.3.

3 Estimation and Discussion

3.1 Data Description

The data for the empirical study covers 10 stock markets in Asia-Paci�c area and is

collected from Datastream. It includes 8 Asian stock markets (China, Hong Kong, Japan,

Korea, Philippines, Singapore, Taiwan and Thailand) as well as 2 Oceanian stock markets
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Table 1: The Selected Stock Market Indices in Asia-Paci�c Stock Markets
Market Market Index
Australia All Ordinary IDX (AORD)
China Shenzhen SE Composite Index (SZSEI)
Hong Kong Heng Seng Index (HSI)
Japan Osaka Nikkei 225 (N225)
New Zealand NZX 50 Index Gross (NZ50)
Philippines PSE Composite Index (PSEI)
Singapore Strait Times Index (STI)
South Korea KOSPI (KSII)
Taiwan TSEC Weighted Index (TWII)
Thailand SET Index (SETI)

(Australia and New Zealand).4 Table 1 presents market indices chosen from these markets.

One reason for choosing these 10markets is that the capital markets in Asia-Paci�c area

have developed rapidly in the past three decades and play a more and more important role

in the world economy, yet relatively few studies are focusing on these markets compared

to US or European markets. Another speci�c issue is that the stock markets in this region

have experienced an increasing integration during the sample period, but on the other

hand most of the markets also su¤ered deep loss from the Asian Financial Crisis in 1997.5

It is interesting to study this property too. The sample period is chosen from January

1991 to December 2005. Daily closing price of market index adjusted for dividends is

collected, which results in about 3900 daily observations in total for each series.6 The log

price return (in percentage) is adopted:

rt = 100� [log(Pt)� log(Pt�1)] (25)

The data set selected for this study has several advantages. Using daily data instead of

weekly or monthly data makes more observations available and thus avoids the �nite sam-

ple bias as discussed in Hwang & Pedro (2006). Also in the estimation process, we apply

a discrete-time setup to approximate a continuous-time dynamic model. It is obvious that

using a data set with higher frequency will increase the precision of the approximation.

4See Comerton & Rydge (2006) for a review on these markets.
5South Korea and Thailand are considered to be most heavily hit by the 1997 Asian Financial Crisis;

China, Hong Kong, Japan, Philippines, Singapore and Taiwan are also a¤ected by the Crisis. Australia
and New Zealand are relatively una¤ected, see Radelet & Sachs (1998) for reference.

6The data of the �rst 100 oberservations is used to generating the starting values for the dynamic
process and doesn�t include in the estimation procedure. Thus the estimating period is from Jun. 3, 1991
to Dec. 31, 2005 and has 3805 daily observations.
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Although it is argued that estimation with lower frequency data, i.e. monthly data, tends

to re�ect long-term movement in volatility (Baillie & DeGennaro (1990), p. 211), this

property only holds if a long period is included in the study. Thus low frequency data

requires a much longer period to study in order to get reliable results. This requirement is

too luxury for most emerging markets in Asia-Paci�c region, since most markets in this re-

gion are launched in 1970s and data is only available after then. Second, since the data set

includes 10 markets, we can also compare the di¤erence of the parameter estimates among

di¤erent markets. For example, we can compare results between developed markets and

emerging markets. According to International Finance Corporation (IFC) classi�cation,

Australia, Japan, Hong Kong, New Zealand as well as Singapore are classi�ed as devel-

oped markets and the rest are regarded as emerging markets. Finally since the market

index is always available on every trading day, it is ideal to use index data to estimate the

parameters in the model (as a approximation for the continuous-time model) by avoiding

individual stock�s suspending problem.

Table 2 provides some summary statistics for these stock markets. Since data for risk-

free rate is not available for some markets during the sample period, in this paper the stock

returns are adopted instead of excess stock returns to conduct analysis. This is consistent

to the studies in Li et al. (2005) and Shin (2005), and some researchers (i.e. Baillie &

DeGennaro (1990), Nelson (1991), Choudhry (1996)) show that using returns instead of

excess returns produces little di¤erence in estimation and inference in empirical studies.

Some features from Table 2 are worth noting. According to the preceding classi�cation,

Australia, Japan, Hong Kong, New Zealand and Singapore are de�ned as the developed

markets and the rest are de�ned as the emerging markets. In Table 2, one can see that

there is no signi�cant di¤erence for mean return between the developed markets and the

emerging markets.7 Actually the mean return for the developed markets is higher than

the emerging markets. This result is somewhat surprising since during the sample period

most emerging markets undergo more rapid economic growth than the developed markets.

One possible reason is due to the poor performance of these emerging markets during the

1997 Asian Financial Crisis period. Thailand has even a negative mean return. Japan also

su¤ers a negative mean return due to the collapse of asset bubble in early 1990 and low

economic growth thereafter. We should also notice from Table 2 that the emerging markets

have much higher volatilities. China and Japan have the highest and lowest volatility for

7Two emerging markets, which are not included in this paper,Indonesia and Malaysia, do have higher
mean returns but also have much higher volatility.
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Table 2: Summary Statistics for Daily Index Return in Asian-Paci�c Markets

Market Mean Standard
Deviation Skewness Kurtosis Normality

Test
Australia 0:0299 0:747 �0:507 6:308 1778:8��

China 0:0330 2:383 0:924 18:64 13031:3��

Hong Kong 0:0365 1:599 �0:00848 10:44 4054:6��

Japan �0:0125 0:0141 0:0748 2:456 538:05��

New Zealand 0:0196 0:843 �0:898 21:55 7853:09��

Philippines 0:0152 1:455 0:668 10:77 3462:2��

Singapore 0:0170 1:262 0:281 11:88 4604:9��

South Korea 0:0214 1:913 �0:0628 4:044 1142:9��

Taiwan 0:0406 1:608 �0:0534 2:646 606:30��

Thailand �0:0327 1:68 0:377 4:752 1277:1��

Mean for
Developed Markets 0:0181 0:893 �0:212 10:52

Mean for
Emerging Markets 0:0155 1:808 0:371 8:17

Note: This table reports the summary statistics for daily index (in percentage) return in 10 markets
from June 3, 1991 to December 31, 2005, i.e. T=3805 return observations. The Developed Markets
refer to Australia, Hong Kong, Japan, New Zealand and Singapore and Emerging Markets refer
to China, Philippines, South Korea, Taiwan and Thailand. The result for Jarque-Bera Normality
Test is also reorted, * indicates signi�cance level of 5% and ** indicates signi�cance level of 1%.

the sample period respectively. However the value of skewness and kurtosis doesn�t di¤er

much, although the developed markets have negative skewness and the emerging markets

have positive skewness. China, Hong Kong, New Zealand and Singapore have the highest

kurtosis and three of them are developed markets. The Jarque-Bera Normality Test rejects

the normal distribution of return in all markets.

Table 3: Correlation Test for Index Returns

Markets Correlation with Return on
Australia China Hong Kong Japan New Zealand

Australia 1 0:0504 0:464 0:363 0:476

China 0:0504 1 0:0675 0:0431 0:0400

Hong Kong 0:464 0:0675 1 0:349 0:281

Japan 0:363 0:0431 0:349 1 0:187

New Zealand 0:476 0:0400 0:281 0:187 1
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Markets Correlation with Return on
Australia China Hong Kong Japan New Zealand

Philippines 0:239 0:0204� 0:285 0:123 0:206

Singapore 0:270 0:0222� 0:292 0:250 0:200

South Korea 0:414 0:0342 0:601 0:323 0:286

Taiwan 0:185 0:0466 0:235 0:192 0:150

Thailand 0:235 0:0427 0:342 0:169 0:171

Markets Correlation with Return on
Philippines Singapore South Korea Taiwan Thailand

Philippines 1 0:164 0:336 0:133 0:259

Singapore 0:164 1 0:312 0:217 0:245

South Korea 0:336 0:312 1 0:245 0:405

Taiwan 0:133 0:217 0:245 1 0:156

Thailand 0:259 0:245 0:405 0:156 1

Note: This table reports the correlation coe¢ cient among the 10 index return series from June 3,

1991 to December 31, 2005, i.e. T=3805 daily observations. The values with * are insigni�cant at

10%.

Table 3 reports the correlation coe¢ cients among these markets. From Table 3 it is

obvious that all of these markets are positively correlated and the coe¢ cients are signi�-

cant except for the coe¢ cients between China and Philippines, and China and Singapore.

Several features need to pay the attention. First it seems that there are higher correlations

among the developed markets compared to correlations among the emerging markets or

between the developed and the emerging markets. This indicates that the developed mar-

kets are more correlated than the emerging markets, maybe partly due to higher market

openness and more information sharing. Secondly, although the results are not reported

in the table,8 it is true that the correlations among di¤erent markets are increasing after

the 1997 Asian Financial Crisis compared to the period prior to the Crisis. It indicates

that the markets are becoming more integrated after the Crisis. Thirdly, it is obvious to

see from the table that China has a much lower correlation with all the other markets,

which implies that China is still a relatively isolated market.

8The result is available upon request.
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3.2 Empirical Results

The results of estimating the two-component volatility model using the volatile and per-

sistent component decomposition are presented in Table 4. First note that the parameters

for the two components satisfy the moment-existing constraints (22) and (23) for all the

markets. The estimate of the parameter for the lagged return �1 is positive for most

markets and it is signi�cant for Australia, Hong Kong, New Zealand, Philippines and Sin-

gapore. But for China, Japan and Thailand, �1 is negative although it is not signi�cant

for China and Thailand. This result shows that the lagged return has a mixed e¤ect on

current return. For most markets it has a positive impact, yet it is not signi�cant and is

even negative for some markets. Next turn to the volatility factor loadings. Most of the

parameter values of the volatile component �1 are positive (9 of 10 markets, except for

Thailand), but for most markets the coe¢ cient of the persistent component �2 is negative

(6 of 10 markets). More interestingly, we can see that all the values for �1 are signi�cant,

but none of the markets has signi�cant �2.

All of the parameter values for �1 and �1 are positive and signi�cant. In all markets

the value of �1 is larger than �1, indicating a signi�cant autocorrelation e¤ect in st process

and lagged st contributes more than lagged "t to current st. For qt process, like the case for

st, �2 is positive and signi�cant for all markets. However most values of �2 are negative,

and the values of �2 are much less than �2. From these numbers, it is obvious that both

st and qt have signi�cant serial correlations. Although compared to qt, st is also a¤ected

by "t�1 to a larger extent. Notice that for most markets (except for China, New Zealand

and Taiwan), the estimation result of the constant intercept ! in qt process is positive

and signi�cant, which re�ects that qt has persistent property. Most values of the Ljung-

Box portmanteau statistics for serial correlation in the standardized return innovationbzt = b"t= b�t, reported as Q10 and Q100 for 10 and 100 lags respectively, are not signi�cant.
It indicates that the model is doing well at capturing heteroskedasticity in return series.

Although the Jarque-Bera Normality Test statistics reject the null hypothesis that the

standardized errors are normally distributed, the values are much smaller compared to

those for the raw data presented in Table 2.

Back to the results for �1 and �2. It seems that these two components have opposite

e¤ects on return, both for the sign and signi�cance. To assess their empirical relevance of

including these two components in the return equation (9), I compute st from (11) and

qt from (12) and square them to obtain s2t and q
2
t , then plot returns against s

2
t and q

2
t
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Table 4: Two-Component Stochastic Volatility Model
Mean equation: rt = �0 + �1rt�1 + �1s

2
t�1 + �2q

2
t�1 + "t

Parameter Australia China Hong Kong Japan New Zealand
�0 0:0151

(0:041)
�1:61
(2:9)

0:289
(0:24)

�0:101
(0:057)

� 0:154
(0:13)

�1 0:0676��
(0:021)

�1:63� 10�3
(0:030)

0:0612��
(0:024)

�0:0280�
(0:017)

0:0995��
(0:034)

�1 0:378��
(0:10)

0:0237��
(5:2�10�3)

0:0454��
(0:0084)

0:171��
(0:072)

0:220��
(0:043)

�2 �0:0294
(0:089)

0:729
(1:3)

�0:179
(0:17)

0:0239
(0:033)

�0:360
(0:27)

Volatile component: st = �1"t�1 + �1st�1
Parameter Australia China Hong Kong Japan New Zealand

�1 0:158
(0:033)

�� 0:324��
(0:025)

0:160��
(0:019)

0:104��
(0:033)

0:442��
(0:067)

�1 0:914
(0:023)

�� 0:925��
(0:011)

0:963��
(0:0050)

0:961��
(0:018)

0:621��
(0:11)

Persistent component: qt = ! + �2"t�1 + �2qt�1
Parameter Australia China Hong Kong Japan New Zealand

! 0:0512
(0:010)

�� 0:0719
(0:056)

0:214��
(0:070)

0:0290��
(4:8�10�3)

0:174
(0:11)

�2 �0:0659��
(0:014)

0:0124
(0:023)

�0:0469��
(0:015)

�0:0385��
(7:8�10�3)

�0:0709
(0:040)

�2 0:923��
(0:015)

0:952��
(0:038)

0:814��
(0:062)

0:977��
(3:5�10�3)

0:745��
(0:16)

Q10 6:03 29:53�� 8:25 4:93 4:45
Q100 103:10 202:82�� 128:07� 88:41 133:01�

Normality
Test 307:03�� 5705:1�� 918:46�� 453:41�� 1447:9��

Note: Quasi maximum likelihood estimates (QMLE) estimates are reported for daily
percentage returns on the 10 market indices from June 3; 1991, to December 31; 2005, i.e.
T = 3; 805 return observations, with robust standard errors in parentheses. The values
of the Ljung-Box portmanteau statistics for up to 10th and 100th order serial dependence
in the standardized residuals b"t=b�t are reported, also for the Jarque-Bera Normality Test
results. � and �� denote signi�cance level at 10% and 5% respectively.
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Table 4: Two-Component Stochastic Volatility Model (Cont)
Mean equation: rt = �0 + �1rt�1 + �1s

2
t�1 + �2q

2
t�1 + "t

Parameter Philippines Singapore South Korea Taiwan Thailand
�0 0:0618

(0:055)
0:132
(0:072)

�0:183
(2:2)

0:119
(0:14)

�1:46
(1:37)

�1 0:182
(0:023)

�� 0:128
(0:021)

�� 0:0484
(0:030)

0:0113
(0:021)

�3:65� 10�3
(0:095)

�1 0:118
(0:028)

�� 0:0846��
(0:010)

0:0420��
(0:014)

0:0977��
(0:028)

�0:0485��
(0:021)

�2 �0:0621
(0:045)

�0:143
(0:096)

0:125
(1:1)

�0:0829
(0:061)

0:989
(0:87)

Volatile component: st = �1"t�1 + �1st�1
Parameter Philippines Singapore South Korea Taiwan Thailand

�1 0:350
(0:062)

�� 0:306��
(0:033)

0:180��
(0:048)

0:161��
(0:016)

0:228��
(0:039)

�1 0:787��
(0:043)

0:867��
(0:021)

0:948��
(0:016)

0:948��
(0:0082)

0:927��
(0:021)

Persistent component: qt = ! + �2"t�1 + �2qt�1
Parameter Philippines Singapore South Korea Taiwan Thailand

! 0:0122
(0:0047)

�� 2:61� 10�3��
(0:30�10�3)

0:150��
(0:059)

0:115
(0:072)

0:703�
(0:38)

�2 �9:22� 10�3�
(4:8�10�3)

�1:54� 10�3��
(0:28�10�3)

8:60� 10�3
(0:019)

�0:0714��
(0:016)

0:0423��
(0:018)

�2 0:988��
(0:0040)

0:997��
(0:39�10�3)

0:893��
(0:040)

0:912��
(0:057)

0:443
(0:30)

Q10 33:17�� 2:22 4:96 23:70�� 33:25��

Q100 129:38�� 93:35 108:50 114:33 135:75
Normality
Test 3451:8�� 912:57�� 818:77�� 375:54�� 691:83��

Note: Quasi maximum likelihood estimates (QMLE) estimates are reported for daily
percentage returns on the 10 market indices from June 3; 1991, to December 31; 2005, i.e.
T = 3; 805 return observations, with robust standard errors in parentheses. The values
of the Ljung-Box portmanteau statistics for up to 10th and 100th order serial dependence
in the standardized residuals b"t=b�t are reported, also for the Jarque-Bera Normality Test
results. � and �� denote signi�cance level at 10% and 5% respectively.
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respectively. The resulting scatter plots appear in Figure 1 and Figure 2.

Figure 1 � Figure 2 about here

From Figure 1, it seems that the relation between return rt and s2t is positive, especially

based on the best-�tting linear regression line minimizing the sum of squared errors (the

bold line). Although most points clustering around the origin, the positivity is obvious

if compared to Figure 2, which shows the relation between return rt and q2t . The �gures

for other markets are also drawn.9 For s2t , most of them give the similar results as for

Australia: positive relation between returns and s2t , yet for relation between returns and

q2t , the results are mixed, either slightly positive or slightly negative. Thus from the �gures,

s2t has a much stronger evidence of positive relation with return than q
2
t .

As mentioned earlier, most markets studied in this paper su¤ered from the 1997 Asian

Financial Crisis, which is a special event during the sample period. In order to check

consistency of the model estimation prior to and after the crisis, I divide the sample

period into two subperiods: one is prior the crisis and the other is after the crisis, and

then reestimate the model for both subperiods. The result is presented in Table 5 and

Table 6 as follows.

We can compare the estimates obtained from Table 5 and Table 6 for the two subperiods

with the estimates from Table 4 for the full sample. Similar to what we have got for the

full sample, the estimates for �1, �1, �2 and �2 satisfy the moment-existing conditions

(22) and (23) for all markets in both subperiods. All the estimates for �1 and �1 are

signi�cant for all markets in both subperiods, except �2 for Australia in subperiod 2.

This result is also consistent with the result for the full sample period. The estimates

for the lag return �1 is positive for most markets in both subperiods, and it is signi�cant

for Australia, Hong Kong, Philippines and Singapore in subperiod 1 and is signi�cant for

Australia, New Zealand, Philippines, Singapore, South Korea and Taiwan in subperiod 2.

This result is a little di¤erent compared to what is obtained for the full sample, which

re�ects the di¤erent impacts of lag return in these two subperiods. The interesting thing is

that in both subperiods, the estimates for �1 is positive and signi�cant for most markets,

except for Australia and Philippines in subperiod 1 and South Korea and Thailand in

subperiod 2. It indicates that for most markets, the impact of the volatile component

9These �gures are not presented in the paper in order to save space, they are available upon request.
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Table 5: Two-Component Stochastic Volatility Model - subperiod 1
Mean equation: rt = �0 + �1rt�1 + �1s

2
t�1 + �2q

2
t�1 + "t

Parameter Australia China Hong Kong Japan New Zealand
�0 �0:0869

(0:14)
�2:83
(2:4)

0:143
(0:18)

�0:125
(0:084)

0:384
(0:40)

�1 0:107��
(0:032)

�0:0937
(0:11)

0:0696�
(0:040)

�0:0279
(0:027)

0:0729
(0:053)

�1 3:42
(3:84)

0:0362��
(0:012)

0:142��
(0:071)

0:300��
(0:12)

0:441��
(0:13)

�2 0:119
(0:27)

0:467
(0:45)

�0:107
(0:14)

0:0199
(0:067)

�0:787
(0:76)

Volatile component: st = �1"t�1 + �1st�1
Parameter Australia China Hong Kong Japan New Zealand

�1 0:154�
(0:091)

0:742��
(0:11)

0:169��
(0:030)

0:116��
(0:017)

0:290��
(0:056)

�1 0:550��
(0:26)

0:465��
(0:055)

0:949��
(0:013)

0:939��
(0:011)

0:793��
(0:073)

Persistent component: qt = ! + �2"t�1 + �2qt�1
Parameter Australia China Hong Kong Japan New Zealand

! 0:0784��
(0:029)

0:837��
(0:37)

0:210��
(0:041)

0:0351��
(0:010)

0:243��
(0:070)

�2 �0:0346��
(0:014)

0:0807
(0:068)

�0:119��
(0:021)

�0:0415��
(0:012)

�0:0564
(0:038)

�2 0:891��
(0:040)

0:655��
(0:16)

0:816��
(0:034)

0:971��
(8:9�10�3)

0:665��
(0:087)

Q10 7:16 15:56 11:79 6:05 2:65
Q100 108:14 108:26 98:02 104:01 107:99�

Normality
Test 96:62�� 1631:5�� 460:41�� 202:30�� 656:16��

Note: Quasi maximum likelihood estimates (QMLE) estimates are reported for daily
percentage returns on the 10 market indices from June 3; 1991, to July 18; 1997, i.e. T =
1596 return observations, with robust standard errors in parentheses. The values of the
Ljung-Box portmanteau statistics for up to 10th and 100th order serial dependence in the
standardized residuals b"t=b�t are reported, also for the Jarque-Bera Normality Test results.
� and �� denote signi�cance level at 10% and 5% respectively.
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Table 5: Two-Component Stochastic Volatility Model - Subperiod 1 (Cont)
Mean equation: rt = �0 + �1rt�1 + �1s

2
t�1 + �2q

2
t�1 + "t

Parameter Philippines Singapore South Korea Taiwan Thailand
�0 0:693

(1:5)
0:0857
(0:24)

�1:46
(1:2)

0:0201
(0:12)

1:12
(1:3)

�1 0:235��
(0:040)

0:129
(0:036)

�� �0:107
(0:089)

�7:18� 10�3
(0:034)

2:25� 10�3
(0:046)

�1 0:179
(0:14)

0:191��
(0:067)

0:128��
(0:039)

0:133��
(0:037)

�0:0804��
(0:032)

�2 �0:660
(1:3)

�0:221
(0:44)

1:21
(0:88)

�0:0427
(0:070)

�0:684
(0:76)

Volatile component: st = �1"t�1 + �1st�1
Parameter Philippines Singapore South Korea Taiwan Thailand

�1 0:335
(0:050)

�� 0:311��
(0:042)

0:220��
(0:043)

0:164��
(0:018)

0:325��
(0:044)

�1 0:833��
(0:031)

0:878��
(0:031)

0:914��
(0:028)

0:947��
(0:0088)

0:836��
(0:034)

Persistent component: qt = ! + �2"t�1 + �2qt�1
Parameter Philippines Singapore South Korea Taiwan Thailand

! 0:0438
(0:093)

0:0852��
(0:049)

0:637��
(0:19)

0:297��
(0:092)

0:200��
(0:053)

�2 �0:0135
(0:023)

�0:0474
(0:045)

0:0480��
(0:021)

�0:117��
(0:021)

�0:0367
(0:029)

�2 0:958��
(0:088)

0:880��
(0:068)

0:442��
(0:16)

0:772��
(0:070)

0:843��
(0:041)

Q10 15:38 9:42 7:09 15:50 12:97
Q100 110:99 103:62 112:86 132:66� 98:61

Normality
Test 187:54�� 367:60�� 55:94�� 129:01�� 90:56��

Note: Quasi maximum likelihood estimates (QMLE) estimates are reported for daily
percentage returns on the 10 market indices from June 3; 1991, to July 18; 1997, i.e. T =
1; 596 return observations, with robust standard errors in parentheses. The values of the
Ljung-Box portmanteau statistics for up to 10th and 100th order serial dependence in the
standardized residuals b"t=b�t are reported, also for the Jarque-Bera Normality Test results.
� and �� denote signi�cance level at 10% and 5% respectively.
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Table 6: Two-Component Stochastic Volatility Model - subperiod 2
Mean equation: rt = �0 + �1rt�1 + �1s

2
t�1 + �2q

2
t�1 + "t

Parameter Australia China Hong Kong Japan New Zealand
�0 �0:0337

(0:032)
0:126
(0:26)

0:0132
(0:046)

0:0506
(0:090)

4:95� 10�3
(0:028)

�1 0:0504�
(0:028)

0:0595
(0:052)

0:0840��
(0:029)

�6:34� 10�3
(0:032)

0:122��
(0:030)

�1 0:465��
(0:15)

0:209��
(0:037)

0:0885��
(0:023)

0:151��
(0:052)

0:154��
(0:050)

�2 0:0700
(0:081)

�0:168
(0:17)

�0:0647��
(0:021)

�6:92� 10�3
(0:053)

0:0497
(0:081)

Volatile component: st = �1"t�1 + �1st�1
Parameter Australia China Hong Kong Japan New Zealand

�1 0:379��
(0:055)

0:447��
(0:089)

0:154��
(0:022)

0:116��
(0:033)

0:384��
(0:068)

�1 0:279
(0:25)

0:632��
(0:10)

0:975��
(3:9�10�3)

0:953��
(0:024)

0:656��
(0:090)

Persistent component: qt = ! + �2"t�1 + �2qt�1
Parameter Australia China Hong Kong Japan New Zealand

! 0:0276��
(7:0�10�3)

0:380��
(0:17)

0:0405��
(7:5�10�3)

1:55� 10�3��
(7:5�10�4)

1:80� 10�3��
(5:2�10�4)

�2 �0:0621��
(0:013)

�0:0947�
(0:054)

�0:0873��
(0:016)

�4:30� 10�3��
(1:5�10�3)

�0:0112��
(1:5�10�3)

�2 0:957��
(0:010)

0:692��
(0:14)

0:970��
(5:8�10�3)

0:998��
(9:2�10�3)

0:996��
(1:0�10�3)

Q10 7:70 24:02�� 11:79 9:98 10:25
Q100 86:84 111:33 98:02 92:49 99:87

Normality
Test 138:01�� 402:04�� 460:41�� 130:45�� 171:20��

Note: Quasi maximum likelihood estimates (QMLE) estimates are reported for daily
percentage returns on the 10 market indices from July 20; 1997, to December 31; 2005, i.e.
T = 2; 209 return observations, with robust standard errors in parentheses. The values
of the Ljung-Box portmanteau statistics for up to 10th and 100th order serial dependence
in the standardized residuals b"t=b�t are reported, also for the Jarque-Bera Normality Test
results. � and �� denote signi�cance level at 10% and 5% respectively.
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Table 6: Two-Component Stochastic Volatility Model - Subperiod 2 (Cont)
Mean equation: rt = �0 + �1rt�1 + �1s

2
t�1 + �2q

2
t�1 + "t

Parameter Philippines Singapore South Korea Taiwan Thailand
�0 �0:109

(0:068)
0:669��
(0:30)

0:112
(0:13)

0:416��
(0:19)

�1:78
(2:2)

�1 0:180��
(0:035)

0:113
(0:030)

�� 0:0653��
(0:030)

0:0494��
(0:024)

�0:0162
(0:14)

�1 0:130��
(0:038)

0:0712��
(0:011)

�0:0122
(0:013)

0:0957��
(0:033)

�1:33� 10�3
(0:026)

�2 0:0187
(0:038)

�0:598��
(0:29)

�0:0173
(0:049)

�0:226��
(0:11)

0:945
(1:1)

Volatile component: st = �1"t�1 + �1st�1
Parameter Philippines Singapore South Korea Taiwan Thailand

�1 0:408
(0:10)

�� 0:298��
(0:042)

0:209��
(0:031)

0:211��
(0:023)

0:344��
(0:056)

�1 0:706��
(0:084)

0:882��
(0:021)

0:948��
(0:011)

0:922��
(0:016)

0:865��
(0:089)

Persistent component: qt = ! + �2"t�1 + �2qt�1
Parameter Philippines Singapore South Korea Taiwan Thailand

! 0:0120
(3:6�10�3)

�� 0:0173��
(3:7�10�3)

0:111��
(0:026)

0:0276
(0:017)

0:346
(0:96)

�2 �0:0163��
(5:3�10�3)

�5:32� 10�3�
(1:8�10�3)

�0:0757��
(0:032)

�0:0195
(0:016)

0:0325
(0:027)

�2 0:990��
(2:7�10�3)

0:983��
(3:7�10�3)

0:933��
(0:016)

0:978��
(0:013)

0:752
(0:69)

Q10 20:32� 10:35 5:64 11:47 15:62
Q100 117:52 117:83 92:32 105:88 142:82��

Normality
Test 1777:7�� 436:15�� 144:34�� 126:18�� 122:53��

Note: Quasi maximum likelihood estimates (QMLE) estimates are reported for daily
percentage returns on the 10 market indices from July 20; 1997, to December 31; 2005, i.e.
T = 2; 209 return observations, with robust standard errors in parentheses. The values
of the Ljung-Box portmanteau statistics for up to 10th and 100th order serial dependence
in the standardized residuals b"t=b�t are reported, also for the Jarque-Bera Normality Test
results. � and �� denote signi�cance level at 10% and 5% respectively.
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of volatility s2t is positive in both subperiods. The estimates for �2 is not signi�cant

for all markets in subperiod 1. However it is signi�cant for Hong Kong, Singapore and

Taiwan in the second subperiod and all three are negative. It seems that q2t plays a more

important role after the crisis, although these three markets are not the ones that su¤ered

most from the crisis. As a whole, we can see that the estimation results for these two

subperiods look quite similar to what have obtained from the full sample, which provides

us evidence that the model is consistent for di¤erent subperiods. It also con�rms that the

volatile component of volatility s2t is a signi�cant pricing factor and positively covaries

with return.

The empirical results tell us that s2t is a signi�cant pricing factor for all markets and

covaries positively with return for most markets (except for Thailand), thus it represents

a risk premium e¤ect on return. In contrast, q2t covaries negatively with rt, but it is

not signi�cant for all markets. The intuition behind these results is as follows: since rt
has little serial correlation and on the other hand volatility has long-memory property,

as indicated in most empirical literature, it is not convinced to show that volatility is

a signi�cant pricing factor to return. However, by decomposing volatility into a volatile

component and a persistent component, as what has been done in this paper, we show that

the volatile component of volatility is a signi�cant pricing factor to return. The intuition

is that the volatile component �uctuates more frequently through time and �lters out the

long memory e¤ect and the persistent component keeps the persistence or long-memory

property. Thus q2t has no signi�cant impact on return since there is no long memory in

return. Also consider a rational investor, who knows that volatility includes a volatile and

a persistent component. If he observes the volatile component s2t is increased, then he

will require a higher return. Thus s2t positively covaries with rt. However in the long-run,

volatility will converge to its mean level. Hence a higher-than-mean q2t implies a decrease

in future volatility, which in turn decreases return as well, the result reverses if q2t is lower-

than-mean. Thus q2t negatively covaries with return. However the link is weak since rt has

no long memory. Of course in the real world, neither s2t nor q
2
t is observable. Nevertheless

the preceding argument still gives some intuition to explain the sign and signi�cance of �1
and �2.

Up to now the model appears to work consistently for di¤erent subperiods and be

good at capturing the relation between return and components of volatility. One may be

tempted to conclude that the volatile component has a signi�cant e¤ect on return. However

one may also argue that the signi�cance result is due to data-snooping and deceiving.
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Furthermore, as mentioned earlier, there are already a few multi-factor volatility models

in the literature. It is for the robust check of the model to compare its performance with

similar ones, i.e. the model suggested by Ding & Granger (1996). The following Monte

Carlo simulation evidence reveals the performance di¤erence for these two models.

For comparison, I �rst add the lag return and volatility components to the mean

equation in Ding & Granger�s (1996) model and perform the estimation.10 Then I �xed

parameter values at the point estimates and constructed a random sample of realiza-

tions with size equal to raw data for both models. The procedure is then replicated for

N = 10; 000 times. For each replication, the maximum, minimum and average values are

collected from the realized data and their di¤erences with the original sample maximum,

minimum and average values are calculated. Finally after these values for di¤erences are

calculated for all 10; 000 replications, their means and standard errors are collected for

both models. This simulation approach is similar to the one implemented by Andersen &

Lund (1997). Table 7 and Table 8 report the simulation results for the model introduced

in this paper and the Ding & Granger�s (1996) model respectively.

It can be seen from these two tables that for the di¤erence of maximum and minimum

values from the realized data and sample, the performance of these two models is similar.

Both models result in 8 signi�cant di¤erences in these two values, the size di¤ers for

di¤erent markets. In case of China, New Zealand and Singapore, our model produces a

smaller size both for the maximum and minimum di¤erences. But for the case of Australia,

Hong Kong, Japan, South Korea, Ding & Granger�s (1996) model does a better work with

a smaller size. However compare the size for mean di¤erences, our model performs better.

Although both models have signi�cant mean di¤erences for 4 markets, our model has

smaller size in most markets. Furthermore as mentioned earlier, Ding & Granger�s (1996)

model fails to reveal the relation between return and risk, yet this model can capture the

signi�cant and positive relation between return and volatile component for volatility, in

this sense, this model does a better job and add some new evidence to the literature for

the relation between return and risk.

Table 9 reports the correlation between st and qt, s2t and q
2
t . It is no surprise to see that

in most markets (except for South Korea and Thailand), st and qt are negatively correlated,

as revealed by (24), since for most markets �1 and �2 have di¤erent signs. Actually, in

some markets (Australia, China, New Zealand and Taiwan), the correlation coe¢ cient is

10The estimates for both volatility components are not sign�ciant for all markets in this case, which may
indicate that neither of them is good candidate for pricing factor for return.
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Table 7: Monte Carlo Simulation Results for Current Model
Market Max_di¤ Min_di¤ Average_di¤
Australia �2:583��

(0:714)
4:481��
(0:422)

7:537� 10�3
(0:0111)

China 40:76
(398)

�0:9412
(11:0)

0:05070
(0:537)

Hong Kong �9:084��
(3:48)

7:681��
(2:15)

0:02865
(0:0267)

Japan 0:5138
(2:86)

0:8249
(1:35)

�2:461� 10�3
(0:0180)

New Zealand �2:454
(3:78)

8:376��
(1:19)

0:01092
(0:0166)

Philippines �5:553
(5:98)

3:116�
(1:67)

0:05142�
(0:0280)

Singapore �1:025
(8:77)

0:02604
(3:84)

0:06086��
(0:0246)

South Korea �4:333��
(0:987)

7:819��
(0:685)

0:02540�
(0:0135)

Taiwan 5:294
(9:26)

0:2855
(3:09)

9:329� 10�3
(0:0316)

Thailand �1:416
(3:34)

�3:481
(8:63)

0:08951��
(0:0370)

Note: This table reports the Monte Carlo Simulation results for the two-component model
in this paper. The simulation is done for N = 10; 000 replications. The Max_di¤,
Min_di¤ and Average_di¤ present the di¤erence between the averaged maximum, min-
imum and mean values from these replications and the sample maximum, minimum and
mean values.

Table 8: Monte Carlo Simulation Results for Ding & Granger�s (1996) Model
Market Max_di¤ Min_di¤ Average_di¤
Australia �2:253��

(0:861)
4:034��
(0:682)

0:02848��
(0:0141)

China 75:14
(796)

�9:836
(23:5)

1:575
(15:5)

Hong Kong �8:165��
(3:14)

6:500��
(2:45)

0:06575��
(0:0333)

Japan �0:1356
(1:99)

0:04201
(1:79)

0:04489�
(0:0252)

New Zealand �4:985��
(1:15)

8:999��
(1:01)

0:01425
(0:0158)

Philippines �7:498��
(2:44)

1:324
(2:37)

0:02464
(0:0324)

Singapore �5:573��
(2:71)

2:650
(2:06)

0:05368�
(0:0313)

South Korea �0:3019
(3:94)

3:370
(3:79)

0:04895
(0:0453)

Taiwan �0:8202
(3:14)

2:767
(2:78)

0:05980
(0:0582)

Thailand �1:694
(3:55)

0:8020
(3:25)

0:02382
(0:0466)

Note: This table reports the Monte Carlo Simulation results for Ding & Granger�s (1996)
model. The simulation is done for N = 10; 000 replications. The Max_di¤, Min_di¤ and
Average_di¤ present the di¤erence between the averaged maximum, minimum and mean
values from these replications and the sample maximum, minimum and mean values.
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Table 9: Correlation between Estimated st and qt, s2t and q
2
t

Markets Corr(st; qt) Corr(s2t ; q2t )
Australia �0:998

(1:0�10�3)
0:604
(0:013)

China �0:999
(7:4�10�4)

0:196
(0:016)

Hong Kong �0:725
(0:011)

0:584
(0:013)

Japan �0:288
(0:016)

0:292
(0:016)

New Zealand �0:973
(3:7�10�3)

0:646
(0:012)

Philippines �0:254
(0:016)

0:214
(0:016)

Singapore �0:109
(0:016)

0:184
(0:016)

South Korea 0:941
(5:5�10�3)

�0:640
(0:012)

Taiwan �0:959
(4:6�10�3)

0:484
(0:014)

Thailand 0:571
(0:013)

0:125
(0:016)

Note: This table presents the correlation between estimated st and qt, s2t and q
2
t from (9)

to (12), daily returns for 10 markets from June 3; 1991 to December 31; 2005, i.e. T=3805
return observations are collected to perform the estimation. Standard errors are reported
in the parentheses.

close to �1, which means st and qt almost always move in opposite directions. It is not
straightforward to see the economic intuition behind the negative correlation between st
and qt. However since the volatility is a sum of s2t and q

2
t , it is more relevant see the

correlation between s2t and q
2
t . As we see from Table 9, the correlation between s2t and q

2
t

are almost all positive (except for South Korea) and ranges approximately from 0:15 to

0:65. It indicates that both contribute to the movement of volatility in the same direction.

However their contribution may be di¤erent in size, which is explored in the following

paragraphs.

As is illustrated precedingly, s2t and q
2
t may contribute di¤erently to volatility, and q

2
t

should contribute more to �2t as compared to s
2
t . Table 10 presents the results for averaged

volatile and persistent component of volatility s2; q2 and their sum �2. These are obtained

by �rst calculating s2t ; q
2
t and �

2
t according to (9) � (12) recursively and then taking the

average, i.e.:

s2 =
1

T

TX
t=1

s2t (26)
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Table 10: Estimated Results for Average s2, q2 and �2

Markets s2 q2 �2 1
T

PT
t=1

s2t
�2t

1
T

PT
t=1

q2t
�2t

Australia 0:0934
(0:23)

0:477
(0:20)

0:570
(0:39)

0:124 0:876

China 3:78
(11:9)

2:65
(1:16)

6:43
(12:2)

0:309 0:691

Hong Kong 1:21
(3:3)

1:38
(0:32)

2:59
(3:5)

0:250 0:750

Japan 0:743
(1:0)

1:27
(0:17)

2:01
(1:1)

0:256 0:744

New Zealand 0:227
(1:1)

0:479
(0:15)

0:705
(1:2)

0:186 0:813

Philippines 0:849
(2:5)

1:39
(0:77)

2:24
(2:8)

0:216 0:784

Singapore 0:852
(3:3)

0:819
(0:18)

1:67
(3:4)

0:250 0:750

South Korea 2:25
(6:9)

1:95
(0:12)

4:20
(6:8)

0:278 0:722

Taiwan 0:796
(1:9)

1:88
(0:86)

2:68
(2:4)

0:197 0:803

Thailand 1:24
(2:6)

1:59
(0:20)

2:83
(2:6)

0:272 0:728

Mean 1:02 1:22 2:24 0:236 0:764

Note: This table reports average of the estimated volatile and persistent component of
variance, s2 = 1

T

PT
t=1 s

2
t and q2 =

1
T

PT
t=1 q

2
t , and average of the estimated variance

�2 = 1
T

PT
t=1 �

2
t . The mean contribution of s

2
t and q

2
t to �

2
t is also reported, the numbers

in the parentheses are standard errors.

q2 =
1

T

TX
t=1

q2t (27)

�2 =
1

T

TX
t=1

�2t (28)

It is clear from Table 10 that s2t and q
2
t have di¤erent contributions to volatility �

2
t .

The highest value of averaged ratio of s2t to �
2
t is 30:9% for China and the lowest value

is 12:4% for Australia. The mean of this averaged ratio for all 10 markets is 23:6% and

correspondingly the mean of the averaged ratio q2t to �
2
t is 76:4%. This means although

s2t has a signi�cant impact on return, roughly speaking, it only contributes about 1=4 to

the total volatility and q2t contributes about 3=4 to the total volatility. Thus the majority

part of volatility is coming from q2t , which is consistent with what the model, i.e. (5) and

(6) suggests. Another feature from Table 10 is that volatility in the emerging markets has

more impact from s2t compared to the developed markets. The averaged ratio of
s2t
�2t
ranges
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from 12:4% to 25:6% for the developed markets and ranges from 19:7% to 30:9% for the

emerging markets.

Since q2t seems to be more important to volatility, it makes sense to use models including

persistent or long memory property to describe dynamic of volatility. However in order

to capture the dependence of return on volatility by not introducing the long memory (as

implied by the empirical results in this paper), one should choose a model carefully to

re�ect both e¤ects.

Figure 3 � Figure 4 present the estimated process for st and qt for Australia. It is

obvious that st �uctuates around zero and is more volatile than qt. On the contrary,

although the initial value for qt is negative, it quickly jumps above zero and keeps positive

for the process, which moves more smoothly than st. Also it is interesting to see st and qt
move in opposite directions at some days.

Figure 3 � Figure 4 about here

Figure 5 � Figure 14 present the estimated process for s2t and q
2
t for all markets. To

make these �gures comparable, di¤erent scales for s2t and q
2
t are preserved in the �gures.

Figure 5 � Figure 14 about here

From these �gures it is obvious that s2t and q
2
t roughly move in the same directions.

For example, between observations 1600 to 2000, which corresponds to the Asian Financial

Crisis and recovery period (1997 � 1999), s2t in most markets becomes larger and reaches
its peak. Correspondingly q2t also moves up and reaches peak in the same period (especially

for South Korea and Thailand, which are most heavily hit by the Crisis). However s2t is

much more volatile than q2t for all markets. For example, in Australia market, s
2
t �uctuates

in the range from 0 to 14 and q2t moves much narrowly between 0 and 3. Although s
2
t is

truncated, it is also obvious that those markets which are mostly su¤ered from the 1997

Asian Financial Crisis have much higher maximum value of s2t , although the di¤erence of

the maximum values for q2t is not as large as compared to those markets which are not

su¤ered from the Crisis.11 The case for Singapore is a little di¤erent from other markets,

11The extreme values of s2t during the Crisis for South Korea and Thailand are 61 and 53 respectively,
compared to those of 14, 6 and 41 for Australia, Japan and New Zealand.
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it has relatively smaller q2t at the beginning of the period, then it increases and reaches its

peak during the crisis, after that it decreases but remains a higher level compared to the

period prior to the crisis. Thus the crisis seems to have a persistent impact on the market

volatility in the long run.

Also it is true that emerging markets have much higher maximum values of s2t compared

to developed markets. Again s2t absorbs the volatile part of volatility and q
2
t keeps the

persistence property. Interestingly, China has much higher s2t and q
2
t in the �rst half

of the period, which means the Chinese stock market has much higher volatility in its

beginning period. As a contrast, Japan has a higher s2t and q
2
t in early 1990s, 1997 and

2000, which corresponds to the burst of asset bubble, the Asian Financial Crisis and the

burst of dotcom bubble respectively.

Figure 15 � Figure 16 about here

Figure 15 and Figure 16 plot q2t against s
2
t for Australia and Hong Kong. It is obvious

that s2t and q
2
t move in the same direction for most time for both markets, i.e. s

2
t and

q2t are positively correlated, although for small values of s
2
t , q

2
t will move in the opposite

direction in the case of Australia. Since �2t is the sum of s
2
t and q

2
t , the opposite movement

between s2t and q
2
t causes �

2
t to be stable when they have small values. However when

they become relatively large, they will move in the same direction and both have e¤ects

with the same direction on �2t .

For other markets, the pattern is similar except for South Korea, which is similar to

Figure 15, but in a opposite direction.

For a summary, these �gures show us the time series movements of s2t and q
2
t , they

are positively correlated, yet s2t is more volatile than q
2
t . During the 1997 Asian Financial

Crisis, both s2t and q
2
t are increased, but s

2
t increases to a larger extent than q

2
t does.

4 Conclusions

This paper explores the relation between stock return and volatility by decomposing

volatility into two components: the volatile component and the persistent component.

Such decomposition can be expressed by the return dynamic that has both time-varying

drift and volatility terms. The volatile component of volatility follows a quicker mean-

reverting process with mean zero and the persistent component of volatility follows a slower
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mean-reverting process with positive constant mean. This two-component decomposition

of volatility and the return process can be approximated by discrete-time model, which is

consistent with the continuous-time setup if the time interval goes to in�nitely small.

The data analyzed in the paper includes 10 Asia-Paci�c stock markets. The empir-

ical results imply that the volatile component has a positive and signi�cant relation to

return, i.e. a risk premium e¤ect to return, but the persistent component has negative yet

insigni�cant relation. The persistent component has higher persistence than the volatile

component, which re�ects the property of long-memory in volatility. The persistent com-

ponent contributes about 3=4 to volatility and the volatile component contributes only

about 1=4. The estimated results also show that the �rst moment of these two compo-

nents are negatively correlated, but dynamics of quadratic form of these two components

move in the same direction. Both components contribute to the increased volatility dur-

ing the 1997 Asia Financial Crisis, but the volatile component contributes more than the

persistent component. The results are consistent for subperiods prior to and after the cri-

sis. Monte Carlo simulation results show that this model performs as well as some other

multi-factor model in describing return generating process and does better in capturing

relation between return and risk.

This paper provides a way to analyze volatility by decomposing it into two di¤erent

components. The results presented are mainly from empirical evidence. As suggested

in Ding & Granger (1996), it is also possible to extend the model to more general case

including more than two components for volatility dynamic, although it is not clear how

to explain the additional components in economic terms. Another possible extension is to

explore the relation between these volatility components and other state variables which

have impact on return dynamic. Also it is possible to apply the model to individual stocks

in addition to market indices. All topics are left for future research.

Appendices

A.1 Derive of Di¤usion Approximation

In this Appendix, I show that the continuous-time limit of the GARCH setup (9) � (12)
is the stochastic volatility model de�ned by (1) � (4) subject to a covariance constraint.

The method used in this Appendix is inspired by Nelson (1990). First since rt = pt�pt�1,
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we can rewrite discrete-time model equations (9) � (12) as follows12:

pt = pt�1 + (�0 + �1s
2
t+1 + �2q

2
t+1) + "t (A.1)

st+1 = �1"t + �1st (A.2)

qt+1 = ! + �2"t + �2qt (A.3)

"t � N(0; �2t ); �2t = s2t + q2t

Now we consider the properties of the discrete stochastic di¤erence equation system

(A.1) � (A.3) as we partition time t into k increments of length h such that t = kh. We

allow the parameter vector (�1; �1; !; �2; �2) to depend on h and make both the drift term

in equation (A.1) and the variance of "t proportional to h:

pkh = p(k�1)h + (�0 + �1s
2
kh + �2q

2
kh)h+

q
s2kh + q

2
khzkh (A.4)

s(k+1)h = �1h"kh + �1hskh (A.5)

q(k+1)h = !h + �2h"kh + �2hqkh (A.6)

"kh =
q
s2kh + q

2
khzkh (A.7)

where zkh � N(0; h). We can convert the discrete-time process (pkh; skh; qkh) in (A.4)
� (A.7) into a continuous-time process by de�ning:

pkh = pt; skh = st; qkh = qt for kh 6 t < (k + 1)h (A.8)

The purpose of allowing the parameters (�1; �1; !; �2; �2) to depend on h is to make

it possible to �nd out which sequence of parameters leading the discrete-time process

12Equation (A.1 ) is a little di¤erent from (9). The lag returns are not included in the drift to simplify
the calculation, however, it is possible to include other explanatory variables into the mean equation (A.1).
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converges in distribution to an Ito process as h goes to zero. For more details please refer

to Nelson (1990).

The �rst moment of equations (A.4) � (A.7) per unit of time is calculated as follows:

E[h�1(pkh � p(k�1)h)jMkh] = �0 + �1s
2
kh + �2q

2
kh (A.9)

E[h�1(s(k+1)h � skh)jMkh] = h
�1(�1h � 1)skh (A.10)

E[h�1(q(k+1)h � qkh)jMkh] = h
�1!h + h

�1(�2h � 1)qkh (A.11)

Where Mkh is the �-algebra generated by the process (pkh; skh; qkh; kh).

As required by the convergence criteria of Assumption 5 in Nelson (1990), the limits:

lim
h!0

h�1(1� �1h) = �s (A.12)

lim
h!0

h�1!h = ! (A.13)

lim
h!0

h�1(1� �2h) = � (A.14)

must exist and be �nite. We assume that these conditions are satis�ed.

The second moment per unit of time is given by

E[h�1(pkh � p(k�1)h)2jMkh] = h(�0 + �1s
2
kh + �2q

2
kh)

2 + (s2kh + q
2
kh) (A.15)

E[h�1(s(k+1)h � skh)2jMkh] = h
�1(1� �1h)2s2kh + �21h(s2kh + q2kh) (A.16)

E[h�1(q(k+1)h � qkh)2jMkh] = h�1!2h + h
�1(1� �2h)2q2kh

+�22h(s
2
kh + q

2
kh) + 2h

�1!h(�2h � 1) (A.17)
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E[h�1(pkh � p(k�1)h)(s(k+1)h � skh)jMkh]

= sk(�1h � 1)(�0 + �1s2kh + �2q2kh) + �1h(s2kh + q2kh) (A.18)

E[h�1(pkh � p(k�1)h)(q(k+1)h � qkh)jMkh]

= !h(�0 + �1s
2
kh + �2q

2
kh) + (�2h � 1)(�0 + �1s2kh + �2q2kh)qkh

+�2h(s
2
kh + q

2
kh) (A.19)

E[h�1(s(k+1)h � skh)(q(k+1)h � qkh)jMkh]

= h�1!h(�1h � 1)sk + h�1(�1h � 1)(�2h � 1)

skhqkh + �1h�2h(s
2
kh + q

2
kh) (A.20)

Now applying the limit conditions (A.12) � (A.14) to these moments (A.15) � (A.20)
we can get

E[h�1(pkh � p(k�1)h)2jMkh] = (s
2
kh + q

2
kh) +O(h) (A.21)

E[h�1(s(k+1)h � skh)2jMkh] = �
2
1h(s

2
kh + q

2
kh) +O(h) (A.22)

E[h�1(q(k+1)h � qkh)2jMkh] = �
2
2h(s

2
kh + q

2
kh) +O(h) (A.23)

E[h�1(pkh � p(k�1)h)(s(k+1)h � skh)jMkh] = �1h(s
2
kh + q

2
kh) +O(h) (A.24)

E[h�1(pkh � p(k�1)h)(q(k+1)h � qkh)jMkh] = �2h(s
2
kh + q

2
kh) +O(h) (A.25)

E[h�1(s(k+1)h � skh)(q(k+1)h � qkh)jMkh] = �1h�2h(s
2
kh + q

2
kh) +O(h) (A.26)
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Where O(h) represents for any terms that are of the same asymptotic order as h. As

h ! 0 all the second moments exist and are �nite. It is also possible to show that the

fourth moments exist and converge to zero, so with � = 2, Assumption 5 in Nelson (1990)

is satis�ed. If we also assume that limits

lim
h!0

�21h = �
2
1 (A.27)

lim
h!0

�22h = �
2
2 (A.28)

lim
h!0

�1h(s
2
kh + q

2
kh) = �1(s

2 + q2)�12 (A.29)

lim
h!0

�2h(s
2
kh + q

2
kh) = �2(s

2 + q2)�13 (A.30)

lim
h!0

�1h�2h = �1�2�23 (A.31)

exist and are �nite, then we can de�ne the drift and variance matrix as follows:

b(p; s; q) =

264 �0 + �1s
2 + �2q

2

��s

! � �q

375 (A.32)

a(p; s; q) =

264 s2 + q2 �1(s
2 + q2)�12 �2(s

2 + q2)�13

�1(s
2 + q2)�12 �21(s

2 + q2) �1�2�23

�2(s
2 + q2)�13 �1�2�23 �22(s

2 + q2)

375 (A.33)

Finally, let �q = �; �qq = !; �s = �1; �
q = �2 and �2t = s2t + q

2
t , we can write the

following stochastic di¤erential process as a limit di¤usion as h! 0:

dpt = (�0 + �1s
2
t + �2q

2
t )dt+ �tdW1t (A.34)

dst = ��sstdt+ �s�tdW2t (A.35)

dqt = �
q(q � qt)dt+ �q�tdW3t (A.36)
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This is exactly the di¤usion process equation (1) � (4) if we let the drift term �t =

�0 + �1s
2
t + �2q

2
t .

A.2 Derivation of First and Second moments of Volatile and Persistent
Components under Stationary Condition

In this appendix, I derive the �rst and second moments for st and qt under stationary

condition.

From (11),

st = �1"t�1 + �1st�1

and under the stationary condition, E(st) = E(st�1) = �s, we obtain

�s = �1E["t�1] + �1�s

or

E[st] = �s =
�1

1� �1
E["t�1] = 0 (A.37)

since E["t�1] = 0 by assumption.

Similarly, under the stationary condition, E(qt) = E(qt�1) = �q, from (12),

qt = ! + �2"t�1 + �2qt�1

we obtain

�q = ! + �2E["t�1] + �2�q

or

E[qt] = �q =
! + �2E["t�1]

1� �2
=

!

1� �2
(A.38)

We can apply the similar approach to calculate the second moments for st and qt, as

long as the stationary condition holds. Take the square of (11) and (12):

s2t = �
2
1"
2
t�1 + �

2
1s
2
t�1 + 2�1�1"t�1st�1
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and

q2t = !
2 + �22"

2
t�1 + �

2
2q
2
t�1 + 2!�2"t�1 + 2!�2qt�1 + 2�2�2"t�1qt�1

Take the expectation on both sides and under the stationary condition E[s2t ] = E[s
2
t�1] =

�2s and E[q
2
t ] = E[q

2
t�1] = �

2
q , we obtain that

�2s = �
2
1(�

2
s + �

2
q) + �

2
1�
2
s

or

�2s =
�21

1� �21 � �21
�2q (A.39)

and

�2q = !
2 + �22(�

2
s + �

2
q) + �

2
2�
2
q + 2!�2�q

substitute (A.38) and (A.39), and solve for �2q , we obtain

�2q =
1

1� �22(1��
2
1)

(1��22)(1��21��
2
1)

�2q (A.40)

since �2t = s
2
t + q

2
t , from (A.39) and (A.40), we obtain (A.41)

E[�2t ] = �
2 =

�2q

1� �21
1��21

� �22
1��22

(A.41)

To calculate the covariance between st and qt, notice that by de�nition

cov(st; qt) = E[(st � �s)(qt � �q)]

This indicates that

cov(st; qt) = E[stqt]

= E[(�1"t�1 + �1st�1)(! + �2"t�1 + �2qt�1)]

= �1�1E(�
2
t ) + �1�2E[st�1qt�1]
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After rearranging the equation, we obtain (24)

cov(st; qt) =
�1�2

1� �1�2
�2 =

�1�2
1� �1�2

�2q

1� �21
1��21

� �22
1��22

(A.42)

A.3 Estimation by Quasi-Maximum Likelihood Method

In this Appendix I present the estimation of parameters by Quasi-Maximum Likelihood

Method. The application of maximum log likelihood method to GARCH models has been

widely discussed in many papers. As a brief introduction, please refer to Chapter 12 in

Campbell, Lo & Mackinlay (1997).

Consider the following equations:

rt+1 = (�0 + �1rt + �1s
2
t+1 + �2q

2
t+1) + "t+1 (A.43)

st+1 = �1"t + �1st (A.44)

qt+1 = ! + �2"t + �2qt (A.45)

"t+1 = �t+1zt+1; �t+1 =
q
s2t+1 + q

2
t+1; zt+1 � N(0; 1)

First de�ne the parameter vector � = (�0; �1; �1; �1; �1; �1; !; �2; �2)
0
: By de�nition,

when � contains true parameters, zt+1 is IID with density function g(zt+1(�)) which we

assume to be standard normal:

g(zt+1(�)) =
1p
2�
e�

zt+1(�)
2

2 (A.46)

The conditional log likelihood of "t+1 is therefore:
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lt("t+1;�) = log(g("t+1=�t+1(�)))� log(�2t+1(�))=2

= � log(
p
2�)� "2t+1=2�2t+1(�)

� log(�2t+1(�))=2

= � log(
p
2�)� 1

2
log(s2t+1("t+1;�) + q

2
t+1("t+1;�))

�"2t+1=(2(s2t+1("t+1;�) + q2t+1("t+1;�))) (A.47)

and "t+1 = rt+1 � (�0 + �1rt + �1s2t+1 + �2q2t+1)

The log likelihood of the whole data set "1; :::; "T is

L("1; :::; "T ) =
TX
t=1

lt("t+1;�) (A.48)

The maximum likelihood estimator is the choice of parameters � that maximizes

(A.48).

However the speci�cation of the log-likelihood function is depending on our assumption

for the error term. If the standardized error term zt is actually not normally distributed,

then the model is misspeci�ed. Fortunately in this case the preceding Maximum Likelihood

Method is still available provided that the error terms are not serially correlated and the

estimation result is consistent, although it is not the most e¢ cient one (see White (1982)

for more details). In this case, the variance of the estimated parameters should be obtained

by so-called Sandwich Method or Quasi-Maximum Likelihood Method.

Let A(�) to be the Hessian matrix of the parameters

A(�) = E[
@2L("t;�)

@�i@�j
] (A.49)

and B(�) to be the outer-product of parameters:

B(�) = E[
@L("t;�)

@�i

@L("t;�)

@�j
] (A.50)

where � is the parameter vector.

Then C(�), which is de�ned as follows:
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C(�) = A(�)�1B(�)A(�)�1 (A.51)

is the robust estimated variance of parameters and we have

p
T (�̂ � �) � N(0; C(�)) (A.52)

and A(�) and B(�) can be estimated by their sample counterparts At(�) and Bt(�):

bA(�) = 1

T

TX
t=1

@2L("t;�)

@�i@�j
(A.53)

bB(�) = 1

T

TX
t=1

@L("t;�)

@�i

@L("t;�)

@�j
(A.54)
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Figure 1: Scatter plot of rt vs s2t from equation (9) without in-mean terms for Australia
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Figure 2: Scatter plot of rt vs q2t from equation (9) without in-mean terms for Australia
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Figure 3: st process for Australia, 1991=6=3 � 2005=12=31
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Figure 4: qt process for Australia, 1991=6=3 � 2005=12=31
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Figure 5: s2t and q
2
t processes for Autralia, 1991=6=3� 2005=12=31
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Figure 6: s2t and q
2
t processes for China, 1991=6=3� 2005=12=31
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Figure 7: s2t and q
2
t processes for Hong Kong, 1991=6=3� 2005=12=31
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Figure 8: s2t and q
2
t processes for Japan, 1991=6=3� 2005=12=31
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Figure 9: s2t and q
2
t processes for New Zealand, 1991=6=3� 2005=12=31
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Figure 10: s2t and q
2
t processes for Philippines, 1991=6=3� 2005=12=31
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Figure 11: s2t and q
2
t processes for Singapore, 1991=6=3� 2005=12=31
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Figure 12: s2t and q
2
t processes for South Korea, 1991=6=3� 2005=12=31
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Figure 13: s2t and q
2
t processes for Taiwan, 1991=6=3� 2005=12=31
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Figure 14: s2t and q
2
t processes for Thailand, 1991=6=3� 2005=12=31
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Figure 15: Scatter plot of q2t vs s
2
t for Autralia, 1991=6=3� 2005=12=31
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Figure 16: Scatter plot of q2t vs s
2
t for Hong Kong, 1991=6=3 � 2005=12=31

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

s t
2

q t
2

50



Research Papers 
2008  
 

2008-01 John A. Carlson, Christian M. Dahl, and Carol L. Osler: Short-run 
Exchange-Rate Dynamics: Theory and Evidence 

2008-02 Peter Reinhard Hansen: Reduced-Rank Regression: A Useful 
Determinant Identity 

2008-03 Søren Johansen, Katarina Juselius, Roman Frydman and Michael 
Goldberg: Testing hypotheses in an I(2) model with applications to 
the persistent long swings in the Dmk/$ rate 

2008-04 Olaf Posch: Explaining output volatility: The case of taxation 

2008-05 Annastiina Silvennoinen and Timo Teräsvirta: Modelling Multivariate 
Autoregressive Conditional Heteroskedasticity with the Double 
Smooth Transition Conditional Correlation GARCH Model 

2008-06 Annastiina Silvennoinen and Timo Teräsvirta: Multivariate GARCH 
models.  To appear in T. G. Andersen, R. A. Davis, J.-P. Kreiss and T. 
Mikosch, eds. Handbook of Financial Time Series. New York: 
Springer. 

2008-07 Changli He, Annastiina Silvennoinen and Timo Teräsvirta: 
Parameterizing unconditional skewness in models for financial time 
series 

2008-08 Cristina Amado and Timo Teräsvirta: Modelling Conditional and 
Unconditional Heteroskedasticity with Smoothly Time-Varying 
Structure 

2008-09 Søren Johansen and Bent Nielsen: An analysis of the indicator 
saturation estimator as a robust regression estimator 

2008-10 Peter Christoffersen, Kris Jacobs, Christian Dorion and Yintian Wang: 
Volatility Components, Affine Restrictions and Non-Normal 
Innovations 

2008-11 Peter Christoffersen, Kris Jacobs, Chayawat Ornthanalai and Yintian 
Wang: Option Valuation with Long-run and Short-run Volatility 
Components 

2008-12 Tom Engsted and Stig V. Møller: An iterated GMM procedure for 
estimating the Campbell-Cochrane habit formation model, with an 
application to Danish stock and bond returns 

2008-13 Lars Stentoft: Option Pricing using Realized Volatility 

2008-14 Jie Zhu: Pricing Volatility of Stock Returns with Volatile and 
Persistent Components 

 


