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Abstract

Recent work by Engle and Lee (1999) shows that allowing for long-run and short-run com-
ponents greatly enhances a GARCH model’s ability fit daily equity return dynamics. Using
the risk-neutralization in Duan (1995), we assess the option valuation performance of the
Engle-Lee model and compare it to the standard one-component GARCH(1,1) model. We
also compare these non-affine GARCH models to one- and two- component models from the
class of affine GARCHmodels developed in Heston and Nandi (2000). Using the option pric-
ing methodology in Duan (1999), we then compare the four conditionally normal GARCH
models to four conditionally non-normal versions. As in Hsieh and Ritchken (2005), we find
that non-affine models dominate affine models both in terms of fitting return and in terms
of option valuation. For the affine models we find strong evidence in favor of the component
structure for both returns and options, but for the non-affine models the evidence is much
less strong in option valuation. The evidence in favor of the non-normal models is strong
when fitting daily returns, but the non-normal models do not provide much improvement
when valuing options.
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1 Introduction

Following the path-breaking work of Engle (1982) and Bollerslev (1986), GARCH models have
become an ubiquitous toolkit in empirical finance. In this paper, we assess the ability of eight
different GARCH models to fit daily return dynamics and their ability to match market prices
of options in a sample of close to 22,000 contracts. The eight models we investigate differ along
three dimensions:
First, we consider component models versus GARCH(1,1) models. Engle and Lee (1999)

were the first to develop a component GARCH model which they built from the non-affine
NGARCH(1,1) model analyzed in Engle and Ng (1993) and Duan (1995). Component GARCH
models can be viewed as a convenient way of incorporating long-memory-like features into a short-
memory model, at least for the horizons relevant for option valuation. Bollerslev and Mikkelsen
(1999) find support for a long memory GARCH option valuation model applied to long maturity
options. We consider options with up to one-year maturity where the component models are
likely to provide good approximations to long-memory processes. Maheu (2002) presents Monte-
Carlo evidence that a component model similar to the ones in this paper can capture long-range
volatility dynamics. Adrian and Rosenberg (2005) demonstrate the relevance of the component
volatility structure for cross-sectional asset pricing.
Second, we consider non-affine versus affine GARCH models. Most GARCH models are

of a non-affine form but Heston and Nandi (2000) developed a class of affine GARCH models.
From the affine GARCH(1,1) specification, Christoffersen, Jacobs, Ornthanalai and Wang (2007)
develop a non-affine GARCH component model which we also consider in this paper. The affine
GARCH(1,1) model has been compared to the non-affine NGARCH(1,1) model in Hsieh and
Ritchken (2005) who found strong support for the non-affine specification.
Third, we consider conditionally normal versus conditionally non-normal models. In partic-

ular, we modify the four conditionally normal GARCH models above by modeling the return
shock using a Generalized Error Distribution (GED). The GED distribution is suggested by
Duan (1999) for its tractability in asset return modeling, and it conveniently nests the normal
distribution. A skewed version of the GED distribution was developed in Theodossiou (2001)
and has been used for option valuation in Lehnert (2003). Lehnert (2003) finds support for a
non-affine EGARCH model with skewed GED shocks when comparing its option pricing per-
formance with the affine GARCH(1,1) model in Heston and Nandi (2000), which has normal
innovations. However, his analysis does not show if the improvement comes from the non-affine
variance dynamic or from the non-normal shocks or from both features.
We estimate these eight models using MLE on S&P500 returns. This empirical comparison

allows us to compare the importance of three types of modeling assumptions: first, the importance
of the component structure versus the simpler and more parsimonious GARCH(1,1) structure;
second, the restrictions of the affine structure; and third, the importance of non-normal return
innovations. We find that the likelihood criterion based on return data strongly favors the
component models in all cases, as well as the non-normal return innovations. While the affine
models are not nested in the non-affine models, comparisons of the likelihoods suggest that the
non-affine models fit the return data the best.
Using the MLE estimates, we characterize key properties of each model: multi-day variance

forecasting functions, variance impulse response functions, conditional variance of variance paths
and conditional correlations between returns and variance. We find important differences between
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affine and non-affine models, suggesting that the non-affine structure provides more flexibility in a
parsimonious fashion. We also find substantial differences between GARCH(1,1) and component
models and between models with normal and non-normal innovations.
When we use the estimated model parameters for option valuation, we again find strong

support for the non-affine variance specifications, but much less evident support for the non-
normal return innovations. The component structure yields great improvements in the affine
class of models but not in the non-affine class.
The remainder of the paper is structured as follows. In Section 2, we develop the eight

GARCH-based asset models that we will investigate empirically in the paper. In Section 3, we
report the model estimates from daily returns and we depict some key dynamic properties of the
models. In Section 4, we provide the theoretical mappings from physical to risk-neutral dynamics
by applying the general approach in Duan (1999). Section 5 presents the empirical results from
using the GARCH models in option valuation, as well as an economic analysis of the option
pricing errors. Section 6 concludes and suggests promising avenues for future research.

2 Asset Return Models

In this section we introduce the eight GARCH models to be used for option valuation. The eight
models cover all the possibilities in our three-way comparison: GARCH(1,1) versus component
GARCH, affine versus non-affine GARCH, and normal versus GED distributed return shocks.

2.1 The Affine GARCH(1,1) Model with Normal Shocks

We first introduce the affine normal GARCH(1,1) model from Heston and Nandi (2000). The
return dynamics on the underlying asset are

Rt+1 ≡ ln
St+1
St

= r + λht+1 +
p
ht+1zt+1 (2.1)

ht+1 = w + b0ht + a
³
zt − c

p
ht
´2

where St+1 denotes the underlying asset price on the close of day t + 1, r denotes the risk free
rate, λ the price of risk, zt the i.i.d. N(0, 1) return shock, and ht+1 the daily variance on day
t+1 which is known at the end of day t. We will refer to this model as AGARCH(1,1)-N below.
Note that c renders the variance response asymmetric to positive versus negative innovations

in returns. If c is zero the variance dynamic is symmetric in zt and the conditional distribution
of returns will be largely symmetric at all horizons because the distribution of zt is symmetric
as well. In that case, the only source of asymmetry is the conditional mean return

Et [Rt+1] = r + λht+1 (2.2)

and this effect is typically very small in magnitude.
We next derive some key features of the model that are particularly important for its perfor-

mance in option valuation. The model’s unconditional variance can be derived to be

E [ht+1] = σ2 =
w + a

1− ac2 − b0
(2.3)
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If we use this expression to substitute for w and furthermore define variance persistence as
b = b0 + ac2, then we can write

ht+1 = σ2 + b
¡
ht − σ2

¢
+ a

³
z2t − 1− 2c

p
htzt

´
(2.4)

The options we analyze below have maturities of between a week and a year. It is therefore
important to gauge the model’s properties at multi-day horizons. In this regard, consider the
conditional variance k days ahead

Et [ht+k] = σ2 + bk−1
¡
ht+1 − σ2

¢
(2.5)

The variance impulse response function can be derived from the ARCH(∞) representation of
(2.4). We have

ht+1 = σ2 + a
∞X
i=0

bi
³
z2t−i − 1− 2c

p
ht−izt−i

´
(2.6)

from which we define the variance impulse response k periods ahead relative to the unconditional
variance for a z shock today as

V IR (k) = abk
¡
z2 − 1− 2cσz¢ /σ2

Below we will consider positive as well as negative shocks which will provide information about
the multi-period leverage effect (Black, 1976).
While by design the one-day ahead variance is deterministic in the GARCH models, the

multi-day variance is stochastic, and its distribution is important for option pricing as well. For
two days ahead the conditional variance of variance is easily derived from (2.4) as

V art [ht+2] = 2a
2 + 4a2c2ht+1 (2.7)

Note that the variance of ht+2 is linear in ht+1, which is a defining characteristic of the affine
GARCH model. Note further that if c is zero then the future variance will have constant con-
ditional variance. This is at odds with the empirical evidence in for example Jones (2003), who
finds that the volatility of implied options volatility is higher when the level of implied options
volatility is larger. In the affine normal GARCH(1,1) model the c parameter is thus needed
both to provide conditional variance of variance dynamics and to provide substantial conditional
distribution asymmetry. This doubly duty may cause a tension in the model and we will revisit
it again below.
The relationship between future variance and return is also of interest for option valuation.

The so-called leverage effect was noted by Black (1976) who observed a negative correlation be-
tween volatility and returns. To describe this relationship, we consider the conditional covariance

Covt [Rt+1,ht+2] = Et

hp
ht+1zt+1a

³
z2t+1 − 1− 2c

p
ht+1zt+1

´i
= −2acht+1 (2.8)

Note that since a must be strictly positive to ensure that the GARCH process is identified and
positive, the sign of the leverage effect is driven entirely by c.
From the conditional covariance, the conditional correlation is easily derived as

Corrt [Rt+1,ht+2] =
−2c√ht√
2 + 4c2ht

(2.9)

Note that this conditional correlation is time-varying which is a relatively unique property of the
affine GARCH model.

4



2.2 The Affine GARCH Component Model with Normal Shocks

Many papers (see for example Bollerslev andMikkelsen, 1989) have found that simple exponential
decay in (2.5) of the conditional variance to the unconditional value is too fast as the horizon
gets large. This motivates the affine normal GARCH component model which is developed in
Christoffersen, Jacobs, Ornthanalai and Wang (2007), who build on Engle and Lee (1999). The
return and variance dynamics are now

Rt+1 = r + λht+1 +
p
ht+1zt+1 (2.10)

ht+1 = qt+1 + β(ht − qt) + α
³
z2t − 1− 2γ1

p
htzt

´
qt+1 = σ2 + ρ

¡
qt − σ2

¢
+ ϕ

³
z2t − 1− 2γ2

p
htzt

´
Instead of mean-reverting to a constant unconditional variance, the conditional variance, ht+1,
now moves around a long-run component, qt+1, which itself mean-reverts to the constant uncon-
ditional variance, σ2. Furthermore, the two parameters γ1 and γ2 in the component model allow
for a different degree of asymmetry in the two components, ht+1 − qt+1, and qt+1. We will refer
to this model as AGARCH(C)-N below.
The added dynamics in this model chiefly serve to generate more flexible dynamics in the

multi-day ahead conditional variance. We now have

Et [ht+k] = Et [qt+k + (ht+k − qt+k)] = σ2 + ρk−1
¡
qt+1 − σ2

¢
+ βk−1 (ht+1 − qt+1) (2.11)

which clearly allows for slower mean-reversion than does (2.5). We will refer to ρ as long-run
persistence and to β as short-run persistence below.
The ARCH representation is

ht+1 = σ2 + ϕ
∞X
i=0

ρi
³
z2t−i − 1− 2γ2

p
ht−izt−i

´
+ α

∞X
i=0

βi
³
z2t−i − 1− 2γ1

p
ht−izt−i

´
(2.12)

from which we define the variance impulse response k periods ahead relative to the unconditional
variance for a z shock today as

V IR (k) = ϕρk
¡
z2 − 1− 2γ2σz

¢
/σ2 + αβk

¡
z2 − 1− 2γ1σz

¢
/σ2

This component model also offers greater flexibility in the conditional variance of variance
dynamic, which is now

V art [ht+2] = 2 (α+ ϕ)2 + 4 (αγ1 + ϕγ2)
2 ht+1 (2.13)

so that the affine structure is preserved. The conditional covariance and correlations are

Covt [Rt+1,ht+2] = −2 (αγ1 + ϕγ2)ht+1 (2.14)

and

Corrt [Rt+1,ht+2] =
−2 (αγ1 + ϕγ2)

√
htq

2 (α+ ϕ)2 + 4 (αγ1 + ϕγ2)
2 ht

(2.15)
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respectively. Notice that in these formulas (α+ ϕ) has replaced a in the AGARCH(1,1)-N model
and similarly (γ1α+ γ2ϕ) has replaced c. Thus whereas c had to perform double duty (creating
asymmetry and variance of variance dynamics) in the AGARCH(1,1)-N model the component
model offers much added flexibility. The return asymmetry and variance of variance are now
driven by two sources parameterized by γ1 and γ2.

2.3 The Non-Affine GARCH(1,1) Model with Normal Shocks

The benchmark so-called NGARCH(1,1)-N model of Engle and Ng (1993) used for option valu-
ation by Duan (1995) is defined as

Rt+1 = r + λ
p
ht+1 − 1

2
ht+1 +

p
ht+1zt+1 (2.16)

ht+1 = w + b0ht + aht (zt − c)2

The parameter c again renders the variance response asymmetric to positive versus negative
return shocks and creates asymmetry in the conditional distribution of multi-day returns beyond
that created by the conditional return mean

Et [Rt+1] = r + λ
p
ht+1 − 1

2
ht+1 (2.17)

Although this conditional mean specification is different from the one used in the affine model,
we use it because it will generate a risk-neutral conditional variance specification which is similar
to the physical one as we will see in Section 4 below. Similarly, the affine conditional-mean
specification in (2.2) will generate an affine conditional variance under the risk-neutral measure.
This issue will be discussed in a subsequent section
The unconditional variance is now

E [ht+1] = σ2 =
w

1− b0 − a (1 + c2)
(2.18)

and defining variance persistence as b = b0+a (1 + c2) we can rewrite the conditional variance as

ht+1 = σ2 + b
¡
ht − σ2

¢
+ aht

¡
z2t − 1− 2czt

¢
(2.19)

The conditional variance k days ahead is the same as in the affine model

Et [ht+k] = σ2 + bk−1
¡
ht+1 − σ2

¢
(2.20)

The ARCH representation is

ht+1 = σ2 + a
∞X
i=0

biht−i
¡
z2t−i − 1− 2czt−i

¢
(2.21)

from which we define the variance impulse response k periods ahead relative to the unconditional
variance for a z shock today as

V IR (k) = abk
¡
z2 − 1− 2cz¢
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The conditional variance of variance can be derived from (2.19) as

V art [ht+2] = a2
¡
2 + 4c2

¢
h2t+1 (2.22)

So that the variance of ht+2 is now quadratic in ht+1 whereas it was linear in the affine model.
Note also that even if c is zero in the non-affine model then the future variance will still have
dynamic variance now driven by a.
The conditional covariance in this model is

Covt [Rt+1,ht+2] = −2ach3/2t+1 (2.23)

The leverage effect is again driven by c but now the covariance is non-linear in ht+1.
From the conditional covariance, the conditional correlation is

Corrt [Rt+1,ht+2] =
−2c√
2 + 4c2

(2.24)

Note that conditional correlation in the non-affine model is constant whereas it was time-varying
in the affine model. Thus along this dimension the affine model seemingly offers more flexibility.

2.4 The Non-Affine GARCH Component Model with Normal Shocks

This model is obtained by replacing the constant σ2 in the NGARCH(1,1)-N model with a
time-varying long-run component qt+1. We write

Rt+1 = r + λ
p
ht+1 − 1

2
ht+1 +

p
ht+1zt+1 (2.25)

ht+1 = qt+1 + β(ht − qt) + αht
¡
z2t − 1− 2γ1zt

¢
qt+1 = σ2 + ρ

¡
qt − σ2

¢
+ ϕht

¡
z2t − 1− 2γ2zt

¢
and refer to the model as NGARCH(C)-N below.
The added dynamics in this model chiefly serve to generate more flexible dynamics in the

multi-day ahead conditional variance. The multi-day conditional variance is

Et [ht+k] = Et [qt+k + (ht+k − qt+k)] = σ2 + ρk−1
¡
qt+1 − σ2

¢
+ βk−1 (ht+1 − qt+1) (2.26)

The ARCH representation is now

ht+1 = σ2 + ϕ
∞X
i=0

ρiht−i
¡
z2t−i − 1− 2γ2zt−i

¢
+ α

∞X
i=0

βiht−i
¡
z2t−i − 1− 2γ1zt−i

¢
(2.27)

from which we define the variance impulse response k periods ahead relative to the unconditional
variance for a z shock today as

V IR (k) = ϕρk
¡
z2 − 1− 2γ2z

¢
+ αβk

¡
z2 − 1− 2γ1z

¢
The conditional variance of variance dynamic is

V art [ht+2] =
£
2 (α+ ϕ)2 + 4 (αγ1 + ϕγ2)

2¤h2t+1 (2.28)
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which has contributions from both components and which is again quadratic in ht+1. The
conditional covariance and correlation are

Covt [Rt+1,ht+2] = −2 (αγ1 + ϕγ2)h
3/2
t (2.29)

which is non-linear in ht and

Corrt [Rt+1,ht+2] =
−2 (αγ1 + ϕγ2)q

2 (α+ ϕ)2 + 4 (αγ1 + ϕγ2)
2

(2.30)

which is again constant.

2.5 Generalized Error Distribution Shocks

The assumption that the daily return shock, zt, is normally distributed is typically rejected em-
pirically for daily asset returns and the empirical analysis below is no exception. Note, however,
that while the conditional one-day distribution is normal when zt is normal, the multi-day dis-
tribution is not normal and neither is the unconditional distribution. Thus, the effect of the
normal innovation assumption on option valuation in a GARCH model is not straightforward.
Our analysis investigates if these dynamics suffice to fit the underlying asset return as well as the
option prices on the underlying asset, or whether the conditional normality assumption should
be relaxed.
Following Duan (1999), we will assume that the i.i.d. return shock which was denoted by zt

in the normal case above now follows the Generalized Error Distribution (GED) and is denoted
by ζt. Once normalized to get a zero mean and unit variance, we have the probability density
function

gv(ζ) =
v

21+
1
v θ (v)Γ

¡
1
v

¢ expµ−1
2

¯̄̄̄
ζ

θ (v)

¯̄̄̄v¶
for 0 < v ≤ ∞

where Γ (.) is the gamma function and where θ (v) =
µ
2−

2
v Γ( 1v )
Γ( 3v )

¶1
2

.

The parameter v determines the thinness of the density tails. For v < 2, the density function
has tails that are fatter than the normal distribution and vice versa. The expected simple
return exists as long as v > 1 which therefore provides a natural lower bound in financial return
applications.
The GED innovation ζ has a skewness of zero and a kurtosis of

κ(v) =
Γ
¡
5
v

¢
Γ
¡
1
v

¢
Γ
¡
3
v

¢2
In the special case where v = 2, we get κ(2) =

Γ( 52)Γ(
1
2)

Γ( 32)
2 = 3, θ (2) =

µ
2−1Γ( 12)
Γ( 32)

¶1
2

= 1 and

because Γ
¡
1
2

¢
=
√
π we get

g2(ζ) =
1√
2π
exp

µ
−1
2
ζ2
¶
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so that standardized GED conveniently nests the standard normal distribution which obtains
when v = 2. Nelson (1991), Hamilton (1994) and Duan (1999) provide more detail on the
properties of the GED distribution.
Replacing the normal distribution by the GED distribution in each of the four models above

provides four new models. The resulting eight models will allow us to study the three dimensions
of modeling that we are interested in: GARCH(1,1) versus component GARCH, affine versus
non-affine GARCH, and normal versus non-normal return shocks.
The GED distribution does not directly impact on the variance persistence and by extension

on the multi-day conditional variance in the four models considered above. The functional
form for the conditional covariance is also unchanged. However the excess kurtosis of the GED
distribution will affect the conditional variance of variance in the four GED models. We have

AGARCH(1,1)-GED : V art (ht+2) = (κ(v)− 1) a2 + 4a2c2ht+1
AGARCH(C)-GED : V art (ht+2) = (κ(v)− 1) (α+ ϕ)2 + 4 (αγ1 + ϕγ2)

2 ht+1

NGARCH(1,1)-GED : V art (ht+2) =
¡
κ(v)− 1 + 4c2¢ a2h2t+1

AGARCH(C)-GED : V art (ht+2) =
£
(κ(v)− 1) (α+ ϕ)2 + 4 (αγ1 + ϕγ2)

2¤h2t+1
where κ(v) =

Γ( 5v )Γ(
1
v )

Γ( 3v )
2 denotes the kurtosis in the GED distribution.

This in turn will affect the conditional correlation between return and volatility. In each of
the conditional correlation function expressions in the four models, the 2 in the denominator will
be replaced by a (κ(v)− 1) term.

3 Asset Return Empirics

This section presents the empirical results from fitting the GARCH models above to daily re-
turns. We use MLE on a long time series of S&P500 return data to estimate the eight models
discussed above: AGARCH(1,1)-N, AGARCH(C)-N, NGARCH(1,1)-N, NGARCH(C)-N, and
the four GED based models. We discuss the parameter estimates and their implications for the
salient properties of the models. The eight models allow us to make three types of compar-
isons: component models versus GARCH(1,1) models; affine models versus non-affine models;
and non-normal innovations versus normal innovations.

3.1 Parameter Estimates from Daily Return Data

Table 1 presents the Maximum Likelihood estimation results obtained using daily returns data
from July 1, 1962 through December 31, 2001. The returns data were obtained from CRSP.
Standard errors are calculated from the outer product of the gradient and are given in parentheses.
Table 1 reports the physical conditional variance parameters as well as the price of risk, λ. The
estimates of λ are required to be positive to guarantee positive excess log returns.
We use variance targeting in order to control the unconditional variance level across models

which is important for the subsequent option valuation exercise. We thus force the annualized
return standard deviation to be 14.66%. This technique fixes the parameter w in each model,
and we therefore do not report on w in Table 1.
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In the AGARCH(1,1) cases the unconditional variance is defined by σ2 = (w + a) / (1− b).
Thus if the data warrants a high a (perhaps to match variance of variance) then w will be small
in order to match σ2. If left unconstrained, the w estimate may be negative which yields the
possibility of a negative conditional volatility and thus causes problems in the subsequent Monte
Carlo computation of option prices. Thus we constrain w to be positive in the estimation.
The fourth row from the bottom reports the total variance persistence in each model. If we

substitute out qt+1 and qt from the ht+1 equation in the component models, then persistence can
be computed as the sum of the coefficients on ht and ht−1. The total persistence in the component
model is thus β+(1− β) ρ. In the GARCH(1,1) models persistence is simply b. Notice from Table
1 that while the GARCH(1,1) models have high persistence, for each corresponding component
model the persistence is even higher—this is particularly true for the affine models. The very
large component variance persistence is driven by a large long-run component persistence ρ, plus
the contribution from ((1− ρ) times) the less persistent short-run component β.
In the GARCH(1,1) models the correlation between return and conditional variance is driven

by c, which as expected is significantly positive in all cases. In the component models, the
correlation is driven by a combination of γ1 and γ2, which are both significantly positive in all
four component models. Thus, both the long-run and short-run components contribute to the
overall correlation with the expected sign. The average conditional correlations between the
return and conditional variance are reported in the last row of the table. They are all negative,
as expected. The results show that for each set of models, the component model displays a more
pronounced leverage effect than the GARCH(1,1) counterpart in that the average correlation is
more negative.
The variance of variance is driven mainly by the a parameter in the GARCH(1,1) models

and by the α and ϕ parameters in the component models. In the GED models, the v parameter
also contributes. The overall unconditional volatility of variance (annualized square root of
variance of variance) is reported in the second row from the bottom. Notice again that in
each case the component model displays a larger volatility of variance than its GARCH(1,1)
counterpart. Thus three important empirical regularities emerge when comparing component
models to their GARCH(1,1) counterparts: the component models allow us to (simultaneously)
capture a larger variance persistence, a larger leverage effect, and a larger variance of variance
than their GARCH(1,1) counterparts.
Finally, Table 1 presents log likelihood values for each model. In all cases the component

model has a significantly larger log-likelihood than the nested GARCH(1,1). When comparing
the GED models with their normal counterparts it is also clear that the GED based models
have significantly larger log-likelihood values. Thus this return-based analysis strongly favors
component models over GARCH(1,1) and GED models over normal models. Although the affine
and non-affine models are not nested, a casual comparison of the log-likelihoods suggests that
the non-affine GARCH models are also strongly preferred to the affine GARCH models in all
four cases.

3.2 Time-Series Properties

In order to explore the asset return models further we now plot various key dynamic properties
of the models for the period 1989-2001. This period includes the dates for the option valuation
exercise we present in Section 5.
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Figure 1 plots the conditional volatility for the period 1989-2001. To be exact, we plot the
annualized conditional standard deviation in percent, that is 100 ∗p252ht+1. Notice that the
conditional variance patterns across the four GARCH(1,1) models in the left column and the
corresponding four component models in the right column display some similarities. The models
all capture the low variance during the equity market run-up in 1993-1998, preceded by higher
volatility during the first Gulf war and the 1990-1991 recession. The LTCM and Russia debacles
in the fall of 1998 are evident, as is the higher volatility during the dot-com bust and 2001
recession in the later part of the sample.
However, Figure 1 also reveals some important differences between models. The non-affine

models (in the second and fourth rows) appear to display much more variation in the conditional
variance during the more recent period than do the two affine models (in the first and third
rows).
We plot the annualized conditional volatility of variance path, 100∗252pV art (ht+2) for each

of the eight models in Figure 2. Figure 2 confirms the findings in Figure 1. The non-affine models
in the second and fourth rows of Figure 2 display a much larger volatility of variance than the
four affine models in the first and third rows. This is true for both the GARCH(1,1) models in
the left column and the component models in the right column. The non-affine models display
a much larger volatility of variance during the first Gulf war and the 1990-1991 recession, and
particularly during the LTCM and Russia debacles in the fall of 1998, and during the dot-com
bust in 2000-2002.
Figure 3 plots the conditional correlation path, Corrt (Rt+1, ht+2) for each of the eight models

we consider. Notice that as derived above, the non-affine models imply a constant conditional
correlation and thus show a flat line in the plot. The affine models instead have time-varying
correlation and imply a conditional correlation very close to minus one when economic events
drive volatility to be high, as for example during the 1990-1991 recession and from 1999 onwards.
During the equity market run-up in the mid 1990s the conditional correlation implied by the affine
models is much lower in magnitude.

3.3 Variance Term Structure Properties

While Figures 1-3 depict various aspects of the dynamics of the one-day ahead conditional distri-
bution, Figures 4 and 5 capture the properties of the variance dynamics across longer horizons.
In Figure 4 we plot the expected future conditional variance from one to 252 days ahead.

The dashed lines in Figure 4 denote multi-day variance forecasts starting from a low current
spot variance corresponding to the 25th percentile of the path of variances from 1962 to 2001.
The solid lines in Figure 4 denote multi-day variance forecasts starting from a high current spot
variance corresponding to the 75th percentile of the path of variances from 1962 to 2001. In
the component models the 25th and 75th percentiles are used for the current spot values for
both components. The forecasts are normalized by the unconditional variance and shown in
percentage terms so that for each model we are plotting 100∗ (Et [ht+k]− σ2) /σ2 against horizon
k.
Figure 4 shows that the variance term structure properties vary strongly across models. In the

AGARCH(1,1) models the relatively low daily variance persistence implies that the conditional
variance forecasts converge to their unconditional levels after around 100 days. This is true
for both the normal and GED version of the model. The AGARCH(C) models display some
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variation in variance forecasts across initial spot variance up until 252 days ahead corresponding
roughly to the non-affine GARCH(1,1) models. The non-affine component models display the
most variation in variance forecasts at long horizons. This difference across models should have
important implications for the option pricing properties below.
Figure 5 plots the variance impulse response functions in percent, that is 100∗V IR (k) shown

against horizon k. These functions relate how a shock of a certain magnitude today affects the
future path of variances when all other shocks are set to zero. The solid lines in Figure 5 depict a
positive shock of three standard deviations and the dashed lines depict a negative shock of three
standard deviations.
Figure 5 shows that the leverage effect—or variance response asymmetry—is clear in all models.

The negative shock increases future variance by as much as 80% but a positive shock never
increases future variance by more than 25%. Important differences across models appear again.
In the affine GARCH(1,1) models the shocks die out quickly and the positive shocks have virtually
no impact at any horizon—even in the affine component models. In the non-affine models the
positive shocks have a relatively small but relatively persistent effect across horizons.

4 Option Valuation Methodology

We need to know the mapping between the physical return shocks, zt, and the risk-neutral
return shocks. This mapping will allow us use the physical asset return models developed above
to simulate future stock prices from the risk neutral distribution which we in turn can use to
compute the hypothetical options payoffs that can be discounted using the risk-free rate to get
the current model option price.
Duan (1999) extends the normal case in Duan (1995) and derives a generalized local risk-

neutral framework for option valuation in conditionally non-normal GARCH models. As above,
let zt+1 be i.i.d. Normal under the physical measure and let z∗t+1 be i.i.d. normal under the risk
neutral measure. Define the mean-shift between the two measures by

ηt+1 = z∗t+1 − zt+1 (4.1)

For a GED distributed ζt+1 shock we can write the mapping

ηt+1 = z∗t+1 − Φ−1
¡
Gv

¡
ζt+1

¢¢
where Φ−1 () is the standard normal inverse CDF so that zt+1 = Φ−1

¡
Gv

¡
ζt+1

¢¢
is normally

distributed. We can then rewrite the linear normal mapping in (4.1) as a nonlinear GEDmapping
given by

ζt+1 = G−1v
¡
Φ
¡
z∗t+1 − ηt+1

¢¢
(4.2)

The derivation of the risk-neutral model requires solving for ηt+1. This is done by setting
the conditionally expected risk-neutral asset return in each period equal to the risk-free rate. In
general we can write

exp (r) = EQ
t

h
exp

n
Et [Rt+1] +

p
ht+1G

−1
v

¡
Φ
¡
z∗t+1 − ηt+1

¢¢oi
where the normal case obtains for v = 2.
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4.1 The Affine Normal Models

Recall from above that in the affine models, the conditional return mean is defined to be

Et [Rt+1] = r + λht+1 (4.3)

In the normal case we of course have G−12 = Φ−1 so that the solution for ηt+1 can be found as

exp (r) = EQ
t

h
exp

n
r + λht+1 +

p
ht+1

¡
z∗t+1 − ηt+1

¢oi⇔
1 = exp (λht+1) exp

³
−ηt+1

p
ht+1

´
EQ
t

h
exp

np
ht+1z

∗
t+1

oi
⇔

1 = exp (λht+1) exp
³
−ηt+1

p
ht+1

´
exp

µ
1

2
ht+1

¶
⇔

ηt+1 =

µ
λ+

1

2

¶p
ht+1

so that

zt+1 = z∗t+1 −
µ
λ+

1

2

¶p
ht+1 (4.4)

which corresponds to the mapping in Heston and Nandi (2000).
Future stock returns can now be simulated under the risk-neutral measure by substituting

the shock transformation in (4.4) into the asset return models in (2.1) and (2.10). In the affine
GARCH(1,1) model we get

R∗t+1 = r − 1
2
ht+1 +

p
ht+1z

∗
t+1 (4.5)

ht+1 = w + b0ht + a
³
z∗t − c∗

p
ht
´2

where z∗t+1 ∼ N (0, 1) and where c∗ = c+ λ+ 1
2
. Note how the structure of the expected return

via its impact on ηt+1 ultimately provides a risk-neutral volatility dynamic that is similar to the
physical one.

4.2 The Non-Affine Normal Models

In these models we have
Et [Rt+1] = r + λ

p
ht+1 − 1

2
ht+1 (4.6)

so that the solution for ηt+1 can be found as ηt+1 = λ, which gives the mapping

zt+1 = z∗t+1 − λ (4.7)

which in turn corresponds to the mapping in Duan (1995).
Future stock returns can be simulated under the risk-neutral measure by substituting the

shock transformation in (4.7) into the asset return models in (2.16) and (2.25). We get

R∗t+1 = r − 1
2
ht+1 +

p
ht+1z

∗
t+1 (4.8)

ht+1 = w + b0ht + aht (z
∗
t − c∗)2
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where z∗t+1 ∼ N (0, 1) and where c∗ = c+λ. Note again how the structure of the expected return,
which is different from the affine model, via its impact on ηt+1 provides a risk-neutral non-affine
volatility dynamic that is similar to the physical non-affine volatility dynamic.

4.3 The Affine GED Models

In the non-normal case an exact solution for ηt+1 involves a prohibitively cumbersome numerical
solution for ηt+1 on every day and on every Monte Carlo path. We therefore develop the following
approximation.
In the GED case, the parameter v determines the degree of non-normality in the CDF function

Gυ. When υ = 2 we get normality and when υ < 2 we get fat tails. In the normal special case
we have

G−12 (Φ (z)) = z for all z

As the Normal and GED are both symmetric we know that

G−1υ (Φ (0)) = 0 for all υ

We use this to suggest the linear approximation

G−1υ (Φ (z)) ≈ bυz

where bυ is easily found for a given value of υ by fitting ζ i = G−1υ (Φ (zi)) to zi for a wide grid of
zi values.
Figure 6 shows that the probability integral transform, ζ = G−1υ (Φ (z)) is very close to linear.

The bottom right panel in Figure 6 shows the trivial transformation when v = 2 and when
the relationship is perfectly linear with a slope of one. The other panels in Figure 6 show the
transformation for v values around the empirical estimates in Table 1. The transformation is
clearly close to linear in all cases.
With this approximation we can write

1 = exp (λht+1)E
Q
t

h
exp

np
ht+1G

−1 ¡Φ ¡z∗t+1 − ηt+1
¢¢oi

= exp (λht+1)E
Q
t

h
exp

np
ht+1bυ

¡
z∗t+1 − ηt+1

¢oi
= exp (λht+1) exp

³
−ηt+1

p
ht+1bυ

´
EQ
t

h
exp

np
ht+1bυz

∗
t+1

oi
= exp (λht+1) exp

³
−ηt+1

p
ht+1bυ

´
exp

µ
1

2
ht+1b

2
υ

¶
Taking logs yields

0 = λht+1 − ηt+1
p
ht+1bυ +

1

2
ht+1b

2
υ

and solving for ηt+1 yields

ηt+1 =

µ
λ

bυ
+
1

2
bυ

¶p
ht+1

where of course the normal case obtains when bυ = 1.
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The mapping between the physical GED and the risk neutral normal shocks are now

ζt+1 = G−1v

µ
Φ

µ
z∗t+1 −

µ
λ

bυ
+
1

2
bυ

¶p
ht+1

¶¶
which can be substituted into the return dynamics for the AGARCH(1,1)-GED and AGARCH(C)-
GED models to get the risk-neutral processes.
Note that while the linear approximation greatly facilitates the computation of ηt+1 in the

GED models, the GED option prices are still more cumbersome to compute than the normality-
based option prices due to the frequent inversion of the GED cumulative distribution function.

4.4 The Non-Affine GED Model

Using the non-affine return drift but the same approximation G−1υ (Φ (∗)) as above, we can write

1 = exp
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p
ht+1 − 1

2
ht+1

¶
EQ
t

h
exp

np
ht+1G

−1 ¡Φ ¡z∗t+1 − ηt+1
¢¢oi

= exp

µ
λ
p
ht+1 − 1

2
ht+1

¶
EQ
t

h
exp

np
ht+1bυ

¡
z∗t+1 − ηt+1

¢oi
= exp

µ
λ
p
ht+1 − 1

2
ht+1

¶
exp

³
−ηt+1

p
ht+1bυ

´
EQ
t

h
exp

np
ht+1bυz

∗
t+1

oi
= exp

µ
λ
p
ht+1 − 1

2
ht+1

¶
exp

³
−ηt+1

p
ht+1bυ

´
exp

µ
1

2
ht+1b

2
υ

¶
Taking logs yields

0 = λ
p
ht+1 − 1

2
ht+1 − ηt+1

p
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1

2
ht+1b

2
υ

and solving for ηt+1 yields

ηt+1 =
λ

bυ
+

µ
bυ
2
− 1

2bυ

¶p
ht+1

where of course again the normal case obtains when bυ = 1. The mapping between the shocks is
then

ζt+1 = G−1v

µ
Φ

µ
z∗t+1 −

λ

bυ
−
µ
bυ
2
− 1

2bυ

¶p
ht+1

¶¶
which can be substituted into the return dynamics for the NGARCH(1,1)-GED andNGARCH(C)-
GED models to get the risk-neutral processes.

4.5 Monte Carlo Simulation

The European call option prices are computed via Monte Carlo, simulating the risk-neutral return
process and computing the sample analogue of the discounted risk neutral expectation. For a
call option, C, quoted at the close of day t with maturity on day T , and with strike price X we
have

Ct,T = exp (−r(T − t))E∗t [Max(ST −X, 0)]

≈ exp (−r(T − t))
1

MC

MCX
i=1

"
Max

Ã
St exp

Ã
T−tX
τ=1

R∗i,t+τ

!
−X, 0

!#
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where R∗i,t+τ denotes future daily log-return simulated under the risk-neutral measure. The
subscript i refers to the ith out of a total of MC simulated paths.

5 Option Valuation Empirics

We are now ready to use the eight models estimated in Section 2 and the transformation to
risk-neutrality in Section 4 to assess the performance of the models for option valuation. In this
section we first introduce the options data. We then use each of our eight models to price the
option contracts and we compare model and market prices for various maturities, strike prices,
and sample years. Subsequently, we conduct an economic analysis of the errors and finally assess
the robustness of our results.

5.1 Option Data

We use six years of S&P 500 call option data covering the period 1990-1995. Starting from the
raw data from the Berkeley option data base, we apply standard filters following Bakshi, Cao
and Chen (1997). We only use options with more than seven days to maturity. We also only use
Wednesday options data. Wednesday is the day of the week least likely to be a holiday. It is also
less likely than other days such as Monday and Friday to be affected by day-of-the-week effects.
If Wednesday is a holiday, we use the next trading day. Using only Wednesday data allows
us to study a fairly long time-series, which is useful considering the highly persistent volatility
processes.
Table 2 presents descriptive statistics for the options data for 1990-1995 by moneyness and

maturity. Panel A reports the number of contracts available after filtering. Our sample consists
of 21,752 options with a wide range of moneyness and maturity. Panel B shows the average call
price in each of the bins in Panel A. Quite predictably, the average price increases significantly
as the moneyness increases (moving down the rows) and as maturity increases (moving from left
to right). The average overall price is $27.91.
In Panel C of Table 2 we report the average Black-Scholes implied volatility for the option

contracts in each bin. Panel C clearly documents the volatility smirk evident in quoted equity
index option prices. The average implied volatility tends to increase as we move down the rows
in each column of Panel C. The effect is most dramatic for the short maturities in the left-hand
columns. This empirical regularity illustrates that the Black-Scholes option valuation formula,
which assumes a constant per period volatility across time, maturity and strike prices, will result
in systematic pricing errors, which motivates the use of GARCH models for option valuation.

5.2 Overall Option Valuation Results

When calculating option prices according to the eight GARCH models, we use the MLE parame-
ters in Table 1 transformed to the risk neutral measure. These risk-neutral parameters as well as
the conditional variance paths from Figure 1 are used as inputs into the option pricing formula.
In the case of the non-affine models, the formula requires Monte Carlo simulation to calculate
the price. In the case of the normal affine models numerical integration solutions exist. But in
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order to ensure that the results are not driven by the numerical pricing technique we use Monte
Carlo simulation using the same set of random numbers for all models.
The overall RMSEs for the eight GARCH models are reported in the top row of Table 3.

The RMSE is computed as

RMSE =

s
1

N

X
i,t

¡
CMarket
i,t − CModel

i,t

¢2
where the summation is over contract i observed on day t and where N is equal to 21,752, the
total number of option contracts in the sample. The second row normalizes the RMSE by
dividing by the average call price in the sample.
Note first that the best overall model (i.e. the one with the lowestRMSE) is the NGARCH(C)-

N with an RMSE of 1.38 followed closely by the NGARCH(C)-GED with an RMSE of 1.43.
The two non-affine GARCH(1,1) also perform relatively well with RMSEs of 1.46 in the GED
case and 1.59 in the normal case. The affine models as a group perform worse than the non-affine
models. The AGARCH(C)-GED has an RMSE of 1.74, and the RMSE for the AGARCH(C)-N
is 1.81. The two affine GARCH(1,1) models perform the worst, showing an RMSE of 2.68 in
the GED case and 2.69 in the normal case.
The overall RMSE results in Table 3 allow us to make comparisons in three dimensions:

affine versus non-affine variance dynamics, GED versus normal shocks, and GARCH(1,1) versus
component variance models.
First, as noted above we see that non-affine models perform much better than affine models.

This is true both for GARCH(1,1) and component models and for GED as well as Normal shocks.
Thus our results confirm and extend those in Hsieh and Ritchken (2005) who compare an affine
and a non-affine model in the GARCH(1,1) case with normal shocks.
Second, we see that GED models perform only marginally better than Normal models: The

biggest improvement is in the NGARCH(1,1) case where the RMSE drops from 1.59 to 1.46
going from GED to Normal shocks. In the other pairwise comparisons the difference between
the GED and the Normal RMSE is around 5 cents.
Third, we see that the component structure offers large improvements in fit for the affine

class of models, but more modest improvements in the non-affine class of models. For the affine
models,the RMSE drops from 2.69 to 1.81 (normal shocks) and from 2.68 to 1.74 (GED shocks),
where as for the non-affine models the drop is from 1.59 to 1.38 (Normal shocks) and from 1.46
to 1.43 (GED shocks).
Recall now the main findings in terms of daily return log-likelihood values in Table 1. We

found that in all cases the component model has a significantly larger log-likelihood than the
nested GARCH(1,1). When comparing the GED models with their normal counterparts we
also found that the GED based models had significantly larger log-likelihood values. The log-
likelihoods also suggested that the non-affine GARCHmodels were strongly preferred to the affine
GARCH models. The option based results support the return-based improvement of non-affine
models over affine. It also supports the component model improvements over GARCH(1,1) for
affine models but much less so for non-affine models. While the GED offered drastic improvements
in the return-based likelihood analysis, the improvements offered in option valuation are much
more modest. The normal GARCH models may offer sufficient non-normality in the multi-day
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distribution, or alternatively the GED specification may not be adequate for the purpose of
option valuation.

5.3 Option Valuation Results by Moneyness and Maturity

Table 3 also provides a break-down of the overall RMSE results. In Panel A we report the
RMSE for each of six moneyness bins, where the RMSE has been divided by the average
market option price for that bin (from Table 2, Panel B). Looking across the rows of Panel A,
we see that the non-affine component models generally do well for out-of-the money and at-
the-money options, whereas the affine component models do well for the in-the-money options.
For deep-in-the-money options the non-affine GARCH(1,1) models do the best. The differences
across models are generally larger for out-of-the-money options thus driving the overall RMSE
result. The GED models generally do well for out-of-the-money options where the non-normality
has more impact. The affine models do particularly poorly for out-of-the money options—perhaps
not providing enough non-normality at the relevant horizons.
In Panel B of Table 3, we report the RMSE for each of four maturity bins, where the RMSE

again has been divided by the average market option price for that bin. The affine component
models do well for the shortest maturities but the non-affine component and GARCH(1,1) models
are much better than the affine models at longer maturities. The relative lack of flexibility in
the longer-term variance dynamics displayed in Figures 4 and 5 above seems to hurt the affine
models in the valuation of long-maturity options.
Finally, Panel C reports the normalized RMSE for each of the years in the option sample.

Note that a non-affine model performs best or second best in all of the six years studied. The
performance of the models over time will be analyzed in more detail below.

5.4 An Economic Assessment of Option Valuation Performance

We now turn to a more detailed analysis of the option valuation performance of the models over
time. To this end we consider weekly observations on some key economic variables, shown in
Figure 7.
The top-left panel shows the VIX volatility index from the CBOE and the top right panel

shows the weekly log returns on the S&P500 index. Note the sharp increase in VIX in late 1990
and the simultaneous string of large negative returns on the S&P500 index. Towards the end of
the sample period the VIX drops to historically low levels and the low return volatility is evident
in the top-right panel as well.
The second row of panels shows the weekly crude Brent Oil price (left panel) and the 3-month

T-bill rate (right panel). The dramatic spike in the oil price at the start of the First Gulf War
and its timing with the VIX spike is clear. The Federal Reserve easing during the 1990-1991
recession and its subsequent tightening in the ensuring expansion is evident in the T-bill panel.
The third row reports in the left panel the credit spread defined as the yield on corporate bonds

rated Baa less the yield on Aaa bonds as rated by Moody’s. The credit spread clearly widens
following the volatility increase and then tighten following the volatility drop and the lowering
of interest rates. The right panel shows the term spread defined as the difference between the
yield on 10-year T-bond and the 3-month T-bill rate. The term structure is steepening through
the first half of the option sample period and then gradually leveling off in the second half.
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The bottom row plots in the left panel the weekly average moneyness defined as index value
over strike price (S/X) (left panel), and the weekly average maturity in years (right panel). The
weekly averages are taken across the option contracts observed during the Wednesday of that
week. Note that the average moneyness drops following the string of negative index returns in
1990-1991 but increases towards the end of the sample as the stock market picks up. The average
option maturity shows the well-known cycles following the introduction of new contracts on the
CBOE.
The economic variables in Figure 7 can be visually compared with the weekly RMSE for

each model shown in Figure 8. The spike in the oil price and in VIX in 1990-1991 is evident
in the weekly RMSE in all models, but the degree to which the spike is reflected in the option
RMSEs varies dramatically across models. The GARCH(1,1) models in the left-side panels in
Figure 8 show much more of a spike than do the component models in the right-side panels. The
affine component models also seem to display more of a spike than do the non-affine component
models. The weekly RMSE performance also differs drastically across models in the later part
of the sample. The affine GARCH(1,1) models show a strong upward trend in RMSE during
1993-1994 when the VIX is dropping to historically low levels and when the short-term interest
rate is increasing and the term spread decreasing. The upward trend in RMSE in 1993-1994 is
much less pronounced in the affine component models and the non-affine GARCH(1,1) models
and it is virtually absent in the non-affine component models.
The relationship between the economic variables in Figure 7 and the weekly option RMSEs

in Figure 8 is formalized in Table 4. The top row in Table 4 reports the average weeklyRMSE for
each model. The time-series of weeklyRMSEs for each model are then regressed on the economic
variables from Figure 7. We also regress the RMSE from each model on the model specific path
of volatilities defined as

√
ht. Table 4 reports the t-statistic for each regressor where the standard

deviation for each regressor has been computed using White’s robust variance matrix. Any t-
statistic larger than two in absolute value is bolded in Table 4. The bottom row of Table 4 shows
the regression fit via the R-squared statistic.
Consider first the R-squared statistic. Note that close to 50% of the variation in the weekly

RMSE of the affine GARCH(1,1) models is explained by the economic variables. For the affine
and non-affine component models the R-squareds are much lower at around 20%, and for the
NGARCH(1,1) models the explanatory power is even lower at 13-15%.
Interestingly, the own model volatility is significant in the affine GARCH(1,1) models and

only in these models. When the model volatility is high, the RMSE is also high suggesting
a misspecification in the volatility dynamic. The coefficient on VIX is negative for the affine
GARCH(1,1) models but positive (but insignificant) as expected in all other cases. This sug-
gests that the market volatility effect is captured by the own volatility variable in the affine
GARCH(1,1) models.
It is the case for all models that the S&P500 return is insignificant as is the average moneyness.

The average maturity is positive and significant for all models. This could simply be due to the
fact that longer maturity options are more expensive and thus have higher dollar pricing errors,
but the fact that the short-term interest rate and the term spreads are negative and significant in
all models suggests that perhaps all models could be enhanced by explicitly modeling interest rate
dynamics. In their stochastic volatility models Bakshi, Cao and Chen (1997) found that adding
stochastic interest rate dynamics did not improve the performance of the models. However, they

19



were fitting the models to the observed option prices daily which could perhaps explain this
finding.
The credit spread is significant (but with differing signs) in all but the two non-affine GARCH(1,1)

models which also had the lowest R-squared statistics overall. The oil price is positive and sig-
nificant in all the affine models. These findings suggest that building option pricing models with
variance dynamics driven by key economic variables such as credit spreads and oil prices is a
viable avenue for future research.
Figure 9 shows the weekly option price bias for each model defined as the average option

price in the market less the average model price each week. Figure 9 shows that all models
tend to underprice when market volatility spikes in 1990-1991. The affine GARCH(1,1) models
show large overpricing biases in the latter half of the sample when market volatility is very
low. Note that the affine component models show much less evidence of this overpricing. The
component dynamics seem to be able to generate a much more flexible volatility path which can
accommodate the large swings in volatility observed during the sample period. Note that the
non-affine GARCH(1,1) models show a sudden overpricing spike in early 1994 which seems to be
driven by a spike in the average maturity at that time.
Table 5 reports on regressions of weekly bias on the economic variables used in Table 4. Note

again that the explanatory power is very large in the affine GARCH(1,1) models, somewhat large
in the affine component models, lower yet in the non-affine GARCH(1,1) models and lowest in
the non-affine component models. The biases in the affine models appear to be driven by the VIX
which is significant in these models and not in the other models. The increase in the short term
rate, the decline in the term and credit spreads seem capable of explaining some of the upward
bias in the affine model prices in the second half of the sample. It is also quite interesting to note
that the own model volatility path is significant in the component models but not for the other
models. This suggest that the path of volatility can be improved upon for option valuation. We
will study this topic further in the next section. Finally, note that the spikes in bias in the non-
affine GARCH(1,1) models in Figure 9 appear to be captured by the average maturity variable
in Table 5.

5.5 Robustness Analysis

So far the GARCH models have been estimated on daily returns only and then used for option
valuation without letting the model parameters be driven in any way by the observed option
prices. We have argued that as the option prices are not used in estimation, the option valuation
exercise is out-of-sample even if the return sample period (1962-2001) overlaps with the option
sample period (1990-1995). We now want to check the robustness of our results in two ways.
First, we shorten the return sample period to end in 1989 just before the first option price
observation. Second, we use options to estimate the weekly spot variance, h(t) minimizing the
weekly option RMSE, while keeping the model parameters fixed at the MLE values estimated
on the 1962-1989 sample of daily index returns. Table 6 and Figure 10 contain the results.
Panel A of Table 6 summarizes the results using the MLE parameters from 1962-2001. The

RMSE in the top row of Table 6 is simply repeated from the top row of Table 3. The second
row of Table 6 reports the overall bias which is close to zero for all models. The third row reports
the average spot volatility across the 313 option sample days. Due to the variance targeting used
in MLE these average volatilities are quite similar across models. Finally, the fourth row reports
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the standard deviation of the 313 spot variances. In keeping with the results in Figure 2 the
volatility of variance is highest in the non-affine models.
Panel B of Table 6 reports the same set of results using MLE estimates of the GARCH

parameters from daily returns from 1962 through 1989 rather than though 2001. Note that the
option RMSE is often lower using when parameters are estimated on returns observed through
1989 than when returns through 2001 are used in estimation. This strongly suggests that using
return-based parameters estimated through 2001 to price options during 1990-1995 can indeed be
thought of as an out-of-sample exercise. Compared with the 2001 estimates, the 1989 estimates
result in higher option RMSEs only in the two non-affine component models. Whereas the
evidence in favor of non-affine component models thus weakens, the other overall conclusions
from the 2001 estimates remain intact. The poorer option valuation performance of the non-
affine component models when using the shorter sample could be driven by the fact that the
component models need a longer return sample to properly identify the components.
Panel C of Table 6 uses the GARCH parameters from MLE on returns up through 1989 but

estimates the GARCH spot variance, ht, each week by minimizing that week’s option RMSE
using a nonlinear least squares (NLS) technique. Comparing the pure MLE RMSEs in Panel
B with the hybrid RMSEs in Panel C show that the reduction in RMSE is dramatic in all
models. The four non-affine models now all have an RMSE of around $1 whereas the two affine
component models have RMSEs of around 1.36 and the affine GARCH(1,1) models around $2.
Thus the overall ranking of models from the pure MLE analysis remains largely intact.
Figure 10 elaborates further on this finding by plotting the weekly spot volatility from NLS

shown in dots along with the corresponding MLE based spot volatilities shown in solid lines.
The picture is quite striking. In the affine GARCH(1,1) models the NLS optimizer forces the
spot volatility to zero in much of the second half of the sample in order to lessen the overpricing
apparent in Figure 9. This phenomenon also happens in the affine component models but to a
much lesser extend. In the non-affine models the RMSE-optimal spot volatility never hits zero
and the NLS dots in those panels fall nicely around close to the MLE optimal volatility lines.
The last row in Table 6 formalizes this closeness by reporting the RMSE between the an-

nualized RMSE optimal volatility and its MLE optimal counterpart. These numbers confirm
the visual impression in Figure 10 and also corroborate some of our earlier findings: First, the
non-affine models have a much closer correspondence between option implied and purely return-
generated spot volatility. Second, the component structure reduces the volatility RMSE by well
over 50% in the affine models, and now also quite substantially in the non-affine models. Third,
the GED shocks do not have much effect when judged by this this metric either.

6 Conclusion and Directions for Future Work

We have assessed the ability of eight different GARCH models to fit daily return dynamics and
their ability to match market prices of options. First, we consider component models versus
GARCH(1,1) models. As in Engle and Lee (1999) we find strong evidence in favor of component
models from the point of view of modeling daily return dynamics. When using option prices to
assess the models, we also find strong evidence for the component structure in the affine GARCH
models but not in the non-affine models. Second, we consider non-affine versus affine GARCH
models. The affine GARCH(1,1) model has been compared to the non-affine NGARCH(1,1)
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model in Hsieh and Ritchken (2005), who found strong support for the non-affine specification.
Our results support their findings and we find that the non-affine models also outperform affine
models when allowing for component structures and non-normal shocks. Third, we consider
conditionally normal versus conditionally non-normal models. We find that assuming GED
shocks for the daily asset returns greatly improves the fit of the all models to daily returns, but
the improvement in option valuation is much less evident.
The empirical results suggest some viable directions for future research.
First, it remains to be seen if the differences in performance between models are confirmed

when using model parameters estimated from option prices, or when using an integrated analysis
that uses option prices as well as underlying returns (see Bates (2000), Chernov and Ghysels
(2000), Eraker (2004) and Pan (2002)). The analysis in Table 6 does suggest that the relative
performance of the models is comparable when the spot volatility is estimated from options
rather than filtered from returns.
Second, it would be interesting to expand the analysis of non-normal shocks to a wider

class of distributions. To this end Christoffersen, Heston and Jacobs (2006) develop an Inverse
Gaussian GARCH model, Duan, Ritchken and Sun (2006) suggest augmenting GARCH models
with jumps, and Lehnert (2003) applies an EGARCH model with skewed GED shocks.
Third, we have restricted attention to European style options on the S&P500 index. It would

be interesting to apply the GARCH modeling framework to some of the many American style
contracts traded in the derivatives markets. Ritchken and Trevor (1999) and Stentoft (2005)
provide fast numerical techniques for GARCH option valuation with early exercise.
Finally, it would be interesting to compare the range of discrete time GARCH models consid-

ered here with continuous time stochastic volatility models. Bakshi, Cao and Chen (1997), Bates
(1996), and Eraker (2004) study stochastic volatility models with jumps, Alizadeh, Brandt and
Diebold (2002), Chernov, Gallant, Ghysels and Tauchen (2003) and Taylor and Xu (1994) study
multifactor stochastic volatility models, and Bates (2000) analyses models with Poisson jumps
and multiple volatility factors. Recently, Carr and Wu (2004) and Huang and Wu (2004) have
considered Levy processes with infinitely many jumps. Comparing GARCH and SV models for
the purpose of option valuation may provide more insight into the strengths and weaknesses of
the various models.
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Figure 1. Conditional Volatility Paths
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Notes to Figure: We plot the annualized conditional volatility in percent, 100 ∗p252ht+1, for
each of the eight models we consider. The parameter values for the underlying GARCH models
are obtained from MLE estimation on daily S&P500 returns as reported in Table 1.
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Figure 2. Conditional Volatility of Variance Paths
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Notes to Figure: We plot the annualized conditional volatility of variance path in percent, 100 ∗
252 ∗pV art (ht+2), for each of the eight models we consider. The parameter values for the
underlying GARCH models are from Table 1.
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Figure 3. Conditional Correlation Paths
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Notes to Figure: We plot the conditional correlation path, Corrt (Rt+1, ht+2) for each of the eight
models we consider. The parameter values for the underlying GARCH models are from Table 1.
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Figure 4. Variance Forecasts Across Forecast Horizon
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Notes to Figure: We plot the normalized k-day ahead variance forecast 100 ∗ (Et [ht+k]− σ2) /σ2

for a low initial spot variance (dashed line) and a high initial spot variance (solid line). Please
see the text for details.
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Figure 5. Variance Impulse Response Across Horizons
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Notes to Figure: We plot the variance impulse response function V IR(k) across k days. The
solid line denotes a shock of plus three standard deviations and the dashed line denotes minus
three standard deviations. Please see the text for more detail.
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Figure 6. The GED Approximation
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Notes to Figure: For a standard normal shock, z, ranging from -10 to +10 we plot the transfor-
mation to a standardized GED variable, ζ, via the function ζ = GED−1

v (Φ (z)). The four panels
correspond to different values of v. The bottom right panel corresponds to the normal special
case with v = 2 where the transformation is trivial and a straight line with slope 1 obtains.
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Figure 7. Weekly Economic Variables
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Notes to Figure: We plot weekly observations for various weekly economic variables as well as
the weekly average moneyness (S/X) and maturity (in years) from the option data set.
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Figure 8. Weekly Option Price RMSE
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Notes to Figure: We plot the weekly option price root mean squared error (RMSE) for each
model. The parameter values in the GARCH models are from Table 1.
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Figure 9. Weekly Option Price Bias
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Notes to Figure: We plot the weekly option price bias (average market price less average model
price) for each model. The parameter values in the GARCH models are from Table 1.
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Figure 10. RMSE Optimal Spot Volatility Estimated Weekly by NLS
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Notes to Figure: The dots show the weekly RMSE-optimal GARCH variance h(t) estimated by
NLS and reported in annualized standard deviation in percent. The MLE optimal volatility path
is show in solid lines.
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GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components 

λ 0.00002 1.00495 0.03768 0.03390 0.56677 1.78607 0.03984 0.03674
(1.83E-05) (3.53E-06) (8.62E-03) (8.98E-03) (1.42E-05) (1.64E-04) (8.30E-03) (9.67E-03)

a, α 3.342E-06 2.132E-06 6.253E-02 3.696E-02 3.105E-06 1.705E-06 5.982E-02 3.071E-02
(1.72E-07) (1.40E-07) (3.95E-03) (3.45E-03) (2.52E-04) (1.35E-07) (4.12E-03) (4.72E-03)

b', β 0.89921 0.74928 0.90825 0.89262 0.90297 0.83454 0.91133 0.91320
(2.47E-02) (1.71E-04) (5.30E-03) (2.20E-02) (6.90E-06) (2.61E-05) (5.71E-03) (1.89E-02)

c, γ1 135.7520 297.2247 0.5972 1.6588 139.7188 313.8362 0.6136 1.7759
(2.47E-02) (5.42E-05) (4.67E-02) (4.97E-02) (1.70E-06) (8.63E-04) (5.77E-02) (1.98E-01)

ϕ 1.739E-06 3.393E-02 1.524E-06 3.341E-02
(4.84E-08) (3.36E-03) (1.10E-07) (4.15E-03)

ρ 0.99176 0.99796 0.99309 0.99807
(2.34E-06) (5.21E-04) (4.31E-04) (6.13E-04)

γ2 71.40695 0.38247 57.94967 0.38521
(2.94E-05) (4.76E-02) (1.22E-03) (5.64E-02)

ν 1.34637 1.41600 1.43298 1.45868
(1.17E-07) (3.04E-03) (2.66E-02) (2.84E-02)

Properties
Log-Likelihood 33954 34129 34130 34201 34192 34310 34309 34352
Annual Volatility Target 14.66 14.66 14.66 14.66 14.66 14.66 14.66 14.66
Total Variance Persistence 0.9608 0.9979 0.9931 0.9998 0.9636 0.9989 0.9937 0.9998
Empirical z Kurtosis 8.9123 7.4070 6.6153 5.7752 9.1408 7.9727 6.6575 5.9424
Model z Kurtosis 3.0000 3.0000 3.0000 3.0000 4.1797 3.9732 3.9274 3.8612
Annual Vol of Variance 0.2289 0.3507 0.2497 0.3852 0.2341 0.3016 0.2725 0.3726
Average Correlation -0.8318 -0.8949 -0.6452 -0.8289 -0.7784 -0.8557 -0.5828 -0.7792

Table 1: Maximum Likelihood Estimation on Daily S&P500 Returns. 1962-2001

We use daily total returns from July 1, 1962 to December 31, 2001 on the S&P500 index to estimate the GARCH models using Maximum Likelihood. Standard 
errors are calculated from the outer product of the gradient at the optimum parameter values. Annual Vol of Variance refers to the sample mean of the 
annualized conditional volatility of variance path in each model. Correlation refers to the sample mean of the conditional correlation between variance and 
return in the affine models and to the constant model implied correlation in the non-affine models.

AGARCH-N NGARCH-N AGARCH-GED NGARCH-GED



DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 101 1,884 1,931 1,769 5,685
0.975<S/X<1.00 283 1,272 706 477 2,738
1.00<S/X<1.025 300 1,212 726 526 2,764
1.025<S/X<1.05 261 1,167 654 409 2,491
1.05<S/X<1.075 245 1,039 582 390 2,256
1.075<S/X 549 2,345 1,679 1,245 5,818
All 1,739 8,919 6,278 4,816 21,752

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.88 2.30 6.25 11.94 6.62
0.975<S/X<1.00 2.29 6.83 15.19 27.50 12.12
1.00<S/X<1.025 8.35 13.60 22.48 34.41 19.32
1.025<S/X<1.05 17.57 22.00 30.11 42.14 26.97
1.05<S/X<1.075 27.11 30.84 38.14 48.83 35.43
1.075<S/X 50.67 52.78 58.98 68.34 57.70
All 24.32 23.66 28.68 36.07 27.91

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.1625 0.1269 0.1350 0.1394 0.1342
0.975<S/X<1.00 0.1308 0.1296 0.1448 0.1562 0.1383
1.00<S/X<1.025 0.1527 0.1459 0.1558 0.1605 0.1520
1.025<S/X<1.05 0.1915 0.1647 0.1665 0.1656 0.1681
1.05<S/X<1.075 0.2433 0.1828 0.1775 0.1739 0.1865
1.075<S/X 0.3897 0.2356 0.1961 0.1868 0.2283
All 0.2434 0.1703 0.1622 0.1607 0.1717

Table 2: S&P 500 Index Call Option Data. 1990-1995

Panel A. Number of Call Option Contracts

Panel B. Average Call Price

Panel C. Average Implied Volatility from Call Options

Notes to Table: We use European call options on the S&P500 index. The prices are taken from 
quotes within 30 minutes from closing on each Wednesday during the January 1, 1990 to 
December 31, 1995 period. We use the moneyness and maturity filters used by Bakshi, Cao and 
Chen (1997). The implied volatilities are calculated using the Black-Scholes formula. S/X refers to 
moneyness (index price over strike price), and DTM refers to the number of days to maturity of the 
option.



GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components 

Overall RMSE ($) 2.6927 1.8138 1.5875 1.3820 2.6819 1.7404 1.4599 1.4270
RMSE / Avr Call Price 0.0965 0.0650 0.0569 0.0495 0.0961 0.0623 0.0523 0.0511

Moneyness
S/X<0.975 0.5779 0.3963 0.3200 0.1935 0.5773 0.3787 0.2841 0.1888
0.975<S/X<1.00 0.2673 0.1589 0.1351 0.1022 0.2649 0.1467 0.1199 0.1085
1.00<S/X<1.025 0.1401 0.0799 0.0764 0.0729 0.1390 0.0738 0.0705 0.0785
1.025<S/X<1.05 0.0766 0.0468 0.0504 0.0545 0.0762 0.0448 0.0483 0.0578
1.05<S/X<1.075 0.0455 0.0336 0.0353 0.0425 0.0454 0.0337 0.0349 0.0446
1.075<S/X 0.0220 0.0212 0.0202 0.0250 0.0219 0.0217 0.0200 0.0256

Days to Maturity
DTM<20 0.0304 0.0275 0.0293 0.0282 0.0300 0.0276 0.0293 0.0284
20<DTM<80 0.0731 0.0484 0.0447 0.0430 0.0717 0.0475 0.0446 0.0435
80<DTM<180 0.1002 0.0645 0.0523 0.0527 0.0993 0.0626 0.0503 0.0542
DTM>180 0.1120 0.0776 0.0691 0.0524 0.1125 0.0733 0.0600 0.0549

Sample Year
1990 0.0967 0.0792 0.0747 0.0682 0.0948 0.0812 0.0775 0.0716
1991 0.0703 0.0727 0.0667 0.0756 0.0700 0.0740 0.0671 0.0757
1992 0.0694 0.0500 0.0379 0.0527 0.0692 0.0502 0.0390 0.0559
1993 0.1073 0.0663 0.0567 0.0462 0.1069 0.0624 0.0504 0.0474
1994 0.1023 0.0691 0.0633 0.0481 0.1025 0.0646 0.0558 0.0498
1995 0.0941 0.0565 0.0469 0.0339 0.0937 0.0526 0.0398 0.0351

Table 3: Root Mean Squared Error (RMSE) over Average Call Price

Panel A: RMSE over Average Call Price for Options with Various Moneyness

Panel B: RMSE over Average Call Price for Options with Various Maturities

Panel C: RMSE over Average Call Price for Various Sample Years

Notes to Table: We use the MLE estimates from Table 1 to compute the dollar root mean squared option valuation error (RMSE) divided by the average 
call price. In Panel A, we show the RMSEs according to moneyness bins. In Panel B, we show the RMSEs according to maturity bins.  In Panel C, we 
show the RMSEs on a year-by-year basis.  S/X refers to moneyness (index price over strike price), and DTM refers to the number of days to maturity of 
the option. The top two rows show the overall RMSE as well as the overall normalized RMSE.

AGARCH-N NGARCH-N AGARCH-GED NGARCH-GED



GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components 

Average Weekly RMSE 2.3450 1.6481 1.4028 1.3231 2.3345 1.6008 1.3112 1.3656

Regressor
Constant 1.130 1.130 -0.180 -0.853 1.120 1.083 -0.188 -0.754
VIX -2.170 1.008 1.588 3.737 -2.201 1.391 1.695 3.198
S&P500 Weekly Return 0.676 1.049 0.169 -0.846 0.673 0.986 0.275 -0.934
Oil Price 9.715 5.043 0.766 -2.016 9.543 5.049 0.642 -1.246
3-month T-bill Rate -5.479 -3.670 -3.253 -4.050 -5.454 -3.402 -2.656 -4.263
Credit Spread -4.442 -2.838 -1.017 2.759 -4.393 -2.509 -0.344 2.912
Term Spread -7.772 -4.827 -4.300 -3.513 -7.675 -4.524 -3.596 -3.519
Average Moneyness (S/K) -0.197 -0.594 0.698 1.296 -0.184 -0.647 0.529 1.141
Average Maturity (YTM) 3.485 4.411 3.813 4.609 3.531 4.308 3.480 4.525
Model Volatility 4.127 0.302 0.497 0.353 4.114 -0.136 0.681 1.191

Regression R-squared 0.4798 0.2156 0.1513 0.2166 0.4796 0.2174 0.1299 0.2087

Table 4: Regressing Weekly RMSE on Economic Variables

t-Statistics using White's Robust Standard Errors

Notes to Table: For each model we regress the weekly RMSE on a constant and various weekly economic variables as well as the average weekly moneyness 
and maturity of the options in the sample. We also regress on the model-specific volatility path. We report the t-statistic for each regressor using White's robust 
standard errors. Numbers in bold are larger than two in absolute value. The top row shows the average weekly RMSE and the bottom row reports the R-squared 
regression fit. 
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GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components 

Average Weekly BIAS -0.9684 -0.3031 -0.1260 0.5500 -0.9745 -0.2186 0.0700 0.6467

Regressor
Constant -5.570 -3.350 -1.235 -0.311 -5.675 -3.429 -1.377 -0.525
VIX 10.847 4.913 -0.946 1.952 10.675 4.912 -0.999 1.744
S&P500 Weekly Return 0.372 -0.881 -0.326 0.019 0.269 -0.736 -0.419 0.061
Oil Price 1.880 3.989 0.766 2.060 1.863 4.921 0.636 2.363
3-month T-Bill Rate 3.706 -0.658 0.092 -4.531 3.658 -1.545 -0.143 -4.449
Credit Spread 9.117 3.830 5.717 -1.256 9.311 2.405 5.600 -1.211
Term Spread 2.966 -0.734 -1.381 -4.032 2.862 -1.010 -1.664 -3.920
Average Moneyness (S/X) 3.557 2.647 1.052 0.655 3.691 2.793 1.279 0.852
Average Maturity (YTM) -1.128 -1.346 -2.631 -0.051 -1.329 -0.826 -2.117 0.304
Model Volatility 0.300 2.052 1.558 3.147 0.428 2.496 1.535 3.274

Regression R-squared 0.8722 0.5880 0.3199 0.1290 0.8699 0.5473 0.2882 0.1294

Table 5: Regressing Weekly BIAS on Economic Variables

t-Statistics using White's Robust Standard Errors

Notes to Table: For each model we regress the weekly BIAS on a constant and various weekly economic variables as well as the average weekly moneyness and 
maturity of the options in the sample. We also regress on the model-specific volatility path. We report the t-statistic for each regressor using White's robust 
standard errors. Numbers in bold are larger than two in absolute value. The top row shows the average weekly BIAS and the bottom row reports the R-squared 
regression fit. 
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GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components 

Option RMSE, 1990-1995 2.6927 1.8138 1.5875 1.3820 2.6819 1.7404 1.4599 1.4270
Option BIAS, 1990-1995 -0.0423 -0.0149 -0.0077 0.0193 -0.0425 -0.0114 -0.0004 0.0229
Ann Avr Vol % 1990-1995 12.367 11.884 11.293 11.153 12.398 11.907 11.292 11.157
Ann Vol of Var % 1990-1995 0.7904 0.8763 1.0064 0.9758 0.7819 0.8587 1.0081 0.9753

Option RMSE, 1990-1995 2.4750 1.6805 1.4347 1.4782 2.4163 1.6438 1.4021 1.5179
Option BIAS, 1990-1995 -0.0314 -0.0060 0.0043 0.0268 -0.0296 -0.0046 0.0095 0.0296
Ann Avr Vol % 1990-1995 12.442 11.871 11.218 11.086 12.428 11.904 11.235 11.107
Ann Vol of Var % 1990-1995 0.7485 0.8481 1.0122 0.9932 0.7283 0.8324 1.0087 0.9876

Option RMSE, 1990-1995 2.0362 1.3555 1.0416 1.0076 1.9490 1.3731 1.0273 1.0143
Option BIAS, 1990-1995 -0.0174 0.0107 0.0058 0.0061 -0.0137 0.0118 0.0054 0.0055
Ann Avr Vol % 1990-1995 7.097 10.255 11.306 12.050 7.275 10.500 11.715 12.261
Ann Vol of Var % 1990-1995 2.5754 1.3651 1.1766 0.9814 2.4127 1.3083 1.2098 1.0068

RMSE of Ann Vol % 9.3485 3.7099 2.3055 1.6955 9.0147 3.4056 2.3297 1.7829

Table 6: Robustness Analysis

Panel A: Results from MLE on 1962-2001 Sample

Panel B: Results from MLE on 1962-1989 Sample

Panel C: Results from NLS Estimation of GARCH Spot Variance

Notes to Table: Using the GARCH MLE paramaters from Table 1, Panel A reports the overall option RMSE and BIAS as well as the average model volatility on 
the option data days and the standard deviation of the model variance path on the option data days. Panel B reports the same statistics but using GARCH 
parameters estimated on 1962-1989 instead. In Panel C we use NLS to estimate the RMSE optimal spot variance each week. Panel C uses the GARCH MLE 
parameters from the 1962-2001 sample of returns. The last row of the table reports the RMSE distance between the annualized MLE volatility path and the NLS 
optimal volatilities. 
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